Interfacing Analog Audio Bandwidth Signals to the HPC

INTRODUCTION

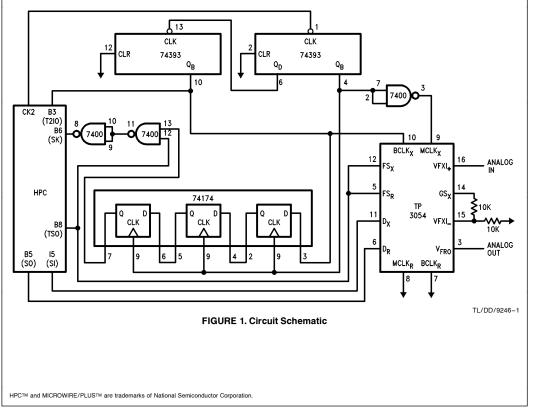
This report describes a method of interfacing analog audio bandwidth signals to the National Semiconductor HPC microcontroller. The analog signal is converted to a digital value using the National Semiconductor TP3054 codec/filter combo. The digital value is then transferred to the HPC using the MICROWIRE/PLUSTM synchronous serial interface. The digital output sample computed by the HPC is also transferred to the TP3054 then converts this digital value to an analog signal.

ADVANTAGES OF USING A CODEC

There are a number of advantages in using a codec for A/D and D/A conversion of analog signals.

- The codec/filter combos such as the TP3054 integrate a number of functions on a single chip. Thus the TP3054 includes the analog anti-aliasing filters, the Sample-and-Hold circuitry and the A/D and D/A converters for analog signal interfacing.
- 2. The μ -law coding effectively codes a 14-bit conversion accuracy in 8 bits. This allows the interface to the HPC to be greatly simplified.

National Semiconductor Application Note 484 Ashok Krishnamurthy April 1987


DISADVANTAGES IN USING A CODEC

While the use of a codec is appropriate for audio (in particular speech) processing applications, it has a number of disadvantages in other cases.

- 1. The sampling rate is fixed at 8 kHz. If lower or higher sampling rates are desired, the codec cannot be used. Note that the real-time signal processing that the HPC can perform at a 8 kHz sampling rate is limited.
- 2. The resolution is fixed, and is about 14 bits/sample.
- 3. Digital filtering algorithms require that the samples used in the processing be linear coded PCM. Thus the 8-bit μ -law PCM values output by the codec need to be converted to linear coded PCM. Correspondingly, the output of the digital filter, which is in linear coded PCM needs to be converted to 8-bit μ -law PCM before outputting to the codec. This requires additional processing per sample.

DESCRIPTION OF THE INTERFACE

The circuit schematic of the interface is shown in *Figure 1*. Note that the schematic does not show complete details of the HPC. Only the HPC pins that are relevant to this interface are shown. A wire-wrapped version of the circuit has been constructed on a NSC HPC 16040 Chip Carrier Board.

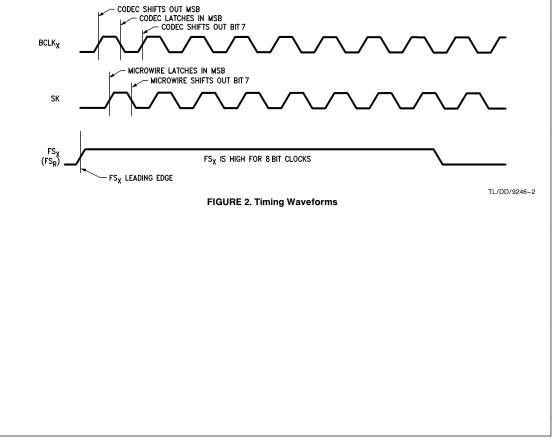
RRD-B30M105/Printed in U. S. A

AN-48

Note that this report does not go into the details about the use of the TP3054 codec chip or programming the HPC. It also does not discuss the μ -law to linear and linear to μ -law code conversion in detail. For more information on these issues, please consult the references listed at the end.

Codec Signalling Considerations. The TP3054 can operate in either synchronous or asynchronous modes. Further, in each of these modes, it uses short or long frame sync operation. The circuit shown in *Figure 1* runs the codec in synchronous mode with long-frame-sync operation.

The codec requires 4 clock sources for proper operation in the synchronous mode. These are MCLK-x, BCLK-x, FS-x and FS-r. MCLK-x is a master clock and is used to clock the switched-capacitor filters. BCLK-x is the bit shift clock, and FS-x and FS-r are the frame sync clocks. These clocks need to be synchronous.


These clocks are obtained in the circuit as follows. MCLK-x is obtained by dividing the HPC CK2 clock output by 4. If the HPC is using a 16 MHz crystal, this results in MCKL-x being 2 MHz.

BCLK-x is obtained by dividing CK2 by 64. This gives an effective value for BCLK-x of 125 kHz. Note that MCLK-x is inverted before being fed to the codec. This is done to synchronize MCLK-x and BCLK-x on their leading edges.

FS-x and FS-r are the same clocks in the circuit. They are obtained by dividing BCLK-x by 16 using the timer T2 on the HPC. BCLK-x is used as the external clock input on pin T2IO of the HPC and FS-x (FS-r) is obtained from the timer synchronous output TSO. Note that the delay inherent in the HPC between the underflow of a timer and the toggling of the corresponding output allows FS-x and BCLK-x to be leading edge synchronized (more accurately, the delay is within the codec's acceptable limits.) Note that in order to accomplish these functions, the HPC pins need to be properly configured. This is not described here. Please refer to the appropriate HPC documentation and consult the sample program included with this report.

 MICROWIRE/PLUS Interface Considerations. MICRO-WIRE/PLUS is a National Semiconductor defined 8-bit serial synchronous communication interface. It is designed to allow easy interfacing of NSC microcontrollers and peripheral chips. The HPC microcontroller has a MI-CROWIRE/PLUS interface; however the TP3054 codec does not. Thus some external "glue logic" is necessary to allow the HPC and the TP3054 to be interfaced.

The HPC MICROWIRE/PLUS interface is operated in Slave mode for this application. This means that the shift clock needed to latch-in/shift-out data from the Micro-wire SIO register is provided externally on the SK pin. Micro-wire latches in data on the leading edge of the SK clock and shifts out data on the trailing edge of SK. Also SK needs to be a burst clock for proper operation.

The codec shifts out data on the D-x pin on the first 8 leading edges of BCLK-x after a FS-x leading edge. Also, it latches in data on the D-r pin on the first 8 trailing edges of BCLK-x after a FS-r leading edge. Note that FS-x and FS-r are the same in this application. Refer to the timing diagram in *Figure 2*.

Thus, it is seen that there is a timing difference in the way the codec and the Micro-wire interfaces work. However, as seen in *Figure 2*, if the shift clock, SK, to the Microwire interface is delayed with respect to BCLK-x, the two interfaces should work compatibly. This delay is accomplished by clocking BCLK-x through a shift register using MCLK-x as the clock source. This can be seen in the circuit schematic in *Figure 1*. (The author thanks Mr. Richard Lazovick for this suggestion.)

$\mu\text{-}\text{LAW}$ TO LINEAR/LINEAR TO $\mu\text{-}\text{LAW}$ CONVERSION

It was explained earlier that the codec outputs digital values that are companded using the MU-255 PCM standard. However, for linear digital filtering applications, the input needs to be in linear PCM format. Similarly, it is necessary to provide the conversion from linear PCM to MU-255 PCM before output to the codec. The HPC accomplishes this in software.

- μ-law to linear conversion. The codec output is actually the complement of the μ-law value. Thus, this first needs to be complemented to obtain the true μ-law value. The simplest way to obtain the corresponding linear value is through table look-up. The output of the table is the 16-bit 2's complement linear value. The sample program included with this report utilizes this technique. A macro that constructs this table is also provided.
- 2. Linear to μ-law conversion. An algorithm to convert a 13-bit positive linear number to 7-bit μ-law is described in *Figure 3*. The algorithm is based on the description in the book by Bellamy listed in the reference. The most significant 8th bit for the μ-law code is obtained from the sign of the input linear code.
- 1. Get 13-bit positive input value.
- 2. Add to it the bias value of 31-decimal.
- 3. The compressed $\mu\text{-law}$ word is then obtained as follows:

Biased Linear Value Bits												
12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1	Q3	Q2	Q1	Q0	а
0	0	0	0	0	0	1	Q3	Q2	Q1	Q0	а	b
0	0	0	0	0	1	Q3	Q2	Q1	Q0	а	b	с
0	0	0	0	1	Q3	Q2	Q1	Q0	а	b	с	d
0	0	0	1	Q3	Q2	Q1	Q0	а	b	с	d	е
0	0	1	Q3	Q2	Q1	Q0	а	b	с	d	е	f
0	1	Q3	Q2	Q1	Q0	а	b	с	d	е	f	g
1	Q3	Q2	Q1	Q0	а	b	С	d	е	f	g	h
	μ -Law Value											
	Bits											
6 5 4 3 2 1									0			
(5	0		0	Q	3	Q2	1	Q1		Q0	
0		0	1		Q3		Q2		Q1		Q0	
(C	1		0	Q	3	Q2		Q1		Q0	
(C	1		1	Q	3	Q2	2	Q1		Q0	
	1	0		0	Q	3	Q2	2	Q1		Q0	
	1	0		1	Q	3	Q2	2	Q1		Q0	
	1	1		0	Q	3	Q2	2	Q1		Q0	
	1	1		1	Q	3	Q2	2	Q1		Q0	

FIGURE 3. 13-Bit Linear to 8-Bit µ-Law Conversion

POSSIBLE APPLICATIONS

The codec/HPC interface described above can be used in a number of speech processing applications. One application, ADPCM coding of speech, is presently under development. Other applications include: a voiced/unvoiced/silence classifier, a voice pitch tracker, speech detection circuitry etc. Note that the main limitation here (at least for real-time applications) is the amount of effective computation that can be done by the HPC between samples.

REFERENCES

- 1. National Semiconductor Corporation, *Telecommunications Databook,* Santa Clara, California, 1984.
- 2. National Semiconductor Corporation, *HPC Programmers Reference Manual,* Santa Clara, California, 1986.
- 3. National Semiconductor Corporation, *HPC Hardware Reference Manual*, Santa Clara, California, 1986.
- J. C. Bellamy, *Digital Telephony*, John Wiley & Sons, New York, 1982.

The code listed in this App Note is available on Dial-A-Helper.

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcontroller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application data about NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone. With a communication package and a PC, the code detailed in this App Note can be down loaded from the FILE SECTION to disk for later use. The Dial-A-Helper telephone lines are:

Modem (408) 739-1162

Voice (408) 721-5582

For Additional Information, Please Contact Factory

APPENDIX A	
	EST CODEC INTERFACE
	CONDUCTOR CORPORATION Page: 1
IFC CRUSS ASS ISTCDC	EMBLER, REV:C, 30 JUL 86
31000	
1	;
2	
3	.TITLE TSTCDC
4	;
5 01C0	YOFK = M(O1CO) ; OUTPUT SAMPLE STORAGE.
6 0000	PSW = M(00C0)
7 00D0	ENIR = M(00D0)
8 00D2 9 00D4	IRPD = M(OOD2) $IRCD = M(OOD4)$
10 00D4	SIO = M(OD4)
10 00D0 11 00D8	PORTI = M(00D8)
12 00E2	PORTBL = M(OOE2)
13 00E3	PORTBH = M(OOE3)
14 00E2	PORTB = W(OOE2)
15 00F2	DIRBL = M(OOF2)
16 00F3	DIRBH = M(OOF3)
17 00F2	DIRB = W(00F2)
18 00F4	BFUNL = M(00F4)
19 00F5	BFUNH = M(00F5) BFUN = W(00F4)
20 00F4 21 0188	T2TIM = W(0014)
22 0186	T2REG = W(0186)
23 018E	DIVBYL = M(O18E)
24 018F	DIVBYH = M(O18F)
25 018E	DIVBY = W(O18E)
26 0190	TMMDL = M(0190)
27 0191	TMMDH = M(Ol91)
28 0190	TMMD = W(0190)
29	;
30 31	
32	; .MACRO MUTBL,STADR
33	
34	; MACRO TO CREATE LOOKUP TABLE FOR MU-255 LAW PCM TO LINEAR CONVERSION.
35	; STADR IS THE STARTING ADDRESS FOR THE TABLE, AND MUST BE AN EVEN ADDRESS.
36	; THE TABLE OCCUPIES 512 BYTES.
37	;
38	$\cdot = STADR$
39	.SET SVAL,021
40 41	.SET INCRM,02
41 42	.DO 08 .SET MVAL,SVAL-021
43	.D0 010
44	.WORD MVAL
45	.SET MVAL+INCRM
46	.ENDDO
47	.SET SVAL, SVAL*02
48	.SET INCRM, INCRM*02
49	,ENDDO
50	
51	.SET SVAL, 021

NATIONAL SEMICONDUCTOR CORPORATION PAGE: 2 HPC CROSS ASSEMBLER, REV:C,30 JUL 86 TSTCDC .SET INCRM, 02 52 53 .D0 08 54 .SET MVAL,SVAL-021 .DO 010 55 .SET RVAL,-1*MVAL 56 .WORD RVAL 57 .SET MVAL, MVAL+INCRM 58 59 .ENDDO .SET SVAL,SVAL*02 60 61 .SET INCRM, INCRM*02 62 .ENDDO 63 ; 64 .ENDM 65 ; 66 ; 67 ; .LOCAL 68 69 F000 MUTBL, OFOOO 70 ; 71 F200 .= 0F200 72 CODEC: ; INITIALIZE STACK POINTER. 73 F200 B701F0C4 LD SP, 01F0 74 ; ; INITIALIZE THE CODEC JSR INITCD 75 F204 3059 76 FLOOP: 77 F206 3005 JSR INPUT ; GET INPUT SAMPLE, OUTPUT 78 ; PREVIOUS SAMPLE. SHL A 79 F208 E7 SHL A 80 F209 E7 ; CONVERT OUTPUT VALUE TO 81 F20A 301F JSR OUTPUT 82 ; MU-255 LAW AND SAVE. 83 F20C 66 JP FLOOP ; 60 DO NEXT SAMPLE. 84 : 85 : 86 INPUT: 87 F20D B601C088 LD A, YOFK ; GET DATA TO BE OUTPUT. 88 NOTDN: 89 F211 96D210 IF IRPD,0 ; IS MICROWIRE DONE? 90 F214 41 JP MWDONE ; YES, SO GET DATA. JP NOTDN 91 F215 64 ; NO, SO TRY AGAIN. 92 MWDONE: 93 F216 BED6 X A, SIO ; GET NEW SAMPLE, OUTPUT ; COMPUTED DATA. 94 COMP A ; TAKE CARE OF CODEC INVERSION. 95 F218 01 96 F219 99FF AND A, OFF 97 F21B E7 SHL A ; FORM MU-LAW TO LINEAR 98 F21C BAF000 OR A,OFOOO ; TABLE ADDRESS. 99 100 F21F AECE X A, X 101 F221 D0 LD A, M(X+); GET LINEAR VALUE 102 F222 AECA X A, K

NATIONAL SEMICONDUCTOR CORP	ORATION PAGE: 3	
HPC CROSS ASSEMBLER, REV:C, 3		
TSTCDC		
103 F224 04	LD A, M(X)	; A BYTE AT A TIME.
104 F225 BCC8CB	LD H(K), L(A)	,
105 F228 ABCA	LD A, K	
106 F22A 3C	RET	
107 ;		
108 ;		
109 OUTPUT:		
110 F22B 96D41F	RESET IRCD.7	
111 F22E E7	SHL A	; SIGN BIT TO C.
112 F22F 06	IFN C	; IS IT POSITIVE?
113 F230 45	JP OPOS	,
114 F231 96D40F	SET IRCD.7	
115 F234 01	COMP A	
116 F235 04	INC A	; NEGATIVE, SO TAKE 2'S
117		: COMPLEMENT.
118 OPOS:		,
119 F236 B80108	ADD A, 0108	; ADD BIAS.
120 F239 9107	LD K, 07	; SET UP COUNTER.
121 ALIGN:	n, or	: LOOP AND LOCATE MS 1 BIT.
122 F238 E7	SHL A	, 2001 1115 200112 115 2 5210
123 F23C 07	IF C	
124 F23D 44	JP ODONE	; FOUND MS 1 BIT.
125 F23E AACA	DECSZ K	, 10010 110 2 2210
126 F240 65	JP ALIGN	
127 F241 E7	SHL A	; HAS TO BE 1 IN C NOW.
128 ODONE:	<u></u>	,
129 F242 AECA	ХА, К	
130 F244 E7	SHL A	
131 F245 E7	SHL A	
132 F246 E7	SHL A	
133 F247 E7	SHL A	; COUNTER VALUE IN BITS 4-6.
134 F248 AECC	ХА, В	,
135 F24A 00	CLR A	
136 F24B 88CB	LD A, H(K)	
137 F24D 3B	SWAP A	
138 F24E 990F	AND A , OF	
139 F250 96CCFA	OR A, B	
140 F253 96D417	IF IRCD.7	
141 F256 96C80F	SET A.7	
142 F259 01	COMP A	
143 F25A B601C08B	ST A, YOFK	
144 F25E 3C	RET	
145 ;		
146 INITCD:		
147 F25F B7FFB7F2	LD DIRB, OFFB7	; SET B3 (T2IO) AND B6 (SK)
148	, , , , , , , , , , , , , , , , , ,	; ON PORT B AS INPUTS. SET ALL
149		; OTHER PINS ON B AS OUTPUT.
150 F263 B70000E2	LD PORTB, O	; OUTPUT O ON ALL PORT B PINS.
151 F267 96F40B	SET BFUNL.3	; ALT. FUN. ON B3-T2IO.
152 F26A 96F40D	SET BFUNL.5	; ALT. FUN. ON B5-S0.
153 F26D 96F508	SET BFUNH.0	; ALT. FUN. ON B8-TSO.
200 1805 201000	DET DI OMILLO	,

NATIONAL SEMICONDUCTOR CORPORATIONPAGE: 4HPC CROSS ASSEMBLER, REV: C, 30 JUL 86TSTCDC154 F270 9700D0LD ENIR, 0155 F273 9700D4LD IRCD, 0156 F276 83070188ABLD T2TIM, 07156 F276 83070186ABLD T2REG, 07158 F280 8300018F8BLD DIVBYH, 0159;160 F285 8ED6X A, SI0161 F287 8740400190ABLD TMMD,04040162 F28D 3CRET163;164;165 FFFE 00F2.END CODEC

TCDC											
SYMBOL	TABLE	2									
A	00C8	w	ALIGN	F23B		В	0000	w	BFUN	00F4	W*
BFUNH	00F5	М	BFUNL	00F4	М	CODEC	F200		DIRB	00F2	W
DIRBH	00F3	M*	DIRBL	00F2	M*	DIVBY	018E	W*	DIVBYH	018F	М
DIVBYL	018E	M*	ENIR	00D0	М	FLOOP	F206		INCRM	0200	
INITCD	F25F		INPUT	F20D		IRCD	00D4	М	IRPD	00D2	М
K	OOCA	W	MVAL	205F		MWDONE	F216		NOTDN	F211	
ODONE	F242		OPOS	F236		OUTPUT	F22B		PC	0006	W
PORTB	00E2	W	PORTBH	00E3	M*	PORTBL	00E2	M*	PORTI	00D8	M *
PSW	0000	M*	RVAL	EDAl		SIO	00D6	М	SP	00C4	W
SVAL	2100		T2REG	D186	W	T2TIM	0188	W	TMMD	0190	W
TMMDH	0191	M*	TMMDL	0190	M*	Х	OOCE	W	YOFK	01C0	М

NATIONAL SEMICONDUCTOR CORPORATION PAGE: 6 HPC CROSS ASSEMBLER, REV:C, 30 JUL 86 TSTCDC MACRO TABLE MUTBL NO WARNING LINES NO ERROR LINES 656 ROM BYTES USED SOURCE CHECKSUM = 81D3 OBJECT CHECKSUM = OC3C INPUT FILE C:CODECTST.MAC LISTING FILE C:CODECTST.PRN OBJECT FILE C:CODECTST.LM

F	IPC CRC	SS AS	SSEMBLER, H	REV:C,30) JUL	86								
1	STCDC													
S	YMBOL	TABLE	Ξ											
A	L	00C8	W	ALIGN	F23B		В		0000	W	BFUN	00F4	W*	
F	FUNH	00F4	М	BFUNL	00F4	М	C	ODEC	F200		DIRB	00F2	W	
Ι	IRBH	00F3	M*	DIRBL	00F2	M*	D	IVBY	018E	W*	DIVBYH	018F	М	
Ι	IVBAT	01B3	M∗	ENIR	00D0	М	F.	LOOP	F206		INCRM	0200		
1	NITCD	F25F		INPUT	F20D		I	RCD	00D4	М	IRPD	00D2	М	
ŀ		ADOO	W	MVAL	205F		М	WDONE	F216		NOTDN	F211		
C	DONE	F242		OPOS	F236		0	UTPUT	F22B		PC	0006	W	
F	ORTB	00E2	W	PORTBH	00E3	M*	P	ORTBL	00E2	M*	PORTI	00D8	M*	
F	°SW	0000	M*	RVAL	EDAl		S	10	00D6	М	SP	00C4	W	
S	VAL	2100		T2REG	D186	W	T	2TIM	0188	W	TMMD	0190	W	
1	MMDH	0191	M*	TMMDL	0190	M*	X		OOCE	W	YOFK	0100	М	
														Lit. # 1004

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tei: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0.180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tei: (+49) 0.180-530 85 85 English Tei: (+49) 0.180-532 78 32 Français Tei: (+49) 0.180-532 73 59 Italiano Tei: (+49) 0.180-532 73 56	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tei: 81-043-299-2309 Fax: 81-043-299-2408
---	--	--	--

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.