The MC6821 and the MC6800 coupled with a suitable
digital temperature device make a valuable tool for main-
taining a stable temperature in various control applica-
tions. Upper and lower temperature bounds may be set
within the software providing a variable temperature win-
dow. The microprocessor can check the temperature pre-
set by boundaries and send external signals to regulate the
thermionic device. An overall system block diagram is
shown in Figure 1.

Eight bits of temperature data are handwired to the
MC6821 PIA. The MC6821 provides the universal means
of interfacing peripheral equipment to the MC6800 MPU
through two 8-bit bidirectional lines. Normally no exter-
nal logic is required for interfacing to most peripheral
devices.

The MC6821 is programmed by the MC6800 MPU. In
this system PIA Port B was used which consists of eight
lines which may be programmed as an input or output
depending on how the PIA is programmed. The MC6821
is internally addressed in order to configure the data and
control lines. Table 1 shows the internal addressing for the
MC6821.

To set the direction of the data lines the Data Direction
Register must be accessed by writing a "0" into bit 2 of
the Control Register. This selects the Data Direction
Register and now the corresponding address for this regis-
ter (see Table 1) may be written to configure the individ-
ual lines as inputs or outputs. A Data Direction Register
bit set at "0" makes the corresponding line an input and a
"1" makes the corresponding line an output.

In order to access the Peripheral Register it is necessary
to write a "1" into bit 2 of the Control Register. This
selects the Peripheral Register which means the lines set as

<table>
<thead>
<tr>
<th>RS1</th>
<th>RS0</th>
<th>CRA.2</th>
<th>CRB.2</th>
<th>Location Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>Peripheral Register A</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>Data Direction Register A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>Control Register A</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>Peripheral Register B</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>Data Direction Register B</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>Control Register C</td>
</tr>
</tbody>
</table>

X = Don't Care

outputs may be written into the lines set as inputs may be
read from.

For example, assume the PIA is at address location
S5000 and PIA port B bits PB0 through PB7 are to be
outputs. A possible software approach would be:

CLRA
STAA S5003
This stores a zero into bit 2 of the Control Register and selects the Data Direction
Register.

LDAA #SFF
STAA S5002
This makes PB0 through PB7 outputs.

LDAA #504
STAA S5003
LDAA #50F
STAA S5002
This would put the actual bit pattern output "00011111" on the PB0 through
PB7 lines.
FIGURE 1. System Block Diagram

Circuit diagrams external to Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information in this Application Note has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.
Temperature Control System

The software which monitors the digital temperature data and decides if it is too high or too low is shown in Figure 2.

The upper and lower temperatures may be easily changed within the software for a variable temperature window. The Software Interrupt Command (SWI) causes a system interrupt if the temperature extends above or below the “window.” In the software example, the temperatures were set for 27°C and 17°C. The software monitors the incoming temperature and goes to SWI if the temperature is equal to or greater than 27°C or equal to or less than 17°C. If a device such as an oven were to be turned on/off, the control bits CA2 (CB2) could be set accordingly to control the device. As shown in Figure 3, bits 3, 4 and 5 of the Control Register can be configured to Set/Reset CA2. For example, the instructions below would manipulate CA2.

<table>
<thead>
<tr>
<th>NAM</th>
<th>TEMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLRA</td>
<td>Insures a ‘0’ in bit 2. Store a ‘0’ in bit 2 of the Control Register which selects the Data Direction Register.</td>
</tr>
<tr>
<td>STAA $5003</td>
<td>Stores all zeros into the Data Direction Register making PIA Port B, PBO to PB7 lines all inputs. This will input the digital temperature data from the temperature device.</td>
</tr>
<tr>
<td>STAA $5002</td>
<td>Put a ‘1’ in bit 2. Store a ‘1’ in bit 2 of the Control Register which selects the Output Register. The P0 to PB7 may be read at $5002 for the data being applied to them.</td>
</tr>
<tr>
<td>LBL1/LDAA #527</td>
<td>The upper temperatures limit. Load in the digital temperature data which is on the PBO to PB7 lines.</td>
</tr>
<tr>
<td>LDAB $5002</td>
<td>CBA Compare the temperatures. If equal to or greater than 27 interrupt. Lower temperature limit.</td>
</tr>
<tr>
<td>BLE ALERT</td>
<td>LDAA #517 Input temperature from sense circuit.</td>
</tr>
<tr>
<td>LDAB $5002</td>
<td>CBA Compare the temperatures. If equal to or less than 17 go to location ALERT and SWI. Software Interrupt.</td>
</tr>
<tr>
<td>BRA LBL1</td>
<td>ALERT/SWI Branch back if within temperature window.</td>
</tr>
</tbody>
</table>

To turn CA2 on:
- LDAA #53C Load accumulator A with 0011 1100 CA2 goes high
- STAA $5001 Store accumulator A into the Control Register.

To turn CA2 off:
- LDAA #534 Load accumulator A with 0011 0100 CA2 goes low
- STAA $5001 Store accumulator A into the Control Register.

The data input to the MC6821 PIA is not necessarily restricted to digital temperature data. Any device which provides or accepts digital data can be interfaced to the MC6800 MPU through the MC6821 PIA. Manipulation of the software allows for a variety of applications.

FIGURE 2. Temperature Control Software
**Determining Active CA1 (CB1) Transition for Setting Interrupt Flag IRQA(B1) – bit b7.

- **b7 = 0**: IRQA(B1) set by high-to-low transition on CA1 (CB1).
- **b7 = 1**: IRQA(B1) set by low-to-high transition on CA1 (CB1).

IRQA(B) 1 Interrupt Flag (bit b7)

- Goes high on active transition of CA1 (CB1); automatically cleared by MPU Read of Output Register A (B). May also be cleared by hardware Reset.

CA1 (CB1) Interrupt Request Enable/Disable

- **b0 = 0**: Disables IRQA(B) MPU Interrupt by CA1 (CB1) active transition.
- **b0 = 1**: Enables IRQA(B) MPU Interrupt by CA1 (CB1) active transition. 1. IRQA(B) will occur on next (MPU generated) positive transition of b0 if CA1 (CB1) active transition occurred while interrupt was disabled.

Determine Whether Data Direction Register Or Output Register Is Addressed

- **b2 = 0**: Data Direction Register selected.
- **b2 = 1**: Output Register selected.

CA2 (CB2) Established as Input by b5 = 0

- **b5 = 0**: Read Strobe With CA1 Restore
 - CA2 goes low on first high-to-low E transition following an MPU Read of Output Register A; returned high by next active CA1 transition.
- **b5 = 1**: Read Strobe With E Restore
 - CA2 goes low on first high-to-low E transition following an MPU Read of Output Register A; returned high by next high-to-low E transition.
- **Write Strobe With CB1 Restore**
 - CB2 goes low on first low-to-high E transition following an MPU Write into Output Register B; returned high by the next active CB1 transition.

Determines Active CA2 (CB2) Transition for Setting Interrupt Flag IRQB(B2) – bit b6

- **b6 = 0**: IRQB(B2) set by high-to-low transition on CA2 (CB2).
- **b6 = 1**: IRQB(B2) set by low-to-high transition on CA2 (CB2).

CA2 (CB2) Established as Output by b5 = 1

- **b5 = 1**: Write Strobe With CB1 Restore
 - CB2 goes low on first low-to-high E transition following an MPU Write into Output Register B; returned high by the next low-to-high E transition.

Figure 3 – PIA Control Register Format
All products are sold on Motorola's Terms & Conditions of Supply. In ordering a product covered by this document the Customer agrees to be bound by those Terms & Conditions and nothing contained in this document constitutes or forms part of a contract (with the exception of the contents of this Notice). A copy of Motorola's Terms & Conditions of Supply is available on request.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typicals" parameters are subject to change and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (©) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the document by contacting its local Motorola office. This document supersedes any earlier documentation relating to the products referred to herein. The information contained in this document is current at the date of publication. It may subsequently be updated, revised or withdrawn.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.