
M68HC05

APPLICATIONS

GUIDE

M68HC05AGI AD

® MOTOROLA

Introduction

Microcontroller Operation

MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions

Introduction

Microcontroller Operation

MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions

M68HC05
MICROCONTROLLER

Applications
Guide

Motorola reserves the right to make changes without further notice to any products herein
to improve reliability, function or design. Motorola does not assume any liability arising out
of the application or use of any product or circuit described herein; neither does it convey
any license under its patent rights nor the rights of others. Motorola products are not author
ized for use as components in life support devices or systems intended for surgical implant
into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any
such intended end use whereupon Motorola shall determine availability and suitability of its
product or products for the use intended. Motorola and ® are registered trademarks of
Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action
Employer.

'MOTOROLA INC., 1989

TABLE OF CONTENTS

Paragraph
Number Title

Page
Number

Section 1
Introduction

1.1 Definitions .. 1-2
1.2 Background ... 1-2
1.3 Computer Systems Description..... 1-3
1.4 Microcontroller Applications Overview 1-4
1.5 Project Description .. 1-5

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.6
2.6.1
2.6.1.1
2.6.1.2
2.6.1.3
2.6.1.4
2.6.2

Section 2
Microcontroller Operation

Number Systems.. 2-2
Computer Codes... 2-4
Computer Memory.. 2-6

Computer Architecture .. 2-7
CPU Registers .. 2-8
Memory Uses ... 2-9
Memory Maps .. 2-12

Timing .. 2-13
Programming .. 2-14

Flowchart .. 2-14
Mnemonic Source Code .. 2-15
Software Delay Program .. 2-17
Assembler Listing ... 2-18
CPU View of a Program... 2-22

CPU Operation .. ; 2-23
Detailed Operation of CPU Instructions............................... 2-24

Store Accumulator (Direct Addressing Mode) 2-24
Load Accumulator (Immediate Addressing Mode).......... 2-25
Conditional Branch... 2-26
Subroutine Calls and Returns 2-27

Playing Computer... 2-30

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE iii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

2.7 On-Chip Peripherals.. .. 2-34
2.7.1 Serial Communications Interface (SCI) 2-35
2.7.2 Serial Peripheral Interface (SPI) 2-36
2.7.3 16-Bit Timer System .. 2-36
2.7.4 Memory Peripherals.. 2-37
2.7.5 Other On-Chip Peripherals ... 2-37

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.4.1
3.4.4.2

3.4.4.3
3.4.5
3.4.5.1
3.4.5.2
3.4.5.3
3.4.5.4
3.4.5.5
3.4.5.5.1
3.4.5.5.2
3.4.5.5.3
3.4.5.6
3.4.5.7
3.4.5.8

iv

Section 3
MC68HC705C8 Functional Data

MCU Description
Pins and Connections

Pin Functions .. .
Typical Basic Connections .. .

On-Chip Memory
Memory Types .. .
Memory Map .. .

Central Processor Unit .. .
Registers .. .
Arithmetic/Logic Unit (ALU) .. .
CPU Control
Resets

Power-On Reset
Computer Operating Properly (COP) Watchdog Timer

Reset
Clock Monitor Reset

Addressing Modes
Inherent Addressing Mode .. .
Immediate Addressing Mode
Extended Addressing Mode .. .
Direct Addressing Mode
Indexed Addressing Mode .. .

Indexed, No Offset. .. .
Indexed, 8-Bit Offset. .. .
Indexed, 16-Bit Offset

Relative Addressing Mode .. .
Bit Test and Branch Instructions
Instructions Organized by Type

3-1
3-4
3-4
3-8
3-10
3-10
3-10
3-12
3-12
3-17
3-17
3-17
3-17

3-18
3-20
3-21
3-22
3-24
3-25
3-26
3-28
3-28
3-30
3-32
3-34
3-35
3-35

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

3.4.6
3.4.7
3.4.7.1
3.4.7.2
3.4.7.3
3.4.7.4
3.4.7.5
3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.6.3
3.6.3.1
3.6.3.2
3.6.3.3
3.6.3.4
3.6.3.5
3.6.4
3.6.5
3.6.6
3.6.6.1
3.6.6.2
3.6.6.3
3.6.7
3.7
3.7.1
3.7.2
3.7.3
3.7.3.1
3.7.3.2
3.7.3.3
3.7.4
3.7.4.1
3.7.4.2
3.7.4.3
3.7.5

Instruction Set Summary..................................... 3-40
Interrupts.. 3-45

Software Interrupt (SWI) .. 3-47
External Interrupt.. 3-49
Timer Interrupt... 3-49
Serial Communications Interface (SCI) Interrupt............. 3-50
Serial Peripheral Interface (SPI) Interrupt....................... 3-50

Microcontroller Input/Output .. 3-50
Parallel I/O... 3-51
Serial I/O.. 3-53

Serial Communications Interface (SCI) 3-53
SCI Transmitter.. 3-54
SCI Receiver... 3-56
Registers... 3-58

Baud Rate Register (BAUD) .. 3-58
Serial Communications Control Register One (SeCR1) 3-60
Serial Communications Control Register Two (SCCR2) ... 3-61
Serial Communications Status Register (SCSR) 3-62
Serial Communications Data Register (SCDAT) 3-63

Data Formats.. 3-64
Hardware Procedures .. 3-65
Software Procedures ... 3-65

Initialization Procedure.. 3-65
Normal Transmit Operation 3-66
Normal Receive Operation... 3-66

SCI Application Example.............................. 3-67
Synchronous Serial Peripheral Interface (SPI) 3-69

Data Movement .. 3-71
Functional Description ... 3-72
Pin Descriptions.. 3-72

Serial Data Pins (MISO, MOSI) 3-72
Serial Clock (SCK).................................... 3-73
Slave Select (SS) .. 3-73

Registers ... 3-73
Serial Peripheral Control Register (SPCR) 3-74
Serial Peripheral Status Register (SPSR)........ 3-75
Serial Peripheral Data I/O Register (SPDR) 3-76

SPI Application Example............................... 3-76

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE v

TABLE OF CONTENTS (Concluded)

Paragraph
Number Title

Page
Number

3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.8.9
3.9
3.9.1
3.9.2
3.9.2.1
3.9.2.2
3.9.2.3
3.9.2.4
3.10
3.10.1
3.10.2
3.10.3
3.10.4

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2

vi

Programmable Timer .. 3-78
Functional Description ... 3-81
Timer Counter and Alternate Counter Registers.... 3-83
Input-Capture Concept... 3-84
Input-Capture Operation 3-85
Output-Compare Concept.. 3-86
Output-Compare Operation .. 3-88
Timer Control Register.. 3-89
Timer Status Register (TSR)... 3-90
Timer Application Example........ 3-91

StoplWait Instruction Effects............ 3-91
Low Power-Consumption Modes .. 3-91
Effects on On-Chip Peripherals ... 3-94

Timer Action During Stop Mode 3-94
SCI Action During Stop Mode 3-94
SPI Action During Stop Mode.................... 3-94
Wait Mode Effects... 3-95

OTPROM/EPROM Programming.. 3-95
Erasing 3-95
Programming .. 3-96
Program Register .. 3-96
Option Register.. 3-97

Section 4
Applications

Hardware Development Methods...... 4-3
Software Development Methods .. 4-4

Freeware ... 4-6
Third-Party Software ... 4-7

Thermostat Project Details... 4-8
Hardware Details 4-9
Project Programming .. 4-12

Appendix A
Instruction Set Details

Appendix B
Review Questions

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

LIST OF ILLUSTRATIONS

Figure
Number Title

Page
Number

1-1 A Typical Computer System ... 1-3
1-2 A Temperature Control Flowchart ... 1-5
1-3 Thermostat Project Block Diagram .. 1-6

2-1 MCU Expanded Block Diagram................................ 2-1
2-2 M68HC05 CPU Registers.. 2-8
2-3 Memory and 110 Circuitry.. 2-11
2-4 Typical Memory Map .. 2-12
2-5 Example Flowchart ... 2-15
2-6 Flowchart and Mnemonics ... 2-16
2-7 Delay Routine Flowchart and Mnemonics 2-17
2-8 Assembler Listing ... 2-19
2-9 Explanation of Assembler Listing............ 2-20
2-10 Memory Map of Example Program ... 2-23
2-11 Subroutine Call Sequence.................. 2-28
2-12 Playing Computer Worksheet................................ 2-31
2-13 Completed Worksheet... 2-32

3-1 MC68HC705C8 Microcontroller Block Diagram.......... 3-3
3-2 Pin Assignments... 3-5
3-3 Oscillator Connections ... 3-7
3-4 Typical Basic Connections 3-9
3-5 MC68HC705C8 Memory Map... 3-11
3-6 M68HC05 CPU Block Diagram .. 3-12
3-7 Programming Model ... 3-13
3-8 Hardware Interrupt Flowchart............ 3-48
3-9 Interrupt Stacking Order.......... .. 3-49
3-10 Port A and Data Direction A Registers 3-51
3-11 Port B and Data Direction B Registers 3-51
3-12 Port C and Data Direction C Registers 3-52
3-13 Parallel Port 110 Circuitry ... 3-52
3-14 Port D Fixed Input Port .. 3-53
3-15 SCI Transmitter Block Diagram ... 3-55
3-16 SCI Receiver Block Diagram... 3-57

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE vii

Figure
Number

LIST OF ILLUSTRATIONS (Continued)

Title
Page

Number

3-17 Baud Rate Register... 3-58
3-18 Rate Generator Division... 3-59
3-19 Serial Communications Control Register One 3-60
3-20 Serial Communications Control Register Two............................ 3-61
3-21 Serial Communications Status Register 3-62
3-22 Serial Communications Data Register....................................... 3-63
3-23 Double Buffering .. 3-63
3-24 Data Formats.. 3-64
3-25 SCI Normal Transmit Operation Flowchart 3-66
3-26 SCI Normal Receive Operation Flowchart.................................. 3-66
3-27 SCI Application Example Program .. 3-68
3-28 SPI Block Diagram .. 3-70
3-29 Shift Register Operation .. 3-71
3-30 Data/Clock Timing Diagram .. 3-73
3-31 Serial Peripheral Control Register... 3-74
3-32' Serial Peripheral Status Register .. 3-75
3-33 Serial Peripheral Data I/O Register.................. 3-76
3-34 SPI Application Example Diagram 3-77
3-35 SPI Application Example Flowchart ... 3-79
3-36 SPI Application Example Program........... 3-80
3-37 Programmable Timer Block Diagram.. 3-82
3-38 16-Bit Counter Reads... 3-83
3-39 Input-Capture Operation.. 3-86
3-40 Output-Compare Operation.. 3-87
3-41 Timer Control Register .. 3-89
3-42 Timer Status Register .. 3-90
3-43 Timer Application Example Program ... 3-92
3-44 STOPIWAIT Flowchart........................ 3-93
3-45 Program Register .. 3-96
3-46 Option Register.. 3-97

4-1 Thermostat Project Schematic Diagram 4-10
4-2 Precision Temperature Sensing Circuit.. 4-11
4-3 PortA Summary ... 4-12
4-4 Port B Summary... 4-12
4-5 Port C Summary ... 4-13
4-6 Port D Summary ... 4-13

viii M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number Title

Page
Number

4-6 Port D Summary ... 4-13
4-7 Display Checkout Flowchart.. ... 4-15
4-8 Display Checkout Program Listing .. 4-16
4-9 Keypad Checkout Flowchart.. ... 4-19
4-10 Keypad Checkout Program Listing.. 4-20
4-11 Main Program Flowchart... 4-22

LIST OF TABLES

Table
Number Title

Page
Number

2-1 Decimal, Binary, and Hexadecimal Equivalents 2-3

3-1 COP Timeout Period versus CM1 and CMO 3-20
3-2 Register/Memory Instructions... 3-36
3-3 Read/Modify-Write Instructions.. 3-37
3-4 Branch Instructions... 3-38
3-5 Control Instructions... 3-39
3-6 Vector Address for Interrupts and Reset 3-47

4-1 Thermostat Project Parts List... 4-11

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE ix

x M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SECTION 1
INTRODUCTION

Welcome to the world of microcontrollers!

In this applications guide, we will develop a project using a Motorola
'lvIC68HC705C8 microcontroller unit (MCU) in a familiar application - a home
thermostat. The MC68HC705C8 is a member of the M68HC05 Family of MCUs.
The project will demonstrate only a few of the many possible microcontroller
functions that you can use.

This guide assumes that you have no knowledge of microcontrollers and no
MCU applications experience.

Section 1 begins with definitions, gives background information, and describes
computer systems. An overview of microcontroller applications is also pre
sented and an application project is discussed.

Section 2 describes in detail how microcontrollers operate.

Section 3 contains functional data for the Motorola MC68HC705C8 MCU. This
section gives you specific information needed to use this MCU in an appli
cation. More information can be found in slightly different form in BR594/D,
the MC68HC705C8 Technical Summary, which is available separately.

Section 4 shows you how to develop applications and gives you the ther
mostat project details.

Appendix A provides a detailed description of each instruction in the
MC68HC05 instruction set.

Appendix B contains review questions, answers, and explanations.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-1

1.1 DEFINITIONS

The heart of a computer is the central processor unit (CPU). A microprocessor
is a CPU on a single chip.

A computer system is a CPU plus peripherals such as input/output (I/O)
devices, memory, a program, and a timing reference.

A microcontroller is a very small product that contains many of the functions
found in any computer system. A microcontroller uses a microprocessor (as
its CPU) as well as memory and peripherals on the same chip.

A microcontroller (MCU) is packaged as a single chip that can be programmed
by the user with a series of instructions loaded into its memory.

1.2 BACKGROUND

1-2

Before MCUs, controllers were hard-wired electronic devices whose opera
tion was determined by the circuits and wires contained within them.

The operation of an MCU-based controller is determined primarily by its
program instead of its components and wires. Any function that can be
implemented using hard-wired digital integrated circuits (ICs) can also be
implemented and performed by an MCU.

As the size and complexity of the devices increase, MCUs become attractive
for two reasons:

1. The hard-wired approach requires adding ICs to perform more complex
tasks; whereas, MCUs require only a longer program.

2. Microcontrollers are more versatile. Any change in a hard-wired system
usually involves replacing ICs and rerouting wires. Most modifications
to an MCU system are made simply by changing the program.

MCUs are very useful where many decisions or calculations are required. It
is easier to use the computational power of a computer than to use discrete
logic.

Microcontrollers are now being used to replace existing designs because
they are far simpler to use than conventional IC logic. Since the MCU approach
is programmable, many additional features are possible at little or no added
cost. Programmability makes possible mUltiple use of a common piece of
hardware since only the control program needs to be changed.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

1.3 COMPUTER SYSTEMS DESCRIPTION

Whatever their size, all computer systems consist of the same fundamental
parts: CPU, I/O devices, memory, program(s), and a timing reference (clock)
as shown in Figure 1-1.

SWITCH

1 2 3 A
4 5 6 B
7 8 9 C
< 0 > I

KEYPAD

TEMPERATURE
SENSOR

BB:BB

CRYSTAL

Figure 1-1. A Typical Computer System

The CPU processes information in accordance with a program of instructions
and data in a particular language called machine code. The CPU controls all
the system operations and provides control signals for enabling and disabling
the various peripherals and I/O devices.

Input devices supply information to the MCU from the outside world. Some
input devices convert analog signals into digital signals that the MCU can
understand and manipulate. Other input devices translate real-world infor
mation into the 0 to + 5 Vdc signals required by MCUs. Examples of this are
a temperature sensor, a switch, a keypad, and a typewriter-style keyboard.
A computer system might have one or a number of these input devices.

Output devices are controlled by signals from the MCU. An external interface
is required by some output devices to translate the 0 to + 5 Vdc MCU levels
into different voltage or current levels. Liquid crystal displays, video display
terminals, and heating/cooling equipment are examples of output devices.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-3

Memory can store information, including the instructions and data that the
CPU uses. The two basic memory types are random access memory (RAM)
and read-only memory (ROM).

RAM is used for temporary storage of data and instructions. The computer
system can write information into and read information from a RAM in an
arbitrary random order. RAM is volatile in that its contents are lost when
power is removed.

ROM has data and instructions (a program) stored permanently in it when
it is manufactured. The CPU can read information from a ROM but cannot
write information into it. ROM information is nonvolatile in that it does not
change even when power is removed.

A programmable read-only memory (PROM) is a type of ROM that can be
programmed by the user.

An erasable programmable read-only memory (EPROM) is a type of PROM
that can be erased by exposing it to ultraviolet light. Once erased, an EPROM
may be reprogrammed with new instructions and data.

An OTPROM is a type of EPROM that is manufactured in an inexpensive
plastic package. Since the plastic package is opaque to ultraviolet light, an
OTPROM can be programmed only once.

Like ROM, PROM, EPROM, and OTPROM are nonvolatile types of memory.

The program contains instructions and data. The computer system uses the
program to perform some desired process(es).

The computer clock is used for timing and sequencing the various operations.
A crystal is usually used to provide the reference frequency for the clock.

1.4 MICROCONTROLLER APPLICATIONS OVERVIEW

1-4

The development of a new microcontro"er application is limited only by ski"
and imagination, since the elements of a microcontro"er system are easily
assembled. MCU applications generally allow many new functions that make
process control simpler and more powerful, often at reduced cost.

Many applications require analog inputs and outputs. The resulting system
is the equivalent of a traditional analog controller with a number of control
loops. Control loops regulate an output as a function of one or more inputs.
Control loops are illustrated in the flowchart of Figure 1-2.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

CONTROL LOOP

TURN OFF HEATING

TURN OFF COOLING

Figure 1-2. A Temperature Control Flowchart

Some applications have costly sensors and control mechanisms. The cost of
the sensors required for input and the cost of the control devices required
for output are usually much greater than the cost of a standard MCU.

The advantage of an MCU system is the use of software to replace complex
and expensive hardware previously required. The cost of the software is a
tradeoff against the cost of the additional hardware and the space it requires.

Programming allows use of complex functions that could not easily be
accomplished with hard-wired devices. Changes in functions can be made
and programs can be improved or replaced with few or no hardware changes.

1.5 PROJECT DESCRIPTION

A basic thermostat controller was chosen for this project because it should
be familiar to all readers and because it includes the fundamental elements

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE '-5

1-6

common to all MCU applications. Figure 1-3 illustrates a home thermostat
controller that can control both heating and air conditioning.

DATA ENTRY
KEYPAD

1 2 3 A
4 5 6 B
7 8 9 C

INDOOR
TEMPERATURE

SENSOR

~
OUTDOOR

TEMPERATURE
SENSOR

~

CRYSTAl

MICROCONTROLLER

w
~
1:1: w
~

LCD DISPLAY

BB:BB

INTERFACE

~»)))
BEEPER

[(1--:
J]II

RELAV
w [(1--: ~

~II a: w
~

RELAY

[(1--:
~II

RELAY

Figure 1·3. Thermostat Project Block Diagram

~

!< w
::t:

...J

§

Since the thermostat is based on an MCU, complex functions can be added.
The thermostat could include a timed setback feature that allows specifying
certain times of the day when there will be reduced demand for heating or
air conditioning, thus giving some energy savings. A more unusual feature
would be to measure the outdoor temperature and control the indoor-to
outdoor temperature difference. This would be very difficult to accomplish
with a conventional electromechanical thermostat.

The four fundamental elements of this system are inputs, outputs, time, and
a microcontroller to tie the other elements together. The inputs include push
buttons (a keypad) to enter time and temperature information into the MCU
and sensors to measure the indoor and outdoor temperatures. Outputs in
clude a display to show system conditions and signals to the interfaces that

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

control the heating and air conditioning equipment. Time is derived from a
crystal connected to the MCU. As we will see later, this crystal would be used
by the CPU even if the application did not have time-of-day requirements. A
program controls the entire operation of the thermostat. Section 4 of this
manual contains project details.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 1-7

1-8 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SECTION 2
MICROCONTROLLER OPERATION

A microcontroller unit (MCU) is a complete computer system on a single
silicon chip. In a great many controller applications, the MCU can satisfy all
system requirements with no additional integrated circuits (ICs). Due to very
low cost and a high degree of flexibility, these powerful new MCU devices
are finding their way into many applications that were previously accom
plished with combinational logic or even by mechanical means. As a result,
there are many experienced engineers who need to become familiar with
the function and application of Motorola MCUs. This section, which is spe
cifically designed for those engineers, is also a good reference for engineers
who are familiar with MCUs from some other manufacturer.

The MCU block in the thermostat block diagram of Figure 1-3 can be expanded
as shown in Figure 2-1 to show the functional blocks within the MCU. The

-
CRYSTAL

OSCILLATOR
&

CLOCKS CENTRAL PROCESSING UNIT
CPU

RESET -+-----~~

(POWER)

VDD

VSS

--
(GROUND)

• • • DIGITAL • • • INPUTS • • •

Figure 2-1. MCU Expanded Block Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

•
• DIGITAL
• OUTPUTS

2-1

CPU block is the central element of a digital binary computer much like the
mainframe computers used in business except that it is much smaller. The
goal of this section is to study the internal operation of this CPU and how it
interacts with the other functional blocks within the MCU. Although this
discussion is based on a relatively simple CPU, the principles apply to even
the most powerful mainframe computers.

The CPU is a system of simple logic elements and buses that can sequentially
interpret and execute a finite set of instructions. Starting from a specific
address in memory after reset, the CPU mindlessly fetches and executes one
simple instruction after another. Each instruction is composed of several even
simpler steps. The small substeps comprising each instruction are deter
mined by the wiring within the CPU. The transistors, logic gates, and buses
which comprise the CPU are called hardware. The instructions the CPU fol
lows to accomplish an application task are determined by an end user or
design engineer and are called a software program.

Before we can get into the d.iscussion of the internal operations of the CPU,
some basic concepts must be understood. The following paragraphs discuss
numbering systems and special codes used by computers.

2.1 NUMBER SYSTEMS

2-2

Computers work best with information in a different form than people use.
Humans typically work in the base 10 (decimal) numbering system (probably
because we have ten fingers). Digital binary computers work in the base 2
(binary) numbering system because this allows all information to be repre
sented by sets of digits, which can only be zeros or ones. In turn, a one or
zero can be represented by the presence or absence of a logic voltage on a
signal line or the on and off states of a simple switch.

In decimal (base 10) numbers, the weight of each digit is ten times as great
as the digit immediately to its right. The rightmost digit of a decimal integer
is the ones place, the digit to its left is the tens digit, and so on. In binary
(base 2) numbers, the weight of each digit is two times as great as the digit
immediately to its right. The rightmost digit of the binary integer is the ones
digit, the next digit to the left is the twos digit, next is the fours digit, then
the eights digit, and so on.

Although computers are quite comfortable working with binary numbers of
8,16, or even 32 binary digits, humans find it very inconvenient to work with
so many digits at a time. The base 16 (hexadecimal) numbering system offers

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

a practical compromise. One hexadecimal digit can exactly represent four
binary digits, thus, an 8-bit binary number can be expressed by two hex
adecimal digits.

The correspondence between a hexadecimal digit and the four binary digits
it represents is simple enough that humans who work with computers easily
learn to mentally translate between the two. In hexadecimal (base 16) num
bers, the weight of each digit is 16 times as great as the digit immediately
to its right. The rightmost digit of a hexadecimal integer is the ones place,
the digit to its left is the sixteens digit, and so on.

Table 2-1 demonstrates the relationship between the decimal, binary, and
hexadecimal representations of values. These three different numbering sys
tems are just different ways to represent the same physical quantities.

Table 2-1. Decimal, Binary, and
Hexadecimal Equivalents

Base 10
Base 2 Binarv

Base 16
Decimal Hexadecimal

a 0000 a
1 0001 1
2 0010 2
3 0011 3

4 0100 4
5 0101 5
6 0110 6
7 0111 7

8 1000 8
9 1001 9

10 1010 A
11 1011 B

12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11

100 0110 0100 64
255 1111 1111 FF

1024 0100 0000 0000 400
65,535 1111 1111 1111 1111 FFFF

The letters A through F are used to represent the hexadecimal values cor
responding to 10 through 15 because each hexadecimal digit can represent
16 different quantities; whereas, our customary numbers only include the 10
unique symbols (0 through 9), Thus, some other single-digit symbols had to
be used to represent the hexadecimal values for 10 through 15.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-3

To avoid confusion about whether a number is decimal or hexadecimal,
hexadecimal numbers are preceded by the $ symbol. For example, 64 means
decimal "sixty-four"; whereas, $64 means hexadecimal "six-four", which is
equivalent to decimal 100. Some other computer manufacturers follow hex
adecimal values with a capital H (as in 64H).

Hexadecimal is a good way to express and discuss numeric information
processed by computers because it is easy for people to mentally convert
between hexadecimal digits and their 4-bit binary equivalent. The hexade
cimal notation is much more compact than binary while maintaining the
binary connotations.

2.2 COMPUTER CODES

2-4

Computers must handle many kinds of information other than just numbers.
Text (alphanumeric characters) and instructions must be encoded in such a
way that the computer can understand this information. The most common
code for text information is the American Standard Code for Information
Interchange (or ASCII). The ASCII code establishes a widely accepted cor
relation between alphanumeric characters and specific binary values. Using
the ASCII code, $41 corresponds to capital A, $20 corresponds to a space
character, etc. The ASCII code translates characters to 7-bit binary codes, but
in practice the information is most often conveyed as 8-bit characters with
the most significant bit equal to zero. This standard code allows equipment
made by various manufacturers to communicate because all of the machines
use this same code.

Computers use another code to give instructions to the CPU. This code is
called an operation code or opcode. Each opcode instructs the CPU to execute
a very specific sequence of steps that together accomplish an intended op
eration. Computers from different manufacturers use different sets of op
codes because these opcodes are internally hard-wired in the CPU logic. The
instruction set for a specific CPU is the set of all opcodes that the CPU knows
how to execute. Even though the opcodes differ from one computer to another,
all digital binary computers perform the same kinds of basic tasks in similar
ways. The CPU in the MC68HC05 MCU can understand 62 basic instructions.
Some of these basic instructions have several slight variations, each requiring
a separate opcode. The instruction set ofthe MC68HC05 includes 210 unique
instruction opcodes. We will discuss how the CPU actually executes instruc
tions a little later in this section after a few more basic concepts have been
presented.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

An opcode such as $4C is understood by the CPU, but it is not very meaningful
to a human. To solve this problem, a system of mnemonic instruction formats
is used. The $4C opcode corresponds to the INCA mnemonic, which is read
"increment accumulator." Although there is printed information to show the
correlation between mnemonic instructions and the opcodes they represent,
this information is seldom used by a programmer because the translation
process is automatically handled by a separate computer program called an
assembler. An assembler is a program that converts a program written in
mnemonics into a list of machine codes (opcodes) that can be used by a
CPU. .

An engineer develops a set of instructions for the computer in mnemonic
form and then uses. an assembler to translate these instructions into opcodes
that the CPU can understand. We will discuss instructions, writing programs,
and assemblers later in this applications guide, but you should understand
that people prepare instructions for a computer in mnemonic form and the
computer understands only opcodes; thus, a translation step is required to
change the mnemonics to opcodes, and this is the function of the assembler.

Before leaving this discussion of number systems and codes, we will look
at two additional codes you may have heard about. Octal (base 8) notation
was used for some early computer work but is seldom used today. Octal
notation uses the numbers 0 through 7 to represent sets of three binary digits
in the same way hexadecimal is used to represent sets of four binary digits.
The octal system had the advantage of using customary number symbols
(unlike the hexadecimal symbols A through F discussed earlier).

Two disadvantages caused octal to be abandoned for the hexadecimal no
tation used today. First of all, most computers use 4, 8, 16, or 32 bits per
word; these words do not break down nicely into sets of three bits. (Some
early computers used 12-bit words which did break down into four sets of
three bits each.) The second problem was that octal is not as compact as
hexadecimal. For example, the ASCII value for capital Ais 1000001 2 in binary,
41 16 in hexadecimal, and 101 8 in octal. When a human is talking about the
ASCII value for A, it is easier to say "four-one" than it is to say "one-zero
one." When mentally translating from hexadecimal to binary, it is easy to
convert each hexadecimal digit into four binary bits. It is more difficult to
make the octal-to-binary translation because you have to remernber to throw
away the leading zero of the first group of three binary bits. You probably
had to think twice about that last statement, and that is exactly the point.

Binary coded decimal (BCD) is a hybrid notation used to express decimal
values in binary form. BCD uses four binary bits to represent each decimal

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-5

digit. Since four binary digits can express 16 different physical quantities,
there will be six bit-value combinations that are considered invalid (specifi
cally, the hexadecimal values A through F). Values are kept in pseudo-decimal
form during calculations.

When the computer does a BCD add operation, it performs a binary addition
and then adjusts the result back to BCD form. As a simple example, consider
the BCD addition of 910 + 110 = 1010, The computer adds 0000 1001 2 + 0000
0001 2 =000010102, but 10102 is equivalent to A16, which is not a valid BCD
value. When the computer finishes the calculation, a check is performed to
see if the result is still a valid BCD value. If there was any carry from one
BCD digit to another or if there was any invalid code, a sequence of steps
would be performed to correct the result to proper BCD form (0000 10102 is
corrected to 0001 00002 (BCD 10) in this example).

In most cases, it is inefficient to use BCD notation in computer calculations.
It is better to change from decimal to binary as information is entered, do
all computer calculations in binary, and change the binary result back to BCD
or decimal as needed for display. First, not all computers are capable of doing
BCD calculations because they need a digit-to-digit carry indicator which is
not present on all computers (though Motorola MCUs do have this half-carry
indicator). Secondly, forcing the computer to emulate human behavior is
inherently less efficient than allowing the computer to work in its native binary
system.

2.3 COMPUTER MEMORY

2-6

Before the operation of the CPU can be discussed in detail, some conceptual
knowledge of computer memory is required. In many beginning program
ming classes, memory is presented as being similar to a matrix of pigeon
holes where you can save messages and other information. The pigeon holes
we are referring to are like themailboxesinalargeapartmentbuilding.This
is a good analogy but needs a little refinement if it is to be used to explain
the inner workings of a CPU. We will confine our discussion to an 8-bit CPU
so that we can be very specific.

In an 8-bit CPU, each pigeon hole (or mailbox) can be thought of as containing
a set of eight on/off switches (eight bits of data are called a byte of data).
Unlike a pigeon hole, you cannot fit more information in by writing smaller,
and there is no such thing as an empty pigeon hole (though the contents of
a memory location can be unknown or undefined at a given time). The switches
would be in a row where each switch would represent a single binary digit.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

A binary one corresponds to the switch being on, and a binary zero corre
sponds to the switch being off. Each pigeon hole (memory location) has a
unique address so that information can be stored and reliably retrieved.

2.3.1 Computer Architecture

Motorola M68HC05 and M68HC11 8-bit MCUs have a specific organization
which is called a Von Neumann architecture after an American mathematician
of the same name. In this architecture, a CPU and a memory array are inter
connected by an address bus and a data bus. The address bus is used to
identify which pigeon hole is being accessed, and the data bus is used to
convey information either from the CPU to the memory location (pigeon
hole) or from the memory location to the CPU.

In the Motorola implementation of this architecture, there are a few special
pigeon holes (ca"ed CPU registers) inside the CPU, which act as a sma"
scratch pad and control panel for the CPU. These CPU registers are similar
to memory in that information can be written into them and remembered.
However, it is important to remember that these registers are directly wired
into the CPU and are not part of the addressable memory available to the
CPU.

A" information (other than the CPU registers) accessible to the CPU is en
visioned (by the CPU) to be in a single row of several thousand pigeon holes.
This organization is sometimes called a 'memory-mapped I/O' system be
cause the CPU treats a" memory locations alike whether they contain pro
gram instructions, variable data, or input-output (1/0) controls. There are
other computer architectures, but this applications guide is not intended to
explore these variations. Fortunately, the Motorola architecture we are dis
cussing is one of the easiest to understand and use. This architecture encom
passes the most important concepts of digital binary computers; thus, the
information presented in this applications guide wi" be applicable even if
you go on to study other architectures.

The number of wires in the address bus determines the total possible number
of pigeon holes; the number of wires in the data bus determines the amount
of information that can be stored in each pigeon hole. In the MC68HC705C8,
the address bus is 13 bits, making a maximum of 819210 separate pigeon
holes (in MCU jargon you would say this CPU can access 8K locations). Since
the data bus in the MC68HC705C8 is eight bits, each pigeon hole can hold
one byte of information. One byte is eight binary digits, or two hexadecimal
digits, or one ASC" character, or a decimal value from 0 to 255.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-7

2.3.2 CPU Registers

2-8

Different CPUs have different sets of CPU registers. The differences are pri
marily the number and size of the registers. Figure 2-2 shows the CPU reg
isters found in an M68HC05. While this is a relatively simple set of CPU
registers, it is representative of all types of CPU registers and can be used
to explain all of the fundamental concepts.

7 0

I A

I x

12 7 5 0

SP

15 12 0

Pc

7 4 3 2 1 0

CONDITION CODE REGISTER 11 11 11 I H : I : N : Z : C I cc

L.:== NEGATIVE ~lJ::~:Y
I INTERRUPT MASK

'-------HALF-CARRY (FROM BIT 3)

Figure 2-2. M68HC05 CPU Registers

The A register, an 8-bit scratch-pad register, is also called an accumulator
because it is often used to hold one of the operands or the result of an
arithmetic operation.

The X register is an 8-bit index register, which can also serve as a simple
scratch pad. The main purpose of an index register is to point at an area in
memory where the CPU will load (read) or store (write) information. Some
times an index register is called a pointer register. We will learn more about
index registers when we discuss indexed addressing modes.

The program counter (PC) register is used by the CPU to keep track of the
address of the next instruction to be executed. When the CPU is reset (starts
up), the PC is loaded from a specific pair of memory locations called the reset

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

vector. The reset vector locations contain the address of the first instruction
to be executed by the CPU. As instructions are executed, logic in the CPU
increments the PC such that it always points to the next piece of information
that the CPU will need. The number of bits in the PC exactly matches the
number of wires in the address bus. This determines the total potentially
available memory space that can be accessed by a CPU. In the case of an
MC68HC705C8, the PC is 13 bits long; therefore, its CPU can access up to
8K bytes (8192) of memory. Values for this register are expressed as four
hexadecimal digits where the upper-order three bits of the corresponding
16-bit binary address are always zero.

The condition code (CC) register is an 8-bit register holding status indicators
that reflect the result of some prior CPU operation. The three high-order bits
of this register are not used and always stay at logic one. Branch instructions
use these status bits to make simple either/or decisions.

The stack pointer (SP) is used as a pointer to the next available location in
a last-in-first-out (LIFO) stack. The stack can be thought of as a pile of cards,
each holding a single byte of information. At any given time, the CPU can
put a card on top of the stack or take a card off the stack. Cards within the
stack cannot be used unless all the cards piled on top are removed first. The
CPU accomplishes this stack effect by way of the SP. The SP points to a
memory location (pigeon hole), which is thought of as the next available
card. When the CPU pushes a piece of data onto the stack, the data value is
written into the pigeon hole pointed to by the SP; the SP is then decremented
so it points at the next previous memory location (pigeon hole). When the
CPU pulls a piece of data off the stack, the SP is incremented so it points at
the most recently used pigeon hole, and the data value is read from that
pigeon hole. When the CPU is first started up or after a reset stack pointer
(RSP) instruction, the SP points to a specific memory location in RAM (a
certain pigeon hole).

2.3.3 Memory Uses

The computer memory holds all information needed by the computer for
instructions, variable data, and even I/O status and controls. Some memory
locations contain fixed data like the instructions for the CPU and tables of
constant data. This information is typically held in a read-only memory (ROM)
although there is no special requirement that this information has to be
located in ROM. A second type of information used by computers is variable
information that changes often during the operation of the system. This type

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-9

2-10

of data is typically held in a read-write random-access memory (RAM). Infor
mation can be read from or written to various locations in RAM in an arbitrary
random order. A third type of information found in a computer system is
I/O status and control information. This type of memory location allows the
computer system to get information to or from the outside world. This type
of memory location is unusual because the information can be sensed and/
or changed by something other than the CPU.

The simplest kind of I/O memory locations are a simple input port and a
simple output port. In an 8-bit MCU, a simple input port would consist of
eight pins that can be read by the CPU. A simple output port would consist
of eight pins that the CPU can control (write to). In practice, a simple output
port location is usually implemented with eight latches and feedback paths
that allow the CPU to read back what was previously written to the address
of the output port.

Figure 2-3 shows the equivalent circuit for one bit of RAM, one bit of an input
port, and one bit of a typical output port having read back capability. In a real
MCU, this circuit would be repeated eight times to make a single 8-bit RAM
location, input port, or output port.

When the CPU stores a value to the address that corresponds to the RAM
bit in Figure 2-3 (a), the WRITE signal is activated to latch the data from the
data bus line into the flip-flop [1]. This latch is static and remembers the
value written until a new value is written to this locatipn (or power is re
moved). When the CPU reads the address of this RAM bit, the READ signal
is activated, which enables the multiplexer at [2]. This multiplexer couples
the data from the output of the flip-flop into the data bus line. In a real MCU,
RAM bits are actually much simpler than shown here, but they are functionally
equivalent to this circuit.

When the CPU reads the address of the input port shown in Figure 2-3 (b),
the READ signal is activated, which enables the multiplexer at [3]. The multi
plexer couples the buffered data from the pin onto the data bus line. A write
to this address would have no meaning.

When the CPU stores a value to the address that corresponds to the output
port in Figure 2-3 (c), the WRITE signal is activated to latch the data from the
data bus line into the flip-flop [4]. The output of this latch, which is buffered
by the buffer driver at [5], appears as a digital level on the output pin. When
the CPU reads the address of this output port, the READ signal is activated,
which enables the multiplexer at [6]. This multiplexer couples the data from
the output of the flip-flop onto the data bus line.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

MOTOROLA

READ

~

HFF t
DATA BIT n

~
D Q

(n=O, Lor 7)

WRITE C Q
[lJ

(a) RAM Bit

READ ------......

~"-------[3J ----<<]1. ~ ... ~ _ . DATA BIT n ---~-_IC:---- _ .---r;;;1 DIGITAL
(n= 0, Lor 7) ~ t:::J INPUT

BUFFER

(b) Input Port Bit

READ --------,

HFF [4J

DATABITn -~--:~,...--I D
(n= 0, Lor 7)

Q I-'-'-"'~----i

WRITE -----I C Q BUFFER - DRIVER

(c) Output Port with Readback

Figure 2-3. Memory and 1/0 Circuitry

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

DIGITAL
OUTPUT

2-11

2.3.4 Memory Maps

2-12

Since there are several thousand memory locations in the MCU system, it is
important to have a convenient way to track locations. A memory map is a
pictorial representation of the total MCU memory space. Figure 2-4 is a typical
memory map showing a subset of the memory resources in the

$0000 -

$00lF
$0020

$OO4F
$0050

$OOBF
$OOCO

$OOFF
$0100

$IEFF
$IFoo

$lFF3
$lFF4

$lFFF

INSET

I/O
32 Bytes

Motorola Use
48 Bytes

t
RAM

176 Bytes

-J~~-r

User PROM
7680 Bytes

~

Motorola Use
144 Bytes

User PROM
Vectors
12 Bytes

Port A Data Register
Port B Data Register
Port C Data Reaister

Port 0 Fixed Input Register
SEE INSET ~ Port A Data Direction Reaister

Port B Data DirectionRegister
Port C Data Diredion Register

Unused
Unused
Unused

SPI Control Register

sPB== SPI
SCI Bau ate Ister
SCI Control Reaister 1
SCI Control Reaister 2

SCI Status Register
SCI Data Register

Timer Control Reaister
Timer Status Register

Input Capture Register thigh)
Input Capture Reaister low

OutputCom~
Output Com low

TimerCou .
TimerCou
All. Count Register (high)
Ah. Count Re ister low

EPROM Program Register
COP Reset Register

COP Control Reaister
Unused

SPIVedor high
SPI Vedor low
SCI Vedor high
SCIVedor low

Timer Vedor (tiighL
Timer Vector low
lAO Vector high
IRQ Vector low
SWIVedor hioh
SWIVector low

RESET Vector high byte)
RESET Vector low byte)

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$OA
$OB
$OC
$00
$DE
$OF
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$lA
$IB
$lC
$10
$lE
$IF

$lFF4
$lFF5
$lFF6
$1FF7
$IFF8
$IFF9
$IFFA
$IFFB
$lFFC
$lFFD
$IFFE
$IFFF

~7 ~O

Port A Data Diredion Register I ~ I DDRA71 DORM I DORM I DORM I DDRA31 DDRA21 DDRAI I DDRAO I

Figure 2-4. Typical Memory Map

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

MC68HC705C8. Some memory areas (reserved for Motorola use) were pur
posely left out of this figure to make it easier to understand. The complete
version of this memory map can be found in the Figure 3-5.

The four-digit hexadecimal values along the left edge of Figure 2-4 are ad
dresses beginning with $0000 at the top and increasing to $1 FFF at the bot
tom. $0000 corresponds to the first memory location selected (when the CPU
drives all address lines of the internal address bus to logic zero). $1 FFF
corresponds to the last memory location selected (when the CPU drives all
13 address lines of the internal address bus to logic one). The labels within
the vertical rectangle identify what kind of memory (RAM, PROM, I/O reg
isters, etc.) resides in a particular area of memory.

Some areas, such as I/O registers, need to be shown in more detail because
it is important to know the names of each individual location. The vertical
rectangle can be interpreted as a row of 8192 pigeon holes (memory loca
tions). Each of these 8192 memory locations contains eight bits of data as
shown in the inset in Figure 2-4.

The first 256 memory locations ($OOOO-$OOFF) can be accessed with the direct
addressing mode of many CPU instructions. In this addressing mode, the
CPU assumes that the upper two hexadecimal digits of address are always
zeros; thus, only the two low-order digits of the address need to be explicitly
given in the instruction. Allan-chip I/O registers and 176 bytes of RAM are
located in the $OOOO-$OOFF area of memory. In the memory map (Figure
2-4), the expansion of the 110 area of memory identifies each register location
with the two low-order digits of its address rather than the full four-digit
address. For example, the two-digit hexadecimal value $00 appears to the
right of the port A data register, which is actually located at address $0000
in the memory map.

Now that we ~ave some background knowledge of computer memory, we
can continue with our discussion of the CPU.

2.4 TIMING

A high-frequency clock source (typically derived from a crystal connected to
the MCU) is used to control the sequencing of CPU instructions. Typical MCUs
divide the basic crystal frequency by two or more to arrive at a bus-rate clock.
Each memory read or write takes one bus-rate clock cycle. In the case of the
MC68HC705C8 MCU, a 4-MHz (maximum) crystal oscillator clock is divided
by two to arrive at a 2-MHz (maximum) internal processor clock. Each substep

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-13

of an instruction takes one cycle of this internal processor clock (500 ns).
Most instructions take two to five of these substeps; thus, the CPU is capable
of executing about 500,000 instructions every second.

2.5 PROGRAMMING

At this point, we will write a short program in mnemonic form, translate it
into machine code, and discuss how the CPU would execute the program.
This exercise will provide insight into the internal operation of the CPU and
computers in general. The instruction set explanations and the process of
writing programs will be more understandable with this background.

Our program will read the state of a switch connected to an input pin. When
the switch is closed, the program will cause an LED connected to an output
pin to light for about one second and then go out. The LED will not light
again until the switch has been released and closed again. The length of time
the switch is held closed will not affect the length of time the LED is lighted.

Although this program is very simple, it demonstrates the most common
elements of any MCU application program. First, it demonstrates how a
program can sense input signals such as switch closures. Second, this is an
example of a program controlling an output signal. Third, the LED on-time
of about one second demonstrates one way a program can be used to meas
ure real time. Because the algorithm is sufficiently complicated, it cannot be
accomplished in a trivial manner with discrete components (at minimum, a
one-shot IC with external timing components would be required). This ex
ample demonstrates that an MCU and a user-defined program (software)
can replace complex circuits.

2.5.1 Flowchart

2-14

Figure 2-5 is a flowchart of the example program. Flowcharts are often used
as a planning tool for writing software programs because they show the
function and flow of the program under development. The importance of
notes, comments, and documentation for software cannot be overempha
sized. Just as you would not consider a circuit-board design complete until
there is a schematic diagram, parts list, and assembly drawing, you should
not consider a program complete until there is a commented listing and a
comprehensive explanation of the program such as a flowchart.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

FLOWCHART

SET INITIAL CONDITIONS:
PORT C = AlL OUTPUTS

DATA PATTERN 1110 0000 TO PORT C

NO

YES

Figure 2-5. Example Flowchart

2.5.2 Mnemonic Source Code

Once the flowchart or plan is completed, the programmer develops a series
of assembly language instructions to accomplish the function(s) called for in
each block of the plan. The programmer is limited to selecting instructions
from the instruction set for the CPU being used (in this case the MC68HC05).

MOTOROLA M68HC05 MICROCONTROLLER APPLICA nONS GUIDE 2-15

2-16

The programmer writes instructions in a mnemonic form which is easy to
understand. Figure 2-6 shows the mnemonic source code next to the flow
chart of our example program so you can see what CPU instructions are
used to accomplish each block of the flowchart. The meanings of the mne
monics used in the right side of Figure 2-6 can be found in Appendix A.

FLOWCHART

SET INITIAL CONDITIONS:
PORT C = ALL OUTPUTS

DATA PATTERN 1110 0000 TO PORT C

MNEMONIC PROGRAM

INIT LDA #$FF
STA DDRC
LDA #$EO
STA PORTC

TOP LDA PORTB

BPL TOP

JSR DLY50

BCLR 6,PORTC EWA no
DLYLP JSR DLY50

DECA
BNE DLYLP

BSET 6,PORTC

OFFLP BRSET 7,PORTB,OFFLP

JSR DLY50

BRA TOP

Figure 2·6. Flowchart and Mnemonics

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

During development of the program instructions, it was noticed that a time
delay was needed in three places. A subroutine was developed that would
generate a 50-ms delay. This subroutine was used directly in two places (for
switch debouncing) and made the one-second delay easier to produce. To
keep this figure simple, the comments that would usually be included within
the source program for documentation are omitted. The comments will be
shown in the complete assembly listing in Figure 2-8.

2.5.3 Software Delay Program

Figure 2-7 shows an expanded flowchart of the 50-ms delay subroutine. A
subroutine is a relatively small program which performs some commonly
required function. Even if the function needs to be performed many times

MOTOROLA

FLOWCHART MNEMONIC PROGRAM
INSTRUCTION

TIME (CYCLES)

6 (JSR)

DLYSO STA TEMP 1 4

LDA #32 2

OUTLP CLRX 3

INNRLP DECX 3
BNE INNRLP 3

DECA 3

BNE OUTLP 3

LDA TEMP 1 3

RTS

[I]· INNRLP is executed 256 times on each pass through outer loop.
[2]· OUTLP is executed 32 times.

6

1[1]

Figure 2-7. Delay Routine Flowchart and Mnemonics

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

[2]

2-17

in the course of a program, the subroutine only has to be written once. Each
place where this function is needed, the programmer would call the subrou
tine with a branch-to-subroutine (BSR) or jump-to-subroutine (JSR) instruc
tion.

Before starting to execute the instructions in the subroutine, the address of
the instruction which follows the JSR (or BSR) is automatically stored in
temporary RAM memory locations. When the CPU finishes executing the
instructions within the subroutine, a return-from-subroutine (RTS) instruction
is performed as the last instruction in the subroutine. The RTS instruction
causes the CPU to recover the previously saved return address; thus, the
CPU continues the program with the instruction following the JSR (or BSR)
instruction that originally called the subroutine.

The delay routine of Figure 2-7 involves an inner loop (lNNRLP) within another
loop (OUTLP). The inner loop consists oftwo instructions executed 256 times
before X reaches $00 and the BNE branch condition fails. This amounts to
six cycles at 1 J..ls/cycle times 256, which equals 1.536 ms for the inner loop.
The outer loop executes 32 times. The total execution time for the outer loop
is 32(1536+9) or 32(1545)=49.44 ms. The miscellaneous instructions in this
routine other than those in the outer loop total 21 cycles; thus, the total time
required to execute the DL Y50 routine is 49.461 ms, including the time re
quired for the JSR instruction that calls DLY50.

The 16-bit timer system in the MC68HC705C8 can also be used to measure
time. The timer-based approach is actually preferred because the CPU can
perform other tasks during the delay, and the delay time is not dependent
on the exact number of instructions executed as it is in DL Y50.

2.5.4 Assembler Listing

2-18

After a complete program or subprogram is written, it must be converted
from mnemonics into binary machine code that the CPU can later execute.
A separate computer system, such as an IBM PC, is used to perform this
conversion to machine language. A computer program called an assembler
is used. The assembler reads the mnemonic version of the program (also
called the source version of the program) and produces a machine-code
version of the program in a form that can be programmed into the memory
of the MCU.

The assembler also produces a composite listing showing both the original
source program (mnemonics) and the object code translation. This listing is
used during the debug phase of a project and as part of the documentation
for the software program. Figure 2-8 shows the listing which results from

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

0001
0002
0005
0006
009f

OOaO

OOaO a6 ff
00a2 b7 06

**
* Simple 68HCOs Program Example
* Read sw connected to bit-7 of port B; l=closed
* When sw. closes, light LED for about 1 Sec; LED
* on when port C bit 6 = O. Wait for sw release,
* then repeat. Debounce sw sOmS on & off

*
*
*
*
*

**
PORTB
PORTC
DDRB
DDRC
TEMPI

EQU
EQU
EQU
EQU
EQU

$01
$02
$05
$06
$9F

Direct address of port B (sw)
Direct address of port C (LED)
Data direction control, port B
Data direction control, port C
One byte temp storage location

ORG $AO Program will start at $OOAO
* $OOAO is in '70sC8 RAM

INIT LDA #$FF Begin initialization
DDRC Set port C to act as outputs STA

* Port B is
LDA
STA

configured as inputs by default from reset.
00a4 a6 eO
00a6 b7 02

#$EO Red & green LEDs and beeper off
PORTC Turn off red LED

* Some pins of port C (of my board) happen to be connected
* to devices which don't apply to this example program.
* The $EO pattern turns off my stuff & turns off red LED

00a8 b6 01 TOP LDA PORTB Read swat MSB of Port B
OOaa 2a fc BPL TOP Loop till MSB=l (Neg trick)
OOac cd 00 c3 JSR DLYsO Delay about 50 mS to debounce
OOaf 1d 02 BCLR 6,PORTC Turn on LED (bit-6 to zero)
00b1 a6 14 LDA #20 Decimal 20 assembles to $14
00b3 cd 00 c3 DLYLP
00b6 4a

JSR DLYsO Delay 50 mS
DECA Loop counter for 20 loops

00b7 26 fa BNE DLYLP 20 times (20-19,19-18,.1-0)
00b9 1c 02 BSET 6,PORTC Turn LED back off
OObb Oe 01 fd OFFLP
OObe cd 00 c3

BRSET 7,PORTB,OFFLP Loop here till sw off
JSR DLYsO Debounce release

00c1 20 es

00c3 b7 9f
OOcs a6 20
00c7 Sf
00c8 Sa
00c9 26 fd
OOcb 4a
OOcc 26 f9
OOce b6 9f
OOdO 81

MOTOROLA

BRA TOP Look for next sw closure

* DLYsO - Subroutine to delay -sOmS
* Saves original accumulator value
* but X will always be zero on return

DLYsO STA

LDA
OUTLP CLRX
INNRLP DECX

BNE
DECA
BNE
LDA
RTS

TEMPI
B2

INNRLP

OUTLP
TEMPI

Save accumulator in RAM
Do outer loop 32 times
X used as inner loop count
O-FF, FF-FE, ... 1-0 256 loops
6cyc*2s6*1~S/cyc = 1.s36mS
32-31, 31-30, ... 1-0
ls4scyc*32*I~S/cyc=49.440mS
Recover saved Accumulator val
** Return **

Figure 2-8. Assembler Listing

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2·19

2-20

assembling the example program. Comments were added before the pro
gram was assembled.

Section 4 should be thoroughly studied before attempting to run any of the
sample programs in this guide. Some of the sample programs were devel
oped on another member of the M68HC05 Family which has a slightly dif
ferent memory map than the MC68HC705C8. Minor modifications may be
necessary to successfully run these programs on the MC68HC705C8.

Refer to Figure 2-9 for the following discussion. This figure shows some lines
of the listing with reference numbers indicating the various parts of the line.
The first line is an example of an assembler directive line. This line is not
really part of the program; rather, it provides information to the assembler
so that the real program can be converted properly into binary machine code.

0001 PORTB EQU $01 Direct address of port B (sw)

OOaO ORG $AO Program will start at $OOAO

00a8 b6 01 TOP LDA PORTB Read swat MSB of Port B

[1] [2] [3] [4] [5] [6]->

Figure 2-9. Explanation of Assembler Listing

EOU, short for equate, is used to give a specific memory location or binary
number a name which can then be used in other program instructions. In
this case, the EOU directive is being used to assign the name PORTB to the
value $01, which is the address of port B in the MC68HC705C8. It is easier
for a programmer to remember the mnemonic name PORTB rather than the
annonymous numeric value $01. When the assembler encounters one of
these names, the name is automatically converted to its corresponding binary
value in much the same way that instruction mnemonics are converted into
binary instruction codes.

The second line shown in Figure 2-9 is another assembler directive. The
mnemonic ORG, which is short for originate, tells the assembler where the
program will start (the address of the start of the first instruction following
the ORG directive line). ORG directives may be used more than once in a
program to tell the assembler to put different parts of the program in specific
places in memory. Refer to the memory map of the MCU to select an appro
priate memory location where a program should start.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

In this assembler listing, the first two fields, [1 J and [2]' are generated by the
assembler, and the last four fields, [3], [4], [5], and [6], are the original source
program written by the programmer. Field [3J is a label (TOP) which can be
referred to in other instructions. In our example program, the last instruction
was "BRA TOP", which simply means the CPU will continue execution with
the instruction that is labeled "TOP".

When the programmer is writing a program, the addresses where instructions
will be located are not typically known. Worse yet, in branch instructions,
rather than using the address of a destination, the CPU uses an offset (dif
ference) between the current PC value and the destination address. Fortu
nately, the programmer does not have to worry about these problems because
the assembler takes care of these details through a system of labels. This
system of labels is a convenient way for the programmer to identify specific
points in the program (without knowing their exact addresses); the assembler
can later convert these mnemonic labels into specific memory addresses and
even calculate offsets for branch instructions so that the CPU can use them.

Field [4J is the instruction field. The LOA mnemonic is short for load accu
mulator. Since there are six variations (different opcodes) of the load accu
mulator instruction, additional information is required before the assembler
can choose the correct binary opcode for the CPU to use during execution
of the program. Field [5J is the operand field, providing information about
the specific memory location or value to be operated on by the instruction.
The assembler uses both the instruction mnemonic and the operand specified
in the source program to determine the specific opcode for the instruction.

The different ways of specifying the value to be operated on are called
addressing modes (a more complete discussion of addressing modes is pre
sented later). The syntax of the operand field is slightly different for each
addressing mode so the assembler can determine the correct intended
addressing mode from the syntax of the operand. In this case, the operand
[5J is PORTB, which the assembler automatically converts to $01 (recall the
EQU directive). The assembler interprets $01 as a direct addressing mode
address between $0000 and $OOFF, thus selecting the opcode $86, which is
the direct addressing mode variation of the LOA instruction. If PORT8 had
been preceded by a # symbol, that syntax would have been interpreted by
the assembler as an immediate addressing mode value, and the opcode $A6
would have been chosen instead of $86.

Field [6] is called the comment field and is not used by the assembler to
translate the program into machine code. Rather, the comment field is used
by the programmer to document the program. Although the CPU does not
use this information during program execution, a good programmer knows

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 2-21

that it is one of the most important parts of a good program. The comment
[6] for this line ofthe program says "read swat MSB of port B." This comment
tells someone who is reading the listing why port B is being read, which is
essential for understanding how the program works. An entire line can be
made into a comment line by using an asterisk (*) as the first character in
the line. In addition to good comments in the listing, it is also important to
document programs with a flowchart or other detailed information explaining
the overall flow and operation of the program.

2.5.5 CPU View of a Program

2-22

Figure 2-10, a memory map of the MC68HC705C8, shows how the example
program fits in the memory of the MCU. This figure is the same as Figure
2-4 except that a different portion of the memory space has been expanded
to show the contents of all locations in the program. Figure 2-10 shows that
the CPU sees the example program as a linear sequence of binary codes,
including instructions and operands in successive memory locations. The
CPU begins this program with its program counter (PC) pointing at the first
byte in the program. Each instruction opcode tells the CPU how many (if any)
and what type of operands go with that instruction. In this way, the CPU can
remain aligned to instruction boundaries even though the mixture of opcodes
and operands looks confusing to us.

Most application programs would be located in ROM, EPROM, or OTPROM.
This example program is loaded into an area of RAM to avoid having to
program (and later erase) the EPROM. There is no special requirement that
instruction must be in a ROM-type memory to execute. As far as the CPU is
concerned, any program is just a series of binary bit patterns which are
sequentially processed.

Carefully study the program listing in Figure 2-8 and the memory map of
Figure 2-10. Find the first instruction of the DL Y50 subroutine in Figure 2-8
and then find the same two bytes in Figure 2-10.

You should have found the following line from near the bottom of
Figure 2-8.

00c3 b7 9f DLY50 STA TEMPl Save accumulator in RAM

The outlined section of memory in Figure 2-10 is the area you should have
identified.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

$0000

$OOIF
$0020

$004F
$0050

$009F
$OOAO

$0000

$OOFF
$0100

$IEFF
$IFOO

$IFF3
$IFF4

$IFFF

I/O
32 Bytes

Motorola Use
48 Bytes

RtM
176 Bytes

]~i~~ II[~~~~: ,
,

User PROM
7680 Bytes

,

Motorola Use
144 Bytes

-
User PROM

V~~~s 12

$A6 $OOAO
$FF $OOAI
$B7 $OOA2
$06 $OOA3
$A6 $OOA4
$EO $OOAS
$B7 $OOAB
$02 $OOA7
$86 $OOAB
$01 $OOA9
$2A $OOAA
$FC $OOAB
$CD $OOAC
$00 $OOAo
$C3 $OOAE
$10 $OOAF
$02 $0080
$A6 $OOBI
$14 $OOB2
$CO $OOB3
$00 $0084
$C3 $OOB5
$4A $0086
$26 $OOB7
$FA $0088
$IC $OOB9
$02 $OOBA
$OE $OOBB
$01 $OOBC
$Fo $OOBo EI3 $OOC3 $CO $OOBE
$00 $OOBF $9F $OOC4

$C3 $OOCO
<MI"l

(
$E5
$B7 $OOC3
$9F $OOC4
$A6 $00
~ ~6
$5F $OOC7
$5A $OOCS
$26 $OOC9
$Fo $OOCA
$4A $OOCB
$26 $OOCC
$F9 $OOCo
$86 $OOCE
$9F $OOCF
$81 $0000

Figure 2-10. Memory Map of Example Program

2.6 CPU OPERATION

This section will first discuss the detailed operation of CPU instructions and
then explain how the CPU would execute the example program. The detailed
descriptions of typical CPU instructions are intended to make you think like
a CPU. We can then go through the example program using a teaching
technique called 'playing computer' in which you pretend you are the CPU
interpreting and executing the instructions in a program.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-23

2.6.1 Detailed Operation of CPU Instructions

Before seeing how the CPU would execute the example program, it would
help to know (in detail) how the CPU breaks down instructions into funda
mental operations and performs these tiny steps to accomplish a desired
instruction. As we will see, many small steps execute very quickly and very
accurately within each instruction, but none of the small steps is very com
plicated.

The logic circuitry inside the CPU would seem straightforward to a design
engineer accustomed to working with TTL logic or even relay logic. What
sets the MCU and its CPU apart from these other forms of digital logic is the
packing density. Very large scale integration (VLSI) techniques have made it
possible to fit the equivalent of thousands of TTL integrated circuits on a
single silicon die. By arranging these logic gates to form a CPU, you get a
general-purpose instruction executer capable of acting as a universal logic
element. By placing different combinations of instructions in the device, it
can perform virtually any definable function.

A typical instruction takes two to five cycles of the internal processor clock.
Although it is not normally important to know exactly what happens during
each of these execution cycles, it can help to go through a few instructions
in detail to understand how the CPU works internally.

2.S.1.1 STORE ACCUMULATOR (DIRECT ADDRESSING MODE). Look up the STA
instruction in Appendix A. In the table at the bottom of the page, we see that
$B7 is the direct addressing mode version of the store accumulator instruc
tion. We also see that the instruction requires two bytes, one to specify the
opcode ($B7) and the second to specify the direct address where the accu
mulator will be stored. (The two bytes are shown as "B7 dd" in the machine
code column of the table.)

2-24

We will be discussing the addressing modes in more detail later, but the
following brief description will help in understanding how the CPU executes
this instruction. In direct addressing modes, the CPU assumes the address
is in the range of $0000 through $OOFF; thus, there is no need to include the
upper byte of address of the operand in the instruction (since it is always
$00).

The table at the bottom of the STA page shows that the direct addressing
version of the STA instruction takes four CPU cycles to execute. During the
first cycle of this STA instruction, the CPU reads the opcode $B7, which

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

identifies the instruction as the direct addressing version of the STA instruc
tion and advances the PC to the next memory location.

Du.ring the second cycle, the CPU places the value from the PC on the internal
address bus and reads the low-order byte of the direct address ($02 for
example). The CPU uses the third cycle of this STA instruction to internally
construct the full address where the accumulator is to be stored, and also
advances the PC so it points to the next address in memory (the address of
the opcode of the next instruction).

In this example, the CPU appends the assumed value $00 (because of direct
addressing mode) to the $02 that was read during the second cycle of the
instruction to arrive at the complete address $0002. During the fourth cycle
of this instruction, the CPU places this constructed address ($0002) on the
internal address bus, places the accumulator value on the internal data bus,
and asserts the write signal. That is, the CPU writes the contents of the
accumulator to $0002 during the fourth cycle of the STA instruction.

This explanation left out certain details, such as setting the condition code
flags, but it gives an idea of what occurs within the CPU during the execution
of a single instruction.

2.6.1.2 LOAD ACCUMULATOR (IMMEDIATE ADDRESSING MODE). Next, look up
the LDA instruction in the instruction set. The immediate addressing mode
version of this instruction appears as "A6 ii" in the machine code column of
the table at the bottom of the page. This version of the instruction takes two
internal processor clock cycles to execute.

The $A6 opcode tells the CPU to get the byte of data that immediately follows
the opcode and put this value in the accumulator. During the first cycle of
this instruction, the CPU reads the opcode $A6 and advances the PC to point
to the next location in memory (the address of the immediate operand ii).
During the second cycle of the instruction, the CPU reads the contents of the
byte following the opcode into the accumulator and advances the PC to point
at the next location in memory (i.e., the opcode byte of the next instruction).

While the accumulator was being loaded, the Nand Z bits in the accumulator
were set or cleared according to the data that was loaded into the accu
mulator. The boolean logic formulae for these bits appears near the middle
of the instruction set page. The Z bit will be set if the value loaded into the
accumulator was $00; otherwise, the Z bit will be cleared. The N bit will be
set if the most significant bit of the value loaded was a logic one; otherwise,
N will be cleared.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-25

The N (negative) condition code bit may be used to detect the sign of a twos
complement number. In twos-complement numbers, the most significant bit
is used as a sign bit, one indicates a negative value, and zero indicates a
positive value. The N bit may also be used as a simple indication of the state
of the most significant bit of a binary value.

2.6.1.3 CONDITIONAL BRANCH. Branch instructions allow the CPU to select one
of two program flow paths, depending upon the state of a particular bit in
memory or various condition code bits. Ifthe condition checked by the branch
instruction is true, program flow proceeds to a specified location in memory.
If the condition checked by the branch is not true, the CPU proceeds to the
instruction following the branch instruction. Decision blocks in a flowchart
correspond to conditional branch instructions in the program.

2-26

Most branch instructions contain two bytes, one for the opcode and one for
a relative offset byte. Branch on bit clear (BRCLR) and branch on bit set
(BRSET) instructions require three bytes: the opcode, a one-byte direct ad
dress (to specify the memory location to be tested), and the relative offset
byte.

The relative offset byte is interpreted by the CPU as a twos-complement
signed value. If the branch condition checked is true, this signed offset is
added to the PC, and the CPU reads its next instruction from this calculated
new address. If the branch condition is not true, the CPU just continues to
the next instruction after the branch instruction.

The following excerpt from Figure 2-8 demonstrates a useful way to use a
conditional branch based on the N condition code bit that is sometimes
overlooked.

00a8 b6 01 TOP
OOaa 2a fc
OOac cd 00 c3

LDA PORTB
BPL TOP
JSR DLY50

Read swat MSB of Port B
Loop till MSB=l (Neg trick)
Delay about 50 mS to debounce

The first line means "Ioad accumulator with the value at liD port B of the
MCU." The most significant bit ofthis port is connected to a normally opened
switch and a pulldown resistor. When the switch is pressed (closed), a logic
one is applied to the port pin. If the LDA PORTB instruction is executed when
the switch is opened, the N condition code bit will be cleared. Conversely, if
the LDA PORTB instruction is executed when the switch is closed, the N
condition code bit will be set.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

The second line in the listing (BPL TOP) is read "branch if plus to TOP." In
response to this instruction, the CPU either branches back to.the first line of
this program or falls to the third line of the program, depending on the
condition of the N condition code bit. If the N condition code bit is clear, the
CPU branches to the first line of the program. This corresponds to the CPU
interpreting the value previously read from port B as a positive value; hence,
the instruction name "branch if plus."

Tricks such as that just described are not the only way to read and respond
to 1/0 conditions. The following two lines of code would accomplish the same
effect as the three lines which used the N-bit trick.

00a8 Of 01 fd
OOab cd 00 c3

TOP BRCLR 7, PORTB, TOP Loop till sw closed
JSR DLY50 Delay about 50 mS to debounce

The first line of this sequence is read "branch to TOP if bit 7 of port B is
clear." In this particular case, the second sequence is better than the first
sequence for several reasons. The second squence is more straightforward
(less chance for confusion), it takes one less byte of machine code, and it
executes one cycle faster than the three-line sequence. However, in some
cases the operand (PORTB) is needed in the accumulator for some other
reason; thus, the first instruction sequence based on the N-bit trick becomes
the slightly better choice. From a practical point of view, the differences
between these two approaches is very small, and either would work well in
an application.

2.6.1.4 SUBROUTINE CALLS AND RETURNS. The jump-to-subroutine (JSR) and
branch-to-subroutine (BSR) instructions automate the process of leaving the
normal linear flow of a program to go off and execute a set of instructions
and then return to where the normal flow left off. The set of instructions
outside the normal program flow is called a subroutine. A JSR or BSR instruc
tion is used to go from the running program to the subroutine and a return
from-subroutine (RTS) instruction is used to return to the program from which
the subroutine was called.

The following figure shows lines of an assembler listing which will be used
to demonstrate how the CPU executes a subroutine call. Assume that the
stack pointer (SP) points to address $OOFF when the CPU encounters the JSR
instruction at location $0102.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-27

2-28

0100 a6 02 TOP LDA *$02 Load an immediate value
0102 cd 02 00 JSR SUBBY Go do a subroutine
0105 b7 02 STA $02 Store accumulator to port C

" .

0200 4a SUBBY DECA Decrement accumulator
0201 26 fd BNE SUBBY Loop till accumulator=O
0203 81 RTS ** Return from subroutine **

Refer to Figure 2-11 during the following discussion. We will begin the ex
planation with the CPU executing the instruction "LOA #$02" at address
$0100. The left side of the figure shows the normal program flow composed
of TOP LOA #$20, JSR SUBBY, and STA $02 (in that order) in consecutive
memory locations. The right half of the figure shows subroutine instructions
SUBBY OECA, BNE SUBBY, and RTS.

tr~ $0100 $A6 [1) [9) $0200 SUBBY DECA
TOP LDA *$02 [10)

$0101 I $02 I [2) (11)

$0102 []Q[J [3)
[12) [Jg[J $0201

BNE SUBBY

JSR SUBBY $0103 [jQD [4)
[19) (13) DE.[] $0202
[20) [14]

$0104 C!Q[J [5] ~[211 rn:J $0203 RTS
[6] [22]
[7] [23]
[8] [24]

~[25]
$0105 $87 [27] [26]

STA $02
$0106 [jQD [28]

[29]
[30]

Figure 2-11. Subroutine Call Sequence

Each,number in square brackets indicates a cycle of the internal processor
clock.\ The cycle numbers will be used as references in the following expla
nation of this figure.

[1] CPU reads $A6 opcode from location $0100 (LOA immediate).

[2] CPU reads immediate data $02 from location $0101 into the accu
mulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

[3] CPU reads $CD opcode from location $0102 (JSR extended),

[4] CPU reads high-order extended address $02 from $0103,

[5] CPU reads low-order extended address $00 from $0104,

[6] CPU builds full address of subroutine ($0200),

[7] CPU writes $05 to $OOFF and decrements SP to $OOFE, Another way
to say this is "push low-order half of return address on stack,"

[8] CPU writes $01 to $OOFE and decrements SP to $OOFD, Another way
to say this is "push high-order half of return address on stack," The
return address that was saved on the stack i~ $0105, which is the
address of the instruction that follows the JSR instruction,

[9] CPU reads $4A opcode from location $0200, This is the first instruction
of the called subroutine,

[10] [11] The DECA instruction takes three cycles ([9]' [10]' and [11]),

[12] CPU reads BNE opcode ($26) from location $0201,

[13] CPU reads relative offset ($FD) from $0202,

[14] During the LDA #$02 instruction at [1], the accumulator was loaded
with the value 2; during the DECA instruction at [9], the accumulator
was decremented to 1 (which is not equal to zero), Thus, at [14] ti,,,
branch condition was true, and the twos-complement offset ($FD or
-3) was added to the internal PC (which was $0203 at the time) to
get the value $0200,

[15] through [19] are a repeat of cycles [9] through [13] except that when
the DECA instruction at [15] was executed this time, the accumulator
went from $01 to $00,

[20] Since the accumulator is now "equal to zero," the BNE [19] branch
condition is not true, and the branch will not be taken,

[21] CPU reads the RTS opcode ($81) from $0203,

[22] through [26] The RTS takes six cycles, During the last five cycles of
this instruction, the SP is incremented to $OOFE, the high-order return
address ($01) is read from the stack ($OOFE), the SP is incremented
again to $OOFF, the low-order return address ($05) is read from the
stack ($OOFF), and the PC is loaded with this recovered return address
($0105).

[27] CPU reads the STA direct opcode ($B7) from location $0105,

[28] CPU reads the low-order direct address ($02) from location $0106,

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-29

[29] [30] The STA direct instruction takes a total of four cycles. During
these last two cycles of the instruction, the CPU constructs the com
plete address where the accumulator will be stored by appending $00
(assumed value for the high-order half of the address due to direct
addressing mode) to the $02 read during [28]. The accumulator ($00
at this time) is then stored to this constructed address ($0002).

2.6.2 Playing Computer

2-30

Playing computer is a learning exercise where you pretend to be a CPU that
is executing a program. Programmers often mentally check programs by
playing computer as they read through a software routine. While playing
computer, it is not necessary to break instructions down to individual pro
cessor cycles. Instead, instructions are treated as a single complete operation
rather than several detailed steps.

The following paragraphs demonstrate the process of playing computer by
going through the subroutine-call exercise of Figure 2-11. The playing-com
puter approach to analyzing this sequence is much less detailed than the
cycle-by-cycle analysis done earlier on Figure 2-11, but it accomplishes the
same basic goal - i.e., it shows what happens as the CPU executes the
sequence. After seeing how to do this exercise, you should attempt the same
thing with a larger program such as the example of Figure 2-10.

You begin the process by preparing a worksheet like that shown in Figure
2-12. This sheet includes the mnemonic program and the machine code that
it assembles to. (You could alternately choose to use a listing positioned next
to the worksheet.) The worksheet also includes the CPU register names across
the top of the sheet with ample of room below to write new values as the
registers change in the course of the program.

On this worksheet, there is an area for keeping track of the stack. After you
become comfortable with how the stack works, you would probably leave
this section off, but it will be instructive to leave it here for now.

As a value is saved on the stack, you will cross out any prior value and write
the new value to its right in a horizontal row. You must also update (dec
rement) the SP value by crossing out any prior value and writing the new
value beneath it under the SP heading at the top of the worksheet. As a value
is recovered from the stack, you would update (increment) the value of SP
by crossing out the old value and writing the new value below it. You would
then read the value from the location now pointed to by the SP and put it
wherever it belongs in the CPU (e.g., in the upper or lower half of the PC).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

~
Pointer

$OOFC

$OOFD

$OOFE

$OOFF

Accumulator

Condition
~

111HINZC

~
Register

Program
Counter

0100 a6 02 TOP LDA *$02
0102 cd 02 00 JSR
0105 b7 02

0200
0201

accumulator
accumulator=O

** Return from subroutine **

Figure 2-12. Playing Computer Worksheet

Figure 2-13 shows how the worksheet will look after working through the
whole JSR sequence. Follow the numbers in square brackets as the process
is explained. During the process, many values were written and later crossed
out; a line has been drawn from the square bracket to either the value or the
crossed out mark to show which item the reference number applies to.

Beginning the sequence, the PC should be pointing to $0100 [1), and the SP
should be pointing to $OOFF [2) (due to an earlier assumption). The CPU reads
and executes the LDA #$02 instruction (load accumulator with the immediate
value $02); thus, you write $02 in the accumulator column [3) and replace
the PC value [4) with $0102, which is the address of the next instruction. The

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-31

2-32

~
Pointer

(2)~7)

Condition ~

Accumulator 1 1 1~.2..Q Register
(3)~11)

Program
Counter

[1)~4)

~9)
~18)
~19)
$OOFF

. T--/ (5)~[15)

~$ 14) 1 1 1 ? ? 0 1 {
00

$0002 - Port C $00 (21)

$OOFC

...$9+62)10)

~12)
~13)
~16)
~17)
.~20)

$0105

$OOFD
$OOFE $01 (8)

$OOFF $05 (6)

0100 a6 02 TOP LDA *$02 Load an immediate value
JSR SUBBY Go do a subroutine 0102 cd 02 00

0105 b7 02

" "
" "
" "

0200 4a
0201 26 fd
0203 81

STA $02 Store accumulator to port C

"
"

"
SUBBY DECA Decrement accumulator

BNE SUBBY Loop till accumulator=O
R'l'S ** Return from subroutine **

Figure 2-13. Completed Worksheet

load accumulator instruction affects the Nand Z CCR bits. Since the value
loaded was $02, the Z bit would be cleared, and the N bit would be cleared
[5). This information can be found in Appendix A. Since the other bits in the
CCR are not affected by the LDA instruction, we have no way of knowing
what they should be at this time, so we put question marks in the unknown
positions for now [5).

Next, the CPU reads the JSR SUBBY instruction. Temporarily remember the
value $0105, which is the address where the CPU should come back to after
executing the called subroutine. The CPU saves the low-order half of the
return address on the stack; thus, you write $05 [6) at the location pointed
to by the SP ($OOFF) and decrement the SP (7) to $OOFE. The CPU then saves

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

the high-order half of the return address on the stack; you write $01 [8] to
$OOFE and again decrement the SP [9] (this time to $OOFD). To finish the JSR
instruction, you load the PC with $0200 [10]' which is the address of the called
subroutine.

The CPU fetches the next instruction. Since the PC is $0200, the CPU executes
the DECA instruction, the first instruction in the subroutine. You cross out
the $02 in the accumulator column and write the new value $01 [11]. You
also change the PC to $0201 [12]. Because the DECA instruction changed the
accumulator from $02 to $01 (which is not zero or negative), the Z bit and N
bit remain clear. Since Nand Z were already cleared at [5], you can leave
them alone on the worksheet.

The CPU now executes the BNE SUBBY instruction. Since the Z bit is clear,
the branch condition is met, and the CPU will take the branch. Cross out the
$0201 under PC and write $0200 [13].

The CPU again executes the DECA instruction. The accumulator is now
changed from $01 to $00 [14] (which is zero and not negative); thus, the Z
bit is set, and the N bit remains clear [15]. The PC advances to the next
instruction [16].

The CPU now executes the BNE SUBBY instruction, but this time the branch
condition is not true (Z is set now), so the branch will not be taken. The CPU
simply falls to the next instruction (the RTS at $0203). Update the PC to $0203
[17].

The RTS instruction causes the CPU to recover the previously stacked PC.
Pull the high-order half of the PC from the stack by incrementing the SP to
$OOFE [18] and by reading $01 from location $OOFE. Next, pull the low-order
half of the address from the stack by incrementing SP to $OOFF [19] and by
reading $05 from $OOFF. The address recovered from the stack replaces the
value in the PC [20].

The CPU now reads the STA $02 instruction from location $0105. Program
flow has returned to the main program sequence where it left off when the
subroutine was called. The STA (direct addressing mode) instruction writes
the accumulator value to the direct address $02 ($0002), which is port C on
the MC68HC705C8. We can see from the worksheet that the current value in
the accumulator is $00; therefore, all eight pins of port C would be driven
low (provided they are configured as outputs at this time). Since the original
worksheet did not have a place marked for recording the value of port C,
you would make a place and write $00 there [21].

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-33

For a larger program, the worksheet would have many more crossed out
values by the time you are done. Playing computer on a worksheet like this
is a good learning exercise, but, as a programmer gains experience, the
process would be simplified.

One of the first simplifications would be to quit keeping track of the PC
because you learn to trust the CPU to take care of this for you. Another
simplification of the worksheet is to stop keeping track of the condition codes.
When a branch instruction which depends on a condition code bit is en
countered, you can mentally work backwards to decide whether or not the
branch should be taken.

Next, the storage of values on the stack would be skipped, although it is still
a good idea to keep track of the SP value because it is fairly common to have
programming errors resulting from incorrect values in the SP. A fundamental
operating principle of the stack is that over a period oftime, the same number
of items must be I\emoved from the stack as were put on the stack. Just as
left parentheses must be matched with right parentheses in a mathematical
formula, JSRs and BSRs must be matched one for one to subsequent RTSs
in a program. Errors which cause this rule to be broken will appear as er
roneous SP values while playing computer.

Even an experienced programmer will play computer occasionally to solve
some difficult problem. The procedure the experienced programmer would
use is much less formal than what was explained here, but it still amounts
to placing yourself in the role of the CPU and working out what happens as
the program is executed.

2.7 ON·CHIP PERIPHERALS

2-34

A peripheral is a block of circuitry which performs some useful function under
control of the CPU. One example of a peripheral is a universal asynchronous
receiver/transmitter (UART), which acts as an interface between a computer
and an asynchronous serial communication link. The most common example
of such a communication link is the RS-232 or RS-422 serial port on a com
puter. This standard is so universal that almost every personal and mainframe
computer made anywhere in the world has at least one such port.

Before the MCU was developed, a computer designer had to use a separate
UART integrated circuit to include this serial interface function in a computer.
Often a number of other miscellaneous logic gates were also needed to
interface the UART to the CPU buses.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Since the level of integration allows thousands of logic gates to be included
in a single MCU integrated circuit, it is practical to put several peripherals,
including this UART function, on the same chip along with the CPU and
memories. The on-chip serial communications interface (SCI) in the
MC68HC705C8 is a UART-type peripheral.

It is important for the MCU manufacturer to select peripheral functions that
will be useful to many potential users for inclusion on the MCU chip. This
pressure to make on-chip peripherals satisfy the requirements of as many
customers as possible causes the need for user-selectable options to modify
the operation of the on-chip peripherals.

The MC68HC705C8 has control registers, which allow a user to select which
parallel liD pins will be inputs and which will be outputs. Although anyone
application is likely to need only one specific mixture of inputs and outputs,
twenty different applications are likely to need a dozen collective mixtures.
The ability to specify the direction of each liD pin at the time of use makes
this MCU ideal for many different applications.

Control registers are controlled by the CPU in essentially the same way as
a digital output port. You could think of controllstatus registers as internal
I/O registers connected to internal logic rather than to MCU pins. To change
the voltage level at an output pin, the CPU writes a digital value to the address
of the output port register. The level (0 or 1) in each bit of the output port
register controls the voltage level on a corresponding MCU pin. In the case
of a control register, the state of a bit in the control register determines the
logic level of an internal control signal rather than on a pin.

In Section 3 of this applications guide, you will find more complete descrip
tions of the on-chip peripherals in the MC68HC705C8.

2.7.1 Serial Communications Interface (SCI)

The SCI system on the MC68HC705C8 is a UART-type asynchronous serial
communications interface. The most common use of this peripheral is to
implement an RS-232 interface to a host computer system (such as a personal
computer). The SCI system can be used to communicate over relatively long
distances.

In normal applications, the CPU simply writes data to a parallel data register
to send a formatted serial character. The SCI peripheral system takes care
of all the details of transforming the data into the proper serial format, in
cluding the addition of start and stop bits required to meet standards. The

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 2-35

transmitter even allows up to two characters to be queued up for transmis
sion, thus allowing the CPU more time to prepare additional characters.

The receiver portion of the SCI automatically detects the start of a character
and intelligently samples the incoming serial data to assure correct reception,
even in noisy applications. All activity related to receiving serial data and
converting it to parallel data is performed within the SCI peripheral logic with
no intervention of the CPU. After a character is received, the CPU simply
reads a data byte from a receive data register.

A number of options are offered to allow various data rates (baud rates),
alternate character formats, and an automatic standby/wakeup feature. You
can choose between software polling or interrupts for detection of SCI status.

2.7.2 Serial Peripheral Interface (SPI)

The SPI system on the MC68HC705C8 is separate from the SCI system and
is used primarily for communications with standard peripheral logic chips
on the same circuit board as the MCU. A few examples of the chips that can
use SPI are serial-to-parallel and parallel-to-serial shift registers, A/D periph
erals, LCD peripherals, and many others.

The SPI system works like a distributed 16-bit shift register in which half the
shifter is in the MCU (SPI), and the other half is in the peripheral. When the
MCU initiates a transfer, this distributed shifter is rotated eight bit positions
so that the data in the master MCU is effectively exchanged with the data in
the peripheral slave. In some cases, the loop is incomplete, and data is
transferred only from the MCU to the peripheral or from the peripheral to
the MCU.

An SPI system typically consists of a master MCU and one or more slave
peripherals. Other configurations such as two MCUs or multiple master sys
tems are possible but less common.

The SPI system includes options to select shift rate, master or slave mode,
clock polarity, and phase to allow compatibility with most synchronous serial
peripheral devices from many manufacturers.

2.7.3 16-Bit Timer System

2-36

The MC68HC705C8 MCU includes a 16-bit timer system used to measure
time and to produce signals of specific period or frequency. This system is

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

based on a free-running 16-bit counter, a 16-bit output-compare register, and
a 16-bit input-capture register.

The CPU controls the timing of output signals through the output-compare
mechanism. To schedule an output change to occur at a specific time (a
specific count of the free-running counter), a 16-bit value corresponding to
the desired time is written to the output-compare register. When the free
running counter matches the value in the output-compare register, the planned
output change occurs.

The CPU detects the time of an event or measures the period of an input
signal with the input-capture mechanism. The CPU can select either positive
or negative edges detected on an MCU pin to trigger the input-capture mech
anism. When the selected edge occurs, the current value in the free-running
counter (which corresponds to the time the edge occurred), is captured by
(transferred to) the input-capture register. The CPU can later read the value
in the input-capture register and determine the exact time when the edge
occurred.

2.7.4 Memory Peripherals

Memory systems are also a form of peripheral. The uses for different types
of memory were discussed earlier, but the logic required to support these
memories was not discussed. ROM and RAM memories are very straight
forward and require no support logic other than address-select logic to dis
tinguish one location from another.

EPROM (erasable programmable ROM) and EEPROM (electrically erasable
programmable ROM) memories require support logic for programming (and
erasure in the case of EEPROM). The peripheral support logic in the
MC68HC705C8 is like having a PROM programmer built into the MCU. A
control register includes control bits to select between programming and
normal modes and to enable the high-voltage programming supply.

2.7.5 Other On-Chip Peripherals

There are many other peripherals available on MCUs (see other members of
the M68HC05 Family of MCUs). These other peripherals include analog-to
digital (AID) converters, liquid crystal display drivers (LCD),and vacuum flou
rescent display drivers (VFD).

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 2-37

2-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SECTION 3
MC68HC705C8 FUNCTIONAL DATA

The MC68HC705C8 microcontroller (MCU) is a member of the M68HC05 Fam
ily of low-cost, single-chip microcontrollers.

The HCMOS technology used on the MC68HC705C8 combines smaller size
and higher speeds with the low power and high noise immunity of CMOS.

An additional advantage of CMOS is that circuitry is fully static. CMOS micro
controllers may be operated at any clock rate less than the guaranteed maxi
mum. This feature may be used to conserve power since power consumption
increases with higher clock frequencies. Static operation may also be ad
vantageous during product development.

Two software-controlled power-saving modes, WAIT and STOP, are available
to conserve additional power. These modes make the MC68HC705C8 espe
cially attractive for automotive and battery-driven applications.

3.1 MCU DESCRIPTION

The hardware and software highlights of the MC68HC705C8 are as follows:

Hardware Features
• HCMOS Technology
• 8-Bit Architecture
• Power-Saving Stop, Wait, and Data Retention Modes
• 24 Bidirectional 1/0 Lines
• 7 Input-Only Lines
• 2 Timer 1/0 Pins
• 2.1 MHz Internal Operating Frequency, 5 Volts; 1.0 MHz, 3 Volts
• Internal 16-Bit Timer
• Serial Communications Interface (SCI) System
• Serial Peripheral Interface (SPI) System

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-1

3-2

• Ultraviolet (UV) light EPROM or One-Time Programmable ROM (OTPROM)
• Selectable Memory Configurations
• Computer Operating Properly (COP) Watchdog System
• Clock Monitor
• On-Chip Bootstrap Firmware for Programming
• Software-Programmable External Interrupt Sensitivity
• External Pin, Timer, SCI, and SPI Interrupts
• Master Reset and Power-On Reset
• Single 3- to 6-Volt Supply (2-Volt Data Retention Mode)
• On-Chip Oscillator
• 40-Pin Dual-in-Line Package or
• 44-lead PlCC (Plastic leaded Chip Carrier) Package

Software Features
• Upward Software Compatible with the M146805 CMOS Family
• Efficient Instruction Set
• Versatile Interrupt Handling
• True Bit Manipulation
• Addressing Modes with Indexed Addressing for Tables
• Memory-Mapped 1/0
• Two Power-Saving Standby Modes

Figure 3-1 shows the MC68HC705C8 MCU block diagram.

The central processor unit (CPU) contains the 8-bit arithmetic logic unit,
accumulator, index register, condition code register, stack pointer, program
counter, and CPU control logic.

Major peripheral functions are provided on-chip. On-chip memory systems
include bootstrap read-only memory (ROM), programmable ROM (EPROM
or OTPROM), and random-access memory (RAM).

On-chip I/O devices include an asynchronous serial communications interface
(SCI), a separate serial peripheral interface (SP!), and a 16-bit programmable
timer system.

Self-monitoring circuitry is included on-chip to protect against system errors.
A computer operating properly (COP) watchdog system protects against soft
ware failures. A clock monitor system generates a system reset if the clock
is lost or runs too slow. An illegal opcode detection circuit provides a non
maskable interrupt if an illegal opcode is detected.

\
M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Vpp
EPROM A ..

,~ PROGRAMMING PROGRAM) <
REGISTER :z CONTROL ~

§
A " W

< c:

"
Ci

EPROMIOTPROM - 7744 BYTES ~
(144 BYTES CONFIGURABLE)) Cl

V

~ OPTION A " <II

REGISTER) :z ... Q
b

/1......" w

IL.... ' ~.
g;

RAM - 176 BYTES
Cl ...
~ (UP TO 304 BYTES) 2 ... C§

" BOOT ROM - 240 BYTES)
v 0

:z

A "
8

< @

I II
ARITHMETIC c:

~~ CPU ... Ci
LOGIC UNIT CONTROL A " < - (ALU)) !;;:

v Cl

M68HC05CPU

CPU REGISTERS A

I ACCUMULATOR I
<. ...

I INDEX REGISTER I
10 10 I 0 I 0 1011 111 STACK POINTER I

SS

~ SCK 1010101 PROGRAM COUNTER I SPI

11 1111 I H II I N I z I C I
MOSI

CONDITION CODES
MISO

OSC1

OSC2

-
~

::::\ OSCILLATOR
DIVIDE
BY2

0 TOO r- SCI
RDI

BAUD RATE

VDD

VSS

-+-

~

MOTOROLA

...... GENERATOR
A

COP WATCHDOG
AND ...

CLOCK MONITOR -
~

i I
---v-v' TIMER SYSTEM

POWER

Figure 3-1. MC68HC705C8 Microcontroller Block Diagram

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

<
~ c:
0 c..

<II

~

0
~ c:
0 c..

Cl
~ c:
~

---~
~

~

~

~

~

~

---~
~

~

~

~

~
~

~

I---
I---
I---
~
I---
~
~

~

~

~

~

~

~

~

~

f-E-

PA7
PA6
PAS
PM
PA3

PA2
PA1

PAO

PB7

PBS
PBS

PB4
PB3
PB2
PB1
POO
PC7

PCS
PC5
PC4
pca
PC2

PC1
PCO

PD7

PD5

PD4
POO
PD2
PD1
POO

TCMP

TCAP

3-3

3.2 PINS AND CONNECTIONS

The following paragraphs discuss the MCU pin assignments, pin functions,
and basic connections.

Because the MC68HC705C8 is a CMOS device, unused input pins must be
terminated to avoid oscillation, noise, and added supply current. The pre
ferred method of terminating pins that can be configured for input or output
is with individual pullup or pulldown resistors for each unused pin.

Pin assignments are shown in Figure 3-2. Mechanical data and ordering
information can be found in BR594/D, the MC68HC705C8 Technical Summary,
available separately.

3.2.1 Pin Functions

3-4

VOO and VSS

Power is supplied to the MCU using these two pins. VDD is power and
VSS is ground. The MCU can operate from a single 5-volt (nominal) power
supply.

Vpp

The Vpp pin is used when programming the one-time programmable ROM
(OTPROM) or EPROM. Programming voltage (14.75 Vdc) is applied to this
pin when programming the PROM. Normally, this pin is connected to VDD.

CAUTION

Do not connect Vpp pin to VSS (GND). It will damage the MCU.

IRQ (Maskable Interrupt Request)

IRQ is a software programmable option which provides two different choices
of interrupt triggering sensitivity. These options are 1) negative edge-sen
sitive triggering only, or 2) both negative edge-sensitive and level-sensitive
triggering.

In the latter case, either a negative edge or a low level input to the IRQ pin
will produce an interrupt. The MCU completes the current instruction be
fore it responds to the interrupt request. When the IRQ pin goes low, a

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

MOTOROLA

PM
PA3

PA2
PA1

PAO

PBO

PB1

PB2

PB3
PB4

RESET
IRQ
Vpp

PA7
PAS
PAS
PM
PA3
PA2
PA1
PAO

PBO
PB1

PB2

PB3
PB4
PBS

PBS

PB7

Vss

[1 40
[2 39
I 3 38

4 37
r 5 38

6 35

7 34 ~
[8 33

9 32
10 31

I 11 30

12 29
13 28

I 14 27

15 26
16 25

(17 24
18 23

19 22
(20 21

40-Pin Dual-In-Line Package

44-Lead PLCC Package

VOO
OSC1

OSC2

TCAP

P07

TCMP
PD5,ss

PD4ISCK

PD3iMOSI

P02iMlSO

P01ITOO
PDOIROI

PCO

PC1

PC2

PC3
PC4
PCS
PC6

PC7

39

38

37

36

35

34

33

Figure 3-2. Pin Assignments

P07

TCMP

P05iSS

PD4iSCK

P03iMOSI

PD2iMISO

P01ITOO
PDOIRDI

PCO

PC1

PC2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-5

3-6

small synchronization delay occurs, and a logic one is latched internally
to signify an interrupt has been requested. When the MCU completes its
current instruction, the interrupt latch is tested. If the interrupt latch con
tains a logic one and the interrupt mask bit (I bit) in the condition code
register is clear, the MCU then begins the interrupt sequence.

If the option is selected to include level-sensitive triggering, then the IRQ
input requires an external resistor to VOO for "wired-OR" operation. See
3.4.7 Interrupts for more detail concerning interrupts.

RESET

The RESET pin is an active-low bidirectional control signal. As an input,
the RESET pin initializes the MCU to a known startup state. As an open
drain output, the RESET pin indicates an internal MCU failure detected by
the computer operating properly (COP) watchdog timer or clock monitor
circuitry.

This RESET pin is significantly different from the RESET signal used on
other Motorola M68HC05 Family devices. Refer to 3.4.4 Resets and 3.4.7
Interrupts before designing circuitry to generate or monitor the RESET
signal.

TCAP

The TCAP pin provides the input to the input-capture feature for the on
chip programmable timer system. Refer to input-capture register in 3.8
PROGRAMMABLE TIMER.

TCMP

The TCMP pin provides an output for the output-compare feature of the
on-chip timer system. Refer to output-compare register in 3.8 PROGRAMM
ABLE TIMER.

OSC1,OSC2

The MC68HC705C8 can accept either a crystal, ceramic resonator, or ex
ternal input to control the internal oscillator. The internal processor clock
is derived by dividing the oscillator frequency (foscl by two.

The circuit shown in Figure 3-3(a) is recommended when using a crystal.
The internal oscillator is designed to interface with an AT-cut parallel res
onant quartz crystal or a ceramic resonator up to 4 MHz. The crystal and
components should be mounted as close as possible to the input pins to
minimize output distortion and startup stabilization time.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

MC68HC70SC8

OSC1 OSC2

10 Meg

XTAL

25 pF 25 pF

l l
(a) Crystal/Ceramic Resonator Oscillator Connections

MC68HC705C8
OSC1 OSC2

UNCONNECTED

EXTERNAL L...-______ < CMOS CLOCK

(b) External Clock Source Connections

Figure 3-3. Oscillator Connections

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-7

A ceramic resonator may be used in place of the crystal in cost-sensitive
applications. The circuit in Figure 3-3(a) is recommended when using a
ceramic resonator or a crystal. The manufacturer of the particular ceramic
resonator being considered should be consulted for specific information.

An external clock may be applied to the OSC1 input with the OSC2 pin not
connected, as shown in Figure 3-3(b).

PA7-PAO

These eight 1/0 lines comprise port A. Each port A pin can be software
programmed to act as an input or output.

PB7-PBO

These eight lines comprise port B. Each port B pin can be software pro
grammed to act as an input or output.

PC7-PCO

These eight lines comprise port C. Each port C pin can be software pro
grammed to act as an input or output.

PD5-PDO,PD7

These seven lines comprise port D. During power-on or reset, these seven
pins are configured as inputs. When the SPI system is enabled, four of
these lines, MISO/PD2, MOSI/PD3, SCK/PD4, and SS/PD5, are used by the
SPI system. When the SCI receiver is enabled, the PDO/RDI pin becomes
the receive data input to the SCI. When the SCI transmitter is enabled, the
PD1/TDO pin becomes the transmit data output for the SCI.

3.2.2 Typical Basic Connections

3-8

There are MCU basic connections that can be used as the starting point for
any application to minimize the time required to create a prototype system.

Figure 3-4 is the schematic diagram for a simple MC68HC705C8 system. This
circuit can be used as the basis for any MC68HC705C8 application. In most
cases, the circuitry for the power supply and oscillator can be used as shown
in this diagram. All unused inputs are terminated in an appropriate manner.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

EM SYST
POW ER

MOTOROLA

MC68HC705CS

~,.o0
10K TYP

PAO J.

PA1 J.

VOO PA2

PA3 J.A
+ == 0.1 J.IF

Y
A -- PM

-"4.7J.IF PAS

VSS PAG

PA7 Y -==--
PBO ...

OSC1 A
10M PB1

H;~
OSC2 PB2

PB3 ..
y

PB4

1SpF PBS

l 1SP~
PBG

PB7 - -- -
pco

TO

V
,,.00 PC1

.A PC2

.~Y
IN 4.7K PC3

PC4
RESET RESET PC5 .A

MC34064 PCG .A

GNO -~A

l..
PC7

- POO/ROI

~,.oD
P011TDQ

PD2IMISO ...
'~A

P03/MOSI
4.7K PD4!SCK

IRQ 'Y
PD5JSS ,A

'y

PD7

TCAP A

Vpp
TCMP I--

Figure 3-4. Typical Basic Connections

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

V
~
DD

3-9

3.3 ON-CHIP MEMORY

The MC68HC705C8 memory includes 176 to 304 bytes of random-access
memory (RAM), 240 bytes of read-only memory (ROM), and 7600 to 7744
bytes of programmable memory (EPROM or OTPROM).

3.3.1 Memory Types

RAM means that any word in the memory may be accessed without having
to go through all the other words to get to it. RAM is a volatile form of
memory in that all the memory content is lost when the power is removed
from the chip. RAM contents may be retained by keeping at least 2 volts on
VDD. Power requirements in this standby mode are very small.

ROM is very similar to RAM except, unlike RAM, it is not possible to change
the contents of ROM after it is manufactured. This type memory is useful
only for storage of information or programs.

The special bootstrap mode allows programs to be downloaded through the
on-chip serial communications interface (SCI) into internal RAM to be exe
cuted. The bootloaded program is used for a variety of tasks such as loading
calibration values into internal EPROM or performing diagnostics on a fin
ished module.

The MC68HC705C8 on-chip ROM is called the bootloader ROM. This ROM
controls the loading process of the special bootstrap mode.

Erasable programmable ROM (EPROM) is nonvolatile memory that can be
programmed in the field by the user. Nonvolatile memories retain their con
tents even when no power is applied. Once it has been programmed, the
EPROM cannot be written into, but it can be read from as many times as
necessary. However, EPROM can be erased by ultraviolet light and repro
grammed.

OTPROM is the same as EPROM except it can be programmed only once
and cannot be erased.

3.3.2 Memory Map

3-10

The MC68HC705C8 MCU contains four selectable memory configurations as
shown in Figure 3-5. The memory configurations are accessed via the option

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

$OOOO-~

0 01F _rJ ____ 3~_B~:~--J
0020 : :: UNUSED

--,
I
I

I I I 16BYTES
$002F-:USERPROM: 1-------

I
I --,
I I 48 BYTES I I RAM

: I I 32 BYTES I
I

I I I

: RAMO=O.:: RAMO= 1
I I I

l~~ -~- ------r-----
RAM

176 BYTES

~~~- ------l:;i~;~ 
$$OOFF -r- ------ r--L-0100 I I I 

I USER PROM I I RAM 

I 
I ., 
I 
I 

--, 
I 
I 

: 96 BYTES : : 96 BYTES I 
I 

I II 

$OI5F _L_R~~I~_~LL~~:1 
$0160 

$IEFF_ 
$1FOO 

$1FDE_ 
$IFDF 
$1FEO-

$1FEF-
$1FF3_ 
$IFF4 

$IFFF-

USER PROM 
7584 BYTES 

BOOT ROM 
223 BYTES 

-------------
OPTION REGISTER -------------

BOOT ROM 
VECTORS 
16 BYTES 

UNUSED 4 BYTES 

USER PROM 
VECTORS 
12 BYTES 

I .' I --, 

PORT A DATA REGISTER 
PORT B DATA REGISTER 
PORT C DATA REGISTER 

PORT D FIXED INPUT REGISTER 
PORT A DATA DIRECTION REG. 
PORT B DATA DIRECTION REG. 
PORT C DATA DIRECTION REG. 

UNUSED 
UNUSED 
UNUSED 

SPI CONTROL REGISTER 
SPI STATUS REGISTER 
SPI DATAVO REGISTER 

SCI BAUD RATE REGISTER 
SCI CONTROL REGISTER 1 
SCI CONTROL REGISTER 2 

SCI STATUS REGISTER 
SCI DATA REGISTER 

TIMER CONTROL REGISTER 
TIMER STATUS REGlSTER 

INPUT CAPTURE REG. (HIGH) 
INPUT CAPTURE REG. (LOW) 

OUTPUT COMPARE REG. (HIGH) 
OUTPUT COMPARE REG. (LOW) 
TIMER COUNT REGISTER (HIGH) 
TIMER COUNT REGISTER (LOW) 
ALT. COUNT REGISTER (HIGH) 
AL T. COUNT REGISTER (LOW) 
EPROM PROGRAM REGISTER 

COP RESET REG ISTER 
COP CONTROL REGISTER 

UNUSED 

SPI VECTOR (HIGH) 
SPI VECTOR (LOW) 
SCI VECTOR (HIGH) 
SCI VECTOR (LOW) 

TIMER VECTOR (HIGH) 
TIMER VECTOR (LOW) 

IRQ VECTOR (HIGH) 
IRa VECTOR (LOW) 
SWI VECTOR (HIGH) 
SWI VECTOR (LOW) 

RESET VECTOR (HIGH BYTE) 
RESET VECTOR LOW BYTE) 

• Refer to 3.10.4 OPTION REGISTER for an explanation of software-selectable memory configurations. 

Figure 3-5. MC68HC705C8 Memory Map 

MOTOROLA M68HC05 ·MICROCONTROLLER APPLICATIONS GUIDE 

$00 
$01 
$02 
$03 
$04 
$05 
$06 
$07 
$08 
$09 
$OA 
$OS 
$DC 
$OD 
$OE 
$OF 
$10 
$11 
$12 
$13 
$14 
$15 
$16 
$17 
$18 
$19 
$1A 
$IB 
$1C 
$1D 
$1E 
$IF 

$1FF4 
$1FF5 
$1FFS 
$IFF7 
$IFF8 
$IFF9 
$lFFA 
$1FFB 
$1FFC 
$IFFD 
$1FFE 
$1FFF 

3-11 



register ($1FDF) RAMO and RAM1 bits. During reset, the RAMO and RAM1 
control bits are forced to O. RAMO and RAM1 bit states determine the amount 
of RAM and PROM, which can be selected as follows: 

RAMO RAM1 RAM Bytes PROM Bytes 

0 0 176 7744 
1 0 208 7696 
0 1 272 7648 
1 1 304 7600 

3.4 CENTRAL PROCESSOR UNIT 

The MC68HC705C8 CPU is responsible for executing all software instructions 
in their programmed sequence for a specific application. 

The CPU block diagram is shown in Figure 3-6. 

M68HCOSCPU 

CPU REGISTERS 
I ACCUMULATOR 1 
1 INOEl( REGISTER I 

10101010101'1'1 Sf ACK POINTER 1 
1010101 PROGRAM COUNTER I 

CONDITION CODES 1'1'1'IH III N Izle 1 

Figure 3-6. M68HC05 CPU Block Diagram 

3.4.1 Registers 

3-12 

The CPU contains five registers as shown in Figure 3-7. Registers in the CPU 
are memories inside the microprocessor (not part of the memory map). 

Accumulator (A) 
The accumulator is an 8-bit general-purpose register used to hold oper
ands, results of the arithmetic calculations, and data manipulations. It is 
also directly accessible to the CPU for nonarithmetic operations. The ac
cumulator is used during the execution of a program when the contents 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



0 

A~CUM~LAT~R 1 A 

IN~EX R~GIS~ER 1 X 

12 7 5 0 

1010101010111111 : S~ACK~IN+R SP 

15 12 0 

10 10 10 1 P~~R+ CO~NTE~ PC 

7 4 3 2 0 

CONDITION CODE REGISTER 1 1 1 1 1 I H : I : N : Z : C I CCR 

~~~~Y L.= NEGATIVE 

I INTERRUPT MASK

'-------HALF-CARRY (FROM BIT 3)

Figure 3-7. Programming Model

of some memory location are loaded into the accumulator. Also, the store
instruction causes the contents of the accumulator to be stored at some
prescribed memory location.

7 0

A~CUM~LAT~R 1 A

Index Register (X)
The index register is used for indexed modes of addressing or may be
used as an auxiliary accumulator. This 8-bit register can be loaded either
directly or from memory, have its contents stored in memory, or its con
tents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value that is added
to an instruction-provided value to create an effective address. The instruc
tion-provided value can be 0, 1, or 2 bytes long.

7 o

~~~IN~~E_X~R~~GI_ST~~R~~~I x 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-13 



3-14 

Condition Code Register (CCR) 

The condition code register contains five status indicators that reflect the 
results of arithmetic and other operations of the CPU. The five flags are 
half-carry (H), negative (N), zero (l), overflow (V), and carry/borrow (C). 

7 4 3 2 1 0 

CONDITION CODE REGISTER 11 11 11 I H : I : N : Z : C I CCR 

L:=:ZERO 
NEGATIVE 

~I LCARRY 

I INTERRUPT MASK 
'-------HALF-CARRY (FROM BIT 3) 

Half-Carry Bit (H) - The half-carry flag is used for binary-coded decimal 
(BCD) arithmetic operations and is affected by the ADD or ADC addition 
instructions. The H bit is set to a one when a carry occurs between bits 3 
and 4. 

Interrupt Mask Bit (I) - The interrupt mask bit disables all maskable in
terrupt sources when the I bit is set. Clearing this bit enables the interrupts. 
When any interrupt occurs, the I bit is automatically set after the registers 
are stacked but before the interrupt vector is fetched. 

If an external interrupt occurs while the I bit is set, the interrupt is latched 
and processed after the I bit is cleared; therefore, no interrupts from the 
IRQ pin are lost because of the I bit being set. 

After an interrupt has been serviced, a return from interrupt (RTI) instruction 
causes the registers to be restored to their previous values. Normally, the 
I bit would be zero after an RTI was executed. After any reset, I is set and 
can only be cleared by a software instruction. 

Negative (N) - The N bit is set to one when the result of the last arithmetic, 
logical, or data manipulation is negative (bit 7 of the MSB in the result is 
a logic one). 

The N bit has other uses. By assigning an often-tested flag bit to the MSB 
of a register or memory location, you can test this bit simply by loading 
the accumulator with the contents of that location. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



Zero (Z) - The Z bit is set to one when the result of the last arithmetic, 
logical, or data manipulation is zero. 

Carry/Borrow (C) - The C bit is used to indicate whether or not there was 
a carry from an addition or a borrow as a result of a subtraction. Shift and 
rotate instructions operate with and through the carry bit to facilitate mul
tiple word shift operations. This bit is also affected during bit test and 
branch instructions. 

The following illustration is an example of the way condition code bits are 
affected by arithmetic operations. 

Assume Initial Values in Accumulator and Condition Codes: 

ACCUMULATOR CONDITION CODES 
7 o H I N Z C 

Before I 1 : 1: 1: 1: 1: 1 

Execute the Following Instruction: 

---- AB 02 ADD #2 Add 2 to Accumulator 

ACCUMULATOR CONDITION CODES 
7 0 

After I 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 I ($01) 

Condition Codes and Accumulator Reflect the Results of the Add Instruction: 

H - Set because there was a carry from bit 3 to bit 4 of the accumulator. 
I - No change. 
N - Clear because result is not negative (bit 7 of accumulator is 0). 
Z - Clear because result is not zero. 
C - Set because there was a carry out of bit 7 of the accumulator. 

H N Z C 

The H bit is not useful after this operation because the accumulator was not 
a valid BCD value before the operation. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-15 



3-16 

Program Counter (PC) 
The program counter is a 13-bit register that contains the address of the 
next instruction or instruction operand to be fetched by the processor. 

15 12 

PC 

Normally, the program counter advances one memory location at a time 
as instructions and instruction operands are fetched. 

Jump, branch, and interrupt operations cause the program counter to be 
loaded with a memory address other than that of the next sequential lo
cation. 

Stack Pointer (SP) 
The stack pointer is a 13-bit register that contains the address of the next 
free location on the stack. During an MCU reset or the reset stack pointer 
(RSP) instruction, the stack pointer is set to location $OOFF. The stack pointer 
is then decremented as data is pushed onto the stack and incremented as 
data is pulled from the stack. 

12 7 o 

I 0 I 0 I 0 I 0 I 0 111 11 I SP 

When accessing memory, the seven MSBs of the SP are permanently set 
to 0000011. These seven bits are appended to the six LSB bits to produce 
an address within the range of $OOFF to $OOCO. Subroutines and interrupts 
may use up to 64 (decimal) locations. If 64 locations are exceeded, the 
stack pointer wraps around and loses the previously stored information. 
A subroutine call occupies two locations on the stack; an interrupt uses 
five locations. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.4.2 Arithmetic/Logic Unit (ALU) 

The arithmetic/logic unit (ALU) is used to perform the arithmetic and logical 
operations defined by the instruction set. 

The various binary arithmetic operations circuits decode the instruction in 
the instruction register and set up the ALU for the desired function. Most 
binary arithmetic is based on the addition algorithm, and subtraction is car
ried out as negative addition. Multiplication is not performed as a discrete 
instruction but as a chain of addition and shift operations within the ALU 
under control of CPU control logic. The multiply instruction (MUL) requires 
11 internal processor cycles to complete this chain of operations. 

3.4.3 CPU Control 

The CPU control circuitry sequences the logic elements of the ALU to carry 
out the required operations. 

3.4.4 Resets 

Reset is used to force the MCU system to a known starting address. Peripheral 
systems and many control and status bits are also forced to a known state 
as a result of reset. 

The following four conditions can cause reset in the MC68HC705C8 MCU: 
1) External, active-low input signal on the RESET pin. 
2) Internal power-on reset (POR) condition. 
3) Internal computer operating properly (COP) watchdog system reset 

condition. 
4) Internal clock monitor reset condition. 

3.4.4.1 POWER-ON RESET. The power-on reset occurs when a positive transition 
is detected on VOO. The power-on reset is used strictly for power turn-on 
conditions and should not be used to detect any drops in the power supply 
voltage. There is no provision for a power-down reset. 

The power-on circuitry provides for a 4064 cycle delay from the time that the 
oscillator becomes active. If the external RESET pin is low at the end of the 
4064 delay timeout, the processor remains in the reset condition until RESET 
goes high. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-17 



The following internal actions occur as the result of any MCU reset: 

.1) All data direction registers are cleared to zero (input). 

2) Stack pointer configured to $OOFF. 

3) I bit in the condition code register to logic one. 

4) External interrupt latch cleared. 

5) SCI disabled (serial control bits TE = 0 and RE = 0). Other SCI bits cleared 
by reset include: TIE, TCIE, RIE, ILlE, RWU, SBK, RDRF, IDLE, OR, NF, 
and FE. 

6) Serial status bits TDRE and TC set. 

7) SCI prescaler and rate control bits SCPO, SCP1 cleared. 

8) SPI disable (serial output enable control bit SPE = 0). Other SPI bits 
cleared by reset include: SPIE, MSTR, SPIF, WCOl, and MODF. 

9) All serial interrupt enable bits cleared (SPIE, TIE, and TCIE). 

10) SPI system configured as slave (MSTR = 0). 

11) Timer prescaler reset to zero state. 
Timer counter configured to $FFFC. 
Timer output compare (TCMP) bit reset to zero. 
All timer interrupt enable bits cleared (lCIE, OCIE, and TOlE) to disable 

timer interrupts. 
The OlVl timer bit is also cleared by reset. 

12) STOP latch cleared. 

13) WAIT latch cleared. 

14) Internal address bus forced to restart vector (on exit from reset, upper 
byte of program counter is loaded from $1 FFE, and lower byte of 
program counter is loaded from $1 FFF). 

3.4.4.2 COMPUTER OPERATING PROPERLY (COP) WATCHDOG TIMER RESET. The 
COP watchdog timer system is intended to detect software errors. When the 
COP is being used, software is responsible for keeping a free-running watch
dog timer from timing out. If the watchdog timer times out, it is an indication 
that software is no longer being executed in the intended sequence; thus, a 
system reset is initiated. 

3-18 M68HC05 MICROCONTROLLERAPPLICATIONS GUIDE MOTOROLA 



Since the COP timer relies on the internal bus clock in order to detect a 
software failure, a clock monitor is also included to guard against a failure 
of the clock. When the COP timer is enabled, the clock monitor should also 
be enabled since the COP timer cannot detect failures of the internal bus 
clock. 

The COP control register ($1E), as shown below, is used to control the COP 
watchdog timer and clock monitor functions. 

Bn 6 5 4 3 2 Btta 

a a a I COPF II CME I COPE I CMl CMO I $1E COpeR 
I I I I I I I I 

I a a a [1] a a a a I RESET CONDITION l L l ~~=awWoom~OD 
COP WATCHDOG TIMER ENABLE 

CLOCK MONITOR ENABLE 

COP SYSTEM FLAG 

[1]- Cleared on exlemal or POR reset. set on COP or dock monrtor fail resets. 

COPF - Computer Operating Properly Flag 
1 = COP or clock monitor reset has occurred 
0= No COP or clock monitor reset has occurred 

Reading the COP control register clears COPF. 

CME - Clock Monitor Enable 
1 = Clock monitor enabled 
0= Clock monitor disabled 

CME is readable and writable at any time. 

COPE - Computer Operating Properly Enable 
1 = COP timeout enabled 
0= COP timeout disabled 

CM1, CMO - Computer Operating Properly Mode 
These two bits are used to select the COP watchdog timeout period 
(see Table 3-1). 

The actual timeout period is dependent on the system bus clock frequency, 
but, for reference purposes, Table 3-1 shows the relationship between the 
CM1 and CMO select bits and the COP timeout period for various system 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-19 



Table 3-1. COP Timeout Period versus CM1 and CMO 

EJ215 XTAL=4.0 MHz XTAL = 3.5796 XTAL=2.0 MHz XTAL= 1.0 MHz 
CMl CMO Div. E=2.0 MHz E=1.7897 MHZ E=1.0 MHz E=0.5 MHz 

By Timeout Timeout Timeout Timeout 

0 0 1 16.38 ms 18.31 ms 32.77 ms 65.54 ms 
0 1 4 65.54 ms 73.24 ms 131.07 ms 262.14 ms 
1 0 16 262.14 ms 292.95 ms 524.29 ms 1.048 s 
1 1 64 1.048 s 1.172 s 2.097 s 4.194 s 

clock frequencies ("E" stands for the system bus clock). The default reset 
condition ofthe COP mode bits (CM1 and CMO) is cleared, which corresponds 
to the shortest timeout period. 

The COP reset register ($1 D) is used to keep the COP watchdog timer from 
timing out. 

Bit 7 4 Bit 0 

'--_...1-._--l..._.....J. __ '--_...1-._--l..._.....J._----I, $10 COPRR 

The sequence required to reset the COP watchdog timer is: 
1) Write $55 to the COP reset register at location $1 D. 
2) Write $AA to the same address location. 

Both write operations must occur in the correct order prior to timeout, but 
any number of instructions may be executed between the two write opera
tions. The elapsed time between adjacent software reset sequences must 
never be greater than the COP timeout period. 

Upon detection of a timeout condition, the COP watchdog timer (if enabled 
by COPE = 1) will cause a system reset to be generated. This reset is issued 
to the external system via the bidirectional RESET pin for four bus cycles. 

3.4.4.3 CLOCK MONITOR RESET. When a clock failure is detected by the clock 
monitor (and CME = 1), a system reset will be generated. 

3-20 

When CME is set, the clock monitor detects the absence of the internal bus 
clock for more than a certain period of time. When CME is cleared, the clock 
monitor is disabled. The timeout period is dependent on processing param
eters and will be between 5 and 100 fLs. Thus, a bus clock rate of 200 kHz or 
more will never cause a clock monitor failure, and a bus clock rate of 10 kHz 
or less will definitely cause a clock monitor reset. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



A clock monitor reset is issued to the external system via the bidirectional 
RESET pin for four bus cycles. The clock monitor does not have a separate 
reset vector. 

Special considerations are needed when using the STOP instruction with the 
clock monitor. Since the STOP instruction causes the clocks to be halted, the 
clock monitor will generate a reset sequence (if enabled by CME = 1) at the 
time the STOP instruction is entered. 

3.4.5 Addressing Modes 

The power of any computer lies in its ability to access memory. The ad
dressing modes of the CPU provide that capability. The addressing modes 
define the manner in which an instruction is to obtain the data required for 
its execution. Because of different addressing modes, an instruction may 
access the operand in one of up to six different ways. In this manner, the 
addressing modes expand the basic 62 M68HC05 Family instructions into 
210 distinct opcodes. 

The M68HC05 addressing modes that are used to reference memory are 
inherent. immediate, extended, direct, indexed (no offset, 8-bit offset, and 
16-bit offset), and relative. One- and two-byte direct addressing instructions 
access all data bytes in most applications. Extended addressing uses three
byte instructions to reach data anywhere in memory space. The various 
addressing modes make it possible to locate data tables, code conversion 
tables, and scaling tables anywhere in the memory space. Short indexed 
accesses are single-byte instructions; whereas, the longest instructions (three 
bytes) permit accessing tables anywhere in memory. 

A general description and examples of the various modes of addressing are 
provided in the following paragraphs. The term effective address (EA) is used 
to indicate the memory address where the argument for an instruction is 
fetched or stored. More details on addressing modes and a description of 
each instruction is available in Appendix A. 

The information provided in the program assembly examples uses several 
symbols to identify the various types of numbers that occur in a program. 
These symbols include: 

1. A blank or no symbol indicates a decimal number. 

2. A $ immediately preceding a number indicates it is a hexadecimal num
ber; e.g., $24 is 24 in hexadecimal or the equivalent of 36 in decimal. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-21 



3. A # indicates immediate operand and the number is found in the lo
cation following the opcode. A variety of symbols and expressions can 
be used following the character # sign. Since not all assemblers use 
the same syntax rules and special characters, refer to the documentation 
for the particular assembler that will be used. 

Prefix 

None 
$ 
(iL' 

% 

Definition 

Decimal 
Hexadecimal 
Octal 
Binary 
Single ASCII Character 

For each addressing mode, an example instruction is explained in detail. 
These explanations describe what happens in the CPU during each processor 
clock cycle ofthe instruction. Numbers in square brackets [ ) refer to a specific 
CPU clock cycle. 

3.4.5.1 INHERENT ADDRESSING MODE. In inherent addressing mode, all infor
mation required for the operation is already inherently known to the CPU, 
and no external operand from memory or from the program is needed. The 
operands (if any) are only the index register and accumulator. These are 
always one byte instructions. 

3-22 

Example Pr6gram Listing: 

0200 4c INCA Increment accumulator 

Execution Sequence: 
$0200 $4C (1), (2), (3) 

Explanation: 
(1) CPU reads opcode $4C - increment accumulator 
(2), (3) CPU reads accumulator value, adds one to it, stores the new value 

in the accumulator, and adjusts condition code flag bits as neces
sary. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the inherent 
addressing mode. 

MOTOROLA 

Instruction 
Arithmetic Shift Left 
Arithmetic Shift Right 
Clear Carry Bit 
Clear Interrupt Mask Bit 
Clear 
Complement 
Decrement 
Increment 
Logical Shift Left 
Logical Shift Right 
Multiply 
Negate 
No Operation 
Rotate Left thru Carry 
Rotate Right thru Carry 
Reset Stack Pointer 
Return from Interrupt 
Return from Subroutine 
Set Carry Bit 
Set Interrupt Mask Bit 
Enable IRQ, Stop Oscillator 
Software Interrupt 
Transfer Accumulator to Index Register 
Test for Negative or Zero 
Transfer Index Register to Accumulator 
Enable Interrupt, Halt Processor 

Mnemonic 
ASLA,ASLX 
ASRA, ASRX 
CLC 
CLI 
CLRA,CLRX 
COMA, COMX 
DECA, DECX 
INCA,INCX 
LSLA, LSLX 
LSRA, LSRX 
MUL 
NEGA,NEGX 
NOP 
ROLA,ROLX 
RORA,RORX 
RSP 
RTI 
RTS 
SEC 
SEI 
STOP 
SWI 
TAX 
TSTA, TSTX 
TXA 
WAIT 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-23 



3.4.5.2 IMMEDIATE ADDRESSING MODE. In the immediate addressing mode, the 
operand is contained in the byte immediately following the opcode. This 
mode is used to hold a value or constant which is known at the time the 
program is written and which is not changed during program execution. 
These are two-byte instructions, one for the opcode and one for the imme
diate data byte. 

3-24 

Example Program Listing: 

0200 a6 02 LDA 1$02 Load accumulator wi immediate value 

Execution Sequence: 
$0200 $A6 [1] 
$0201 $02 [2] 

Explanation: 
[1] CPU reads opcode $A6 -load accumulator with the value immediately 

following the opcode. 
[2] CPU then reads the immediate data $02 from location $0201 and loads 

$02 into the accumulator. 

The following is a list of all M68HC05 instructions that can use the immediate 
addressing mode. 

Instruction 
Add with Carry 
Add 
Logical AND 
Bit Test Memory with Accumulator 
Compare Accumulator with Memory 
Compare Index Register with Memory 
Exclusive OR Memory with Accumulator 
Load Accumulator from Memory 
Load Index Register from Memory 
Inclusive OR 
Subtract with Carry 

. Subtract 

Mnemonic 
ADC 
ADD 
AND 
BIT 
CMP 
CPX 
EOR 
LDA 
LDX 
ORA 
SBC 
SUB 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.4.5.3 EXTENDED ADDRESSING MODE. In the extended addressing mode, the 
address of the operand is contained in the two bytes following the opcode. 
Extended addressing references any location in the MCU memory space 
including 1/0, RAM, ROM, and EPROM. Extended addressing mode instruc
tions are three bytes, one for the opcode and two for the address of the 
operand. 

Example Program Listing: 
0200 c6 06 e5 LDA $06E5 Load accumulator from extended addr 

Execution Sequence: 
$0200 $C6 [1] 
$0201 $06 [2] 
$0202 $E5 [3] and [4] 

Explanation: 
[1] CPU reads opcode $C6 - load accumulator using extended addressing 

mode. 
[2] CPU then reads $06 from location $0201. This $06 is interpreted as the 

high-order half of an address. 
[3] CPU then reads $E5 from location $0202. This $E5 is interpreted as the 

low-order half of an address. 
[4] CPU internally appends $06 to the $E5 read to form the complete ad

dress ($06E5). The CPU then reads whatever value is contained in the 
location $06E5 into the accumulator. 

I The following is a list of all M68HC05 instructions that can use the extended 
addressing mode. 

MOTOROLA 

Instruction 
Add with Carry 
Add 
Logical AND 
Bit Test Memory with Accumulator 
Compare Acumulator with Memory 
Compare Index Register with Memory 
Exclusive OR Memory with Accumulator 
Jump 
Jump to Subroutine 
Load Accumulator from Memory 
Load Index Register from Memory 
Inclusive OR 
Subtract with Carry 
Store Accumulator in Memory 
Store Index Register in Memory 
Subtract 

Mnemonic 
ADC 
ADD 
AND 
BIT 
CMP 
CPX 
EOR 
JMP 
JSR 
LDA 
LDX 
ORA 
SBe 
STA 
STX 
SUB 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-25 



3.4.5.4 DIRECT ADDRESSING MODE. The direct addressing mode is similar to 
the extended addressing mode except the upper byte ofthe operand address 
is assumed to be $00. Thus, only the lower byte of the operand address needs 
to be included in the instruction. Direct addressing allows you to efficiently 
address the lowest 256 bytes in memory. This area of memory is called the 
direct page and includes on-chip RAM and liD registers. Direct addressing 
is efficient in both memory and time. Direct addressing mode instructions 
are usually two bytes, one for the opcode and one for the low-order byte of 
the operand address. 

3-26 

Example Program Listing: 

0200 b6 50 LDA $50 Load accumulator from direct address 

Execution Sequence: 
$0200 $86 [1] 
$0201 $50 [2] and [3] 

Explanation: 
[1] CPU reads opcode $86 - load accumulator using direct addressing 

mode. 
[2] CPU then reads $50 from location $0201. This $50 is interpreted as the 

low-order half of an address. In direct addressing mode, the high-order 
half of the address is assumed to be $00. 

[3] CPU internally appends $00 to the $50 read in the second cycle to form 
the complete address ($0050). The CPU then reads whatever value is 
contained in the location $0050 into the accumulator. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the direct 
addressing mode. 

MOTOROLA 

Instruction 
Add with Carry 
Add 
Logical AND 
Arithmetic Shift Left 
Arithmetic Shift Right 
Clear Bit in Memory 
Bit Test Memory with Accumulator 
Branch if Bit n is Clear 
Branch if Bit n is Set 
Set Bit in Memory 
Clear 
Compare Accumulator with Memory 
Complement 
Compare Index Register with Memory 
Decrement 
Exclusive OR Memory with Accumulator 
Increment 
Jump 
Jump to Subroutine 
Load Accumulator from Memory 
Load Index Register from Memory 
Logical Shift Left 
Logical Shift Right 
Negate 
Inclusive OR 
Rotate Left thru Carry 
Rotate Right thru Carry 
Subtract with Carry 
Store Accumulator in Memory 
Store Index Register in Memory 
Subtract 
Test for Negative or Zero 

Mnemonic 
ADC 
ADD 
AND 
ASL 
ASR 
BCLR 
BIT 
BRCLR 
BRSET 
BSET 
CLR 
CMP 
COM 
CPX 
DEC 
EOR 
INC 
JMP 
JSR 
LDA 
LDX 
LSL 
LSR 
NEG 
ORA 
ROL 
ROR 
SBC 
STA 
STX 
SUB 
TST 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-27 



3.4.5.5 INDEXED ADDRESSING MODE. In the indexed addressing mode, the ef
fective address is variable and depends upon two factors: 1) the current 
contents of the index (X) register and 2) the offset contained in the byte(s) 
following the opcode. Three types of indexed addressing exist in the MCU: 
no offset, 8-bit offset, and 16-bit offset. A good assembler should use the 
indexed addressing mode that requires the least number of bytes to express 
the offset. 

3.4.5.5.1 Indexed, No Offset. In the indexed, no-offset addressing mode, the ef
fective address ofthe instruction is contained in the 8-bit index register. Thus, 
this addressing mode can access the first 256 memory locations. These in
structions are only one byte. 

3-28 

Example Program Listing: 
0200 f6 LDA,X Load accumulator from location 

pointed to by index reg (no offset) 

Execution Sequence: 
$0200 $F6 [1], [2], [3] 

Explanation: 
[1] CPU reads opcode $F6 - load accumulator using indexed, no offset, 

addressing mode. 
[2] CPU forms a complete address by adding $0000 to the contents of the 

index register. 
[3] CPU then reads the contents of the addressed location into the accu

mulator. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the indexed, 
no-offset addressing mode. 

MOTOROLA 

Instruction 
Add with Carry 
Add 
Logical AND 
Arithmetic Shift Left 
Arithmetic Shift Right 
Bit Test Memory with Accumulator 
Clear 
Compare Accumulator with Memory 
Complement 
Compare Index Register with Memory 
Decrement 
Exclusive OR Memory with Accumulator 
Increment 
Jump 
Jump to Subroutine 
Load Accumulator from Memory 
Load Index Register from Memory 
Logical Shift Left 
Logical Shift Right 
Negate 
Inclusive OR 
Rotate Left thru Carry 
Rotate Right thru Carry 
Subtract with Carry 
Store Accumulator in Memory 
Store Index Register in Memory 
Subtract 
Test for Negative or Zero 

Mnemonic 
ADC 
ADD 
AND 
ASL 
ASR 
BIT 
CLR 
CMP 
COM 
CPX 
DEC 
EOR 
INC 
JMP 
JSR 
LDA 
LDX 
LSL 
LSR 
NEG 
ORA 
ROL 
ROR 
SBC 
STA 
STX 
SUB 
TST 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-29 



3.4.55.2 Indexed, 8-Bit Offset. In the indexed, 8-bit offset addressing mode, the 
effective address is obtained by adding the contents of the byte following 
the opcode to the contents of the index register. This mode of addressing is 
useful for selecting the kth element in a'n' element table. To use this mode, 
the table must begin in the lowest 256 memory locations, and may extend 
through the first 511 memory locations (1 FE is the last location which the 
instruction may access). Indexed 8-bit offset addressing can be used for ROM, 
RAM, or I/O. This is a two-byte instruction with the offset contained in the 
byte following the opcode. The content of the index register (X) is not changed. 
The offset byte supplied in the instruction is an unsigned 8-bit integer. 

3-30 

Example Program Listing: 

0200 e6 05 LDA $5,x 

Execution Sequence: 
$0200 $E6 [1] 
$0201 $05 [2], [3], [4] 

Explanation: 

Load accumulator from location 
pointed to by index reg (X) + $05 

[1] CPU reads opcode $E6 - load accumulator using indexed, 8-bit offset 
addressing mode. 

[2] CPU then reads $05 from location $0201. This $05 is interpreted as the 
low-order half of a base address. The high-order half of the base ad
dress is assumed to be $00. 

[3] CPU will add the value in the index register to the base address $0005. 
The results of this addition is the address that the CPU will use in the 
load accumulator operation. 

[4] The CPU will then read the value from this address and load this value 
into the accumulator. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the indexed, 
8-bit offset addressing mode. 

MOTOROLA 

Instruction 
Add with Carry 
Add 
Logical AND 
Arithmetic Shift Left 
Arithmetic Shift Right 
Bit Test Memory with Accumulator 
Clear 
Compare Accumulator with Memory 
Complement 
Compare Index Register with Memory 
Decrement 
Exclusive OR Memory with Accumulator 
Increment 
Jump 
Jump to Subroutine 
Load Accumulator from Memory 
Load Index Register from Memory 
Logical Shift Left 
Logical Shift Right 
Negate 
Inclusive OR 
Rotate Left thru Carry 
Rotate Right thru Carry 
Subtract with Carry 
Store Accumulator in Memory 
Store Index Register in Memory 
Subtract 
Test for Negative or Zero 

Mnemonic 
ADC 
ADD 
AND 
ASL 
ASR 
BIT 
CLR 
CMP 
COM 
CPX 
DEC 
EOR 
INC 
JMP 
JSR 
LDA 
LDX 
LSL 
LSR 
NEG 
ORA 
ROL 
ROR 
SBe 
STA 
STX 
SUB 
TST 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-31 



3.4.5.5.3 Indexed, 16-Bit Offset. In the indexed, 16-bit offset addressing mode, 
the effective address is the sum of the contents of the 8-bit index register 
and the two bytes following the opcode. The content of the index register is 
not changed. These instructions are three bytes, one for the opcode and two 
for a 16-bit offset. 

3-32 

Example Program Listing: 
0200 d6 07 00 LDA $0700,X Load accumulator from location 

pointed to by index reg (Xl + $0700 

Execution Sequence: 
$0200 $06 [1] 
$0201 $07 [2] 
$0202 $00 [3]' [4], [5] 

Explanation: 
[1] CPU reads opcode $06 -load accumulator using indexed, 16-bit offset 

addressing mode. 
[2] CPU then reads $07 from location $0201. This $07 is interpreted as the 

high-order half of a base address. 
[3] CPU then reads $00 from location $0202. This $00 is interpreted as the 

low-order half of a base address. 
[4] CPU will add the value in the index register to the base address $0700. 

The results of this addition is the address that the CPU will use in the 
load accumulator operation. 

[5] The CPU will then read the value from this address and load this value 
into the accumulator. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the indexed, 
16-bit offset addressing mode. 

MOTOROLA 

Instruction 
Add with Carry 
Add 
Logical AND 
Bit Test Memory with Accumulator 
Compare Accumulator with Memory 
Compare Index Register with Memory 
Exclusive OR Memory with Accumulator 
Jump 
Jump to Subroutine 
Load Accumulator from Memory 
Load Index Register from Memory 
Inclusive OR 
Subtract with Carry 
Store Accumulator in Memory 
Store Index Register In Memory 
Subtract 

Mnemonic 
ADC 
ADD 
AND 
BIT 
CMP 
CPX 
EOR 
JMP 
JSR 
LDA 
LDX 
ORA 
SBC 
STA 
STX 
SUB 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-33 



3.4.5.6 RELATIVE ADDRESSING MODE. The relative addressing mode is used 
only for branch instructions. Branch instructions, other than the branching 
versions of bit-manipulation instructions, generate two machine-code bytes: 
one for the opcode and one for the relative offset. Because it is desirable to 
branch in either direction, the offset byte is a signed twos-complement offset 
with a range of -127 to + 128 bytes (with respect to the address of the 
instruction immediately following the branch instruction). If the branch con
dition is true, the contents of the 8-bit signed byte following the opcode 
(offset) are added to the contents of the program counter to form the effective 
branch address; otherwise, control proceeds to the instruction immediately 
following the branch instruction. 

3-34 

A programmer specifies the destination of a branch as an absolute address 
(or label which refers to an absolute address). The Motorola assembler cal
cu lates the 8-bit signed relative offset, which is placed after the branch opcode 
in memory. 

Example Program Listing: 
0200 27 rr 

Execution Sequence: 
$0200 $27 [1) 
$0201 $rr [2), [3) 

Explanation: 

BEQ DEST Branch to DEST if Z=l 
(branch if equal or zero) 

[1) CPU reads opcode $27 - branch if Z= 1, (relative addressing mode). 
[2) CPU reads the offset, $rr. 
[3) CPU internally tests the state of the Z bit and causes a branch if Z is 

set. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



The following is a list of all M68HC05 instructions that can use the relative 
addressing mode. 

Instruction 
Branch if Carry Clear 
Branch is Carry Set 
Branch if Equal 
Branch if Half-Carry Clear 
Branch if Half-Carry Set 
Branch if Higher 
Branch if Higher or Same 
Branch if Interrupt Line is High 
Branch if Interrupt Line is low 
Branch if lower 
Branch if lower or Same 
Branch if Interrupt Mask is Clear 
Branch if Minus 
Branch if Interrupt Mask Bit is Set 
Branch if Not Equal 
Branch if Plus 
Branch Always 
Branch if Bit n is Clear 
Branch if Bit n is Set 
Branch Never 
Branch to Subroutine 

Mnemonic 
BCC 
BCS 
BEQ 
BHCC 
BHCS 
BHI 
BHS 
BIH 
Bil 
BlO 
BlS 
BMC 
BMI 
BMS 
BNE 
BPl 
BRA 
BRClR 
BRSET 
BRN 
BSR 

3.4.5.7 BIT TEST AND BRANCH INSTRUCTIONS. These instructions use direct 
addressing mode to specify the location being tested and relative addressing 
to specify the branch destination. This applications guide treats these in
structions as direct addressing mode instructions. Some older Motorola doc
uments call the addressing mode of these instructions BTB for bit test and 
branch. 

3.4.5.8 INSTRUCTIONS ORGANIZED BY TYPE. Tables 3-2 through 3-5 show the 
MC68HC05 instruction set displayed by instruction type. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-35 



w 
W 
O'l 

s: 
en 
OG 
:::I: 
(') 
Q 
U1 

s: o 
:xl o 
(') 
o 
:2 
~ o rr
m 
:xl 
l:> 
"'tI 
"'tI r-

£ 
6 
:2 en 
C) 
c: 
is 
m 

s:: 
o 
-I o 
::0 
o 
S; 

Function 

Load A from Memory 

Load X from Memory 

Store A in Memory 

Store X in Memory 

Add Memory to A 

Add Memory and 
Carry to A 

Subtract Memory 

Subtract Memory from 
A with Borrow 

AND Memory to A 

OR Memory with A 

Exclusive OR Memory 
with A 

Arithmetic Compare A 
with Memory 

Arithmetic Compare X 
with Memory 

Bit Test Memory with 
A (Logical Compare) 

Jump Unconditional 

Jump to Subroutine 

Mnem. 

LDA 

LDX 

STA 

STX 

ADD 

ADC 

SUB 

SBC 

AND 

ORA 

EOR 

CMP 

CPX 

BIT 

JMP 

JSR 

Immediate 

Op- # # 
code Bytes Cycles 

A6 2 2 

AE 2 2 

- - -

- - -

AB 2 2 

A9 2 2 

AD 2 2 

A2 2 2 

A4 2 2 

AA 2 2 

AB 2 2 

Al 2 2 

A3 2 2 

A5 2 2 

- - -

- - -

Table 3-2. Register/Memory Instructions 

Addressing Modes 

Direct Extended 
Indexed Indexed Indexed 

(No Offset) (S·Bit Offset) (16·Bit Offset) 

Op- # # Op- # # Op- # # Op- # # Op- # # 
code Bytes Cycles code Bytes Cycles code Bytes Cycles code Bytes Cycles code Bytes Cycles 

B6 2 3 C6 3 4 F6 1 3 E6 2 4 D6 3 5 

BE 2 3 CE 3 4 FE 1 3 EE 2 4 DE 3 5 

B7 2 4 C7 3 5 F7 1 4 E7 2 5 D7 3 6 

BF 2 4 CF 3 5 FF 1 4 EF 2 5 DF 3 6 

BB 2 3 CB 3 4 FB 1 3 EB 2 4 DB 3 5 

B9 2 3 C9 3 4 F9 1 3 E9 2 4 D9 3 5 

BO 2 3 CO 3 4 FO 1 3 EO 2 4 DO 3 5 

B2 2 3 C2 3 4 F2 1 3 E2 2 4 D2 3 5 

B4 2 3 C4 3 4 F4 1 3 E4 2 4 D4 3 5 

BA 2 3 CA 3 4 FA 1 3 EA 2 4 DA 3 5 

B8 2 3 C8 3 4 F8 1 3 E8 2 4 D8 3 5 

B1 2 3 Cl 3 4 F1 1 3 E1 2 4 Dl 3 5 

B3 2 3 C3 3 4 F3 1 3 E3 2 4 D3 3 5 

B5 2 3 C5 3 4 F5 1 3 E5 2 4 D5 3 5 

BC 2 2 CC 3 3 FC 1 2 EC 2 3 DC 3 4 

BD 2 5 CD 3 6 FD 1 5 ED 2 6 DD 3 7 



s: 
o 
~ o 
::0 
o 
};: 

s: 
~ 
:J: 
(") 
o 
U'I 

s: n 
:::a o 
(") 
o 
2 .... 
:::a o 
~ 
~ 
m 
:::a 
l> 
"tI 
"tI 
~ 

E o 
2 en 
G') 
c 
6 m 

w 
W 
'-I 

Function 

Increment 

Decrement 

Clear 

Complement 

Negate 
(2's Complement) 

Rotate Left Thru Carry 

Rotate Right Thru Carry 

Logical Shift Left 

Logical Shift Right 

Arithmetic Shift Right 

Test for Negative 
or Zero 

MUltiply 

Mnem. 

INC 

OEC 

CLR 

COM 

NEG 

ROL 

ROR 

LSL 

LSR 

ASR 

TST 

MUL 

Table 3-3. Read/Modify-Write Instructions 

Addressing Modes 

Inherent (A) Inherent (X) Direct 
Indexed Indexed 

(No Offset) (S-Bit Offset) 

Op- # # Op- # # Op- # # Op- # # Op- # # 
code Bytes Cycles code Bytes Cycles code Bytes Cycles code Bytes Cycles code Bytes Cycles 

4C 1 3 5C 1 3 3C 2 5 7C 1 5 6C 2 6 

4A 1 3 5A 1 3 3A 2 5 7A 1 5 6A 2 6 

4F 1 3 5F 1 3 3F 2 5 7F 1 5 6F 2 6 

43 1 3 53 1 3 33 2 5 73 1 5 63 2 6 

40 1 3 50 1 3 30 2 5 70 1 5 60 2 6 

49 1 3 59 1 3 39 2 5 79 1 5 69 2 6 

46 1 3 56 1 3 36 2 5 76 1 5 66 2 6 

48 1 3 58 1 3 38 2 5 78 1 5 68 2 6 

44 1 3 54 1 3 34 2 5 74 1 5 64 2 6 

47 1 3 57 1 3 37 2 5 77 1 5 67 2 6 

40 1 3 50 1 3 30 2 4 70 1 4 60 2 5 

42 1 11 - - - - - - - - - - - -
~-- - - L- __ 



Table 3·4. Branch Instructions 

Relative Addressing Mode 

Function Mnemonic # # 
Opcode Bytes Cycles 

Branch Always BRA 20 2 3 

Branch Never BRN 21 2 3 

Branch IFF Higher BHI 22 2 3 

Branch IFF lower or Same BlS 23 2 3 

Branch IFF Carry Clear BCC 24 2 3 

Branch IFF Higher or Same 
BHS 24 2 3 (Same as BCC) 

Branch IFF Carry Set BCS 25 2 3 

Branch IFF lower 
BlO 25 2 3 (Same as BCS) 

Branch IFF Not Equal BNE 26 2 3 

Branch IFF Equal BEQ 27 2 3 

Branch IFF Half-Carry Clear BHCC 28 2 3 

Branch IFF Half-Carry Set BHCS 29 2 3 

Branch IFF Plus BPl 2A 2 3 

Branch IFF Minus BMI 2B 2 3 

Branch IFF I nterru pt Mask Bit is Clear BMC 2C 2 3 

Branch IFF Interrupt Mask Bit is Set BMS 20 2 3 

Branch IFF Interrupt Line is low Bil 2E 2 3 

Branch IFF Interrupt Line is High BIH 2F 2 3 

Branch to Subroutine BSR AD 2 6 

3-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



Table 3-5. Control Instructions 

Inherent 

Function Mnemonic # # 
Opcode Bytes Cycles 

Transfer A to X TAX 97 1 2 

Transfer X to A TXA 9F 1 2 

Set Carry Bit SEC 99 1 2 

Clear Carry Bit CLC 98 1 2 

Set Interrupt Mask Bit SEI 9B 1 2 

Clear Interrupt Mask Bit CLI 9A 1 2 

Software Interrupt SWI 83 1 10 

Return from Subroutine RTS 81 1 6 

Return from Interrupt RTI 80 1 9 

Reset Stack Pointer RSP 9C 1 2 

No-Operation NOP 9D 1 2 

Stop STOP 8E 1 2 

Wait WAIT 8F 1 2 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-39 



3.4.6 Instruction Set Summary 

3-40 

Computers use an operation code or opcode to give instructions to the CPU. 
The instruction set for a specific CPU is the set of all opcodes that the CPU 
knows how to execute. The CPU in the MC68HC705C8 MCU can understand 
62 basic instructions, some of which have several variations that require 
separate opcodes. The M68HC05 instruction set includes 210 unique instruc
tion opcodes. 

The following table is an alphabetical listing of the M68HC05 instructions 
available to the user. In listing all the factors necessary to program, the table 
uses the following symbols: 

H 
I 
N 
Z 
C 

( ) 

• • 

Condition Code Symblols 

Half Carry (Bit 4) • 
Interrupt Mask (Bit 3) 
Negate (Sign Bit 2) 
Zero (Bit 1) ? 
Carry/Borrow (Bit 0) 0 

1 

Boolean Operators 

Contents of (Le., (M) + 
means the contents EB 
of memory location 
M) 

is loaded with, 'gets' 
AND x 

A 
ACCA 
CC 

Accumulator 

MPU Registers 

PC 
PCH Accumulator 

Condition Code Reg. 
Index Register 

PCl 
SP 
REl 

X 
M Any memory location 

(one byte) 

Addressing Modes 

Inherent 
Immediate 
Direct (for bit 

test instructions) 
Extended 
Indexed 0 Offset 
Indexed 1-Byte 
Indexed 2-Byte 
Relative 

(Abbreviation) 

INH 
IMM 
DIR 

EXT 
IX 
IX1 
IX2 
REl 

Test and Set if True, 
(cleared otherwise) 

Not Affected 
load CC from Stack 
Cleared 
Set 

(inclusive) OR 
Exclusive OR 
NOT 
Negation 

(twos complement) 
Multiplication 

Program Counter 
PC High Byte 
PC low Byte 
Stack Pointer 
Relative Address 

Operands 

none 
ii 
dd 
dd rr 
hh II 
none 
ff 
ee ff 
rr 

M68HC05 MICROCONTROllER APPLICATIONS GUIDE MOTOROLA 



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 1 of 4) 

Source Boolean 
Addressing Machine Coding 

Operation Mode/or (hexadecimal) Bytes Cycles Condition Code 
Form(s) Expression 

Operand Opcode Operand H I N Z C 

ADC (oprl Add with Carry ACCA t ACCA+ M +C IMM A9 ii 2 2 · -. • • 
DIR B9 dd 2 3 · · · • 
EXT C9 hh " 3 4 
IX2 D9 ee ff 3 5 
IXl E9 II 2 4 
IX F9 1 3 

ADD loprl Add ACCA t ACCA + M IMM AB ii 2 2 · -. · · DIR BB dd 2 3 · · · · 
EXT CB hh " 3 4 
IX2 DB ee ff 3 5 
IXl EB If 2 4 
IX FB 1 3 

AND loprl logical AND ACCA t ACCA • M IMM A4 ii 2 2 -- . · -
DIR B4 dd 2 3 · · 
EXT C4 hh II 3 4 
IX2 D4 ee II 3 5 
IXl E4 If 2 4 
IX F4 1 3 

ASlloprl Arithmetic Shift left DIR 38 dd 2 5 - -. • • 
ASlA . INHIAI 48 1 3 · · · 
ASlX 0-111111111 _ 0 INHIXI 58 1 3 
ASlloprl c b7 bO IXl 68 If 2 6 
ASlloprl IX 78 1 5 

ASR loprl Arithmetic Shift Right DIR 37 dd 2 5 -- : : : 
ASRA q . INHIAI 47 1 3 
ASRX [1111111·0 INHIXI 57 1 3 
ASR loprl 1» bO C IXl 67 If 2 6 
ASR loprl IX 77 1 5 

BCC Irell Branch il Carry Clear ? C~O REl 24 rr 2 3 -- -- -
BClR n, loprl Clear Bit n in Memory MntO DIRlbOI 11 dd 2 5 -- -- -

DIRlbli 13 dd 2 5 
DIRlb21 15 dd 2 5 
DIRlb31 17 dd 2 5 
DIRlb41 19 dd 2 5 
DIRlb51 lB dd 2 5 
DIRlb61 10 dd 2 5 
DIRlb71 IF dd 2 5 

BCS Irell Branch if Carry Set ? C c, 1 REl 25 rr 2 3 -- -- -

BEQ Irell Branch il Equal ? Z~ 1 REl 27 rr 2 3 -- -- -

BHCC Irell Branch il Half Carry Clear ?H-O REl 28 rr 2 3 -- -- -
BHCS Irell Branch il Half Carry Set ? H-l REL 29 rr 2 3 -- -- -

BHllreli Branch il Higher 7IC+ZI-0 REl 22 rr 2 3 -- -- -
BHS Irell Branch il Higher or Same ? C ,0 REl 24 rr 2 3 -- ---

BIH Irell Branch il IRQ Pin is High ? IRQ Pin-l REl 2F rr 2 3 -- -- -
Bilirell Branch il IRQ Pin is low ? IRQ Pin 0 REl 2E rr 2 3 -- -- -
BIT Irell Bit Test Memory with A ACCA. M IMM A5 ii 2 2 -- • • -

DIR B5 dd 2 3 · . 
EXT C5 hh " 3 4 
IX2 D5 ee ff 3 5 
IXl E5 If 2 4 
IX F5 1 3 

BlO Irell Branch if Lower ? C~ 1 REl 25 rr 2 3 -- -- -

BlS Irell Branch if Lower or Same ?IC+XI~l REl 23 rr 2 3 -- -- -

BMC Irell Branch il I Bit is Clear ? I ~O REl 2C rr 2 3 -- -- -

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-41 



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 2 of 4) 

Source Boolean 
Addressing Machine Coding 

Operation Mode for (hexadecimal) Bytes Cycles Condition Code 
Form(sl Expression 

Operand Opcode Operand H I N Z C 

BMI (rei) Branch if Minus ? N-l REL 2B rr 2 3 -- -- -
BMS Irel) Branch if I Bit is Set 71_1 REl 2D rr 2 3 -- ---
BNE Irel) Branch if Not Equal ? Z-O REl 26 rr 2 3 -- ---
BPllreli Branch if Plus ? N-O REl 2A rr 2 3 -- ---
BRA Irel) Branch Always ? 1 -1 REL 20 rr 2 3 -- ---
BRCLR n, (apr) Branch if Bit n of M - 0 ? Bit n of M-O DIRlbO) 01 dd rr 3 5 -- -- . .. 

Irell DIRlbl) 03 dd rr 3 5 
DIRlb2) 05 dd rr 3 5 
DIR(b3) 07 dd rr 3 5 
DIR(b4) 09 dd rr 3 5 
DIRlb5) OB dd rr 3 5 
DIRlb6) OD dd rr 3 5 
DIRlb7) OF dd rr 3 5 

BRN Irell Branch Never 7 1 0 REL 21 rr 2 3 -- ---
BRSET n, (apr) Branch if Bit n of M 1 ? Bit n of M 1 DIRlbO) 00 dd rr 3 5 -- -- . .. 

Irell DIRlbl) 02 dd rr 3 5 
DIR(b2) 04 dd rr 3 5 
DIRlb3) 06 dd rr 3 5 
DIRlb4) 08 dd rr 3 5 
DIRlb5) OA dd rr 3 5 
DIRlb6) OC dd rr 3 5 
DIR(b7) OE dd rr 3 5 

BSET n, lopr) Set Bit n in Memory Mn .1 DIRlbO) 10 dd 2 5 -- ---
DIRlbl) 12 dd 2 5 
DIRlb2) 14 dd 2 5 
DIR(b3) 16 dd 2 5 
DIRlb4) 18 dd 2 5 
DIR(b5) lA dd 2 5 
DIR(b6) lC dd 2 5 
DIR(b7) lE dd 2 5 

BSR Irel) Branch to Subroutine PC. PC. 0002 REl AD rr 2 6 -- -- -
(SP) • PCl; SP. sp 0001 
(SP) • PCH; SP. SP 0001 
PC. PC T Rei 

CLC Clear C Bit C bit. a INH 98 1 2 -- --0 

CLI Clear I Bit I bit. a INH 9A 1 2 - 0 -- -
CLR loprl Clear M. 00 DIR 3F dd 2 5 --0 1 -
CLRA AHa INH(AI 4F 1 3 
CLRX XHO INHIXI 5F 1 3 
CLR loprl M. 00 IXl 6F ff 2 6 
CLR loprl M. 00 IX 7F 1 5 

CMP loprl Compare A with Memory ACCA M IMM Al ii 2 2 -- . · • DIR Bl dd 2 3 
.. .. .. 

EXT Cl hh II 3 4 
IX2 Dl ee ff 3 5 
IXl El ff 2 4 
IX Fl 1 3 

COM loprl 1's Complement M. M-$FF- M DIR 33 dd 2 5 -- . • 1 
COMA A. A-$FF- A INH(A) 43 1 3 

.. .. 
COMX X. X-$FF-X INH(X) 53 1 3 
COM loprl M. M-$FF-M IXl 63 ff 2 6 
COM lopr) M. M-$FF-M IX 73 1 5 

CPX (apr) Compare X with Memory X-M IMM A3 ji 2 2 -- . • • 
DIR B3 dd 2 3 

.. .. .. 
EXT C3 hh II 3 4 
IX2 D3 ee ff 3 5 
IXl E3 ff 2 4 
IX F3 1 3 

3-42 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 3 of 4) 

Source Addressing Machine Coding 

Operation 
Boolean 

Mode for Ihexadecimal) Bytes Cycles Condition Code 
Formls) Expression 

Operand Opcode Operand H I N Z C 

DEC lopr) Decrement M. M-Ol DIR 3A dd 2 5 -- . · -• · DECA A. A-Ol INH(A) 4A 1 3 
DECX DEX (same as DECX) X. X- 01 INH(X) 5A 1 3 
DEC (apr) M. M-Ol IXl 6A If 2 6 
DEC (apr) M. M-Ol IX 7A 1 5 

EOR lopr) Exclusive OR A with Memory ACCA • ACCA t, M IMM A8 ii 2 2 -- . :-· DIR B8 dd 2 3 
EXT C8 hh " 3 4 
IX2 D8 ee If 3 5 
IXl E8 If 2 4 
IX F8 1 3 

INC (apr) Increment M.M-t-Ol DIR 3C dd 2 5 -- . · -· · INCA A. A + 01 INH(A) 4C 1 3 
INCX INX (same as INCX) X • X + 01 INH(X) 5C 1 3 
INC lopr) M. M+Ol IXl 6C If 2 6 
INC (apr) M.M·j-Ol IX 7C 1 5 

JMP (apr) Jump PC • effective address DIR BC dd 2 2 -- -- -
EXT CC hh " 3 3 
IX2 DC ee If 3 4 
IXl EC ff 2 3 
IX FC 1 2 

JSR (apr) Jump to Subroutine PC • PC + n (n ~ 1, 2, or 3) DIR BD dd 2 5 -- -- -
ISP) • PCL; SP • SP - 0001 EXT CD hh " 3 6 
(SP) • PCH; SP • SP- 0001 IX2 DD ee ff 3 7 
PC • effective address IXl ED If 2 6 

IX FD 1 5 

LDA lopr) Load A from Memory ACCA. M IMM A6 ii 2 2 -- • · -
DIR B6 dd 2 3 · · 
EXT C6 hh " 3 4 
IX2 D6 ee If 3 5 
IXl E6 ff 2 4 
IX F6 , 3 

LDX (apr) Load X from Memory X.M IMM AE ii 2 2 -- • · -
DIR BE dd 2 3 • · 
EXT CE hh " 3 4 
IX2 DE ee If 3 5 
IXl EE If 2 4 
IX FE 1 3 

LSL lopr) Logical Shift Left DIR 38 dd 2 5 -- · · · · · · LSLA . INH(A) 48 1 3 
LSLX 0-111111111 to INH(X) 58 1 3 
LSL (apr) l b7 bD IXl 68 ff 2 6 
LSL lopr) IX 78 1 5 

LSR (apr) Logical Shift Right DIR 34 dd 2 5 --0 · · · · LSRA INH(A) 44 1 3 
LSRX Ut 1 ! 1111111-0 INH(X) 54 1 3 
LSR (apr) 1>1 1,0 C IXl 64 ff 2 6 
LSR (apr) IX 74 1 5 

MUL Unsigned Multiply X:A. X. A INH 42 1 '1 0- --0 

NEG lopr) Negate (2's Complement) M. -M(i.e.OO-M) DIR 30 dd 2 5 -- · . • · . · NEGA A. A INHIA) 40 1 3 
NEGX X.-X INH(X) 50 1 3 
NEG (apr) M. M IXl 60 If 2 6 
NEG lopr M. -M IX 70 1 5 

NOP No Operation INH 9D , 2 -- -- -
ORA lopr) Inclusive OR ACCA • ACCA + M IMM AA ii 2 2 -- • • -· . DIR BA dd 2 3 

EXT CA hh " 3 4 
IX2 DA ee ff 3 5 
IXl EA If 2 4 
IX FA 1 3 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-43 



INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 4 of 4) 

Source Boolean 
Addressing Machine Coding 

Operation Mode for (hexadecimal) Bytes Cycles Condition Code 
Form(s) Expression 

Operand Opcode Operand H I N Z C 

ROl (opr) Rotate left through Carry OIR 39 dd 2 5 -- ... 
ROlA . INH(A) 49 1 3 

..... 
ROlX 0'111111111'0 INH(X) 59 1 3 
ROl (opr) C b7 bO C IXl 69 If 2 6 
ROl (opr IX 79 1 5 

ROR (opr) Rotate Right through Carry OIR 36 dd 2 5 -- . • . 
RORA . INH(A) 46 1 3 • • .. 
RORX 0,111111111,0 INH(X) 56 1 3 
ROR lopr) C 1>7 bO C IXl 66 If 2 6 
ROR lopr) IX 76 1 5 

RSP Reset Stack Pointer SP. $OOFF INH 9C 1 2 -- -- -
RTI Return from Interrupt SP. SP t 0001; CC • (SP) INH 80 1 9 (From Stack) 

SP .SP , 0001; ACCA. (SP) .. .. . 
SP • SP , 0001; X • (SP) ... · ... 
SP • SP • 0001; PCH • (SP) 
SP. SP • 0001; PCl. (SP) 

RTS Return from Subroutine SP. SP ,- 0001; PCH • (SP) INH 81 1 6 -- ---
SP. SP • 0001; PCl. (SP) 

SBC loprl Subtract with Carry ACCA .ACCA M-C IMM A2 ij 2 2 -- . · . 
OIR B2 dd 2 3 

.. .. .. 
EXT C2 hh II 3 4 
IX2 02 ee ff 3 5 
IXl E2 ff 2 4 
IX F2 1 3 

SEC Set C Bit C bit. 1 INH 99 1 2 -- --1 

SEI Set I Bit I bit. 1 INH 9B 1 2 -1 ---
STA loprl Store A in Memory M. ACCA OIR B7 dd 2 4 -- .. -

EXT C7 hh II 3 5 
... 

IX2 07 ee ff 3 6 
IXl E7 ff 2 5 
IX F7 1 4 

STOP Enable IRQ, Stop Oscillator INH 8E 1 2 - a -- -

STX loprl Store X in Memory M.X OIR BF dd 2 4 -- • • a 
EXT CF hh II 3 5 

.... 
IX2 OF ee ff 3 6 
IXl EF ff 2 5 
IX FF 1 4 

SUB loprl Subtract ACCA • ACCA -- M IMM AO ii 2 2 -- . • • 
OIR BO dd 2 3 

.. .. .. 
EXT CO hh II 3 4 
IX2 00 ee ff 3 5 
IXl EO If 2 4 
IX Fa 1 3 

SWI Software Interrupt PC. PC+OOOl INH 83 1 10 -1 -- -
(SPI • PCl; SP • sp - 0001 
(SP). PCH; SP. SP-OOOl 
(SP) • X; SP. SP- 0001 
(SP). ACCA; SP. SP - 0001 
(SP) • CC; SP • SP - 0001 
Ibittl 
PCH • $xFFC (vector 
PCl • $xFFO fetch) 

TAX Transfer A to X X • ACCA INH 97 1 2 -- -- -
TST (opr) Test for Negative or Zero M-O OIR 30 dd 2 4 -- · . a 
TSTA INH(A) 40 1 3 

.... 
TSTX INH(X) 50 1 3 
TST (opr) IXl 60 ff 2 5 
TST (opr) IX 70 1 4 

TXA Transfer X to A ACCA. X INH 9F 1 2 -- -- -

WAIT Enable Interrupts, Halt CPU INH 8F 1 2 - a -- -

3-44 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.4.7 Interrupts 

Systems often require that normal processing be interrupted so that some 
external event may be serviced. The MC68HC705C8 may be interrupted by 
one of five different methods: anyone of four maskable hardware interrupts 
(IRQ, SPI, SCI, or timer) and one nonmaskable software interrupt (SWI). In
terrupts such as timer, SPI, and SCI have several flags which will cause the 
interrupt. Generally, interrupt flags are located in read-only status registers; 
their equivalent enable bits are located in associated control registers. The 
interrupt flags and enable bits are never contained in the same register. If 
the enable bit is a logic zero, it blocks the interrupt from occurring but does 
not inhibit the flag from being set. Reset clears all enable bits to preclude 
interrupts during the reset procedure. 

The general sequence for clearing an interrupt is a software sequence of first 
accessing the status register while the interrupt flag is set, followed by a read 
or write of an associated register. When any of these interrupts occur and 
the enable bit is a logic one, normal processing is suspended at the end of 
the current instruction execution. 

Figure 3-8 shows how interrupts fit into the normal flow of CPU instructions. 
Interrupts cause the processor registers to be saved on the stack and the 
interrupt mask (I bit) to be setto prevent additional interrupts. The appropriate 
interrupt vector then points to the starting address of the interrupt service 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-45 



w 
~ 
0) 

:s:: 
en co 
::I: 
o 
fil 
:s:: 
(; 
::g 
o 
8 
z 
-I 
::g 
o 
rrm 
::g 

l>
og 
og 
r-

2 
6 
z 
VI 
C) 
c: 
C 
m 

$: 
0 
--l 
0 
:0 
0 
r-
l>-

Bit Mani ulation Branch 
BTB BSC REL 

HI 0 1 2 
LOW 0000 0001 0010 

0 
, 5 3 

BRSETO BSETO BRA 
U(.\t\IJ 

3 BTB 2 sse 2 REL2 , 5 5 3 

UUOl 
BRCLRO BClRO BRN 

3 BTB 2 sse 2 REl 

2 5 5 3 

""'u BRSET, BSET1 BHI 
3 BTB 2 sse 2 REl 

3 5 5 3 
BRClRl BClR, BlS 

0011 
3 BTB 2 sse 2 REL 2 

4 5 5 3 
BRSET2 BSET2 BCC 

ulOl) 
3 BTB 2 sse 2 REL2 

5 5 5 3 

0101 
BRClR2 BClR2 BCS 

3 BTB 2 sse 2 REl 

6 5 5 3 
BRSET3 BSET3 BNE .)110 

3 BTB 2 sse 2 REL2 

7 5 5 3 
BRClR3 BClR3 BEQ 

1)111 
3 BTB 2 SSC 2 REL2 

8 5 5 3 
BRSET4 BSET4 BHCC 

lUOU 
3 BTB 2 Bse 2 REL2 

9 5 5 3 
BRCLR4 BClR4 BHCS 

1001 
3 BTB 2 Bse 2 REL2 

A 5 5 3 

11,10 BRSET5 BSET5 BPl 
3 BTB2 Bse 2 REL2 

B 5 5 3 

lUll BRCLR5 BClR5 BMI 
3 BTB 2 Bse 2 REL 

C 5 5 3 

11{l0 BRSETS BSET6 BMC 
3 BTB 2 Bse 2 REL2 

D 5 5 3 
BRCLR6 BClR6 BMS 

1101 
3 BTB 2 Bse 2 REL2 

E 5 5 3 

1110 BRSET7 BSET7 Bil 
3 BTB 2 Bse 2 REl 

F 5 5 3 

1111 
BRClR7 BClR7 BIH 

3 BTB 2 Bse 2 REL2 

Abbreviations for Address Modes 

INH Inherent 
A Accumulator 
X Index Register 
IMM Immediate 
DIR Direct 

DIR 
3 

0011 

5 
NEG 

DIR 1 

, 
5 

COM 
DIR 1 

5 
lSR 

OTR 1 

5 
ROR 

DIR 1 

5 
ASR 

DIR 1 

5 
lSl 

DIR 1 

5 
ROl 

OIR 1 

5 
DEC 

DIR 1 

5 
INC 

DIR 1 

4 
TST 

OlR 1 

5 
ClR 

DIR 1 

EXT 
REL 
BSe 
BTB 
IX 
IXl 
IX2 

M68HC05 Instruction Set Opcode Map 
ReadfModifvfWrite Control 

INH INH IXl IX INH INH IMM 
4 5 6 7 8 9 A 

0100 0101 0110 0111 10DO 1001 1010 

3 3 6 , 9 , 
NEGA NEGX NEG NEG RTI SUB 

INH 1 INH 2 IXl 1 IX INH , JMM 2 

G 2 
RTS CMP 

INH 2 IMM 2 

11 2 
MUl SBC 

INH 2 IMM 2 

3 3 6 , 
" 2 

COMA COMX COM COM SWI CPX 
INH 1 lNH 2 IXl 1 IX INH , lMM 2 

3 3 6 5 2 
lSRA lSRX lSR lSR AND 

INH t INH 2 IXl 1 IX 2 IMM 2 

2 
BIT , lMM 2 

3 3 6 5 , 
RORA RORX ROR ROR LDA 

INH 1 INH 2 IXl 1 IX , IMM 2 

3 3 6 5 2 
ASRA ASRX ASR ASR TAX 

INH 1 INH 2 IX1 1 IX ; INH , 
3 3 6 5 , , 

lSlA lSlX lSl lSl ClC EOR 
INH 1 INH 2 IXl 1 IX , INH 2 IMM 2 

3 3 6 5 , , 
ROlA ROlX ROl ROl SEC ADC 

INH 1 INH 2 IXl 1 IX , INH 2 IMM 2 

3 3 6 5 , , 
DECA DECX DEC DEC CLI ORA 

INH 1 INH 2 IXl 1 IX , INH 2 IMM 2 

2 , 
SEI ADD , INH 2 IMM 2 

3 3 6 5 , 
INCA INCX INC INC RSP 

INH 1 INH 2 IXl 1 IX , INH 2 

3 3 5 4 , 6 
TSTA TSTX TST TST NOP BSR 

INH 1 INH 2 IXl 1 IX , INH 2 REL2 , 2 
STOP lDX 

INH 2 IMM 2 

3 3 6 5 , , 
ClRA CLRX CLR ClR WAIT TXA 

INH 1 INH 2 IXl 1 IX INH 1 INH , 

Extended 
Relative 
Bit Set/Clear 
Bit Test and Branch MNEMONIC 
Indexed (No Offset) BYTES 
Indexed, 1 Byte (8-Bit) Offset 
Indexed,2 Byte (16-Bit) Offset CYCLES 

ReJlisterfMemory 
DIR EXT IX2 IXl IX 
B C D E F HI 

1011 1100 1101 1110 1111 lOW 

3 4 5 4 3 0 SUB SUB SUB SUB SUB 
DlR3 EXT 3 IX2 2 IXl 1 IX 

0000 

3 4 5 4 3 , 
CMP CMP CMP CMP CMP 

000' OrR 3 EXT 3 IX2 2 IXl 1 IX 

3 4 5 4 3 2 SBC SBC SBC SBC SBC 
0010 

DIR 3 EXT 3 IX22 IXl 1 IX 

3 4 5 4 3 3 CPX CPX CPX CPX CPX 
DIR 3 EXT 3 IX22 IXl 1 IX 

0011 

3 4 5 4 3 4 AND AND AND AND AND 
OIR 3 EXT 3 IX22 IXl 1 IX 

0100 

3 4 5 4 3 5 BIT BIT BIT BIT BIT 
0101 

DIR 3 EXT 3 IXl2 IXl 1 IX 

3 4 5 4 3 6 LDA lDA LDA lDA LDA 
DlR3 EXT 3 IX22 IXl 1 IX 

0110 

4 5 6 5 4 7 STA STA STA STA STA 
om 3 EXT 3 IX22 IXl 1 IX 

0111 

3 4 5 4 3 8 EOR EOR EOR EOR EOR 
DIR 3 EXT 3 IX22 IXl 1 IX 

1000 

3 4 5 4 3 9 ADC ADC ADC ADC ADC 
OIR 3 EXT 3 IX2 2 IXl 1 IX 

1001 

3 4 5 4 3 A ORA ORA ORA ORA ORA 1010 
DIR 3 EXT 3 IX2 2 IXl 1 IX 

3 4 5 4 3 B ADD ADD ADD ADD ADD 
1011 

DIR 3 EXT 3 IX2 2 IXl 1 IX , 3 4 3 2 C JMP JMP JMP JMP JMP 
1100 

DIR 3 EXT 3 IX2 2 IXl 1 IX 

5 6 7 6 5 D JSR JSR JSR JSR JSR 
DIR 3 EXT 3 IX2 2 IXl 1 IX 

1101 

3 4 5 4 3 E lDX lDX lDX lDX LDX 1110 
DIR 3 EXT 3 IX2 2 IXl 1 IX 

4 5 6 5 4 F STX STX STX STX STX 
1111 

DIR 3 EXT 3 IX22 IXl 1 IX 

Legend 

~ a=. 1~1 ~ HEXADECIMAL 

3 OPCODEIN 
,J o. BINARY 

" ADDRESS MODE 



routine (refer to Figure 3-9 and Table 3-6 for vector location). Upon completion 
of the interrupt service routine, the RTI instruction (which is normally the last 
instruction of the routine) causes the register contents to be recovered from 
the stack followed by a return to normal processing. 

NOTE 

The interrupt mask bit (I bit) will be cleared if, and only if, the cor
responding bit stored in the stack is zero. 

Table 3-6. Vector Address for Interrupts and Reset 

Register 
Flag 

Interrupts 
CPU Vector 

Name Interrupt Address 

N:A N/A Reset RESET $1FFE-$1FFF 

N!A N/A Software SWI $1FFC-$1FFD 

N!A N/A External Interrupt IRQ $1 FFA-$1 FFB 

Timer Status ICF Input Capture TIMER $1FF8-$1FF9 
OFC Output Compare 
TOF Timer Overflow 

SCI Status TORE Transmit Buffer Empty SCI $1FF6-$1FF7 
TC Transmit Complete 

RDRF Receiver Buffer Full 
IDLE Idle Line Detect 
OR Overrun 

SPI Status SPIF Transfer Complete SPI $1 FF4-$1FF5 
MODF Mode Fault 

Reset and interrupt operations are often discussed together because they 
share the common concept of vector fetching to force a new starting point 
for further CPU operation. Unlike interrupts, there is no intention to ever 
return to whatever the CPU was doing before a reset occurred. 

A low on the RESET input pin causes the program to vector to its starting 
address specified by th'e contents of memory location $1 FFE and $1 FFF. The 
I bit in the condition code register is also set. Much of the MCU is configured 
(forced) to a known state during reset. 

3.4.7.1 SOFTWARE INTERRUPT (SWI). The software interrupt is an executable 
instruction. The action of the SWI instruction is similar to the hardware in
terrupts. The SWI is executed regardless of the state of the interrupt mask (I 
bit) in the condition code register. The interrupt service routine address is 
specified by the contents of memory location $1 FFC and $1 FFD. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-47 



3-48 

YES 

YES 

YES 

CLEARIRO 
REQUEST 

LATCH 

LOAD PC FROM VECTOR: 
IRO: $1 FFA, $1 FFB 

TIMER: $1 FF8, $1 FF9 
SCI: $1 FF6, $1 FF7 
SPI:$1FF4,$1FFS 

RESTORE REGISTERS 
FROM STACK t--~ 
CC,A,X,PC 

Figure 3-8. Hardware Interrupt Flowchart 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



STACK 

TOWARD LOWER ADDRESSES 
(LOWEST STACK ADDRESS IS $OOCO) 

I 1 I 1 I 1 I ~ONDI!ION ?ODE~ 
: : A~CUM~LAT~R: : 

o 

o I 0 I 0 I P~OG C?UNT~R HI~H 
: P~OG+M C~UN+ LO~ : 

1...-....... _ ..... --.'--..... _ ...... --'._ ..... ----' UNSTACK 

TOWARD HIGHER ADDRESSES 
(HIGHEST STACK ADDRESS IS $OOFF) 

NOTE: When an interrupt occurs, CPU registers are saved 
on the stack in the order PCl, PCH, X, A, CC. On a return 
from interrupt registers are recovered from the stack in 
reverse order. 

Figure 3-9. Interrupt Stacking Order 

3.4.7.2 EXTERNAL INTERRUPT. If the interrupt mask (I bit) of the condition code 
register has been cleared and the external interrupt pin (IRO) has gone low, 
then the external interrupt is recognized. When the interrupt is recognized, 
the current state of the CPU is pushed onto the stack and the I bit is set. This 
masks further interrupts until the present one is serviced. The interrupt serv
ice routine address is specified by the contents of memory location $1 FFA 
and $1 FFB. 

The MC68HC705C8 MCU IRO pin sensitivity is software programmable. Either 
negative edge- and level-sensitive triggering or negative edge-sensitive trig
gering are available. The MC68HC705C8 MCU uses the option register resid
ing at location $1 FDF to control the IRO pin sensitivity. 

3.4.7.3 TIMER INTERRUPT. There are three different interrupt flags that will cause 
a timer interrupt whenever they are set and enabled. These three interrupt 
flags are found in the three MSBs of the timer status register (TSR, location 
$13), and all three will vector to the same interrupt service routine 
($1 FF8-$1 FF9). 

MOTOROLA M68HC05 MICROCONTROlLER APPLICATIONS GUIDE 3-49 



All interrupt flags have corresponding enable bits (lCIE, OCIE, and TOlE) in 
the timer control register (TCR, location $12). Reset clears all enable bits, 
thus preventing an interrupt from occurring during the reset time period. The 
actual processor interrupt is generated only if the I bit in the condition code 
register is also cleared. The general sequence for clearing an interrupt is a 
software sequence of accessing the status register while the flag is set, fol
lowed by a read or write of the associated control register. 

3.4.7.4 SERIAL COMMUNICATIONS INTERFACE (SCI) INTERRUPT. An interrupt 
in the SCI occurs when one of the interrupt flag bits in the serial commu
nications status register is set, provided the I bit in the condition code register 
is clear and the enable bit in the serial communication control register 2 
(location $OF) is enabled. Software in the serial interrupt service routine must 
determine the priority and cause of the SCI interrupt by examining the in
terrupt flags and the status bits located in the serial communications status 
register (location $10) The general sequence for clearing an interrupt is a 
software sequence of accessing the status register while the flag is set, fol
lowed by a read or write of the associated control register. 

3.4.7.5 SERIAL PERIPHERAL INTERFACE (SPI) INTERRUPT. An interrupt in the SPI 
occurs when one of the interrupt flag bits in the serial peripheral status 
register (location SOB) is set, provided the I bit in the condition code register 
is clear and the enable bit in the serial peripheral control register (location 
$OA) is enabled. The general sequence for clearing an interrupt is a software 
sequence of accessing the status register while the flag is set, followed by 
a read or write of the associated control register. 

3.5 MICROCONTROLLER INPUT/OUTPUT 

3-50 

Since inputs to and outputs from the MCU are usually digital (0 to + 5 Vdc 
at low power), interface logic is often needed to couple the MCU to external 
devices. Interface logic can operate in parallel or serial form. 

Parallel interfaces allow I/O data transfer eight bits at a time, to parallel ports 
on the MCU. Serial interfaces transfer I/O data one bit at a time through a 
serial communications interface (SCI) or serial peripheral interface (SPI) that 
are parts of the MCU. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



Data transfers between the MCU and external logic are controlled by the 
MCU. 

NOTE 

Tie all unused inputs and I/O ports to an appropriate logic level, 
either VDD or VSS. 

3.5.1 Parallel 1/0 

The MC68HC705C8 MCU contains 31 general-purpose parallel I/O pins ar
ranged in four ports. Ports A, 8, and Care 8-bit ports in which the direction 
of each pin is programmable by software-accessible registers. Each 8-bit port 
has an associated 8-bit data direction register (DDR) as shown in Figures 
3-10,3-11, and 3-12. 

Btt7 6 5 4 3 2 1 Bit 0 

! DDRA7! DDRAS! DDRAS! DDRA411 DDRA3! DDRA2! DDRA1 ! DDRAO! $04 DDRA 

I 0 0 0 0 0 0 0 0 I RESET CONDITION 

i i i i i i i i 
(ALL INPUTS) 

II ! $00 PORTA 

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET I RESET CONDITION 

~ ~ ~ ~ ~ ~ ~ ~ 
PA7 PAS PAS PA4 PA3 PA2 PA1 PAO PIN NAMES (REF.) 

Figure 3-10. Port A and Data Direction A Registers 

Btt7 6 5 4 3 2 1 BttO 

! DDRB7! DDRB6! DDRB5! DDRB411 DDRB3! DDRB2! DDRB1 ! DDRBO! $05 DDRB 

I 0 0 0 0 0 0 0 0 I RESET CONDITION 

i i i i i i i i 
(ALL INPUTS) 

II ! $01 PORTB 

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET I RESET CONDITION 

~ ~ ~ ~ ~ ~ ~ ~ 
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO PIN NAMES (REF.) 

Figure 3-11. Port B and Data Direction B Registers 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-51 



3-52 

Bn7 6 5 4 3 2 1 Btta 

I DDRC71 DDRCSI DDRCSI DDRC411 DDRC31 DDRC21 DDRCl I DDRCO I $06 DDRC 

I 0 a 0 a a a a a I RESET CONDITION 

t t t t t t t t 
(ALl INPUTS) 

II I $02 PORTC 

PORT OUTPUT REGISTER STATES NOT CHANGED BY RESET I RESET CONDITION 

t t t t t ~ ~ ~ 
PC7 PC6 PC5 PC4 PC3 PC2 PCl PCO PIN NAMES (REF.) 

Figure 3-12. Port C and Data Direction C Registers 

Any port A, B, or C pin is configured as an output if its corresponding DDR 
bit is set to a logic one. A pin is configured as an input if its corresponding 
DDR bit is cleared to a logic zero. At power-on or reset, all DDRs are cleared, 
which configure all port A, B, and C pins as inputs. The DDRs are capable of 
being written to or being read by the processor. Refer to Figure 3-13 and 
Table 3-7. When a port pin is configured as an output, a read of the data 
register actually reads the value of the output data latch and not the I/O pin. 

[1)· Output Buffer, enables latched output to drive pin when DDR bit is 1 (output) 
[2)- Input Buffer, enabled when DDR bit is 0 (Input). 
[3)- Input Buffer, enabled when DDR bit is 1 (Output). 

Figure 3-13. Parallel Port 1/0 Circuitry 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



Table 3-7. I/O Pin Functions 

R/W* DDR 1/0 Pin Function 

0 0 The 1/0 pin is in input mode. Data is written into the output data latch. 

0 1 Data is written into the output data latch and output to the 1/0 pin. 

1 0 The state of the 1/0 pin is read. 

1 1 The 1/0 pin is in output mode. The output data latch is read. 

*R/W is an internal signal. 

3.5.2 Serial I/O 

Port D (see Figure 3-14) is a 7-bit fixed-direction input port. The SPI and SCI 
systems take control of port D pins when these systems are enabled. During 
power-on reset or external reset, all seven pins (PD5-PDO, PD7) are config
ured as input ports because all special-function output drivers are disabled. 
For example, with the SCI system enabled (RE = TE = 1), PDO and PD1 inputs 
will read zero. With the SPI system disabled (SPE =0), PD5-PD2 will read the 
state of the pin at the time of the read operation. 

The SCI function uses two of the pins (PD1-PDO) for its receive data input 
(RDI) and transmit data output (TDO); the SPI function uses four of the pins 
(PD5-PD2) for its serial data input/output (MISO, MOSI), system clock (SCK), 
and slave select (SS), respectively. 

II $03 PORTO 

t t t t t t t 
PO? not Pll§ P04 P03 PD2 P01 poa PIN NAMES (REF.) 

used SS SCK MOSI MISO TOO ROI 

, t ~ ~ ~/~ v ALTERNATE USE (REF.) 
SPI SCI 

Figure 3-14. Port D Fixed Input Port 

3.6 SERIAL COMMUNICATIONS INTERFACE (SCI) 

SCI is one of two independent serial I/O subsystems in the MC68HC705C8. 
The other serial I/O system (called SPI) provides for high-speed synchronous 
serial communication to peripherals or other MCUs. The SCI is a full-duplex 
UART-type asynchronous system that can be used for communication be
tween the MCU and a CRT terminal or a personal computer, or several widely 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-53 



distributed MCUs can use their SCI subsystems to form a serial communi
cations network. 

The SCI uses standard nonreturn-to-zero (NRZ) format (one start bit, eight 
or nine data bits, and a stop bit). The most common data format is eight bits. 
An on-chip baud rate generator derives standard baud rate frequencies from 
the MCU oscillator. The SCI transmitter and receiver are functionally inde
pendent but use the same data format and baud rate. In this applications 
guide, "baud rate" and "bit rate" are used synonymously. 

SCI Features: 
• Two-Wire Serial Interface 
• Standard NRZ (mark/space) Format 
• Full-Duplex Operation (independent transmit and receive) 
• Software Programmable for One of 32 Different Baud Rates 
• Software-Selectable Word Length (8- or 9-bit words) 
• Separate Transmitter and Receiver Enable Bits 
• Communication may be Interrupt Driven 

Receiver: 
• Receiver Data Register Full Flag 
• Error Detect Flags - Framing, Noise, Overrun 
• Idle-Line Detect Flag 
• Receiver Wakeup Function (idle or address bit) 

Transmitter: 
• Transmit Data Register Empty Flag 
• Transmit Complete Flag (for modem control) 
• Break Send 

3.6.1 SCI Transmitter 

3-54 

The SCI transmitter block diagram is shown in Figure 3-15. The heart of the 
transmitter is the transmit serial shift register near the top of the figure. 
Usually, this shift register obtains its data from the write-only transmit buffer. 
Data is transferred into the transmit buffer when software writes to the SCI 
data register (SCDAT). Whenever data is transferred into the shifter from the 
transmit buffer, a zero is loaded into the L5B of the shifter to act as start bit, 
and a logic one is loaded into the last bit position to act as a stop bit. In the 
case of a preamble, the shifter is loaded with all ones, including the bit 
position usually holding the logic zero start bit. A preamble is loaded each 
time the transmit enable bit is written from zero to one. In the case of a send 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



lX 
I SCDAT Tx BUFFER 

(WRITE-ONLY) 
BAUD RATE 

CLOCK t 
10 (11) - BIT Tx SHIFT REGISTER 

~ I H I(S}17 6 5 4 3 2 1 0 I L -- I 
I 

I 

~ a: w w !!. c'; w --' --' 

~ It <II <II ::;: ~ ill ~ ~ « 
w w I' ~ ~ 0-- ::;: 
"-- « ~ a: X ..., <II W 

~ (J) 
~ a: 

(J) w 
<II 

~ a: 
D-

o--
FORCE PIN DIRECTION (OUT) 

~ 
TRANSMITIER L CONTROL LOGIC ... 

~II I I 
w 

~I~I~I~I~I I a: 
COJCO I::;: ~~ a: 0--

I SCCRl SCI CONTROL 1 I SCSR INTERRUPT STATUS I 

t \ 1 
-0 

TORE 

TIE 

TC 

I TCIE 

---:l w ll!1~1~ ~1~lffl ~~ 

I SCCR2 SCI CONTROL 2 

SCI Ax SCI INTERRUPT 
REQUESTS REQUEST 

PIN BUFFER 1 
AND CONTROL I 

~ 

INTERNAL 
DATA BUS 

Figure 3·15. SCI Transmitter Block Diagram 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 

-~ POl 
TOO 

3-55 



break command, the shifter is loaded with all zeros, including the last bit 
position usually holding the logic one stop bit. 

The T8 bit in SCI control register 1 (SCCR1) acts like an extra high-order bit 
(ninth bit) of the transmit buffer register. This ninth bit is only used if the M 
bit in SCCR1 is set, selecting the 9-bit data character format. The M bit also 
controls the length of idle and break characters. 

The status flag and interrupt generation logic are shown in Figure 3-15. The 
transmit data register empty (TDRE) and transmit complete (TC) status flags 
in the SCI status register (SCSR) are automatically set by the transmitter 
logic. These two bits can be read at any time by software. The transmit 
interrupt enable (TIE) and transmit complete interrupt enable (TCIE) control 
bits enable the TDRE and TC flags, respectively, to generate SCI interrupt 
requests. 

3.6.2 SCI Receiver 

3-56 

The receiver block diagram is shown in Figure 3-16. SCI received data comes 
in on the RDI pin, is buffered, and drives the data recovery block. The data 
recovery block is actually a high-speed shifter operating at 16 times the bit 
rate; the main receive serial shifter operates at one times the bit rate. This 
higher speed sample rate allows the start-bit leading edge to be located more 
accurately than a 1 x clock would allow. The high-speed clock also allows 
several samples to be taken within a bit time so logic can make an intelligent 
decision aQout the logic sense of a bit (even in the presence of noise). The 
data recovery block provides the bit level to the main receiver shift register 
and also provides a noise flag status indication. 

The heart of the receiver is the receive serial shift register. This register is 
enabled by the receive enable (RE) bit in the SCI control register 2 (SCCR2). 
The M bit from the SCCR1 register determines whether the shifter will be 10 
or 11 bits. After detecting the stop bit of a character, the received data is 
transferred from the shifter to the SCDAT, and the receive data register full 
(RDRF) status flag is set. When a character is ready to be transferred to the 
receive buffer but the previous character has not yet been read, an overrun 
condition occurs. In the overrun condition, data is not transferred, and the 
overrun (OR) status flag is set to indicate the error. 

There are three receiver-related interrupt sources in the SCI. These flags can 
be polled by software or, when enabled, cause an SCI interrupt request. The 
receive interrupt enable (RIE) control bit enables the RDRF and OR status 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



16X 
BAU ORATE 

C LOCK 

PDO 
RDI 

~ 
PIN BUFFER DATA ~ 

RECOVERY ----

J 
M 

--+ WAKE-UP 
LOGIC 

, 
.., ~l a: I-- I::; ~ I I I ~I~I~ ~a: "- ~I go z"- I 

SCCRl SCI CONTROL 1 I I SCSR INTERRUPT STATUS I 

~ 
10(11)-BIT ~ Rx SHIFT REGISTER ~ 

(8)17 6 5 4 3 2 1 01 

MSB ALL ONES 

RWU 

,~ 

I SCDAT Rx BUFFER I , 
1 

' (READ-ONLY) 

SCITx 
REQUESTS 

MOTOROLA 

-0 
r-cJ 

1 

SCI INTERRUPT 
REQUEST 

RDRF 

RIE 

IDLE 

IUE 

OR 

I RIE 

~I~I~ !!l wlw = t- a: ~ ~I a:C1) 

I SCCR2 SCI CONTROL 2 ..... _'" 

Figure 3-16. SCI Receiver Block Diagram 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 

INTERNAL 
DATA BUS 

3-57 



flags to generate hardware interrupt requests. The idle line interrupt enable 
(lLlE) control bit allows the IDLE status flag to generate interrupt requests. 

3.6.3 Registers 

The SCI system includes five registers (BAUD, SCCR1, SCCR2, SCSR, and 
SCDAT) and two external pins (TDO and RDI). When the SCI receiver and/or 
transmitter is enabled, the SCI logic takes control of the pin buffers for the 
associated port D pines). When the SCI is disabled, the TDO and RDI pins act 
as general-purpose inputs. 

The main function of each of these registers will be discussed. Normally, the 
SCCR1, SCCR2, and BAUD registers would be written once to initialize and 
then not used again. An example of the software/programming procedure is 
shown later in this section. 

3.6.3.1 BAUD RATE REGISTER (BAUD). The BAUD register (see Figure 3-17) is 
used to select the baud rate for the SCI system. Both the transmitter and 
receiver use the same data format and baud rate, which is derived from the 
MCU bus rate clock. The SCP1-SCPO bits function as a prescaler for the 
SCR2-SCRO bits. Together, these five bits provide multiple baud rate com
binations for a given crystal frequency. 

3-58 

The diagram shown in Figure 3-18 and Tables 3-8 and 3-9 illustrate the divider 
chain used to obtain the baud rate clock (transmit clock). For example, using 
a 4-MHz crystal, the internal processor clock is 2 MHz. 

Bill 6 5 4 3 2 1 B~O 

- I - I SCPl I SCPO II - I SCR2 I SCRl I SCRa I $OD BAUD 
I I I I I 

I 0 0 0 0 0 0 0 0 I RESET CONDITION 
I I I 

T L::SELECT 
DIVIDE PRESCALER OUTPUT 
BY 1, 2, 4, 8, ... 128 

SCI PRESCALER RATE SELECT 
DIVIDE INTERNAL PROCESSOR CLOCK 
BY1,3,4,or13 

Figure 3-17. Baud Rate Register 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



SCP Bit 

1 0 

0 0 
0 1 
1 0 
1 1 

CRYSTAL 
FREQUENCY I 

I FIXED I 
+2 

1 
1 

SCP1-SCPO 
PRESCALER 

CONTROL 
+N 

1 
T 

SCR2-SCRO 
SCI SELECT 

RATE CONTROL 
+M 

1 
1 

I FIXED I +16 

I ... 

INTERNAL 
PROCESSOR 
CLOCK 

PRESCALER OUTPUT 
(Frequency is 16 times 
the values in Table 3-4) 

RECEIVER CLOCK 
(16X BAUD RATE) 
(Frequency is 16 times 
the values in Table 3-5) 

TRANSMITTER CLOCK 
(1X BAUD RATE) 

Figure 3-18. Rate Generator Division 

Table 3-8. Prescaler Baud Rate Frequency Output 

Clock" Crystal Frequency MHz 

Divided By 4.194304 4.0 2.4576 2.0 

1 131.072 kHz 125.000 kHz 76.80 kHz 62.60 kHz 
3 43.691 kHz 41.666 kHz 25.60 kHz 20.833 kHz 
4 32.768 kHz 31.250 kHz 19.20 kHz 15.625 kHz 

13 10.082 kHz 9600 Hz 5.907 kHz 4800 Hz 

'The clock in the "Clock Divided By" column is the internal processor clock. 

1.8432 

57.60 kHz 
19.20 kHz 
14.40 kHz 
4430 Hz 

NOTE: The divided frequencies shown in Table 3-8 represent baud rates which are the highest transmit 
baud rate (Tx) that can be obtained by a specific crystal frequency and only using the prescaler 
division. Lower baud rates may be obtained by providing a further division using the SCI rate 
select bits shown below for some representative prescaler outputs. 

The SCP1-SCPO bits in the baud rate register set the division factor (N in 
Figure 3-18) for the baud rate divider. Reset clears these bits, setting the 
prescaler to divide-by-one. 

The SCR2, SCR1, and SCRO bits are used to set the division factor (M in Figure 
3-18) for the baud rate divider. Reset does not affect these bits. 

Example: 
From Table 3-8, find the crystal frequency used (in this case, 4 MHz). Next, 
find 9600 or a binary multiple of 9600. In this example, you would select 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-59 



Table 3-9. Transmit Baud Rate Output 

SCR Bits Divided Representative Highest Prescaler Baud Rate Output 

2 1 0 By 131.072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz 

0 0 0 1 131.072 kHz 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz 
0 0 1 2 65.536 kHz 16.384 kHz 38.40 kHz 9600 Hz 4800 Hz 
0 1 0 4 32.768 kHz 8.192 kHz 19.20 kHz 4800 Hz 2400 Hz 
0 1 1 8 16.384 kHz 4.096 kHz 9600 Hz 2400 Hz 1200 Hz 
1 0 0 16 8.192 kHz 2.048 kHz 4800 Hz 1200 Hz 600 Hz 
1 0 1 32 4.096 kHz 1.024 kHz 2400 Hz 600 Hz 300 Hz 
1 1 0 64 2.048 kHz 512 Hz 1200 Hz 300 Hz 150 Hz 
1 1 1 128 1.024 kHz 256 Hz 600 Hz 150 Hz 75 Hz 

NOTE: Table 3-9 illustrates how the SCI select bits can be used to provide lower transmitter baud rate 
by further dividing the prescaler output frequency. The five examples are only representative 
samples. In all cases, the baud rates shown are transmit baud rates (transmit clock), and the 
receive clock is 16 times higher in frequency than the actual baud rate. 

the bottom rowwhich corresponds to SCP1 :SCPO= 1:1 (divide-by-thirteen). 
Next, find the column in Table 3-5 that corresponds to 9600 Hz. Find the 
desired baud rate in this column. In this example, you would select the top 
row, which corresponds to SCR2:SCR1 :SCRO = 0:0:0 (divide-by-one). 

3.6.3.2 SERIAL COMMUNICATIONS CONTROL REGISTER ONE (SCCR1). The se
rial communications control register one (SCCR1) shown in Figure 3-19 in
cludes three bits associated with the optional 9-bit data format. The WAKE 
bit is used to select one of two methods of receiver wakeup. Normal setup 
for bit M is 0 for 8-bit words. The other register bits are not used in most 
systems. In a typical system, this register would be written to $00 during 
initialization. 

BH 7 6 5 4 3 2 Bn 0 

'--RS-:--___ T-;-8 -'-_--:--..... 1 _M-:--... II_w-:-AK....;.E ..... I-:----L-:----LI-:----I1 $OE see R 1 
I I I I 

I 0 0 0 0 - I RESET CONDIllON l l L WAKEUP METHOD SELECT 
o -IDLE LINE 1-ADDRESS MARK 

SELECT SCI DATA LENGTH 
0·8 BITS 1-981TS 

NINTH TRANSMIT BIT (IF M=1) 
NINTH RECEIVE BIT (IF M=1) 

Figure 3-19. Serial Communications Control Register One 

3-60 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.6.3.3 SERIAL COMMUNICATIONS CONTROL REGISTER TWO (SCCR2). The se
rial communications control register two (SCCR2) shown in Figure 3-20 is 
the main control register for the SCI subsystem. This register can enable! 
disable the transmitter or receiver, enable the system interrupts, and provide 
the wakeup enable bit and a "send break code" bit. The TIE, TCIE, RIE, and 
ILiE bits are local interrupt enable controls, which determine whether SCI 
status flags will be polled or generate hardware interrupt requests. 

Bit? 6 

I TIE I TCIE 

I I 

I 0 0 

5 

RIE 

I 
0 

4 2 1 Bit 0 

ILiE " TE RE I RWU I SBK $OF SCCR2 
I I I I I 
o 0 0 0 0 I RESET CONDITION 

III L LSENDBREAK 

RECEIVER WAKEUP FUNCTION 

ENABLE SCI RECEIVER 

ENABLE SCI TRANSMITIER 

IDLE LINE INTERRUPT ENABLE 
RECEIVER INTERRUPT ENABLE 

TRANSMISSION COMPLETE INTERRUPT ENABLE 

TRANSMITIER INTERRUPT ENABLE 

Figure 3-20. Serial Communications Control Register Two 

In a typical system: 
TE and RE would be written to one to enable the transmitter and receiver 
subsystems. 

ILlE, RWU, and SBK would seldom be used and would be written to zero. 

If interrupts were not being used, TIE, TCIE, and RIE would be written to 
zero. If interrupts were used, these three bits would be written to one. 

For example, in a system which does not use interrupts, SCCR2 would be 
loaded with $OC during initialization. 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-61 



3.6.3.4 SERIAL COMMUNICATIONS STATUS REGISTER (SCSR). The SCI status 
register (SCSR) in Figure 3-21 contains two transmitter status flags and five 
receiver related status flags. The TORE and RORF bits are always used. The 
TC and IDLE bits are not commonly used. 

3-62 

Bit 7 6 5 4 2 Bit 0 

I TORE I TC '--~'--~L.I R...;.;D-:",RF-L.I ,;,;.ID~LE---'LII_o~R;.....L._N...;.;F---,-_F...;.;E---,----:----II $10 SCSR 
I 

I 1 
I I I I I I 

o 0 0 0 0 - I RESET CONDITION l L l L L FRAMING ERROR 

NOISE FlAG 

OVERRUN 

IDLE UNE DETECT 

RECEIVE DATA REGISTER FULL 

TRANSMISSION COMPLETE 

TRANSMIT DATA REGISTER EMPTY 

Figure 3-21. Serial Comunications Status Register 

The OR, NF, and FE bits should be monitored and mayor may not be used, 
depending on the type of SCI system. For errors to be corrected, both the 
transmitting and receiving device must have a common method of handling 
errors. 

There ar'e two major types of communication links associated with the SCI. 
An example of a direct connection would be an MCU connected to a personal 
computer. In this direct connection link OR, NF, and FE errors are very unlikely 
and are typically ignored. The second type of link involves two remote devices 
where each is connected to a modem. In this type of link, errors are more 
likely and both computers would typically use a protocol that permits re
transmission when an error is detected. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.6.3.5 SERIAL COMMUNICATIONS DATA REGISTER (SCDAT). The SCI SCDAT 
data register (see Figure 3-22) has two functions: it is the transmit data 
register when written to and the receive data register when read. Both the 
transmitter and receiver are double buffered (see Figure 3-23), so back-to
back characters can be handled easily even if the CPU is delayed in respond
ing to the completion of an individual character. 

MOTOROLA 

BH7 6 5 4 2 BHO 

~~ __ ~ __ -L __ ~I~I __ ~ __ ~ __ L-~ $11 SCDAT 

Figure 3-22. Serial Communications Data Register 

STOP 
BIT 

PARAlLEL DATA 
FROM CPU DATA BUS 

START 
BIT 

TORE flag set each time new data is 
transferred from the TOR buffer to the 
Transmit serial shift register. 

TRANSMITTER 

RORF flag set each lime new data is 
transferred from the serial shift register 
to the ROR buffer. 

RECEivER 

v 
PARAlLEL DATA 

TO CPU DATA BUS 

Figure 3-23. Double Buffering 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-63 



3.6.4 Data Formats 

3-64 

The standard NRZ data formats used for communications are shown in Figure 
3~24. The upper portion of this figure shows the normal 8-bit data format; 
the lower portion of the figure shows the 9-bit data format. The 9-bit data 
format is selected by setting the M control bit in SCCR1 to 1. 

The basic characteristics of the NRZ format are as follows: 

1) A high level indicates a logic one and a low level, a logic zero. 

2) The idle line is high prior to message transmission/reception. 

3) A start bit (logic zero) is transmitted/received as the first bit of data in 
a character. 

4) Data is transmitted/received LSB first. 

5) The last bit in a character (bit 10 or 11) is a high (stop bit). 

6) A break is a low (logic zero) for 10 or 11 bit times. 

1 1 

+ 
START 

BIT 

o 2 3 4 5 6 

LC 
s!p ~ 

BIT NEXT 
START BIT 

02345678 

II 1[1JI LC 

STtT STBtl P ~NEXT 
BIT T START BIT 

[11- Control bit 'M" selects optional ninth data bit. 

Figure 3-24. Data Formats 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.6.5 Hardware Procedures 

Some simple hardware setup is required. A universal standard RS232 cable 
is used to interconnect the SCI to a CRT terminal or the PC. The user would 
usually have to provide an external level shifter buffer (MC145406) to convert 
the RS232 (typically ± 12 volts) to the 0-5 volt logic levels used by the 
MC68HC705C8. 

3.6.6 Software Procedures 

The following paragraphs and flowcharts discuss software procedures. These 
flowcharts illustrate how straightforward normal SCI operations are. 

3.6.6.1 INITIALIZATION PROCEDURE. The following list reflects the initialization 
procedure. 

1) Write to BAUD register (SCP1-SCPO, SCR2-SCRO) to set baud rate. 

2) Write to SCCR1 (R8, T8, M, WAKE) to set character length and choose 
wakeup method. 

3) Write to SCCR2 (TIE, TCIE, RIE, ILlE, TE, RE, RWU, SBK) to enable desired 
interrupt sources. To turn on the transmitter and receiver, RWU and 
SBK would be written to zero during initialization. 

The following is a reference list of interrupt enable control bits versus the 
interrupt source(s) they enable: 

MOTOROLA 

Enable 

TIE 
TCIE 
RIE 
ILiE 

Flags 

TDRE 
TC 
RDRF, OR 
IDLE 

Interrupt Source Names 

Transmit data register empty 
Transmit complete 
Receive data register full, overrun 
Idle line detect 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-65 



3.6.6.2 NORMAL TRANSMIT OPERATION. Refer to Figure 3-25, a flowchart of the 
normal transmit operation. 

FLOWCHART 

START 
SUBROUTINE 

MNEMONIC PROGRAM 

SENDATA BRCLR 7,SCSR,SENDATA 

STA SCDAT 

RTS 

Figure 3-25. SCI Normal Transmit Operation Flowchart 

3.6.6.3 NORMAL RECEIVE OPERATION. Refer to Figure 3-26, a flowchart of the 
normal receive operation. 

3-66 

FLOWCHART 

START 
SUBROUTINE 

MNEMONIC PROGRAM 

GETDATA BRCLR 5,SCSR,GETDATA 

LDA SCDAT 

RTS 

Figure 3-26. SCI Normal Receive Operation Flowchart 

M68HC05 MICRQCONTROLLER APPLICATIONS GUIDE MOTOROLA 



3.S.7 SCI Application Example 

Figure 3-27 is an example software program for communication between the 
SCI of the MCU and a dumb terminal. The MCU will receive (read) an ASCII 
character that was sent by the dumb terminal. The MCU will then translate 
the 8-bit binary character representing the ASCII character into two ASCII 
characters. 

When this translation is completed, the MCU will transmit a <CR>, line feed, 
a $ sign and the two characters that represent the original hexadecimal 
equivalent of the received character back to the terminal. The program then 
waits for another character. 

In practice, the following would occur: 

You type a number/character on the keyboard. It goes from the terminal 
to the MCU over the SCI receiver. Use the example of the letter "A". 

The program translates "A" to "4" and "1", then sends CR, line feed, $, 4, 
and 1, to the SCI transmitter. 

When the transmission is complete, the program goes back to the top for 
another keyboard number/character to be sent over the SCI receiver. 

Table 3-10 is a chart of the ASCII-hexadecimal code conversion. 

Table 3-10. ASCII-Hexadecimal Code Conversion 

ASCII CHARACTER SET (7-BIT CODE) 

~ Dig. 
0 1 2 3 4 5 6 7 LS 

Dig. 
0 NUL DLE SP 0 (a P p 
1 SOH DC1 ! 1 A Q a q 
2 STX DC2 " 2 B R b r 
3 ETX DC3 # 3 C 5 c 5 

4 EaT DC4 $ 4 D T d t 
5 ENQ NAK % 5 E U e u 
6 ACK SYN & 6 F V f v 
7 BEL ETB 7 G W 9 w 
8 BS CAN ( 8 H X h x 
9 HT EM ) 9 I Y i y 
A IF SUB * : J Z j z 
B VT ESC + ; K [ k J 

J 

C FF FS < l v I I 
D CR GS = M J m J 

J 

E SO RS > N .\ n -
F SI US I I a - 0 DEL 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-67 



********************************************* 
* Simple 68HC05 SCI Program Example * 
********************************************* 

OOOd BRATE EQU $00 -,-,SCPl,SCPO;-,SCR2,SCRl,SCRO 
OOOe SCCRI EQU $OE R8,T8,-,M;WAKE,-,-,-
OOOf SCCR2 EQU $OF TIE,TCIE,RIE,ILIE;TE,RE,RWU,SBK 
0011 SCOAT EQU $11 Read - RDR; Write - TOR 
0010 SCSR EQU $10 TORE, TC, RDRF, IOLE;OR,NF,FE,-

OOaO TEMP EQU $AO One byte temp storage location 
OOal TEMPHI EQU $Al Upper byte changed to ASCII 
00a2 TEMPLO EQU $A2 Lower byte changed to ASCII 

0500 ORG $500 Program will start at $0500 

0500 a6 30 INITIAL LOA #%00110000 Begin initialization 
0502 b7 Od STA BRATE Baud rate to 4800 @2MHz Xtal 
0504 a6 00 LOA #%00000000 Set up SCCRI 
0506 b7 Oe STA SCCR1 Store in SCCR1 register 
0508 a6 Oc LOA #%00001100 Set up SCCR2 
050a b7 Of STA SCCR2 Store in SCCR2 register 
050c cd 05 43 START JSR GETOATA Checks for receive data 
050f b7 aO STA TEMP Store received ASCII data in temp 
0511 a4 Of AND lt$OF Convert LSB of ASCII char to hex 
0513 aa 30 ORA lt$30 $3(LSB) = "LSB" 
0515 a1 39 CMP #$39 3A-3F need to change to 41-46 
0517 23 02 BLS ARN1 Branch if 30-39 OK 
0519 ab 07 ADD n Add offset 
051b b7 a2 ARNI STA TEMPLO Store LSB of hex in TEMPLO 
051d b6 aO LOA TEMP Read the original ASCII data 
05lf 44 LSRA Shift right 4 bits 
0520 44 LSRA 
0521 44 LSRA 
0522 44 LSRA 
0523 aa 30 ORA #$30 ASCII for N is $3N (N=0-9) 
0525 a1 39 CMP lt$39 3A-3F need to change to 41-46 
0527 23 02 BLS ARN2 Branch if 30-39 
0529 ab 07 ADD n Add offset 
052b b7 al ARN2 STA TEMPHI MS nibble of hex to TEMPHI 
052d a6 Od LDA #$OD Load hex value for "<CR>" 
052f ad 18 BSR SENDATA Carriage return 
0531 a6 Oa LDA lt$OA Load hex value for "<LF>" 
0533 ad 14 BSR SENDATA Line feed 
0535 a6 24 LOA #'$ Load hex value for "$" 
0537 ad 10 BSR SENOATA Print dollar sign 
0539 b6 al LOA TEMPHI Get high half of hex value 
053b ad Oc BSR SENDATA Print 
053d b6 a2 LDA TEMPLO Get low half of hex value 
053f ad 08 BSR SENDATA Print 
0541 20 c9 BRA START Branch back to start 

Figure 3-27. SCI Application Example Program (Sheet 1 of 2) 

3-68 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



*** Get an SCI character, return wi it in A 
0543 Ob 10 fd GETDATA BRCLR 5,SCSR,GETDATA RDRF = 1 ? 
0546 b6 11 LDA SCDAT OK, get 
0548 81 RTS ** Return from GETDATA ** 

*** Send an SCI character, call sub wi it in A 
0549 Of 10 fd SENDATA BRCLR 7,SCSR,SENDATA TDRE = 1 ? 
054c b7 11 STA SCDAT OK, send 
054e 81 RTS ** Return from SENDATA ** 

Figure 3-27. SCI Application Example Program (Sheet 2 of 2) 

3.7 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE (SPI) 

The SPI subsystem included in the MC68HC705C8 allows the MCU to com
municate with peripheral devices. Peripheral devices can be as simple as an 
ordinary TTL shift register or as complex as a complete subsystem such as 
an LCD display driver or an A/D converter subsystem. The SPI system is 
flexible enough to interface directly with numerous standard product pe
ripherals from several manufacturers. 

SPI is an added feature for those applications that require more inputs and 
outputs than there are parallel I/O pins on the MCU. SPI offers a very easy 
way to expand the 110 function while using a minimum number of MCU pins. 
The SPI block diagram is shown in Figure 3-28. 

SPI features are as follows: 
• Full-Duplex, Three-Wire Synchronous Transfers 
• Master or Slave Operation 
• 1.05 MHz (maximum) Master Bit Frequency 
• 2.1 MHz (maximum) Slave Bit Frequency 
• Four Programmable Master Bit Rates 
• Programmable Clock Polarity and Phase 
• End of Transmission Interrupt Flag 
• Write-Collision Flag Protection 

An SPI subsystem can operate under software control in either complex or 
simple system configurations: 

• One Master MCU and Several Slave MCUs 
• Several MCUs Interconnected in a Multimaster System 
• One Master MCU and One or More Slave Peripherals 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-69 



INTERNAL PROCESSOR 

K: CLOCK 

~ 
DIVIDER I MSB LSB 

- -E--I -8-BIT SHIF.T REGISTER S 
+2 +4 +16 +32 

I READ DATA BUFFER 

, , ~ tCLOCK 

SELECT 
I SPI CLOCK (MASTER) 

S 
I 

I~ 

a::f 
a.. a.. 
(/)(/) 

SPICONTROL 

...J LL 

!:!:8 c 
lli;= 0 

:::0 , 
I ' 

if I I I I 
SPI STATUS REGISTER 

, 

, 
SPIINTERRUPT 

REQUEST 

MSTR 
SPE 

. 

c 
INTERNAL 
DATA BUS 

CLOCK 
LOGIC 

... 
I J 

~~ :fa: ~ !±!w a.. a.. ~5> (/) (/) :::Ou (/) 

I 
I SPI CONTROL REGISTER 

I 

Figure 3-28. SPI Block Diagram 

M 

a: .... w (/)a.. :::o(/) 

I 

3-70 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 

~ PD2 

-@ g PD3 

9 
...J 

~ z 
8 
z 
a: 

-@ PD4 

HID 

MOTOROLA 



The majority of all applications use one MCU device as the master. This 
master initiates and controls the transfer of data to/from one or more slave 
peripheral devices that receive/supply the data being transferred. Slaves can 
read data from or transfer data to the master only after the master instructs 
an action to occur. This system configuration will be discussed in this ap
plications guide. 

3.7.1 Data Movement 

There is no need to specify the direction of data movement for each transfer 
because the master simultaneously transmits and receives serial data on 
separate pins every transfer. When an SPI transfer occurs, an 8-bit character 
is shifted out on one data pin while a different 8-bit character is simultane
ously shifted in on a second data pin (see Figure 3-29). Another way to think 
of this is that an 8-bit shift register in the master and another in the slave 
are connected as a circular 16-bit shift register. When a transfer occurs, this 
distributed shift register is shifted eight bit positions so the characters in the 
master and slave are effectively exchanged. 

Many simple slave devices are designed to only receive data from a master 
or only supply data to a master. For example, a serial-to-parallel shift register 
can act as an 8-bit output port. An MCU configured as a master SPI device 
would initiate a transfer to send an 8-bit data value to the shift register. Since 
the shift register does not send any data to the master, the master would 
simply ignore whatever it received as a result of that transmission. 

MOSI 

SPI SHIFT REGISTER SPI SHIFT REGISTER 

SCK 

MC68HC705C8 MC68HC705C8 

MASTER DEVICE SlAVE DEVICE 

Figure 3-29. Shift Register Operation 

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-71 



3.7.2 Functional Description 

Four I/O pins located at port D are associated with SPI data transfers. They 
are the serial clock (SCK-PD4), the master in/slave out (MISO-PD2) data line, 
the master out/slave in (MOSI-PD3) data line, and the active-low slave select 
(SS-PD5). When the SPI system is not utilized, the four pins (SS, SCK, MISO, 
and MOSI) are configured as general-purpose inputs (PD5, PD4, PD3, and 
PD2). 

In a master configuration, the master start logic receives an input from the 
CPU (in the form of a write to the SPI data register) and originates the serial 
clock (SCK) based on the internal processor clock. This clock is also used 
internally to control the state controller as well as the 8-bit shift register. Data 
is parallel loaded into the 8-bit shift register (during the CPU write to SPDR) 
and then shifted out serially to the MOSI pin for application to the serial input 
line of the slave device(s). At the same time, data is applied serially from a 
slave device through the MISO pin to the 8-bit shift register. After the eighth 
shift in a transfer, data is parallel transferred to the read buffer where it is 
available to the internal data bus during a CPU read cycle. The SPIF status 
flag is used by the master and slave devices to indicate when a transfer is 
complete. 

3.7.3 Pin Descriptions 

The four I/O pins are discussed in the following paragraphs. 

3.7.3.1 SERIAL DATA PINS (MISO, MOS!). The master-in slave-out (MISO) and 
master-out slave-in (MOSI) data pins are used for transmitting and receiving 
data serially: MSB first, LSB last. When the SPI is configured as a master, 
MISO is the master data input line and MOSI is the master data output line. 
In the master device, the MSTR control bit (bit 4 ofthe s~jrial peripheral control 
register) is set to a logic one (by the program) to allow the master device to 
output data on its MOSI pin. When the SPI is configured as a slave, these 
pins reverse roles; MISO becomes the slave data output line and MOSI be
comes the slave data input line. 

3-72 

The timing diagram of Figure 3-30 shows the relationship between data and 
clock (SCK). As shown in Figure 3-30, four possible timing relationships may 
be chosen by using control bits CPOL and CPHA. Setting CPOL is equivalent 
to putting an inverter in series with the clock signal. CPHA selects one of two 
fundamentally different clocking protocols to allow the SPI system to com
municate with virtually any synchronous serial peripheral device. 

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA 



I I J I I I I I I I I I I 

SCK (CPOL = 0) _-:"'....1 

I I I I 
I 

~~~~~~~~~ 

Figure 3-30. Data/Clock Timing Diagram

3.7.3.2 SERIAL CLOCK (SCK). SCK is used to synchronize the movement of data
both in and out of the device through the MOSI and MISO pins. The SCK pin
is an output when the SPI is configured as a master and an input when the
SPI is configured as a slave.

When the SPI is configured as a master, the SCK signal is derived from the
internal MCU bus clock. When the master initiates a transfer, eight clock
cycles are automatically generated on the 5CK pin. In both the master and
slave SPI devices, data is shifted on one edge of the 5CK signal and sampled
on the opposite edge, where data is stable. Two bits (SPRO and SPR1) in the
5PCR (location $OA) of the master device select the clock rate. 80th master
and slave devices must be programmed to similar timing modes for proper
data transfers, as controlled by the CPOL and CPHA bits in the SPCR.

3.7.3.3 SLAVE SELECT (55). The S5 pin behaves differently on master devices
than on slave devices. On a slave, this pin is used to enable the SPI slave
for a transfer. On a master, the 5S pin is normally pulled high externally.

3.7.4 Registers

Three registers in the SPI provide control, status, and data storage functions.
These registers include the serial peripheral control register (location $OA),
serial peripheral status register (location $08), and serial peripheral data 1/0
register (location $OC).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-73

3.7.4.1 SERIAL PERIPHERAL CONTROL REGISTER (SPCR). In most systems, this
register (Figure 3-31) is written only once shortly after reset to initialize the
SPI system.

3-74

Bit 7 6 5 4 3 2 1 Btto

I SPIE I SPE I - I MSTR II CPOL I CPHA I SPR1 I SPRO I $OA SPCR
I

I 0
I
0

I I I I I
o 0 0 0 0 I RESET CONDITION

II I ~'"."l>ROTRA1E
CLOCK PHASE (BASIC PROTOCOL)

CLOCK POLARITY

MASTER (1) or SLAVE (0) MODE SELECT

SPI SYSTEM ENABLE
SPIINTERRUPT ENABLE

Figure 3-31. Serial Peripheral Control Register

The SPCR bits have the following functions:

SPIE
0= SPI interrupts are disabled (the most common configuration).
1 = SPI interrupt requests are enabled if SPIF and/or MODF is set to one.

SPE
O=SPI system is turned off.
1 = SPI system is turned on.

MSTR
0= SPI is configured as a slave.
1 = SPI is configured as a master.

CPOL
0= Active-high clocks selected, SCK idles low.
1 = Active-low clocks selected, SCK idles high.
(This bit is used in conjunction with the clock phase control bit to produce
the desired clock-data relationship between master and slave.)

CPHA
The clock phase bit, in conjunction with the CPOL bit, controls the rela
tionship between the data on the MISO and MOSI pins and the clock pro
duced or received at the SCK pin. CPHA selects one of two fundamentally

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

different clocking protocols to allow the SPI system to communicate with
virtually any synchronous serial peripheral device.

SPR1/SPRO
These two serial peripheral rate bits select one of four bit rates to be used
as SCK if the device is a master; they have no effect in the slave mode.

SPR1 SPRO
Internal Processor Frequency if XT Al Frequency if XTAl
Clock Divided By is 4.0 MHz is 2 MHz

0 0 2 1.0 MHz 500.0 kHz
0 1 4 500.0 kHz 250.0 kHz
1 0 16 125.0 kHz 62.50 kHz
1 1 32 62.5 kHz 31.25 kHz

3.7.4.2 SERIAL PERIPHERAL STATUS REGISTER (SPSR). This read-only register
(Figure 3-32) contains status flags which indicate the completion of an SPI
transfer and the occurrence of certain SPI system errors. The flags are
automatically set by the SPI events; the flags are cleared by automatic soft
ware sequences and upon reset. In the majority of all systems, only the SPIF
status bit is important.

Bil7 6 5 4 2 BilO

SPIF I WCOl I - I MODF II. - - I - I - I $08 SPSR
I I I

..... 1 -..,.-0 __ 0 _____ 0 _________ ---11 RESET CONDITION

l L LMODE FAULT

WRITE COLLISION

SPI TRANSFER COMPLETE

Figure 3-32. Serial Peripheral Status Register

The bits in this register have the following functions:

SPIF
When set to one, the serial peripheral data transfer flag bit notifies the user
that a data transfer between the MCU and an external peripheral device
has been completed. The transfer of data is initiated by the master device
writing to its serial peripheral data register. SPIF is automatically cleared
by reading SPSR with SPIF set, followed by an access of the SPI data
register.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-75

/

WCOl
The write-collision status bit notifies the user that an attempt was made
to write to the serial peripheral data register while a data transfer with an
external peripheral device was in progress. The transfer continues unin
terrupted, and the write will be unsuccessful.

MOOF
This flag is set if the SS signal goes to its active-low level while the SPI is
configured as a master (MSTR = 1). In normal systems, this would never
be possible. For information on how to use MOOF in multimaster systems,
see BR594/0, the MC6BHC705CB Technical Summary.

3.7.4.3 SERIAL PERIPHERAL DATA I/O REGISTER (SPDR). The SPOR (Figure 3-33)
in the master MCU device is used to transmit data to and receive data from
the slave device. Only a write to this register in a master will initiate trans
mission/reception of data. The data is then loaded directly into the 8-bit shift
register where eight bits are shifted out on the MOSI pin to the slave while
another eight bits are simultaneously shifted in on the MISO pin to the 8-bit
shift register. At the completion of data transmission, the SPIF status bit is
set. A write or read of the SPOR, after reading SPSR with SPIF set, will clear
SPIF.

BH 6 4 2 BilO

'----'-_--'-_ _ II_---'-_ _-'--~I $OC SPDR

Figure 3-33. Serial Peripheral Data I/O Register

3.7.5 SPI Application Example

3-76

The example application and program are similarto the one shown in Section
2, paragraph 2.5, except the SPI function will be added.

A switch is connected to an input pin. When the switch is closed, the program
will send data out to a peripheral device using the SPI function and will cause
an lEO connected to an output pin to light for about one second and then
go out.

The peripheral device used in this application is an MC74HC595 serial-to
parallel shift register. Hardware setup, the SPI control register, and the soft
ware program will be discussed briefly.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Figure 3-34 shows the hardware connections for the SPI application example.
The SPI signals at the left of the diagram come from the PGMR board (an
M68HC05 PGMR, available from a Motorola distributor) or directly from the
MC68HC705C8. The shift register outputs (QA-QH of the MC74HC595) will
be monitored with an oscilloscope. In this example, the MISO line is not used.
The shifter is selected by the general-purpose output PC3 (but could have
been driven by any general-purpose output). The SS pin ofthe MC68HC705C8
is an input in master mode and must be tied high.

Figure 3-34. SPI Application Example Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-77

To initialize the SPI function, the SPCR (SPIE, SPE, -, MSTR, CPOL, CPHA,
SPR1, SPRO) bits need to be written. For this application, the SPCR was
initialized with %01010000 or $50.

SPIE = 0 No interrupts involved in this application.
SPE = 1 Enable the SPI system.
-= 0 Don't care bit.

MSTR = 1 MC68HC705C8 is the master.
CPOL = 0 Selects clock rest at low value.
CPHA = 0 MC74HC595 accepts data at rising clock edge
SPR1 = 0 Internal processor clock divide by two.
SPRO = 0 (Shift rate = 500 kHz for a 2-MHz crystal).

The SPCR needs to be initialized once. For each transfer, there is a four-step
sequence:

1) Enable the slave. In this example the PC3 general-purpose output pro-
vides the enable signal to the MC74HC595 peripheral.

2) Write data to SPDR to initiate the transfer.

3) Wait for SPIF. The slave cannot be disabled until the transfer is finished.

4) Disable the slave.

The flowchart and mnemonics for the SPI application example are shown in
Figure 3-35.

Assume this application program has been assembled and downloaded to
an MC68HC705C8. You can test this program by using an oscilloscope con
nected to the MC74HC595 parallel data outputs (pins 1-7 and 15). The pro
gram is arranged to increment the 8-bit parallel bit value each time the switch
is pressed. Figure 3-36 is the complete listing for the SPI application example
program.

3.8 PROGRAMMABLE TIMER

3-78

The programmable timer can be used for many purposes, including input
waveform measurements, while simultaneously generating an output wave
form. The architecture ofthe main timer is primarily a software driven system.
Software can be written for measuring pulse widths and frequencies, for
controlling timer output signals, or for timing delays.

The programmable timer is based on a 16-bit free-running counter preceded
by a prescaler that divides the internal processor clock by four. A timer

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

!
/

FLOWCHART MNEMONIC PROGRAM

BCLR

t-;;;;;;;:;.;;:;;;;~:--(------<{ LDA I STA

3,PORTC

SPIVAL
SPDR

INC SPIVAL

HERE BRCLR 7,SPSR,HERE

BSET 3, PORTC

NOTE: Shaded parts of this figure are identical tn Figure 2-6. Unshaded instructions were added to
demonstrate the SPI system.

Figure 3-35. SPllApplication Example Flowchart

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-79

0001
0002
0005
0006
OOOa
OOOb
OOOc

00ge
009f

0250

0250 a6 ff
0252 b7 06

0254 a6 e8
0256 b7 02

0258 3f ge
025a a6 50
025c b7 Oa

* Simple 68HC05 SPI Program Example *

PORTB
PORTC
DDRB
DDRC
SPCR
SPSR
SPDR

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$01
$02
$05
$06
$OA
$OB
$OC

Direct address of port B (sw)
Direct address of port C (LED)
Data direction control, port B
Data direction control, port C
SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPRO
SPIF,WCOL,-,MODF;-,-,-,-
SPI Data Register

SPIVAL EQU
TEMPl EQU

$9E
$9F

One byte RAM storage location
One byte temp storage location

ORG $250 Program will start at $0250

INIT LDA #$FF Begin initialization
STA DDRC Set port C to act as outputs

* Port B is configured as inputs by default from reset.
LDA #$E8 Red & grn LED & beep off, SPI EN off
STA PORTC Turn off red LED

* Some pins of port C (my board) happen to be connected
* to devices which don't apply to this example program.
* The $E8 pattern turns off my stuff & turns off red LED

CLR
LDA
STA

SPIVAL Start with 0
#%01010000 SPE, MSTR, norm 10 fast clk
SPCR Initialize SPI control reg

025e b6 01 TOP LDA
BPL
JSR

PORTB
TOP
DLY50

Read swat MSB of Port B
0260 2a fc
0262 cd 02 86

0265 17 02
0267 b6 ge
0269 b7 Oc
026b 3c ge
026d Of Ob fd HERE
0270 16 02

0272
0274
0276
0279
027a
027c
027e
0281
0284

Id 02
a6 14
cd 02 86
4a
26 fa
lc 02
Oe 01 fd
cd 02 86
20 d8

DLYLP

OFFLP

Loop till MSB=l (Neg trick)
Delay about 50 mS to debounce

BCLR 3,PORTC Drive select of 74HC595 low
LDA SPIVAL Current data to send to SPI
STA SPDR Send SPI data
INC SPIVAL Add one to current SPI value
BRCLR 7,SPSR,HERE Wait for SPIF to set
BSET 3,PORTC Drive select of 74HC595 hi

BCLR
LDA
JSR
DECA
BNE
BSET
BRSET
JSR
BRA

6,PORTC
#20
DLY50

Turn on LED (bit-6 to zero)
Decimal 20 assembles to $14
Delay 50 mS
Loop counter for 20 loops

DLYLP 20 times (20-19,19-18,.1-0)
6,PORTC Turn LED back off
7,PORTB,OFFLP Loop here till sw off
DLY50 Debounce release
TOP Look for next sw closure

Figure 3-36. SPI Application Example Program

3-80 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

overflow function allows software to extend its timing capability beyond the
range of 16 bits. All activities of the timer are referenced to this one free
running counter so all timer functions have a known relationship to each
other. From the MCU viewpoint, physical time is represented by the count
in this free-running counter and the counter can be read at any time "to tell
what time it is."

The input-capture function can be used to automatically record (latch) the
time when a selected transition was detected. The output-compare function
can be used to generate output signals or for timing program delays.

3.S.1 Functional Description

The timer features are as follows:
• 16-Bit Free-Running Counter with Prescaler
• Overflow Flag to Extend Timing Range
• 16-Bit Output-Compare Register
• 16-Bit Input-Capture Register
• Three Interrupt Sources

The block diagram of the timer is shown in Figure 3-37.

The programmable timer capabilities are provided by using ten addressable
8-bit registers and two external pins, output level (TCMP) and edge input
(TCAP). The 10 registers are as follows:

Counter High Register, location $18
Counter Low Register, location $19
Alternate Counter High Register, location $1A
Alternate Counter Low Register, location $1 B
Input-Capture High Register, location $14
Input-Capture Low Register, location $15
Output-Compare High Register, location $16
Output-Compare Low Register, location $17
Timer Control Register (TCR), location $12
Timer Status Register (TSR), location $13

Because the timer has a 16-bit architecture, the counter and alternate counter,
input-capture, and output-compare values are represented by two 8-bit reg
isters. The two 8-bit registers contain the high and low byte of each timer
function value (see Figure 3-38).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-81

~ PIN

3-82

EDGE LATCH 15
SELECT ~-t> AND
DETECT

15

~-H
l!i
15

I

I
15

y!Y!
Q8 ~

I I I

8 7

16-BIT INPUT-C~TURE REGISTER

II 8 7 II
16-BIT TIMER COUNTER

I LSBBUFFER

.J.J,.
16-BIT COMPARATOR 1=1
II

16-BITOUTPUT-COMPAREREGISTER

8 7

I

CIs;!
1il5 ~8 ~

0

0

I
I

~
0

I

MERNAL PROCESSOR
CLOCK

(XTAL+2)

t I FIXED I DIV~EBY

I

I PIN
CONTROL I LOGIC

~

D-
I I II '-

I TIMER CONTROL REGISTER I I TIMER STATUS REGISTER I
I

INTERNAL
DATA BUS

I

Figure 3-37. Programmable Timer Block Diagram

TIMER
INTERRUPT
REQUEST

TCMP
PIN

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

READ COUNTER ___ +--1
HIGH BYTE

READ COUNTER -----i
LOW BYTE

o

INTERNAL DATA BUS

[1]- LSB latch is normally transparent, becomes latched when high
byte of counter is read, and becomes transparent again when low byte
of counter is read.

Figure 3-38. 16-Bit Counter Reads

Generally, accessing the low byte of a specific timer function allows full
control of that function; however, an access of the high byte inhibits that
specific timer function until the low byte is also accessed. A read from the
MSB causes the LSB to be latched at the next sequential address.

NOTE

Set the I bit in the condition code register while manipulating both
the high- and low-byte register of a specific timer function. This
prevents interrupts from occurring between the time that the high
and low bytes are accessed.

A description of each register and the external pins is given in the following
paragraphs.

3.8.2 Timer Counter and Alternate Counter Registers

The 16-bit free-running counter or counter register starts from a count of
$0000 as the MCU is coming out of reset and then counts up continuously.
When the maximum count is reached ($FFFF), the counter rolls over to a
count of $0000, sets an overflow flag, and continues to count up. As long as
the MCU is running in a normal operating mode, there is no way to reset,
change, or interrupt the counting of this counter. This counter, which may
be read at any time to "tell what time it is," is always a read-only register.

The prescaler gives the timer a resolution of 2.0 fLs if the MCU crystal is
4 MHz (internal processor clock is 2.0 MHz). Including "0", the counter repeats

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-83

every 65,536 counts ($FFFF = 65,535). Because the free-running counter is
preceded by a fixed divide-by-four prescaler, the value in the free-running
counter repeats every 262,144 internal processor clock cycles.

The double-byte free-running counter can be read from either oftwo locations
$18-$19 or $1A-$1 B. These registers are called the counter register and the
counter alternate register, respectively.

NOTE

Normally, a timer read is made from the counter alternate register
unless the read sequence is intended to clear the timer overflow flag.

If a read of the free-running counter register first addresses the most signif
icant byte ($18), it causes the least significant byte ($19) to be transferred to
a buffer. This buffer value remains fixed after the first most-significant-byte
read, even if the user reads the most significant byte several times. This
buffer is accessed when reading the free-running counter register least sig
nificant byte ($19), thus completing a read sequence ofthe total 16-bit counter
value. The same read sequence applies to the counter alternate register. A
read sequence containing only a read of the least significant byte of the free
running counter ($19) will receive the count value at the time of the read.

NOTE

In reading either the free-running counter or counter alternate reg
ister, if the most significant byte is read, the least significant byte
must also be read to complete the sequence.

3.8.3 Input-Capture Concept

3-84

The input-capture function is a fundamental element of the MC68HC705C8
timer architecture. Input-capture functions are used to record the time at
which some external event occurred. This is accomplished by latching the
contents of the free-running counter when a selected edge is detected at the
related timer input pin (edge input-TCAP pin). The time at which the event
occurred is saved in the input capture register (16-bit latch). Although it may
take an undetermined variable amount of time to respond to the event, soft
ware can tell exactly when the event occurred.

By recording the times for successive edges on an incoming signal, software
can determine the period and/or pulse width of the signal. To measure a
period, two successive edges of the same polarity are captured. To measure

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

a pulse width, two alternate polarity edges are captured. For example, to
measure the pulse width for a high-going pulse, capture the time at a rising
edge and subtract this time from the time captured for the subsequent falling
edge.

When the period or pulse width is known to be less than a full 16-bit counter
overflow period, the measurement is very straightforward. The counter repeats
every 65,536 timer clocks, which is equivalent to 262,144 internal processor
clock cycles. For period or pu Ise widths that extend over the full 16-bit counter
period, write software to keep track of the overflows of the 16-bit counter.
Examples where measurement of a period or pulse width would be used are
the period of a pendulum swing or the AC line frequency (to distinquish
between 50 and 60 Hz).

Another important use for the input-capture function is to establish a time
reference. In this case, an input-capture function is used in conjunction with
an output-compare function. For example, suppose an application requires
an output signal to be activated a certain number of clock cycles after de
tecting an input event (edge). The input-capture function would be used to
record the time at which the edge occurred. A number corresponding to the
desired delay would be added to this captured value and stored in the output
compare register. Since both input captures and output compares are ref
erenced to the same 16-bit counter, the delay can be controlled to the res
olution of the free-running counter, independent of software latencies. (An
example of this use would be to fire a spark plug "n" microseconds after a
timing pulse is sent from the engine flywheel.)

3.8.4 Input-Capture Operation

The input capture function includes a 16-bit latch, input edge detection logic,
and interrupt generation logic. The latch captures the current value of the
free-running counter when a selected edge is detected at the corresponding
timer input pin. The edge detection logic includes a control bit (IEDG), which
enables the user's software to select the polarity of edge(s) that will be
recognized. The interrupt generation logic includes a status flag to indicate
that an edge has been detected and a local interrupt enable bit to determine
whether or not the corresponding input-capture function will generate a hard
ware interrupt request. See Figure 3-39.

The two 8-bit registers (locations $14-most significant byte and $15-least
significant byte) comprising the 16-bit input-capture register are read-only
and are used to latch the value of the free-running counter after a defined

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-85

IEDG = 0 lor falling edges
IEDG = 1 lor rising edges

LATCH

t----4 ICF STATUS FLAG

~_-)~ REQUEST A TIMER
INTERRUPT

Figure 3-39. Input-Capture Operation

transition is sensed by the corresponding input-capture edge detector. The
level transition which triggers the counter transfer is defined by the input
edge bit (lEDG in the timer control register).

The free-running counter contents are transferred to the input-capture reg
ister on each proper signal transition, regardless of whether the input-capture
flag (lCF) is set or clear. There is an uncertainty about the exact value latched
due to the resolution of the counter and synchronization delays. The input
capture register always contains the free-running counter value, which cor
responds to the most recent input capture. Reset does not affect the contents
of the input-capture register.

3.8.5 Output-Compare Concept

3-86

The output-compare function is also a fundamental element of the
MC68HC705C8 timer architecture. Output-compare functions are used to pro
gram an action to occur at a specific time (i.e., when the 16-bit counter reaches
a specific value). The value in the output-compare register is compared with
the value of the free-running counter on every fourth bus cycle. When the
output-compare register matches the counter value, an output is generated,
which sets an output compare status flag and transfers the level of the OLVL
bit to the TCMP output pin (see Figure 3-40).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

r---~~~--------~~~---,=?

OL VL = a to force TCMP
pin to a on valid compare.

OL VL = 1 to force TCMP
pin high on valid compare.

r--.-------\

LOCAL INTERRUPT ~
MASK (ENABLE)

t-------\ OCF STATUS FLAG

J---~~ REQUEST A TIMER
INTERRUPT

Figure 3-40. Output-Compare Operation

Change the values in the output-compare register and the output level bit
after each successful comparison to control an output waveform or to es
tablish a new elapsed timeout.

An interrupt can also accompany a successful output compare if the corre
sponding interrupt enable bit (OCIE) is set.

One of the easiest uses for an output-compare function is to produce a pulse
of a specific duration. First, a value corresponding to the leading edge of the
pulse is written to the output-compare register. The output compare is con
figured to automatically set the TCMP output either high or low, depending
on the polarity of the pulse being produced. After this compare occurs, the
output compare is reprogrammed to automatically change the output pin
back to its inactive level at the next compare. A value corresponding to the
width of the pulse is added to the original output-compare register value,
and this result is written to the output-compare register. Since the pin-state
changes occur automatically at specific values of the free-running counter,
the pulse width can be controlled accurately (to the resolution of the free
running counter) independent of software latencies. By repeating the actions
for generating pulses, you can generate an output signal of a specific fre
quency and duty cycle.

Another use of the output-compare function is to generate a specific delay.
For example, suppose you want to produce a 1 millisecond delay to time

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-87

programming of an EPROM byte. First, go through the initial programming
steps to the point where the programming supply has been enabled (EPGM
bit has been written to one). Now, read the current value of the main timer
counter and add a number corresponding to 1 millisecond (XTAl=2 MHZ,
INT ClK = 1 MHz, 1 timer count = 4 fLs; thus, 1 ms = 250 decimal = $FA). Write
this sum to the output-compare register so that an output compare will occur
when the counter gets to this value.

In this example, the actual EPROM programming time started just before the
current time was read from the counter and ended after responding to the
output compare and turning off EPGM. The small delays for setting up the
output compare and the latency for responding to the output compare were
not considered because they only make the EPROM programming time longer
by a few microseconds. As you become a more advanced user of output
compare functions, you will learn how to correct these details, although it is
often not necessary.

NOTE

This program would have to run from RAM since the EPROM is not
usable during programming.

3.S.6 Output-Compare Operation

3-88

The output-compare register is a 16-bit register composed of two 8-bit reg
isters at locations $16 (most significant byte) and $17 (least significant byte).
The contents of the output-compare register are compared with the contents
of the free-running counter once during every four internal processor clocks.
If a match is found, the output-compare flag (OCF) bit is set, and the output
level (OlVl) bit is clocked (by the output-compare circuit pulse) to the TCMP
pin.

After a processor write cycle to the most significant byte of the output
compare register ($16), the output-compare function is inhibited until the
least significant byte ($17) is also written. You must write to both bytes
(locations) if the most significant byte is written first.

Because neither the output-compare flag (OCF bit) or output-compare register
is affected by reset, take care when initializing the output-compare function
with software. The following procedure is recommended:

1) Write to the high byte of the output-compare register to inhibit further
compares until the low byte is written.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

2) Read the timer status register to clear the OCF bit if it is already set.

3) Write to the low byte of the output-compare register to enable the
output-compare function.

The purpose of this procedure is to prevent the OCF bit from being set
between the writes to the high and low halves of the 16-bit output-compare
register. A software example follows:

B7 16 STA OCMPHI Inhibit output compare
B6 13 LDA TSR Clear OCF bit if set
BF 17 STX OCMPLO Ready for next compare

3.B.7 Timer Control Register (TCR)

The timer control register (see Figure 3-41) is an 8-bit read/write register
containing five control bits. Three of these bits control interrupts associated
with the three flag bits found in the timer status register. The other two bits
control 1) which edge is significant to the input-capture edge detector (i.e.,
negative or positive) and 2) the next value to be clocked to the TCMP output
pin in response to a successful output compare.

The TCMP pin is forced low during external reset and stays low until a valid
compare changes it to a high.

MOTOROLA

Bn? 6 5 4 2 1 Bno

ICiE I OCIE I TOlE I 0 II 0 0 IIEDG I OLVL I $12 TCR
I I I I I I I I

I 0 0 0 0 0 0 U 0 I RESET CONDITION II L L OUTPUT COMPAAE LEVEL

INPUT CAPTURE EDGE
O-FALLING 1-RISING

TIMER OVERFLOW INTERRUPT ENABLE

OUTPUT COMPARE INTERRUPT ENABLE

INPUT CAPTURE INTERRUPT ENABLE

Figure 3-41. Timer Control Register

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-89

3.S.S Timer Status Register (TSR)

3-90

The timer status register (see Figure 3-42) is an 8-bit register with three read
only bits that indicate the following status information:

1) A selected transition has occurred at the edge input (TCAP) pin with an
accompanying transfer ofthe free-running counter contents to the input
capture register.

2) A match has been found between the free-running counter and the
output-compare register.

3) A free-running counter transition from $FFFF to $0000 has been sensed
(timer overflow).

ICF

B~ 7 6 5 4 2 ~o

ICF OCF TOF ° II ° I I I I I

1 ° ° 0 0 0 '--___________ 0 __ 0 __ 0----'1 RESET CONDITION

l L LTIMER OVERFLOW FLAG

OUTPUT COMPARE FLAG

INPUT CAPTURE FLAG

Figure 3-42. Timer Status Register

The input-capture flag (lCF) is set when a proper edge has been sensed by
the input-capture detector. It is cleared by a processor access of the timer
status register (with ICF set) followed by accessing the low byte ($15) of
the input-capture register.

OCF
The output-compare flag (OCF) is set when the output-compare register
contents matches the contents of the free-running counter. OCF is cleared
by accessing the timer status register (with OCF set) and then accessing
the low byte ($17) of the output-compare register.

TOF
The timer overflow flag (TOF) bit is set by a transition of the free-running
counter from $FFFF to $0000. It is cleared by accessing the timer status
register (with TOF set) and then accessing the least significant byte ($19)
of the free-running counter.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

NOTE

The counter alternate register contains the same value as the free
running counter but reading the alternate register does not clear
TOF; therefore, this alternate register should be used to read the
timer counter in all cases except when intending to clear TOF. This
will avoid the possibility of the TOF being unintentionally cleared.

3.S.9 Timer Application Example

Figure 3-43 shows an example program to produce a 10-second delay after
the timer counter is read. In this case, the timer counter and the output
compare functions are used in the software program.

The two key programming instructions that you should note are 1) the read
and/or write instructions at the alternate counter and output-compare reg
isters and 2) the addition of 16-bit numbers.

3.9 STOP/WAIT INSTRUCTION EFFECTS

The STOP and WAIT instructions put the MC6.8HC705C8 MCU into low power
consumption modes. These instructions also affect the programmable timer,
the SCI, and the SPI systems. A STOP/WAIT flowchart is shown in Figure
3-44.

3.9.1 Low Power-Consumption Modes

The STOP instruction places the MC68HC705C8 in its lowest power
consumption mode. In the STOP mode, the internal oscillator is turned off,
causing all internal processing to be halted. During the STOP mode, the I bit
in the condition code register is cleared to enable external interrupts. All
other registers and memory remain unaltered, and all I/O lines remain un
changed. This state continues until an external interrupt (IRQ) or RESET is
sensed, at which time the internal oscillator is turned on. The external in
terrupt or reset causes the program counter to vector to memory location
$1 FFA and $1 FFB or $1 FFE and $1 FFF. These locations contain the starting
address of the interrupt or reset service routine, respectively.

The WAIT instruction also places the MC68HC705C8 in a low power
consumption mode, but the WAIT mode consumes somewhat more power
than the STOP mode. In the WAIT mode, all CPU processing is stopped;

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-91

'\
\

\

* Simple 68HC05 Timer Program Example *

0006 DDRC EQU $06 Data direction control, port C
0002 PORTC EQU $02 Direct address of port C (LED)
0016 OCMPHI EQU $16 Output compare high reg.
0017 OCMPLO EQU $17 Output compare low reg.
0013 TSR EQU $13 ICF,OCF,TOF,O;O,O,O,O
OOaO TENSEC EQU $AO Used to count 39 out compares
OOal TEMP EQU $A1 One byte temp for 16 bit OCMP add

0350 ORG $350
0350 a6 40 INIT LDA #%01000000 Make DDR bit for LED a one
0352 b7 06 STA DDRC So Red LED pin is an output
0354 a6 40 BEGIN LDA #%01000000 Port C bit 6 is red LED
0356 b8 02 EOR PORTC Toggle red LED on PGMR board
0358 b7 02 STA PORTC Red LED will change every 10 Sec
035a a6 27 LDA *39 10 sec = 38 rev + 9,632 ticks
035c b7 aO STA TENSEC Counter for timer out compares

**
* For XTAL=2MHz (Int prOc. clk=lMHz) Timer +4 makes 1 count = 4~S
* Counter rolls from $FFFF to 0 every 65,536 counts (262.144 mS)
* 10 Sec + 262.144 mS = 38 revs of timer & 9,632 counts remainder
* 10 Sec = 2,500,000 counts @ 4~S/count. 38 * 65,536 = 2,490,368
* 2,500,000 - 2,490,368 = 9632. 9632 (decimal) = $25AO

*

*
*
*
*
*
*

* To time 10 Sec, read initial count, add 9632 (remainder count) *
* store to out compare reg ("schedule a compare"). When OCF flag =1 *
* clear it & next compare will occur when timer counts 65,536 counts *
* count the first compare plus 38 more compares (full revs). *
**

035e a6 aO LDA *$AO Lower half hex equiv of 9632
0360 bb 17 ADD OCMPLO Low half of a 16 bit add
0362 b7 a1 STA TEMP Temp. store until OCMPHI is added
0364 a6 25 LDA *$25 Upper half hex equiv of 9632
0366 b9 16 ADC OCMPHI High half of 16 bit add (wi carry)
0368 b7 16 STA OCMPHI Update OCMP hi
036a b6 a1 LDA TEMP Get previous saved OCMP low
036c b7 17 STA OCMPLO Update OCMP 10 after OCMP hi

**
* You add low half first due to possible carry, then add high byte
* including any carry (ADC). You should update out compare high
* byte first to avoid an erroneous compare value (compare lockout
* after OCMPHI till OCMPLO prevents this potential problem.

*
*
*
*

**

036e Oc 13 fd LOOP BRCLR 6, TSR,LOOP Checks for out compo flag
0371 b6 17 LDA OCMPLO To clear OCF flag
0373 3a aO DEC TENSEC Ten seconds count down
0375 26 f7 BNE LOOP Loop until 10 sec done
0375 20 db BRA BEGIN Repeat so PC6 toggles lID Sec

Figure 3-43. Timer Application Example Program

3-92 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

YES

STOP OSCUATOR
AND ALL CLOCKS

SET I BIT IN CC REG

OSCIlLATOR ACTIVE
TIMER, SCI, AND SPI

CLOCKS ACTIVE
CPU ClOCKS STOPPED

(1) FETCH RESET VECTOR or
(2) SERVICE INTERRUPT

a SAVE CPU REGS ON STACK
b. SETI BIT IN CC REG
c. VECTOR TO INTERRUPT

SERVICE ROUTINE

Figure 3-44. STOP/WAIT Flowchart

however, the internal clock, the programmable timer, SPI and SCI systems
(if enabled) remain active. During the WAIT mode, the I bit in the condition
code register is cleared to enable all interrupts. All other registers and mem
ory remain unaltered, and all parallel 110 lines remain unchanged. This state
continues until any interrupt or reset is sensed. At this time, the program
counter is loaded with the interrupt vector at memory location $1 FF4-$1 FFF,
which contains the starting address of the interrupt or reset service routine.

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 3-93

3.9.2 Effects on On-Chip Peripherals

The STOP instruction causes the oscillator to be turned off, which halts all
internal CPU processing as well as the operation of the programmable timer,
SCI, and SPI. The oscillator starts again when an external interrupt (IRQ) or
RESET occurs.

3.9.2.1 TIMER ACTION DURING STOP MODE. When the MCU enters the STOP
mode, the timer counter stops counting (the internal processor clock is
stopped). It remains at that particular count value until an interrupt or reset
occurs. If the interrupt is an external low on the IRQ pin, the counter resumes
from its stopped value as if nothing had happened. If a reset occurs, the
counter is forced to $FFFC.

3.9.2.2 SCI ACTION DURING STOP MODE. When the MCU enters the STOP mode,
the baud rate generator driving the receiver and transmitter is stopped, which
halts all SCI activity.

If the STOP instruction is executed during a transmitter transfer, that transfer
is halted. When the STOP mode is exited, that particular transmission re
sumes if the exit is the result of a low input to the IRQ pin. Since the STOP
mode interferes with SCI character transmission, make sure that the SCI
transmitter is idle when the STOP instruction is executed.

If the receiver is receiving data when the STOP instruction is executed, re
ceived data sampling is stopped (baud rate generator stops), and the re
mainder of the data is lost. The STOP mode should not be used while SCI
characters are being received.

3.9.2.3 SPI ACTION DURING STOP MODE. When the MCU enters the STOP mode,
the bit rate generator driving the SPI stops, halting all master mode SPI
operation. Thus, the master SPI is unable to transmit or receive data. If the
STOP instruction is executed during an SPI transfer, that transfer is halted
until the MCU exits the STOP mode (if the exit resulted from a logic low on
the IRQ pin). If the STOP mode is exited by a reset, then the appropriate
control/status bits are cleared, and the SPI is disabled.

3-94

If the device is in the slave mode when the STOP instruction is executed, the
slave SPI will still operate. It can still accept data and clock information in
addition to transmitting its own data back to a master device. At the end of

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

a transmission with a slave SPI in the STOP mode, no flags are set until a
logic low IRQ input results in an MCU "wake up."

When the MCU enters the STOP mode, all enabled output drivers (TDO,
TCMP, MISO, MOSI, and SCK ports) remain active. Any sourcing currents
from these outputs will be part of the total supply current required by the
device.

3.9.2.4 WAIT MODE EFFECTS. When the MCU enters the wait mode, the CPU
clock is halted. All CPU action is suspended; however, the timer, SCI, and
SPI systems remain active. An interrupt from the timer, SCI, or SPI (in addition
to a logic low on the IRQ or RESET pins) will cause the processor to resume
normal processing.

The wait mode power consumption depends on how many systems are
active. The power consumption will be greatest when all the systems (timer,
TCMP, SCI, and SPI) are active. The power consumption will be least when
the SCI and SPI systems are disabled (timer operation cannot be disabled in
the wait mode). If a nonreset exit from the wait mode is performed (e.g.,
timer overflow interrupt exit),' the state of the remaining systems will be
unchanged. If a reset exit from the wait mode is performed, all systems revert
to the (disabled) reset state.

3.10 OTPROM/EPROM PROGRAMMING

The OTPROM or EPROM programming technique is used to load a user
program into the MC68HC705C8 MCU OTPROM or EPROM. This type of
programming is accomplished via a bootstrap mode of operation.

3.10.1 Erasing

MC68HC705C8 EPROM MCUs are erased by exposure to a high-intensity
ultraviolet (UV) light with a wavelength of 2537 angstrom. The recommended
dose (UV intensity x exposure time) is 15 Ws/cm2. UV lamps should be used
without shortwave filters, and the EPROM MCU should be postioned about
one inch from the UV lamps.

MC68HC705C8 one-time programmable ROM (OTPROM) MCUs are shipped
in an erased state and are packaged in an opaque plastic package; thus,
erasing operations cannot be performed on OTPROM MCUs.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-95

3.10.2 Programming

Programming operations are controlled by software-accessible control bits.
The software program which programs the internal EPROM/OTPROM is lo
cated in either the on-chip bootstrap ROM or internal RAM.

The first programming method uses a program in the bootstrap ROM to read
information from an external8K by 8 EPROM and to program this information
into the on-chip EPROM/OTPROM. The external EPROM is connected to 1/0
port pins of the MC68HC705C8. In this programming method, information to
be programmed into the internal EPROM/OTPROM is first programmed into
the external EPROM using an industry-standard PROM programmer.

A second programming method allows user programs developed on a per
sonal computer to be downloaded to the MC68HC705C8 for programming
into the on-chip EPROM/OTPROM. This method eliminates the extra steps
needed to program a separate 8K by 8 EPROM. A small program that runs
on the personal computer is available through the Motorola FREEWARE bul
letin board service (BBS) and can be downloaded for the price of the phone
call. This method is explained in Section 4 of this applications guide.

Both methods described for programming the on-chip EPROM/OTPROM ul
timately use a software program running in the MCU that is being pro
grammed. The programming software uses the program register (PROG) to
control the EPROM programming process.

3.10.3 Program Register

The program register (see Figure 3-45) is used for PROM programming.

B~7 6 5 4 3 B~O

0 0 0 0 II 0 LAT 0 I PGM I $1C PROG
I I I I I I I I

I 0 0 0 0 0 0 0 0 I RESET CONDITION l L~NG","rn
O-OFF 1-0N

LATCH CONTROL

Figure 3-45. Program Register

3-96 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

LAT
Prior to a PROM write operation, set the latch (LAT) bit. This enables the
PROM data and address buses to be latched for programming a PROM
location. Reset clears the LAT bit. When the LAT bit is cleared, PROM data
and address buses are unlatched for normal CPU operations. This bit, which
is both readable and writable, must be cleared to allow PROM read op
erations.

PGM
When the program (PGM) bit is set, Vpp power is applied to the PROM for
programming mode of operation. Reset clears the PGM bit. This bit, which
is readable, is only writable when the LAT bit is set. Ifthe LAT bit is cleared,
the PGM bit cannot be set.

3.10.4 Option Register

The option register (see Figure 3-46) is used to select memory RAM/ROM
configurations, enable PROM security, and select the MCU IRQ pin sensitivity.

RAMO

Bit 7 6 5 2 Bit °
I R""A7"'MO'-'-1 ;..;;.RA7'M,,-1 '-7°""""'--7°--,' 1 ..;:,SE7'C---L.--:---'-....;I'7RQ~---:'o---'1 $1 FDF OPTION

I I I I I I I
I ° ° ° ° PROM Motorola ° I RESET CONDITION l l l L SELECT IRQ SENSITIVITY

O-EDGE & LEVEL 1-EDGE ONLY

Motorola USE ONLY (1 or 0)

EPROM SECURITY
BIT IMPLEMENTED IN EPROMIOTPROM

SELECT MEMORY TYPE IN $0100-$015F AREA
0-96 BYTES PROM 1-96 BYTES RAM

SELECT MEMORY TYPE IN $0020-$004F AREA
0-48 BYTES PROM 1-32 BYTES RAM

Figure 3-46. Option Register

The RAMO bit determines the amount and type of memory in the
$0020-$005F area.

0=48 bytes of PROM ($0020-$005F)
1 = 32 bytes of RAM ($0030-$005F)

When RAM is selected by RAMO= 1, the 16 bytes from $0020-$002F are
unused. This bit is readable and writable at all times, allowing selection of

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-97

3-98

the desired memory configuration during program execution. Reset clears
the RAMO bit.

RAM1
The RAM1 bit determines the type of memory in the $0100-$015F area.

0=96 bytes of PROM
1 = 96 bytes of RAM

This bit is readable and writable at all times, allowing selection of the
desired memory configuration during program execution. Reset clears the
RAM1 bit.

SEC
The SEC bit is implemented as a PROM bit. During PROM programming,
the SEC bit is set to enable the security feature (to disable the bootloader).
This bit is normally cleared (security disabled) for an OTPROM device. For
an EPROM device, clearing is accomplished by exposing the EPROM to UV
light until the SEC bit is erased.

Bit 2
Factory use (logic one or logic zero).

IRQ
When the IRQ bit is set (logic one), the IRQ pin is negative edge and level
sensitive. When the IRQ bit is cleared (logic zero), the IRQ pin is negative
edge sensitive. Reset sets the IRQ bit. The IRQ bit can only be written once
following each reset.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SECTION 4
APPLICATIONS

This section discusses the development of an application (home thermostat
project) based on a microcontroller. A typical MCU application involves hard
ware development, software development, and mechanical development.
Though separate to some degree, all elements must work together as a
system; thus, everyone working on the project should be somewhat familiar
with the requirements of each element.

The principles of systematic project management, including planning, review,
prototyping, and testing, still apply. Although genius and unusual creativity
are assets to a microcontroller designer, they are not a requirement. The
majority of MCU applications result from simple systematic development.
Due to the nature of MCUs, applications based on an MCU often include
noteworthy features that cannot be found on similar products which do not
use an MCU.

In this applications guide, we assume some knowledge of the traditional
mechanical and electrical aspects of a project. What is new is the software
program that allows the MCU to perform the desired functions of the appli
cation. On-chip peripherals that can be configured and controlled by program
instructions are also a new concept.

When residential electricity became common, house plans required addi
tional pages to document the location of switches and outlets. The idea of
how electricity went from one place to another was foreign to the architects
of the day. A new system of symbols and conventions had to be developed.

MCU-based application projects are essentially the same as mechanical or
discrete logic projects except for the addition of software programming.
Software programming is not entirely an added design task because the
programmable nature of an MCU simplifies the hardware aspects of the
project.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-1

4-2

The normal order of events in MCU-based projects is as follows:

1) Proposal - A marketing and/or design group proposes preliminary
requirements of a project to satisfy customer demand.

2) Specification - This step defines limits of operation but should not
identify internal components, preventing selection of the most cost
effective solution to a problem.

3) Breadboarding - This procedure is primarily a hardware activity al
though some software is normally required to verify the accuracy of
the hardware design.

4) Software Development - This step involves planning and implemen
tation of software programs. The programmer must know how the sys
tem is electrically interfaced to components outside the MCU because
software programs control the operation of these external components.

5) System Integration - This procedure involves putting together finished
(preliminary) software and hardware.

6) Testing - This step is a design verification process.

In practice, the steps occur in parallel to some degree, and some changes
normally occur during the development which impact all of the steps. In this
applications guide, we assume you are familiar with traditional design meth
ods; therefore, we will only discuss how MCU-based methods differ from
traditional methods.

The first area of difference isin the hardware design where the flexibility of
the software-driven MCU simplifies the connection of external circuitry. Sig
nal polarity and timing are easily controlled by software to match the needs
of external components. The hardware design consists of connecting pe
ripheral devices to general-purpose I/O lines and of checking the ability of
software to control the connected devices.

The second and most significant area of difference between MCU-based
projects and discrete logic projects is the area of software development. The
preparation of programs replaces the development of complex logic circuits.
Instead of laboring over complex wire-wrapped breadboards with an oscil
loscope, the programmer sits at a computer terminal and develops sets of
computer instructions.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

4.1 HARDWARE DEVELOPMENT METHODS

When a project has been selected, determine what hardware will be required
for the final design (input and output devices and power supply) and what
hardware can be used to make the prototype (substitutions such as poten
tiometers for temperature sensors).

Two approaches can be used to develop a hardware circuit (breadboarding)
for a system based on an M68HC05 MCU. You can use an M68HC05 PGMR
board, or you can wire a complete circuit on another board with a socket for
the MCU. The PGMR board approach is the fastest since the basic wiring to
the MCU is already done. The complete circuit with a socket for the MCU
has the advantage of not having to worry about interference between PGMR
board functions and application requirements.

Since the PGMR board is also used to program information into the EPROM
in the MCU, there are a few areas where some conflict may occur between
the planned application and components on the PGMR board. The areas are
small and usually easy to avoid. For example, the port D pins of the MCU
are connected to switches on the PGMR board. To use these pins, you would
turn off the switches so that there is no conflict with the components of your
application.

Also the PGMR board can be used with other members of the M68HC05
Family to increase your development choices. In addition to the MC68HC705C8
8K EPROM device, the PGMR can also operate with the MC68HC805C4
4K EEPROM device or the MC68HC05A6 4K ROM + 2K EEPROM device. Each
of these devices supports a slightly different approach to development.

With the EPROM approach (MC68HC705C8), you would write a software
program, transfer this program into the EPROM in the MCU, and reset the
MCU to execute the program. When you discover a mistake or want to make
a change, you remove the MCU from the PGMR board and erase the EPROM
with an ultraviolet (UV) light source. After the MCU is erased, you can pro
gram the modified program into it and continue debugging (finding errors).

After a program is developed with a windowed EPROM, you can program
the working software program into any of several OTP MCUs for use in your
finished products. The OTP MCU is identical to the windowed device used
for development, except that it is packaged in a less expensive plastic pack
age. Since this plastic package is opaque, you cannot erase the on-chip
EPROM after it has been programmed.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-3

The MC68HC805C4 has 4K bytes of electrically erasable PROM (EEPROM),
which allows easier erasure of programs during development (EEPROM does
not have to be erased with UV light). In most other respects this MCU is the
same as the MC68HC705C8 OTPROM MCU. Thus, programs can be devel
oped with the MC68HC805C4 and later programmed into less expensive
MC68HC705C8 OTP MCUs for production quantities.

The MC68HC05A6 is also similar to the MC68HC705C8 except that it has 2K
bytes of EEPROM and a 4K-byte ROM monitor program instead of an
8K-byte EPROM. This on-chip monitor program allows you to interactively
develop and check programs; thus, you can develop a program on a personal
computer, transfer it into the EEPROM in the MC68HC05A6, and try the pro
gram using the monitor commands of the on-chip monitor program. When
a mistake is found, you can often make the change with the single-line as
sembler command of the monitor and retry the program immediately. This
was the method used to develop the thermostat application example. Al
though we could have developed this application using the MC68HC705C8,
it would have taken slightly longer.

Motorola produces a line of low-cost (about $500) evaluation boards (EVMs)
which can be used for high-speed interactive development. To use this de
velopment approach, you would build a prototype of your system with a
socket where the MCU will go. Instead of an MCU, you would connect the
EVM into this socket. The EVM emulates the actions of a real MCU but allows
visibility into the internal activities of the MCU.

Some of the possible uses for an EVM include examination and modification
of memory locations, executing a user program until a certain instruction is
found, or looking at a program in mnemonic form. You can also trace indi
vidual instructions and look at the contents of registers and memory before
and after executing each instruction.

4.2 SOFTWARE DEVELOPMENT METHODS

4-4

The development of programs for MCU-based systems requires the use of
slightly different techniques from those used with hardware-based systems.
MCU-based systems are programmed with instructions which control the
MCU; whereas, hardware-based systems are programmed by changing wired
connections. This section describes program development techniques for
MCU-based systems.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

A program is a series of instructions for the MCU. The program gives the
MCU alternatives to transact, depending on what it learns as the reSult of
executing previous instructions.

For instance, to determine if a thermostat should operate the compressor or
the heater, we might program it as follows:

1) Read the existing temperature.
2) Read the desired temperature setting.
3) Compare these two readings.
4) If existing is less than desired, operate heater.
5) If existing is more than desired, operate compressor.

To write a program, you can draw a flowchart to show the decision process
that must be performed to accomplish a specific task. Flowcharts are not
always necessary; sometimes a list of steps will do, depending upon the
application complexity.

In general, programming requires planning and developing rules, algorithms,
or flowcharts. Programs evolve by repeating the following steps several times:

1) Generate the source file (the program in mnemonic form).
A development station (usually a personal computer) is used to generate
a text file. This text file, the source of the data to be run by the MCU,
is called the "source program." This text file is for the convenience of
the programmer since the MCU understands only 8-bit bytes of encoded
information. This text representation makes it easier to develop the
program. Previously, programs for computers had to be in binary form,
the native code of the computer.

2) Translate the source file.
The text file is then translated into a binary object file (or S-record
encoded object file) by an assembler. This assembler program runs on
the development station, not on the MCU. The assembler does not
usually directly generate the final binary file (i.e., the object code or
executable file for the MCU) since this file has to be transferred from
the development station to the MCU. The transfer process can create
errors from external electrical noise. Motorola has a file transfer form
which encodes the MCU object file into ASCII data with a checksum for
error detection. This encoding is referred to as Motorola "S-records"
or "S 1-S9" records.

3) Transfer the object file into the MCU.

MOTOROLA

The final step in developing MCU-based systems is to transfer the
S-record or binary file (the MCU program) to the MCU itself. We can

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-5

take the binary or S-record file and send it to program an external
EPROM in an EPROM programmer; send it to an EPROM programmer
to program the MCU directly (not all EPROM programmers support this);
or send the file to the MCU in bootstrap mode and have the MCU
program itself. In all cases, the S-record file is used and is translated to
binary during the programming process so the MCU can use the object
file.

4.2.1 Freeware

4-6

Motorola has an electronic bulletin board system (BBS) dedicated to support
Motorola microprocessor units (MPUs) and microcontroller units (MCUs).
"Freeware," the name for this BBS, is on-line 24 hours a day, except when
system maintenance is required. The following is a sample of the available
freeware topics:

8-Bit MCUs
16- and 32-Bit MPUs
Evaluation Boards (EVBs) and Evaluation Modules (EVMs)
Development Systems (HDS-200 and HDS-300)
IBM-PC Software Tools (assemblers, etc.)
Conference and Special Interest Groups

To use the BBS, you need to obtain the following hardware and software
items:

1) A 1200/2400 baud modem

2) A terminal or personal computer (PC) with communications software
(e.g. Kermit, ProComm, etc.)

3) A telephone line

Use the following procedure to log onto the freeware line:

1) Set systems character format to 8-bit, no parity, 1 stop bit.

2) Dial (512) 891-3733 or (512) 891-FREE.

3) A series of questions will appear. Enter the requested information to
log on. You are now a registered user.

4) Follow the menus for the desired functions (e.g., download, upload,
mail, conferences, etc). On-line help is also available.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

4.2.2 Third-Party Software

Many third-party vendors sell assemblers to translate mnemonic text files
into machine-readable files. These assemblers are similar to the free assem
bler available on the Freeware BBS except that the third-party assemblers
offer additional features.

One common feature is the ability to use macros. Macros are sets of instruc
tions used repeatedly in a program. A set of instructions can be typed into
the program, declared as a macro, and be given a name. When this set of
instructions is needed again, you would type the name of the macro where
an instruction mnemonic would normally go. The assembler recognizes the
macro name and inserts the previously defined set of instructions at that
point into the machine-readable object file. Macros improve programmer
productivity and often improve the readability of the assembly-language
listing.

A simulator is a software program that runs on a personal computer (or other
computer system). The simulator emulates the behavior of an MCU in the
same way you would play computer (see 2.6.2 Playing Computer). Although
a simulator does not operate as fast as the actual MCU, it does operate much
faster than you could play computer.

In a typical simulator, the computer screen will display windows showing
current and recent contents of memory and registers as well as the condition
of I/O pins and peripheral systems. These displays help a programmer un
derstand the operation of a program under development better than the other
methods of software development.

A simulator can show internal conditions that are not visible from outside
the MCU. In other development methods, the programmer has to deduce
this information indirectly. Two disadvantages of the simulator approach are
operating speed and accuracy of emulation. In terms of speed, the simulator
runs much slower than a real MCU would (although this is often fast enough
so the programmer does not notice any problems). Since simulators are
based on a software emulation of specified MCU operation, there can be
subtle differences between the way the simulator behaves and the way a
real MCU behaves. Ideally, these differences are small enough not to be
significant; in reality, the differences sometimes cause problems.

A compiler is similar to an assembler, but it translates a higher level language
into a machine-readable object file (rather than translating mnemonic as
sembly language). One common high-level language is "C."

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-7

The object of programming in C or some other high-level language instead
of assembly language is to improve productivity and to avoid learning the
assembly language of several different MCUs. The compiler translates the
high-level language instructions into a machine-readable object file for a
particular MCU.

The greatest disadvantage of using a high-level language and a compiler is
the significant inefficiency introduced in translating to the MCU machine
language. The degree of inefficiency depends on the power of the MCU
instruction set and the task being performed. The M68HC05 has a relatively
small instruction set compared to a mainframe or personal computer; thus,
it is difficult and inefficient to use C language instructions in this MCU.

The inefficiency of using C language instructions also affects timing of I/O
operations. For some applications where very fine control of timing is im
portant, it is better to use assembly language than to use C. Inefficient pro
grams also require more memory to perform a task.

For many applications, the speed of the CPU is so great compared to the
requirements of the application that the inefficiencies of high-level language
are unimportant. Present-day MCUs often have enough on-chip memory so
that program size may be unimportant. Using high-level language with the
M68HC05 is not recommended in most cases. However, at least one good C
compiler is available forthe M68HC05. If you want to use high-level languages
for Motorola MCUs, you can get a list of names and addresses of third-party
vendors and products from a local Motorola representative or by calling the
freeware BBS.

4.3 THERMOSTAT PROJECT DETAILS

4-8

The major steps for the project to be developed are as follows:

1) Select the application - in this case, a home thermostat.

2) Define the functions desired for the thermostat.
Read/display existing indoor/outdoor temperature
Enter/display desired indoor/outdoor temperature
Enter/display time of day
Select heating or cooling
Operate heater or compressor

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

3) Determine the hardware required based on the functions.
A microcontroller (MC68HC705C8)
Temperature sensing devices
A/D converters (MC145041)
Keypad
Display
Relays/relay drivers
Audible alarm device
Pullup resistors
Bypass capacitors
Power supply
Circuit board

4) Develop simple programs to test the hardware circuits. Develop the
main program for the desired functions. The program(s) to be written
for this project are as follows:

A program to test the audible alarm
A program to test the display
A program to test the display and keypad
A program to test the basic software organization

The programs written for this thermostat application will be written in as
sembly language on a PC using the MCU instruction set commands. An
assembler program contained in the PC memory will translate the programs
into machine language - i.e., a series of binary codes of "0" and "1" which
the MCU understands. This code will be put into the OTPROM or EPROM to
be debugged.

4.3.1 Hardware Details

The best way to learn about MCUs is to try this application example ther
mostat project and develop additional projects in your area of interest. Even
if you choose not to duplicate this thermostat project, you can still benefit
from studying the documentation in this example.

Figure 4-1 is the schematic diagram for the thermostat project. For devel
opment, the MC68HC705C8 is being replaced by the M68HC05 PGMR board.
In this schematic diagram, only the I/O circuitry is shown. To see the other
MCU connections, refer to the schematic diagram of the PGMR board in the
Programmer Board User's Manual included with the PGMR board.

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 4-9

4-10

MC68HC705C8
(PGMR BOARD)

11
PAC
PAl

10
9

PA2
8

PA3
7

PM
6

PAS
5

PAS
4

PA7

PBO
12
13

PBl
14

PB2
15

PB3

16
P84

17
PBS

18
PBS

19
PB7

PCO
28
27

PCl
26

PC2
25

PC3

PC4
24

PC5
23

PC6
22
21

PC7

37 10K
TCAP

TCMP ~

29 10K
PDMlDl
PDlfTOO

30

31
PD2iMISO

32
PD3iMOSI
PD4ISCK

33

34
PD5,ss J..

10K

PD7
36

7
DATA 0

8 LCD DISPLAY MODUlE
9

DATAl
20 CHARACTERS X 2 UNES

DATA 2 2 10
DATA 3 VDD

11
DATA 4

12 3 DATA 5 Vo 13
DATA 6

14
DATA 7 1 5
RIW Vss

4

----!
RS
E

~ ~ ~ ~ 10K

I~ ~ ~ ~ 10K

I
~ ~ ~ .. ~ 10K

~ ~ 2"'0- ~ 10K

4 X4KEVPAD
PIEZO

B?I)) VDD

-~=} -
9

-{>~
I~I ~

VDD c..J.. 16

-~ =}:
317MC1413

~~I '3.

r*-<
d

---2.. t> 15

~
=}
'3.

-",rtI-
d

3 14
V-

~ ~fD
10K

10K ~
16 1 - POT.

DOur ANO
1

IN
17

ANl
2

DIN
18 3 ::L SCK AN2 7- 10K --2:... Cs ~~ AN3 rs- .:r~F POT.

lK
14 VRH ~;;! AN4 rs-

'T 00: AN5 rr-:ell! AN6 rr -=- == ~

VOO

...
20K

POT.

...... ~ -

...... ~ -
...
'c COL

...
HEAT

....
FAN

~24VA C
TURN RE

OUT

1/ 10K := 13 AN7 ~ 0.1~ -::.!::-AN8 rn-~ VAG
-~ AN9 ~ AN10 -- f-"'-

Figure 4-1. Thermostat Project Schematic Diagram

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

During development, it was convenient to use potentiometers rather than
temperature sensors because doing so allowed us to simulate temperature
changes. In the final application, we would use an actual temperature sensor
such as that shown in Figure 4-2.

The LCD display is used to show the keypad entries of time-of-day, the tem
perature limits, the current temperature, and the selection of heating or cool
ing operation. The keypad can be a 4 x 4 array or larger. An audible alarm
can be used along with the display, if desired.

The project parts list is shown in Table 4-1. Only the parts not commonly
available are listed.

>-~-TOAID
INPUT

Figure 4-2. Precision Temperature Sensing Circuit

Table 4-1. Thermostat Project Parts List

Item and Description Suggested Source

LCD Display Module - 20 Characters by 2 Lines Digi-Key Wholesale
OP220-ND

Keypad - 4 by 4 Matrix of Momentary Push-Button Switches Any

Piezo Beeper - Solid State Buzzer Radio Shack
273-060A

AID Converter - Serial Interface to SPI Motorola - Special Functions
MC145041

Relay Driver - Translates 0-5 V MCU Signals to High Current Motorola - Interface
Inductive Load Drive MC1413 or ULN2003

Relays - Coil 5 V, Contacts 24 VAC lA SPST (Minimum) Radio Shack
275-243 or Other

Op-Amp - For Precision Temp Sensor Circuits QUAD Op-Amp Motorola - Linear
LM324

Precision Temperature Sensor - TO-92 Pkg National Semiconductor
LM34C

NOTE: This is only a partial parts list. Parts commonly found in lab stock are not shown.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-11

4.3.2 Project Programming

4-12

Figures 4-3, 4-4, 4-5, and 4-6 (MCU port summary information) act as a handy
reference to the software programmer in the thermostat project. These fig
ures summarize the most important information needed by the programmer.

Btt7 6 5 4 3 2 1 BttO

I DDRA71 DDRASI DDRASI DORM II DDRA31 DDRA21 DDRAl I DDRAO I $04 DORA

1 1 1 1 1 1 1 1 IINITTOSFF
OUT OUT OUT OUT OUT OUT OUT OUT (All OUTPUTS)

i i i i
II

i i i i
I $00 PORTA

~ ~ ~ ~ ~ ~ ~ ~
PA7 PAS PAS PM PA3 PA2 PAl PAO PIN NAMES (REF.)

LCD LCD LCD LCD LCD LCD LCD LCD THERMOSTAT
DATA 7 DATA 6 DATA 5 DATA4 DATA 3 DATA 2 DATAl DATA 0 FUNCTION

4 5 6 7 8 9 10 11 MCU PIN NUMBER

14 13 12 11 10 9 8 7 LCD PIN NUMBER

SEE PORT C FOR LCD SIGNALS - E. RS. AND R!W

Figure 4-3. Port A Summary

Btt7 6 5 4 3 2 1 Bit 0

I DDRB71 DDRB61 DDRBSI DDRB411 DDRB31 DDRB21 DDRBl I DDRBO I $05 DDRB
I

o 0 0 0 1 1 1 1 IINlTTO$OF
I...-I.,..-N_---,IN __ I.,..-N_---,IN __ OU....,-T __ O.,..-UT __ OU....,-T __ OU.,..-T-J (HALF IN. HAlF OUT)

iii iii * i II $01 PORTB

t t t t ~ ~ ~ ~
PB7

BOT
ROW

19

PB6 PBS

<--INPUTS -->

18 17

PB4

TOP
ROW

PB3 PB2 PBl PBO PIN NAMES (REF.)

LEFT <-OUTPUTS-> RIGHT THERMOSTAT
COL COL FUNCTION

MCU PIN NUMBER

10K

10K

10K

10K

4X4KEVPAD

Figure 4-4. Port B Summary

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Btt7 6 5 4 3 2 1 Btto

I DDRC71 DDRCSI DDRCSI DDRC411 DDReal DDRC21 DDRCl I DORCO I $06 DDRC

1 1 1 1 1 1 1 1 IINITTO$FF
L-0-:-UT __ O--;U_T __ O-:-UT __ O--;U_T __ O--;U_T __ OU-:-T __ OU-;-T __ OU-;-T--l (ALL OUTPUTS)

t * * * * * * * II $02 PORTC

PC7 pes PC5 PC4 pea PC2 PCl pea PIN NAMES (REF.)

I FAN HEAT COOL BEEP AID LCD LCD LCD THERMOSTAT
RELAY RELAY RELAY SEL' E RS RfoN FUNCTION

L 21 22 23 24 25 26 27 28 MCU PIN NUMBER

I
I

RED GREEN l L I 6 4 5 LCD PIN NUMBER T.LED
LED ~ERIALAID

O=OUIET; l..BEEP

FOR DEVELOPMENT USE LOW TRUE (TO LIGHT LEOs ON PGMR BOARD)
FOR FINAL SWITCH TO HIGH TRUE

Figure 4-5. Port C Summary

II I $03 PORTO

t t t t t t t
PD7 no P.!l§ PD4 PD3 PD2 PDl PD~ PIN NAMES (REF.)

pin SS SCK MOSI MISO TOO RDI

, t ~ ~ ~,~
v ALTERNATE USE (REF.)

SPI SCI

PULL AID AID AID THERMOSTAT
UP SCK DIN DOUT FUNCTION

36 34 33 32 31 30 29 MCU PIN NUMBER

I 53 54 55 56 RS232 RS232 PGMRBOARD

ON OFF OFF OFF TO AVOID INTERFERRENCE WITH
THERMOSTAT APPLICATION

Figure 4-6. Port D Summary

After selecting major components and completing a preliminary hardware
design, plan and begin writing software programs. You first write small pro
grams that exercise the basic parts of the project. This procedure will expose
any problems in the hardware design and will help you learn details of
controlling major external peripherals.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-13

4-14

Begin your project with a very simple program such as that shown in the
assembler listing of Figure 2-8 Assembler Listing. You can easily modify the
program to suit the keypad switches rather than wiring a switch as called for
in the Figure 2-8 example. Also, you can modify the program to control the
beeper rather than the red LED.

This first small program is meant to be very simple because you want to
perform a crude check of the setup, as opposed to testing your programming
ability. The simple example is not likely to have any significant programming
problems.

Next, write a short program to check the LCD display. It is important to
understand the operation of major elements, such as this display, before
attempting a large program. Since there are so many possible causes of
complete failure in a large program, you will have difficulty determining the
source of your problems.

Figure 4-7 is a flowchart of the display checkout program. Figure 4-8 is the
listing for this small program. Two subroutines (WCTRL and WDAT) were
written to simplify operations with the LCD display. These subroutines will
eventually become part of the final application program.

When this thermostat project was developed, the programs were not correct
at first because the data sheet for the LCD display module was imprecise.
The purpose of the small checkout programs is to work out these minor
problems before beginning the large application program.

Application example programs shown in this applications guide can be tried
in an MC68HC705C8 in one of two ways, depending upon their size.

For small programs (less than 176 bytes), you can download the example
program to RAM (in the area $0051-$00FF) and execute it without program
ming any EPROM (so you don't have to erase EPROM to try another). To use
this method, you must ORG your program at $0050 and the first byte must
be the size of your example. The following procedure will provide the needed
size byte.

1. Replace your ORG statement with the following two lines ...
ORG $50

START FCB END-START

2. After the last line in your program put ...
END EQU *

3. Assemble the example program and make sure it ends at or before
$OOFF.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

WRITE CONTROL WORDS TO
INITIALIZE LCD MODULE.

$01-CLEAR
$02-HOME
$38 - FUNCTION SET
$OE - DISPLAY ot«:lJRSOR OFF
$06 - ENTRY MODE

Figure 4-7. Display Checkout Flowchart

If the example program is too large to fit in the 176 bytes of RAM ($0050 to
$OOFF). you will have to program the example into EPROM and provide a
reset vector. To provide a reset vector for a program example that begins
with the label "BEGIN", put the following two lines at the end of your pro
gram:

MOTOROLA

ORG $1FFE
FOB BEGIN

NOTE
The example programs provided do not include a size byte or a reset
vector; you will have to add whichever is appropriate for your sit
uation.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-15

0000
0001
0002
0004
0005
0006

00ge
009f

0100

0100 a6 eB
0102 b7 02
0104 a6 ff
0106 b7 04
010B b7 06

010a
010c
010f
0111
0114
0116

a6 01
cd
a6
cd
a6
cd

01 2f
02
01 2f
3B
01 2f

0119 a6 Oc
011b cd 01 2f
011e a6 06
0120 cd 01 2f

0123 a6 41

* TRYLCD - LCD Check out. program *
* Initialize LCD module and display ABCDEF ... S *

* Register Equates
PORTA EQU $00
PORTB EQU $01
PORTC EQU $02
DDRA EQU $04
DDRB EQU $05
DDRC EQU $06

* RAM Equates
TEMPA EQU $9E
TEMPX EQU $9F

ORG $100

LCD display data
Keypad Row4,3,2,1;Col1,2,3,4
Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
Data direction, Port A (all output)
Direction, Port B (7-4in,3-0out)
Data direction, Port C (all output)

One byte temp storage location
One byte temp storage location

* Set Port data patterns and directions
TRYLCD LDA *$EB Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W

STA PORTC Initial Thermostat control values
LDA *$FF
STA
STA

DDRA
DDRC

Port A all outputs
Port C all outputs

* LCD display peripheral needs to be initialized
LDA *$01
JSR WCTRL Clear
LDA H02
JSR WCTRL Home
LDA *$3B
JSR WCTRL Function Set- B-bit,2-line,5X7
LDA *$OC
JSR WCTRL Display on, Cursor off
LDA *$06
JSR WCTRL Entry mode- Inc addr, no shift

ASCII 'A'
0125 cd 01 49 DLP
012B 4c

LDA *'A
JSR WDAT
INCA

Display a character
To next ASCII character

0129 a1 54
012b 26 fB
012d 20 fe HERE

CMP *'T
BNE DLP
BRA HERE

Go ABCDEFGHIJKLMNOPQRS & stop
Loop till T
Stop

Figure 4-8. Display Checkout Program Listing (Sheet 1 of 2)

4-16 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

**
* WCTRL - Write control word to LCD peripheral
* Enter with control word in accumulator

*
*

* Return with original value of X *
* Delay -4.5mS if A=$Ol or $02 else delay -120~S *
**

Ol2f bf 9f WCTRL STX TEMPX
STA PORTA
BSET 2,PORTC
BCLR 2,PORTC
LDX no
DECX

Save X
0131 b7 00
0133 14 02
0135 15 02
0137 ae 14
0139 Sa L120U
013a 26 fd

Write control word to LCD
E->l
E->O
20*6-*1~S/-=120~S
Delay loop -120~S
20-19,19-18 ... 1-0

013c a1 02
013e 22 06
0140 cd 01 48 L5M
0143 Sa

BNE L120U
CMP 1$02
BHI ARN5M
JSR ANRTS
DECX

Commands $01 & $02 req extra delay
If command > $02 skip long delay
JSR+RTS TAKES 12- (just want delay)
TAKES 3- (X=O->l on first pass)

0144 26 fa
0146 be 9f ARN5M

BNE L5M
LDX TEMPX
RTS

3- LOop 256*18-*1~S/-=4.608mS Delay
Restore X

0148 81 ANRTS ** RETURN **

0149 bf 9f
014b b7 ge
014d b7 00
014f 12 02
0151 14 02
0153 15 02
0155 13 02
0157 ae 14
0159 Sa
015a 26 fd
015c b6 ge
015e be 9f
0160 81

**
* WDAT - Write data word to LCD peripheral
* Enter with data word in accumulator
* Return with original values of X & A
* Delay -120~S after data write

*
*
*
*

**
WDAT

L120

STX TEMPX
STA TEMPA
STA PORTA
BSET 1,PORTC
BSET 2,PORTC
BCLR 2,PORTC
BCLR I,PORTC
LDX no
DECX
BNE L120
LDA TEMPA
LDX TEMPX
RTS

Save X
Save A
Write data word to LCD
RS->l
E->l
E->O
RS->O
20*6-*1~S/-=120~S
Delay loop -120~S
20-19,19-18 ... 1-0
Restore A
Restore X
** RETURN **

Figure 4-8. Display Checkout Program Listing (Sheet 2 of 2)

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-17

4-18

Since we now understand the LCD display, we can use the display to check
out the keypad interface. To read a keypad key, we must recognize a key
closure, delay to allow debounce, and decode the position (row/column) of
the key. This is an example of how the MCU can simplify the hardware design.
Software can be used to debounce the keys rather using complicated hard
ware circuits. Software also allows many switches to be wired in a row/
column matrix so fewer I/O lines 2re needed.

The flowchart in Figure 4-9 shows how keypad keys are detected. Figure
4-10 is a listing of the keypad checkout program.

A real-time loop structure was chosen for the thermostat project main pro
gram. This basic structure can be used for many applications. The timing of
the main loop determines the delays between activities in the complete ap
plication program.

A real time-of-day clock can easily be developed using the main loop time
and simple software counters. Figure 4-11 is the flowchart for this basic loop
structure. The complete listing for the thermostat project is included at the
end of this section.

After a reset, there are a series of instructions to initialize ports, peripheral
systems, and software variables. After this initialization, the main loop is
entered and repeated continuously as long as power is applied.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

READ ASCII FROM TABLE
& DISPLAY ON LCD 1st ROW LEFT

Figure 4-9. Keypad Checkout Flowchart

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-19

0000
0001
0002
0004
0005
0006

009d
00ge
009f

0100

0100 a6
0102 b7
0104 4f
0105 b7
0107 4a
0108 b7
010a b7
010c a6
010e b7

0110 a6
0112 cd
0115 a6
0117 cd
011a a6
011c cd
011f a6
0121 cd
0124 a6
0126 cd

4-20

e8
02

01

04
06
Of
05

01
01 93
02
01 93
38
01 93
OC
01 93
06
01 93

* KEYTRY -

*
Tryout keypad debounce and decode software
Detect and debounce keys. When a key found
change it to ASCII and display on LCD
Debounce release of key and look for more

*
*
*
*

*
*

* Register Equates
PORTA EQU $00 LCD display data
PORTB EQU $01 Keypad Row4,3,2,1;Col1,2,3,4
PORTC EQU $02 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
DORA EQU $04 Data direction, Port A (all output)
DDRB EQU $05 Direction, Port B (7-4in,3-00ut)
DDRC EQU $06 Data direction, Port C (all output)

* RAM Equates
KEYVAL EQU $90 Keypad key (ASCII)
TEMPA EQU $9E One byte temp storage location
TEMPX EQU $9F One byte temp storage location

ORG $100
* Set Port data patterns and directions
INIT LOA #$E8 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W

STA PORTC Initial Thermostat control values
CLRA Row3,2,1,0;Col1,2,3,4
STA PORTB All cols initially off
DECA to $FF
STA DORA Port A all outputs
STA DDRC Port C all outputs
LDA j/$OF Rows=in, Cols=outs
STA DDRB Port B half ins, half outs

* LCD display peripheral needs to be initialized
LOA #$01
JSR WCTRL Clear
LDA #$02
JSR WCTRL Home
LOA #$38
JSR WCTRL Function Set- 8-bit,2-line,5X7
LOA #$OC
JSR WCTRL Display on, Cursor off
LOA H06
JSR WCTRL Entry mode- Inc addr, no shift

** END of INITIALIZATION ********************************

Figure 4-10. Keypad Checkout Program Listing (Sheet 1 of 2)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

0129 a6 Of KEYTRY LDA #$OF
012b b7 01 STA PORTB Turn on all co1s
012d b6 01 ANYK LDA PORTB Reads rows in upper 4
012f a4 fO AND #$FO Mask away co1s
0131 27 fa BEQ ANYK Loop till a key is found
0133 cd 01 65 JSR DLY50 Debounce key
0136 ae Ie LDX BO Pointer to last pair in KYTBL
0138 d6 01 73 KYLOOP LDA KYTBL,X Get row/col pattern
013b b7 01 STA PORTB Drive co1s
013d b1 01 CMP PORTB Check for row & col match
013f 27 06 BEQ FOUND If =; key found
0141 Sa DECX Point to next pair of entries
0142 Sa DECX in KYTBL
0143 2a f3 BPL KYLOOP Loop if more entries
0145 20 e2 BRA KEYTRY Key gone; start over
0147 d6 01 74 FOUND LDA KYTBL+1,X Get key equi v from table
014a b7 9d STA KEYVAL Save for now
014c a6 80 LDA #$80 Left end of 1st row
014e cd 01 93 JSR WCTRL position entry point
0151 b6 9d LDA KEYVAL Get the ASCII key value
0153 cd 01 ad JSR WDAT Display the key
0156 a6 Of LDA #$OF
0158 b7 01 STA PORTB Turn on all cols
015a b6 01 TILRLS LDA PORTB Reads rows in upper 4
015c a4 fO AND #$FO Mask away co1s
015e 26 fa BNE TILRLS Loop till no key pressed
0160 cd 01 65 JSR DLY50 Debounce release
0163 20 c4 BRA KEYTRY Look for another key

* Keypad Correspondance Table

* 1st entry of each pair is Row/Col bit pattern

* 2nd entry of each pair is ASCII equiv of key
* COL # -> 1 2 3 4

* v v v v
* ROW 1 -> 1 2 3 A
* ROW 2 -> 4 5 6 B
* ROW 3 -> 7 8 9 C
* ROW 4 -> < 0 >

0173 18 31 KYTBL FCB $18, '1 Row 1, Col 1 (Top Left)
0175 28 34 FCB $28,'4 Row 2, Col 1
0177 48 37 FCB $48,'7 Row 3, Col 1
0179 88 3c FCB $88, ,< Row 4, Col 1
017b 14 32 FCB $14,'2 Row 1, Col 2
017d 24 35 FCB $24,'5 Row 2, Col 2
017f 44 38 FCB $44,'8 Row 3, Col 2
0181 84 30 FCB $84, '0 Row 4, Col 2
0183 12 33 FCB $12, '3 Row 1, Col 3
0185 22 36 FCB $22,'6 Row 2, Col 3
0187 42 39 FCB $42, '9 Row 3, Col 3
0189 82 3e FCB $82,'> Row 4, Col 3
018b 11 41 FCB $11, 'A Row 1, Col 4
018d 21 42 FCB $21,'B Row 2, Col 4
018f 41 43 FCB $41, 'C Row 3, Col 4
0191 81 21 FCB $81, , ! Row 4, Col 4 (Bot Right)

Figure 4-10. Keypad Checkout Program Listing (Sheet 2 of 2)

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 4-21

4-22

(MAIN)

~ OCF FLAG SET ?

~YES

I SCHEDULE NEXT OCF I
TO OCCUR IN 50ms

(AND CLEAR OCF FLAG)

~
I TIC=TIC+1 I

~
< TIC=20?)1!Q-

~YES

I ClEAR TIC TO ZERO I
"ARNC1" I +-

1) UPDATE TIME AND DAY

2) SERVICE KEYPAD

3) SERVICE BEEPER

4) CHECK FOR USER ENmy

5) SERVICE AID TEMP. SENSORS

6) U'DATE HVAC OUTPUTS

7) SERVICE LCD DISPLAY

~

Measure 50 ms Intervals

Modulo 20 counter to count 50 ms 'TICs'
TIC counts 0,1,2 ... 18,19,0 etc.
Twenty 50 ms TICs equal 1 second.

Major task subprograms (modules).
Each is called once per 50 ms though
a subprogram may decide to do IilUe or
nothing depending on the state of variables
such as TIC.

Figure 4·11. Main Program Flowchart

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing

0000
0001
0002
0003
0004
0005
0006
OOOa
OOOb
OOOc
OOOd
OOOe
OOOf
0010
0011
0011
0011
0012
0013
0014
0016
0018
001a

OOaO

OOaO
00a1
00a2
00a3

MOTOROLA

Thermostat Example Sheet 1 of 21

* MC68HC705C8 Example Development Project
* A Home Thermostat with indoor/outdoor
* temperature and time-of-day

*

*
*
*
*

* This example uses an LCD display, a 4x4 *
* keypad, a piezo beeper, and an MC145041 *
* serial A/D converter. *

* *
* Software is configured in a real-time *
* loop and demonstrates timing techniques *
* and program modularity principles. *

* *
*
*
*

The project is complete enough to show
the development process but is not
intended to be a finished product.

*
*
*

* Register Equates
LCD display data PORTA

PORTB
PORTC
PORTD
DDRA
DDRB
DDRC
SPCR
SPSR
SPDR
BAUD
SCCR1
SCCR2
SCSR
SCDR
RDR
TDR
TCR
TSR
ICAP
OCMP
TCNT
ALTCNT

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$00
$01
$02
$03
$04
$05
$06
$OA
SOB
SOC
SOD
$OE
$OF
$10
$11
$11
$11
$12
$13
$14
$16
$18
$lA

Keypad Row4,3,2,1;Col1,2,3,4
Fan*,Heat*,Coo1*,Beep;ADen*,E,RS,R/W
in,-,SS*,SCK;MOSI,MISO,TxD,RxD

* RAM Equates
ORG $AO

Data direction, Port A (all output)
Data direction, Port B (7-4in,3-0out)
Data direction, Port C (all output)
SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPRO
SPIF,WCOL,-,MODF;-,-,-,-
SPI Data
-,-,SCP1,SCPO;-,SCR2,SCR1,SCRO
RB,TB,-,M;WAKE,-,-,
TIE,TCIE,RIE,ILIE;TE,RE,RWU,SBK
TDRE,TC,RDRF,IDLE;OR,NF,FE,-
SCI Data
SCI Receive Data (same as SCDR)
SCI Transmit Data (same as SCDR)
ICIE,OCIE,TOIE,O;O,O,IEGE,OLVL
ICF,OCF,TOF,O; 0,0,0,0
Input Capture Reg (Hi-$14, Lo-$15)
Output Compare Reg (Hi-$16, Lo-$17)
Timer Count Reg (Hi-$lB, Lo-$19)
Alternate Count Reg (Hi-$lA, Lo-$lB)

* Using 'A6 to debug and monitor uses lower RAM

TEMPA
TEMPX
TIC
SEC

RMB
RMB
RMB
RMB

1
1
1
1

One byte temp storage location
One byte temp storage location
50mS Tics 00-19 20 Tics = 1 Sec
Current Time Seconds 00-59

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-23

Listing

00a4

mode.
00a5
00a6
00a7
00a8
00a9
OOaa

OOab

OOac
OOad

OOae
OOaf
OObO

00b1

00b2
00b3
00b4

00b5

00b6

4-24

Thermostat Example Sheet 2 0 f ;21

BCDEQ RMB 1 BCD equivalent of ENTRY
• it's easier to roll in new digits to a BCD buffer vs binary.

• Next 7 entries are accessed by indexed addressing
• using a 1 byte
• offset from ENTRY. The offset is MODE (in X) and the value at
• ENTRY,X is the value that is subject to change in the selected

ENTRY RMB 1 Binary value being entered by user
HR RMB 1 Current Time Hour 1-12 (binary)
MIN RMB 1 Current Time Minute 00-59 (binary)
AMPM RMB 1 Current Time AM=O, PM=l
DAY RMB 1 Day of Wk 1=Sun ... 7=Sat
HVACM RMB 1 HVAC Equipment Mode
• Modes 0 - Off
• 1 - Heat
• 2 - Cool
• 3 - Fan Only

GOAL RMB 1 Goal temp. setting (+)

• End of values accessed by offset from ENTRY

INTMP RMB
OUTMP RMB

1
1

Current Indoor Temperature (+)
Current Outdoor Temperature (+/-)

ASC100 RMB
ASC10 RMB
ASC1 RMB

1
1
1

ASCII hundreds digit (-,<sp>,l, or 2)
ASCII tens digit (0 thru 9)
ASCII ones digit (0 thru 9)

MODE RMB 1 Current Mode (for user interfce)
• Modes 0 - Inactive; display shows current time/temp/etc.
• 1 - Set Time HR
• 2 - Set Time MIN
• 3 - Set Time AM/PM
• 4 - Set Time DAY
* 5 - Set HVAC Mode - Off, Heat, Cool, Fan Only
• 6 - Set Target Temperature

O=off, l=on (running now) HVACON RMB 1
KEYVAL RMB 1
BEEPM RMB 1
• 2=>single lOOmS

Keypad key (ASCII) or debounce state
Beeper request

beep, 8=>double beep, 26=>1 sec beep

ACTIMR RMB 1 Activity timer
• Set=60 sec on key, decrement l/sec, if 0 mode reverts to 0

ENTFLG RMB 1 New entry flag, O-new 1-01d
• Entries default to current vdlue when new. If user enters
• a single digit the tens digit is cleared. If user enters
• more digits they shift in from rt. so new digit is l's, old
• l's becomes 10's, and old 10's falls off left (lost).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 3 of 21

0100 ORG $0100 Program will start at $0100
* $0100 is the start of EPROM in the '705C8

* Initialization done at reset & on detection of some errors

0100 9c INIT RSP Reset stack pointer to $FF

* Set Port data patterns and directions
0101 a6 e8 LDA #$E8 Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/w
0103 b7 02 STA PORTC Initial values for Thermostat controls
0105 4f CLRA Row3,2,1,0;Col1,2,3,4
0106 b7 01 STA PORTB All cols initially off
0108 4a DECA to $FF
0109 b7 04 STA DDRA Port A all outputs
010b b7 06 STA DDRC Port C all outputs
010d a6 Of LDA #$OF Rows=in, Cols=outs
010f b7 05 STA DDRB Port B half ins, half outs

* Set up SPI to talk to ext serial AID converter MC145041

**
** CAUTION ! ! S3 thru S6 on PGMR Board can conflict with SPI
**

0111 b6 03 WAITSW LDA PORTD Wait 'till S3-on, S4, S5, S6-off
0113 a4 3C AND #$3C only care about S3,thru S6
0115 a1 20 CMP #$20 S3-on, S4, S5, S6-off ?
0117 26 f8 BNE WAITSW If not wait till they are

* Previous 4 lines only needed for development on PGMR board

0119 a6 50 LDA #$50 SPIE,SPE,-,MSTR;CPOL,CPHA,SPR1,SPRO
011b b7 Oa STA SPCR SPI on as Master, 2~S norm low clock

* SCI not used in this application

* Timer output compare used to time 50mS loop
011d 4f CLRA ICIE,OCIE,TOIE,O;O,O,IEGE,OLVL
011e b7 12 STA TCR no timer interrupts or pins used

* LCD display peripheral needs to be initialized
0120 a6 01 LDA #$01
0122 cd 06 20 JSR WCTRL Clear
0125 a6 02 LDA #$02
0127 cd 06 20 JSR WCTRL Home
012a a6 38 LDA #$38
012c cd 06 20 JSR WCTRL Function Set- 8-bit,2-line,5X7
012f a6 Oc LDA #$OC
0131 cd 06 20 JSR WCTRL Display on, Cursor off
0134 a6 06 LDA #$06
0136 cd 06 20 JSR WCTRL Entry mode- Inc addr, no shift

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-25

Listing 'l'hermostat Example Sheet 4 of 21

* Set time to 12:00 AM SUN
0139 3f a2 CLR TIC Init 50mS counter
013b 3f a3 CLR SEC Init seconds to 0
013d a6 OC LOA U2 Hr=12
013f b7 a6 STA HR
0141 3f a7 CLR MIN Min=OO
0143 3f a8 CLR AMPM AM (AMPM=O)
0145 a6 01 LOA U Sun-1,Sat-7
0147 b7 a9 STA DAY Day=Sunday

0149 3f b1 CLR MODE Set user interface to inactive
014b 3f b3 CLR KEYVAL Say no key closed
014d 3f b4 CLR BEEPM Set beeper request to off
014f 3f b2 CLR HVACON Indicate HVAC Equip not running now
0151 3f aa CLR HVACM Set HVAC Equip mode to off
0153 a6 48 LDA l/72
0155 b7 ab STA GOAL Set default goal temp to 72°F

** END of INITIALIZATION ********************************

4-26 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing

0157 Od 13 fd
015a b6 17
015c ab d4
015e b7 aO
0160 b6 16
0162 a9 30
0164 b7 16
0166 b6 aO
0168 b7 17

016a b6 a2
016c 4c
016d b7 a2
016f a1 14
0171 25 02
0173 3f a2

0175 cd 01 8c
0178 cd 01 c9
017b cd 02 16
017e cd 02 2f
0181 cd 03 09
0184 cd 03 34
0187 cd 03 9d
018a 20 cb

MOTOROLA

Thermostat Example Sheet 5 of 21

* MAIN

*
*
*
*
*
*
*
*
*
*
*
*

- Beginning of main program loop *
Loop is executed once every 50mS (exactly) *
A pass through all major task routines takes *
less than 50mS and then time is wasted until *
the output compare flag gets set (every 50mS). *
When an output compare triggers, the flag is *
cleared & 12500 is added to the compare reg *
so the next trigger will occur in exactly 50mS *
(12500*4~S/cnt = 50mS). (Xtal = 2MHz, bus = lMHz) *

*
The variable TIC keeps track of 50mS periods *
when TIC increments from 19 to 20 it is cleared *
to 0 and seconds are incremented. *

* *
* The keypad is checked every 50mS pass and a new *
* closure or release is not acted upon until the *
* pass after it is first seen. This acts as a *
* swi tch debounce. *
* *
* The display is updated only when seconds change.*
* Display call is at bottom of main loop so any *
* change caused by a key is reflected in the *
* display update. *
* *
* Temperature readings are only taken once/sec *

MAIN BRCLR 6,TSR,MAIN Loop here till OCF flag set

LDA OCMP+1 Low byte of OC register
ADD #$D4 Low half of 12500
STA TEMPA Save till high half calculated
LDA OCMP High byte of OC register
ADC #$30 High half of 12500 (+carry)
STA OCMP Update OC reg
LDA TEMPA Get low half of updated value
STA OCMP+l Update low half of OC reg

* OC now = old OC + 12500, and OCF flag is clear
LDA TIC Get current TIC value
INCA TIC=TIC+1
STA TIC Update TIC
CMF #20 20th TIC ?
BLO ARNC1 If not, skip next clear
CLR TIC Clear TIC on 20th

* End of synchronization to 50mS TIC; Run main tasks and
* branch back to main within j50mS. Sync OK as long as
* no 2 consecutive passes take more than lOOmS.

ARNC1 JSR TIME Update time-of-day & day-of-week
JSR KYPAD Check/service keypad
JSR BEEP Update Beeper
JSR USER User Interface to set time, temp,
JSR A2D Check Temp Sensors
JSR HVAC Update Heat/Air Cond Outputs
JSR LCD Update LCD display
BRA MAIN Back to Top & wait for next TIC

** END of Main Loop *************************************

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

etc.

4-27

Listing

01Bc
01Bc 3d a2
01Be 26 3B
0190 3c a3
0192 a6 3c
0194 b1 a3
0196 26 30
019B 3f a3
019a 3c a7
019c b1 a7
01ge 26 2B
01aO 3f a7
01a2 3c a6
01a4 b6 a6
01a6 a1 Od
01aB 26 06
01aa a6 01
01ac b7 a6
01ae 20 1B
01bO a1 Oc
01b2 26 14
01b4 b6 aB
01b6 aB 01
01bB b7 aB
01ba 26 Oc
01bc 3c a9
01be b6 a9
01cO a1 OB
01c2 26 04
01c4 a6 01
01c6 b7 a9
01cB B1

4-28

Thermostat Example Sheet 6 of 21

* TIME - Update Time-of-day & Day-of-week
* If TIC not = 0, just skip whole routine
* When SEC rolls 59->0, inc MIN
* When MIN rolls 59->0, inc HR
* When HR rolls 11->12, change AMPM 1->0 or 0->1
* When AMPM chgs 1->0, inc DAY
* When DAY rolls 7->B, set to 1 (Sun)

*
*
*
*
*
*
*

TIME

ARNS1

XTIME

EQU
TST
BNE
INC
LDA
CMF
BNE
CLR
INC
CMF
BNE
CLR
INC
LDA
CMP
BNE
LDA
STA
BRA
CMP
BNE
LDA
EOR
STA
BNE
INC
LDA
CMP
BNE
LDA
STA
RTS

*
TIC
XTIME
SEC
160
SEC
XTIME
SEC
MIN
MIN
XTIME
MIN
HR
HR
H3
ARNS1
U
HR
XTIME
H2
XTIME
AMPM

Update Time-of-day & Day-of-week
Check for TIC=zero
If not; just exit
SEC=SEC+1

Did SEC -> 60 ?
If not; just exit
Seconds rollover
MIN=MIN+1
A still 60; MIN=60 ?
If not; just exit
Minutes rollover
HR=HR+1
For comparisons
HR=13 ?
If not; skip

Set HR=l
Exit
HR=12 ?
If not; just exit

#%00000001 Invert AM/PM bit
AMPM O=AM, l=PM
XTIME If not AM now; just exit
DAY DAY=DAY+1
DAY
#B
XTIME
H

Day rollover ?
If not; just exit

DAY Set Day to 1 (SUN)
** RETURN from TIME **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Li.sti.ng Thermostat Example Sheet 7 of 21

* KYPAD - Check for & decode keys *
* KEYVAL indicates ASCII equivalent of key or *
* debounce status as follows *
*
*
*
*
*

$00 - no key pressed, look for any closure *
$01 - key closed 50mS ago (debounce), decode now *
$20-$7F - key found, debounced, & decoded (not seen) *
$FE - key recognized by some task, wait for release *
$FF - key released 50mS ago (debounce release) *

01c9 KYPAD
01c9 b6 b3
Olcb 26 Oe
Olcd a6 Of
Olcf b7 01
01d1 b6 01
01d3 a4 fO
01dS 27 3e
01d7 3c b3
01d9 20 3a
01db a1 01 CHK401
01dd 26 1c
01df ae 1e
01e1 d6 06 00 KYLOOP
01e4 b7 01
01e6 b1 01
01e8 27 06
Olea Sa
01eb Sa

EQU
LOA
BNE
LOA
STA
LOA
AND
BEQ
INC
BRA
CMP
BNE
LOX
LOA
STA
CMP
BEQ
DECX
DECX

01ec 2a f3 BPL
01ee 3f b3 CLR
OlfO d6 06 01 FOUND LOA
01f3 b7 b3 STA
01f5 a6 02 LOA
01f7 b7 b4 STA
01f9 20 1a BRA
Olfb a1 fe CHK4FE CMP
01fd 26 10 BNE
01ff a6 Of LOA
0201 b7 01 STA
0203 b6 01 LOA
0205 a4 fO AND
0207 26 OC BNE
0209 a6 ff LOA
020b b7 b3 STA
020d 20 06 BRA
020f a1 ff CHK4FF CMP
0211 26 02 BNE
0213 3f b3 CLR
0215 81 XKYPAD RTS

*
KEYVAL
CHK40l
lt$OF
PORTB
PORTB
lt$FO
XKYPAD
KEYVAL
XKYPAD
lt$Ol
CHK4FE
BO
KYTBL,X
PORTB
PORTB
FOUND

Check for & decode keys
KEYVAL indicates what to do
If not 0; Check for $01

Turn on all cols
Reads rows in upper 4
Mask away cols
Exit if no key
To $01
Exit, key will be decoded in SOmS
KEYVAL=$Ol ?
If not 0; Check for $FE
Pointer to last pair in KYTBL
Get row/col pattern
Drive cols
Check for row & col match
If =; key found
Point to next pair of entries
in KYTBL

KYLOOP Loop if more entries
KEYVAL No key found; set KEYVAL=O
KYTBL+1,X Get key equiv from table
KEYVAL $20 ~ KEYVAL ~ $7F
lt2
BEEPM
XKYPAD
lt$FE
CHK4FF
lt$OF
PORTB
PORTB
lt$FO
XKYPAD
lt$FF
KEYVAL
XKYPAD
lt$FF
XKYPAD
KEYVAL

Request beep as feedback
Exit
KEYVAL=$FE ?
If not check for $FF

Turn on all cols
Reads rows in upper 4
Mask away cols
Exit if key still closed

Set KEYVAL=$FF
& Exit
KEYVAL=$FF ?
If not; exit
Set KEYVAL=$OO

** RETURN from KYPAD **

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-29

Listing Thermostat Example Sheet 8 of 21

* BEEP - Update audible beeper *
* Single lOOmS beep on key closure (feedback) *
* Beep (lOOmS/on, 2000ff, 1000n) entry accepted *
* Beep 1 second to indicate entry error *

0216 BEEP EQU * Update audible beep
0216 b6 b4 LDA BEEPM BEEPM indicates what to do
0218 26 04 BNE ACTIV Branch if beeper active
021a 19 02 BCLR 4,PORTC Turn off beeper
021c 20 10 BRA XBEEP & Exit

021e 3a b4 ACTIV DEC BEEPM Times beeps
* Accumulator has undecremented version of BEEPM
* Beeper should be on unless BEEPM is between 3 and 6

0220 a1 03 CMP #3
0222 25 08 BLO BPRON If <3 turn beeper on
0224 a1 06 CMP t6
0226 22 04 BHI BPRON If >6 turn beeper on
0228 19 02 BCLR 4,PORTC Turn beeper off
022a 20 02 BRA XBEEP & Exit
022c 18 02 BPRON BSET 4,PORTC Turn beeper on
022e 81 XBEEP RTS ** RETURN from BEEP **

4-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listinq Thermostat Example Sheet 9 of 21

* USER - User Interface to set time, temp, etc. *
* Variable named MODE identifies current user function *
* 0 - Inactive; display shows current time/temp/etc. *
* 1 - Set Time HR *
* 2 - Set Time MIN *
* 3 - Set Time AM/PM *
* 4 - Set Time DAY *
* 5 - Set HVAC Mode - Off, Heat, Cool, Fan Only *
* 6 - Set Target Temperature *
* MODE reverts to O-inactive if no keys for 1 min *
* To activate modes press A until desired value *
* to be changed is blinking. Next enter desired *
* setting numbers and press enter (!). *
* Current program does not use <,>,B, or C keys. *

022f USER
022f 3d a3

EQU
TST
BNE
DEC
BNE
CLR
BPL
CLR
LDA
CMP
BLO
CMP
BLS
JMP

*
SEC
CHKEY
ACTIMR
ARMCLR
MODE
CHKEY
ACTIMR
KEYVAL
1$20
XUSER2
1$7F
VALKEY
XUSER

User Interface to set time, temp, etc.
Seconds = 0 ?

0231 26 Oa
0233 3a b5
0235 26 02
0237 3f bl
0239 2a 02 ARMCLR
023b 3f 05
023d b6 b3 CHKEY
023f a1 20
0241 25 04
0243 al 7f
0245 23 03
0247 cc 02 ba XUSER2

If not, skip ACTIMR
Decrement activity timer
No activity for 1 minute
Force to inactive
Did ACTIMR roll neg ?
If so clear it
Get key value
Ignore key if <$20 or >$7F
Exit if <$20
? > $7F is invalid
Valid
May be too far to branch

* Valid key has been detected
024a ae 3c
024c bf b5
024e al 41
0250 27 52
0252 al 30
0254 25 33
0256 a1 39
0258 22 2f
025a 3d b6
025c 26 06
025e 3f a5
0260 3f a4
0262 3c b6
0264 48
0265 48
0266 48
0267 48

MOTOROLA

VALKEY LDX 160 60 seconds

NOFST

STX ACTIMR Set to timeout in 1 min.
CMP It'A KEYVAL = A ?
BEQ NXTMOD Advance to next setting
CMP 1'0 ASCII 0
BLO
CMP
BHI
TST
BNE
CLR
CLR
INC
ASLA
ASLA
ASLA
ASLA

TRYENT
1'9
TRYENT
ENTFLG
NOFST
ENTRY
BCDEQ
ENTFLG

Branch if < 0
ASCII 9
BRANCH IF > 9
First It in entry ?
Skip if not
Clear ENTRY
& its BCD equivalent
0->1 (NO LONGER 1st)
Get hex 0-9 in left nibble

nnnn 0000 & BCDEQ xxxx yyyy

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-31

Listing- Thermostat Example Sheet 10 of 21

0268 48 ASLA Roll new digit into BCD
0269 39 a4 ROL BCDEQ Equiv of ENTRY
026b 48 ASLA With 4 double byte
026c 39 a4 ROL BCDEQ left shifts
026e 48 AS LA
026f 39 a4 ROL BCDEQ
0271 48 ASLA
0272 39 a4 ROL BCDEQ BCDEQ now = yyyy nnnn
0274 b6 a4 LDA BCDEQ
0276 a4 Of AND .$OF Mask off 10's
0278 b7 as STA ENTRY Temp save l's
027a b6 a4 LDA BCDEQ Get BCD again
027c 44 LSRA Right justify 10's
027d 44 LSRA
027e 44 LSRA
027f 44 LSRA
0280 ae Oa LDX no
0282 42 MUL A <- 10 * BCD 10's
0283 bb as ADD ENTRY Add in ones
0285 b7 as STA ENTRY Now binary equiv of BCDEQ
0287 20 2d BRA KEYFE Acknowledge key and leave
0289 al 21 TRYENT CMP

.' !
Enter key ?

028b 26 29 BNE KEYFE If not, Ack key & leave
028d cd 02 bb JSR CHKPNT Check for legal entry

* On return N-bit indicates legal (Positive) & X points
* at applicable value to be changed (HR,MIN,AMPM,DAYetc.)

0290 2a OC BPL LEGENT Branch if legal
0292 e6 as LDA ENTRY, X Get current value
0294 b7 a5 STA ENTRY Revert to current (legal) value
0296 3f b6 CLR ENTFLG So next • treated as first
0298 a6 la LDA *26 26 * SOmS = 1.3 sec
029a b7 b4 STA BEEPM Beep lS/200mS-off/lOOmS-on
029c 20 18 BRA KEYFE Acknowledge entry attempt
02ge e7 as LEGENT STA ENTRY, X Update value being set
02aO a6 08 LDA .8 100mS-on/200mS-off/lOOmS-on
02a2 b7 b4 STA BEEPM Double beep
02a4 3c bl NXTMOD INC MODE Adv to next setting
02a6 b6 bl LDA MODE Check for past 6
02a8 al 07 CMP #7 <7?
02aa 25 02 BLO NOCLR If OK skip clear
02ac 3f bl CLR MODE Rollover to 0
02ae be bl NOCLR LDX MODE Use as index to current
02bO e6 a5 LDA ENTRY, X Get current value of entry
02b2 b7 a5 STA ENTRY Use current as default setting
02b4 3f b6 CLR ENTFLG Indicate next t is 1st
02b6 a6 fe KEYFE LDA t$FE
02b8 b7 b3 STA KEYVAL Acknowledge key closures
02ba 81 XUSER RTS ** RETURN from USER **

4-32 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listinq

02bb b6 as
02bd be b1
02bf a3 01
02c1 26 08
02c3 a1 01
02c5 25 04
02c7 a1 Oc
02c9 23 3b
02cb a3 02
02cd 26 07
02cf 4d
02dO 2b 04
02d2 a1 3b
02d4 23 30
02d6 a3 03
02d8 26 07
02da 4d
02db 2b 04
02dd a1 01
02df 23 25
02e1 a3 04
02e3 26 08
02e5 a1 01
02e7 25 04
02e9 a1 07
02eb 23 19
02ed a3 05
02ef 26 07
02f1 4d
02f2 2b 04
02f4 a1 03
02f6 23 Oe
02f8 a3 06
02fa 26 08
02fc a1 32
02fe 25 04
0300 a1 63
0302 23 02
0304 a6 ff
0306 b7 as
0308 81

MOTOROLA

Thermostat Example Sheet 11 of 21

- a utility subroutine used by USER routine * CHKPNT

*
*
*
*
*
*

Checks for entry within legal limits which
depend on value being changed. HR=1-12, MIN=0-59
and so on. If legal, N bit will be 0 (Positive).
On return A has enrty value (or $FF if illegal)
and X points at value to be changed. ENTRY,X
may be used to access value to be changed.

CHKPNT LDA ENTRY For compares to chk limits

TRI2

TRI3

LDX MODE
CPX U
BNE TRI2
CMP U
BLO TRI2
CMP 112
BLS OKENT
CPX n
BNE TRI3
TSTA
BMI TRI3
CMP .59
BLS OKENT
CPX B
BNE TRI4
TSTA
BMI TRI4
CMP U
BLS OKENT

TRI4 CPX Jt4
BNE TRI5
CMP U
BLO TRI5
CMP .7
BLS OKENT

TRI5 CPX .5
BNE TRI6
TSTA
BMI TRI6
CMP B
BLS OKENT

TRI6 CPX Jt6
BNE BADENT
CMP .50
BLO BADENT
CMP B9
BLS OKENT

BADENT LDA • $FF
OKENT STA ENTRY

RTS

For compares & as return pointer
Set HR ?
If not
<I?
illegal (will ripple through)
1-12 ?
Valid HR entry
Set MIN ?
If not
<O?
illegal (will ripple through)
0-59 ?
Valid MIN entry
Set AMPM ?
If not
<O?
illegal (will ripple through)
o or 1 ?
Valid AMPM entry
Set DAY ?
If not
<I?
illegal (will ripple through)
1-7 ?
Valid DAY entry
Set HVAC Mode ?
If not
<O?
illegal (will ripple through)
0-3 ?
Valid HVACM entry
Set GOAL Temp ?
Illegal entry
<50°F ?
illegal
< or = 99°F ?
Valid goal temp
A n~gative value to set N
Sets/or clears N
** Return from CHKPNT **

* !!! There is more to this exit than is obvious. X=MODE
* so X points at entry to be changed HR,MIN,AMPM,DAY,HVACM,GOAL
* A has entry (or $FF if it was illegal). After return N-bit
* of CCR indicates whether entry was OK or not.
* STA ENTRY was used to make N bit reflect sign of ENRTY
* rather than the result of a compare.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4·33

Listing

0309
0309 b6 a2
030b a1 02
030d 22 24
030f 48
0310 48
0311 48
0312 48
0313 3d Ob
0315 17 02
0317 b7 Oc

Thermostat Example Sheet 12 of 21

* A2D - Check temp. sensors (via SPI and MC145041) *

*
*
*
*

If TIC 0, send addr 0 ignore return data *
If TIC 1, send addr 1 return data is ch.O val *
If TIC = 2, send addr 2 return data is ch.1 val *
If TIC> 2, skip A2D routine *

* To compensate for sensor & op-amp offset, AID result *
will be modified by subtracting an offset constant * *

A2D EQU *

LDA TIC
CMF '2
BHI XA2D
ASLA
AS LA
ASLA
ASLA
TST SPSR
BCLR 3, PORTC
STA SPDR

Check temp. sensors
If Tic 0, 1, or 2 write to SPI

If Tic > 2; Exit
Move TIC , 0-2 to upper nibble

4 bit left shift
Reads SPIF (part of SpIF clear)
Drive low true SAID CE* to 0
Initiates a transfer

* Requests conversion of next channel and returns data
* from previous channel Ch.O=Indoor Ch.1=Outdoor

0319 Of Ob fd SPIFLP
031c 16 02

BRCLR 7,SPSR,SPIFLP Wait for SPI Xfer complete
BSET 3,PORTC Drive low true SAID CE* to 1

031e b6 a2
0320 27 11
0322 b6 Oc
0324 02 a2 07
0327 cO 06 ea
032a b7 ac
032c 20 05
032e cO 06 eb ADCH1
0331 b7 ad
0333 81 XA2D

LDA TIC If O-Exit, 1 or 2 Read AID data
BEQ XA2D 0 so exit
LDA SPDR Get AID data
BRSET 1,TIC,ADCH1 If Tic=2, data is Ch.1
SUB OFFO AID Ch.O; subtract offset
STA INTMP update indoor temperature
BRA XA2D & Exit
SUB OFF1 AID Ch.1; subtract offset
STA OUTMP Update outdoor temperature
RTS ** RETURN from A2D **

4-34 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 13 of 21

* HVAC - Update Fan, Heat, and Cool outputs *
* Low-true outputs will be buffered to drive 24VAC *
* relay coils in HVAC equipment. (high true in final) *
* Heat and Cool requests should not permit short- *
* cycle (ie a min delay is required between changes) *
* Once Heat or Cool requested, do not turn off for *
* at least 30 sec. Also enforce 30 sec. minimum *
* off time to restart. *
* Allow ±1° around target temp as hysteresis. *
* HVACM = 0 - Off, 1 - Heat, 2 - Cool, 3 - Fan Only *

0334 HVAC EQU
LDA
BEQ
CMP
BNE

* Update Fan, Heat, and Cool outputs
Exit unless sec = 0 or 30 0334 b6 a3

0336 27 04
0338 al Ie
033a 26 60
033c b6 aa DOHVAC
033e 26 08

SEC
DOHVAC
BO
XHVAC

o so do HVAC

Exit if not 0 or 30
LDA HVACM O-off, I-heat, 2-cool, 3-fan
BNE HMIQ If not 0 go see if 1

0340 b6 02 LDA PORTC Fan*,Heat*,Cool*,Beep;ADen*,E,RS,R/W
0342 aa eO ORA *$EO Set fan, heat, cool all high (off)
0344 b7 02 STA PORTC Update port
0346 20 54 BRA XHVAC & Exit
0348 al 01 HMIQ CMP *1 Check for mode 1 - heat
034a 26 23
034c la 02
034e b6 ab
0350 Oc 02 Od

0353 4c
0354 bl ac
0356 24 44
0358 lc 02
035a Ie 02
035c 3f b2
035e 20 3c

0360 4a
0361 bl ac
0363 23 37
0365 1f 02
0367 Id 02
0369 a6 01
036b b7 b2
036d 20 2d
036f al 02
0371 27 08
0373 1f 02
0375 lc 02
0377 la 02
0379 20 21
037b lc 02
037d b6 ab
037f Oa 02 Od

MOTOROLA

* Heat

BNE HM2Q If not go see if 2
BSET 5,PORTC Turn off cool output
LDA GOAL Get target temp
BRSET 6,PORTC,HONQ If not; see if it should be

on; turn off when indoor temp > goal + 1
INCA Goal+l for hysteresis
CMP INTMP GOAL+l < INTMP ? Turn off ?
BHS
BSET
BSET
CLR
BRA

XHVAC
6,PORTC
7,PORTC
HVACON
XHVAC

NO; just leave
Turn off heat
Turn off fan
Turn off flag to indicate off
Then leave

* Heat off; turn on when indoor temp < goal - 1
HONQ DECA Goal-l for hysteresis

HM2Q

HCOOL

CMP INTMP GOAL-l > INTMP ? Turn on ?
BLS XHVAC
BCLR 7,PORTC
BCLR 6, PORTC
LDA U

NO; just leave
Turn on fan
Turn on heat

STA HVACON Set flag to indicate on
BRA XHVAC Then leave
CMP *2 Check for mode 2 - cool
BEQ HCOOL Branch if cool mode 2
BCLR 7,PORTC Turn on fan
BSET 6,PORTC Turn off heat
BSET 5,PORTC Turn off cool
BRA XHVAC Then leave
BSET 6,PORTC Turn off heat output
LDA GOAL Get target temp
BRSET 5,PORTC,CONQ If not; see if it should be

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-35

Listing

0382 4c
0383 b1 ac
0385 23 15
0387 1a 02
0389 1e 02
038b 3f b2
038d 20 Od

038f 4a
0390 b1 ac
0392 24 08
0394 1f 02
0396 1b 02
0398 a6 01
039a b7 b2
039c 81

Thermostat Example Sheet 14 of 21

* Coolon; turn off when indoor temp < goal - 1

* Cool
CONQ

XHVAC

INCA Goal-1 for hysteresis
CMP INTMP GOAL-1 > INTMP ? Turn off ?
BLS XHVAC NO; just leave
BSET 5,PORTC Turn off cool
BSET 7,PORTC Turn off fan
CLR HVACON Turn off flag to indicate off
BRA XHVAC Then leave

off; turn on when indoor temp> goal + 1
DECA Goal+1 for hysteresis
CMP INTMP GOAL+1 < INTMP ? Turn on ?
BHS XHVAC NO; just leave
BCLR 7,PORTC Turn on fan
BCLR 5,PORTC Turn on cool
LOA n
STA HVACON Set flag to indicate on
RTS ** RETURN from HVAC **

* LCD - LCD Display Update *
* If value is being set now, display ENTRY rather than *
* the current value and flash it like time colon. *
* Flash time colon if time not being set now (else:on) *
* Update current time if time not being set now *
* Update HVAC active '*' unless HVAC mode being set now*
* Flash value to set if user is changing a setting *

039d LCD EQU
LOA
JSR
LOA
BEQ
CMP
BNE
JSR
BRA
JSR
RTS

* LCD Display Update
Left end of 1st row
position entry point
50mS periods 0-19

039d a6 80
039f cd 06 20
03a2 b6 a2
03a4 27 09
03a6 a1 Oa
03a8 26 08
03aa cd 03 b3
03ad 20 03
03af cd 04 Of TICO
03b2 81 XLCD

#$80
WCTRL
TIC
TICO
no
XLCD
BLINKR
XLCD
DSPLAY

Only update once/sec
TIC = 10 at mid second
If not 0 or 10, just leave
Blanks colon or value being set
Exit
Update the LCD display
** RETURN from LCD **

4-36 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 15 of 21

* Following subroutines support the LCD main task

03b3 BLINKR EQU * Blink colon or user entry
03b3 be b1 LOX MODE Mode 0 ?
03b5 26 07 BNE CIF1 If not see if mode 1
03b7 a6 82 LOA 4$82 Cursor position of colon
03b9 cd 06 20 JSR WCTRL Send cursor position to LCD
03bc 20 4b BRA SP1 Send 1 ASCII space and leave
03be Sa CIFl OECX Mode 1 ?
03bf 26 07 BNE CIF2 If not see if mode 2
03c1 a6 80 LOA 4$80 Cursor position of HR
03c3 cd 06 20 JSR WCTRL Send cursor position to LCD
03c6 20 3c BRA SP2 Send 2 ASCII spaces and leave
03c8 Sa CIF2 OECX Mode 2 ?
03c9 26 07 BNE CIF3 If not see if mode 3
03cb a6 83 LOA #$83 Cursor position of MIN
03cd cd 06 20 JSR WCTRL Send cursor position to LCD
03dO 20 32 BRA SP2 Send 2 ASCII spaces and leave
03d2 Sa CIF3 DECX Mode 3 ?
03d3 26 07 BNE CIF4 If not see if mode 4
03d5 a6 86 LOA 4$86 Cursor position of AMPM
03d7 cd 06 20 JSR WCTRL Send cursor position to LCD
03da 20 2d BRA SP1 Send 1 ASCII space and leave
03dc Sa CIF4 DECX Mode 4 ?

. 03dd 26 07 BNE CIF5 If not see if mode 5
03df a6 88 LOA #$88 Cursor position of DAY
03e1 cd 06 20 JSR WCTRL Send cursor position to LCD
03e4 20 16 BRA SP4 Send 4 ASCII spaces and leave
03e6 Sa CIF5 OECX Mode 5 ?
03e7 26 07 BNE MUSTB6 If not, mode must be 6
03e9 a6 cO LDA #$CO Cursor position of HVAC Mode
03eb cd 06 20 JSR WCTRL Send cursor position to LCD
03ee 20 07 BRA SP5 Send 5 ASCII spaces and leave
03fO a6 c6 MUSTB6 LOA #$C6 Must be mode 6
03f2 cd 06 20 JSR WCTRL Cursor position of Goal Temp
03f5 20 Od BRA SP2 Send 2 ASCII spaces and leave
03f7 a6 20 SP5 LDA #$20 ASCII space <sp>
03f9 cd 06 3a JSR WOAT Send a space to LCD
03fc a6 20 SP4 LDA #$20 ASCII space <sp>
03fe cd 06 3a JSR WOAT Send a space to LCD
0401 cd 06 3a JSR WOAT Send a space to LCD
0404 a6 20 SP2 LDA #$20 ASCII space <sp>
0406 cd 06 3a JSR WDAT Send a space to LCD
0409 a6 20 SP1 LDA 4$20 ASCII space <sp>
040b cd 06 3a JSR WOAT Send a space to LCD
040e 81 RTS ** RETURN from BLINKR **

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-37

Listing Thermostat Example Sheet 16 of 21

* DSPLAY - Writes full 40 character display of current *
* system conditions to the LCD display peripheral *
* Following is a typical LCD display ... *
* 1 2 : o 0 A SUN I N 7 5 0 F *
* OFF 72 0 OUT 102°F*

040f a6 00 DSPLAY LDA 1$00 Left end of 1st line on LCD
0411 cd 06 20 JSR WCTRL position entry point
0414 be bl LDX MODE Use for mode compares
0416 b6 a6 LDA HR
0418 a3 01 CPX U Mode= HR set ?
04la 26 02 BNE AEl Skip if not 1
041c b6 as LDA ENTRY Use ENTRY rather than HR
041e cd 06 a6 AE1 JSR CNVERT Convert HRs to ASCII
0421 cd 06 56 JSR SHOW2 Display as 2 digits
0424 a6 3a LDA t' : ASCII colon
0426 cd 06 3a JSR WDAT To LCD
0429 b6 a7 LDA MIN
042b a3 02 CPX t2 Mode= MIN set ?
042d 26 02 BNE AE2 Skip if not 2
042f b6 as LDA . ENTRY Use ENTRY rather than MIN
0431 cd 06 a6 AE2 JSR CNVERT Convert MINs to ASCII
0434 cd 06 56 JSR SHOW2 Display as 2 digits
0437 a6 20 LDA 1$20 ASCII <sp>
0439 cd 06 3a JSR WDAT <sp> to LCD
043c b6 a8 LDA AMPM Current AMPM indicator
043e a3 03 CPX t3 Mode= AMPM set ?
0440 26 02 BNE AE3 Skip if not 3
0442 b6 as LDA ENTRY Use ENTRY rather than AMPM
0444 4d AE3 TSTA Check for AM (0)
0445 26 04 BNE ITSPM If not its PM
0447 a6 41 LDA t'A ASCII A
0449 20 02 BRA SHOWAP Display A for AM
044b a6 50 ITSPM LDA t'P If it wasn't AM
044d cd 06 3a SHOWAP JSR WDAT Show A or P
0450 a6 20 LDA t$20 ASCII <sp>
0452 cd 06 3a JSR WDAT To LCD
0455 a6 fc LDA t-4 Offset from MDAY
0457 a3 04 CPX t4 Mode= DAY set ?
0459 26 04 BNE AE4 Skip if not 4
045b be as LDX ENTRY Use ENTRY rather than DAY
045d 20 02 BRA DAYLP Print Entry day
045f be a9 AE4 LDX DAY DAY = 1 to 7
0461 ab 04 DAYLP ADD H Advance pointer to next MDAY entry
0463 Sa DECX 1->0 or n->(n-1)
0464 26 fb BNE DAYLP Loop till X=O (A will = 4*DAY)
0466 97 TAX Move offset to X
0467 d6 06 8a SHODAY LDA MDAY,X Get next char
046a a1 04 CMP H End of message ?
046c 27 06 BEQ DUNDAY If done printing day
046e cd 06 3a JSR WDAT Send char to LCD
0471 5c INCX Point at next char
0472 20 f3 BRA SHODAY LOOp till $04 found
0474 5f DUNDAY CLRX Loop index

4-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 17 of 21

0475 d6 06 80 LPSIN LD.!'. MSINS,X Get next ASCII char
0478 cd 06 3a JSR WDAT Loop prints ,

IN '
047b 5c INCX
047c a3 05 CPX #5
047e 26 f5 BNE LPSIN Loop till 5 chars
0480 b6 ac LDA INTMP Indoor temp
0482 cd 06 a6 JSR CNVERT Convert to ASCII
0485 cd 06 56 JSR SHOw2 Display as 2 digits
0488 cd 06 Sf JSR LCDDF Display ,oF'

048b a6 cO LDA #SCO Left end of 2nd line
048d cd 06 20 JSR WCTRL Reposition entry point
0490 a6 20 LDA #$20 ASCII <sp>
0492 3d b2 TST HVACON Heat/cool running ?
0494 27 02 BEQ ARNAST If not go around asterisk
0496 a6 2a LDA #'* ASCII asterisk
0498 cd 06 3a ARNAST JSR WDAT Show <sp> or *
049b Sf CLRX Message offset from MHVAC
049c b6 b1 LDA MODE Get Mode in A
04ge a1 05 CMP #5 Mode= HVACM set ?
04aO 26 04 BNE AE5 Skip if not 5
04a2 b6 as LDA ENTRY Use ENTRY rather than HVACM
04a4 20 02 BRA AE5B
04a6 b6 aa AE5 LDA HVACM HVAC mode
04a8 27 Oe AE5B BEQ HVD If HVACM=O display 'OFF
04aa ae 06 LDX #6 Offset to 'HEAT ,
04ac a1 01 CMP U Heat mode ?
04ae 27 08 BEQ HVD If so; display
04bO ae OC LDX U2 Offset to 'COOL '
04b2 a1 02 CMP #2 Cool mode ?
04b4 27 02 BEQ HVD If so; display
04b6 ae 12 LDX U8 Offset to 'FAN , (must be)
04b8 d6 06 68 HVD LDA MHVAC,X
04bb a1 04 CMP H End of message ?
04bd 27 06 BEQ DUNHVD If so, skip ahead
04bf cd 06 3a JSR WDAT Else display nxt char
04c2 5c INCX Point at next
04c3 20 f3 BRA HVD Continue loop
04c5 b6 ab DUNHVD LDA GOAL Goal temp setting
04c7 be b1 LDX MODE Get mode in X
04c9 a3 06 CPX #6 Mode= GOAL set ?
04cb 26 02 BNE AE6 Skip if not 6
04cd b6 as LDA ENTRY Use ENTRY rather than GOAL
04cf cd 06 a6 AE6 JSR CNVERT Convert to ASCII
04d2 cd 06 56 JSR SHOW2 Display as 2 digits
04d5 cd 06 Sf JSR LCDDF Display ,oF'

04d8 Sf CLRX Loop index
04d9 d6 06 85 LPSOT LDA MSOUT,X Get message character
04dc cd 06 3a JSR WDAT Send to LCD
04df 5c INCX Nxt char of , OUT ,
04eO a3 05 CPX #5 Check for done
04e2 26 f5 BNE LPSOT Loop for 5 characters
04e4 b6 ad LDA OUTMP Outdoor temp
04e6 cd 06 a6 JSR CNVERT Convert to ASCII
04e9 cd 06 52 JSR SHOW3 Display as 3 digits
04ec cd 06 Sf JSR LCDDF Display 1°F'
04ef 81 RTS ** RETURN from DSPLAY **

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-39

Listing Thermostat Example Sheet 18 of 21

0600 ORG $0600 Temp ORG to get subs away from main

* *
* SUBROUTINES & CONSTANT TABLES *
* *

* Keypad Correspondance Table
* 1st entry of each pair is Row/Col bit pattern
* 2nd entry of each pair is ASCII equiv of key
*
* COL # -> 1 2 3 4
* v v v v
* This is layout of keypad
* ROW 1 -> 1 2 3 A
* ROW 2 -> 4 5 6 B
* ROW 3 -> 7 8 9 C
* ROW 4 -> < 0 >
*
* Port B layout is ...
* R4, R3, R2, R1; C1,C2,C3,C4 R's=ins, C's=outs
*

0600· 18 31 KYTBL FCB $18, '1 Row 1, Col 1 (Top Left)
0602 28 34 FCB $28,'4 Row 2, Col 1
0604 48 37 FCB $48,'7 Row 3, Col 1
0606 88 3c FCB $88,'< Row 4, Col 1
0608 14 32 FCB $14,'2 Row 1, Col 2
060a 24 35 FCB $24,'5 Row 2, Col 2
060c 44 38 FCB $44, '8 Row 3, Col 2
060e 84 30 FCB $84,'0 Row 4, Col 2
0610 12 33 FCB $12,'3 Row 1, Col 3
0612 22 36 FCB $22,' 6 Row 2, Col 3
0614 42 39 FCB $42,'9 Row 3, Col 3
0616 82 3e FCB $82,'> Row 4, Col 3
0618 11 41 FCB $11, 'A Row 1, Col 4
061a 21 42 FCB $21, 'B Row 2, Col 4
061c 41 43 FCB $41,'C Row 3, Col 4
061e 81 21 FCB $81, , ! Row 4, Col 4 (Bot Right)

4-40 M68HC05 MICROCONTROllER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 19 of 21

**
* WCTRL - Write control word to LCD peripheral *
* Enter with control word in accumulator *
* Return with original value of X *
* Delay -4.5mS if A=$01 or $02 else delay -l20~S *
**

0620 bf a1 WCTRL STX TEMPX
STA PORTA
BSET 2,PORTC
BCLR 2,PORTC
LDX 420

Save X
0622 b7 00
0624 14 02
0626 15 02
0628 ae 14

Write control word to LCD
E->1
E->O
20*6-*1~s/-=120~S

062a Sa L120U DECX Delay loop -120~S
20-19,19-18 ... 1-0 062b 26 fd

062d al 02
062f 22 06
0631 cd 06 39 L5M
0634 Sa

BNE L120U
CMP 1$02
BHI ARN5M
JSR ANRTS
DECX

Commands $01 & $02 req extra delay
If command> $02 skip long delay
JSR+RTS TAKES 12- (just want delay)
TAKES 3- (X=O->l on first pass)

0635 26 fa
0637 be a1 ARN5M

BNE L5M
LOX TEMPX
RTS

3- Loop 256*18-*1~S/--4.608mS Delay
Restore X

0639 81 ANRTS ** RETURN **

063a bf a1
063c b7 aO
063e b7 00
0640 12 02
0642 14 02
0644 15 02
0646 13 02
0648 ae 14
064a Sa
064b 26 fd
064d b6 aO
064f be a1
0651 81

MOTOROLA

**
* WDAT - Write data word to LCD peripheral
* Enter with data word in accumulator
* Return with original values of X & A
* Delay -120~S after data write

*
*
*
*

**
WDAT

L120

STX TEMPX
STA TEMPA
STA PORTA
BSET 1,PORTC
BSET 2,PORTC
BCLR 2,PORTC
BCLR 1,PORTC
LDX #20
DECX
BNE L120
LDA TEMPA
LDX TEMPX
RTS

Save X
Save A
Write data word to LCD
RS->l
E->l
E->O
RS->O
20*6-*1~S/-=120~S
Delay loop -120~S
20-19,19-18 ... 1-0
Restore A
Restore X
** RETURN **

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-41

Listing

0652 b6 ae
0654 ad e4
0656 b6 af
0658 ad eO
065a b6 bO
065c ad dc
065e 81

065f a6 df
0661 ad d7
0663 a6 46
0665 ad d3
0667 81

Thermostat Exampl.e Sheet 20 of 21

**
* SHOW3 - Display 3 ASCII chars on LCD
* ASC100, ASC10; ASC1
* SHOW2 - Display 2 ASCII chars on LCD
* ASC10; ASC1

*
*
*
*

**
SHOW3

SHow2

LDA
BSR
LDA
BSR
LDA
BSR
RTS

ASC100
WDAT
ASC10
WDAT
ASC1
WDAT

Get ASCII 100's digit
Send to LCD
Get ASCII 10's digit
Send to LCD
Get ASCII l's digit
Send to LCD
** RETURN **

**
* LCDDF - Display of on LCD *
**
LCDDF LDA

BSR
LDA
BSR
RTS

t$DF
WDAT
t'F
WDAT

Get ASCII degrees symbol
Send to LCD
Get ASCII capitol F
Send to LCD
** RETURN **

* Normal LCD display format ...
* H H : M MAD A YIN
* HEAT 72 0 OUT
* 1st line of display is
* 2nd line of display is

1 0 0 0 F
- 2 2 0 F

$00 (left)
$40 - $53

- $13

* Miscellaneous LCD message segments (Used in DSPLAY sub)
46 46 20 20 MHVAC FCC 'OFF These 4 messages accessed by

FCB $04 X offset from MHVAC. $04 is
45 41 54 20 FCC 'HEAT' used to mark the end of a string

FCB $04
4f 4f 4c 20 FCC 'COOL'

FCB $04

0668 4f
066d 04
066e 48
0673 04
0674 43
0679 04
067a 46
067f 04
0680 20
0685 20
068a 53
068d 04
068e 4d
0691 04
0692 54
0695 04
0696 57
0699 04
069a 54
069d 04
06ge 46
06a1 04
06a2 53
06a5 04

41 4e 20 20 FCC
FCB

MSINS FCC
MSOUT FCC
MDAY FCC

'FAN
$04

4-42

20 49 4e 20
4f 55 54 20
55 4e

4f 4e

55 45

45 44

48 55

52 49

41 54

FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB
FCC
FCB

IN '
, OUT'
'SUN'
$04
'MON'
$04
'TUE'
$04
'WED'
$04
'THU'
$04
'FRI'
$04
'SAT'
$04

These messages accessed by
X offset from MDAY. $04 is
used to mark the end of a string

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Listing Thermostat Example Sheet 21 of 21

**
* CNVERT - Convert a binary value to ASCII *
* Enter with binary value in A *
* Result stored in ASC100, ASC10, ASC1 *
* ASC100 (100's digit) defaults to blank «sp» *
* but could be 1 or minus (-) depending on valu *
* ASCIO and ASCI digits default to zeros *
* Result can be -99 through 127. *
**

06a6 b7 aO CNVERT STA TEMPA Save original binary value
06a8 a6 20 LDA t$20 ASCII <sp>
06aa b7 ae STA ASCIOO Tenative 100's digit
06ac a6 30 LDA t'O ASCII zero
06ae b7 af STA ASCIO Tenative 10's
06bO b7 bO STA ASCI Tenative l's
06b2 b6 aO LDA TEMPA Get value to convert
06b4 2a 19 BPL CVPOS Branch if value positive
06b6 a6 2d LDA .,- ASCII minus sign
06b8 b7 ae STA ASC100
06ba b6 aO LDA TEMPA Get orig value again
06bc 3c af LP10S INC ASCIO Loop to find 10's digit
06be ab Oa ADD no Trial addition
06cO 2b fa BMI LPIOS Loop till addition fails
06c2 27 25 BEQ XVERT If 0 conversion done; exit
06c4 3a af DEC ASC10 Too far; back up
06c6 aO Oa SUB no Now between -9 & -1
06c8. 40 NEGA Change to positive
06c9 bb bO ADD ASC1 Add to l's digit
06cb b7 bO STA ASC1 Update RAM location
06cd 20 la BRA XVERT Conversion done; exit

06cf al 64 CVPOS CMP noo Value >100 ?
06dl 25 08 BLO LPASIO If less; skip 100's
06d3 a6 31 LDA t'l
06d5 b7 ae STA ASC100 Put ASCII 1 in 100's
06d7 b6 aO LDA TEMPA Get value again
06d9 aO 64 SUB noo Take 100 away
06db 3c af LPAS10 INC ASC10 Increments 10's
06dd aO Oa SUB no Trial subtraction
06df 2a fa BPL LPAS10 Loop till trial sub fails
06e1 3a af DEC ASCIO Too far
06e3 ab Oa ADD no Add back, now 0-9
06e5 bb bO ADD ASCI Add to ASCII l's
06e7 b7 bO STA ASC1 Update RAM location
06e9 81 XVERT RTS ** RETURN from CNVERT **

* AID Offsets to compensate sensors

* Analog temp (AID reading) - (Offset)
06ea 3c OFFO FCB 60 Offset correction for sensor 1
06eb 3c OFF1 FCB 60 Offset correction for sensor 2

Hfe ORG $lFFE Reset vector address
lffe 01 00 FDB INIT Reset vector

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 4-43

4-44 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

APPENDIX A
INSTRUCTION SET DETAILS

This appendix contains complete detailed information for all M68HC05 in
structions. The instructions are arranged in alphabetical order with the in
struction mnemonic set in larger type for easy reference.

The nomenclature listed below is used in the following definitions:

(a) Operators
() = Contents of Register or Memory location Shown inside

Parentheses
• = Is loaded with (read:"gets")
... = Is Pulled from Stack
.. = Is Pushed onto Stack

= Boolean AND
+ =Arithmetic Addition (Except Where Used as Inclusive-OR

in Boolean Formula)
EB = Boolean Exclusive-OR
x =Multiply

= Concatenate
= Negate (Twos Complement)

(b) Registers in the MPU
ACCA =Accumulator
CCR = Condition Code Register
X = Index Register
PC = Program Counter
PCH = Program Counter, Higher Order (Most Significant) 8 Bits
PCl = Program Counter, lower Order (least Significant) 8 Bits
SP = Stack Pointer

(c) Memory and Addressing

MOTOROLA

M = A memory location or absolute data, depending on
addressing mode

Rei = Relative offset (j.e., the twos-complement number stored
in the last byte of machine code corresponding to a
branch instruction)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-1

A-2

(d) Bits in the Condition Code Register (CCR)
H = Half Carry, Bit 4
I = Interrupt Mask, Bit 3
N = Negative Indicator, Bit 2
C = Carry/Borrow, Bit 1
Z = Zero Indicator, Bit 0

(e) Status of individual bits BEFORE execution of an instruction
(n=7, 6, 5, ... 0)

An = Bit n of ACCA
Xn = Bit n of X
Mn =BitnofM

(f) Status of individual bits AFTER the execution of an instruction
Rn = Bit n of the result (n = 7, 6, 5, ... 0)

(g) Notation used in CCR activity summary figures
= Bit not affected

o = Bit forced to zero
1 = Bit forced to one
• = Bit set or cleared according to results of operation

(h) Notation used in machine coding
dd = Low-order 8-bits of a direct address $OOOO-$OOFF (high

byte assumed to be $0000)
ee = Upper 8 bits of 16-bit offset
ff = Lower 8 bits of 16-bit offset or 8-bit offset
ii = One byte of immediate data
hh = High-order byte of 16-bit extended address
II = Low-order byte of 16-bit extended address
rr = Relative offset

(i) Notation used in source forms
(opr) = Operand (one or two bytes depending on address mode)
(rei) = Relative offset used in branch and bit manipulation

instructions

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

ADC Add with Carry ADC

Operation: ACCA. (ACCA) + (M) + (C)

Description: Adds the contents of the C bit to the sum of the contents of ACCA and M
and places the result in ACCA.

Condition Codes and Boolean Formulae:

H I N Z C

H A3· M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if all bits of the result are cleared; cleared otherwise.

C A7· M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand Is) Cycles

ADC (opr) IMM A9 ii 2

ADC (opr) DIR 89 dd 3

ADC (opr) EXT C9 hh II 4

ADC,X IX F9 3

ADC (oprl.X IXl E9 ff 4

ADC (opr),X IX2 D9 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-3

ADD Add without Carry ADD

Operation: ACCA. (ACCA) + (M)

Description: Adds the contents of M to the contents of ACCA and places the result in
ACCA.

Condition Codes and Boolean Formulae:

H I N Z C

H A3· M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·R1·RO
Set if all bits of the result are cleared; cleared otherwise.

C A7· M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

ADD (opr) IMM AB ii 2

ADD (opr) DIR BB dd 2

ADD (opr) EXT CB hh " 3

ADD,X IX FB 1

ADD (opr),X IX1 EB ff 2

ADD (opr),X IX2 DB ee ff 3

A-4 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

AND Logical AND AND
Operation: ACCA. (ACCA) • (M)

Description: Performs the logical AND between the contents of ACCA and the contents
of M and places the result in ACCA. (Each bit of ACCA after the operation will be the
logical AND of the corresponding bits of M and of ACCA before the operation.)

Condition Codes and Boolean Formulae:

H N z c

" "
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if all bits of the result are cleared; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

AND (opr) IMM A4 ii 2

AND (opr) DIR B4 dd 3

AND (opr) EXT C4 hh II 4

AND,X IX F4 3

AND (opr),X IX1 E4 ff 4

AND (opr),X IX2 04 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-5

ASL

Operation:

Arithmetic Shift Left
(Same as LSL)

ASL

Description: Shifts all bits of the ACCA. X, or M one place to the left. Bit a is loaded
with a zero. The C bit in the CCR is loaded from the most significant bit of ACCA, X,
or M.

Condition Codes and Boolean Formulae:

H N Z C

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·R1·RO
Set if all bits of the result are cleared; cleared otherwise.

C b7
Set if, before the shift, the MSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

ASLA INH (AI 48 3

AS LX INH (XI 58 3

ASL(opr) DIR 38 dd 5

ASL, X IX 78 5

ASL (oprl.X IXl 68 II 6

A-6 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

ASR Arithmetic Shift Right ASR

Operation:
q .

b7 - - - - - - bol--w
Description: Shifts all of ACCA, X, or M one place to the right. Bit 7 is held constant.

Bit 0 is loaded into the C bit of the CCR. This operation effectively divides a twos
complement value by two without changing its sign. The carry bit can be used to
round the result.

Condition Codes and Boolean Formulae:

H N Z C

• • •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if all bits of the result and cleared; cleared otherwise.

C bO
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand/51 Cvcles

ASRA INH (AI 47 3

ASRX INH (X) 57 3

ASR (apr) DIR 37 dd 5

ASR.X IX 77 5

ASR (apr},X IX1 67 II 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-7

Bee

Operation:

Branch if Carry Clear
(Same as BHS)

PC • (PC) + $0002 + Rei if (C)=O

Bee

Description: Tests the state of the C bit in the CCR and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BCC (reI) REL 24 rr 3

The following table is a summary of all branch instructions.

A-8

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=1

r~m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m '" memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:s:;m BLS 23

r<m BLO/BCS 25

rfm BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

rfO BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BCLR n Clear Bit(s) in Memory BCLR n

Operation: Mn.O

Description: Clear bit n (n = 7,6,5, ... 0) in location M. All other bits in M are unaffected.
M can be any RAM or I/O register address in the $0000 to $OOFF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BClR O,(opr) DIR (bit 0) 11 dd 5

BClR 1,(opr) DIR (bit 1) 13 dd 5

BClR 2,(opr) DIR (bit 2) 15 dd 5

BClR 3,(opr) DIR (bit 3) 17 dd 5

BelR 4,(opr) DIR (bit 4) 19 dd 5

BelR 5,(opr) DIR (bit 5) 1B dd 5

BelR 6,(opr) DIR (bit 6) 10 dd 5

BelR 7,(opr) DIR (bit 7) 1F dd 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-9

Bes

Operation:

Branch if Carry Set
(Same as BlO)

PC. (PC) + $0002 + Rei if (C)= 1

Bes

Description: Tests the state of the C bit in the CCR and causes a branch if C is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BCS (reI) REl 25 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z~O

r;:::m C~O

r~m Z~1

r~m C+Z~1

r<m C~1

Carry C~1

r~O Z~1

Negative N~1

I Mask 1~1

Half Carry H~1

IRQ Pin High -

Always -

r = register (ACCA or Xl
m.'Cf'I'\eJ1;lOfyoperand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BlS 23

r<m BlO/BCS 25

rfm BNE 26

r>m BHI 22

r;;3:m BHS/BCC 24

No Carry BCC 24

rfO BNE 26

Plus BPl 2A

I Mask~O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

A-10 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BEQ Branch if Equal BEQ

Operation: PC. (PC) + $0002 + Rei if (Z)= 1

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set.
Following a compare or subtract instruction, BEQ will cause a branch if the arguments
were equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BEQ (reI) REl 27 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=l

r~m C+Z=l

r<m C=l

Carry C=l

r=O Z=l

Negative N=l

I Mask 1=1

Half Carry H=l

IRQ Pin High -

Always -

r = register (ACCA or Xl
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:'!S;m BLS 23

r<m BLO/BCS 25

r#m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r#O BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-11

BHCC Branch if Half Carry Clear BHCC

Operation: PC. (PC) +$0002 + Rei if (H)==O

Description: Tests the state ofthe H bit and causes a branch if H is clear. This instruction
is used in algorithms involving BCD numbers.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BHCC (rei) REL 28 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;'m C=O

r=m Z=1

r:<::::;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BLS 23

r<m BLO/BCS 25

r*m BNE 26

r>m BHI 22

r3"m BHS/BCC 24

No Carry BCC 24

r*O BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

A-12 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

SHCS Branch if Half Carry Set SHCS

Operation: PC • (PC) + $0002 + Rei if (H)=1

Description: Tests the state ofthe H bit and causes a branch if H is clear. This instruction
is used in algorithms involving BCD numbers. See BRA instruction for further details
of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BHCS (rei) REl 29 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;:;:m C=O

r=m Z=1

r~m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -
Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:::::;:m BlS 23

r<m BlO/BCS 25

r~m BNE 26

r>m BHI 22

r;;::m BHS/BCC 24

No Carry BCC 24

r~O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-13

BHI

Operation:

Branch if Higher

PC • (PC) + $0002 + Rei
i.e., if (ACCX»(M)

if (C)+(Z)==O
(unsigned binary numbers)

BHI

Description: Causes a branch if both C and Z are cleared. If the BHI instruction is exe-
cuted immediately after execution of a CMP or SUB instruction, the branch will occur
if the unsigned binary number represented by ACCA was greater than the unsigned
binary number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cvcles

BHI (reI) REL 22 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;,em C=O

r=m Z=1

r~m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -
Always -

r = register (ACCA or XI
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementarv Branch

r~m BLS 23

r<m BLO/BCS 25

r"'m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r"'O BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

A-14 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BHS

Operation:

Branch if Higher or Same
(Same as BCC)

PC. (PC) + $0002 + Rei
i.e., if (ACCA);.(M)

if (C)=O
(unsigned binary numbers)

BHS

Description: If the BHS instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number represented
by ACCA was greater than or equal to the unsigned binary number represented by
M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BHS (rei) REl 24 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;'m C=O

r==m Z=1

r:!:Sm C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r= register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:.:::::m BlS 23

r<m BLO/BCS 25

r,*,m BNE 26

r>m BHI 22

r;3m BHS/BCC 24

No Carry BCC 24

r,*,O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-15

BIH Branch if Interrupt Pin is High BIH

Operation: PC • (PC) + $0002 + Rei if IRQ= 1

Description:
is high.

Tests the state of the external interrup pin and causes a branch if the pin

See BRA instsruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(sl Cycles

BIH (reI) REL 2F rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m c=o

r=m Z=1

r:::.:;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r=register (ACCA or XI
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BLS 23

r<m BLO/BCS 25

r~m BNE 26

r>m BHI 22

r;:.m BHS/BCC 24

No Carry BCC 24

r~O BNE 26

Plus BPL 2A

I Mask=O BMC ?C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

A-16 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

Bil Branch if Interrupt Pin is Low Bil

Operation: PC. (PC) + $0002 + Rei if IRQ=O

Description: Tests the state of the external interrupt pin and branchs if it is low.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand/sl Cycles

BIL (rei) REL 2E rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=l

r:s;m C+Z=l

r<m C=l

Carry C=l

r=O Z=l

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BLS 23

r<m BLO/BCS 25

rfm BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

rfO BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-17

BIT Bit Test BIT

Operation: (ACCX)'(M)

Description: Performs the logical AND comparison of the contents of ACCA and the
contents of M, and modifies the condition codes accordingly. Neither the contents of
ACCA or M are altered. (Each bit of the result of the AND would be the logical AND
of the corresponding bits of ACCA and M).

Condition Codes and Boolean Formulae:

H N z c

• •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7'R6'R5'R4'R3'R2'~'RO
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand{s) Cycles

BIT (apr) IMM A5 ii 2

BIT (apr) OIR B5 dd 3

BIT (apr) EXT C5 hh II 4

BIT,X IX F5 3

BIT (aprl,X IX1 E5 ff 4

BIT (apr),X IX2 05 ee ff 5

A-18 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

BLO

Operation:

Branch if Lower
(Same as BCS)

PC. (PC) + $0002 + Rei
i.e., if (ACCX)«M)

if (C)= 1
(unsigned binary numbers)

BLO

Description: If the BLO instruction is executed immediately after execution of a CMP
or SUB instruction, the branch will occur if the unsigned binary number represented
by ACCA was less than the unsigned binary number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BLO (rei) REL 25 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=l

r.$.;m C+Z=l

r<m C=l

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -
Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BLS 23

r<m BLO/BCS 25

r*m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r*,O BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-19

BLS

Operation:

Branch if Lower or Same

PC. (PC)+$0002+Rel
i.e., if (ACCA)~(M)

if [(C) + (Z)] = 1
(unsigned binary numbers)

BLS.

Description: Causes a branch if (C is set) or (Z is set). If the BLS instruction is executed
immediately after execution of a CMP or SUB instruction, the branch will occur if and
only if the unsigned binary number represented by ACCA was less than or equal to
the unsigned binary number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BlS (rei) REl 23 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m c=o

r=m Z=1

r:.-:.:;;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -
r = register (ACCA or X)

m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BlS 23

r<m BlO/BCS 25

r*m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r*O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

A-20 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BMC Branch if Interrupt Mask is Clear BMC

Operation: PC • (PC) + $0002 + Rei if 1=0

Description: Tests the state of the I bit in the CCR and causes a branch if I is clear (i.e.,
if interrupts are enabled). See BRA instruction for further details of the execution of
the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BMC (rei) REl 2C rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=1

r:s.;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r= register (ACCA or Xl
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BlS 23

r<m BlO/BCS 25

r",m BNE 26

r>m BHI 22

r;:3m BHS/BCC 24

No Carry BCC 24

r",O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-21

BMI Branch if Minus BMI

Operation: PC. (PC) +$0002+ Rei if (N)=1

Description: Tests the state of the N bit in the CCR and causes a branch if N is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BMI (rei) REl 2B rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;;:::m C.=O

r=m Z=1

r~m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BlS 23

r<m BlO/BCS 25

r40m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r400 BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

A-22 M68HC05 MICROCONTROLLER APPLICATIONS' GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BMS Branch if Interrupt Mask is Set BMS

Operation: PC • (PC) + $0002 + Rei if(l)=1

Description: Tests the state of the I bit in the CCR and causes a branch if I is set (i.e.,
if interrupts are disabled).

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BMS (rei) REl 2D rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=1

r:::;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r~m BlS 23

r<m BlO/BCS 25

r,pm BNE 26

r>m BHI 22

r;=.-:m BHS/BCC 24

No Carry BCC 24

r,pO BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-23

BNE Branch if Not Equal to Zero BNE

Operation: PC. (PC) + $0002 + Rei if (Z)=O

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
Following a compare or subtract instruction, BEQ will cause a branch if the arguments
were not equal.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N Z c
I 1 I 1 I 1 I

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BNE (reI) REL 26 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r~m C=O

r=m Z=l

r~m C+Z=l

r<m C=l

Carry C=l

r=O Z=l

Negative N=l

I Mask 1=1

Half Carry H=l

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BLS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:;;;m BLS 23

r<m BLO/BCS 25

r*m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r*O BNE 26

Plus BPL 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ Low BIL 2E

Never BRN 21

A-24 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BPL Branch if Plus BPL

Operation: PC. (PC) + $0002 + Rei if (N)=O

Description: Tests the state of the N bit in the CCR and causes a branch if N is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms. Addressing Modes. Machine Code. and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BPL (rei) REL 2A rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r;"m C=O

r=m Z=1

r-,::;;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -
Always -

r=register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

rs.:;m BLS 23

r<m BlO/BCS 25

r"m BNE 26

r>m BHI 22

r:3m BHS/BCC 24

No Carry BCC 24

r"O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

A-25

BRA Branch Always BRA

Operation: PC. (PC) + $0002 + Rei

Description: Unconditional branch to the address given by the foregoing formula, in
which Rei is the relative offset stored as a twos-complement number in the last byte
of machine code corresponding to the branch instruction. PC is the address of the
opcode for the branch instruction.

The source program specifies the destination of any branch instruction by its absolute
address, either as a numerical value or as a symbol or expression which can be
numerically evaluated by the assembler. The assembler calculates the relative address,
Rei, from the absolute address and the current value of the location counter.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BRA (rei) REl 20 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r:3m c=o

r=m Z=1

r:E;m C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

r = register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BLO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:s;m BlS 23

r<m BlO/BCS 25

r",m BNE 26

r>m BHI 22

r=3m BHS/BCC 24

No Carry BCC 24

r",O BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

A-26 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BRCLR n Branch if Bit n Clear BRCLR n

Operation: PC. (PC)+$0003+Rel if bit n of M = 0

Description: Tests bit n (n = 7, 6, 5, ... 0) of location M and branches if the bit is clear.
M can be any RAM or 1/0 register address in the $0000 to $OOFF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

The C bit is set to the state of the bit tested. When used along with an appropriate
rotate instruction, BRCLR n provides an easy method for performing serial to parallel
conversions.

Condition Codes and Boolean Formulae:

H I N Z C

1111111-1-1-1-1_
C Set if Mn = 1; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BRCLR O,(opr) DIR (bit 0) 01 dd rr 5

BRCLR 1,(opr) DIR (bit 1) 03 dd rr 5

BRCLR 2,(opr) DIR (bit 2) 05 dd rr 5

BRCLR 3,(opr) DIR (bit 3) 07 dd rr 5

BRCLR 4,(opr) DIR (bit 4) 09 dd rr 5

BRCLR 5,(opr) DIR (bit 5) OB dd rr 5

BRCLR 6,(opr) DIR (bit 6) OD dd rr 5

BRCLR 7,(opr) DIR (bit 7) OF dd rr 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-27

BR'N Branch Never BRN

Operation: PC. (PC) + $0002

Description: Never branches. In effect, this instruction can be considered as a two-byte
NOP (no operation) requiring three cycles for execution. Its inclusion in the instruction
set is to provide a complement for the BRA instruction. The instruction is useful during
program debug to negate the effect of another branch instruction without disturbing
the offset byte.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BRN (reI) REl 21 rr 3

The following table is a summary of all branch instructions.

Test Boolean

r>m C+Z=O

r"'m C=O

r=m Z=1

r:o:Sm C+Z=1

r<m C=1

Carry C=1

r=O Z=1

Negative N=1

I Mask 1=1

Half Carry H=1

IRQ Pin High -

Always -

ro~register (ACCA or X)
m = memory operand

Mnemonic Opcode

BHI 22

BHS/BCC 24

BEQ 27

BlS 23

BlO/BCS 25

BCS 25

BEQ 27

BMI 2B

BMS 2D

BHCS 29

BIH 2F

BRA 20

Complementary Branch

r:=;;m BlS 23

r<m BlO/BCS 25

r40m BNE 26

r>m BHI 22

r~m BHS/BCC 24

No Carry BCC 24

r400 BNE 26

Plus BPl 2A

I Mask=O BMC 2C

No Half Carry BHCC 28

IRQ low Bil 2E

Never BRN 21

A-28 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

Comment

Unsigned

Unsigned

Unsigned

Unsigned

Unsigned

Simple

Simple

Simple

Simple

Simple

Simple

Unconditional

MOTOROLA

BRSET n Branch if Bit n Set BRSET n

Operation: PC. (PC)+$0003+Rel if bit n of M = 1

Description: Tests bit n (n = 7, 6, 5, ... 0) of location M and branches if the bit is set.
M can be any RAM or 110 register address in the $0000 to $OOFF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

The C bit is set to the state of the bit tested. When used along with an appropriate
rotate instruction, BRSET n provides an easy method for performing serial to parallel
conversions.

Condition Codes and Boolean Formulae:

H I N Z C

1111111-1-1-1-1-
C Set if Mn = 1; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BRSET O,(opr).(rel) DIR (bit 0) 00 dd rr 5

BRSET 1,(opr),(rel) DIR (bit 1) 02 dd rr 5

BRSET 2,(opr),(rel) DIR (bit 2) 04 dd rr 5

BRSET 3,(opr).(rel) DIR (bit 3) 06 dd rr 5

BRSET 4,(opr),(rel) DIR (bit 4) 08 dd rr 5

BRSET 5,(opr).(rel) DIR (bit 5) OA dd rr 5

BRSET 6,(opr).(rel) DIR (bit 6) DC dd rr 5

BRSET 7,(opr).(rel) DIR (bit 7) DE dd rr 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-29

SSET n Set Bit in Memory SSET n

Operation: Mn.1

Description: Set bit n (n = 7,6,5, ... 0) in location M. All other bits in M are unaffected.
M can be any RAM or 1/0 register address in the $0000 to $OOFF area of memory (i.e.,
direct addressing mode is used to specify the address of the operand).

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

BSET O,(opr\ DIR (bit 0) 10 dd 5

BSET 1,(opr) DIR (bit 1) 12 dd 5

BSET 2,(opr) DIR (bit 2) 14 dd 5

BSET 3,(opr\ DIR (bit 3) 16 dd 5

BSET 4,(opr) DIR (bit 4) 18 dd 5

BSET 5,(opr\ DIR (bit 5) 1A dd 5

BSET 6,(opr\ DIR (bit 6) 1C dd 5

BSET 7,(opr\ DIR (bit 7) 1E dd 5

A-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

BSR

Operation: PC. (PC) + $0002
.(PCL)
SP. (SP)-$0001
.(PCH)

Branch to Subroutine

Advance PC to return address
Push low-order return onto stack

Push high-order return onto stack

BSR

SP. (SP) - $0001
PC. (PC) + Rei Load PC with start address of requested subroutine

Description: The program counter is incremented by two from the opcode address, (i.e.,
so it points to the opcode of the next instruction which will be the return address).
The least significant byte of the contents of the program counter (low-order return
address) is pushed onto the stack. The stack pointer is then decremented by one. The
most significant byte of the contents of the program counter (high-order return ad
dress) is pushed onto the stack. The stack pointer is then decremented by one. A
branch then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms. Addressing Modes. Machine Code. and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand,s) Cycles

BSR (reI) REL AD rr 3

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-31

CLC Clear Carry CLC

Operation:

Description: Clears the C bit in the CCR. CLC may be used to set up the C bit prior to
a shift or rotate instruction involving the C bit.

Condition Codes and Boolean Formulae:

C 0
Cleared

H N z c
I 0

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

CLC INH 98 2

A-32 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

CLI Clear Interrupt Mask Bit CLI

Operation:

Description: Clears the interrupt mask bit in the CCR. When the I bit is clear, interrupts
are enabled. There is a one E-clock cycle delay in the clearing mechanism for the I bit
so that, if interrupts were previously disabled, the next instruction after a CLI will
always be executed, even if there was an interrupt pending prior to execution of the
CLI instruction.

Condition Codes and Boolean Formulae:

o
Cleared

H N z c

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

eLi INH 9A 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-33

CLR Clear

Operation: ACCA. $00 or: M .$00 or: X. $00

Description; The contents of ACCA, M, or X are replaced with zeros.

Condition Codes and Boolean Formulae:

I 1 I 1

N 0
Cleared

z
Set

1 I
H N z c

o I 1

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

CLRA INH (A) 4F 3

CLRX INH (X) 5F 3

CLR (opr) DIR 3F dd 5

CLR,X IX 7F 5
CLR (opr),X IXl 6F ff 6

A-34 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

CLR

MOTOROLA

CMP Compare Accumulator with Memory CMP

Operation: (ACCA)-(M)

Description: Compares the contents of ACCA to the contents of M and sets the condition
codes, which may be used for arithmetic and logical conditional branching. The con
tents of both ACCA and M are unchanged.

Condition Codes and Boolean Formulae:

H N z c

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C A7· M7 + M7· R7 + R7· A7
Set if the absolute value of the contents of memory is larger than the absolute
value of the accumulator; cleared otherwise.

Source Forms, ~ddressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

CMP (apr) IMM A1 ii 2

CMP (apr) OIR 81 dd 3

CMP (apr) EXT C1 hh II 4

CMP,X IX F1 3

CMP (apr),X IX1 E1 II 4

CMP (apr),X IX2 01 ee If 5

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE A-35

COM Complement COM

Operation: ACCA.(ACCA)=$FF-(ACCA) or: M.(M)=$FF-(M) or:
X. X=$FF-(X)

Description: Replaces the contents of ACCA, X, or M with its ones complement. (Each
bit of the contents of ACCA, X, or M is replaced with the complement of that bit.)

Condition Codes and Boolean Formulae:

H N z c
• • I I

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·R1·RO
Set if result is $00; cleared otherwise.

C
Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

COMA INH (A) 43 3

COMX INH (X) 53 3

COM (opr) DIR 33 dd 5

COM,X IX 73 5

COM (opr),X IXI 63 ff 6

A-36 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

CPX Compare Index Register with Memory CPX

Operation: (X)-(M)

Description: Compares the contents of the index register with the contents of memory
and sets the condition codes, which may be used for arithmetic and logical branching.
The contents of both ACCA and M are unchanged.

Condition Codes and Boolean Formulae:

H N z c

N R7
Set if MSB of result is set; cleared otherwise.

Z R7oR6oR5oR4oR3oR2omoRO
Set if result is $00; cleared otherwise.

C IX7 ° M7 + M7 ° R7 + R7 ° IX7
Set if the absolute value of the contents of memory is larger than the absolute
value of the index register; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s} Cycles

CPX (apr) IMM A3 ii 2

CPX (apr) DIR 83 dd 3

CPX (apr) EXT C3 hh II 4

CPX,X IX F3 3

CPX (apr),X IXl E3 ff 4

CPX (apr),X IX2 D3 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-37

DEC Decrement DEC

Operation: ACCA.(ACCA)-$01 or: M.(M)-$01 or: X.(X)-$01

Description: Subtract one from the contents of ACCA, X, or M.

The Nand Z bits in the CCR are set or cleared according to the result of this operation.
The C bit is in the CCR is not affected; therefore, the only branch instructions that are
useful following a DEC instruction are BEQ, BNE, BPL, and BM!.

Condition Codes and Boolean Formulae:

H N z c

•
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes Machine Code, and Cycles:

A-38

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

DECA INH (A) 4A 3

DECX INH (X) 5A 3

DEC (opr) DIR 3A dd 5

DEC, X IX 7A 5

DEC (opr),X IX1 6A ff 6

(DEX is recognized by the Assembler as being equivalent to
DECX)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

EOR Exclusive-OR EOR

Operation: ACCA. (ACCA) EB (M)

Description: Performs the logical exclusive-OR between the contents of ACCA and the
contents of M and places the result in ACCA. (Each bit of ACCA after the operation
will be the logical exclusive-OR of the corresponding bits of M and ACCA before the
operation.)

Condition Codes and Boolean Formulae:

H N z c

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

EOR (oprl IMM A8 ii 2

EOR (apr) DIR B8 dd 3

EOR (aprl EXT C8 hh " 4

EOR,X IX F8 3

EOR (apr),X IX1 E8 ff 4

EOR (apr),X IX2 D8 ee ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-39

INC Increment INC

Operation: ACCA. (ACCA) + $01 or: M. (M) + $01 or: X. (X) + $01

Description: Add one to the contents of ACCA, X, or M.

The Nand Z bits in the CCR are set or cleared according to the results of this operation.
The C bit in the CCR is not affected; therefore, the only branch instructions that are
useful following a INC instruction are BEQ, BNE, BPL, and BMI.

Condition Codes and Boolean Formulae:

H N z c

• •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7oR6oR5oR4oR3oR2omoRO
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

A-40

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

INCA INH (A) 4C 3

INCX INH (X) 5C 3

INC (opr) DIR 3C dd 5

INC, X IX 7C 5

INC (opr),X IX1 6C ff 6

(lNX is recognized by the Assembler as being equivalent to
INCX)

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

JMP Jump JMP

Operation: PC. Effective Address

Description: A jump occurs to the instruction stored at the effective address. The ef-
fective address is obtained according to the rules for EXTended, DIRect, or INDexed
addressing.

Condition Codes and Boolean Formulae:

Ii N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

JMP (opr) DIR BC dd 2

JMP (opr) EXT CC hh II 3

JMP, X IX FC 2

JMP (opr), X IXl EC ff 3

JMP (opr),X IX2 DC ee II 4

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-41

JSR Jump to Subroutine JSR

Operation: PC. (PC)+n n = 1, 2, 3 depending on address mode
Push low-order return address onto stack
Push high-order return address onto stack
load PC with start address of requested

.. (PCl); SP. SP-$0001

.. (PCH); SP. SP-$0001
PC • Effective Addr

subroutine

Description: The program counter is incremented by n so that it points to the opcode
of the instruction that follows the JSR instruction (n = 1, 2, or 3 depending on the
addressing mode). The PC is then pushed onto the stack, eight bits at a time, least
significant byte first. Unused bits in the program counter high byte are stored as ones
on the stack. The stack pointer points to the next empty location on the stack. A jump
occurs to the instruction stored at the effective address. The effective address is ob
tained according to the rules for EXTended, DIRect, or INDexed addressing.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

JSR (apr) DIR SD dd 5

JSR (apr) EXT CD hh II 6

JSR,X IX FD 5

JSR (apr!. X IX1 ED ff 6

JSR (opr),X IX2 DD ee ff 7

A-42 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

LOA Load Accumulator from Memory LOA

Operation: ACCA. (M)

Description: Loads the contents of memory into the accumulator. The condition codes
are set according to the data.

Condition Codes and Boolean Formulae:

H N z c

•
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

LOA (apr) IMM A6 ii 2

LOA (apr) OIR 86 dd 3

LOA (apr) EXT C6 hh II 4

LOA,X IX F6 3

lOA (apr),X IX1 E6 II 4

lOA (apr),X IX2 06 ee II 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-43

LDX Load Index Register from Memory LDX

Operation; X. (M)

Description: Loads the contents of the specified memory location into the index register.
The condition codes are set according to the data.

Condition Codes and Boolean Formulae:

H N z c

•
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·R1·RO
Set if result is $00; cleared otherwise.

Source Forms. Addressing Modes. Machine Code. and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

LDX (apr) IMM AE ii 2

LDX (apr) DIR BE dd 3

LDX (apr) EXT CE hh II 4

LDX,X IX FE 3

LDX (apr),X IX1 EE ff 4

LDX (apr),X IX2 DE ee ff 5

A-44 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

LSL Logical Shift Left
(Same as ASL)

LSL

Operation:

Description: Shifts all bits of the ACCA, X, or M one place to the left. Bit 0 is loaded
with zero. The C bit is loaded from the most significant bit of ACCA, X, or M.

Condition Codes and Boolean Formulae:

H N z

•
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C b7
Set if, before the shift, the MSB of ACCA or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

LSLA INH (A) 48 3

LSLX INH (X) 58 3

LSL (apr) DIR 38 dd 5

LSL, X IX 78 5

LSL (opr),X IX1 68 ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-45

LSR Logical Shift Right LSR

Operation:

Description: Shifts all bits of ACCA, X, or M one place to the right. Bit 7 is loaded with
zero. Bit 0 is shifted into the C bit.

Condition Codes and Boolean Formulae:

N 0
Cleared.

H N z
o I •

Z R7·R6·R5·R4·R3·R2·R1·RO

c

Set if result is $00; cleared otherwise.

C bO
Set if, before the shift, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

LSRA INH (A) 44 3

LSRX INH (X) 54 3

LSR (apr) DIR 34 dd 5

LSR,X IX 74 5

LSR (opr),X IX1 64 ff 6

A-46 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

MUL Multiply Unsigned MUL

Operation: X:A. XxA

Description: Multiplies the eight bits in the index register by the eight bits in the ac-
cumulator to obtain a 16-bit unsigned number in the concatenated index register and
accumulator. After the operation, X contains the upper 8 bits of the 16-bit result.

Condition Codes and Boolean Formulae:

H N Z c
I 1 I 1 I 1 0 I I 0

H 0
Cleared

C 0
Cleared

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(sl Cvcles

MUL INH 42 11

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE A-47

NEG Negate NEG

Operation: ACCA. - (ACCA); or: X. - (X); or: M. - (M)

Description: Replaces the contents of ACCA, X, or M with its twos complement. Note
that the value $80 is left unchanged.

Condition Codes and Boolean Formulae:

H N Z C

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C R7+R6+R5+R4+R3+R2+R1 +RO
Set if there is a borrow in the implied subtraction from zero; cleared otherwise.
The C bit will be set in all cases except when the contents of ACCA, X, or M (prior
to the NEG operation) is $00.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

NEGA INH (A) 40 3

NEGX INH (X) 50 3

NEG (apr) DIR 30 dd 5

NEG,X IX 70 5

NEG (opr),X IX1 60 ff 6

A-48 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

NOP No Operation NOP

Description: This is a single-byte instruction that causes only the program counter to
be incremented. No other registers are affected.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand/s) Cycles

NOP INH 9D 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-49

ORA Inclusive-OR ORA

Operation: ACCA. (ACCA) + (M)

Description: Performs the logical inclusive-OR between the contents of ACCA and the
contents of M and places the result in ACCA. Each bit of ACCA after the operation will
be the logical inclusive-OR of the corresponding bits of M and of ACCA before the
operation.

Condition Codes and Boolean Formulae:

H N z c

• •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

ORA (apr) IMM AA ii 2

ORA (apr) DIR SA dd 3

ORA (apr) EXT CA hh II 4

ORA,X IX FA 3

ORA (opr),X IX1 EA ff 4

ORA (opr),X IX2 DA ee ff 5

A-50 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

ROL Rotate Left ROL

Operation: [~].-lb7 - - - - - - bol.-[u

Description: Shifts all bits of ACCA, X, or M one place to the left. Bit 0 is loaded from
the C bit. The C bit is loaded from the MSB of ACCA, X, or M. The rotate instructions
include the carry bit to allow extension of the shift and rotate operations to multiple
bytes. For example, to shift a 24-bit value left one bit, the sequence {ASL LOW, ROL
MID, ROL HIGH} could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes and Boolean Formulae:

H N Z C

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·R1·RO
Set if result is $00; cleared otherwise.

C b7
Set if, before the rotate, the MSB of ACCA or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

ROLA INH (A) 49 3

ROLX INH (X) 59 3

ROL (opr) DIR 39 dd 5

ROL. X IX 79 5

ROL (oprl,X IXl 69 ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-51

ROR Rotate Right ROR

Operation:

Description: Shift all bits of ACCA, X, or M one place to the right. Bit 7 is loaded from
the C bit. The rotate operations include the carry bit to allow extension of the shift
and rotate operations to multiple bytes; For example, to shift a 24-bit value right one
bit, the sequence {LSR HIGH, ROR MID, ROR LOW} could be used where LOW, MID,
and HIGH refer to the low-order, middle, and high-order bytes of the 24-bit value,
respectively.

Condition Codes and Boolean Formulae:

H N Z C

• • •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C bO
Set if, before the rotate, the LSB of ACCA, X, or M was set; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

RORA INH (AI 46 3

RORX INH (XI 56 3

ROR (oprl DIR 36 dd 5
ROR,X IX 76 5
ROR (oprl,X IX1 66 ff 6

A-52 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

RSP Reset Stack Pointer RSP

Operation: SP. $OOFF

Description: Resets the stack pointer to the top of the stack.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms. Addressing Modes. Machine Code. and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cvcles

RSP INH 9C 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-53

RTI

Operation:

Return from Interrupt

SP • (SP) + $0001; .. CCR
SP • (SP) + $0001; .. ACCA
SP. (SP)+$0001; .. X
SP • (SP) + $0001; .. PCH
SP • (SP) + $0001; .. PCl

Restore CCR from stack
Restore ACCA from stack
Restore X from stack
Restore PCH from stack
Restore PCl from stack

RTI

Description: The condition codes, accumulator, the index register, and the program
counter are restored to the state previously saved on the stack. The I-bit will be reset
if the corresponding bit stored on the stack is zero.

Condition Codes and Boolean Formulae:

H I N Z C

Set or cleared according the the byte pulled from the stack.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

RTI INH 80 9

A-54 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

RTS

Operation:

Return from Subroutine

SP. (SP) + $0001; .. PCH
SP • (SP) + $0001; .. PCl

Restore PCH from stack
Restore PCl from stack

RTS

Description: The stack pointer is incremented by one. The contents of the byte of mem-
ory that is pointed to by the stack pointer is loaded into the high-order byte of the
program counter. The stack pointer is again incremented by one. The contents of the
byte of memory at the address now contained in the stack pointer is loaded into the
low-order 8 bits of the program counter.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

RTS INH 81 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-55

SBe Subtract with Carry SBe
Operation: ACCA. (ACCA)-(M)-(C)

Description: Subtracts the contents of M and the contents of C from the contents of
ACCA and places the result in ACCA.

Condition Codes and Boolean Formulae:

H N z c

• •
N R7

Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C A7· M7 + M7 • R7 + R7 • A7
Set if the absolute value of the contents of memory plus previous carry is larger
than the absolute value of the accumulator; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

SBe (opr) IMM A2 ii 2

SBe (opr) DIR B2 dd 3

SBe (opr) EXT C2 hh II 4

SBe,X IX F2 3

SBe (opr),X IX1 E2 ff 4

SBe (opr).X IX2 D2 ee ff 5

A-56 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SEC Set Carry SEC
Operation:

Description: Sets the C bit in the CCR. SEC may be used to set up the C bit prior to a
shift or rotate instruction that involves the C bit.

Condition Codes and Boolean Formulae:

H N z
I 1

C
Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(51 Cycles

SEC INH 99 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-57

SEI' Set Interrupt Mask SEI

Operation:

Description: Sets the interrupt mask bit in the CCR. The microprocessor is inhibited
from servicing interrupts while the I bit is set.

Condition Codes and Boolean Formulae:

H N z c

Set

Source Forms, Addressing Modes, Machine Code, and Cycles

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

SEI INH 98 2

A-58 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

STA Store Accumulator STA

Operation: M • (ACCA)

Description: Stores the contents of ACCA in memory. The contents of ACCA remain
unchanged.

Condition Codes and Boolean Formulae:

H N z c

•
N A7

Set if MSB of result is set; cleared otherwise.

Z A7·A6·A5·A4·A3·A2·A1·AO
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(sl Cycles

STA (apr) DIR B7 dd 4

STA(apr) EXT C7 hh II 5

STA,X IX F7 4

STA (apr), X IXl E7 ff 5

STA (apr),X IX2 D7 ee ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-59

STOP Enable IRQ, Stop Oscillator STOP

Description: Reduces power consumption by eliminating all dynamic power dissipation.
This results in: 1) timer prescaler cleared, 2) timer interrupts disabled, 3) timer interrupt
flag cleared, 4) external interrupt request enabled, and 5) oscillator inhibited.

When the RESET or IRQ input goes low, the oscillator is enabled, a delay of 1920
processor clock cycles is initiated allowing the oscillator to stabilize, the interrupt
request vector or reset vector is fetched, and the service routine is executed, depending
on which signal was applied.

External interrupts are enabled following the STOP command.

Condition Codes and Boolean Formulae:

o
Cleared

H N z c

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(sl Cycles

STOP INH BE 2

A-60 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

STX Store Index Register X STX
Operation: M. (X)

Description: Stores the contents of X in memory. The contents of X remain unchanged.

Condition Codes and Boolean Formulae:

H N z c

N X7
Set if MSB of result is set; cleared otherwise.

Z X7·X6·X5·X4·X3·X2·X1·XO
Set if result is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

STX (apr) DIR SF dd 4

STX (apr) EXT CF hh II 5

STX, X IX FF 4

STX (apr), X IXl EF ff 5

STX (opr),X IX2 DF ee ff 6

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-61

· Subtract SUB

Operation: ACCA. (ACCA) - (M)

Description: . Subtracts the contents of M from the contents of ACCA and places the
result in ACCA.

Condition Codes and Boolean Formulae:

H N z c

N R7
Set if MSB of result is set; cleared otherwise.

Z R7·R6·R5·R4·R3·R2·~·RO
Set if result is $00; cleared otherwise.

C A7· M7 + M7 • R7 + R7 • A7
Set if the abolsute value of the contents of memory plus the previous carry is
larger than the absolute value of the accumulator; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s~ Cycles

SUB (apr) IMM AO ii 2

SUB (apr) DIR BO dd 3

SUB (apr) EXT CO hh II 4

SUB,X IX FO 3

SUB (opr),X IX1 EO ff 4

SUB (opr),X IX2 DO ee ff 5

A-62 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

SWI

Operation:

Software Interrupt SWI

PC • (PC) + $0001
.. (PCL); SP • (SP) - $0001
.. (PCH); SP. (SP)-$0001
.. (X); SP • (SP) - $0001
.. (ACCA); SP. (SP)-$0001
.. (CCR); SP. (SP)-$0001
I bit. 1
PCH • ($xFFC)
PCl • ($xFFD)

Advance PC to return address
Push low-order return address onto stack
Push high-order return address onto stack
Push index register onto stack
Push accumulator onto stack
Push CCR onto stack

Vector fetch (x = 1 or 3 depending on
HC05 version)

Description: The program counter is incremented by one. The program counter, index
register, and accumulator are pushed onto the stack. The CCR bits are then pushed
onto the stack, with bits H, I, N, Z, and C going into bit positions 4-0 and bit positions
7, 6, and 5 containing ones. The stack pointer is decremented by one after each byte
of data is stored on the stack. The interrupt mask bit is then set. The program counter
is then loaded with the address stored in the SWI vector (located at memory locations
n-0002 and n-0003, where n is the address corresponding to a high state on ali lines
of the address bus). The address of the SWI vector can be expressed as $xFFC:$xFFD,
where x is 1 or 3 depending on the version of 68HC05 being used. This instruction is
not maskable by the I bit.

Condition Codes and Boolean Formulae:

H N z c
I 1 I 1 1 I I 1

Set

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

SWI INH 83 10

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-63

TAX Transfer Accumulator to Index Register TAX

Operation: X. (ACCA)

Description: Loads the index register with the contents of the accumulator. The contents
of the accumulator are unchanged.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

TAX INH 97 2

A-64 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

TST Test for Negative or Zero TST

Operation: (ACCA)-$OO or: (X)-$OO or: (M)-$OO

Description: Sets the condition codes Nand Z according to the contents of ACCA, X,
or M. The contents of ACCA, X, and M are not altered.

Condition Codes and Boolean Formulae:

H N z c

• •
N M7

Set if the MSB of the contents of ACCA, X, or M is set; cleared otherwise.

Z M7. M6. M5. M4. M3. M2. M1 • MO
Set if the contents of ACCA, X, or M is $00; cleared otherwise.

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

TSTA INH (A) 4D 3

TSTX INH (X) 5D 3

TST (opr) DIR 3D dd 4

TST,X IX 7D 4

TST (opr),X IX1 6D ff 5

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-65

TXA Transfer Index Register to Accumulator TXA

Operation: ACCA. (X)

Description: Loads the accumulator with the contents ofthe index register. The contents
of the index register are not altered.

Condition Codes and Boolean Formulae:

H N z c

None affected

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cvcles

TXA INH 9F 2

A-66 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

WAIT Enable Interrupt, Stop Processor WAIT

Description: Reduces power consumption by eliminating most dynamic power dissi-
pation. The timer, the timer prescaler, and the on-chip peripherals continue to operate
because they are potential sources of an interrupt. Wait causes enabling of interrupts
by clearing the I bit in the CCR and stops clocking of processor circuits.

Interrupts from on-chip peripherals may be enabled or disabled by local control bits
prior to execution of the WAIT instruction.

When the RESET or IRQ input goes low or when anyon-chip system requests interrupt
service, the processor clocks are enabled, and the reset, IRQ, or other interrupt service
request is processed.

Condition Codes and Boolean Formulae:

o
Cleared

H N z c

Source Forms, Addressing Modes, Machine Code, and Cycles:

Source Addressing Machine Code HCMOS
Forms Mode Opcode Operand(s) Cycles

WAIT INH 8F 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE A-67

A-68 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

APPENDIX B
REVIEW QUESTIONS

The 50 review questions presented are based directly on the text of this
applications guide. These review questions are repeated with the proper
answers, indicating the portion of text from which the information was ob
tained.

1. The instruction set of a CPU is
o A. a software program written by an end user.
o B. the same for all computers.
o C. determined by the wiring within the CPU.
o D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the needs
of a CPU and those of a human?
o A. Binary
o B. Octal
o C. Decimal
o D. Hexadecimal

3. A specific 8-bit value in a computer memory can mean different things
depending on its context. The value could be a number, a code repre
senting an alphabetic character, a code for an instruction (opcode), etc.
The hexadecimal value $42 could be interpreted by an MC68HC705C8 to
mean any of the following things except one. Choose the one answer
which is not likely to be a correct interpretation of the value $42.
o A. The opcode for the MUL (multiply) instruction.
o B. The decimal value 66.
o C. The address of an on-chip control register.
o D. The letter "B".

4. Which of the following items requires the most memory bits?
o A. The BCD representation of 125.
o B. The binary representation of 254.
o C. The ASCII representation of the letter "A".
o D. The binary equivalent of the octal number 758,

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-1

8-2

S. How many 8-bit memory locations would be needed to hold th.e ASCII
representation of the name "FRED"?
o A. 16
o B. 4
o C. 7
o D. 2

6. Which of these CPU registers in the MC68HC70SC8 contains the most
bits?
o A. The accumulator (A)
o B. The index register (X)
o C. The condition code register (CCR)
o D. The program counter (PC)

7. Which CPU register in the MC68HC70SC8 would most likely point to the
next instruction that the CPU will execute?
o A. The accumulator (A)
o B. The index register (X)
o C. The stack pointer (SP)
o D. The program counter (PC)

8. During execution of a subroutine, where would the CPU save the return
address? All except one of the following address pairs is incorrect due
to improper memory type or address.
o A. $1 FFE, 1 FFF
o B. $OOEC,OOED
o C. $OOAE,OOAF
o D. $01SE,01SF

9. How many different opcodes correspond to the LOA (load accumulator)
instruction?
o A. 1
o B. 3
o C. 6
o D. 16

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

018c
018c 3d a2
018e 26 38
0190 3c a3
0192 a6 3c
0194 b1 a3

o A. $A2
o B. $3C
o C. $93
o D. $01

TIME EQU
TST
BNE
INC
LDA
CMP

* Update Time-of-day
TIC Check for TIC=zero
XTIME If not; just exit
SEC SEC=SEC+1
#60
SEC Did SEC -> 60 ?

11. The following instruction reads the current value of the 8-bit variable
"TIC" and internally tests for a negative or zero value. At what physical
address is the variable "TIC" located?

018c 3d a2 TST TIC Check for TIC=zero

o A. $01A2
o B. $018D
o C. $3DA2
o D. $00A2

12. After executing the following sequence of instructions, what value will
be in the accumulator?

MOTOROLA

BEGIN LDA #$80
BPL LABEL
INCA

LABEL DECA
DECA

o A. $7E
o B. $7F
o C. $80
o D. $81

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-3

8-4

13. After executing the following instruction sequence from "START" to
"END", what value will be in memory location $OOFF?

0100 9c START RSP Reset SP to $OOFF
0101 cd 02 00 JSR SUB Call SUB
0104 cd 02 00 JSR SUB Call SUB again
0107 9d END NOP Done

" " " " " "
0200 81 SUB RTS Just Return

o A. $00
o B. $01
o C. $04
o D. $07

14. What frequency crystal would be used on an MC68HC705C8 to get a 500-
ns internal processor clock?
o A. 1.0 MHz
o B. 2.0 MHz
o C. 4.0 MHz
o D. 8.0 MHz

15. For an MC68HC705C8 with a 4.0-MHz crystal, what amount of time cor
responds to a single count of the 16-bit timer?
o A. 500 ns
o B. 1.0 I-ls
o C. 2.0 I-ls
o D. 4.0 I-ls

16. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest baud
rate available for the SCI (UART-type serial interface)?
o A. 131.072 kbaud
o B. 125 kbaud
o C. 19.2 kbaud
o D. 9600 baud

17. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest master
mode bit rate available for the SPI (synchronous serial peripheral inter
face)?
o A. 1 Mbit/sec
o B. 500 kbits/sec
o C. 250 kbits/sec
o D. 125 kbits/sec

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

18. How many bit times are there in one SCI character frame?
o A. 8
o B. 9
o C. 10
o D. 10 or 11

19. To assure an orderly startup, reset forces the CPU to begin executing
instructions in a predictable, repeatable way. Which of the following
statements best describes how the CPU proceeds from reset?
o A. The CPU fetches the instruction from $1 FFF and executes it.
o B. The CPU loads the program counter (PC) with the address $1 FFE

and begins executing instructions.
o C. The CPU begins executing instructions starting at address $0000.
o D. The CPU loads the program counter (PC) with the address stored

at $1 FFE, 1 FFF and then begins executing instructions starting at
that address.

20. To change the SCI baud rate, what address would you write to?
o A. $OOOD
o B. $OOOE
o C. $ODOO
o D. $100E

21. The half-carry bit (H) in the condition code register (CCR)
o A. is used in rounding results of arithmetic operations.
o B. indicates that the MSB of the accumulator is 1.
o C. may be used to adjust the results of BCD add operations.
o D. indicates a borrow occurred during a subtract operation.

22. In an MC68HC705C8 system which uses no interrupts, what is the max
imum possible nesting depth for subroutines (without causing errors)?
If one subroutine called a second subroutine, that would be a nesting
depth of 2.
o A. 2
o B. 32
o C. 64
o D. 128

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-5

8-6

23. Which of the following on-chip systems would be used to detect prob
lems with the oscillator?
o A. Power-on reset
o B. COP watchdog timer
o C. Clock monitor
o D. IRQ interrupt

24. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100 ae 02
0102 a6 05

o A. $0005
o B. $0102
o C. $0103
o D. $a605

SAM EQU
LARRY EQU

ORG
TOP LOX

LOA

$03
$1400
$100
#$02
#$05

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

25. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100 ae 02
0102 b6 05

o A. $0005
o B. $0102
o C. $0103
o D. $b605

SAM EQU
LARRY EQU

ORG
TOP LOX

LOA

$03
$1400
$100
#$02
$05

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program st~rting point
Initialize index register
Read value into A

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

26. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100 ae 02
0102 c6 01 00

o A. $0003
o B. $0100
o C. $0103
o D. $0104

SAM EQU $03
LARRY EQU $1400

ORG $100
TOP LDX #$02

LDA TOP

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

27. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100 ae 02
0102 f6

o A. $0000
o B. $0002
o C. $0003
o D. $0102

SAM EQU $03
LARRY EQU $1400

ORG $100
TOP LDX #$02

LDA 0, X

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

28. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100
0102

MOTOROLA

SAM
LARRY

ae 02 TOP
e6 03

o A. $0002
o B. $0003
o C. $0005
o D. $0105

EQU
EQU
ORG
LDX
LDA

$03
$1400
$100
#$02
SAM, X

SAM equal an 8-bit value
LARRY equal a 16-bit value
Set program starting point
Initialize index register
Read value into A

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-7

8-8

29. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LDX #$02 Initialize index register
0102 d6 14 00 LDA LARRY, X Read value into A

o A. $0002
o B. $1400
o C. $1402
o D. $1600

30. After executing the following instruction sequence from "START" to
"END," what value will be in the stack pointer (SP)?

0100 9c START
0101 cd 02 00

RSP
JSR SUB

Reset SP to $OOFF
Call SUB

0104 cd 02 00 JSR SUB Call SUB again
0107 9d END NOP Done

" " " " " "
0200 81 SUB RTS Just Return

o A. $0200
o B. $OOFB
o C. $OOFD
o D. $OOFF

31. A microcontroller is
o A. the CPU part of a digital binary computer.
o B. the same thing as a microprocessor.
o C. any system that includes an MCU integrated circuit.
o D. a computer system includinga CPU, memory, and peripherals on

a single I.C.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

32. After executing the following instruction sequence from "TOP" to "BOr',
what values will be in locations $OOAO and $00A1, respectively?

·0100 a6 f3 TOP LOA i%11110011 Initial value
0102 b7 aO STA $AO For $OOAO
0104 a6 81 LOA i%10000001 Initial value
0106 b7 a1 STA $A1 For $00A1
0108 38 a1 ASL $A1 Comment left off
010a 39 aO ROL $AO intentionally
010c 38 a1 ASL $A1
010e 39 aO ROL $AO
0110 9d BOT NOP

o A. $OOAO;OOA 1 = 11110011 10000001
o B. $00AO;00A1 =1100110000000100
o C. $OOAO;OOA 1 = 11001110 00000111
o D. $00AO;00A1 =11001110 00000100

Refer to the following four program listings to answer questions 33 through
38. These programs demonstrate four different ways to generate pulses at
port A bit 0 of an MC68HC705C8. All four programs assume that port A has
been configured as outputs by the data direction register (DORA) equal $FF.

0100 a6 01 PROG1 LOA #$01 [2] Pattern for bit 0 high
0102 b7 00 STA $00 [4] Write to port A
0104 a6 00 LOA #$00 [2] Pattern for bit 0 low
0106 b7 00 STA $00 [4] Write to port A
0108 20 f6 BRA PROG1 [3] Repeat loop continuously

0100 10 00 PROG2 BSET 0,$00 [5] Set port A bit 0
0102 11 00 BCLR 0,$00 [5] Clear port A bit 0
0104 20 fa BRA PROG2 [3] Repeat loop continuously

0100 a6 01 PROG3 LOA #$01 [2] Pattern for bit 0 high
0102 Sf CLRX [3] Pattern for bit 0 low
0103 b7 00 LOOP3 STA $00 [4] Write to port A
0105 bf 00 STX $00 [4] Write to port A
0107 20 fa BRA LOOP3 [3] Repeat loop continuously

0100 b6 00 PROG4 LOA $00 [3] Read present port A data
0102 a8 01 EOR #$01 [2] Form new port A pattern
0104 b7 00 STA $00 [4] Write to port A
0106 20 f8 BRA PROG4 [3] Repeat loop continuously

MOTOROLA M68HC05 MICROCONTROllER APPLICATIONS GUIDE 8-9

8-10

33. Which of the four programs requires the fewest bytes of program mem
ory?
o A. PROG1
o B. PROG2
o C. PROG3
o D. PROG4

34. Which of the four programs produces the shortest pulse width (logic one
at the pin)?
o A. PROG1
o B. PROG2
o C. PROG3
o D. PROG4

35. Which of the four programs produces the longest period?
o A. PROG1
o B. PROG2
o C. PROG3
o D. PROG4

36. Sometimes it is important to change the level on a pin without disturbing
values in the CPU accumulator and other CPU registers. Which of the
four programs uses no CPU registers other than the program counter
(PC)?
o A. PROG1
o B. PROG2
o C. PROG3
o D. PROG4

37. Which of the four programs produces a square wave (equal high and
low times)?
o A. PROG1
o B. PROG2
o C. PROG3
o D. PROG4

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

38. Some instructions affect only a single bit in a memory location while
others affect all bits in a memory location. Which two of the four pro
grams do not make any assumptions about other bits in port A?
o A. PROG1 & PROG2
o B. PROG2 & PROG4
o C. PROG3 & PROG4
o D. PROG4 & PROG 1

39. On an MC68HC705C8, which of the following pins is an input-only pin?
o A. RESET
o B. Port D bit 4/SCK
o C. Port D bit 7
o D. Port A bit 7

40. What does the following sequence of instructions do?

0100 a6 08
0102 b7 1e
0104 8e

START LDA #$08 Comments left off intentionally
STA $lE
STOP

o A. Reset the COP watchdog timer and return to normal program.
o B. Force a hardware RESET.
o C. Store a value $08 in RAM and stop processing.
o D. Enables the clock monitor and the COP watchdog timer.

41. For the four following addresses, which one would not allow you to read
back an arbitrary value which you just wrote to that address?
o A. $0004
o B. $0050
o C. $OOFF
o D. $1000

42. For an MC68HC705C8, which of the four following addresses would be
the best address to store a product serial number and a variable which
changed once a second? Refer to the memory map on page 3-11 of the
applications guide.
o A. $0000
o B. $002F
o C. $OOFF
o D. $015F

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-11

8-12

43. If you discovered an incorrect value in a memory location as you were
starting volume production, which of the following memory types would
require the longest time to correct the error?
o A. RAM
o B. ROM
o C. EPROM
o D. EEPROM

44. A microcontroller includes
o A. a central processor unit (CPU).
o B. memory.
o C. 1/0 devices.
o D. all of the above.

45. A central processor unit (CPU)
o A. is part of a microcontroller (MCU).
o B. is a complete computer system.
o C. contains memory and 1/0 devices.
o D. contains an MCU.

46. A memory is said to be volatile if it forgets its contents when power is
removed for long periods of time. Which of the following memory types
is volatile?
o A. ROM
o B. RAM
o C. EPROM
o D. EEPROM

47. An EPROM memory is normally erased by
o A. software instructions.
o B. infrared light.
o C. ultraviolet light.
o D. application of high voltage.

48. To program the OPTION register on the MC68HC705C8
o A. program all bits as if they were EPROM.
o B. program all bits as if they were RAM.
o C. program one bit like RAM and the rest of the bits as if they were

EPROM.
o D. program one bit like EPROM and the rest of the bits as if they were

RAM.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

49. In the MC68HC705C8, bit manipulation instructions (BSET and BClR)
o A. can be used to manipulate anyon-chip I/O register or RAM location

in the $0000 through $OOFF area of memory.
o B. can be used to manipulate any location in the 8K-byte memory

map.
o C. can be used only with indexed addressing modes.
o D. can be used to manipulate anyon-chip RAM location.

50. Which of the following statements best describes what happens during
an SPI data transfer between two MC68HC705C8 MCUs?

MOTOROLA

o A. A slave device transfers an 8-bit character to a master device.
o B. A master device transfers an 8-bit character to a slave device.
o C. A master and a slave exchange 8-bit data characters.
o D. A master device sends a start bit, 8 data bits, and a stop bit to a

slave.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-13

REVIEW QUESTIONS, ANSWERS,
AND EXPLANATIONS

8-14

The questions that seem to give the most trouble are 40, 35, and 13 in that
order. The problem on 35 is that it is a tricky question. The loop in PROG4
must be executed twice to make one period on the port pin. On 40, some
persons who got the wrong answer seemed to be tricked by the indirect
nature of this operation and chose D, thinking it was the closest thing to a
correct answer. Almost all those who got 35 wrong chose A, which has the
longest loop time but not the longest period. The majority of those who
missed 13 seemed to think that the RAM locations in the stack are cleared
as values are recovered from the stack during a return from subroutine -
this assumption is incorrect. A few others got the stacking order reversed.
The key to getting 13 right was to play computer very carefully.

1. The instruction set of a CPU is
o A. a software program written by an end user.
o B. the same for all computers.
L~ C. determined by the wiring within the CPU. (see p. 2-2 2nd ~ and p.

2-4 last ~)
o D. the data sheet for a microprocessor.

2. Which numbering system offers the best compromise between the needs
of a CPU and those of a human?
o A. Binary
o B. Octal
o C. Decimal
u D. Hexadecimal

See p. 2-2 last ~ and p. 2-5. A few engineers who were around in the
days of the PDP-8 or work a lot with minicomputers that still carryon
the octal tradition may argue about this answer. The text on p. 2-5 and
modern microcontroller data sheets explain why hexadecimal is the best
choice.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

3. A specific 8-bit value in a computer memory can mean different things
depending on its context. The value could be a number, a code repre
senting an alphabetic character, a code for an instruction (opcode), etc.
The hexadecimal value $42 could be interpreted by an MC68HC705C8 to
mean any of the following things except one. Choose the one answer
which is not likely to be a correct interpretation of the value $42.
o A. The opcode for the MUL (multiply) instruction. (see p. A-47)
o B. The decimal value 66. (see Table 2-1 p.2-3)
u C. The address of an on-chip control register.
o D. The letter "B". (see Table 3-10 p. 3-67)

By elimination, the correct response is answer C. Looking at the memory
map (Figure 3-5 p. 3-11) you would find that address $42 is a RAM or
PROM location; whereas, all on-chip control registers (except OPTION
at $1 FDF) are in the area from $0000 to $001 F.

4. Which of the following items requires the most memory bits?
u A. The BCD representation of 125. (0001 00100101 or 12 bits)
o B. The binary representation of 254. (1111 1110 or 8 bits)
o C. The ASCII representation of the letter "A". (1000001 or 0100 0001,

7 or 8 bits)
o D. The binary equivalent of the octal number 758 , (111 101 or 6 bits)

See pp. 2-2 through 2-6.

5. How many 8-bit memory locations would be needed to hold the ASCII
representation of the name "FRED"?
o A. 16
n B. 4 (See p. 2-4 3rd ~. Each ASCII character takes one byte.)
o C. 7
o D. 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-15

8-16

6. Which of these CPU registers in the MC68HC705C8 contains the most
bits?
o A. The accumulator (A)
o B. The index register (X)
o C. The condition code register (CCR)
L"" D. The program counter (PC)

See Figure 2-2 p. 2-8. The PC is 13 or 16 bits, depending on whether or
not you count the upper three bits that are fixed. A and X are 8 bits each,
and CCR is 5 or 8 (again depending on whether or not you count the
upper three bits that are fixed).

7. Which CPU register in the MC68HC705C8 would most Ukely point to the
next instruction that the CPU will execute?
o A. The accumulator (A)
o B. The index register (X)
o C. The stack pointer (SP)
[:7 D. The program counter (PC) (see p. 2-8 last ~)

8. During execution of a subroutine, where would the CPU save the return
address? All except one of the following address pairs is incorrect due
to improper memory type or address.
o A. $1 FFE, 1 FFF
u B. $OOEC,OOED
o C. $OOAE,OOAF
o D. $015E,015F

See p. 3-16 last ~ and Section 2.6.1.4 beginning on p. 2-27 if you need
help understanding subroutine calls.

9. How many different opcodes correspond to the LDA (load accumulator)
instruction?
o A. 1
o B. 3
n C. 6 (see p. A-43 and p. 2-21 4th 'fl
o D. 16

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

10. In the following partial listing, what 8-bit value or code is present in
memory location $0193?

018e TIME EQU * Update Time-of-day
018e 3d a2 TST TIC Cheek for TIC=zero
018e 26 38 BNE XTIME If not; just exit
0190 3c a3 INC SEC SEC=SEC+l
0192 a6 3e LDA #60
0194 bl a3 CMP SEC Did SEC -> 60 ?

o A. $A2
u B. $3C (see Sections 2.5.4 and 2.5.5 especially p. 2-22 4th ~)
o C. $93
o D. $01

11. The following instruction reads the current value of the 8-bit variable
"TIC" and internally tests for a negative or zero value. At what physical
address is the variable "TIC" located?

018e 3d a2 TST TIC Check for TIC=zero

o A. $01A2
o B. $018D
o C. $3DA2
u D. $00A2 (see p. 3-26 and p. A-65)

12. After executing the following sequence of instructions, what value will
be in the accumulator?

MOTOROLA

BEGIN LDA #$80
BPL LABEL
INCA

LABEL DECA
DECA

o A. $7E
u B. $7F
o C. $80
o D. $81

The first instruction loads A with the immediate value $80 (which is
negative). The second instruction will not branch because the N condition
code flag is set. The CPU then increments A (to $81), then decrements
A (to $80), and finally decrements A again (to $7F).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-17

8-18

13. After executing the following instruction sequence from "START" to
"END", what value will be in memory location $OOFF?

0100 9c START
0101 cd 02 00

RSP
JSR SUB

Reset SP to $OOFF
Call SUB

0104 cd 02 00 JSR SUB Call SUB again
0107 9d END NOP Done

" " " " " "
0200 81 SUB RTS Just Return

o A. $00
o B. $01
o C. $04
u D. $07

See Section 2.6.2 especially p. 2-32 last ~ and p. 2-33 6th ~; see also p.
2-9 3rd ~. In the course of executing this program segment, the CPU
would call a subroutine (and store the return address at $OOFF and $OOFE),
then return from the subroutine (which causes the return address to be
recovered from the stack and the stack pointer to end up pointing at
$OOFF again). When the second subroutine call is executed, the return
address (now $0107) is saved on the stack at $OOFF and $OOFE (with the
$07 at $OOFF). The second return from subroutine causes this return
address to be read from the stack. Since no other value is stored to
location $OOFF during this program, $07 will still be there at the end of
the sequence.

14. What frequency crystal would be used on an MC68HC705C8 to get a 500-
ns internal processor clock?
o A. 1.0 MHz
o B. 2.0 MHz
IT::¥' C. 4.0 MHz (see p. 3-6 7th ~ or Figure 3-18 p. 3-59)
o D. 8.0 MHz

15. For an MC68HC705C8 with a 4.0-MHz crystal, what amount of time cor
responds to a single count of the 16-bit timer?
o A. 500 ns
o B. 1.0 f.Ls
IT::¥' C. 2.0 f.LS (see p. 3-82 upper right and p. 3-83 last ~.)
o D. 4.0 f.Ls

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

16. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest baud
rate available for the SCI (UART-type serial interface)?
o A.131.072kbaud
[if' B. 125 kbaud (see Table 3-8 p. 3-59 top entry in 4.0 column)
o C. 19.2 kbaud
o D. 9600 baud

17. For an MC68HC705C8 with a 4.0-MHz crystal, what is the fastest master
mode bit rate available for the SPI (synchronous serial peripheral inter
face)?
[ff A. 1 Mbit/sec (see table on p. 3-75)
o B. 500 kbits/sec
o C. 250 kbits/sec
o D. 125 kbits/sec
Only a master SPI device produces a serial clock. As a slave, the fastest
bit rate the SPI can accept would be the crystal frequency divided by 2
(or 2 MHz for a 4-MHz crystal).

18. How many bit times are there in one SCI character frame?
o A. 8
o B. 9
o C. 10
u D. 10 or 11 (see Figure 3-24 p. 3-64)

Don't forget to count the start and stop bit times.

19. To assure an orderly startup, reset forces the CPU to begin executing
instructions in a predictable repeatable way. Which of the following state
ments best describes how the CPU proceeds from reset?

MOTOROLA

o A. The CPU fetches the instruction from $1 FFF and executes it.
o B. The CPU loads the program counter (PC) register with the address

$1 FFE and begins executing instructions.
o C. The CPU begins executing instructions starting at address $0000.
u D. The CPU loads the program counter (PC) with the address stored

at $1 FFE, 1 FFF and then begins executing instructions starting at
that address.

See p. 3-18 item 14 and p. 2-8 last ~. Think about the other three answers;
you should see that they do not make sense.

M68HC05 MICROCONTROllER APPLICATIONS GUIDE 8-19

8-20

20. To change the SCI baud rate, what address would you write to?
a A. $0000
o B. $OOOE
o C. $0000
o O. $100E

See memory map Figure 2-4 p. 2-12 or Figure 3-5 p. 3-11, or see Figure
3-17 p. 3-58. See also p. 2-13 4th ~.

21. The half-carry bit (H) in the condition code register (CCR)
o A. is used in rounding results of arithmetic operations. (describes the

C bit)
o B. indicates that the MSB of the accumulator is 1. (describes the N

bit)
a C. may be used to adjust the results of BCD add operations.
o O. indicates a borrow occurred during a subtract operation. (de

scribes the C bit)

See p. 3-14 2nd ~ and p. 2-6 3rd ~.

22. In an MC68HC705C8 system which uses no interrupts, what is the max
imum possible nesting depth for subroutines (without causing errors)?
If one subroutine called a second subroutine, that would be a nesting
depth of 2.
o A. 2
a B. 32 (see p. 3-16 last ~)
o C. 64
o O. 128

Remember that each subroutine call uses two 8-bit memory locations to
store the return address.

23. Which of the following on-chip systems would be used to detect prob
lems with the oscillator?
o A. Power-on reset
o B. COP watchdog timer
a C. Clock monitor (see p. 3-19 1st ~ and p. 3-20 6th ~)
o O. IRQ interrupt

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

24. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100
0102

SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value

ORG $100 Set program starting point
ae 02 TOP LOX #$02 Initialize index register
a6 05 LOA #$05 Read value into A

o A. $0005
o B. $0102
u C. $0103 (see immediate addressing mode p. 3-24)
o D. $a605

25. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003 SAM EQU $03 SAM equal an 8-bit value
1400 LARRY EQU $1400 LARRY equal a 16-bit value
0100 ORG $100 Set program starting point
0100 ae 02 TOP LOX #$02 Initialize index register
0102 b6 05 LDA $05 Read value into A

u A. $0005 (see direct addressing mode p. 3-26)
o B. $0102
o C. $0103
o D. $b605

26. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100
0102

MOTOROLA

SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value

ORG $100 Set program starting point
ae 02 TOP LOX #$02 Initialize index register
c6 01 00 LOA TOP Read value into A

o A. $0003
u B. $0100 (see extended addressing mode p. 3-25)
o C. $0103
o D. $0104

Although this instruction sequence has no practical use, it would assem
ble and function. The value loaded into A would be $AE (the opcode of
the LDX-immediate instruction). If you were not familiar with the use of

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE B-21

B-22

labels, you could have looked at the machine code C6 01 00. The C6
indicates the extended addressing mode variation of the LDA instruction
and 0100 is the address of the operand that would be loaded into A.

27. In the following instruction sequence a value is read into the accumulator.

0003
1400
0100
0100
0102

From what address is this value being read? (It may be helpful to look
at the machine code as well as the mnemonic instructions)

SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value

ORG $100 Set program starting point
ae 02 TOP LDX #$02 Initialize index register
f6 LDA 0, X Read value into A

o A. $0000
n B. $0002 (see indexed no-offset p. 3-28)
o C. $0003
o D. $0102

At the time the LDA O,X instruction is executed, X contains $02 due to
the previous instruction.

28. In the following instruction sequence a value is read into the accumulator.

0003
1400
0100
0100
0102

From what address is this value being read? (It may be helpful to look
at the machine code as well as the mnemonic instructions.)

SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value

ORG $100 Set program starting point
ae 02 TOP LDX #$02 Initialize index register
e6 03 LDA SAM,X Read value into A

o A. $0002
o B. $0003
n C. $0005 (see indexed 8-bit offset p. 3-30)
o D. $0105

Don't forget to add the current value of X ($02) to the value SAM ($03).

M68HC05 MICROCONTROLLER APPLICATioNS GUIDE MOTOROLA

29. In the following instruction sequence, a value is read into the accumu
lator. From what address is this value being read? (It may be helpful to
look at the machine code as well as the mnemonic instructions.)

0003
1400
0100
0100
0102

SAM EQU $03 SAM equal an 8-bit value
LARRY EQU $1400 LARRY equal a 16-bit value

ORG $100 Set program starting point
ae 02 TOP LDX #$02 Initialize index register
d6 14 00 LDA LARRY, X Read value into A

o A. $0002
o B. $1400
u C. $1402 (see indexed 16-bit offset p. 3-32)
o D. $1600

Don't forget to add the current value of X ($02) to the value LARRY
($1400).

30. After executing the following instruction sequence from "START" to
"END", what value will be in the stack pointer (SP)?

0100 9c
0101 cd 02 00
0104 cd 02 00
0107 9d

" " "
0200 81

o A. $0200
o B. $OOFB
o C. $OOFD
u D. $OOFF

START RSP
JSR
JSR

END NOP
" "

SUB RTS

SUB
SUB

Reset SP to $OOFF
Call SUB
Call SUB again
Done

Just Return

This is a variation of the exercise in Section 2.6.1.4 and Figure 2-11.
During execution the stack pointer will have the values FF-FE-FD-FE-FF
FE-FD-FE-FF.

31. A microcontroller is

MOTOROLA

o A. the CPU part of a digital binary computer.
o B. the same thing as a microprocessor.
o C. any system that includes an MCU integrated circuit.
u D. a computer system including a CPU, memory, and peripherals on

a single I.C.

See p. 2-1 1 st sentence and p. 1-2 2nd ~.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-23

8-24

32. After executing the following instruction sequence from "TOP"to "BOT",
what values will be in locations $OOAO and $OOA 1, respectively?

0100 a6 f3 TOP LDA #%11110011
0102 b7 aO STA $AO
0104 a6 81 LDA #%10000001
0106 b7 a1 STA $A1
0108 38 a1 ASL $A1
010a 39 aO ROL $AO
010c 38 a1 ASL $A1
010e 39 aO ROL $AO
0110 9d BOT NOP

o A. $OOAO;OOA 1 = 11110011 10000001
o B. $OOAO;OOA 1 = 11001100 00000100
o C. $00AO;00A1=1100111000000111
u D. $OOAO;OOA 1 = 11001110 00000100

Initial value
For $OOAO
Initial value
For $00A1
Comment left off
intentionally

See ASL p. A-6 and ROL p. A-51. Play computer to see how this sequence
works. This is a 16-bit version of the multi byte shift sequence described
in the ROL instruction description.

Refer to the following four program listings to answer questions 33
through 38. These programs demonstrate four different ways to generate
pulses at port A bit 0 of an MC68HC705C8. All four programs assume
that port A has been configured as outputs by the data direction register
(DORA) equal $FF.

0100 a6 01
0102 b7 00
0104 a6 00
0106 b7 00
0108 20 f6

PROG1 LDA #$01
STA $00
LDA #$00
STA $00
BRA PROG!

[2] Pattern for bit 0 high
[4] Write to port A
[2] Pattern for bit 0 low
[4] Write to port A
[3] Repeat loop continuously

PROCESSOR
CLOCK (INT)

PAO

I !£~ I STA$OO I ~ I STA$OO I P~~1 !!£~ I STA$OO I

PIN ____ .:r

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

0100 10 00
0102 11 00
0104 20 fa

0100
0102
0103
0105
0107

a6 01
Sf
b7 00
bf 00
20 fa

PROG2 BSET 0,$00
BCLR 0,$00
BRA PROG2

[5] Set port A bit 0
[5] Clear port A bit 0
[3] Repeat loop continuously

BSET 0,$00 I BCLR 0,$00 I P~~2 I BSET 0,$00

PROCESSOR
CLOCK (INT)

PAO
PIN ___ -:(

PROG3

LOOP 3

LDA
CLRX
STA
STX
BRA

#$01

$00
$00
LOOP3

[2]
[3)
[4)
[4)
[3)

Pattern for bit 0 high
Pattern for bit 0 low
Write to port A
Write to port A
Repeat loop continuously

PROCESSOR I ~~ I CLRX I STA $00 I STX $00 I P~~3 I STA $00 I STX $00 I P~~3 I
CLOCK (INT)

PAO
PIN --------4
~ PULSE HI = 4-

PERIOD = 11-

0100 b6 00
0102 as 01
0104 b7 00
0106 20 fS

PROG4 LDA
EOR
STA
BRA

$00
#$01
$00
PROG4

[3) Read present port A data
[2) Form new port A pattern
[4) Write to port A
[3] Repeat loop continuously

PROCESSOR I LDA$OO I ~~ I STA$OO I P~~4 I LDA$OO I ~~ I STA$OO I P~~~4 I LDA$OO I ~~ I STA$OO I
CLOCK (INT)

PAO
PIN

~~USE~
fooI-E--------- PERIOD = 24- ---------~

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-25

8-26

33. Which of the four programs requires the fewest bytes of program mem
ory?
o A. PROG1 (10)
u B. PROG2 (6)
o C. PROG3 (9)
o D. PROG4 (8)

34. Which ofthe four programs produces the shortest pulse width (logic one
at the pin)?
o A. PROG1 (6)
o B. PROG2 (5)
u C. PROG3 (4)
o D. PROG4 (12)

35. Which of the four programs produces the longest period?
o A. PROG1 (15)
o B. PROG2 (13)
o C. PROG3 (11)
a::" D. PROG4 (24) (Notice the loop executes twice to make a single pe

riod.)

36. Sometimes it is important to change the level on a pin without disturbing
values in the CPU accumulator and other CPU registers. Which of the
four programs uses no CPU registers other than the program counter
(PC)?
o A. PROG1 (uses A)
u B. PROG2 (BSET and BCLR use no CPU registers)
o C. PROG3 (uses A and X)
o D. PROG4 (uses A)

37. Which of the four programs produces a square wave (equal high and
low times)?
o A. PROG1 (6/9)
o B. PROG2 (5/8)
o C. PROG3 (4/7)
u D. PROG4 (12/12)

M68HC05 MICROcoNTROLLER APPLICATIONS GUIDE MOTOROLA

38. Some instructions affect only a single bit in a memory location; whereas,
others affect all bits in a memory location. Which of the four programs
does not make any assumptions about other bits in port A?
o A. PROG1 & PROG2
[f B. PROG2 & PROG4
o C. PROG3 & PROG4
o D. PROG4 & PROG 1

Programs 1 and 3 force bits 7 through 1 of port A to zero; programs 2
and 4 affect only bit O.

39. On an MC68HC705C8, which of the following pins is an input-only pin?
o A. RESET
o B. Port 0 bit 4/SCK
u C. Port 0 bit 7 (see Figure 3-1 p.3-3)
o D. Port A bit 7

This question was intended to emphasize that reset is not an input-only
pin.

40. What does the following sequence of instructions do?

0100 a6 08
0102 b7 1e
0104 8e

START LDA #$08 Comments left off intentionally
STA $lE
STOP

o A. Reset the COP watchdog timer and return to normal program.
IT B. Force a hardware RESET. (see p. 3-21 2nd ~)
o C. Store a value $08 in RAM and stop processing.
o D. Enables the clock monitor and the COP watchdog timer.

This question was intended to show a way to force a reset with software,
which may be useful in some applications. This question also reinforces
important aspects of the clock monitor system and the STOP instruction.

41. For the four following addresses, which one would not allow you to read
back an arbitrary value which you just wrote to that address?

MOTOROLA

o A. $0004
o B. $0050
o C. $OOFF
u D. $1000 (see Figure 3-5 p. 3-11)

$0050 and $OOFF are RAM addresses and can obviously be read back
after being written. $0004 is the data direction register for port A (see p.
3-52).

M68HC05 MICROCONTROlLER APPLICATIONS GUIDE 8-27

B-28

42. For an MC68HC705C8, which of the four following addresses would be
the best address to store a product serial number and a variable which
changed once a second? Refer to the memory map on p. 3-11 of the
applications guide.
o A. $0000
o B. $002F
o C. $OOFF
G' D. $015F (see description of RAM1 p.3-98)

This question was intended to point out that the RAM1 control bit in the
OPTION control register can be controlled by software to alternately
enable RAM or PROM during normal operation. The result is that both
the RAM and the PROM are usable, although software is required to
choose which is active at any particular time. You could enable the PROM
and program a serial number into location $015F before shipping a prod
uct. You could turn on the PROM during startup to read the serial number,
then change RAM 1 to enable the RAM to use the RAM located at $015F
as the storage location for a software variable.

43. If you discovered an incorrect value in a memory location as you were
starting volume production, which of the following memory types would
require the longest time to correct the error?
o A. RAM (RAM values can be changed in a single bus cycle or about

1 fLS)
G' B. ROM (ROM changes require several weeks because new parts

must be manufactured.)
o C. EPROM (EPROM takes several minutes of exposure to UV light to

erase.)
o D. EEPROM (EEPROM can be changed in tens of milliseconds. See

p. 1-4 and p. 4-4 1 st ~).

44. A microcontroller includes
o A. a central processor unit (CPU).
o B. memory.
o C. 1/0 devices.
G' D. all of the above. (see Section 1.1 p. 1-2)

45. A central processor unit (CPU)
G' A. is part of a microcontroller (MCU). (see Section 1.1 p. 1-2)
o B. is a complete computer system.
o C. contains memory and 1/0 devices.
o D. contains an MCU.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

46. A memory is said to be volatile if it forgets its contents when power is
removed for long periods of time. Which of the following memory types
is volatile?
o A. ROM
iL.;;o' B. RAM
o C. EPROM
o D. EEPROM

See p. 1-4 2nd ~ and p. 4-4 1 st ~.

47. An EPROM memory is normally erased by
o A. software instructions.
o B. infrared light.
u C. ultraviolet light. (see p. 1-4 5th ~)
o D. application of high voltage.

48. To program the OPTION register on the MC68HC705C8
o A. program all bits as if they were EPROM.
o B. program all bits as if they were RAM.
o C. program one bit like RAM and the rest of the bits as if they were

EPROM.
u D. program one bit like EPROM and the rest of the bits as if they were

RAM. (see pp. 3-97 and 3-98)

49. In the MC68HC705C8, bit manipulation instructions (BSET and BCLR)
u A. can be used to manipulate anyon-chip 1/0 register or RAM location

in the $0000 through $OOFF area of memory.
o B. can be used to manipulate any location in the 8K-byte memory

map.
o C. can be used only with indexed addressing modes.
o D. can be used to manipulate anyon-chip RAM location.

See pp. A-9 and A-30.

50. Which of the following statements best describes what happens during
an SPI data transfer between two MC68HC705C8 MCUs?

MOTOROLA

o A. A slave device transfers an 8-bit character to a master device.
o B. A master device transfers an 8-bit character to a slave device.
u C. A master and a slave exchange 8-bit data characters.
o D. A master device sends a start bit, 8 data bits, and a stop bit to a

slave.

See p. 3-71 2nd ~.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 8-29

8-30 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

Introduction

Microcontroller Operation

MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions

Introduction

Microcontroller Operation

MC68HC705C8 Functional Data

Applications

Instruction Set Details

Review Questions

A24686-1 PRINTED IN USA.6/91 GTE DIRECTORIES #14069 15,000 MCU YGACAA

literature Distribution Centers :

USA: Motorola Literature Distribution ; P.O. Box 20912; Phoeni x, Arizona 85036.
EUROPE : Motorola Ltd.; European Literature Center ; 88 Tanners Drive , Blakelands, Milton Keynes, MK14 5BP, England.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd .; P.O. Box 80300; Cheung Sha Wan Post Office ; Kowloon Hong Kong .
JAPAN : Nippon Motorola Ltd. ; 3-20-1 Minamiazabu , Minato-ku , Tokyo 106 Japan.

@ MOTOROLA

