

BACKGROUND

LCD displays have become very popular because of their ultra-low power consumption and high contrast ratio under high ambient light levels. Typically an LCD has a backplane that overlaps the entire display area and multiple segment lines that each overlap just one segment or descriptor. This means that a separate external connection is needed for every segment or descriptor as shown in Figure 2. For a display with many segments such as a dot matrix display, the number of external connections could easily grow to be very large.
Unlike other display technologies that respond to peak or average voltage and current, LCDs are sensitive to the rms voltage between the backplane and given segment location. Also, any DC bias across this junction would cause an irreversible electrochemical action that would shorten the life of the display. A typical LCD driving signal is shown in Figure 3. The backplane signal is simply a symmetrical square wave. The individual segment outputs are also square waves, either in phase with the backplane for an "off" segment or out of phase for an "on" segment. This causes a Vrms of zero for an "off" segment and a Vrms of +V for an "on" segment.

FIGURE 2. Typical LCD Pin Connections

One way to reduce the number of external connections is to multiplex the display. An example of this could be an LCD with its segments arranged as intersections of an $X-Y$ grid. A driver to control a matrix like this would be fairly straightforward for an LED display. However, it is more complex for an LCD because of the DC bias restriction.

A multiplexed LCD driver must generate a complex set of output signals to insure that an "on" segment sees an rms voltage greater than the display's turn-on voltage and that an "off" segment sees an rms voltage less than the display's turn-off voltage. The driver must also insure that there is no DC bias.
One pattern that can accomplish this is shown as an example in Figure 4. This is the pattern that the MM58201 uses. The actual Vrms of an "on" segment and an "off" segment is shown in Figure 5. If there are eight backplanes, the Vrms $(O N)=0.2935 \times V_{\text {TC }}$ and the $\mathrm{Vrms}(O F F)=0.2029 \times$ V_{Tc}. It can be seen in Figure 6 that as the number of backplanes increases, the difference between Vrms (ON) and Vrms (OFF) becomes less. Refer to the specifications of the LCD to determine exactly what Vrms is required.

FIGURE 3. Drive Signals from a Direct Connect LCD Driver

TL/B/5606-4
FIGURE 4. Example of Backplane and Segment Patterns

FUNCTIONAL DESCRIPTION

Connecting an MM58201 to an LCD

The backplane and segment outputs of the MM58201 connect directly to the backplane and segment lines of the LCD. These outputs are designed to drive a display with a total "on" capacitance of up to 2000 pF . This is especially important for the backplane outputs, as it is usually the backplanes that have the most capacitance. As the capacitance of the output lines increases, the DC offset between a backplane and segment signal may increase. Most LCD displays specify that a maximum offset of 50 mV is acceptable. For backplane capacitance under 2000 pF the MM58201 guarantees an offset of less than 10 mV .
If the LCD display to be used has 24 segments per backplane or less, then each MM58201 should be configured as a "master" so that each one will generate its own set of backplane signals. However, if the LCD display has more than 24 segments per backplane, more than one MM58201 will be needed for each backplane. To synchronize the driving signals there must be one "master" chip and then an additional "slave" chip for every 24 segments after the first 24. When a chip is configured as a "slave" it does not generate its own backplane signals. It simply synchonizes itself to the backplane signals generated by a "master" chip by sensing the BP1 signal. An example of both an all "master" configuration and a "master-slave" configuration will be shown later.

Voltage Control Pin and Circuitry

The voltage presented at the V_{TC} pin determines the actual voltage that is output on the backplane and segment lines. These voltages are shown in Figure 7. V ${ }_{\text {TC }}$ should be set with respect to Vrms (ON) and Vrms (OFF) and can be calculated as shown in Figure 5.

FIGURE 6. Δ Vrms $/ V_{\text {TC }}$

a. Backplane Output

TL/B/5606-10
b. Segment Output

FIGURE 7. Output Voltages

Since the input impedance of V_{TC} may vary between $10 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$, the output impedance of the voltage reference at V_{TC} should be relatively low. One example of a V_{TC} driver is shown in Figure 8. To put the MM58201 in a standby mode, bring $\mathrm{V}_{T C}$ to V_{SS} (ground). This will blank out the display and reduce the supply current to less than $300 \mu \mathrm{~A}$.

TL/B/5606-11

FIGURE 8. Example of $V_{T C}$ Driver

RC Oscillator

This oscillator works with an external resistor tied to V_{DD} and an external capacitor tied to V_{SS}. The frequency of oscillation is related to the external R and C by:

$$
f_{O S C}=1 / 1.25 R C \pm 30 \%
$$

The value of the external resistor should be in the range from $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. The value of the external capacitor should be less than $0.005 \mu \mathrm{~F}$.
The oscillator generates the timing required for multiplexing the LCD. The frequency of the oscillator is 4 N times the refresh rate of the display, where N is the number of backplanes programmed. Since the refresh rate should be in the range from 32 Hz to 100 Hz , the oscillator frequency should be:

$$
128 \mathrm{~N}<\mathrm{f}_{\mathrm{OSC}}<400 \mathrm{~N}
$$

If the frequency is too slow, there will be a noticeable flicker in the display. If the frequency is too fast, there will be a loss of contrast between segments and an increase in power consumption.

Serial Input and Output

Data is sent to the MM58201 serially through the DATA IN pin. Each transmission must consist of 30 bits of information, as shown in Figure 9. The first five bits are the address, MSB first, of the first column of LCD segments that are to be changed. The next bit is a read or write flag. The following 24 bits are the actual data to be displayed.
The address specifies the first LCD column that is going to be affected. The columns are numbered as shown in Figure 10. Data is always written in three column chunks. Twentyfour bits of data must always be sent, even if some of the backplanes are not in use. The starting column can be any number between one (00000) and twenty-four (10111). If column 23 or 24 is specified the displayed data will wrap around to column 1.
If the R / \bar{W} bit is a " 0 " then the specified columns of the LCD will be overwritten with the new data. If the bit is a " 1 " then the data displayed in the specified columns will be available serially at the DATA OUT pin and the display will not be changed.

FIGURE 9. Transmission of Data

Diagram above shows where data will appear on display if starting address 01100 is specified in data format.

FIGURE 10. Address of Particular Segment Columns

The data is formatted as shown in Figure 10. The first bit in the data stream corresponds to backplane 1 in the first specified column. The second bit corresponds to backplane 2 in the first specified column and so on.
During initialization each MM58201 must be programmed to select how many backplanes are to be used, and whether the chip is to be a "master" or a "slave". The format of this transmission is just like a regular data transmission except for the following: the address must be 11000; the R/W must be a write (0); the first three data bits must be selected from the list in Table I. The next bit should be a " 1 " for the chip to be a master or a " 0 " for the chip to be a slave. The following 20 bits are necessary to complete the transmission but they will be ignored. The mode cannot be read back from the chip.

TABLE I. Backplane Select

Number of Backplanes	B2	B1	B0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

The timing of the CLK, $\overline{\mathrm{CS}}$, DATA IN, and DATA OUT are illustrated in Figure 11. The frequency of the clock can be between DC and 100 kHz with the shortest half-period being
$5.0 \mu \mathrm{~s}$. A transmission is initiated by $\overline{\mathrm{CS}}$ going low. $\overline{\mathrm{CS}}$ can then be raised anytime after the rising edge of the first clock pulse and before the rising edge of the last clock pulse (the clock edge that reads in D24). 30 bits of information must always be sent.
The data at DATA IN is latched on each rising edge of the clock pulse. The data at DATA OUT is valid after each falling edge of the last 24 clock pulses.
It is important to note that during a read or write transmission the LCD will display random bits. Thus the transmissions should be kept as short as possible to avoid disrupting the pattern viewed on the display. A recommended frequency is:
$\mathrm{f}_{\mathrm{OSC}}=30 /\left(\mathrm{t}_{\mathrm{LCD}}-7 \mathrm{ts}_{\mathrm{S}}\right)$
$t_{\text {LCD }}=$ turn on/off time of LCD
ts = time between each successive transmission.
This should produce a flicker-free display.
The DATA OUT pin is an open drain N -channel device to V_{SS}. This output must be tied to V_{DD} through a resistor if it is to be used. It could also be tied to a lower voltage if this output is to be interfaced to logic running at a lower voltage. The value of the resistor is calculated by:
$R \quad=(+V-0.4) / 0.0006$
$+\mathrm{V}=$ voltage of lower voltage logic

Power Supply

V_{DD} can range between 7 V and 18 V . A voltage should be used that is greater than or equal to the voltage that you calculate for V_{TC} as shown in Figure 5.

TYPICAL APPLICATIONS
One application of the MM58201 is a general purpose display to show graphic symbols and text. This type of display could be used in an electronic toy or a small portable computer or calculator. One such display is shown in Figure 12. This display consists of four separate LCD displays that are built into one housing. Each separate LCD display has 8 backplanes and 24 segment lines. The entire display will require four MM58201s to control it.
The circuit diagram of this application is shown in Figure 14. Each separate LCD display is driven by one MM58201. The backplanes are driven by the separate MM58201s and are not paralleled together. There are three common lines: CLK, DATA IN, and DATA OUT. The CLK and DATA IN are generated from an output port such as an INS8255. Four other bits of the output port generate a linear select with a different bit going to each MM58201 chip select as shown in Figure 13. DATA OUT is sent to one bit of an input port.

The V_{TC} driver is as described beforehand. The MM74C906 is an open drain CMOS buffer that has near regular TTL compatible inputs. This is to provide level translation from the 5 V supply of the computer system to the 12 V supply of the MM58201.
If I/O ports are not available, the circuit in Figure 15 could be used as an interface between the MM58201s and a microprocessor bus.
To reduce the number of connections between the circuit and the LCD, all of the backplanes could have been driven by one MM58201 as shown in Figure 16. The other MM58201s would be configured as "slaves" synchronized to the one "master" MM58201. This would save 24 connections to the LCD but would increase the capacitance of the backplanes. In this application the capacitance is not a problem with either setup.

FIGURE 11. Timing of One Transmission

TL/B/5606-15
FIGURE 12. Four Separate LCD Displays Positioned to Look Like One Display

$\overline{\mathbf{C S 4}}$	$\overline{\mathbf{C S 3}}$	$\overline{\mathbf{C S 2}}$	$\overline{\mathbf{C S 1}}$	
1	1	1	0	Chip 1 Selected
1	1	0	1	Chip 2 Selected
1	0	1	1	Chip 3 Selected
0	1	1	1	Chip 4 Selected
1	1	1	1	No Chip Selected

FIGURE 13. Chip Select Scheme

TL/B/5606-19
FIGURE 16. Diagram of a Master-Slave Set-Up Not Used for This Application

SOFTWARE

The real heart of this system is the software which consists of four parts. Part one is the initialization portion. This sets up the MM58201s as "masters" and programs them for 8 backplanes. It then sets up the needed pointers for the other subroutines which consist of:

1) GRAPH: displays pattern on LCD.
2) TEXT: prints ASCII characters on display.
3) SCROLL: scrolls whatever pattern is displayed to the right until LCD is cleared.
This application used an NSC800TM with 8080 mnemonics. It could easily be adapted for other microprocessors.

MAIN

This program initializes the MM58201s. It controls the sequence of display output by calling other programs.
It first sends out a "dummy" transmission to make sure that the chips are ready to respond to a valid transmission. It then programs the chips to be "masters" and to use eight backplanes.
After initialization, this program sets up the correct pointers to display a graphic symbol. First it displays the upper eight bits of it, then it displays the lower eight bits.
The words "TESTING MM58201" are then displayed. A call to scroll then causes this to scroll to the right until the screen is blank. Finally the words "END OF TEST'" appear and the program ends.
The method to create a custom graphic symbol will be demonstrated in the next section.

```
        N8080
        EXTRN GRAPH,WRITE,MODE,TEXT,CURSOR,SCROLL
    ;INITIALIZE THE STACK POINTER
        LXI SP,lFFFH
    ;INITIALIZE THE 810
    ;SET MODE O FOR PORT A
    ;INIT: MVI A,00H
    OUT 27H
    ;SET PORT A AS OUTPUT AND PORT C AS INPUT
        MVI A,OFFH
        OUT 24H
        MVI A,00H
        OUT 26H
    ;INITIALIZE THE FOUR 58201'S
        MVI A,O
        STA MODE
        LXI H,MASTER, ;SEND A COMPLETE TRANSMISSION TO CLEAR OUT
    MVI E,ll000B
    MVI D,00001110B
    CALL WRITE
    LXI H,MASTER
    MVI D,00001110B
    CALL WRITE
    LXI H,MASTER
    MVI D,00001101B
    CALL WRITE
    LXI H,MASTER
    MVI D,00001011B
    CALL WRITE
    LXI H,MASTER
    MVI D,00000lllB
    CALL WRITE
;SET UP POINTER AND COUNTERS TO DISPLAY NATIONAL SEMI SYMBOL
    MVI B,21 ;B HOLDS # OF COLUMNS TO CHANG
RESTRT: MVI D,0 ;D HOLDS THE STARTING COLUMN NUMBER FOR UPPER HALF
    MVI E,48
DSLOOP: MOV C,D
    LXI H,NATSMI ;DISPLAY UPPER HALF OF GRAPHIC
    CALL GRAPH
    LXI H,NATSM2 ;DISPLAY LOWER HALF OF GRAPHIC
    MOV C,E
    CALL GRAPH
    LXI H,OFFFFH ;PAUSE
PAUSE: DCX H
    MOV A,H
    ORA L
    JNZ PAUSE
    INR D ;INCREMENT STARTING COLUMN NUMBERS
    INR D
    INR D
    INR E
    INR E
    INR E ;DISPLAY IT UNTIL COLUMN COUNT IS 30
    CMP D
    JNZ DSLOOP
    LXI H,TEXTl ;PRINT FIRST TEXT
    MVI A,O ;ZERO THE CURSOR
    STA CURSOR
    CALL TEXT
    CALL SCROLL ;SCROLL THE TEXT
    LXI H,TEXT2 ;PRINT SECOND TEXT
    MVI A,0
    STA CURSOR
    CALL TEXT
    LXI H,OFFFFH ;PAUSE
PAUSEl: DCX H
    MVI A,2
PAUSE2: DCR A
    JNZ PAUSE2
    MOV A,H
    ORA L
    JNZ PAUSEI
```


N8080
PUBLIC GRAPH, READ, WRITE, MODE

```
GRAPHIC DISPLAY DRIVER
INPUT: HL - POINTS TO START OF DATA
                B- # OF 8 BIT COLUMNS TO CHANGE (MUST BE MULT. OF 3)
                C- COLUMN # TO START WITH (MUST BE MULT. OF 3)
    OUTPUT: NO REGISTERS DISTURBED
                DATA POINTED TO IS DISPLAYED ON LCD DISPLAY
                COLUMNS NOT SPECIFIED ARE NOT AFFECTED.
READ :
SAVE ALL STATES
    PUSH PSW
    PUSH B
    PUSH D
;FLAG FOR A READ OPERATION
    MVI A,l0000000B
    STA MODE
    JMP GRAPHI
GRAPH :
;SAVE ALL STATES
    PUSH PSW
    PUSH B
    PUSH D
    PUSH H
;FLAG FOR A WRITE OPERATION
    MVI A,0
    STA MODE
;CALCULATE WHICH 58201 TO ACCESS
GRAPHI: MVI D,OEEH ;START WITH CSI
ACC: MOV A,C
            SUI 24 
            JC GO
            MOV C,A
            MOV A,D
            RLC
            JMP ACC
;MAIN LOOP
GO: MOV E,C
M.LOOP: CALL WRIT
    DCR B
    DCR B
    DCR B
    JZ END.G
    MOV A,E
    ADI 3
    JNZ SKIPI
    MOV A,D
    RLC
    MOV D,A
SKIPI: MOV E,A ;SAVE NEXT ADDRESS
    JMP M.LOOP ;LOOP UNTIL DONE
END.G: POP H ;RESTORE ALL STATES
    POP D
    POP B
    POP PSW
    RET
WRITE:
; DISPLAY 3 COLUMNS OF DATA
; INPUT: HL- POINTS TO START OF DATA
    INPUT: HL- POINTS
    OUTPUT: }\begin{array}{l}{\mathrm{ DL - OUTPUT CS }}\\{\mathrm{ HL HL + 3}}
;SAVE ALL STATES
    PUSH PSW
    PUSH B
    PUSH D
START: MVI A,0000llllB ;ISOLATE CS IN REG D
    ANA D
    MOV D,A
    MOV A,E ;GET ADDRESS BITS AT HIGH END OF BYTE
    RLC
    RLC
    MOV E,A
```

```
;OUTPUT FIVE ADDRESS BITS WITH CHIP SELECT
    MVI C,5
W.LOOP: MOV A,E
    RLC
    MVI A,10000000B
    ANA E ;GET MSB
    ORA D ;MERGE WITH CHIP SELECT
    CALL DISPLY ;DEC ADDRESS BIT COUNTER
    JNZ W.LOOP ;LOOP UNTIL ADDRESS IS OUT
;SIGNAL FOR A READ OR WRITE
    LDA MODE
    ORI 00001lllB
    CALL DISPLY
    JP DISO
;JUMP IF THIS IS A WRITE
;READ THE DATA
    MVI B,3
READI: MVI C,B
MVI D,O
READ2: IN 22H
    ANI 00000001B
    ORA D
    RRC
    MVI A,00001lllB ;SET UP 58201 TO READ NEXT BIT
    CALL DISPLY
    DCR C
    ;LOOP UNTIL DONE WITH BYTE
    JNZ READ2
    MOV M,D
    INX H ;INCREMENT BYTE POINTER
    DCR B
    JNZ READI
    ;8 BITS PER BYTE
    CLEAR DATA BYTE
    CLEAR DATA BYTE
    GET A BIT OF DATA
    ;MASK OFF UNWANTED BITS
    ;MERGE WITH DATA BYTE
    ;ROTATE DATA
    ;LOOP UNTIL DONE WITH ALL BYTES
;RESTORE STATES
    POP D
    POP B
    POP PSW
    RET
;DISPLAY THE DATA
\begin{tabular}{lll} 
DISO: & MVI B,3 & ;3 BYTES OF DATA \\
DIS1: & MVI C,8 & ;8 BITS PER BYTE \\
& MOV D,M & \\
DIS2: & MOV A,D & ;ROTATE DATA \\
& RRC & \\
& MOV D,A & ;GET NEXT BIT \\
& ANI 1OOOOOOOB & ;SET CS \\
& ORI OOOO1IllB & ;OUTPUT A BIT OF DATA \\
& CALL DISPLY & \\
& DRC C & \\
& JNZ DIS2 & \\
& INX H & \\
& DCR B & \\
& JNZ DISI & [LOOP UNTIL DONE WITH 3 BYTES
\end{tabular}
;RESTORE STATES
    POP D
    POP D
    POP B
    POP PSW
    RET
DISPLY:
;DISPLAY ROUTINE 
                                    BIT 7 - DATA
                                    BITS 0-3 - CHIP SELECT
    OUTPUT: NO REGISTERS DISTURBED
                OUTPUT ONE BIT TO 58201
    PUSH PSW ;SAVE STATES
    ANI l0001lllB ;MASK OFF UNWANTED BITS
    OUT 20H
    OUT 20H
    ANI 10111111B
    CLOCK HIGH
    ;CLOCK LOW
    POP PSW ;RESTORE STATES
    RET
MODE: DS 1
    END
```


TEXT

This subroutine will take the ASCII text pointed to by HL and display it on the LCD starting at the column pointed to by the memory location CURSOR. The data should end with a zero. CURSOR should be in the range of $0-15$ as this is the extent of this LCD display. The first operation is the calculation of the offset into the ASCII table of the first character. Thirty-two is subtracted from the ASCII number because

N8080

EXTRN GRAPH
PUBLIC TEXT, LET TR, CURSOR
TEXT:
;DISPLAY A CHARACTER STRING ON LCD DISPLAY
; INPUT: HL-POINTS TO BEGINNING OF STRING
; OUTPUT: CURSOR $<=$ CURSOR + LENGTH OF STRING NO REGISTERS DISTURBED

PUSH PS
;SAVE STATES
PUSH H
T.LOOP: MOV A,M

CPI 0
JZ T.FIN
CALL LETTR ;PRINT LETTER
INX H
JMP T.LOOP ;LOOP UNTIL DONE
T.FIN: POP H
;RESTORE STATES
POP PSW
RET

LETTR:
;DISPLAY AN ASCII CHARACTER ON LCD DISPLAY
; INPUT: A-CHARACTER TO DISPLAY
CURSOR-CURRENT CURSOR LOCATION (0 - 95)
OUTPUT: CURSOR <= CURSOR + 1 NO REGISTERS DISTURBED
;SAVE STATES
PUSH PSW
PUSH B
PUSH D
PUSH H
;SET UP HL TO POINT TO CORRECT DATA
$\begin{array}{ll}\text { LXI H,ASCII } & \text {;HL POINTS TO BASE ADDRESS } \\ \text { MVI B,0 } & \text {;BC GETS ASCII OFFSET MINUS A CONSTANT }\end{array}$
SUI 20 H
MOV C, A
CALL MULT ;MULTIPLY OFFSET BY 6 (DOUBLE PRECISION)
DAD B
LDA CURSOR ;MULTIPLY CURSOR BY 6 TO GET COLUMN NUMBER
MOV B,A
ADD B
ADD B
ADD B
$\begin{array}{ll}\text { ADD } & B \\ A D D\end{array}$
ADD B
MOV C, A
MVI B,6
CALL GRAPH
LDA CURSOR
INR A
CPI 16
JNZ T.END
MVI A,0
;EACH CHARACTER IS SIX COLUMNS WIDE
;DISPLAY THE CHARACTER
;INCREMENT CURSOR
; CHECK FOR END OF LCD DISPLAY
;IF SO, RESET TO ZERO
T.END: STA CURSOR
;RESTORE STATES

```
POP H
POP D
POP
POP
POP PSW
RET
P PS
```

the table starts with a space character. This result is then multiplied by six because the data to be displayed is six bytes long. We now have the offset into the table. The character is displayed on the LCD. This operation is repeated until all the characters have been displayed.
A custom font can be generated using the same technique as that used to create a custom graphic symbol.

```
MULT :
    ;MULTIPLY BC REG BY SIX
        NPUT: BC - MULTIPLICAND
        OUTPUT : BC <= BC * 6
            NO REGISTERS DISTURBED
        PUSH PSW
    PUSH H
    MOV H,B
    MOV L,C
    DAD B
    DAD B
    DAD B
    DAD B
    DAD B
    MOV C,L
    POP H
    POP PSW
    POP
CURSOR: DS I
ASCII: DB 0,0,0,0,0,0 ;SPACE
    DB 0,95,95,0,0,0
    DB 0,7,0,7,0,0
    B 20,127,20,127,20,0
    DB 36,42,127,42,18,0
    D 35,19,8,100,98,0
    DB 54,73,102,32,80,0
    DB 0,0,7,0,0,0
    DB 0,28,34,65,0,0
    DB 0,65,34,28,0,0
    DB 8,8,62,8,8,0
    DB 8,8,62,8,8,0
    DB 0,64,48,0,0,
    DB 0,96,96,0,0,0
    DB 32,16,8,4,2,0
    DB 62,81,73,69,62,0
    DB 0,66,127,64,0,0
    DB 122,73,73,73,70,0
    DB 34,65,73,73,54,0
    DB 15,8,8,126,8,0
    DB 39,69,69,69,57,0
    DB 62,73,73,73,49,0
    DB 1,97,17,9,7,0
    DB 1,97,17,9,7,0
    B 54,73,73,73,54,0
    DB 6,9,9,9,126,0
    DB 0,54,54,0,0,0
    DB 96,54,54,0,0,0
    DB 8,20,34,65,0,0
    DB 20,20,20,20,20,0
    DB 0,65,34,20,8,0
    DB 2,1,88,5,2,0
    B 62,65,93,89,78,0
    DB 124,18,17,18,124,0
    DB 127,73,73,73,54,0
    DB 62,65,65,65,34,0
    B 127,65,65,65,62,0
    B 127,65,65,65,62,0
    B 127,73,73,65,65,0
    D 127,9,9,1,1,0
    DB 62,65,65,81,114,0
    127,8,8,8,127,0
    0,65,127,65,0,0
    32,64,64,64,63,0
    127,8,20,34,65,0
    127,64,64,64,64,0
    127,64,64,64,64,0
    127,2,12,2,127,0
        B 127,4,8,16,127,0
        6 62,65,65,65,62,0
        \ 127,9,9,9,6,0
        DB 62,65,81,33,94,0
        127,9,25,41,70,0
        34,69,73,81,34,0
        1,1,127,1,1,0
        B 63,64,64,64,63,0
        B 63,64,64,64,63,0
        DB 31,32,64,32,31,0
        DB 127,32,24,32,127,
        DB 99,20,8,20,99,0
        DB 3,4,120,4,3,0
        DB 97,81,73,69,67,0
END
```


SCROLL

This subroutine will scroll whatever is displayed on the LCD to the right until the screen is clear. It first reads in three columns of data. It then writes three columns of data with the HL pointer shifted by one byte. This will shift the displayed data by one column. This is repeated until the
entire LCD has been shifted by one column. Then the entire operation is repeated until all the displayed data is shifted off the screen.

This subroutine could easily be adapted to scroll the display to the left if desired.

N8080
PUBLIC SCROLI
EXTRN READ, GRAPH
SCROLL:
;SCROLLS DISPLAY TO THE RIGHT UNTIL CLEAR
; INPUT: NONE
; OUTPUT: NO REGISTERS ARE CHANGED
;SAVE ALL STATES
PUSH PSW
PUSH B
PUSH D
PUSH H

;SET UP ALL THE POINTERS	
MVI D,96	;LOOP UNTIL SCREEN IS CLEAR (96 CYCLES)
REPEAT: MVI A,0	;CLEAR FIRST BYTE IN BUFFER
	STA BUFFER
	MVI B,3
	MVI C,0
;READ THE DATA	;READ 3 COLUMNS ALWAYS
L.READ $: ~ L X I ~ H, B U F F E R+1 ~$	
	CALL READ
	LXI H, BUFFER

;MOVE LAST COLUMN OF LAST READ INTO FIRST COLUMN OF NEXT WRITE LDA BUFFER+3
STA BUFFER
;UPDATE COUNTERS
MOV A,C ;INCREMENT COLUMN NUMBER
ADI 3
MOV C,A
CPI 96
JNZ
L READ
JNZ L. READ
DCR D
JNZ REPEAT
; CHECK IF DONE WITH ONE CYCLE
;DECREMENT LOOP COUNT
;LOOP UNTIL DONE WITH ALL CYCLES

```
;RESTORE STATES
```

 POP H
 POP
 POP B
 POP PSW
 RET
 BUFFER: DS 4

END

OTHER APPLICATIONS

There are many different types of LCDs that can be controlled by the MM58201. Some of these are shown in Figure 18.

Up to 24 seven-segment digits can be controlled by one MM58201. The software to control a multiplexed seven-segment display is not too much different from that of the previous application. The software is simpler because only one MM58201 is needed instead of four. A logic diagram for a six-digit multiplexed seven-segment LCD display is shown in Figure 19 and the software to control it is in Listing 5.

Given a string of numbers to display, this subroutine simply looks up the data it needs from a look-up table and stores this data in a buffer. After every three digits, the subroutine sends this data to the MM58201 to be displayed. The digit backplanes are wired backward in groups of three to simplify the software. The subroutines that this subroutine uses are very similar to the equivalent subroutines in the LCD dot matrix application. Since there is only one MM58201, the software is simpler. There is no need to calculate which MM58201 chip select to enable.


```
    N8080
;INITIALIZE THE }81
    MV A,0
    OUT 27H
    MVI A,OFFH
    OUT 24H
    LXI BC,TEST
    MVI E,6
    CALL NUMBER
    RST 6
TEST: DB 1,2,3,4,5,6
    ;SUBROUTINE TO DISPLAY NUMERALS ON LCD DISPLAY
    ; INPUT BC-POINTS TO BCD DATA STRING 
    OUTPUT -NO REGISTERS DISTURBED
            -DATA STRING IS DISPLAYED
NUMBER: PUSH PSW ;SAVE STATES
    PUSH B
    PUSH D
    PUSH H
DIG3: MVI D,3
    ;LOOP FOR 3 DIGITS
LOOP: LDAX B
                                ;CALCULATE ADDRESS INTO TABLE
    ADD L
    MOV L,A
    MVI A,00H
    MDC H
    MOV H,A
    MOV A,M ;GET OUTPUT DATA FROM TABLE
    PUSH PSW
    LXI H,DATA ;STORE INTO DATA BUFFER
    MOV A,L
    ADD D
    MOV L,A
    DCR L
    POP PSW
    MOV M,A
    INX B ;INCREMENT POINTER TO DATA STRING
    DCR E
    DCR D
    ;DECREMENT # OF DIGITS
    JNZ LOOP
    ;IF NOT THIRD DIGIT THEN LOOP BACK
    LXI H,DATA
    CALL WRITE ;DISPLAY THESE THREE DIGITS
    MOV A,E ;CHECK FOR LAST DIGIT OF DATA STRING
    ANA A
    JNZ DIG3
    POP H ;RESTORE STATES
    POP D
    POP D
    POP PSW
    RET
WRITE:
; DISPLAY 3 DIGITS
    INPUT HL-POINTS TO START OF DATA
    E -COLUMN ADDRESS
    OUTPUT -NO REGISTERS DISTURBED
PUSH PSW ;SAVE STATES
    PUSH B
    PUSH D
    PUSH H
    MOV A,E ;GET ADDRESS BITS AT HIGH END OF BYTE
    RLC
    RLC
    MOV E,A
```

```
;OUTPUT FIVE ADDRESS BITS
    MVI C,5
.LOOP: MOV A,E
    RLC MOV E,A
    MVI A,10000000B ;GET MSB & ENABLE CHIP SELECT BIT
    ANA E
    CALL OUT
    DCR C
    JNZ W.LOOP
;LOOP UNTIL ADDRESS IS OUT
SIGNAL FOR A WRITE
    MVI A,00H
    CALL OUT
;OUTPUT THE DATA
    MVI B,3 ;3 BYTES OF DATA
DISl:MVI C,B ;8 BITS PER BYTE
    MOV D,M
DIS2: MOV A,D ;ROTATE DATA
    RRC
    MOV D,A
    ANI 10000000B ;GET NEXT BIT
    ORI 00000001B ;DISABLE CHIP SELECT
    CALL OUT
    DCR C
    JNZ DIS2 ;LOOP UNTIL DONE WITH BYTE
    INX H
    DCR B
    JNZ DISI ;LOOP UNTIL DONE WITH 3 BYTES
    POP H ;RESTORE STATES
    POP D
    POP B
    POP PSW
    RET
OUT :
;SUBROUTINE TO OUTPUT ONE BIT TO THE MM58201
INPUT A -DATA BIT IN MSB POSITION
    INPUT A - DATA BIT IN MSB POSITIO
-NO REGISTERS DISTURBED
    PUSH PSW
    OUT 20H
    ORI 0l000000B ;CLOCK HIGH
    OUT 20H
    ANI lOllllllB ;CLOCK LOW
    OUT 20H
    POP PSW
    RET
DATA: DS 3
TABLE: DB O0llllllB, 00000110B, 0l011011B, 0l0011llB
    DB 01100110B, 01101101B, 0lllll01B, 00000111B
    DB OlllllllB, 0ll011llB
    END
```


SUMMARY

The MM58201 makes it easy to interface a multiplexed LCD display to a microprocessor. It is simply a matter of connecting the display and the microprocessor to the chip, choosing a value for V_{CT}, then interfacing your program to use the
subroutines listed here or similar ones. Multiplexed LCDs are the perfect way to cut down on display interconnections while still taking advantage of the LCD's low power consumption and high contrast ratio-and the MM58201 makes them easy to use.
LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

