
TL/DD/9977

T
h
e

H
P
C

a
s

a
F
ro

n
t-E

n
d

P
ro

c
e
s
s
o
r

A
N

-5
5
1

National Semiconductor
Application Note 551
Brian Marley
April 1992

The HPC as a Front-End
Processor

ABSTRACT

This application note covers the use of the National Semi-

conductor HPC46083 High-Performance microController as

a front-end processor to collect and block data from RS-232

(serial) and Centronics (parallel) ports for a Host CPU (a

typical application being an intelligent graphics-oriented

printer). This application note builds on Application Note

AN-550 (UPI Port); the result being a program that imple-

ments a versatile front-end processor for a National

NS32CG16 CPU.

1.0 INTRODUCTION

In Application Note AN-550, ‘‘A Software Driver for the HPC

Universal Peripheral Interface Port’’, we saw how a National

Semiconductor HPC46083 microcontroller can be connect-

ed and programmed to perform intelligent peripheral func-

tions for a host CPU; our example being an application con-

necting an NS32CG16 CPU through the HPC to a typical

front panel.

In this application note, we will expand on the hardware and

the driver software presented there in order to implement a

very useful function for a high-performance microcontroller:

that of a front-end processor for data collection. To demon-

strate a real-world application for this kind of function, we

implement here an intelligent interface to a Centronics-style

parallel input port and an RS-232 serial port, typical of a

graphics-oriented printer.

2.0 THE FRONT-END PROCESSOR FUNCTION

As systems start to support higher data rates, one of the

ever-present challenges is to minimize the interrupt pro-

cessing load on the CPU, which can become intolerable if

the CPU must process each character received in a sepa-

rate interrupt. Since the character transfer task is typically

so simple (reading a character from an input port and plac-

ing it into a memory buffer), it is often the case that the

unavoidable context switch time associated with the inter-

rupt outweighs the time spent processing the input charac-

ter. In addition, the communication task may not be the

CPU’s highest priority: for example, in band-style laser print-

ers the CPU must keep up with the paper movement; it can

neither rerun an image nor stop the paper. The communica-

tion rate therefore suffers; even printers running from a Cen-

tronics-style parallel port are typically unable to accept data

faster than 4k characters per second.

The traditional technique for overcoming this obstacle is to

implement Direct Memory Access (DMA) for the communi-

cation ports. This is, however, quite a large investment in

hardware, requiring an external DMA controller chip and

more sophisticated bus structures to support it. In other

words, it may be acceptable for a computer system, but it is

overly expensive for an embedded controller application.

Also, the response time required of the CPU can still be

stringent, especially in implementing flow control to pace

the character rate from the external system presenting the

data.

The HPC46083 microcontroller, however, allows a much

more cost-effective approach to the problem. As a peripher-

al, it interfaces to the CPU much as any peripheral controller

would. In the application documented here, it buffers up to

128 characters before interrupting the CPU, thus dropping

the CPU input interrupt processing frequency by over two

orders of magnitude, while allowing a character input rate of

over 20 kb/sec.

2.1 Data Transfer Technique

The benefit provided by a front-end processor is derived

from the efficiency it adds to the process of getting data into

the CPU’s data buffer; that is, how much of the CPU’s pro-

cessing time gets dedicated to this task.

The efficiency is provided by two means:

1. Reduction of interrupt overhead. By interrupting the CPU

only once every 100 characters, the overhead per char-

acter becomes virtually negligible.

2. Elimination of error testing overhead. If the CPU were

communicating with a UART directly, it would have to poll

for error conditions on each character. In our implementa-

tion, there are two interrupt vectors for data transfer: one

for good data (which transfers a block of data), and one

for bad data (which transfers one character and its error

flags). The good data interrupt routine, then, which is in-

voked almost exclusively, contains a very simple inner

loop. After reading the character count from the HPC, all

that the CPU needs to do is:

Ð Move a character from the HPC’s OBUF register to the

current destination address. No time is wasted polling the

HPC status; the hardware synchronization technique de-

scribed in Application Note AN-550 handles this.

Ð Increment the destination address. (Checking against

buffer limits could be done here, but is more efficiently

handled outside the inner loop).

Ð Decrement the character count and test it; loop if non-

zero.

The HPC firmware also supports this technique by guar-

anteeing that the reporting of character errors (and

BREAK conditions) is synchronized with good data, so

that the CPU can tell exactly where in the data stream

the error occurred.

2.2 Logic Replacement

Front-end processing tasks by no means use up the HPC’s

capabilities in a system. In our application, the HPC also

serves as the CPU’s only interrupt controller, allowing

a large number of vectors with no additional hardware. It

performs additional control tasks such as dynamic RAM re-

fresh request timing, front panel control and real-time clock

functions given in Application Note AN-550 with inexpensive

interfacing. In a single 4 kbyte program developed in our

group, we were also able to add an interface to an inexpen-

sive serial EEPROM device (connected directly to the MI-

CROWIRE/PLUSTM port of the HPC) and to a laser-printer

engine for non-imaging control functions, and we also im-

plemented a higher-resolution event timing feature. (These

are topics for future application notes, however, and are not

dealt with here.)

To summarize, then, the HPC not only can provide front-end

processing functions, but can pay for itself by replacing oth-

er logic in the system.

MICROWIRE/PLUSTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



3.0 HARDWARE

The following sections refer to the schematic pages includ-

ed. We will discuss here only the portions involving the Cen-

tronics Parallel and RS-232 Serial ports. See Application

Note AN-550 for details of the other connections shown

(the UPI port and front-panel functions).

3.1 The Centronics Parallel Port

The Centronics port was implemented on the connector

designated J5. Most of the interface is diagrammed on

Sheet 4 of the schematic.

3.1.1 Control Inputs

Pin 1 of the J5 connector receives the Data Strobe

(STROBE) input, which signals the presence of valid data

from the external system. On Sheet 4, in area C5, this signal

appears from the connector. It is filtered using a Schmitt

trigger (a spare 1488 RS-232 receiver chip), and is then

presented to the HPC (Sheet 3) as interrupt signal I4.

Pin 31 is the Input Prime signal (PRIME), which is asserted

low by the external system in order to reset the interface. It

appears on Sheet 4 in area D5, and is filtered in a similar

manner. It is then gated with the signal ENPRIME from the

Centronics Control Latch, and the resulting signal is pre-

sented to the HPC on pin *EXUI, which is the External

UART Interrupt input. The gating is used to prevent confu-

sion between UART and PRIME interrupts: while the Cen-

tronics port is selected, only PRIME causes interrupts, and

while the RS-232 port is selected, this gating keeps PRIME

interrupts from being asserted.

3.1.2 Data Inputs

Eight data bits, from J5 pins 2 through 9, appear in areas B8

and C8 of Sheet 4. They are latched into a 74LS374 latch

on the leading edge of the STROBE signal (note the inver-

sion through the Schmitt receiver on STROBE). The latch is

enabled to present data to the HPC’s Port D pins by the

signal ENCDATA, which comes from HPC pin B12. Note

that Port D is also used for inputting pushbutton switch data

from a front panel.

3.1.3 Control Outputs

The Centronics control and handshake signals are present-

ed by loading the Centronics Control Latch (Sheet 4, area

B4) from the HPC’s pins A8 through A15 (Port A Upper)

using as a strobe the signal CCTLCLK from HPC pin P2.

Pin 10 of connector J5 is the Centronics Acknowledge

(CACK) pulse, which is used to signal the external system

that the HPC is ready for the next byte of data. This is one of

the two handshake signals used to pace data flow. It is ini-

tialized high by the HPC, and is pulsed low when required.

Pin 11 is the Centronics Busy (CBUSY) signal, which is gen-

erated by the flip-flop on Sheet 4, area C3. It is set directly

by a STROBE pulse, and is also loaded from the Centronics

Control Latch whenever the HPC finishes reading a byte of

data (rising edge of ENCDATA). This will clear CBUSY un-

der normal conditions, allowing the external system to send

another byte of data.

Five additional signals, whose functions vary significantly

from printer to printer, are presented on connector J5 from

the Centronics Control Latch. These are:

Pin 13, which generally indicates that the printer is select-

ed.

Pin 12, which indicates that the printer needs attention

(for example, that it is out of paper).

Pin 32, which indicates a more permanent or unusual

problem (lamp check or paper jam).

Pins 33 and 35, which vary more widely in use.

These five pins are manipulated by commands from the

CPU; the HPC simply presents them as commanded.

3.1.4 Other Signals

Pin 18 of the Centronics port connector receives a perma-

nent a5V signal (area B2 of Sheet 4), and a set of other

pins (middle of Sheet 2) are connected permanently to

ground.

3.2 The RS-232 Serial Port

The serial port (on connector J6) makes use of the HPC’s

on-chip UART and baud rate generator; very little off-chip

hardware is required. The entire RS-232 circuit appears on

Sheet 3 of the schematic.

This port is implemented in a way typical of printers, and so

there are no sophisticated handshaking connections. The

interface looks like an RS-232 DTE device: Connector J6

pin 2 is transmitted data (out) and pin 3 is received data (in).

The RS-232 data input appears in area B8 of Sheet 3, as

signal RXD. After the RS-232 receiver, it is presented on the

HPC’s UART input pin (I6). Note that this pin can be moni-

tored directly as a port bit; this enables the HPC to check

periodically for the end of a BREAK condition without being

subjected to a constant stream of interrupts for null charac-

ters.

The Data Set Ready signal (DSR) is received from pin 6 of

J6, and presented on HPC pin I7, where it can be monitored

by the HPC firmware.

The Request to Send signal (RTS) is a constant high level

placed on J6 pin 4.

Transmitted data (TXD) is presented from the HPC’s UART

output pin (B0), through a buffering gate, to an RS-232 driv-

er, and then out on J6 pin 3. The buffering gate would be

unnecessary if the CMOS 14C88 driver were being used,

but the gate was a spare and allowed cost savings using the

less expensive TTL 1488 chip.

Data Terminal Ready (DTR) is simply presented from a pro-

grammable port pin of the HPC (pin B1). It is buffered

through a spare inverter, and then presented to RS-232

connector J6 pin 20 through an RS-232 driver. As with the

UART output, the buffering would be unnecessary with the

14C88 type of RS-232 driver; however, note that the HPC

firmware would have to be modified slightly due to the re-

sulting polarity difference on the pin.

J6 pins 1 (Frame Ground) and 7 (Signal Ground) are, of

course, grounded, as shown in this sheet also.

2



3.3 Schematic Sheets

Sheet 1

TL/DD/9977–1

Power and Ground Distribution

Sheet 2

TL/DD/9977–2

Notes: (Unless otherwise specified)

1. All capacitance values in microfards, 50V.

2. All resistor values in Ohms, (/4W, 5%.

3



Sheet 3

T
L
/
D

D
/
9
9
7
7
–
3

4



Sheet 4

T
L
/
D

D
/
9
9
7
7
–
4

5



Sheet 5

T
L
/
D

D
/
9
9
7
7
–
5

6



4.0 PROTOCOL

The command and interrupt protocol is a superset of that

implemented for Application Note AN-550. The two com-

mands SELECT-CENT and SELECT-UART are added to

select and initialize each of the communication ports (Cen-

tronics or RS-232). The CPU can exercise control over data

buffering by the commands FLUSH-BUF, CPU-BUSY, CPU-

NOT-BUSY and SET-IFC-BUSY. It can set Centronics port

error flags and status using SET-CENT-STS, and it can test

for RS-232 status using the TEST-UART command. The

HPC also allows the CPU to send characters out on the RS-

232 port using the SEND-UART command.

New interrupts presented by the HPC are !DATA, which

transfers up to 128 bytes of buffered data to the CPU,

!PRIME and !UART-STATUS, which inform the CPU of port

status changes, and !DATA-ERR, which reports in detail any

error ocurring in characters received. The interrupt !ACK-

UART is presented to the CPU to acknowledge that the

SEND-UART command has been completed.

Note that the command codes for the front panel functions

have been changed. Their formats, however, have not

changed, nor have their functions, except that the INITIAL-

IZE command now performs a disconnection function on

the RS-232 and Centronics ports.

4.1 Commands

The first byte (command code) is sent to address FFFC00,

and any argument bytes are then written to address

FFFE00. The CPU may poll the UPIC register at address

FD0000 to determine when the HPC can receive the next

byte, or it can simply attempt to write, in which case it will be

held in Wait states until the HPC can receive it. Except

where noted, the CPU may send commands continuously

without waiting for acknowledgement interrupts from previ-

ous commands.

00 INITIALIZE This command has two functions.

The first INITIALIZE command after

a hardware reset (or RESET-HPC

command) enables the !RTC and

!BUTTON-DATA interrupts. Both

data communcation ports are set to

their ‘‘Busy’’ states until a ‘‘SELECT’’

command is sent. The INITIALIZE

command may be re-issued by the

CPU to de-select both communica-

tion ports, and to either start or stop

the !RTC interrupts. There is one ar-

gument:

RTC-Interval: One-byte value. If

zero, !RTC interrupts are disabled.

Otherwise, the !RTC interrupts occur

at the interval specified (in units of

10 ms per count).

01 SELECT-CENT Select the Centronics port and set it

ready, using the timing sequence

specified by the supplied ACK-Mode

argument. Data from the port is en-

abled, and the !PRIME interrupt is

also enabled. Arguments:

ACK-Mode: one byte in the format:

x x x x x L Timing

where the Timing field is encoded as:

00 e BUSY falling edge occurs after

ACK pulse.

01 e BUSY falling edge occurs dur-

ing ACK pulse.

10 e BUSY falling edge occurs be-

fore ACK pulse.

and the L bit, when set, requests

Line Mode. It suppresses the remov-

al of BUSY and the occurrence of

the ACK pulse when the buffer is

passed to the CPU. To fully imple-

ment Line Mode, this mode should

be used with Pass-Count e 1 and

Stop-Count e 1, and the CPU must

use the SET-CENT-STS command to

acknowledge each character itself.

Pass-Count: Number of characters

in buffer before the HPC passes

them automatically to CPU. One

byte.

Stop-Count: Number of characters

in buffer before HPC tells the exter-

nal system to stop. One byte.

Note that the buffer is a maximum of

128 bytes in length, in this implemen-

tation.

Requires INITIALIZE command first.

02 SELECT-UART Select Serial port and set it ready,

according to supplied arguments.

Requires INITIALIZE command first.

Arguments are:

Baud: Baud rate selection. One Byte

containing.

0 e 300 baud

1 e 600 baud

2 e 1200 baud

3 e 2400 baud

4 e 4800 baud

5 e 9600 baud

6 e 19200 baud

7 e 38400 baud

8 e 76800 baud

Frame: One byte, selecting charac-

ter length, parity and number of stop

bits.

Value Data Bits Parity Stop Bits

0 8 Odd 1
1 8 Even 1
2 8 None 1
3 8 None 2
4 7 Odd 1
5 7 Even 1
6 7 Odd 2
7 7 Even 2

7



Flow: One byte, bit-encoded for

handshaking and flow control

modes:

0 0 0 0 XON DTR DSR

7 6 5 4 3 2 1 0

DSR: 1 e the HPC disables the

UART receiver while the DSR input is

inactive.

DTR: Polarity of DTR output, and

whether it is used as a flow-control

handshake.

00 e Permanently low (negative

voltage).

01 e Permanently high (positive

voltage).

10 e Handshaking: low means

ready.

11 e Handshaking: high means

ready.

XON: 1 e the HPC performs

XON/XOFF flow control.

Pass-Count: Number of characters

in buffer before the HPC passes

them automatically to CPU. One

byte.

Stop-Count: Number of characters

in buffer before HPC tells the exter-

nal system to stop. One byte.

Note that the buffer is a maximum of

128 bytes in length, in this implemen-

tation.

Requires INITIALIZE command first.

03 (reserved)

04 FLUSH-BUF No arguments. Flush HPC data com-

munication buffer to CPU. Any data

in the buffer is immediately sent to

the CPU (using the !DATA interrupt).

This command triggers the !DATA in-

terrupt only if the buffer contains at

least one byte. Requires INITIALIZE

command and SELECT command

first.

05 CPU-BUSY No arguments. Indicates that the

CPU cannot accept any more data

(the CPU’s data buffer is full). This

suppresses the !DATA and !DATA-

ERR interrupts. Requires INITIALIZE

command and SELECT command

first.

06 CPU-NOT-BUSY No arguments. This undoes a previ-

ous CPU-BUSY command, and indi-

cates that the CPU can now accept

more data from the HPC. Requires

INITIALIZE command and SELECT

command first.

07 SET-IFC-BUSY ‘‘Set Interface Busy’’. No arguments.

Commands the HPC to immediately

signal the external system to stop

sending characters. This status is re-

moved only by performing a SELECT

command. Requires INITIALIZE

command and SELECT command

first.

08 SET-CENT-STS ‘‘Set Centronics Port Status’’. Loads

Centronics latch from the supplied

argument byte. Argument is eight

bits, which must be encoded as fol-

lows:

ENPRIME CX2 FAULT CALL SELECT BUSY CX1 ACK

The ACK bit should always be a ‘‘1’’.

The CPU must use the BUSY bit to

generate an ACK pulse: if the BUSY

bit is zero, the ACK signal will be au-

tomatically pulsed low, then high, (re-

gardless of the previous states of

BUSY and ACK).

Requires INITIALIZE command and

SELECT-CENT command first.

09 SET-CONTRAST The single argument is a 3-bit num-

ber specifying a contrast level for the

LCD panel (0 is least contrast, 7 is

highest contrast). There is no re-

sponse interrupt. Does not require

INITIALIZE command first.

0A SEND-LCD This writes a string of up to 8 bytes to

the LCD panel. Arguments are:

flags: A single byte, containing the

RS bit associated with each byte of

data. The first byte’s RS value is in

the least-significant bit of the FLAGS

byte.

Ýbytes: The number of bytes to be

written to the LCD display.

byte[1] –byte[Ýbytes]: The data

bytes themselves.

The HPC determines the proper de-

lay timing required for command

bytes (RS e 0) from their encodings.

This is either 4.9 ms or 120 ms.

The response from the HPC is the

!ACK-SEND-LCD interrupt, and this

command must not be repeated until

the interrupt is received. This com-

mand does not require an INITIAL-

IZE command first.

0B SEND-LED The singe argument is a byte con-

taining a ‘‘1’’ in each position for

which an LED should be lit.

There is no response interrupt, and

this command does not require the

INITIALIZE command first.

0C BEEP No arguments. This beeps the panel

for approximately one second. No re-

sponse interrupt. If a new BEEP

command is issued during the beep,

no error occurs (the buzzer tone is

extended to one second beyond the

most recent command). Does not re-

quire INITIALIZE command first.

8



0D SEND-UART The single one-byte argument is sent

on the UART port. An acknowledge-

ment interrupt !ACK-UART occurs on

completion. This command must not

be repeated until the interrupt is

received. Requires INITIALIZE and

SELECT-UART commands first.

0E TEST-UART Triggers a !UART-STATUS interrupt.

This command must not be repeated

until the interrupt is received. No ar-

guments. Requires INITIALIZE and

SELECT-UART commands first.

A5 RESET-HPC Resets the HPC if it is written to ad-

dress FFFC00. It may be written at

any time that the UPI port is ready for

input; it will automatically cancel any

partially-entered command. The

CPU’s Maskable Interrupt must be

disabled before issuing this com-

mand.

After issuing this command, the CPU

should first poll the UPIC register at

address FD0000 to see that the HPC

has input the command (the least-

significant bit [Write Ready] is zero).

It must then wait for at least 25 ms,

then read a byte from address

FFFE00. The HPC now begins its in-

ternal re-initialization. The CPU must

wait for at least 80 ms to allow the

HPC to re-initialize the UPI port.

Since part of the RESET procedure

causes Ports A and B to float briefly

(this includes the CPU’s Maskable

Interrupt input pin), the CPU should

keep its maskable interrupt disabled

during this time. It also must not en-

ter a command byte during this time

because the byte may be lost.

4.2 Interrupts

The HPC interrupts the CPU, and provides the following val-

ues as the interrupt vectors for the CPU hardware. The CPU

then reads data from the HPC at address FFFE00. All data

provided by the HPC must be read by the CPU before re-

turning from the interrupt service routine, otherwise the HPC

would either hang or generate a false interrupt. The CPU

may poll the UPIC register at address FD0000 to determine

when each data byte is ready, or it may simply attempt to

read from address FFFE00, and it will be held in Wait states

until the data is provided by the HPC.

Note: All CPU interrupt service routines, including the NMI interrupt rou-

tines, must return using the ‘‘RETT 0’’ instruction. Do NOT use

‘‘RETI’’.

Vector

00–0F (none) (Reserved for CPU internal traps

and the NMI interrupt.)

10 !DATA Buffer data is being transferred to

CPU. This will happen either auto-

matically, at a point defined by the

most recent SELECT command,

or as the result of a

FLUSH-BUF command. It is fol-

lowed by a one-byte Length (num-

ber of characters: current HPC

firmware has a range of 1–128),

then that number of characters.

Enabled by SELECT command af-

ter at least one INITIALIZE com-

mand.

11 !RTC Real-Time Clock Interrupt. No

data returned. Enabled by INI-

TIALIZE command if interval value

supplied is non-zero.

Note: This version of HPC firmware issues

a non-fatal !DIAG interrupt if the

CPU fails to service each !RTC inter-

rupt before the next one becomes

pending.

12 (reserved)

13 !PRIME Centronics INPUT PRIME signal

has become active. No data re-

turned. Enabled by SELECT-

CENT command after at least one

INITIALIZE command.

14 (reserved)

15 (reserved)

16 (reserved)

17 !ACK-SEND-LCD This is the response to the SEND-

LCD command, to acknowledge

that data has all been written to

Panel LCD display. No other data

is provided with this interrupt. Al-

ways enabled, but occurs only in

response to a SEND-LCD com-

mand.

18 !BUTTON-DATA Pushbutton status has changed:

one or more buttons have been ei-

ther pressed or released. The new

status of the switches is reported

in a data byte, encoded as fol-

lows:

Any pushbutton that is depressed

is presented as a ‘‘1’’. All other bit

positions, including unused posi-

tions, are zeroes. The pushbut-

tons are debounced before being

reported to the CPU. This interrupt

is enabled by the first INITIALIZE

command after a reset.

9



19 !UART-STATUS UART status has changed. This

interrupt occurs only while the

UART is selected. A data byte

shows the UART’s new state:

Bit Condition

0 (LSB) New state of DSR sig-

nal. This causes an in-

terrupt only if DSR moni-

toring was requested in

the last SELECT-UART

command. The UART

receiver is automatically

enabled and disabled by

the HPC, so no CPU ac-

tion is required on re-

ceiving this interrupt. If a

SELECT-UART com-

mand is entered, re-

questing DSR monitor-

ing, and DSR is inactive,

a !UART-STATUS inter-

rupt occurs immediately.

1 This bit is set if a UART

BREAK has just ended.

2–7 (unused)

Note 1: If the CPU has issued a CPU-NOT-

READY command, this BREAK in-

terrupt may be seen before the

!DATA-ERR interrupt that an-

nounces the start of the BREAK

(and its position in the data

stream).

Note 2: The DSR and UART input (BREAK)

signals are sampled every 10 ms.

1A !DATA-ERR An error has been encountered in

data coming from the currently-se-

lected communication port. It is

enabled by the first SELECT com-

mand after the first INITIALIZE

command. Two data bytes are re-

turned:

errchr: One byte containing the

character on which the error was

seen (this character is NOT

placed in the data buffer).

errfgs: Error flags, detailing the

error seen:

Bit Error Seen

0 (LSB) (unassigned)

1 (unassigned)

2 UART BREAK condition

detected. This may be

preceded by one or two

framing errors.

3 Error Overflow: More

errors occurred than

HPC could report (the

HPC has no FIFO for er-

ror reporting).

4 Buffer Overflow: Flow

control failed to stop the

external system, and the

buffer overflowed.

5 Parity Error: Serial Port

only.

6 Framing Error: Serial

Port only.

7 (MSB) Data Overrun: Serial

Port only.

If bit 2, 3 or 4 is set, the communi-

cation port has been automatically

shut down by the HPC. The CPU

must issue a new SELECT com-

mand to re-enable the port.

When a character is received with

an error, all characters appearing

before it in the buffer are automat-

ically flushed before this interrupt

occurs. This is done to preserve

the error character’s position in

the data stream. If the CPU de-

cides to ignore the presence of an

error, the character may be simply

appended by the CPU to the data

already in its data buffer. Please

note: If the CPU has issued a

CPU-NOT-READY command, the

flush cannot occur, and this inter-

rupt will not be issued until the

flush has occurred.

1B !ACK-UART A CPU character has been sent

on the UART, and the UART is

ready for another. No data is re-

turned with this interrupt. It is al-

ways enabled, but occurs only in

response to the SEND-UART

command.

1C (reserved)

1D !DIAG Diagnostic Interrupt. This inter-

rupt is used to report failure condi-

tions and CPU command errors.

There are five data bytes passed

by this interrupt:

Severity

Error Code

Data in Error (passed, but con-

tents not defined)

Current Command (passed, but

contents not defined)

Command Status (passed, but

contents not defined)

The Severity byte contains one bit

for each severity level, as follows:

X X X F X X C N

N (Note): least severe. The CPU

missed an event; currently only

the !RTC interrupt will cause this.

C (Command): medium severity.

Not currently implemented. Any

command error is now treated as

a FATAL error (below).

10



F (Fatal): highest severity. The

HPC has recognized a non-recov-

erable error. It must be reset be-

fore the CPU may re-enable its

Maskable Interrupt. In this case,

the remaining data bytes may be

read by the CPU, but they will all

contain the value 1D (hexadeci-

mal). The CPU must issue a RE-

SET command, or wait for a hard-

ware reset. See below for the pro-

cedure for FATAL error recovery.

The Error Code byte contains, for

non-FATAL errors, a more specif-

ic indication of the error condition:

RTC (Reserved for COMMAND)

RTC e Real-Time Clock overrun:

CPU did not acknowledge

the RTC interrupt before

two had occurred.

The other bits are reserved for de-

tails of Command errors, and are

not implemented at this time.

The remaining 3 bytes are not yet

defined, but are intended to pro-

vide details of the HPC’s status

when an illegal command is re-

ceived.

Note: Except in the FATAL case, all 5

bytes provided by the HPC must be

read by the CPU, regardless of the

specific cause of the error.

Fatal Error Recovery:

When the HPC signals a !DIAG er-

ror with FATAL severity, the CPU

may use the following procedure

to recover:

1. Write the RESET command (A5

hex) to the HPC at address

FFFC00.

2. By inspecting the UPIC register

at address FD0000, wait for the

HPC to read the command (the

WRRDY bit will go low).

3. Wait an additional 25 ms.

4. Read from address FFFE00.

This will clear the OBUF regis-

ter and reset the Read Ready

status of the UPI port. The HPC

will guarantee that a byte of

data is present; it is not neces-

sary to poll the UPIC register.

This step is necessary because

only a hardware reset will clear

the Read Ready indication oth-

erwise (HPC firmware cannot

clear it).

5. Wait at least 80 ms. This gives

the HPC enough time to re-ini-

tialize the UPI port.

6. After Step 5 has been complet-

ed, the CPU may re-enable the

Maskable Interrupt and start is-

suing commands. Since the

HPC is still performing initializa-

tion, however, the first com-

mand may sit in the UPI IBUF

register or a few milliseconds

before the HPC starts to pro-

cess it.

5.0 SOURCE LISTINGS AND COMMENTARY

5.1 HPC Firmware Guide

This section is intended to provide help in following the flow

of the HPC firmware. Discussion of features already docu-

mented in Application Note AN-550 are abbreviated here;

see that application note for details.

The firmware for the HPC is almost completely interrupt-

driven. The main program’s role is to poll mailboxes that are

maintained by the interrupt service routines, and to send an

interrupt to the CPU whenever a HPC interrupt routine re-

quests one in its mailbox.

On reset, the HPC firmware begins at the label ‘‘start’’.

However, the first routine appearing in ROM is the Fatal

Error routine. This is done for ease of breakpointing, to keep

this routine at a constant address as changes are made

elsewhere in the firmware.

5.1.1 Fatal Error Routine

At the beginning of the ROM is a routine (label ‘‘hangup’’)

that is called when a fatal error is detected by the HPC. This

routine is identical to that documented in Application Note

AN-550.

5.1.2 Initialization

At label ‘‘start’’, entered on a Reset signal or by the RESET-

HPC command from the CPU, the HPC begins its internal

initialization. It loads the PSW register (to select 1 Wait

state), and then (at label ‘‘srfsh’’), it starts the Refresh clock

pulses running for the dynamic RAM by initializing Timer T4

and starting it.

At ‘‘supi’’, the UPI port is initialized for transfers between the

HPC and the CPU.

11



At label ‘‘sram’’, all RAM within the HPC is initialized to zero.

At ‘‘sskint’’, the stack pointer is initialized to point to the

upper bank of on-chip RAM (at address 01C0). The address

of the fatal error routine ‘‘hangup’’ is then pushed, so that it

will be called if the stack underflows.

At ‘‘tminit’’, the timers T1–T3 are stopped and any inter-

rupts pending from timers T0–T3 are cleared. This step ar-

bitrarily initializes the UART baud rate to 9600, but this se-

lection has no effect.

At ‘‘scent’’, the Centronics port is initialized and set up to

appear busy to the external system.

At ‘‘suart’’, the HPC UART is initialized for serial data from

the external system. The RS-232 DTR signal is arbitrarily set

low, which generally means that the printer is not ready. The

state of DTR is not actually valid until the first SELECT-

UART command is received, which selects the handshaking

mode.

At ‘‘sled’’, the LED control signals are initialized,and all LED

indicators are turned off.

At ‘‘stmrs’’, all timers are loaded with their initial values, and

timers T5–T7 are stopped and any interrupts pending from

them are cleared.

At ‘‘slcd’’, the LCD display is initialized to a default contrast

level of 5, then commands are sent to initialize it to 8-bit, 2-

line mode, with the cursor visible and moving to the right by

default. This section calls a subroutine ‘‘wrpnl’’ for each

character; the subroutine simply writes the character in the

accumulator out to the LCD display and waits for approxi-

mately 10 ms.

The program then continues to label ‘‘minit’’, which initializ-

es the variables in the HPC’s on-chip RAM to their proper

contents.

At label ‘‘runsys’’, the necessary interrupts are enabled

(from the timers, and from pin I3, which is the UPI port inter-

rupt from the CPU), and the program exits to the Main Pro-

gram at label ‘‘mainlp’’. Interrupts from the Centronics and

UART ports are not enabled until the appropriate SELECT

command is received.

5.1.3 Main Program (UPI Port Output to CPU)

The Main Program is the portion of the HPC firmware that

runs with interrupts enabled. It consists of a scanning loop

at label ‘‘mainlp’’ and a set of subroutines (explained be-

low). It is responsible for interrupting the CPU and passing

data to it; the HPC is allowed to write data to the CPU only

after interrupting it. Unlike the simpler UPI/Front Panel inter-

face described in Application Note AN-550, this main loop

scans two separate variables in on-chip RAM that are set up

by interrupt service routines: a word called ‘‘alert’’, and a

byte called ‘‘bstat’’ (for ‘‘Buffer Status’’). Both variables are

used to determine whether any conditions exist that should

cause an interrupt to the CPU.

The ‘‘alert’’ word contains one bit for each interrupt that the

HPC can generate. If a bit is set (by an interrupt service

routine), the Main Program jumps to an appropriate subrou-

tine to notify the CPU. The subroutine checks whether the

UPI interface’s OBUF register is empty, and if not, it waits

(by calling the subroutine ‘‘rdwait’’). It then writes the vector

number to the OBUF register. This has the effect of inter-

rupting the CPU (because the pin URDRDY goes low), and

the CPU hardware reads the vector from the OBUF register.

If there is more information to give to the CPU, the HPC

places it, one byte at a time, into the OBUF register, waiting

each time for OBUF to be emptied by the CPU. This tech-

nique assumes that the CPU remains in the interrupt service

routine until all data has been transferred: if the CPU were

to return from interrupt service too early, the next byte of

data given to it would cause another interrupt, with an incor-

rect vector.

(Note, however, that the CPU may be interrupted with a

Non-Maskable interrupt from a separate source. This simply

inserts a pause into the process of reading data from the

HPC. Since the HPC is running its main program at this

point, with interrupts still enabled, it will not lose data from

its communication port under these circumstances.)

The ‘‘bstat’’ byte represents a special case involving the

interrupt !DATA to the CPU. This byte shows the main pro-

gram whether the data communication buffer (which holds

data from the external system) is full enough to send its

contents to the CPU. If so, the main program calls the sub-

routine ‘‘snddta’’, which interrupts the CPU, then sends one

data byte containing the number of characters to be trans-

ferred (currently as many as 128 are possible), and then the

characters themselves.

The CPU may, at any time, demand that the HPC transfer all

characters that are within its communication buffer. (This is

called a ‘‘flush’’ command, which sets one of the bits of the

‘‘alert’’ word, described above.) The HPC, in response, will

empty the buffer to the CPU with a !DATA interrupt, even if

only one character is left. If the buffer is completely empty,

however, the flush command is ignored.

Subroutines called from the Main Program loop are:

sndrtc: sends a Real-Time Clock interrupt to the CPU. No

data is transferred; only the interrupt vector.

sndlak: interrupts the CPU to acknowledge that a string of

data (from a SEND-LCD command) has been writ-

ten to the LCD display. No data is transferred for

this interrupt.

sndbtn: interrupts the CPU to inform it that a pushbutton

has been pressed or released. A data byte is

transferred from variable ‘‘swlsnt’’, which shows

the new states of all the pushbuttons.

sndfsh: performs a Flush operation. If there is data, it

jumps to the ‘‘snddta’’ routine to send the con-

tents of the buffer to the CPU. If there is no data,

however, this subroutine simply returns without

generating an interrupt.

snddta: sends data from the communication buffer to the

CPU. It may be entered for one of three reasons:

1. the communication buffer is full enough that it

must be sent automatically to the CPU.

2. a Flush command has been received from the

CPU. (The bit ‘‘aflush’’ in the ALERT word is

set.)

3. an error has been detected on a character re-

ceived from the external system. This causes

an internal Flush request, so that all good char-

acters are sent to the CPU before the bad char-

acter is reported. This case is also different be-

cause it does not flush the entire buffer, but only

up to the point of the error. The limit is held in

the variable ‘‘fshlim’’.

12



The subroutine sends a ‘‘length’’ byte (from vari-

able ‘‘numout’’, sampled from ‘‘numchr’’, which is

maintained by the communication interrupt rou-

tines). This indicates how many characters will be

transferred. The subroutine next sends the char-

acters themselves. It then updates the buffer

status variables in on-chip RAM, to indicate how

many characters were removed.

Depending on other status of the selected com-

munication port, this subroutine may re-enable

communication on the port if it was stopped (for

example, if the buffer was too full to accept more

data until the ‘‘snddta’’ routine emptied it). This is

done at label ‘‘sdstp’’.

sndprm: interrupts the CPU because the INPUT PRIME sig-

nal on the Centronics parallel port was activated

by the external system. No data is transferred by

this interrupt.

sndust: interrupts the CPU to report a change in UART

status. This interrupt may also be triggered by the

CPU using the TEST-UART command.

snderr: interrupts the CPU to inform it that a character with

an error was received. The character and a byte

containing error flags are transferred to the CPU.

snduak: interrupts the CPU in response to a SEND-UART

command, to acknowledge that the requested

character has been sent on the UART transmitter,

and that it is ready to transmit another character.

sndiag: interrupts the CPU to inform it of a !DIAG interrupt

condition, when it is of NOTE severity. (Other

!DIAG conditions are handled at label ‘‘hangup’’.)

5.1.4 UPI Port Input from CPU (Interrupt I3)

This interrupt service routine, at label ‘‘upiwr’’, accepts com-

mands from the CPU. Apart from the existence of additional

commands, the structure of this routine is identical to that of

Application Note AN-550. We document here the labels and

functions involved in this larger application.

13



Command Processing Routines

INITIALIZE I3 interrupt labels: State 1 e fcinit State 3 e lcinit

SELECT-CENT I3 interrupt labels: State 1 e fcselc State 3 e lcselc

SELECT-UART I3 interrupt labels: State 1 e fcselu State 3 e lcselu

FLUSH-BUF I3 interrupt labels: State 1 e fcflsh State 3 e (none)

At label ‘‘fcflsh’’, the ‘‘alert’’ word bit ‘‘aflush’’ is set, which requests that the main program flush the

communication buffer.

CPU-BUSY I3 interrupt labels: State 1 e fccbsy State 3 e (none)

At label ‘‘fccbsy’’, the buffer status byte ‘‘bstat’’ is set to indicate that the CPU is busy and cannot

accept more data from the HPC. This disables the !DATA interrupt.

CPU-NOT-BUSY I3 interrupt labels: State 1 e fccnby State 3 e (none)

At label ‘‘fccnby’’, the buffer status byte ‘‘bstat’’ is set to indicate that the CPU is ready to accept more

data from the HPC. The !DATA interrupt is re-enabled.

SET-IFC-BUSY I3 interrupt labels: State 1 e fcifby State 3 e (none)

At label ‘‘fcifby’’, the currently selected interface is set busy, in order to present an error indication.

SET-CENT-STS I3 interrupt labels: State 1 e fcscst State 3 e lcscst

At label ‘‘lcscst’’, the Centronics Port status byte ‘‘cps’’ is loaded from the value supplied by the CPU,

and the Centronics port control signals are updated to reflect these new settings. The subroutine

‘‘setcen’’ is used to set up the control signals, and it also pulses the Centronics ACK signal if

appropriate.

SET-CONTRAST I3 interrupt labels: State 1 e fcslcv State 3 e lcslcv

At label ‘‘lcslcv’’ (Set LCD Voltage), the LCD Contrast latch is loaded from the value supplied by the

CPU.

SEND-LCD I3 interrupt labels: State 1 e fcslcd State 3 e lcslcd

This command sends a string of up to eight bytes to the LCD display. Application Note AN-550

describes the implementation of this command in detail.

SEND-LED I3 interrupt labels: State 1 e fcsled State 3 e lcsled

At label ‘‘lcslcd’’, the byte provided by the CPU is written to the LED latch.

BEEP I3 interrupt labels: State 1 e fcbeep State 3 e (none)

This command sends a one-second beep tone to a speaker.

SEND-UART I3 interrupt labels: State 1 e fcsndu State 3 e lcsndu

At label ‘‘lcsndu’’, the single argument (the character to be sent) is placed in variable ‘‘uschr’’, and the

bit ‘‘schr’’ is set in variable ‘‘ups’’ (UART Port Status). By doing this, the character has been queued

for transmission. The transmission is performed by the subroutine at label ‘‘setuar’’, which is also

responsible for performing the XON/XOFF flow control protocol. If a character is already being sent

(the transmitter interrupt is enabled), then this is the only action required, since the transmitter

interrupt automatically invokes the ‘‘setuar’’ subroutine. However, if the transmitter is idle, this routine

must itself call ‘‘setuar’’ to transmit the character.

The subroutine ‘‘setuar’’ itself calls another subroutine at label ‘‘uecsnd’’, which formats the character

to be transmitted into the frame selected by the current UART framing mode. It then sends the

character. Note that the UART framing mode applies to output as well as input characters.

TEST-UART I3 interrupt labels: State 1 e fcusts State 3 e (none)

At label ‘‘fcusts’’, the HPC sets the ‘‘austat’’ bit of the ALERT word, requesting the Main Program to

send a !UART-STATUS interrupt to the CPU.

14



5.1.5 Centronics Commmunication

This task is triggered by each edge of the Centronics port

STROBE signal. This signal is detected by the HPC on the

I4 interrupt line. On the leading edge of STROBE, the char-

acter is input to the data communication buffer. This edge

also sets the BUSY signal, by hardware action. On the trail-

ing edge, the BUSY flag is affected by the HPC firmware. If

the HPC is ready to receive more characters, the BUSY

signal is cleared and the ACK signal is pulsed. If the HPC is

not ready to receive more data, it leaves the BUSY signal

high, which prevents the external system from sending more

characters.

The Centronics port STROBE handler is at label ‘‘cenint’’. It

first determines whether a falling or rising edge was detect-

ed on the STROBE signal. If the leading (falling) edge was

detected, then it jumps to label ‘‘cstrbl’’; otherwise it jumps

to label ‘‘cstrbt’’ to process a trailing edge.

At label ‘‘cstrbl’’, the character is placed in the next avail-

able position of the communication buffer, if the buffer is not

already full. (If it is already full, then it is processed as an

error, as discussed below.) Then some tests are performed:

If the buffer is not full enough to pass data to the CPU,

then the routine exits by jumping to label ‘‘cenlex’’, where

it prepares to detect the trailing edge of STROBE. Other-

wise, it sets the ‘‘pass’’ bit in the variable ‘‘bstat’’, which

requests the main program to send data to the CPU, and

then it continues.

If the buffer is not full enough to tell the external system

to stop sending characters, then the routine exits by jump-

ing to ‘‘cenlex’’. Otherwise, it sets the ‘‘stop’’ bit in vari-

able ‘‘bstat’’, indicating that the external system has been

stopped, and it also sets the ‘‘cbusy’’ flag in variable

‘‘cps’’, which will prevent the Centronics BUSY and ACK

signals from being changed when the STROBE pulse

ends. The routine continues.

If the buffer has become completely full, then the ‘‘full’’ bit

in ‘‘bstat’’ is set, indicating that any more characters re-

ceived will trigger an error. Character processing then

continues at label ‘‘cenlex’’.

At ‘‘cenlex’’, the Centronics Control Latch is set (tempo-

rarily) to force the BUSY signal high, because it should

not become low until the STROBE pulse ends. The I4 pin,

which detects the STROBE signal, is then re-programmed

to detect the trailing edge (rising edge at the Centronics

connector, but falling edge at pin I4 due to an inverting

buffer). If the trailing edge already has occurred, then this

reprogramming will set another interrupt pending immedi-

ately. There is, however, a possibility that the strobe edge

could occur simultaneously with the reprogramming, with

unknown results. For this reason, the STROBE signal is

sampled by the firmware, and if the pulse has already

completed, then instead of returning from the interrupt it

jumps immediately to interrupt routine ‘‘cstrbt’’, which pro-

cesses the trailing edge.

The code at label ‘‘cstrbt’’ is entered whenever either a trail-

ing edge interrupt is detected on pin I4 (STROBE), or the

leading edge interrupt routine jumps to it. It reprograms the

I4 pin to detect a leading edge again, clears the I4 interrupt

(which is automatically cleared only on interrupt service),

then jumps to the ‘‘setcen’’ subroutine, which manipulates

the BUSY and ACK signals appropriately, according to the

contents of the ‘‘cps’’ variable and the selected ACK timing

mode in variable ‘‘ackmd’’.

5.1.5.1 Centronics Error Handling

A buffer overrun error is processed at label ‘‘cenerr’’. This is

the only kind of character error that can happen on a Cen-

tronics interface, and it would be due to an incorrect con-

nection or a software error.

For internal firmware debugging purposes, the ‘‘cps’’ vari-

able bit ‘‘cbusy’’ is again set to ensure that the Centronics

interface will keep the BUSY signal set.

If an error is already waiting to be reported (bit ‘‘aerr’’ of

variable ‘‘alert’’ is already set), then this is a ‘‘multiple error’’

condition, and cannot be fully reported. Instead, at label

‘‘cenmer’’, the bit ‘‘errovf’’ in variable ‘‘errfgs’’ is set. This

variable is sent to the CPU when the error is reported. Also,

the I4 interrupt is disabled, to prevent any further STROBE

interrupts until a new SELECT-CENT command is received

from the CPU.

If no error is waiting to be reported, then bit ‘‘aerr’’ of vari-

able ‘‘alert’’ is set, requesting the main program to generate

an !ERROR interrupt to the CPU. Further data is provided to

be passed to the CPU:

variable ‘‘errfgs’’ is initialized to indicate only a buffer

overrun error.

variable ‘‘errchr’’ is loaded with the character that was

received and could not fit in the buffer.

Because the received character is reported with the error

interrupt, and because no data is lost yet, the Centronics

port is not disabled by this condition.

5.1.6 UART Communication

UART communication is performed by the UART interrupt

routine at label ‘‘uarint’’. After pushing the required registers

onto the stack, the routine determines which interface is

selected. If it is the Centronics port, the only cause of the

interrupt is the INPUT PRIME signal, and the HPC jumps to

label ‘‘uarprm’’ (see Background Processing/Monitoring

Tasks, below). If the UART port is selected, then it is due to

either a receiver or a transmitter interrupt (and the INPUT

PRIME is gated so that it cannot be presented).

5.1.6.1 UART Output

At label ‘‘uarout’’, a transmitter interrupt has been received.

If the bit ‘‘icpu’’ in variable ‘‘ups’’ is set, this means that the

character just transmitted was a character sent by a CPU

SEND-UART command, and the CPU is notified by request-

ing the !ACK-UART interrupt from the Main Program.

The subroutine ‘‘setuar’’ is now called, to determine wheth-

er any more characters need to be sent, either for

XON/XOFF handshaking or because the CPU has request-

ed the HPC to send another character. If so, another char-

acter is sent by ‘‘setuar’’, and the UART transmitter interrupt

remains enabled. If not, the ‘‘setuar’’ routine disables the

transmitter interrupt.

15



5.1.6.2 UART Input

At label ‘‘uartin’’, an interrupt has been generated by the

UART receiver. This means that a character is available to

be placed into the Communication Buffer.

The first action taken by the HPC is to read the receiver

status register ENUR (which contains the 9th data bit and

the Data Overrun and Framing Error error flags), then it

reads the character itself from the RBUF register. The

ENUR register is saved temporarily in variable ‘‘enrimg’’ for

future processing, but is also held in the Accumulator, which

is used here to ‘‘accumulate’’ error flags. The HPC then

prepares to check for a parity error.

Parity checking is not a hardware feature of the HPC’s

UART, so a bit-table lookup is performed using the

‘‘X,[B].b’’ addressing mode of the IFBIT instruction. This ad-

dressing mode is similar to NS32000 bit addressing, in that

it allows one to address up to 64 kbits (addressed from the

contents of the X register) from a base address given in the

B register. By placing the character to be checked into the X

register, and pointing the B register at a properly construct-

ed table (labels ‘‘evntbl’’ and ‘‘oddtbl’’), a parity error can be

detected in a single IFBIT instruction (see for example label

‘‘u8dopr’’).

After loading the X and B registers, a multi-way branch is

performed (jid), which branches to one of 8 labels depend-

ing on the character framing mode variable ‘‘uframe’’ (which

is loaded by the SELECT-UART command). Each mode

handles parity differently: labels ‘‘uiod8’’ and ‘‘uiev8’’ check

for odd or even parity, respectively, including 9 character

bits (8 data plus 1 parity) to make the test. Labels ‘‘uiod7’’

and ‘‘uiev7’’ include only 8 bits (7 data plus 1 parity). Label

‘‘nopar’’ handles the cases where no parity is included in

the character frame. Also within these routines, a decision is

made whether a Framing Error seen in the character is also

a Break condition: if two consecutive characters are seen

with framing errors with all zeroes in their parity and data

fields, then the second character is reported as a Break

character as well as having a framing error. If, at label

‘‘uinpok’’, no errors have been flagged in the Accumulator,

the routine branches to label ‘‘uingd’’ to place the character

into the Data Communication Buffer for the CPU. If errors

have been discovered, then the character is instead report-

ed to the CPU using the !DATA-ERR at label ‘‘uinerc’’.

The ‘‘uingd’’ portion of this routine is very similar to the por-

tion of the Centronics input routine that places characters

into the buffer for the CPU. A different mechanism is used

for flow control, of course, to stop the external system if the

buffer becomes full.

At label ‘‘uinerc’’, a check is made to determine whether the

CPU has received the last character error reported. If not,

this is a ‘‘multiple error’’ condition, handled at label

‘‘uinmce’’. If so, then this is reported as a new error at label

‘‘uin1ce’’. The error character and its error flags are provid-

ed to the Main Program in the mailboxes ‘‘errchr’’ and

‘‘errfgs’’, and the bit ‘‘aerr’’ in variable ‘‘alert’’ is set to re-

quest that a !DATA-ERR interrupt be sent to the CPU.

On a multiple-error condition, the new error flags are ORed

with the old ones, handshaking is used to stop the external

host system from sending more characters, and the UART

receiver is automatically disabled. The CPU must issue a

new SELECT-UART command to re-enable it.

Another pair of routines report an error if the buffer over-

flows. This error is reported at label ‘‘uin1ef’’ if no other

error report is pending, or at label ‘‘uinmef’’ if this is a multi-

ple error condition. On a multiple error, an attempt is made

to stop the external host system from sending characters,

and the UART receiver is disabled until the CPU issues a

SELECT-UART command. (A single error does not disable

the receiver, because no data has been lost yet: the

!DATA-ERR interrupt reports the character with the error

report.)

5.1.7 Buffer Status Reporting

For internal debugging purposes, four unassigned signals

from the LCD Contrast Latch are updated to show the

status of the buffer. While the buffer is full enough to pass to

the CPU, one bit of the latch (IC 25G, pin 12) is high. While

the buffer is full enough that the external system should

stop, pin 15 is high. While the CPU is not ready to receive

data from the CPU, pin 16 is high. If a buffer overrun condi-

tion occurs, and data is lost, or if any fatal error occurs (with

a hexadecimal code appearing on the LCD display), then pin

19 goes high. The code that handles these bits is flagged

with the word ‘‘DEBUG’’ in the comment field.

5.1.8 Background Processing/Monitoring Tasks

These are tasks that are not triggered directly by CPU com-

mands.

Real-Time Clock (T1) Timer T1 is loaded with a con-

stant interval value which is used

to interrupt the HPC at 10 ms in-

tervals. When the Timer T1 inter-

rupt occurs (labels ‘‘tmrint’’,

‘‘t1poll’’, ‘‘t1int’’), and the real-

time interrupt is enabled, the vari-

able ‘‘rtccnt’’ is decremented to

determine whether a !RTC inter-

rupt should be issued to the CPU.

If so, the bit ‘‘artc’’ in the ‘‘alert’’

word is set, requesting the main

program to send a !RTC interrupt

to the CPU. The main program, at

label ‘‘sndrtc’’, interrupts the

CPU. No other data is passed to

the CPU.

At label ‘‘kbdchk’’ the panel

pushbutton switches are also

sampled. This process is de-

scribed fully in Application Note

AN-550.

At label ‘‘dsrchk’’, the state of the

UART DSR flag is checked if the

UART is selected and DSR moni-

toring mode has been requested

by the CPU. If it has changed, this

routine requests the Main Pro-

gram to issue a !UART-STATUS

16



interrupt to the CPU. The UART

receiver is also enabled and dis-

abled by the state of this signal if

DSR monitoring has been re-

quested. (The CPU does not

have to react to the interrupt for

normal operation, but might wish

to record its occurrence.)

At label ‘‘brkchk’’, if the UART is

selected, and a BREAK has been

detected, the UART data input

pin is polled to determine wheth-

er the BREAK condition has end-

ed. If a BREAK has ended, then

this routine requests the Main

Program to issue a !UART-

STATUS interrupt to the CPU.

Centronics INPUT PRIME When the EXUI pin on the HPC is

activated, and the Centronics

port is selected rather than the

UART, the UART service routine

(at label ‘‘uarprm’’) sets bit

‘‘aprime’’ in the ‘‘alert’’ variable,

requesting the main program to

send a !PRIME interrupt to the

CPU. The Centronics port is inter-

nally flagged (in the ‘‘cps’’ vari-

able) as being ‘‘busy’’, and the

Centronics Control Latch is up-

dated to set the BUSY signal

high. The UART interrupt is then

disabled until a SELECT-CENT

command is received from the

CPU. In the main program, the

!PRIME interrupt is sent to the

CPU at label ‘‘sndprm’’. No other

data is sent.

17



5.2 HPC Firmware Listing

TL/DD/9977–6

18



TL/DD/9977–7

19



TL/DD/9977–8

20



TL/DD/9977–9

21



TL/DD/9977–10

22



TL/DD/9977–11

23



TL/DD/9977–12

24



TL/DD/9977–13

25



TL/DD/9977–14

26



TL/DD/9977–15

27



TL/DD/9977–16

28



TL/DD/9977–17

29



TL/DD/9977–18

30



TL/DD/9977–19

31



TL/DD/9977–20

32



TL/DD/9977–21

33



TL/DD/9977–22

34



TL/DD/9977–23

35



TL/DD/9977–24

36



TL/DD/9977–25

37



TL/DD/9977–26

38



TL/DD/9977–27

39



TL/DD/9977–28

40



TL/DD/9977–29

41



TL/DD/9977–30

42



TL/DD/9977–31

43



TL/DD/9977–32

44



TL/DD/9977–33

45



TL/DD/9977–34

46



TL/DD/9977–35

47



TL/DD/9977–36

48



TL/DD/9977–37

49



TL/DD/9977–38

50



TL/DD/9977–39

51



TL/DD/9977–40

52



TL/DD/9977–41

53



TL/DD/9977–42

54



TL/DD/9977–43

55



TL/DD/9977–44

56



TL/DD/9977–45

57



TL/DD/9977–46

58



TL/DD/9977–47

59



TL/DD/9977–48

60



TL/DD/9977–49

61



TL/DD/9977–50

62



TL/DD/9977–51

63



A
N

-5
5
1

T
h
e

H
P
C

a
s

a
F
ro

n
t-

E
n
d

P
ro

c
e
s
s
o
r

TL/DD/9977–52

Lit. Ý 100551

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


