
MOTOROLA
Order ttis document
as AN456/D

1- SEMICONDUCTOR
APPLICATION NOTE

AN456

Using PCbugl 1 as a Diagnostic Aid for

Expanded Mode M68HCI 1 Systems

BY Steven McAslan,
Motorola Ltd.,
East Klbride, Scotland

INTRODUCTION

This application note describes some advanced uses

of the PCbugl 1 sofiware package for the M68HCI 1.

The techniques described here allow the user to

optimise the debugging environment (perhaps for

diagnostic purposes), by moving the communications

program into external memory and making full use of

the mode programming of the M68HC11. Firstly, th~

communications routine itself is explained, then,ys:yt

system architecture required is examined an~ *M

the task of customizing the talker for the a@Jic~tion
system is considered. The PCbugl l,<3~~*e is

available from Motorola and provid~~t~~tomplex

debugging environmentforsimple,k+&.~~e PlatfOrmS.

The PCbugl 1 envir~,&\~t consists of two pieces of

software: the,.,wx&gu~able on the PC and the

communicatio~~~P~gram which runs on theM68HC11.

The comg~f~~~ns program is called the ta/ker. The

talker i~,~~<j~~$rrupt-driven and very compact piece of

code~~~~kr the SCI or XIRQ interrupt can be used.
~~’.’~),.~“~.)>’>,,>>.~t..,,,,.>Y$$,,.>.,.~-

The~urpose of the talker is shown in the flow chart in

figure 1,An example of the code used to implement

the function is shown in listing 1. This is specifically for

the MC68HC11 E9. However, the code blocks and

label names are normally common to ail talkers.

There are three

command interpr~~~&and breakpoint handling. The last

two of thesear$~~fi by interrupts, while the initialisation

is perform~~~wbtnce, whenever the talker is activated,
‘?$$\...,,:$‘

Briefly~~&~alisation sets up the internal SCI or external.
A~l#, ‘e~ables the appropriate interrupt and ensures that

~%!~ferrupt vector for this is pointing to the interrupt
s~~er, in this case the command interpreter..t:)~~

The command interpreter has four main functions and

two simple communications handlers. The functions are:

Read Memory (command: $01; label: TREADMEM)

Write Memo~ (command: $41; label: TWRITMEM)

Read Registers (command: $81; label: IN HI)

Write Registers (command: $Cl; label: INH2)

The register operations are specific examples of the

memory reads and writes, as the register modifications

only involve an alteration of the active stack frame in

memory.

The functions are selected using the command received.

The register commands involve a set number of bytes

being transferred from the host to the M68HC11 or vice

versa, therefore only a single command byte is required,

The memory commands involve communication from

the host to instruct the M68HC11 how much memo~ is

to be read/written and the appropriate addresses, For full

details, refer to the flow chart and listing software,

@ MOTOROM LTO., 1992 @
MOTORO&A

-t

INIT STACK
INIT SCI (rx, tx, baud,
;nterrupt)
IN IT STOP & I interrupt

(IDLE LOOP)

,,

.,-

... .. .
.
...

“.

Two communications routines are also used here.

These perform reads and writes of the SC1/ACIA

(INSCI, OUTSCI). Every command received by the

talker is echoed back to the host complemented to

confirm communications integrity.

In addition, there is breakpoint handling software. This

is more complex, as it involves at least two interrupts

to provide full functionali~. Before the software can

be run, the SWI interrupt vector must be initialised.

This is done by the host computer before a go, call or

trace command. (See [11, section 4.3.)

The first interrupt occurs when theM68HC11 executes

a SWI opcode in its program. This causesa jump to the

breakpoint handling software. The SWI interrupt

handler then transmits a byte to the host to inform it

that an SWI has been found, The M68HCI 1 enters an

idle loop while the PC host determines whether the

SWI found is a breakpoint, tracepoint or user SWI.

Having decided on the nature of the SWI, the host

sendsa byte to the MCU to cause the second interrupt.

If a user SWI is found, then the code at the user

interrupt is simply executed, If a break or trace point

be altered according to the function in use. In bootstrap

mode all of the interrupt vectors point to RAM. From

RAM, an appropriate jump to an interrupt service

routine can be carried out. This allows the interrupt

vectors to be easily customised for the PCbugl 1

environment. In expanded mode the interrupt vectors

point to the top of memory. From here, the user must

either redirect them to an writable area of memw~~~
have the block at the top of memory itSelf ~~~~tik.

Unfortunately, interrupt vectors in RAM,6~~%ti~ not

normally be considered a sound sy~t@:@cision,

Such techniques, however, are ~~~lu%tile when

developing designs.
.*.;,:\ ‘~\\t...?“’

,!f ,$,::,~]>,
‘W,.i.::

:,., ~~.$:).!$..:,
The BUFFALO monitor for]@X8HCl 1 redirects the

,’,“*<.. -
interrupt vectors to inter@~~k&, In PCbugl 1 systems,

the RESET vector sh~~~?~~int to something which

will initialise the res~~~%e vectors in RAM and the

talker code. Af,~~#~~is the user may load application

dependent #&f#ases into the RAM and run his code,

The disa@~~t&es here are that there will be a slight

proc~si~~overhead to reach the interrupt service

roufl%,}(one extended JMP instruction = 4 cycles) and
,.....A~~..$\...\

~tik 6b bvtes of internal or external RAM will be lost
is found, then the code suspends at the idle loop until .tt,:***! ,.O*

t:$~~$:fhterrup~ re-direction. (See [2,31 bootstrap ROM
the user decides either totraceagain, continue or stop “~.jistings, See fiqure 2forthe memorvmaparrangement
the code execution,

,,i:..
,,.,.;+

,,+k,: 4!+. .,“,,..,,.fi.f*:\\. ,.”’~’~
Most users of PCbugl 1communicat#~~&~ M68HCl 1

running in bootstrap mode. This ifi~,l~s downloading..:,,1,>,.
a talker each time commun~,ati~ns begin or using

internal EEPROM. Howe@ ?*~~embedded systems

using an expanded m~@.@NCl 1 it would be more

useful to place the ~alk&t:jd’external memory with any
,Y$’

self-test softwdt~’i~his approach also allows an

alternative tqY~~~6~HCl 1 SCI system to be used; a

feature wh~:~’a~ be useful when the user requires

to tes~ja~w~e running on the SCI.
,., .) ‘~,. ,~j

T~~~~~alker in expanded memory, the basic blocks

:*~Wibed in the preceding section must be
F@plemented and the interrupt structure must be able

to accommodate the requirements of the talker, The

basic blocks are easily moved to an area of expanded

memory. However, the interruptstructure does require

to be examined quite closely.

The PCbugl I/talker environment requires that certain

vectors are pointing to certain pieces of code. For

trace and breakpoint it is normal for the SWI vector to

‘of th~ syste~,)

Another approach is to use the special test mode of

the M68HC1 1 MCU. This mode is normally used for

factory test purposes, as it allows access to normally

protected features of the chip. However, it does have

a notable additional feature, which is that the interrupt

and reset vectors are transposed from their normal

positions in memo~ at $FFM to the special mode

area $BFM. Note that bootstrap mode also has the

same effect. The key difference is that in special test

mode the vectors are taken from external memory,

rather than the internal bootstrap ROM.

Special test mode could be accessed using a switch

or key on the system. The talker interrupt vectors

could be placed at the special mode interrupt locations

or the interrupt locations could point into RAM; cf.

figure 2. In either case, the talker could be placed in

some spare area of memory (the talker is normally less

than 200 bytes) and only accessed in the special

mode.

This approach allows the M68HCI 1 to be run in

expanded mode while retaining the full features of

PCbugl 1. An example of this approach is illustrated in

figure 3.

AN456~ MOTOROLA
3

$0000

$1000

$2000

$3000

$4000

$5000

$6000

$7000

$8000

$9000

$AOOO

$BOOO

$Cooo

$DOOO

$EOOO

$FOOO

$FFFF

NOTE: Talker uses SCI or XIRQ ,,

- JEP)ROM——— .

ISCI Vector — $OOC4

K

XIRQ Vector

SWI Vector

TALKER

,,,

,.,,

Other Vectors Redirected to RAM

IRESET Vector= $6000

NOTE: Vectors can be redirected to any RAM
location decided by user (internal or external)

Talker can be positioned anywhere in memo~
(internal or external) by user

Figure 2. Expanded Mode Use Version 1

MOTOROLA AN456m
4

$0000

$1000 –––––

$2000 –– –-–

$3000 –––––

$4000 –––––

AN45m
MOTOROLA

5

IMPLEMENTING THE
EXPANDED MODE TALKER

The following discussion assumes that the user is
going to modify an existing talker. If a new talker is to
be written, care should be taken that the general
principles described in the above sections areadhered
to. A general purpose talker for the M68HC11 in
expanded mode using the SCI is shown in listing 2.

The first decision to make when implementing atalker
in an expanded mode is whether the internal SCI or an

external ACIA device is to be used, If the SCI is used,
then normally the SCI interrupt or the XIRQ interrupt
would be used, It is also possible to use the IRQ
interrupt or a timer input capture pin. However, these
offer little advantage over the SCI interrupt itself, If an
external communications device is used, then the
choice is normally the XIRQ interrupt, Again, other
interrupt sources can be used, but the XIRQ interrupt
should ensure lhatthe communications from the host
are responded to.

The ‘use of the XIRQ pin for the external
communications device does not prevent the use of
the XlRQ for other external resources. If another
resource, requires to use this pin, then inte~~,al
arbitration could be used to select which s~u~
caused the interrupt. It is essential in this<i&5*@at
there is no possibili~ of the alternate so~F~~singt$>>.>t~
an endless loop from which the progr~~j~.tid never

recover. .;$,‘*t].:{P,*., ..;., .!.,...‘\~<ti:,\~~~.L,3’*:P
Once the communications syq&@$Schosen and the.,:\....“.\\.~~i.:,,i ~
interrupt to be used is +l,e@ed, the initialisation
section for the talker @~$~mplemented, At this~,. .~$
stage any baud, pa[j~, nmber of bits and interrupt
enable bits are se$~~~~~tisusually best to perform this
function im~~~$~ly after RESET but it could be
performe4 l~~;~~f required, for example, if an error
is foun+,~ ‘$({ ‘*

,. ,.]:;~.i’>:)!>s?$:, . ,,>:,~t .

Th@i@~f the talker isnot normally changed. However,
fe~.~re that the M68HCI 1 registers are not moved~.;:*’
u~g the INIT register and that the INSCIand OUTSCI
routines are changed to handle an external device
if required,

The last change required is to update the talker .MAP
file.

UPDATING THE .MAP FILE

The .MAP file contains essential address information

for PCbugl 1. In bootstrap mode the program knows
where certain parameters are by default. However, in
expanded mode the talker could be anywhere in
memory and so the PCbugl 1 has to be told where {o
find it. It is important that the .MAP file corfesp,%~s$
correctly to the talker or malfunction of the swim

.,:
can occur. ‘,,+,,‘+$’,..,>*,.,,.....,,i\+’?.~”.,*:>,,.J(,.*..‘.\yb#:.. ,Xi:
tisting 3 shows the ,MAP for the @~~@r~Wpurpose
talker in listing 2. The requested ,@@~&es may be
determined by assembling the$alk%~%ndnoting the
location of each of the imp,?@$abels.

~t~:~‘ ,.,$.,,.::)’”
Change the .MAP file u~$~~~ext editor and place it in
the current working d)~q.~~. The address parameters

must begin in th$’~fith column or higher.,,$.%-i...,,“.*,>.,<..,, {<+>,,,,$s.s>,s~~*;;,J

$~3tflG THE TALKER AS
,,::*~,i,:... “ A DIAGNOSTIC AID...+,,“~?.::,.,..}$:.$?kl\~,~“~~<

~~~~~xact use of the talker in this situation will depend
“+~@rgelyon the system which is being examined.

~:{’ However, with the talker installed the user can
interactively examine the system. Self-test routines
could be run, loaded into RAM from the user PC.
EEPROMintegrity and preset values could be checked
and updated if necessary, If required, the MCU mode
could be changed by writing into the HPRIO register.
The upper nibble of this register is accessible only in
special modes (see [21).

[f the MCU SCI port is available, the device could be
placed in special bootstrap mode and PCbugl 1 run as
normal. Inthiscase, the data and address bus integrity
of the system could be checked, Here, mode control
of theM68HC11 is again the key feature. By changing
the HPRIO register (MDA bit), the external data and
address buses areturned on while the bootstrap ROM
is still present and readable by the CPU. Now the user
can perform readsandverifies on the external memory
to see if any problem exists with either bus, while still
having full control on the MCU via PCbugl 1,

.,,. .,..,, ,. ,,, ,’ .: $,.’. . . . . . .. . . . . ... ,, ,.,., ,,. .,

MOTOROLA ‘AN456m
6



CONCLUSION REFERENCES

[11
By using the techniques described, the user can

include a debugging aid for any expanded mode [21
M68HC11 system. Ifasingle chip system is used,

then the additional overhead of PCbugll RAM [31
requirements is the only drawback.

,,~‘?’

AN456~ MOTOROLA
7



LISTING 1- TALKE.ASC ASSEMBLY LISTING

M68Hc11 Absolute Assembler Version 2.70g:talke.ASC

1A
2A
3A

4A
5A
6A
7A
8A
9A

10 A
11 A

12 A
13 h

14 A
15 h 0000
16 A 00C4
17 h OIFF

18 A 1000
19 h
20 h 00C4
21 h 00F1

22 A 00F4
23 A 00F7
24 A 00FA
25 A 008
26 h 007E
27 h 004A
28 h 004A
29 A
30 A
31 A 002B

32 A 002C
33 A 002D

34 A 002E

35 h 002F

36 A

37 A 0020

38 A 0080
39 h

40 A
41 A 0000
42 A 0000
43 A 0000 8E01FF
44 h 0003 CE1OOO
45 h 0006 6F2C
46 A 0008 CC302C

***~* **************i******* ~A~~.Asc 6,3,90 ***** ****~ +**** i*************

* Motorola Copyright 1988,1990
* MCU resident, Interrupt driven Communication routines for 68HC11
* monitor. Provides low level memory and stack read/write operations. ,*!.

‘*{,3,
* es:<.\.*:<2~,

* This talker DOES NOT use XIRQ
~,..>>“*rit.~
,s..\..,$.~.L,*

5% h 00IA 27F9
59 h
60 A 00IC
61 A 00IC B6102F
62 A 00IF 43
63 h 0020 8D46

64 A 0022 2A51
65 A 0024 8D33

Init SCI to 9600 baud, no parity
and mable SCI tx & rx.
Enable S~P & I bit, disable XIRQ.

Wait for SCI interrupt from host.
* A RESET from host changes above jump destination to start of user code.
*

SCISRV EQU * On detecting interrupt,
LDAA SCSR+REGBASE assume receiver caused it.
ANDA #RDRF
BEQ SCISRV otherwise program will hang up

*

RXSRV EQU * Talker code processes data.
LDAA SCDR+REGSASE Get command byte, & echo as ack
Cowh Inverted
BSR OUTSCI to host.
BPL INH1 If bit 7 set, process inh. command
BSR INSCI else read byte count into B

,..
MOT.OROLA

:.
AN456/D

8



66 A 0026 8F

67 A 0027 8D30
68 A 0029 17
69 A O02A 8D2D

70 A O02C 8F
71 A O02D
72 A O02F 260D
73 A
74 A 0031
75 A 0031 A600
76 A 0033 8D33
77 A 0035 17

78 A 0036 8D21
79 A 0038 16
80 A 0039 08
81 A O03A 5A

82 A O03B 26F4
83 A O03D 3B

84 A
85 A O03E

86 A O03E 81m
87 A 0040 2616

88 A
89 A 0042 17

90 A 0043
91 A 0043 8D14
92 A 0045 E700

93 A 0047 18CEOO01
94 A O04B 1809
95 A O04D 26FC
96 A O04F E600
97 A 0051 F7102F
98 A 0054 08
99 A 0055 4A
100 A 0056 26EB
101 A 0058
102 A 0058 3B
103 A

104 A 0059
105 A 0059 F6102E
106 A O05C C50A
107 A O05E 26AO
108 A 0060 c420
109 A 0062 27F5
110 A 0064 F6102F
111 A 0067 39
112 A
113 A 0068
114 A 0068 188F
115 A O06A B6102E

116 A O06D 2AFB
117 A O06F 188F

118 A 0071 B7102F,j:

*
TREADMEM

*
RXSRV1

*

WRI TMEM

WAITPOLL

RXSRVEX
NULLSRV
*

INSCI

XGDX
BSR

TBA
BSR
XGDX
CMPA
BNE

EQU
LDAA
BSR
TBA

BSR
TAB
INX
DEcB

BNE
RTI

EQU
CMPA
BNB

TEA

EQU
BSR

STAB
LDY
DEY
BNE
LDAB
STAB
INX
DECA
BNE
EQU
RTI

LDAB
BITE

INSCI

INSCI

#$FE
RXSRV1

*
,x

INSCI

TREADMBM

*
#$BE
RXSRVEX

*
INSCI
,x
#$oool

WAIT~LL
,x
SCDR+REGBASE

~RITNEM

Save command and byte count.
Read high address byte

into ACCA
then low address byte into ACCB
Cmd in A,count in B,addr in X

If comand is memory read, then

REPEAT
read required address
send it to host
save byte count)

and wait for acknowledge
(restore byte count)
Increment address
Decrement byte count

UNTIL al1 done

and return

S~&++BASE Wait for RDRF=l

*

SCSR+REGBASE

OUTSCI1

SCDR+REGBASE

*
#$7E
INH2

OUTSCI

,>
130 A 0080 30 TSX
131 A 0081 C609 LDAB
132 A 0083 20AC BRA
133 A *

#9

TREADMEM

If break detected
then restart talker

then read data received from host
and return with data in ACCB

Only register Y modified.

Enter with data to send in ACCA.

MS bit is TDRE flag

Important - Updates CCR !

If command is read registers then

Move stack pointer to X
then to ACCD
send SF to host [high byte first)

then low byte
Restore X (=stack pointer)
then return 9 bytes on stack
- CCR,B,A,~, XL,YH,YL,PCH,PCL

AN456M
,., ,

MOTOROLA
9



134 A 0085
135 A 0085 813E
136 A 0087 2612
137 A
138 A 0089 8DCE
139 A O08B 17

140 A 008C 8DCB
141 A O08E 8F
142 A O08F 35
143 A 0090 8609
144 A 0092 20AF
145 A

146 A 0094
147 A 0094 864A

148 A 0096 8DD0
149 A 0098 OE

150 A 0099 20FD
151 A
152 A O09B
153 A O09B 814A

154 A O09D 26B9
155 A O09F 30
156 A OOAO C609
157 A OOA2 3A

158 A OOA3 35
159 A OOA4 EC07
160 A OOA6 8DC0
161 A OOA8 17

162 A OOA9 8DBD
163 A OOAB CCO098
164 A OOAE ED07
165 A OOBO 20C7
166 A
167 A OOC4

168 A OOC4 7E
169 A OOC5 0015
170 A OOC7 7E
171 A OOC8 0058

172 A OOCA 7E

173 A OOCB 0058
174 A OOCD 7E
175 A OOCE 0058

176 A OODO 7E
177 A OOD1 0058

178 A OOD3 7E
179 A OOD4 0058

180 A OOD6 7E
181 A OOD7 0058

182 A OOD9 7E
183 A OODA 0058
184 A OODC 7E
185 A OODD 0058

1NH2

*

*
SWISRV

SWIIDLE

*
SWISRV1

*
ORG

EQU
CMPA
BNE

BSR
TBA
BSR
XGDX
TXS
LDAA
BRA

EQU
LDAA

BSR
CLI

BRA

EQU
CMPA

BNE
TSX
LDAE
ABx
TXS
LDD
BSR
TEA

BSR
LDD
STD
BRA

*
#$3E
SWISRV1

INSCI

INSCI

#9

~RITNEM

*
#BRKCODE
OUTSCI

SWIIDLE

*
#BRKACK
RXSRVEX

#9

7,x
OUTSCI

OUTSCI
#SWIIDLE
7,x
INHIA

If comand is write registers then

get SP from host (High byte first)

Move to X reg
and copy to stack pointer
Then put next 9 bytes on to stack

bu~yfir~%kreturn all registers to host

FCB
FDB
FcB
FDB

FCB
FDB
FcB
FDB

JMPEXT
SCISRV
JMPEXT
NULLSRV

JMPEX~

NUL@~~+/,
JM*T “$$

**&&%v

,2?.
Pulse acc. Input Edge

Pulse acc. Overflow

198 A OOF1 7E
199 A OOF2 0058

200 A 00F4 7E
201 A OOF5 0058

FCB
FDB

FCB
FDB

JMPEXT
NULLSRV

JMPEXT
NULLSRV
JMPEXT
NULLSRV

JMPEXT
NULLSRV
JMPEXT
NULLSRV
JMPEXT
NULLSRV

JMPEXT
NULLSRV

JMPEXT
NULLSRV
JMPEXT

NULLSRV

JMPEXT
NULLSRV

JMPEXT
NULLSRV

Oc4

0C3

0C2

Oc1

Ic3

IC2

IC1

Real Time Intr

IRQ

XIRQ

SWI Changed by Break point

I
MOTOROLA AN456m
10



202 A OOF7 7E
203 A OOF8 0000
204 A OOFA 7E
205 A OOFB 0058
206 A OOFD 7E
207 A OOFE 0058

208 A
209 A

SYMBOL TAB~ :

=UD

BOO~CT
BRKAcK

BRKCODE
ID~
INH1
INHIA
INH2
INSCI
JCOP
JILLOP
JMPEXT
JSCI
JSWI
JXIRQ

NULLSRV
OUTSCI
OUTSCI1
RDRF
REGBASE

Total errors: O

FCB JMPEXT
FDB TLKRSTART
FCB JMPEXT
FDB NULLSRV
FCB JMPEXT
FDB NULLSRV

*

END

Total Entries=39

O02B

OOC4
004A

004A
0012
0075
0079
0085
0059
OOFA
00F7
O07E
OOC4

OOF4
OOF1
0058
0068
006A
0020
1000

RXSRV

RXSRV1
HSRVEX
SCCR1
SCCR2
SCDR
SCISRV

SCSR
STACK
SWIIDLE
SWISRV

SWISRV1
TALKBASE
TDRE
TLKRSTAR
TRBADMEM
~RITMEM
WAITFOLL
US500

ILLOP

COP Fail

Clock Monitor

,. .,,, ... , ,~. . . . . ..- .,, ,, :,. . . . ... . ,,, .,

AN456m MOTOROLA
11



LISTING 2- TALKSCI.ASC ASSEMBLY LISTING

M68HC11 Absolute Assembler Version 2.70g:talksci.ASC

1A
2A
3A
4A

5A
6A
7A
8A

9A
10 A

11 A
12 A

13 A
14 A

15 A
16 A
17 A
18 A

19 A
20 A
21 A
22 A

23 A
24 A

25 A 6000
26 A 003F

27 A 00C4
28 A 1000
29 A
30 A 00C4
31 A 00F1
32 A 00F4
33 A 00F7
34 A 00FA

35 AO07E
36 A 004A

37 A 004A
38 A

39 A
40 A 002B

41 A 002C
42 A 002D

43 A 002E
44 A 002F

45 A
46 A 0020

47 A 0080
48 A 0008
49 A 0002

***** ********************** ~AL~~I.As~ ~4,8,g~ ****,**************** *,***

* Motorola Copyright 1988,1991

* MCU resident, Interrupt driven Communication routines for 68HC11
+ monitor. Provides low level memory and stack read/write operations.
* *,\

* This talker DOES NOT use XIRQ
*’X,l,

$J,$<,.,,.,’~,’$:.
* _____________________________

‘!,.,~1+ts.,.,.,,.,*
.$““‘,,>*+?.,~?}

* f,

* N.B. TALKSCI .ASC is a general purpose talker. It is intended to be
‘~e~. ‘.@”,.,ii$...}:*

* placed in the MCU memory map at $6000 but this can be changed by
~,!,.‘J.:.,.
,~,-.,,,!r ~.s.*,..,.l.,.,.;%

* the user to any suitable address. The talker is for general debug
+, .‘,X,a,.>?,

* and can be used in any mode as long as the vectors are correctly
:$~*#b$’“’”’”

* initialised. It is therefore useful for normal modes. The SCI is ~+’s’>~~~%.+
,.*, ~’,.!t~.,,..*.;’~.’

* used for communications - use TAWCIA when an external ACIA is .
~i$>:,,i~&.\,,..s

* to be used. TALKSCI assumes that the interrupt vectors are
-<$:,*+’$.?~$,

.,\&,l,$J\+:}t.,:.,
* pointing to RAM in the same way as the boostrap ROM. “,,,.,:,:i.*F,,.~,,1,.,,~{.
* IMWRTANT : If you change the running address of this pro~~:~” :?.~
* then you MUST also change the TALKSCI.MAP file so that ~~~~#’~@

* match. .*:*?,,;!$,$:?”
* “~’!.:>‘‘‘.<.

..$,

* Nhen PCBUG1l is executed with option TALKSCI, a ,~@ bre”kkis
* output to the 68HC11’s SCI, prior to establishin~*Unication.
* ,3\<$.~,,b,\....,.it,~

>’?<+,.*’
* CONSTANTS ,>.“J. ,’+i,<.*!,?,:>,:J*:

TALKBASE equ $6000
,,.
.<L<,t,i)~”
~.}?,..,

STACK equ $O03F UseZ ma~.~lter this parameter
BOOTVECT $OOC4

,+?J+
equ =~~ of bootstrap vector jump table.

REGBASE equ $1000 ~?~’%~:ne~if registers are moved
* ~:~, ‘/+,$

Mnemonic for jump extended
Break point signal code to host.
Break point acknowledge code

Change if required for MCU

SCI Masks, change if required

Dynamically set up Boot jump table.

?*9 A 6006 CEOOC4 LDX #BWTVECT
60 A 6009 SEWECT EQU *
61 A 6009 A700 STAA ,X
62 A 600B 08 INX
63 A 600C lAEFOO STY ,x
64 A 600F 08 INX
65 A 6010 08 INX

MOTOROLA
12

AN456m ‘“



66 A 6011 8CO1OO

61 A 6014 26F3

68 A 6016 CE6035
69 A 6019 DFC5

70 A 601B cE6000
71 A 601E DFF8
72 A
73 A 6020
74 A 6020 8EO03F
75 A 6023 CE1OOO
76 A 6026,6F2C
77 A 6028 CC302C
78 A 602B A72B
79 A 602D E72D
80 A 602F 8640
81 A 6031 06
82 A
83 A
84 A
85 A

86 A 6032 7E6032
81 A
88 A 6035
89 A 6035 B6102E

90 A 6038 8420
91 A 603A 27F9

92 A
93 A 603c

94 A 603c B6102F
95 A 603F 43

96 A 6040 8D46
97 A 6042 2A51
98 A 6044 8D33
99 A 6046 8F

100 A 6047 8D30
101 A 6049 17
102 A 604A 8D2D
103 A 604c 8F
104 A 604D 81FE
105 A 604F 260D
106 A
107 A 6051
108 A 6051 A600
109 A 6053 8D33
110 A 6055 17
111 A 6056 8D21
112 A 6058 16
113 A 6059 08
114 A 605A 5A
115 A 605B 26F4

116 A 605D 3B
117 A

CPX

BNE

LDX
STX

LDX
STX

*

USERSTART EQU
LDS
LDX
CLR
LDD
STM
STAB
LDAA
TAP

*

IDLE JMP
*

SCISRV EQU
LDAA
ANDA
BEQ

*

RXSRV EQU

LDAA
CONA

BSR
BPL
BSR

XGDX
BSR
TBA
BSR
XGDX

CMPA
BNE

*

118
119

120
121
122
123

124

1~bk$$aqo,$E70o
+~,~&~:$;O67 18cEOO01

,f~$,,.l,~~606B 1809 WAITWLL

‘~i~<~@@‘A 606D 26FC
‘>+J2gA 606F E600

130 A 6071 F7102F
131 A 6074 08
132 A 6075 4A
133 A 6076 26EB
134 A 6078 RXSRVEX

DECB
BNE

RTI

EQu
CMPA

BNE

TEA
EQU
BSR
STAB
LDY
DEY
BNE
LDAB
STAB
INX
DECA
BNB

EQU

INSCI

TREADMXM

*
#$BE

RXSRVEX

*
INSCI
,x
#$oool

WAITPOLL
,x
SCDR+REGBASE

~RITMEM
*

Cmd in A,count in B,addr in X

If command is memory read, then

REPEAT

read required address
send it to host

(save byte count)
and wait for acknowledge

(restore byte count)
Increment address
Decrement byte count
UNTIL all done

and return to idle loop or user code.

If comand is memory write then

move byte count to ACCA
REPEAT
Read next byte from host into ACCB,
and store at required address.
Set up wait loop

Y may take on suitable value

Read stored byte and
echo it back to host,

Decrement byte
UNTIL all done

and return

count

MOTOROLA
13



135 A 6078 3B
136 A
137 A
138 A
139 A 6079
140 A 6079 F6102E
141 A 607C C50A
142 A 607E 2680
143 A 6080 C420
144 A 6082 27F5
145 A 6084 F6102F
146 A 6087 39
147 A
148 A

149 A
150 A 6088
151 A 6088 188F
152 A 608A B6102E

153 A 608D 2AFB
154 A 608F 188F
155 A 6091 B7102F
156 A 6094 39
157 A
158 A

159 A
160 A 6095
161 A 6095 817E
162 A 6097 260C

163 A

164 A
165 A
166 A 6099 30
167 A

168 A

169 A
170 A
171 A
172 A

173 A
174 A
175 A
176 A
177 A
178 A
179 A
180 A
181 A
182 A
183 A
184 A

185 A
186 A

187 A
188 A

189 A
190 A
191 A
192 A

609A 8F

609B 8DEB

609D 17
609E 8DE8
60A0 30
60A1 C609

60A3 20AC

60A5
60A5 813E
60A7 2612

60A9 8DCE
60AB 17
60AC 8DCB
60AE 8F

60AF 35
60B0 8609

NULLSRV RTI
*

* INSCI gets the received byte form the SCI
*

INSCI EQU
LDAB
BITS
BNE

ANDB
BEQ
LDAB
RTS

*
SCSR+R~BASE Wait for RDRF=1
#(FE+OR) If break detected then
TLKRSTART restart talker.
#RDRF
INSCI
SCDR+REGBASE then read data received from host

and return with data in ACCB

XGDX Move to X reg
Txs and copy to stack pointer
LDAA #9 Put next 9 bytes from host onto stack
BRA ~RITMEM

interrupt was generated

EQU * Breakpoints generated by SWI
LDAA #BRKcODE Force host to process breakpoints
BSR OUTSCI by sending it the break signal

~*&@@A 60B8 OE SWIIDLE CLI
“:$~8 A 60B9 20FD BRA SWIIDLE then wait for response
“199 A *

200 A 60BB SWISRV1 EQU *
201 A 60BB 814A CMPA #BRKACK If host acknowledged then

MOTOROLA AN456m
14



202 A 60BD 26B9
203 A 60BF 30
204 A 60c0 C609
205 A 60C2 3A
206 A 60C3 35
207 A 60C4 EC07

208 A 60C6 8DC0
209 A 60C817
210 A 60C9 8DBD
211 A 60CB cc60B8
212 A 60CE ED07
213 A 60D0 20C7

214 A
215 A

SYMBOL TAB~ :

BNE

BAUD
BOOTVECT
BR~CK
BRKCODE
FE

IDLE
INH1
INHIA
INH2
INSCI
JCOP

JILLOP
JMPEXT
JSCI
JSWI

JXIRQ

NULLSRV
OR
OUTSCI
OUTSCI1
RDRF

TSX
LDAB
mx

TXS
LDD
BSR
TEA
BSR
LDD
STD
BRA

*

Total Entries=42

002B
OOC4
004A
004A
0002
6032
6095
6099
60A5
6079
00FA

00F7
007E
00C4
00F4

00F1
6078
0008
6088
608A
0020

RXSRVBX
move 5P to SWI stack frame and

#9

7,X send user code BP return address

OUTSCI (high byte first]

OUTSCI (low byte next)

#SWIIDLE
7,x
INHIA

END

RXSRV
RXSRV1
RXSR~X
SCCRl

SCCR2
SCDR
SCISRV
SCSR
SETVECT
STACK

SWIIDLE
SWISRV
SWISRV1
TALKBASE

TDRE

TLKRSTAR
TR~DMEM
~RITMEM
USERSTAR
WAITPOLL .....

,,. .. .

AN456D MOTOROLA
15



LISTING 3- TALKSCI.MAP

Name of constant must not exceed 14 characters.
Value of constant must start in column 15 or higher.

talker_start
talker_idle
user_start
xix~ijmF
re:sca:e_buf
xixq_s:n-
S!.-i_szY
s\\-i_i:ie

zG::_sm
xirq_jmF
sw.i_jmp
cme_jmp

$6000
$6032
$6020
$OOF2
$OOAO
$6035

$60B4

$60B8
$6078
$OOF2
$OOF5
$OOFE

,L,,.,>\ ,.- ~.~<t,

Motor@a r~~es the right to make changes without further notice to any prducta herein to improve retiabihty, f unction or design. Motorola does not assume

a@%b**$in9 out of the application or use of anY Pr~u~ or circuit de$mikd herein: neither does it mnvey any Iicenae under its patent rights nor the rights
d~x Motorola products are not designed, intended, or authorized for use as components in systems intended for surgi=l implant into the body, or other

+~+~?$p%tionaintended to SUPPOrtor sustain life, or for any other sppfication in which the failure of the Motorola produd muld create a situation where personal
$~~~ or death may occur. Should Buyer purchase or uae Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
‘~hold Motorola and tis officers, employws, subsidiaries, affiliates, anddistributors harmless against all claims, costs, damages, and expenses, and reasonable

attorney fees arisingout of, directly or indrectly, any claim of personal injury or death associated wfih such unintended or unauthorized use, even if such claim
alleges that Motorola was negtigent regarding the design or manufacture of the part. Motorola and@ are registered trademarks of Motorola, Inc, Motorola,
inc. is an Equal Opportunty/Affirmative Adion Employer.

Literature Distribution Centres:
EUROPE: Motorola Ltd., European Literature Centre, 88 Tanners Drive, Blakelands, Milton Keynes, MKI45BP, England.

ASIA PACIFIC: Motorola Semiconductors (H. K.) Ltd., Silicon Harbour Center, No. 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

JAPAN: Nippon Motorola Ltd., 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

USA: Motorola titarature Distribution, P.0, Box 20912, Phoenix, Arizona 85036.

= ~ MOTOROLA
- Phnted In Great Bfilain h{ Tavisl.ck Press (Bedford) Ltd. 3500 5/92 Po.255g AN4561D


