DATA ACQUISITION NETWORKS WITH NMOS AND CMOS

Prepared by:

Don Aldridge
Systems Engineering

This article describes an eight-channel data acquisition network (DAN) using the Motorola MC14433 CMOS A/D converter and the M6800 microprocessor family. The A/D conversion technique used with the MC14433 is a modified dual ramp featuring auto-zero, auto-polarity, and high input impedance. Both hardware and M6800 software are shown for the DAN.

DATA ACQUISITION NETWORKS WITH NMOS AND CMOS

LSI technology is making it easier and less expensive to design and build complex electronic systems. This fact holds true for Data Acquisition Networks (DANs) due to the new single chip A / D s and microprocessor systems. Thus, it is now feasible to build your own data acquisition network instead of buying a completed system, and thereby save money.

This article discusses an eight-channel DAN using the Motorola MC14433 CMOS A/D converter and the M6800 microprocessor. The number of channels can be expanded or reduced very simply. In addition to the eight channel DAN the program for a single channel system is shown. The inputs to the system, positive or negative polarity, are multiplexed with a CMOS analog multiplexer.

MC14433 A/D CONVERTER

The MC14433 is a single chip $31 / 2$ digit A/D converter using a modified dual ramp technique of A / D conversion. Housed in a 24 pin package it features auto-polarity, autozero and a high input impedance. Figure 1 shows the pin diagram of the MC14433.

The output of the MC14433 is $31 / 2$ digit multiplexed BCD with the MSD containing not only the half digit but also polarity of the input, overrange and underrange information. Figure 2 describes the decoding for the MSD. The digit selects for the multiplexed BCD have interdigit blanking to ensure correct BCD data during the time that the digit select is true.

The A/D converter is ratiometric and requires an external reference voltage. This reference voltage is 2.000 volts for the 1.999 volt range and 200 mV for a 199.9 mV
full scale input. Both the unknown and reference inputs and analog ground are high impedance inputs. Other external components required are clock resistor, integrator resistor and capacitor, and offset capacitor.Precision components are not required.

Of particular interest for the data acquisition systems are the display update (DU) and the end of conversion (EOC) pins. The EOC pin indicates the end of one conversion cycle and the start of the next conversion by a positive pulse one-half clock period long. The display update pin is an input to the chip which allows the data to be strobed into the output latches. If at least one positive edge is received prior to the ramp down cycle, new data is strobed to the display. In a stand alone A/D system, EOC is connected to DU.

Also of significance to the data acquisition network is the input polarity detection sequence for the MC14433. Polarity for the current conversion cycle is determined in the previous conversion cycle. Thus if the polarity is reversed, a second conversion cycle must be made in order to obtain a correct measurement.

The MC14433 requires two power supplies. The total voltage across the device must not exceed 18 volts. Pin 13 is the reference level for the output circuitry of the MC14433. If this pin is tied to 0 volts, the BCD output, digit select and EOC will swing from 0 volts to V_{DD}. If however, pin 13 is tied to V_{EE}, the output swing will be from $V_{E E}$ to $V_{D D}$.

The clock for the MC14433 is internal to the chip, requiring only a single external resistor to set the frequency. An external clock may be used by driving pin 10 .

FIGURE 1 - MC14433 Pin Assignment

[^0]

MPU
The Motorola microprocessor system devices used are the MC6800 MPU, MCM6810 RAM, MCM6830 ROM and MC6820 PIA (peripheral interface adapter). The following is a brief description of the basic MPU system as it pertains to the A/D systems presented later in this application note.

The Motorola MPU system uses a 16 -bit address bus and an 8 -bit data bus. The 16 -bit address bus provides 65,536 possible memory locations which may be either storage devices (RAM, ROM, etc.) or interface devices (PIA, etc.). The basic MPU contains two 8-bit accumulators, one 16 -bit index register, a 16 -bit program counter, a 16 -bit stack pointer, and an 8 -bit condition code register. The condition code register indicates carry, half carry, interrupt, zero, minus, and 2's complement overflow. Figure 3 shows a functional block of the MC6800 MPU.

The MPU uses 72 instructions with six addressing modes which provide 197 different operations in the MPU. A summary of each instruction and function with the appropriate addressing mode is shown in the MC6800 data sheet.

The RAMs used in the system are static and contain 1288 -bit words for scratch pad memory while the ROM is mask programmable and contains 10248 -bit words. The ROM and RAM, along with the remainder of the MPU system components, operate from a single +5 volt power supply; the address bus, data bus and PIAs are TTL compatible.

The MPU system requires a 2ϕ non-overlapping clock such as the MC6875* with a lower frequency limit of 100 kHz and an upper limit of 1 MHz .
*MC6875 to be introduced second quarter 1977

FIGURE 3 - MPU Pin Functions
The PIA is the interface device used between the address and data buses and the analog sections of the A/D. Each PIA contains two essentially identical 8-bit interface ports. These ports (A side, B side) each contain three internal registers that include the data register which is the interface from the data bus to the A/D, the data direction register which programs each of the eight lines of the data register as either an input or an output, and the control register which, in addition to other functions, switches the data bus between the data register and the data direction register. Each port to the PIA contains two addition pins, CA1 and CA2, for interrupt capability and extra I/O lines. The functions of these lines are programmable with the remaining bits of the control register. Figure 4 shows a functional block of the MC6820 PIA.

Each PIA requires four address locations in memory. Two addresses access either of the two (A or B sides) data/ data direction registers while the remaining two addresses access either of the two control registers. These addresses are decoded by the chip select and register select lines of the PIA which are connected to the MPU address bus. Selection between the data register and data direction register is made by programming a " 1 " or " 0 " in the third least significant bit of each control register. A logic "0" accesses the data direction register while a logic " 1 " accesses the data register.

By programming " 0 " s in the data direction register each corresponding line performs as an input, while " 1 "s in the data direction register make corresponding lines act as outputs. The eight lines may be intermixed between inputs and outputs by programming different combinations of

FIGURE 4 - PIA Functions
" 1 "s and " 0 "s into the data direction register. At the beginning of the program the I / O configuration is programmed into the data direction register, after which the control register is programmed to select the data register for I / O operation.

8-CHANNEL DATA ACQUISITION NETWORK

Figures 5 and 6 are the flow diagram for the 8 -channel data acquisition network. Figure 5 shows the basic operation of the program while Figure 6 provides more detail on the A / D conversion routine. These flow diagrams relate to the actual software shown in Figure 8. The hardware required for the data acquisition is shown in Figure 9; as can be seen, it is fairly simple, consisting of the MC14433, MC1403* reference, MC14051B analog multiplexer, and an MC6820 PIA. The PIA is used as the interface between the microprocessor address and the data bus to the A/D. The microprocessor and associated memory are not shown due to a wide variety of forms possible depending upon the task that the total system is performing.

The reference for the MC14433 is an MC1403 bandgap reference which provides an output voltage of 2.5 volts. This voltage is divided down by the $20 \mathrm{k} \Omega$ pot to the 2.000 volt reference required by the MC14433. If a 200 mV reference is used, full scale for the DAN will be 199.9 mV .

The analog multiplexing required to handle the eight input channels is provided by a MC14051B CMOS multiplexer. This device selects one of eight inputs with a 3-bit binary code. The device is capable of switching dual polarity (plus or minus inputs) with a single polarity control voltage.
*MC1403 to be introduced first quarter 1977.

The MC14433 BCD output and digit select outputs are connected to the B side of the PIA as shown in lines 21-28 of the software routine. These lines of the software are comment lines only and do not result in code for the microprocessor. The B side data register of the PIA is labeled throughout the program as PIA1BD while the control register is labeled PIA1BC. The control I/O lines (CB1 and CB2) of the B side PIA are connected to EOC and DU of the MC1433.

FIGURE 5 - Basic Operation of 8 Channel DAN

FIGURE 6 - A/D Conversion Subroutine Flow Chart

The first executable instruction for the program is in line 55 and starts a section called PIA assembly. The PIA sets the A side data register as all outputs and the B side data register as all inputs. From there the program goes to the main program simulation which, as its name implies, is a simulation of the user's main program. At such time in the user's program that some analog information is required, the A / D conversion subroutine starting in line 75 is executed. This routine synchronizes the program with the A/D conversion cycle and selects the first channel to be measured.

After the A/D conversion cycle for the first channel is completed the microprocessor is interrupted by the EOC of the MC14433. The interrupt program of line 88 is then executed; this demultiplexes the BCD output of the MC14433 and stores the data in memory. After completing the interrupt program the microprocessor returns to the

A/D conversion subroutine and the next channel is selected. When the measurement of channel 2 is completed, the interrupt program is then executed and the resulting data stored away in memory. This procedure is repeated until all eight channels are read, after which the MPU returns to the main program. At this point the data obtained in the A / D conversion subroutine may be processed as required.

Looking at the software for the 8 -channel data acquisition network in more detail, program storage of the final results begins in memory location $\$ 0010$. Each BCD character is stored in the four LSBs of these memory locations. See Figure 7 for explanation of data storage. Each of the eight channel readings requires four memory

Channel Number	Memory Address	Digit	Data Example	Input Voltage
1	0010 0011 0012 0013	MSD LSD	$\begin{aligned} & 01 \\ & 07 \\ & 02 \\ & 09 \\ & \hline \end{aligned}$	1.729 V
2	0014 0015 0016 0017	MSD LSD	$\begin{aligned} & \text { F1 } \\ & 09 \\ & 09 \\ & 09 \end{aligned}$	Overrange
3	0018 0019 001A 001 B	MSD LSD	$\begin{aligned} & 08 \\ & 01 \\ & 03 \\ & 00 \end{aligned}$	-0.130 V
4	001C 001D 001E 001 F	MSD LSD	$\begin{aligned} & 09 \\ & 01 \\ & 03 \\ & 00 \end{aligned}$	$-1.130 \mathrm{~V}$
5	$\begin{aligned} & 0020 \\ & 0021 \\ & 0022 \\ & 0023 \end{aligned}$	MSD LSD	$\begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	0.000 V
6	$\begin{aligned} & 0024 \\ & 0025 \\ & 0026 \\ & 0027 \end{aligned}$	MSD LSD	$\begin{aligned} & 01 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	1.000 V
7	$\begin{aligned} & 0028 \\ & 0029 \\ & 002 A \\ & 002 B \end{aligned}$	MSD LSD	$\begin{aligned} & \text { F1 } \\ & 09 \\ & 09 \\ & 09 \end{aligned}$	Overrange
8	$\begin{aligned} & 002 \mathrm{C} \\ & 002 \mathrm{D} \\ & 002 \mathrm{E} \\ & 002 \mathrm{~F} \end{aligned}$	MSD LSD	$\begin{aligned} & 09 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$-1.000 \mathrm{~V}$

FIGURE 7 - Data Storage Definition
locations with the MSD occupying the first of each sequence of four memory locations. The index register is used to keep track of the next storage location for the BCD information. At the end of each channel's conversion cycle the index register points to the MSD of that channel. This address is also stored at memory location called STORL.

Memory location TEST has two purposes; the first is for keeping track of which WAI was executed when the MPU was in the interrupt routine. This is required since more than one A/D conversion cycle is required for each channel. For the first channel three EOC pulses are required, while the remaining channels require only two A/D conversion cycles. The extra A/D conversion cycle in the first channel is used to synchronize the A / D converter to the MPU system. The second A/D conversion cycle in the first channel and the first conversion cycle of the remaining channels ensure that the polarity is correct for the current input. This is required since the MC14433 determines polarity in the previous conversion cycle.

Since the display update pin is edge triggered it must be taken high and low again in each conversion cycle when the data is to read by the MPU. The DU pin is taken high prior to the WAI for the measurement and low in the interrupt routine after the EOC occurs.

As mentioned previously, the multiplexed BCD data from the MC14433 is demultiplexed in the interrupt routine. A " 1 " is placed in bit 4 of POINTR which is
compared with the contents of PIA1BD. Upon finding DS1 in the true state, the lower four bits of PIA1BD (BCD data) are placed in the proper memory storage location. POINTR is then shifted to the left as each digit select occurs to look for the next successive digit select line.

After all four digits are placed in memory the MSD is checked for overrange. If this condition occurs an \$F1 is placed in the MSD for this channel. Otherwise the half digit and polarity are decoded. Memory location TEST is now used as a temporary storage location to decode the polarity. The half digit is placed in the LSB of the MSD and negative polarity is indicated by placing a " 1 " in the MSB of the MSD.

The 8 -channel DAN conversion time is approximately 320 ms with a 400 kHz clock frequency on the MC14433.

SAMPLE AND HOLD

The dual ramp A / D conversion process requires that the input to the A / D remain constant during the conversion cycle. If it does not, a sample and hold circuit must be used to insure a constant input.

SINGLE-CHANNEL DAN

Figure 10 contains the software for a single-channel DAN. The hardware will be the same as Figure 8 except for the analog multiplexing. The program is the same except for the analog multiplexer control.

29.000
30.000
31.000
32.000
33.000
34.000
35.000
36.000
37.000
38.000
39.000
40.000
41.000
42.000
43.000
44.000
45.000
46.000
47.000
48.000
49.000
50.000
51.000
52.000
53.000
54.000
55.000
56.000
57.000
58.000
59.000
60.000
61.000
62.000
63.000
64.000
65.000
56.000
67.000
68.000
69.000 HIF
70.000 JSR CUHVRT
71.000 END MDF
72.000 ERA END
73.000
74.000
75.000
76.000
77.000
78.000
79.000 LDA A PIA1ED
80.000 LDA A $\# 537$
31.000 STA A FIA1EC
82.000 WFI

DFに 玉 0.500
cle test
CLR PIA1BC
CLR FIA1BI
CLR FIAIAC
LIA A : F FF
STA A FIA1AI
LDA A \#\#34
STA A PIA1BL
STA A PIA1AC:
LIS : \# OBF0
CLI
*
+
-
STK 0000
LDH E $\# 0.64$
STA E TEST

RESULTS STDRED IH LICATIDHS $50010-5002 \mathrm{~F}$. EACH CHANHEL DCCUPIES FIUR CONSECUTIVE MEMDRY LOCATIDHS WITH MSD FIRST. NEGFTIVE FGLARITY INDICATED VIA A "1" IN MSE IF THE MSD. DVERRFNGE INDIGATIDH VIA AN "F1" IN MSD DF EACH EHANNEL.

CHANHEL SELECTIJN VIA FIAIAD. Crintrel himeer is coned in a binary FORM FOR CHATHELS $0-7$.

CINVRT LDX \#क000L CINVERS:IN SUBRDUTINE

PIA GSSEMELY
FIA ASSEMBLY
E SIDE INPUTS

A SIDE GUTFUTS

MAIM FROGRAM SIMILATIDH

```
    83.000 LDA B #507
    S4.000 N STA E FIAIAI
    85.000 LDH H #$0こ
    86.000 STA H TEST
    87.000 LIA A ##57
    8 8 . 0 0 0 ~ S T A ~ A ~ F I I A 1 B C ~
    89.000 WAI
    90.000 HDF
    91.000 WAI
    92.000 DEC E
    93.000 EFL H
    94.000 RTS
    95.000
    96.000
    97.000
    98.000 DF:5 $0350
    99.000 LIH A ##%F
100.000 STA A FIA1EL
101.000 LSE TEST
102.000 ECL FIRST
103.000 LIA A #$34
104.000 STA A FIA1BC
105.000 BEGIH LDA A #W10
106.000 STA A FOINTR
107.000 LDK S0000
108.000 NENT LDA A FIAIED
109.000 ROR TEST
110.000 ADID E TEST
111.000 TAE
112.000 FHII A PQINTE
113.000 EEO HEXT
114.000 HSL FDINTR
115.000 FNII B #50F
115.000 STA E 4.X
117.000 IHX
11E.000 ECC HEXT
119.000 LIH F 0.%
120.000 TAE
121.000 AHTD ,9 %%0B
12巳.000 CMF G ##05
123.000 BEQ DVRHIGE
124.000 CLR TEST
125.000 FHN E #500 
126.000 LSR E
127.000 LSR E
128.000 LSR B
129.000 RDR TEST
130.000 ADI E TEST
131.000 CDM E
132.000 FHII E #WES1
133.000 STA E 0.%
134.000 BRA FINE
135.000 पVRHNE LDA A #FF1 DVERFRNGE ROUTINE
```

140.000 RTI
141.000 DRE 90550
142.000 FDE E0BF0
143.000 MDH

HARDWARE INTERRUPT VECTUR

FIGURE 8 - 8-Channel Data Acquisition Network

FIGURE 9-8-Channel Data Acquisition Hardware

1.000	HAM IM,
2.000	पFT MEM, पTAPE
3.000 *	
4.000 *	*
5.000	+ + HC14433*
6.000	***
7.000	- SINELE CHANNEL IATA RCQUISITIGN NETWORK WITH
8.000	* FIUTDPGIARITY
9.000	*******************+***************************
10.000	+ ${ }^{\text {col }}$
11.000	-RG 9000 E
12.000 F	PGINTR RME 1 FOINTER FOR IIGIT SELECT
13.000 T	TEST RME 1
14.000	
15.000	DR5 f4002
16.000 F	FIALEI FME 1
17.000 F	FIA1EC RME 1
18.000 *	
19.000	* **FIA CJHFISURATIGN**
20.000	**
21.000	- PHT * FHS * PHS * PH4 * CH3 * FHE * PA1 * FHO *
22.000	***
23.000	+ LSD MSD * MSE LSE
24.000	***
25.000	- IISIT SELECT * ECD
26.000	*******+***
27.000 *	
28.000	- RESULTS STAREI IH LICHTIDNS s0010-90013
29.000	- LSI=f0013 1- IIGIT f0010
30.000	
31.000	HEGATIVE FILARITY IMIIICATEI EY "1" IN
32.000 *	HSE DF S0010
33.000	* ${ }^{\text {a }}$
34.000 .	+
35.000	+
36.000	+
37.000	-
38.000 .	+
37.000	+
40.000	-
41.000	-
42.000	+
43.000	+
44.000	*
45.000	-
46.000	*
47.000	+
48.000	+
49.000	*
50.000	+
51.000	-
52.000	+
53.000	+
54.000	

```
55.000
    56.000
    57.000
    58.000
    59.000
    60.000 CLR FIA1BC
    61.000 CLR FIA1BD
    6E.000 LDA F #$34
    63.000 STA A FIHIEC
    64.000 LIIS #$0SF0
    65.000 CLI
    66.000
    67.000
    68.000 NIF MAIH FRGGRAM SIMULATIUN
    69.000 JSR COHWET
    70.000 EHD NDF
    71.000 ERA ENI
    7E.000 *
    73.000
    74.000 EDHVRT LIX ##S0010 EDHVERSIDH SUERDUTIHE
    75.000 LIIA B ##04
    76.000 STA E TEST
    77.000 LDH .H FIHIBD IMMM'Y LDAD TD LLEAR IHTERRUPT
    78.000 LDA F #$3F
    79.000 STA F FIF1EC
    80.000 WFI
    81.000 HDF
    SE.000 WIHI
    83.0000 MDF
    84.000 WFI
    85.000 RTS
    86.000
    87.000
    88.000 पRE $0S50
    89.000 CLC
    90.000 LSR TEST
    91.000 BCL DELAY
    92.000 LINH H #$34
    93.000 STA A EIA1BE
    94.000 EEGIH LDH A #F%10
    95.000 STA A PDINTR
    96.000 NEXT LDA A PIAIBI
    97.000 THE
    98.000 FND H PDINTR
    99.000 BEO HENT
100.000 FSL FOIHTR
101.000 AHAD E #F0F
10E.000 STA E 0.%
103.000 IH%
104.000 ECS NEKT
105.000 LDA A $0010 JVERRANGE EHECK
106.000 TAB
107.000 FHTI A #क0E
108.000 CMF A #क03
```

FIA ASSEMBLY

MAIH FRGGRAM SIMULATIUN

```
55.000
56.000
57.000
58.000 DRE \(\$ 0800\)
59.000 CLR TEST
60.000 CLR FIA1BC
61.000 CLR FIA1BD
62.000 LDA A \(\$ 534\)
63.000 STA A FIAIBC
64.000 LIS \#508F0
65.000 ELI
66.000
68.000 NDF
69.000 ISR CDNVRT
70.000 EHD NDF
71.000 ERA ENII
72.000
73.000
74.000 EAHVRT LIX 5 ES0010 CDHVERSIDH SUERDUTINE
76.000 STA E TEST
77.000 LDA .F FIA1BD TUMMA' LIAD TI CLEAR INTERRUPT
78.000 LDA H \#ふろF
8.000 STA H FIH1EO
0..000 WhI
82.000 WHI
83.000 NDF
84.000 WAI
85.000 RTS
86.000
87.000
88.000 पR5 \(\$ 0850\)
80.000 LLE TEST
91.000 BCL DELAY
92.000 LIA H \#\$34
93.000 STA A DIA1BC
94.000 BEGIH LDA A \#F10
95.000 STA A POINTR
96.000 NEXT LDA A PIA1BI
97.000 TAB
98.000 AND A POINTR
99.000 BEQ NENT
100.000 ASL FDINTR
10 E .000 STA E \(0 . \%\)
103.000 IHK
104.000 ECC NEKT
105.000 LDA A \(\$ 0010\) JVERRANGE DHECK
107.000 AHII A \(\# \Phi 0 E\)
108.000 CMP A \(\# 503\)
```

```
109.000 BED DVRNGE
110.000 ELR TEST
111.000 AND E #FOL
112.000 LSR B
113.000 LSR B
114.000 LSR E
115.000 ROR TEST
116.000 FDII E TEST
117.000 CDM E
118.000 FND B $$81
119.000 STA B $0010
120.000 BRA FINE
121.000 DVRNGE LDA A #WF1 DVERRAHGE RDUT INE
12巳.000 STA A $0010
123.000 FINE STX STDRL
124.000 RTI
125.000 NELAY LDA H FIAIBI
126.000 RTI
127.000 पF6 $08F8
128.000 FDB $0850
129.000 MDN
```

FIGURE 10 - Single-Channel Data Acquisition Network

REFERENCES

Aldridge, Don: "Analog-To-Digital Conversion Techniques with the M6800 Microprocessor System", AN757, Motorola Semiconductor Products Inc.
M6800 Microprocessor Applications Manual, Motorola Semiconductor Products Inc.
M6800 Microprocessor Programming Reference Manual, Motorola Semiconductor Products Inc.
MC6800, MC6820 Data Sheets, M6800 Microcomputer System Design Data,Motorola Semiconductor Products Inc.

MC1403/1503 Data Sheet, Motorola Semiconductor Products Inc.
MC14051B Data Sheet, Motorola Semiconductor Products Inc.
MC14433 Data Sheet, Motorola Semiconductor Products Inc.

[^0]: Circuit diagrams external to Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information in this Application Note has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Motorola Inc. or others.

