Table of Contents

I Table of Contents
II General Information
III STD-Z80 BUS
IV MDX Series Data Processing
V MD Series Input/Output
VI MD Series Memory
VII MD Series Special Functions
VIII MD Series Accessories
IX MD Series Data Processing
X SDE Series Data Processing
XI SDE Series Input/Output
XII SDE Series Memory
XIII SDE Series Accessories
XIV Software Disk Based
XV Development Systems
XVI Systems Emulation Boards
XVII Peripherals
Table of Contents

II General Information

III STD-Z80 BUS

IV MDX Series Data Processing

V MD Series Input/Output

VI MD Series Memory

VII MD Series Special Functions

VIII MD Series Accessories

IX MD Series Data Processing

X SDE Series Data Processing

XI SDE Series Input/Output

XII SDE Series Memory

XIII SDE Series Accessories

XIV Software Disk Based

XV Development Systems

XVI Systems Emulation Boards

XVII Peripherals
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Table of Contents ... I-i</td>
</tr>
<tr>
<td></td>
<td>Numerical Listing of Products by Part Number (MK #) I-iii</td>
</tr>
<tr>
<td>II</td>
<td>General Information ... II-i</td>
</tr>
<tr>
<td></td>
<td>Mostek - Technology for Today and Tomorrow II-i</td>
</tr>
<tr>
<td></td>
<td>U.S. and Canadian Sales Offices ... II-iii</td>
</tr>
<tr>
<td></td>
<td>U.S. and Canadian Representatives ... II-iv</td>
</tr>
<tr>
<td></td>
<td>U.S. and Canadian Distributors .. II-v</td>
</tr>
<tr>
<td></td>
<td>International Marketing Offices ... II-vii</td>
</tr>
<tr>
<td></td>
<td>International Sales Representatives/Distributors II-vii</td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 Bus ... III-1</td>
</tr>
<tr>
<td></td>
<td>STD-Z80 Bus Systems ... III-1</td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing ... IV-1</td>
</tr>
<tr>
<td></td>
<td>MDX-CPU1 .. IV-1</td>
</tr>
<tr>
<td></td>
<td>MDX-CPU2 .. IV-5</td>
</tr>
<tr>
<td></td>
<td>MDX-Math .. IV-9</td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output .. V-1</td>
</tr>
<tr>
<td></td>
<td>MDX Series System Interrupt Units (SIU) Table V-1</td>
</tr>
<tr>
<td></td>
<td>MDX-A/D8 .. V-3</td>
</tr>
<tr>
<td></td>
<td>MDX-AIO .. V-7</td>
</tr>
<tr>
<td></td>
<td>MDX-A/D12 ... V-11</td>
</tr>
<tr>
<td></td>
<td>MDX-D/A8 .. V-15</td>
</tr>
<tr>
<td></td>
<td>MDX-D/A12 ... V-19</td>
</tr>
<tr>
<td></td>
<td>MDX-FLP .. V-23</td>
</tr>
<tr>
<td></td>
<td>MDX-PIO .. V-27</td>
</tr>
<tr>
<td></td>
<td>MDX-SIO .. V-31</td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory .. VI-1</td>
</tr>
<tr>
<td></td>
<td>MDX-DRAM .. VI-1</td>
</tr>
<tr>
<td></td>
<td>MDX-EPROM ... VI-5</td>
</tr>
<tr>
<td></td>
<td>MDX-EPROM/UART .. VI-9</td>
</tr>
<tr>
<td></td>
<td>MDX-SRAM .. VI-13</td>
</tr>
<tr>
<td></td>
<td>MDX-UMC .. VI-17</td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions .. VII-1</td>
</tr>
<tr>
<td></td>
<td>MDX Series System Interrupt Units (SIU) Table VII-1</td>
</tr>
<tr>
<td></td>
<td>MDX-DEBUG ... VII-3</td>
</tr>
<tr>
<td></td>
<td>MDX-INT ... VII-11</td>
</tr>
<tr>
<td></td>
<td>MDX-SC/D .. VII-15</td>
</tr>
<tr>
<td></td>
<td>MDX-SST ... VII-19</td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories ... VIII-1</td>
</tr>
<tr>
<td></td>
<td>MD-ACC .. VIII-1</td>
</tr>
<tr>
<td></td>
<td>MD-PWR1 ... VIII-7</td>
</tr>
<tr>
<td></td>
<td>MD-RMC12 .. VIII-9</td>
</tr>
<tr>
<td></td>
<td>RMDFSS ... VIII-13</td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing .. IX-1</td>
</tr>
<tr>
<td></td>
<td>MD-SBC1 .. IX-1</td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing .. X-1</td>
</tr>
<tr>
<td></td>
<td>OEM-80E .. X-1</td>
</tr>
</tbody>
</table>
XI - SDE Series Input/Output
A/D-8OE .. XI-1
DCC-8OE .. XI-5
FLP-80E .. XI-9

XII - SDE Series Memory
RAM-80E ... XII-1

XIII - SDE Series Accessories
SDE-ACC .. XIII-1
SDE-RMC6 .. XIII-5

XIV - Software Disk Based
FLP-80DOS ... XIV-1
MITE-80/BIOS .. XIV-5
ANSI BASIC Software Interpreter XIV-9
Mostek FORTRAN IV Compiler XIV-13
MACRO-70 ... XIV-15
MACRO-80 ... XIV-17
MEDEX-80 ... XIV-19
LIB-80-VI .. XIV-23

XV - Development Systems
MATRIX™-80/SDS XV-1
MATRIX-80/SDT XV-9
MDX-PROTO .. XV-11

XVI - Systems Emulation Boards
AIM*-80E ... XVI-1
Application Interface Module AIM*-Z80AE XVI-5

XVII - Peripherals
CRT ... XVII-1
Line Printer .. XVII-5
PPG 8/16-PROM Programmer XVII-9
RMDFSS ... XVII-13
<table>
<thead>
<tr>
<th>PART #</th>
<th>DESIGNATOR</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK77650-0</td>
<td>MDX-PIO</td>
<td>V-27</td>
</tr>
<tr>
<td>MK77650-4</td>
<td>MDX-PIO-4</td>
<td>V-27</td>
</tr>
<tr>
<td>MK77651-0</td>
<td>MDX-SIO</td>
<td>V-31</td>
</tr>
<tr>
<td>MK77651-4</td>
<td>MDX-SIO-4</td>
<td>V-31</td>
</tr>
<tr>
<td>MK77652-0</td>
<td>MDX-FLP</td>
<td>V-23</td>
</tr>
<tr>
<td>MK77654</td>
<td>MDX-AIO</td>
<td>V-7</td>
</tr>
<tr>
<td>MK77655-0</td>
<td>MDX-A/D12</td>
<td>V-11</td>
</tr>
<tr>
<td>MK77655-0</td>
<td>MDX-A/D12</td>
<td>V-19</td>
</tr>
<tr>
<td>MK77656-0</td>
<td>MDX-D/A8</td>
<td>V-15</td>
</tr>
<tr>
<td>MK7769-0</td>
<td>MDX-A/D8</td>
<td>V-3</td>
</tr>
<tr>
<td>MK7769-4</td>
<td>MDX-A/D8-4</td>
<td>V-3</td>
</tr>
<tr>
<td>MK77750-0</td>
<td>MDX-DRAM8</td>
<td>VI-1</td>
</tr>
<tr>
<td>MK77752-0</td>
<td>MDX-DRAM32</td>
<td>VI-1</td>
</tr>
<tr>
<td>MK77752-4</td>
<td>MDX-DRAM32-4</td>
<td>VI-1</td>
</tr>
<tr>
<td>MK77753-0</td>
<td>MDX-EPROM/UART</td>
<td>VI-9</td>
</tr>
<tr>
<td>MK77753-4</td>
<td>MDX-EPROM/UART-4</td>
<td>VI-9</td>
</tr>
<tr>
<td>MK77754-0</td>
<td>MDX-DRAM16</td>
<td>VI-1</td>
</tr>
<tr>
<td>MK77754-4</td>
<td>MDX-DRAM16-4</td>
<td>VI-1</td>
</tr>
<tr>
<td>MK77755</td>
<td>MDX-SRAM4</td>
<td>VI-13</td>
</tr>
<tr>
<td>MK77756</td>
<td>MDX-SRAM8</td>
<td>VI-13</td>
</tr>
<tr>
<td>MK77758</td>
<td>MDX-EPROM16</td>
<td>VI-5</td>
</tr>
<tr>
<td>MK77759</td>
<td>MDX-UMC</td>
<td>VI-17</td>
</tr>
<tr>
<td>MK77850-0</td>
<td>MDX-CPU1</td>
<td>IV-1</td>
</tr>
<tr>
<td>MK77850-4</td>
<td>MDX-CPU1-4</td>
<td>IV-1</td>
</tr>
<tr>
<td>MK77851-0</td>
<td>MD-SBC1</td>
<td>IX-1</td>
</tr>
<tr>
<td>MK77852-0</td>
<td>MDX-MATH</td>
<td>IV-9</td>
</tr>
<tr>
<td>MK77853-0</td>
<td>MDX-CPU2</td>
<td>IV-5</td>
</tr>
<tr>
<td>MK77853-4</td>
<td>MDX-CPU2-4</td>
<td>IV-5</td>
</tr>
<tr>
<td>MK77950-0</td>
<td>MDX-DEBUG</td>
<td>VII-3</td>
</tr>
<tr>
<td>MK77950-4</td>
<td>MDX-DEBUG-4</td>
<td>VII-3</td>
</tr>
<tr>
<td>MK77951-0</td>
<td>MDX-PROTO</td>
<td>XV-11</td>
</tr>
<tr>
<td>MK77951-4</td>
<td>MDX-PROTO-4</td>
<td>XV-11</td>
</tr>
<tr>
<td>MK77952</td>
<td>MDX-WW2</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77953</td>
<td>MD-EXT</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77955</td>
<td>MD-232DCE-C</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77956</td>
<td>MD-TTY-C</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77957</td>
<td>MD-PPG-C</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77958</td>
<td>MDX-SST</td>
<td>VII-19</td>
</tr>
<tr>
<td>MK77959</td>
<td>MDX-WW1</td>
<td>VIII-1</td>
</tr>
<tr>
<td>MK77962</td>
<td>FLP-80DOS (MD PROMs)</td>
<td>XIV-1</td>
</tr>
<tr>
<td>MK77963-0</td>
<td>MDX-SC/D</td>
<td>VII-15</td>
</tr>
<tr>
<td>MK77963-4</td>
<td>MDX-SC/D-4</td>
<td>VII-15</td>
</tr>
<tr>
<td>MK77964</td>
<td>MD-PWR1</td>
<td>VIII-7</td>
</tr>
<tr>
<td>MK77966</td>
<td>MD-RMC12</td>
<td>VIII-9</td>
</tr>
<tr>
<td>MK77967</td>
<td>MDX-INT</td>
<td>VII-11</td>
</tr>
<tr>
<td>MK77968</td>
<td>MEDEX-80</td>
<td>XIV-19</td>
</tr>
</tbody>
</table>
TECHNOLOGY

From the beginning, Mostek has been recognized as an innovator. In 1970, Mostek developed the MK4006 1K dynamic RAM and the world's first single-chip calculator circuit, the MK6010. These technical breakthroughs proved the benefits of ion-implantation and cost-effectiveness of MOS. Now, Mostek represents one of the industry's most productive bases of MOS/LSI technology. Each innovation - in memories, microcomputers and telecommunications - adds to that technological capability.

QUALITY

The worth of a Mostek product is measured by its quality; how well it's designed, manufactured and tested; how well it works in your system.

In design, production and testing, our goal is meeting the spec every time. This goal requires a strict discipline, both from the company and from the individual. This discipline, coupled with a very personal pride, has driven Mostek to build in quality at every level, until every product we take to the market is as well-engineered as can be found in the industry.

PRODUCTION CAPABILITY

Mostek's commitment to increasing production capability has made us the world's largest manufacturer of dynamic RAMs. In 1979 we shipped 25 million 4K and 16K dynamic RAMs. We built our first telecommunication tone dialer in 1974; since then, we've shipped over 5 million telecom circuits. The MK3870 single-chip microprocessor is also a large volume product with over two million in application around the world. To meet the demand for our products, production capability must be constantly increased. To accomplish this, Mostek has been in a constant process of expanding and refining our production capabilities.

THE PRODUCTS

Telecommunications and Industrial Products

Mostek has made a solid commitment to telecommunications with a new generation of products, such as Integrated Pulse Dialers, Tone Dialers, CODECs, monolithic filters, tone receivers, A/D converters and counter time-base circuits.

Since 1974 over five million telecom circuits have been shipped, making Mostek the leading supplier of tone/pulse dialers and CODECs.

Memory Products

Through innovations in both circuit design, wafer processing and production, Mostek
has become the industry's leading supplier of memory products.

An example of Mostek leadership is our new BYTEWYDE™ family of static RAMs, ROMs, and EPROMs. All provide high performance, N words x 8-bit organization and common pin configurations to allow easy system upgrades in density and performance. Another important product area is fast static RAMs. With major advances in technology, Mostek static RAMs now feature access times as low as 55 nanoseconds. With high density ROMs and PROMs, static RAMs, dynamic RAMs and pseudostatic RAMs, Mostek now offers one of industry's broadest and most versatile memory families.

Microcomputer Components

Mostek's microcomputer components are designed for a wide range of applications.

Our Z80 family is the highest performance 8-bit microcomputer available today. The MK3870 family is one of the industry's most popular 8-bit single-chip microcomputers, offering upgrade options in ROM, RAM, and I/O, all in the same socket. The MK3874 EPROM version supports and prototypes the entire family.

Microcomputer Systems

Supporting the entire component product line is the powerful MATRIXTM microcomputer development system, a Z80-based, dual floppy-disk system that is used to develop and debug software and hardware for all Mostek microcomputers.

A software operating system, FLP-80DOS, speeds and eases the design cycle with powerful commands. BASIC and FORTRAN are also available for use on the MATRIX.

Mostek's MD Series™ features both stand-alone microcomputer boards and expandable microcomputer boards. The expandable boards are modularized by function, reducing system cost because the designer buys only the specific functional modules his system requires. All MDX boards are STD-Z80 BUS compatible.

The STD-Z80 BUS is a multi-sourced motherboard interconnect system designed to handle any MDX card in any card slot.

Memory Systems

Taking full advantage of our leadership in memory components technology, Mostek Memory Systems offers a broad line of products, all with the performance and reliability to match our industry-standard circuits. Mostek Memory Systems offers add-in memory boards for popular DEC and Data General minicomputers.

Mostek also offers special purpose and custom memory boards for special applications.
U.S. AND CANADIAN REPRESENTATIVES

ALABAMA
Beacon Elect. Assoc., Inc.
5103 S. Memorial Pkwy.
Suite G
Huntsville, AL 35803
205/881-5031
TWX 810-726-2136

ARIZONA
Summit Sales
3336 E. Shea Manor Suite
116E
Scottsdale, AZ 85251
602/994-4587
TWX 910-950-1283

ARKANSAS
Beacon Elect. Assoc., Inc.
P.O. Box 5382.
Bryant Station
Little Rock, AR 72215
501/224-8449
TWX 910-722-7310

CALIFORNIA
Harvey King, Inc.
8124 Miramar Road
San Diego, CA 92126
714/566-5252
TWX 910-355-1231

COLORADO
Waupaman Associates
4800 Van Gordon
Wheat Ridge, CO 80033
303/423-1020
TWX 910-938-7505

CONNECTICUT
New England Technical Sales
240 Pompero Ave.
Meriden, CT 06450
203/237-8827

FLORIDA
Beacon Elect. Assoc., Inc.
6842 NW. 20th Ave.
Ft. Lauderdale, FL 33309
305/971-7320
TWX 510-955-9834
Beacon Elect. Assoc., Inc.
235 Maitland Ave.
P. O. Box 1275
Maitland, FL 32751
305/647-3498
TWX 810-853-5038

GEORGIA
Beacon Elect. Assoc., Inc.*
6135 Barfield Rd.
Suite 112
Atlanta, GA 30328
404/256-9640
TWX 810-781-3165

ILLINOIS
Carlston Electronic Sales*
600 East Higgins Road
Elk Grove Village, IL 60007
312/586-8240
TWX 910-232-1819

INDIANA
Rich Electronic Marketing*
599 Industrial Drive
Carmel, IN 46032
317/244-8462
TWX 810-260-2831

IOWA
Cahill, Schmitz & Cahill, Inc.
208 Collins Rd. N.E. Suite X
Cedar Rapids, IA 52402
319/377-9219
TWX 910-526-1363

KANSAS
Bush West Associates*
107 N. Chester Street
Ottawa, KS 66067
913/764-2700
TWX 910-749-6404

KENTUCKY
Rich Electronic Marketing
5910 Bardstown Road
P. O. Box 91147
Louisville, KY 40291
502/239-2747
TWX 810-535-3757

MARYLAND
Arboit Associates
3600 St. Johns Lane
Ellicott City, MD 21043
301/461-1323
TWX 710-862-1874

MASSACHUSETTS
New England Technical Sales*
125 Cambridge Street
Burlington, MA 01803
617/272-1190
TWX 710-332-0345

MICHIGAN
APJ Associates, Inc.
9880 E. Grand River Ave.
Brighton, MI 48116
313/229-6550
TWX 810-242-1510

MINNESOTA
Cahill, Schmitz & Cahill, Inc.
315 N. Pierce
St. Paul, MN 55104
612/646-3727
TWX 910-563-3737

MISSOURI
Russ & West Associates
481 Melanie Meadows Lane
Belton, MO 64011
314/394-7271

NEW JERSEY
Tricket Sales, Inc.
21 E. Euclid Ave.
Haddonfield, NJ 08033
609/423-1561
215/627-0149 (Philadelphia Line)
TWX 710-896-0881

NEW MEXICO
Waupaman Associates
5004 Manatul N.E.
Suite 7
P. O. Box 14594
Albuquerque, NM 87112
505/294-1437

NORTH CAROLINA
Beacon Elect. Assoc., Inc.
1207 West Beam Ave.
Suite 112
Greensboro, NC 27408
919/275-3997
TWX 910-925-1119

NEW YORK
ERA (Eng. Rep. Assoc.)
One Dunton Street
Plainview, NY 11803
516/349-5430
TWX 810-221-1849

OCEAN
Precision Sales Corp.
5 Artystum Ln., RR-7
Binghamton, NY 13901
607/348-3666

OREGON
Northwest Marketing Assoc.
9999 S. Wilshire St.
Suite 124
Portland OR 97225
503/297-2581
TELEX 36-0455 (AMAPORT PTL)

PENNSYLVANIA
CMS Marketing
121A Lorraine Avenue
P.O. Box 300
Greensburg, PA 15635
215/285-5100
TWX 510-665-0161

TEXAS
Southern States Marketing, Inc.
14330 Highway 75, Suite 226
Dallas, Texas 75234
214/387-2489
TWX 910-576-5732

UTAH
Waupaman Associates
255 S. State Street
#224
Salt Lake City, UT 84115
801/647-2463
TWX 910-925-4026

WASHINGTON
Northwest Marketing Assoc.
12835 Bellevue-Redmond Rd.
Suite 203E
Bellevue, WA 98005
206/455-5849
TWX 910-443-2445

WISCONSIN
Carlston Electronic Sales
Northbrook Executive Ctr.
10701 West North Ave.
Suite 209
Milwaukee, WI 53226
414/747-7903
TWX 910-222-1819

CANADA
Cantec Representatives Inc.*
1573 Laperriere Ave.
Ottawa, Ontario
Canada K1Z 7J3
613/275-3704
TWX 610-982-8867

Cantec Representatives Inc.
530 York Blvd., Unit 1A
Toronto, Canada M9W 5X6
TWX 610-492-2655

*Home Office
INTERNATIONAL MARKETING OFFICES

EUROPEAN HEAD OFFICE
Mostek International
150 Chaussee de la Hulpe
B-1170 Brussels
Belgium
(32) 2 6606924
Telex - 848 62011 MKBRU B

FRANCE
Mostek France S.A.R.L.
30, Rue de Morvan
Sili S05
94233 Rungis Cedex
(33) 1 6872414
Telex - 842 204049 MKFRANF F

GERMANY
Mostek GmbH
Zaunkönigstrasse 18
D-8031 Ottobrunn
(49) 89 6091017-19
Telex - 841 5216516 MKMU D

JAPAN
Sanyo Bldg 3F
1-2-7 Kita-Aoyama
Minato-Ku, Tokyo 107
(81) 3 4047261
Telex 781 23686 J23686 MOSJAY

SWEDEN
Mostek Scandinavia AB
Magnusvagen 1
S-175 31 Jönfält
(45) 758-343-38
Telex - 856 12907 MOSTEK S

UNITED KINGDOM
Mostek U.K. Ltd.
Masons House
1-3 Valley Drive,
Kingsbury Road, London, NW9
(41) 1 2049332
Telex - 851 25940 MOSTEK G

INTERNATIONAL SALES REPRESENTATIVES/DISTRIBUTORS

ARGENTINA
Rayo Electronics S.R.L.
Belgrano 990, Piso 6v2
1092 Buenos Aires
(54) 1-777, 37-5476
Telex - 122153

AUSTRALIA
Arimtron Tyree Pty. Ltd.
176 Botany Street
Waterloo, N.S.W. 2017
(61) 69-89.666
Telex - 25643

AUSTRIA
Transistor-Vertriebs GmbH
Hofstraße 41 A
A-1130 Vienna
(43) 232-829.45.12
Telex - 13738

BRAZIL
Cosel, Ltd.
Rua da Consolacao, 867
Conj. 31
01301 Sao Paulo
(55) 11-257.35.35/258.43.25
Telex - 11306889

BELGIUM
Sotronic
14, Rue Perc de Deken
B-1040 Brussels
(32) 2-736.10.07
Telex - 25141

DENMARK
Semcap APS
Gammel Kongevej 184.5
DK-1850 Copenhagen
(45) 1-22.15.10
Telex - 15987

FINLAND
S.W. Instruments
Kartutilan tie 4 B
SF-00550 Helsinki 55
(358)-0-73.82.65
Telex - 122411

FRANCE
P.E.P.
4, Rue Barthelemy
F-92120 Montrouge
(33) 1-735.23.20
Telex - 204534

HONG KONG
Cat Limited
1402, 1st Fl., The Center
199-203 Hennessy Road
Wanchai, Hong Kong
(85) 72.93.76
Telex - 851431

ITALY
Mostek Italia S.P.A.
Via G. da Procida, 10
I-20149 Milano
(39) 2 3185337 or 3492696
Telex - 843 333001 MOSTEK I

JAPAN
Sanyo Bldg 3F
1-2-7 Kita-Aoyama
Minato-Ku, Tokyo 107
(81) 3 4047261
Telex 781 23686 J23686 MOSJAY

SWITZERLAND
Mostek Electronic S.A.
Geneva 22, Rue de la Hulpe
CH-1224 Geneva 20
(41) 63-2881 22
Telex - 72.38.86

UNITED KINGDOM
Mostek Electronics Limited
Offices 34-35
3rd Floor
123-125 Lombard Street
London EC3V 9QE
(44) 734-58.51.71
Telex - 848370

ARGENTINA
Rayo Electronics S.R.L.
Belgrano 990, Piso 6v2
1092 Buenos Aires
(54) 1-777, 37-5476
Telex - 122153

AUSTRALIA
Arimtron Tyree Pty. Ltd.
176 Botany Street
Waterloo, N.S.W. 2017
(61) 69-89.666
Telex - 25643

AUSTRIA
Transistor-Vertriebs GmbH
Hofstraße 41 A
A-1130 Vienna
(43) 232-829.45.12
Telex - 13738

BRAZIL
Cosel, Ltd.
Rua da Consolacao, 867
Conj. 31
01301 Sao Paulo
(55) 11-257.35.35/258.43.25
Telex - 11306889

BELGIUM
Sotronic
14, Rue Perc de Deken
B-1040 Brussels
(32) 2-736.10.07
Telex - 25141

DENMARK
Semcap APS
Gammel Kongevej 184.5
DK-1850 Copenhagen
(45) 1-22.15.10
Telex - 15987

FINLAND
S.W. Instruments
Kartutilan tie 4 B
SF-00550 Helsinki 55
(358)-0-73.82.65
Telex - 122411

FRANCE
P.E.P.
4, Rue Barthelemy
F-92120 Montrouge
(33) 1-735.23.20
Telex - 204534

HONG KONG
Cat Limited
1402, 1st Fl., The Center
199-203 Hennessy Road
Wanchai, Hong Kong
(85) 72.93.76
Telex - 851431

ITALY
Mostek Italia S.P.A.
Via G. da Procida, 10
I-20149 Milano
(39) 2 3185337 or 3492696
Telex - 843 333001 MOSTEK I

JAPAN
Sanjo Bldg 3F
1-2-7 Kita-Aoyama
Minato-Ku, Tokyo 107
(81) 3 4047261
Telex 781 23686 J23686 MOSJAY

SWITZERLAND
Mostek Electronic S.A.
Geneva 22, Rue de la Hulpe
CH-1224 Geneva 20
(41) 63-2881 22
Telex - 72.38.86

UNITED KINGDOM
Mostek Electronics Limited
Offices 34-35
3rd Floor
123-125 Lombard Street
London EC3V 9QE
(44) 734-58.51.71
Telex - 848370

II-vii
INTRODUCTION

The STD BUS concept is a joint design between Mostek and Pro-Log to satisfy the need for cost-effective OEM Microcomputer Systems. The definition of the STD BUS and the MD Series™ of OEM microcomputer modules is a result of years of microcomputer component and module manufacturing experience. The STD BUS uses a motherboard interconnect system concept and is designed to handle any MD Series™ card in any card slot. Modules for the STD BUS range from CPU, RAM and EPROM Modules to Input, Output, A/D and TRIAC control modules.

Printed circuit modules for the STD BUS are a compact 4.5 x 6.5 inches providing for system partitioning by function (RAM, PROM, I/O). This smaller module size makes system packaging easier while increasing MOS-LSI densities provide high functionality per module. Mostek has defined the STD-Z80 BUS which is a subset of the general-purpose STD BUS. This bus is defined extensively for the Z80 microprocessor and its supporting peripherals. By specifying the STD-Z80 BUS, exact functional pin descriptions and bus timing can be given. A STD-Z80 system will be guaranteed to work with all STD-Z80-designed boards. The STD-Z80 BUS fully supports the powerful Mode 2 interrupt capability of the Z80 microprocessor.

The MD Series™ provides both STD-Z80 BUS expandable modules, designated as MDX, and single-board stand-alone modules, designated as MD. For those applications requiring bus expandability, the MDX-CPU series provides that capability; if a single-board microcomputer is sufficient, the MD-SBC1 provides the system designer with a powerful Z80-based microcomputer solution.

The MD Series™ of OEM microcomputer boards and the STD-Z80 BUS offer the most cost-effective system configuration available to the OEM system designer.
<table>
<thead>
<tr>
<th>BUS PIN</th>
<th>MNEMONIC</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>+5Vdc system power</td>
</tr>
<tr>
<td>2</td>
<td>+5V</td>
<td>+5Vdc system power</td>
</tr>
<tr>
<td>3</td>
<td>GNO</td>
<td>Ground-System signal ground and DC return</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground-System signal ground and DC return</td>
</tr>
<tr>
<td>5</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>6</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>7</td>
<td>D3</td>
<td>Data Bus (Tri-state, input/output, active high). D0-D7 constitute an 8-bit bidirectional data bus. The data bus is used for data exchange with memory and I/O devices.</td>
</tr>
<tr>
<td>8</td>
<td>D7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>D4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A7</td>
<td>Address Bus (tri-state, output, active high). A0-A15 make up a 16-bit address bus. The address bus provides the address for memory (up to 65K bytes) data exchanges and for I/O device data exchanges. I/O addressing uses the lower 8 address bits to allow the user to directly select up to 256 input or 256 output ports. A0 is the least significant address bit. During refresh time, the lower 7 bits contain a valid refresh address for dynamic memories.</td>
</tr>
<tr>
<td>16</td>
<td>A15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A14</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A13</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>A4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>A12</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>A11</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>A9</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>A0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>A8</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>/WR</td>
<td>Write (Tri-state, active low). /WR indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.</td>
</tr>
<tr>
<td>32</td>
<td>/RD</td>
<td>Read (Tri-state, output, active low). /RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.</td>
</tr>
<tr>
<td>33</td>
<td>/IORQ</td>
<td>Input/Output Request (Tri-state, output, active low). The /IORQ signal indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. An /IORQ signal is also generated with an /M1 signal when an interrupt is being acknowledged to indicate that an interrupt response vector can be placed on the data bus. Interrupt Acknowledge operations occur during /M1 time, while I/O operations never occur during /M1 time.</td>
</tr>
<tr>
<td>34</td>
<td>/MEMRQ</td>
<td>Memory Request (Tri-state, output, active low). The /MEMRQ signal indicates that the address bus holds a valid address for a memory read or memory write operation.</td>
</tr>
<tr>
<td>BUS PIN</td>
<td>MNEMONIC</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>35</td>
<td>/IOEXP</td>
<td>I/O Expansion, not used on Mostek MD cards. (Normally strapped to ground on the Mostek motherboard)</td>
</tr>
<tr>
<td>36</td>
<td>/MEMEX</td>
<td>Memory Expansion, not used on Mostek MD cards. (Normally strapped to ground on the Mostek motherboard)</td>
</tr>
<tr>
<td>37</td>
<td>/REFRESH</td>
<td>REFRESH (Tri-state, output, active low). /REFRESH indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and the /MEMRQ signal should be used to perform a refresh cycle for all dynamic RAMs in the system. During the refresh cycle, A7 is a logic 0 and the upper 8 bits of the address bus contain the I register.</td>
</tr>
<tr>
<td>38</td>
<td>/MCSYNC</td>
<td>Not generated by the Mostek CPU cards. /MCSYNC can be generated by gating the following signals: /RD + /WR + /INTAK. By connecting a jumper on the MDX-CPU, this line becomes /DEBUG (Input). /DEBUG is used in conjunction with the DDT-80 operating system on the MD-DEBUG card and the MD-SST card for implementing a hardware single step function. When pulled low, the /DEBUG line will set an address modification latch which will force the upper three address lines A15, A14, and A13 to a logic 1. These address lines will remain at a logic 1 until reset by performing any I/O operation.</td>
</tr>
<tr>
<td>39</td>
<td>/STATUS 1 (M1)</td>
<td>Machine Cycle One. (Tri-state, output, active low). /M1 indicates that the current machine cycle is in the op code fetch cycle of an instruction. Note that during the execution of two byte opcodes, /M1 will be generated as each op code is fetched. These two byte opcodes always begin with a CBh, DDh, or FDh. /M1 also occurs with /IORQ to indicate an interrupt acknowledge cycle.</td>
</tr>
<tr>
<td>40</td>
<td>/STATUS 0</td>
<td>Not used on Mostek MD cards.</td>
</tr>
<tr>
<td>41</td>
<td>/BUSAK</td>
<td>Bus Acknowledge (Output, active low). Bus acknowledge is used to indicate to the requesting device that the CPU address bus, data bus, and control bus signals have been set to their high impedance state and the external device can now control the bus.</td>
</tr>
<tr>
<td>42</td>
<td>/BUSRQ</td>
<td>Bus Request (Input, active low). The /BUSRQ signal is used to request the CPU address bus, data bus, and control signal bus to go to a high impedance state so that other devices can control those buses. When /BUSRQ is activated, the CPU will set these buses to a high impedance state as soon as the current CPU machine cycle is terminated and the /BUSAK signal is activated.</td>
</tr>
<tr>
<td>43</td>
<td>/INTAK</td>
<td>Interrupt Acknowledge (Tri-state, output, active low). The /INTAK signal indicates that an interrupt acknowledge cycle is in progress, and the interrupting device should place its response vector on the data bus. The /INTAK signal is equivalent to an /IORQ during an /M1.</td>
</tr>
<tr>
<td>BUS PIN</td>
<td>MNEMONIC</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>44</td>
<td>/INTRQ</td>
<td>Interrupt Request (Input, active low). The Interrupt Request signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip flop (IFF) is enabled and if the /BUSRQ signal is not active. When the CPU accepts the interrupt, an interrupt acknowledge signal (/INTAK (/IORQ during an /M1) is sent out at the beginning of the next instruction.</td>
</tr>
<tr>
<td>45</td>
<td>/WAITRQ</td>
<td>Wait Request (Input, active low). Wait Request indicates to the CPU that the addressed memory or I/O device is not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active. This signal allows memory or I/O devices of any speed to be synchronized to the CPU. Use of this signal postpones refresh as long as it is held active.</td>
</tr>
<tr>
<td>46</td>
<td>/NMIRO</td>
<td>Non Maskable Interrupt Request (Input, negative edge triggered). The Non Maskable Interrupt Request line has a higher priority than the /INTRQ line and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. /NMIRO automatically forces the CPU to restart to location 0066h. The program counter is automatically saved in the external stack so that the user can return to the program that was interrupted. Note that continuous WAIT cycles can prevent the current instruction from ending, and that a /BUSRQ will override a /NMIRO.</td>
</tr>
<tr>
<td>47</td>
<td>/SYSRESET</td>
<td>System Reset (Output, active low). The System Reset line indicates that a reset has been generated either from an external reset or the power on reset circuit. The system reset will occur only once per reset request and will be approximately 2μs in duration. A system reset will also force the CPU program counter to zero, disable interrupts, set the I register to 00h, set the R register to 00h, and set Interrupt Mode 0.</td>
</tr>
<tr>
<td>48</td>
<td>/PBRESET</td>
<td>Push Button Reset (Input, active low). The Push Button Reset will generate a debounced system reset.</td>
</tr>
<tr>
<td>49</td>
<td>/CLOCK</td>
<td>Processor Clock (Output, active low). Single phase system clock.</td>
</tr>
<tr>
<td>50</td>
<td>/CNTRL</td>
<td>Not used on Mostek MD cards.</td>
</tr>
<tr>
<td>51</td>
<td>PCO</td>
<td>Priority Chain Output (Output, active high). This signal is used to for a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.</td>
</tr>
<tr>
<td>52</td>
<td>PCI</td>
<td>Priority Chain In (Input, active high). This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.</td>
</tr>
<tr>
<td>53</td>
<td>AUX GND</td>
<td>Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>54</td>
<td>AUX GND</td>
<td>Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>BUS PIN</td>
<td>MNEMONIC</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>55</td>
<td>+12V</td>
<td>+12Vdc system power</td>
</tr>
<tr>
<td>56</td>
<td>-12V</td>
<td>-12Vdc system power</td>
</tr>
</tbody>
</table>

NOTES

1. Input/Output references of each signal are made with respect to MDX-CPU module.
2. The following signals have pull-up resistors: /WR, /RD, /IORQ, /MEMRO, /REFRESH, /DEBUG, /M1, /BUSRO, /INTRQ, /WAITRO, /NMIRQ, /SYSRESET, /PBRESET and /CLOCK.
FEATURES

- STD-Z80 BUS-compatible
- 4K x 8 EPROM (two 2716’s, customer-provided)
- 256 x 8 Static RAM (compatible with DDT-80 debugger)
- Flexible Memory decoding for EPROM and RAM
- Four counter/timer channels
- Restart to 0000H or E0000H (strapping option)
- Debug-compatible for single step in DDT-80
- 2.5MHz version (-0)
- 4MHz version (-4)
- +5V only
- Fully-buffered signals for system expandability
- Z80 CPU

MDX-CPU1 DESCRIPTION

The Mostek MDX-CPU1 is the heart of an MD Series Z80 system. Based on the powerful Z80 microprocessor, the MDX-CPU1 can be used with great versatility in an OEM microcomputer system application. This is done simply by inserting custom ROM or EPROM memories into the sockets provided on the board and configuring them virtually anywhere within the Z80 memory map.

On-board memory is provided in the form of sockets for 4K of EPROM (2-2716’s) and 256 bytes of scratchpad RAM as pictured in the block diagram. Either 2716 EPROM can be located at any 2K boundary within any given 16K block in the Z80 memory map via a jumper arrangement. In addition, an MK3882 Counter Timer Circuit is included on the MDX-CPU1 to provide counting and timing functions for the Z80.

The MDX-CPU1 can be used in conjunction with the MDX-DEBUG and MDX-DRAM modules to utilize DDT-80 and ASMB-80 in system development. This is accomplished by strapping the scratchpad RAM to reside at location FFOOH so that it will act as the Operating System RAM for DDT-80.

The MDX-CPU1 is also available in a 4MHz version (MDX-CPU1-4). In this version, one wait state is automatically inserted each time that the on-board memory is accessed by a read or write cycle. This is necessary to make the access times of the 2716 PROMs and the 3539 scratchpad RAM compatible with the MK3880 4MHz Z80-CPU.
WORD SIZE

Instruction: 8, 16, 24, or 32 bits
Data: 8 bits

CYCLE TIME

Clock period (T state) 400ns @ 2.5MHz
250ns @ 4.0MHz
Instruction Cycle: Min. 4 T States
Max. 23 T States

MEMORY CAPACITY

On-Board EPROM - 4K bytes (sockets only)
On-Board RAM - 256 bytes
Off-Board Expansion - Up to 65,536 byte, with user-specified combinations of RAM, ROM, PROM.

MEMORY ADDRESSING

On-Board EPROM: jumper-selectable for any 2K boundary within a 16K block of Z80 memory map.
On-Board RAM: FF00-FFFF

MEMORY REFRESH

The MDX-CPU1 generates all address and control signals necessary to refresh dynamic RAM (such as MDX-DRAM) modules. Refresh occurs automatically during each OP-code fetch cycle and is therefore transparent to system throughput.

MEMORY SPEED REQUIRED

<table>
<thead>
<tr>
<th>MEMORY</th>
<th>ACCESS TIME</th>
<th>CYCLE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2716*</td>
<td>450ns</td>
<td>450ns</td>
</tr>
</tbody>
</table>

*Single 5-volt type required

I/O ADDRESSING

The on-board 4-channel programmable timer is hardwired to the following port addresses:

PORT MK3882 ADDRESS (HEX) CHANNEL

7C 0
7D 1
7E 2
7F 3
I/O CAPACITY

Up to 252 port addresses can be decoded off board. Four port addresses are on board. 252 + 4 = 256 total I/O ports.

INTERRUPTS

The Z80-CPU may be programmed to process interrupts in any of three different modes (mode 0, 1 or 2 as described in the MK3880 Technical Manual). Mode 2 operation (vectored interrupts) is by far the most powerful and is compatible with Mostek MDX Series cards.

Multi-level interrupt processing is also possible with the Z80 CPU. The level of stacking is limited only by available memory space.

The MDX-CPU1 will also accept nonmaskable interrupts which force a restart at location 0066H.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU1</td>
<td>2.5 MHz ± 0.05%</td>
</tr>
<tr>
<td>MDX-CPU1-4</td>
<td>4.0 MHz ± 0.05%</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS load max.

Outputs: $I_{OL} = 24 \text{ mA min. at } V_{OL} = 0.5 \text{ Volts}$

$\quad I_{OH} = -3 \text{ mA min. at } V_{OH} = 2.4 \text{ Volts}$

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

$5V \pm 5\% \text{ at } 1.2 \text{ A (excluding memory power requirements)}$

CARD DIMENSIONS

4.50 in. (11.43 cm.) wide by 6.50 in. (16.51 cm.) long
0.48 in. (1.22 cm.) maximum height
0.062 in. (0.16 cm.) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>CONFIGURATION</th>
<th>MATING CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>Printed Circuit Viking 3VH28/1CE5 Wire-Wrap Viking 3VH28/1CND5 Solder Lug Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU1</td>
<td>Module with Operation Manual less EPROMs and mating connectors. 2.5MHz version.</td>
<td>MK77850-0</td>
</tr>
<tr>
<td>MDX-CPU1-4</td>
<td>Module with Operations Manual less EPROMs and mating connectors. 4.0MHz version.</td>
<td>MK77850-4</td>
</tr>
<tr>
<td>MDX-CPU1 and MDX-CPU1-4 Operations Manual Only</td>
<td></td>
<td>MK79612</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Utilizes the powerful Z80 Microprocessor
- Six 24-pin sockets which may be strapped to accept any combination of the following industry-standard memory devices:
 - EPROM
 - 2758 (1K x 8)
 - 2716 (2K x 8)
 - 2732 (4K x 8)
 - STATIC RAM
 - MK4118 (1K x 8)
 - MK4801 (1K x 8)
 - MK4802 (2K x 8)
 - ROM
 - MK34000 (2K x 8)
- Flexible memory decoding on any 1K boundary
- Bidirectional address, data and control busses to permit external DMA
- Four cascadable counter/timer channels
- Automatic, transparent dynamic memory refresh
- Fully-buffered signals for system expandability
- Selectable reset address to either 0000H or E000H
- Selectable wait-state generator
- Compatible with MDX-SST for single step operation during debugging
- 4 MHz version available
- Single +5 Volt supply

DESCRIPTION

The MDX-CPU2 features six 24-pin memory sockets which enable the user to populate the module with any combination of designated ROM, RAM, and EPROM. Flexible address decoding allows the user to configure each memory device within any 1K boundary of the 64K memory map. A PROM decoder is supplied which will allow the user to choose one of four preselected memory configurations or, if desired, the user may, by programming a decoder PROM, assign any of the six sockets to memory addresses as required by his application needs. Address, data and control busses have been made bidirectional to allow external masters to directly access CPU memory.

A 4-channel counter/timer circuit (MK3882) is included on-board for software-controlled counting and time functions. The CTC Trigger inputs and Zero Count outputs are buffered and brought out to a connector for off-board control. In addition, a strapping option makes it possible to cascade the four CTC channels for long count sequences.

Another strapping option allows the user to select a reset address of either 0000H or E000H for compatibility with Mostek standard software.
A 4 MHz version of MDX-CPU2 is also available (MDX-CPU2-4). To ensure sufficient memory access time at 4 MHz operation, a jumper option enables automatic insertion of one WAIT state for those memory devices identified as "slow" in the decoder PROM. The standard decoder PROM supplied with MDX-CPU2-4 is pre-programmed for use with MK2716 EPROMs and MK4118 Static RAMs, and identifies 2716 sockets as "slow" and 4118 sockets as "fast."

MEMORY CAPACITY

Six 24-pin sockets are provided which may be populated with any mixture of the following devices:

- 2758 (1K x 8 EPROM)
- 2716 (2K x 8 EPROM)
- 2732 (4K x 8 EPROM)
- MK4118 (1K x 8 Static RAM)
- MK4801 (1K x 8 Static RAM)
- MK4802 (2K x 8 Static RAM)
- MK34000 (2K x 8 ROM)

MEMORY ADDRESSING

On-board PROM decoding allows any on-board memory to be configured on any 1K boundary of the Z80 CPU memory map.

Off-board expansion to a total of 65,536 bytes is possible with the use of various MDX memory modules.
MEMORY REFRESH

The MDX-CPU2 generates all address and control signals necessary to refresh dynamic RAM (such as MDX-DRAM) modules. Refresh occurs automatically during each OP code fetch cycle and is therefore transparent to system throughput.

I/O ADDRESSING

The on-board 4-channel programmable timer is hard-wired to the following addresses:

<table>
<thead>
<tr>
<th>MK3882 Channel</th>
<th>Port Address (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7C</td>
</tr>
<tr>
<td>1</td>
<td>7D</td>
</tr>
<tr>
<td>2</td>
<td>7E</td>
</tr>
<tr>
<td>3</td>
<td>7F</td>
</tr>
</tbody>
</table>

I/O CAPACITY

The Z80 CPU utilizes the lower 8 bits of its address bus for I/O addressing to yield a total of 256 possible port addresses.

INTERRUPTS

The Z80-CPU may be programmed to process interrupts in any of three different modes (mode 0, 1 or 2 as described in the MK3880 Technical Manual). Mode 2 operation (vectored interrupts) is by far the most powerful and is compatible with Mostek MDX Series cards.

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-Pin 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE-WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDIER LUG Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>CTC I/O</td>
<td>26-Pin 0.100 in. centers</td>
<td>FLAT RIBBON Ansley 609-2600M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISCRETE WIRES Winchester PGB26A (Housing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester 100-70020 (Contacts)</td>
</tr>
</tbody>
</table>

Multi-level interrupt processing is also possible with the Z80 CPU. The level of stacking is limited only by available memory space.

The MDX-CPU2 will also accept nonmaskable interrupts which force a restart at location 0066H.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>CPU</th>
<th>Frequency</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU2</td>
<td>2.5 MHz ± 0.05%</td>
<td></td>
</tr>
<tr>
<td>MDX-CPU2-4</td>
<td>4.0 MHz ± 0.05%</td>
<td></td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: IOL = 24 mA min. @ VOL 0.5 Volts
 IOH = -3 mA min. @ VOH 2.4 Volts

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

5V ± 5% at 1.2 A (excluding memory power requirements)

CARD DIMENSIONS

4.50 in. (11.43 cm.) wide by 6.50 in. (16.51 cm.) long
0.48 in. (1.22 cm.) maximum height
0.062 in. (0.16 cm.) printed circuit board thickness
<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU2</td>
<td>2.5 MHz CPU2 module with Operations Manual (less memory and mating connectors)</td>
<td>MK77853-0</td>
</tr>
<tr>
<td>MDX-CPU2-4</td>
<td>4.0 MHz CPU2 module with Operations Manual (less memory and mating connectors)</td>
<td>MK77853-4</td>
</tr>
<tr>
<td></td>
<td>MDX-CPU2 and MDX-CPU2-4 Operations Manual Only</td>
<td>MK79711</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Fixed-point 16 and 32-bit operations
- Floating point 32-bit operations
- Binary data formats
- Add, Subtract, Multiply and Divide
- Trigonometric and inverse trigonometric functions
- Square roots, logarithms, exponentials
- Float-to-fixed and fixed-to-float conversions
- Stack-oriented operand storage
- On-board wait-state insertion circuitry

DESCRIPTION

The MDX-MATH board is offered as one of Mostek's complete line of STD-Z80 BUS-compatible microcomputer modules. The MDX-MATH board, based on the AM9511 Arithmetic Processing Unit (APU), provides high performance fixed and floating point trigonometric and mathematical operations. It can be used to enhance the computational capability of a wide variety of STD-Z80 BUS systems.

Figure 1 is a block diagram which illustrates the functional elements of the MDX-MATH board.

The Arithmetic Processing Unit is a monolithic MOS/LSI device that performs all of the mathematical operations. All transfers to and from the APU take place over the 8-bit, bi-directional data bus. Operands are pushed onto an internal stack within the APU and a command is issued to perform operations on the data in the stack. Results are then available to be retrieved from the stack, or additional commands may be entered.

Side A of the MK3881 PIO can be utilized to provide a Z80 Mode 2 interrupt response when the APU completes the execution of a command and pulls its END line low. If the PIO has been programmed to interrupt on the high-to-low transition of port bit A7, it will provide a vectored interrupt and maintain the daisy-chain-priority interrupt logic compatible with the STD-Z80 BUS.

Each MDX-MATH board has a total of five registers; three WRITE only and two READ only. These registers appear as three I/O port addresses and are defined in Table 1.
The "X" symbols are "don't cares" and are jumper-selectable. These port addresses are fully decoded.

The MDX-MATH board operates from an independent 2 MHz, crystal-controlled, clock generator circuit. The time required by the AM9511 to execute some of its commands can exceed 4 milliseconds. Because of this, there is circuitry designed to block any access to the APU which would cause wait states to be inserted for such long periods of time during the execution of a command. This action prevents any interference with dynamic memory refresh as well as any sacrifice of Z80 processing time.

The Arithmetic Processing Unit handles operands in both fixed point and floating point formats. Fixed point operands may be represented in either single (16-bit operands) or double precision (32-bit operands) and are always represented as binary, two's complement values.

The format for floating point values is given. The mantissa is expressed as a 24-bit (fractional) value; the exponent is expressed as an unbiased two's complement 7-bit value having a range of -64 to +63. The most significant bit is the sign of the mantissa (0 = positive, 1 = negative), for a total of 32 bits. The binary point is assumed to be to the left of the most significant mantissa bit (bit 23). All floating point data values must be normalized. Bit 23 must be equal to 1, except for the value zero, which is represented by all zeros.

The range of values that can be represented in this format is $\pm (2.7 \times 10^{-20}$ to 9.2×10^{18}) and zero.
STACK CONTROL

The user interface includes access to an 8-level, 16-bit-wide data stack. Since single-precision, fixed-point operands are 16 bits in length, eight such values may be maintained in the stack. When using double-precision, fixed point or floating point formats, four values may be stored. The stack in these two configurations can be visualized as shown.

Data is written onto the stack, eight bits at a time, in the order shown (B1, B2, B3...). Data is removed from the stack in reverse byte order (B8, B7, B6...). Data should be transferred into or out of the stack in multiples of the number of bytes appropriate to the chosen data format.

COMMAND STRUCTURE

Figure 2 lists the commands and their mnemonics.

Each command consists of a single 8-bit byte having the format illustrated.

<table>
<thead>
<tr>
<th>SINGLE</th>
<th>FIXED</th>
<th>CODE</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5 4 3 2 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bits 0-4 select the operation to be performed. Bits 5-6 select the data format for the operation. If bit 5 is a 1, a fixed point data format is specified. If bit 5 is a 0, the floating point format is specified. Bit 6 selects the precision of the data to be operated on by fixed point commands (if bit 5 = 0, bit 6 must be 0). If bit 6 is a 1, single-precision (16-bit) operands are indicated; if bit 6 is a 0, double-precision (32-bit) operands are indicated. Results are undefined for all illegal combinations of bits in the command byte.

DEVICE STATUS

Device status is provided by means of an internal status register whose format is shown.

<table>
<thead>
<tr>
<th>BUSY</th>
<th>SIGN</th>
<th>ZERO</th>
<th>ERROR CODE</th>
<th>CARRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5 4 3 2 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUSY: Indicates that the MDX-MATH board is currently executing a command (1 = Busy).
SIGN: Indicates that the value on the top of stack is negative (1 = Negative).
ZERO: Indicates that the value on the top of stack is zero (1 = Value is zero).
ERROR CODE: This field contains an indication of the validity of the result of the last operation. The error codes are:
- 0000 - No error
- 1000 - Divide by zero
- 0100 - Square root or log of negative number
- 1100 - Argument of inverse sine, cosine, or e^x too large
- XX10 - Underflow
- XX01 - Overflow

CARRY: Previous operation resulted in carry or borrow from most significant bit. (1 = Carry/Borrow, 0 = No Carry/No Borrow)

The BUSY bit in the status register can be read by the Z80 CPU at any time whether an operation is in progress or not.
COMMAND SUMMARY

Figure 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOS</td>
<td>ARCCOSINE</td>
</tr>
<tr>
<td>ASIN</td>
<td>ARCSINE</td>
</tr>
<tr>
<td>ATAN</td>
<td>ARCTANGENT</td>
</tr>
<tr>
<td>CHSD</td>
<td>CHANGE SIGN DOUBLE</td>
</tr>
<tr>
<td>CHSF</td>
<td>CHANGE SIGN FLOATING</td>
</tr>
<tr>
<td>CHSS</td>
<td>CHANGE SIGN SINGLE</td>
</tr>
<tr>
<td>COS</td>
<td>COSINE</td>
</tr>
<tr>
<td>DADD</td>
<td>DOUBLE ADD</td>
</tr>
<tr>
<td>DDIV</td>
<td>DOUBLE DIVIDE</td>
</tr>
<tr>
<td>DMUL</td>
<td>DOUBLE MULTIPLY LOWER</td>
</tr>
<tr>
<td>DMUU</td>
<td>DOUBLE MULTIPLY UPPER</td>
</tr>
<tr>
<td>DSUB</td>
<td>DOUBLE SUBTRACT</td>
</tr>
<tr>
<td>EXP</td>
<td>EXPONENTIATION (e^x)</td>
</tr>
<tr>
<td>FADD</td>
<td>FLOATING ADD</td>
</tr>
<tr>
<td>FDIV</td>
<td>FLOATING DIVIDE</td>
</tr>
<tr>
<td>FIXD</td>
<td>FIX DOUBLE</td>
</tr>
<tr>
<td>FIXS</td>
<td>FIX SINGLE</td>
</tr>
<tr>
<td>FLTLD</td>
<td>FLOAT DOUBLE</td>
</tr>
<tr>
<td>FLTS</td>
<td>FLOAT SINGLE</td>
</tr>
<tr>
<td>FMUL</td>
<td>FLOATING MULTIPLY</td>
</tr>
<tr>
<td>FSUB</td>
<td>FLOATING SUBTRACT</td>
</tr>
<tr>
<td>LOG</td>
<td>COMMON LOGARITHM</td>
</tr>
<tr>
<td>LN</td>
<td>NATURAL LOGARITHM</td>
</tr>
<tr>
<td>NOP</td>
<td>NO OPERATION</td>
</tr>
<tr>
<td>POPD</td>
<td>POP STACK DOUBLE</td>
</tr>
<tr>
<td>POPF</td>
<td>POP STACK FLOATING</td>
</tr>
<tr>
<td>POPS</td>
<td>POP STACK SINGLE</td>
</tr>
<tr>
<td>PTOF</td>
<td>PUSH STACK FLOATING</td>
</tr>
<tr>
<td>PTOS</td>
<td>PUSH STACK SINGLE</td>
</tr>
<tr>
<td>PUI</td>
<td>PUSH</td>
</tr>
<tr>
<td>PWR</td>
<td>POWER (x^y)</td>
</tr>
<tr>
<td>SADD</td>
<td>SINGLE ADD</td>
</tr>
<tr>
<td>SDIV</td>
<td>SINGLE DIVIDE</td>
</tr>
<tr>
<td>SIN</td>
<td>SINE</td>
</tr>
<tr>
<td>SMUL</td>
<td>SINGLE MULTIPLY LOWER</td>
</tr>
<tr>
<td>SMUU</td>
<td>SINGLE MULTIPLY UPPER</td>
</tr>
<tr>
<td>SQRT</td>
<td>SQUARE ROOT</td>
</tr>
<tr>
<td>SSUB</td>
<td>SINGLE SUBTRACT</td>
</tr>
<tr>
<td>TAN</td>
<td>TANGENT</td>
</tr>
<tr>
<td>XCHD</td>
<td>EXCHANGE OPERANDS DOUBLE</td>
</tr>
<tr>
<td>XCHF</td>
<td>EXCHANGE OPERANDS FLOATING</td>
</tr>
<tr>
<td>XCHS</td>
<td>EXCHANGE OPERANDS SINGLE</td>
</tr>
</tbody>
</table>

WORD SIZE

- Data: 8 bits
- I/O Addressing: 8 bits

I/O ADDRESSING

On-board programmable - See Table 1

I/O CAPACITY

Five parallel 8-bit ports. Three WRITE Only and two READ only. (See Table 1)

INTERRUPTS

Vectored interrupt generated. Daisy-chained interrupt priority. Interrupt vector programmable upon initialization.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-MATH</td>
<td>250kHz</td>
<td>2.5MHz</td>
</tr>
</tbody>
</table>

The MDX-MATH board operates from an independent 2MHz clock.

OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+12V ± 5% at 120 mA max
+5V ± 5% at 0.9 A max

STD BUS INTERFACE

- Inputs: One 74LS Load max
- Outputs: I_{OH} = -3mA min at 2.4 Volts
- I_{OL} = 24mA min at 0.5 Volts

CARD DIMENSIONS

- 4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
- 0.48 in. (1.22cm) maximum profile thickness
- 0.062 in. (0.16cm) printed-circuit-board thickness
CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin dual readout 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-MATH</td>
<td>Module with Operations Manual; 2.5 MHz version.</td>
<td>MK77852-0</td>
</tr>
<tr>
<td></td>
<td>MDX-MATH Operations Manual Only</td>
<td>MK79741</td>
</tr>
</tbody>
</table>
System Interrupt Units

<table>
<thead>
<tr>
<th>CARD</th>
<th>SIU's</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU1</td>
<td>1</td>
</tr>
<tr>
<td>MDX-CPU2</td>
<td>1</td>
</tr>
<tr>
<td>MDX-DRAM8/16/32</td>
<td>0</td>
</tr>
<tr>
<td>MDX-EPROM/UART</td>
<td>0</td>
</tr>
<tr>
<td>MDX-DEBUG</td>
<td>0</td>
</tr>
<tr>
<td>MDX-PIO</td>
<td>2</td>
</tr>
<tr>
<td>MDX-SIO</td>
<td>1</td>
</tr>
<tr>
<td>MDX-SST</td>
<td>0</td>
</tr>
<tr>
<td>MDX-FLP</td>
<td>1</td>
</tr>
<tr>
<td>MDX-MATH</td>
<td>1</td>
</tr>
<tr>
<td>MDX-A/D8</td>
<td>1</td>
</tr>
<tr>
<td>MDX-AI0</td>
<td>0</td>
</tr>
<tr>
<td>MDX-A/D12</td>
<td>1</td>
</tr>
<tr>
<td>MDX-D/A8</td>
<td>0</td>
</tr>
<tr>
<td>MDX-D/A12</td>
<td>0</td>
</tr>
<tr>
<td>MDX-UMC</td>
<td>0</td>
</tr>
<tr>
<td>MDX-SRAM4/8/16</td>
<td>0</td>
</tr>
<tr>
<td>MDX-EPROM</td>
<td>0</td>
</tr>
<tr>
<td>MDX-INT</td>
<td>1</td>
</tr>
<tr>
<td>MDX-SC/D</td>
<td>1</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- 8-Bit A/D converter with 16 single-ended analog inputs
- 0 to +5 Volts Full Scale Input Range
- Total unadjusted error < ± ½ LSB
- Linearity error < ± ½ LSB
- No missing codes
- Guaranteed monotonicity
- No zero-adjust required
- No full-scale adjust required
- Provisions for additional channel expansion
- Single +5 Volt supply
- Address programmable
- 4MHz option

DESCRIPTION

The Analog to Digital Converter Module, MDX-A/D8, is designed to be a 16-channel single-ended A/D module for the STD-Z80 BUS. The module is designed around the Mostek MK50816 8-bit A/D converter/16 channel analog multiplexer. Additional provisions have been included to allow further analog expansion if desired. Figure 1 is a block diagram of the MDX-A/D8 showing the major elements of the module.

The first element of this board is the multiplexer. This 16-channel multiplexer can directly access any one of 16 single-ended analog channels and provides logic for additional channel expansion. All analog input lines contain a diode/resistor protection circuit to reduce potential damage from overvoltage and transient inputs.

The other half of the MK50816 is the A/D converter. The 8-bit A/D consists of 256 series resistors with an analog switch tree, a chopper-stabilized comparator and a successive approximation register. The series resistor approach guarantees monotonicity and no missing codes. The need for external zero and full-scale adjustments has been eliminated and an absolute accuracy of ≤ 1 LSB including quantizing error is provided. A start convert signal initiates the conversion process and can be jumper-selected from either an external source or under program control. Upon completion, a DONE signal is generated to indicate end of conversion. This signal is used to flag the program as well as any external device.

The Data Bus Buffer and Interface Logic allows the MDX-A/D8 module to interface with the STD-Z80 BUS. It provides buffering for all signals as well as address decoding and A/D port control. A total of four port address locations are required and can start on any four-word boundary.
WORD SIZE

Data: 8 bits
I/O Addressing: 8 bits

I/O CAPACITY

Eight-bit analog-to-digital converter with up to sixteen single-ended analog input channels. Channel expansion available. Start-conversion and done-handshake signals available at the edge connector.

I/O ADDRESSING

On-board programmable on 4-word boundaries
X XXXXX 0 A/D Port Configuration Data
X XXXXX 0 1 A/D Port Configuration Control
X XXXXX 1 0 A/D Data Input/Output Port
X XXXXX 1 1 Data Control Port

X = don’t care

CONVERSION TIME

138 microseconds max.

INTERRUPTS

Vectored interrupts generated. Interrupt vector programmable upon initialization. Daisy-chained interrupt priority. Interrupts are controlled by a Mostek MK3881 Parallel I/O controller chip.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-A/D</td>
<td>250kHz</td>
</tr>
<tr>
<td>MDX-A/D-4</td>
<td>250kHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACES

Inputs: One 75LS Load
Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
$I_{OL} = 24mA$ max. at 0.5 Volts

OPERATING TEMPERATURE RANGE

$0^\circ C + 60^\circ C$
POWER SUPPLY REQUIREMENTS

+5 Volts ±5% at 0.6 A max.

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125-in. centers</td>
<td>Viking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3VH28/1CN5</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>40-pin</td>
<td>Ansley 609-4000</td>
</tr>
<tr>
<td></td>
<td>0.100 in. centers</td>
<td></td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-A/D8</td>
<td>Module with Operation Manual less mating connector</td>
<td>MK77669-0</td>
</tr>
<tr>
<td></td>
<td>2.5 MHz version</td>
<td></td>
</tr>
<tr>
<td>MDX-A/D8-4</td>
<td>Module with Operation Manual less mating connector</td>
<td>MK77669-4</td>
</tr>
<tr>
<td></td>
<td>4.0 MHz version</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDX-A/D8 Operations Manual Only</td>
<td>MK79632</td>
</tr>
</tbody>
</table>
FEATURES

- STD and STD-Z80 BUS compatible
- Memory-mapped I/O
- Combination Analog Input and Output
- 8 Differential Analog Inputs or 16 Single-Ended Analog Inputs
- Two channels of 8-bit Analog Output
- Input overvoltage protection to ± 35 volts
- Sample-and-Hold Amplifier On-Board
- Monolithic 10-Bit A/D Converter
- Single On-Board Precision Reference Circuit
- Single +5-Volt Supply

DESCRIPTION

The MDX-AIO Analog Data Acquisition and Control Board comprises a complete analog I/O subsystem which simplifies the interface of real-time analog signals to MD Series microcomputer systems.

The analog signals are connected to the board through a pin connector mounted at the opposite board edge from the digital bus. The MDX-AIO comes complete with its own DC/DC converter so that the board can operate directly from the +5 volt supply.

The MDX-AIO has eight differential or 16 single-ended input capability while also providing for two channels of analog output with 8-bit resolution. The board also features input overvoltage protection to ± 35 volts. A Sample-and-Hold Amplifier is contained on the board along with a 10-bit A/D converter.

The MDX-AIO operates as a memory-mapped I/O system. Each board can be configured as a block of five contiguous memory locations, as shown in Table 1.
MEMORY MAP OF MDX-AIO

Table 1

<table>
<thead>
<tr>
<th>BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
</tr>
<tr>
<td>X F X B</td>
</tr>
<tr>
<td>X F X C</td>
</tr>
<tr>
<td>X F X D</td>
</tr>
<tr>
<td>X F X E</td>
</tr>
<tr>
<td>X F X F</td>
</tr>
</tbody>
</table>

NOTES:
1. "X" HEX address digits are user-selectable.
2. 0 bits are ignored on write and indeterminate on read.
3. Busy bit is "1" during conversions and "0" when done.
4. Writing the MUX number to location XFXB sets the input channel and initiates a conversion.
ANALOG INPUT SECTION
(All accuracy specifications typical at +25°C with ± 10V FSR unless otherwise noted)

<table>
<thead>
<tr>
<th>Input Channels</th>
<th>16 Single-Ended or 8 Differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Protection</td>
<td>± 35V</td>
</tr>
<tr>
<td>Input Range</td>
<td>0V to 10V, ±5V, ±10V</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100M Ω min.</td>
</tr>
<tr>
<td>Instrument Amplifier Gain</td>
<td>1V/V</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>50nA</td>
</tr>
<tr>
<td>CMV Range</td>
<td>±10V</td>
</tr>
<tr>
<td>CMRR @ 60Hz</td>
<td>60dB min.</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>10 Bits</td>
</tr>
<tr>
<td>Conversion Time</td>
<td>40 microseconds</td>
</tr>
<tr>
<td>Monotonicity</td>
<td>Guaranteed 0 to 50°C</td>
</tr>
<tr>
<td>Overall System Error</td>
<td>±0.15% F.S.R.</td>
</tr>
<tr>
<td>Offset Error</td>
<td>Adjustable to Zero</td>
</tr>
<tr>
<td>Gain Error</td>
<td>Adjustable to Zero</td>
</tr>
<tr>
<td>Noise Error RTI</td>
<td>±½LSB</td>
</tr>
<tr>
<td>Nonlinearity</td>
<td>±1LSB max.</td>
</tr>
<tr>
<td>Offset Drift</td>
<td>50ppm/°C</td>
</tr>
<tr>
<td>Gain Drift</td>
<td>100ppm/°C</td>
</tr>
</tbody>
</table>

ANALOG OUTPUT SECTION
(All accuracy specifications typical at +25°C with ± 10V FSR unless otherwise noted)

Output Channels	2
Resolution	8 Bits
Output Ranges	0V to 10V, ±5V, ±10V
Output Current	5mA @ ±10V
Settling Time (20V Step)	30 microseconds to ±½LSB
Monotonicity	Guaranteed 0 to +50°C
Nonlinearity	±½LSB max.
Offset Error	Adjustable to Zero
Gain Error	Adjustable to Zero
Offset Drift	30 microseconds V/°C
Gain Drift	50ppm/°C

SYSTEM INTERRUPT UNITS (SIO) = 0

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56 pin 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>34-pin</td>
<td>3M Type Ribbon Cable Connector ADI P/N AC1562</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-AIO</td>
<td>Module with Operation Manual less mating connectors.</td>
<td>MK77654</td>
</tr>
<tr>
<td>MDX-AIO Operations Manual only</td>
<td></td>
<td>MK79775</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

- Inputs: One 74LS Load
- Outputs: \(I_{OH} = -3 \, mA \) min. at 2.4 volts
- \(I_{OL} = 24 \, mA \) min. at 0.5 volts

OPERATING TEMPERATURE RANGE

- 0°C to +60°C
- 5% to 95% R.H. without Condensation
- 25 to 32 inches of Mercury

STORAGE TEMPERATURE RANGE

- -36°C to +85°C

POWER SUPPLY REQUIREMENTS

- +5 volts ±5% at 750 mA max.

CARD DIMENSIONS

- 4.5 in (11.43 cm) high by 6.50 in. (16.51 cm) long
- 0.48 in. (1.22 cm) max. profile thickness
- 0.062 in. (0.16 cm) printed-circuit-board thickness
FEATURES

- STD-Z80 BUS compatible
- 12-bit A/D Converter
- 16 Single-Ended or Eight Differential Input Channels
- Sample and Hold
- Two Analog Input Ranges
 - ± 5 Volts, 0 to 5 Volts
- Provisions for input channel expansion
- Address programmable

DESCRIPTION

The Analog-to-Digital Converter Family, MDX-A/D12, encompasses five different modules, each of which has different input ranges. The boards allow for high-level, wide range, and wide range isolated inputs.

The MDX-A/D12 board provides 16 single-ended or eight differential input channels. It also has the capability for expansion up to 64 single-ended or 32 differential input channels. The full-scale input ranges are ±5 volts or 0 to 5 volts. These are jumper-selectable. Throughput for this module is 33 microseconds.
ANALOG INPUT PARAMETERS

Number of Channels: 16 single-ended or eight differential (jumper selectable)
Input Impedance: 100 megohm
Sample-and-Hold Aperature Uncertainty: 10 nanoseconds
Conversion Resolution: 12 bits
Inherent Quantizing Error: ±1/2 LSB
Stability: ±25ppm/°C FSR
Linearity: ±1/2 LSB
Analog-Input-System Accuracy: ±0.03% FSR
Throughput: 33 microseconds

I/O ADDRESSING

On board, upper five bits programmable

INTERRUPTS

Vectored interrupts generated. Interrupt vector programmable upon initialization. Daisy-chained interrupt priority. Selected bit channels can be masked out under program control.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MDX-A/D12 Family</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 kHz</td>
<td>2.5 MHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS Load max.
Outputs: \(I_{OH} = -3 \text{ mA min. at 2.4 Volts} \)
\(I_{OL} = 24 \text{ mA min. at 0.5 volts} \)
OPERATING TEMPERATURE RANGE
0°C to 60°C

POWER SUPPLY REQUIREMENTS
+5V ± 5% at 500mA
+ 12V ± 5% at 75mA

CARD DIMENSIONS
4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in (1.22cm) maximum profile thickness
0.062 in (0.16cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>*ANALOG CONN</td>
<td>20-pin</td>
<td>3M type 3421</td>
</tr>
</tbody>
</table>

*MDX-A/D12 may have up to two 20-pin 3M-type connectors. Connector J1 is used for connection of analog input signals and EXT TRIG INPUTS. Connector J2 is used for multiplexer channel expansion.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-A/D12</td>
<td>High-Level 12-bit, 16-channel SE (8 channel DI)</td>
<td>MK77655-0</td>
</tr>
<tr>
<td></td>
<td>MDX-A/D12 Operations Manual Only</td>
<td>MK79774</td>
</tr>
</tbody>
</table>
FEATURES
- STD-Z80 and STD BUS compatible
- 8 Bit D/A Converter
- Four independent channels
- Output voltage ranges of ±5V, 0 to 5V, ±10V, 0 to 10V
- Output current range of 4 to 20 mA
- 15V optional models available
- Programmable address
- 2.5 and 4.0MHz Operation

DESCRIPTION
Designed as a part of the MD Series Analog I/O systems, the MDX-D/A8 features four completely independent analog output channels. Each channel has user-selectable output ranges of ±5V and 0 to 5V.

The MDX-D/A8 can be used as either a memory-mapped peripheral or as an I/O port through a user-selectable jumper option. When used in the memory-mapped environment, the device base address can be assigned any value in the $8000H$ to $FFF8H$ memory address space. When used as an I/O port, the base port address can be assigned any address in the $0000H$ to $00F8H$ I/O port address space.
ANALOG OUTPUT PARAMETERS

Resolution: 8 bits
No. of Channels: 4
Linearity: ± ½ LSB
± 0.2 % FSR
Differential Linearity: ± 1/2 LSB
Gain and Offset Error: Adjustable to Zero
Gain Drift: ± 60 PPM/°C
Offset Drift: ± 10 PPM/°C unipolar
± 30 PPM/°C bipolar
Settling Time: 35 microseconds to 0.01% FSR (10-volt step)
Slew Rate: 0.33V/microsecond
Output Voltage Range: ± 5V, 0 to 5V (MDX-D/A 8)
DC Output Impedance: < 0.1 ohm

WORD SIZE

Data: 8 bits
I/O Addressing: 8 bits

I/O ADDRESSING OR MEMORY ADDRESSING

On-board programmable

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX - D/A8</td>
<td>250 kHz</td>
</tr>
<tr>
<td></td>
<td>2.5 MHz</td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 0

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3$ mA min. at 2.4 volts
$I_{OL} = 24$ mA max. at 0.5 volts
OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+5V ± 5% at 550 mA
± 15V or ± 12V ± 5% at 50 mA and load current

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (0.16 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>ANALOG CONN</td>
<td>20-Pin</td>
<td>3M type 3421</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-D/A8</td>
<td>4-Channel 8-bit D/A converter with manual less mating connector</td>
<td>MK77666</td>
</tr>
<tr>
<td></td>
<td>MDX-D/A8 Operation Manual Only</td>
<td>MK79824</td>
</tr>
</tbody>
</table>

V-17
FEATURES

- STD-Z80 BUS compatible
- 12-bit D/A converter
- Four independent channels
- Output voltage ranges of ±5V, 0 to 5V, ±10V, 0 to 10V
- Programmable address
- Both 2.5MHz and 4.0MHz

DESCRIPTION

Designed as a part of the MD Series Analog I/O systems, the MDX-D/A 12 features four completely independent analog output channels. Each channel has users-selectable output ranges of ±5V and 0 to 5V. The MDX-D/A 12 can be used as either a memory-mapped peripheral or as an I/O port through a user-selectable jumper option. When used in the memory-mapped environment, the device base address can be assigned any value in the 8000H to FFF8H memory address space. When used as an I/O port, the base port address can be assigned any address in the 0000H to 00F8H I/O port address space.
ANALOG OUTPUT PARAMETERS

Resolution: 12 bits
No. of channels: 4
Output Voltage Range: ±5V, 0 to 5V
Linearity: ±1/2 LSB
±0.02% FSR
Differential Linearity: ±1/2 LSB
D.C. Output Impedance: < 0.1 ohm
Gain and Offset Error: Adjustable to zero
Gain Drift: ±30 ppm/^\degree C
Offset Drift: ±3 ppm/^\degree C unipolar
±18 ppm/^\degree C bipolar
Settling Time: 35 microseconds to 0.01% FSR (10 volt step)
Slew Rate: 0.33 V/microsecond

DIGITAL PARAMETERS

WORD SIZE
Data: 8 bits
I/O Addressing: 8 bits

I/O ADDRESSING OR MEMORY ADDRESSING
On-board programmable

INTERRUPTS
No interrupts are generated

SYSTEM INTERRUPT UNITS (SIU) = 0

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-D/A 12</td>
<td>250kHz</td>
<td>2.5MHz</td>
</tr>
</tbody>
</table>
STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
 $I_{OL} = 24mA$ min. at 0.5 Volts

OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

$\pm 5V \pm 5\%$ at 550mA

CARD DIMENSIONS

4.5 in (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in (1.22cm) maximum profile thickness
0.062 in (0.16cm) printed-circuit-board thickness

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-D/A 12</td>
<td>4-channel 12-bit D/A converter with manual less mating connector.</td>
<td>MK77665-0</td>
</tr>
<tr>
<td>MDX-D/A 12 Operation Manual Only</td>
<td></td>
<td>MK79824</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CN5</td>
</tr>
<tr>
<td>ANALOG CONN</td>
<td>20-pin</td>
<td>3M type 3421</td>
</tr>
</tbody>
</table>

WRAP WRAP WRAP
FEATURES

- STD-Z80 BUS compatible
- One to four drives; four software-controlled select lines
- 5-inch or 8-inch drives, single-or dual-sided, jumper-selectable. All drives connected to one MDX-FLP board must be the same type
- Single-density operation
- Soft-sector operation including variable-length sectors
- Compatibility with IBM 3740 or other formats
- Single-sector, multi-sector or full-track data transfers
- Automatic track seek with verification capability
- Diskette initialization/formatting capability
- Software-programmable step rate, head settling and engage times
- DMA or programmed data transfer
- Interrupt-driven or polled operation
- Automatic CRC checking and generation on read and write operations.
- 8-inch drives supported under FLP-80DOS and MITE-80 software; 5-inch drives under MITE-80
- Port addresses jumper-selectable to a block of eight anywhere in the address space
- 2.5 MHz operation (system clock)
- Provision for DMA daisy chain operation (simultaneous operation of multiple DMA devices requires on-board jumper and backplane modification)

MDX-FLP BOARD PHOTO

DESCRIPTION

The single MDX-FLP board provides all required controlling/formatting/interfaces logic between the STD-Z80 BUS and one to four floppy disk drives. The board is based upon an LSI controller chip and MK3883 DMA controller.

The MDX-FLP module is compatible with the following floppy disk drives.

- Siemens FDD 100-8, 200-8, 100C, 200C.
- Shugart Associates SA800, SA850, SA400, SA450.
- Pertec FD600, FD650, FD200, FD250.
- Memorex 550, 552.

and with any equivalent drive which utilizes the signals shown in Table 1. (All signals are TTL; directions are referenced to the board.)
FLOPPY DISC INTERFACE SIGNALS

Table 1

<table>
<thead>
<tr>
<th>Signal</th>
<th>Direction</th>
<th>MDX-FLP Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Select</td>
<td>Out</td>
<td>26,28,30,32</td>
</tr>
<tr>
<td>1,2,3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side Select</td>
<td>Out</td>
<td>14 and 16</td>
</tr>
<tr>
<td>Step</td>
<td>Out</td>
<td>36</td>
</tr>
<tr>
<td>Write Data</td>
<td>Out</td>
<td>38</td>
</tr>
<tr>
<td>Write Gate</td>
<td>Out</td>
<td>40</td>
</tr>
<tr>
<td>Direction</td>
<td>Out</td>
<td>34</td>
</tr>
<tr>
<td>Head Load</td>
<td>Out</td>
<td>18</td>
</tr>
<tr>
<td>Read Data</td>
<td>In</td>
<td>46</td>
</tr>
<tr>
<td>Index</td>
<td>In</td>
<td>24(5") or 20(8")</td>
</tr>
<tr>
<td>Track 0</td>
<td>In</td>
<td>42</td>
</tr>
<tr>
<td>Write Protect</td>
<td>In</td>
<td>44</td>
</tr>
<tr>
<td>Drive Ready</td>
<td>In</td>
<td>22</td>
</tr>
</tbody>
</table>

The MDX-FLP board will work with 5-inch or 8-inch single- or dual-sided, single-density drives; however, 5- and 8-inch drives may not be driven by the same board.

MICROPROCESSOR INTERFACE

Connector, signals, and pinouts are STD-Z80 BUS compatible. With the addition of jumper E16, the Bus Acknowledge Out Signal is presented at pin 40 (STATUS 0) for DMA daisy-chain operation.

PORT MAP

Jumpers E9 through E13 select the high-order port address on A7-A3 to which the board will respond. Thus the board uses a block of eight contiguous port addresses, which are arranged for maximum compatibility with FLP-80DOS. Port utilization is as shown in Table 2.

PORT UTILIZATION

Table 2

<table>
<thead>
<tr>
<th>A2</th>
<th>A1</th>
<th>A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

WORD SIZE

Data: 8 bits
I/O Addressing: 8 bits

I/O ADDRESSING

On-board programmable - See Table 2.

INTERRUPTS

Vectored interrupts generated. Interrupt vector programmable upon initialization. Daisy chained interrupt priority.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-FLP</td>
<td>250kHz</td>
<td>2.5MHz</td>
</tr>
</tbody>
</table>
STD BUS INTERFACE
Inputs One 74LS Load Max.
Outputs $I_{OH} = 3 \text{ mA min. at } 2.4 \text{ volts}$
 $I_{OH} = 24 \text{ mA min. at } 0.5 \text{ volts}$

POWER SUPPLY REQUIREMENTS
+5 volts ± 5% at 1.2A max.
+12 volts ± 5% at 10mA max.
-12 volts ± 5% at 4mA max.

OPERATING TEMPERATURE RANGE
0°C to 60°C

CARD DIMENSIONS
4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-FLP</td>
<td>Module with Operation Manual less mating connectors. 2.5MHz version</td>
<td>MK77652-0</td>
</tr>
<tr>
<td></td>
<td>MDX-FLP Operations Manual Only</td>
<td>MK79639</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>Drive Interface</td>
<td>50-pin</td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td></td>
<td>0.100 in. centers</td>
<td>Ansley 609-5000M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>w/o strain relief</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ansley 609-5001M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with strain relief</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Four 8-bit I/O ports with two handshake lines per port
- All I/O lines fully buffered
- I/O lines TTL-compatible with provision for termination resistor networks
- Jumper options for inverted or non-inverted handshake
- Two 8-bit ports capable of true bidirectional I/O
- Programmable In only, Out only, or Bidirectional
- Output data buffers selectable to provide inverted or non-inverted drive capability
- Interrupt-driven programmability
- Address strap-selectable
- 4 MHz option
- Fully buffered for MD Series expandability

DESCRIPTION

The parallel I/O controller (MDX-PIO) is a highly versatile unit designed to provide a variety of methods for inputting and outputting data from the MD Series microcomputer system. The system is designed around two Mostek MK3881 Z80-PIO parallel I/O controllers which give four independent 8-bit I/O ports with two handshake (data transfer) control lines per port. The Z80-PIO's are designated PIO1 and PIO2. Each has an I/O port pair designated A and B. Each port pair of each PIO have similar output circuitry.

All I/O lines are buffered and have provisions for termination resistors on board. All port lines are brought to two 26-pin connectors, two ports per connector.

Figure 1 illustrates in block diagram form the major functional elements of port pair A and B of PIO1. These elements can be defined as the resistor termination networks, data buffers, port configuration control, MK3881 PIO, and address decode and data bus buffers. Input and output from the ports are provided through J1, a 26-pin connector. This connector provides data paths for the two ports and their respective handshake signals.

One 14-pin socket is provided per port for resistor dual inline packages so that terminations may be placed on the data lines. A parallel termination is provided for each 8-bit port data line plus the input strobe (STB) handshake line. The MDX-PIO is normally shipped with 1K pullup terminators. In addition to the parallel termination resistors, the ready (RDY) handshake output line is series-terminated with a 47Ω resistor. This is used to damp and reduce reflections on this output line.

Port A and B data bus lines are buffered using quadruple non-inverting transceivers. The buffers can be configured using port configuration jumpers to provide fixed Input, fixed Output or Bidirectional (Port A only) signals. Further, the transceivers are configured such that port direction can be selected in 4-bit sections. The transceivers are mounted in sockets so that they can be easily replaced with their complements in order to achieve a polarity change if desired.
The handshake lines are also fully buffered. The port configuration control provides jumper options to independently control the polarity or "sense" of each handshake line so as to further ease the interfacing between the MDX-PIO and peripheral devices.

The MK3881 PIO is the heart of the module. This circuit is a fully-programmable two-port device which provides a wide range of configuration options. Any one of four distinct modes of operation can be selected for a port. They are byte output, byte input, byte bidirectional (Port A only), and bit control mode. The PIO also automatically generates all handshaking signals in all the above modes.

The PIO permits total interrupt control so that full usage of the Z80 interrupt capabilities can be utilized during I/O transfers. Also, the PIO can be programmed to interrupt the CPU on the occurrence of a specified status condition in a specific peripheral device. The PIO circuit will provide vectored interrupts and maintain the daisy chain priority interrupt logic compatible with the STD-Z80 BUS.

The address decoding, interface and bus management for the board are performed by the address decode and data bus circuit. Each MDX-PIO port has two addresses, one for Control and one for Data. A total of eight addresses are utilized per board. These addresses are defined in Table 1.

MDX-PIO ADDRESSES

Table 1

<table>
<thead>
<tr>
<th></th>
<th>PORT A</th>
<th>PORT B</th>
<th>PORT A</th>
<th>PORT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>XX08</td>
<td>XX28</td>
<td>XX48</td>
<td>XX68</td>
</tr>
<tr>
<td>Control</td>
<td>XX18</td>
<td>XX38</td>
<td>XX58</td>
<td>XX78</td>
</tr>
</tbody>
</table>

The XX symbols stand for the upper five bits of the I/O channel address. These bits are jumper-selectable on the MDX-PIO board in order to provide address-selectable fully-decoded ports.

The circuitry for the other two ports provided by PIO2 is identical to PIO1. The port configuration logic, buffers, termination and pin out on connector J2 is duplicated for PIO2. These two ports share the address-decode and data bus-buffer circuitry with PIO1. The only differences are in the address decoding as given in the port address table, and PIO2 is lower priority in the daisy-chain interrupt structure.

WORD SIZE

Data: 8 bits
I/O Addressing: 8 bits
I/O ADDRESSING

On-board programmable - See Table 1

I/O CAPACITY

Four parallel 8-bit ports. On-board jumper, selectable in 4-bit bytes as either In only, Out only, or Bidirectional (Port 1A or 2A only). Automatic handshake provided with each port.

I/O DRIVERS

Table 2 lists the pin-compatible I/O drivers which can be used in the MDX-PIO.

<table>
<thead>
<tr>
<th>Signals</th>
<th>Type</th>
<th>Output</th>
<th>Sink Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Ports 1A and 2A</td>
<td>*74LS244</td>
<td>Non-Inverting Tri-State Bidirectional</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>74LS241</td>
<td>Inverting Tri-State Bidirectional</td>
<td>24</td>
</tr>
<tr>
<td>I/O Ports 1B and 2B</td>
<td>*74LS243</td>
<td>Non-Inverting Tri-State Bidirectional</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>74LS242</td>
<td>Non-Inverting Tri-State Bidirectional</td>
<td>24</td>
</tr>
<tr>
<td>Handshake: RDY</td>
<td>74LS86</td>
<td>Inverting/Non-Inverting (strap selectable)</td>
<td>8</td>
</tr>
</tbody>
</table>

*These devices are supplied with the board. They may be exchanged with the other unit listed to provide the alternate signal polarity.

TERMINATORS

1k ohm resistors on all I/O port lines.

INTERRUPTS

Vectored interrupts generated. Interrupt vector programmable upon initialization. Daisy-chained interrupt priority. Selected bit channels can be masked out under program control.

SYSTEM INTERRUPT UNITS (SIU) = 2

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-PIO</td>
<td>250kHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>MDX-PIO-4</td>
<td>250kHz</td>
<td>4.0 MHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS Load max.
 Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
 $I_{OL} = 24mA$ min. at 0.5 Volts

OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+5 volts ± 5% at 1.1A max.

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.125 in. centers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>Parallel I/O</td>
<td>26-pin</td>
<td>FLAT RIBBON</td>
</tr>
<tr>
<td></td>
<td>0.100 in. centers</td>
<td>Winchester 609-2600M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISCRETE WIRES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester PGB26A (housing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester 100-70020S (contacts)</td>
</tr>
</tbody>
</table>
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-PIO</td>
<td>Module with Operation Manual less mating connectors (2.5MHz version).</td>
<td>MK77650-0</td>
</tr>
<tr>
<td>MDX-PIO-4</td>
<td>Module with Operation Manual less mating connectors (4.0 MHz version).</td>
<td>MK77650-4</td>
</tr>
<tr>
<td></td>
<td>MDX-PIO Operations Manual only</td>
<td>MK79606</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Two independent full-duplex channels
- Independent programmable Baud-rate clocks
- Asynchronous data rates 110 to 19.2k bits per second
- Receiver data registers quadruply-buffered
- Transmitter data registers double-buffered
- Asynchronous operation
- Binary synchronous operation
- HDLC or SDLC operation
- Both CRC-16 and CRC-CCITT (-0 and -1) hardware implemented
- Modem control
- Operates as DTE or DCE
- Serial input and output as either RS-232 or 20mA current loop
- Current loop optically isolated
- Current loop selectable for either active or passive mode
- Address programmable
- 4 MHz option

DESCRIPTION

The Serial Input/Output Module, MDX-SIO, is designed to be a multiprotocol asynchronous or synchronous I/O module for the STD-Z80 BUS. The module is designed around the Mostek MK3884 Z80-SIO which provides two full duplex, serial data channels. Each channel has an independent programmable baud-rate clock generator to increase module flexibility. The MDX-SIO is capable of handling asynchronous, synchronous, and synchronous bit-oriented protocols such as Bi-SYNC, SDLC, HDLC and virtually any other serial protocol. It can generate CRC codes in any synchronous mode and can be programmed by the CPU for any traditional asynchronous format. The serial input and output data are fully buffered and are provided at the connector as either 20mA current loop or RS-232-C levels. A modem control section is also provided for handshaking and status. The MDX-SIO module can be jumper-configured as a data terminal (DTE) or as a modem (DCE) in order to facilitate a variety of interface configurations.

Figure 1 is a block diagram of the MDX-SIO module. It consists of five main elements. They are the channel configuration headers, line drivers and receivers. MK3884 Z80-SIO, programmable baud-rate generators, and address decode and data bus buffers. Input and output to the board is provided via two 26-pin connectors. One connector is dedicated for each channel.

Several features are available as options that are selected via the channel configuration headers, which are used to select the orientation of the data communication interface and the mode of the 20mA current loop. The MDX-SIO can be selected to act as either a terminal or processor (Data
Terminal Equipment-DTE) or as the modem (Data Communications Equipment-DCE). The header allows reconfiguration of both data interchange and modem control signals. This allows increased flexibility necessary to link different hardware elements in OEM data-link systems and networks. The module is shipped from the factory wired as a DTE interface.

The MDX-SIO has different selectable options for the 20mA current loop. Receiver and transmitter functions can be reconfigured on the module to allow reorientation of these signals. Also, the receive and transmit circuits can be selected to function in either an active or passive mode. In the active mode, the MDX-SIO module provides the 20mA current source. In the passive mode, the module requires that the loop current be provided. The latter is the same mode as that of a Teletype.

An RS-232-C and 20mA current loop interface circuit is used to provide the necessary level shifting and signal conditioning between the MK3884 Z80-SIO and the connector. These line drivers and receivers provide the correct electrical signal levels, slew rate, and impedance for interfacing RS-232-C and 20mA current loop peripherals. Additionally, optical isolation is provided for both transmit and receive circuits in the 20mA current loop mode.

The Mostek MK3884 Z80-SIO is the central element of this module. It is a multifunction component designed to satisfy a wide variety of serial data communications requirements in microcomputer systems. Its basic role is that of a serial-to-parallel, parallel-to-serial converter/controller, but within that role it is configured by software programming so that its function can be optimized for a given serial data communications application. The MK3884 provides two independent full duplex channels, A and B.

Asynchronous operation (Channel A and B)
- 5, 6, 7, or 8 bits/character
- 1, 1½ or 2 stop bits
- Even, odd or no parity
- x1, x16, x32 and x64 clock modes
- Break generation and detection
- Parity, Overrun and Framing error detection

Binary Synchronous operation (Channel A only)
- One or two Sync characters in separate registers
- Automatic Sync character insertion
- CRC generation and checking

HDLC or SDLC operation (Channel A only)
- Automatic Zero Insertion and Deletion
- Automatic Flag Insertion
- Address Field Recognition
- I-Field Residue Handling
- Valid receive messages protected from overrun
- CRC Generation and Checking

The MK3884 also provides modem control inputs and outputs as well as daisy chain priority interrupt logic. Eight different interrupt vectors are generated by the SIO in response to various conditions affecting the data communications channel transmission and reception.
Address decoding, STD-Z80 BUS interface and bus management for the module are performed by the Address Decode and Data Bus circuit. The MDX-SIO contains command registers that are programmed to select the desired operational mode. The addressing scheme is as follows:

XXXXXX 00 Channel A Data
XXXXXX 01 Channel A Control Status

XXXXXX 10 Channel B Data
XXXXXX 11 Channel B Control Status

XXXXXX indicates the binary code necessary to represent which one of the 64 port addresses is selected by on-board strapping.

Each channel has an individual programmable baud-rate generator. The x1 multiplier on the Z80-S10 must be used in the synchronous modes. The x16, x32 or x64 Z80-S10 clock rate can be specified for asynchronous mode. Table 1 indicates the possible Baud rates available for both operation modes with the Z80-S10 Data Rate Multipliers.

Table 1

<table>
<thead>
<tr>
<th>BAUD RATE (HZ)</th>
<th>SYNCHRONOUS</th>
<th>ASYNCHRONOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>20mA</td>
<td>RS-232-C</td>
</tr>
<tr>
<td>Transmitted data</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>Received data</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>Data Terminal</td>
<td>Input/Output</td>
<td></td>
</tr>
<tr>
<td>Ready (DTR)</td>
<td>Input/Output</td>
<td></td>
</tr>
<tr>
<td>Request to Send(RTS)</td>
<td></td>
<td>Input/Output</td>
</tr>
<tr>
<td>Clear to Send (CTS)</td>
<td></td>
<td>Output/Input</td>
</tr>
<tr>
<td>Carrier Detect (CDET)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERIAL COMMUNICATION INTERFACE

Interrupts

Generates vectored interrupts to eight different locations corresponding to conditions within both channels. Interrupt vector location programmable. Daisy-chained priority hardware interrupt circuitry.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SIO-0</td>
<td>250kHz</td>
</tr>
<tr>
<td>MDX-SIO-4</td>
<td>250kHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
$I_{OL} = 24mA$ min. at 0.5 Volts

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+12 volts ± 5% at 72mA max.
-12 volts ± 5% at 46mA max.
+5 volts ± 5% at 650mA max.
CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5D5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>Serial I/O</td>
<td>26-pin</td>
<td>FLAT RIBBON</td>
</tr>
<tr>
<td></td>
<td>0.100 in.</td>
<td>Ansley 609-2600M</td>
</tr>
<tr>
<td></td>
<td>center</td>
<td>DISCRETE WIRES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester PGB26A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(housing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester 100-70020S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(contacts)</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SIO</td>
<td>Module less mating connectors with Operations Manual (2.5MHz version).</td>
<td>MK77651-0</td>
</tr>
<tr>
<td>MDX-SIO-4</td>
<td>Module with Operations Manual less mating connectors (4.0MHz version).</td>
<td>MK77651-4</td>
</tr>
<tr>
<td>MDX-SIO Operations Manual Only</td>
<td></td>
<td>MK79608</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Three memory sizes:
 - 8K x 8 (MDX-DRAM8)
 - 16K x 8 (MDX-DRAM16)
 - 32K x 8 (MDX-DRAM32)
- Selectable addressing on 4K boundaries
- 4MHz version available (MDX-DRAM-4)

DESCRIPTION

The MDX-DRAM is designed to be a RAM memory expansion board for the Mostek MD Series™ of Z80-based microcomputers. It is available in three memory capacities: 8K bytes (MDX-DRAM8), 16K bytes (MDX-DRAM16), and 32K bytes (MDX-DRAM32). Additionally, the MDX-DRAM16 and the MDX-DRAM32 are available in a 4MHz version. Thus, the designer can choose from the various options to tailor his add-on dynamic RAM directly to his system requirements.

The MDX-DRAM8 is designed using Mostek's MK4108, 8,192-bit dynamic RAM. The MDX-DRAM16 and MDX-DRAM32 utilize high-performance MK4116, 16,384-bit dynamic RAMs which allow 4MHz versions of these boards to be offered. No wait-state insertion circuitry is required on any of the RAM cards. Memory refresh signals are provided on the Z80 based MDX-CPU boards. Address selection is provided on all MDX-DRAM cards for positioning the 8K, 16K, or 32K of memory to start on any 4K boundary.
MDX-DRAM BLOCK DIAGRAM

MEMORY DECODE & BUFFER CONTROL

BUFFER

CONTROL

MEMORY ARRAY

MEMORY ARRAY

RAS
2.5 MHz
8Kx8 8—MK4108
16Kx8 16—MK4108
32Kx8 16—MK4116

CAS
4.0MHz
16Kx8 8—MK4116
32Kx8 16—MK4116

WRITE

A

DIN DOUT

ADDRESS BUS

ADDRESS LINES

CONTROL LINES

DATA BUS

REGULATOR

DATA

5V

MUX

BUFFER

MEMORY

ARRAY

2.5 MHz
8Kx8 8—MK4108
16Kx8 16—MK4108
32Kx8 16—MK4116

4.0MHz
16Kx8 8—MK4116
32Kx8 16—MK4116

ADDRESS SELECTION

Selection of 8K, 16K, or 32K contiguous memory blocks to reside at any 4K boundary.

ACCESS TIMES

SYSTEM INTERRUPT UNITS (SIU) = 0

SYSTEM CLOCK

MEMORY

MEMORY

Cycle

Access

Times

Times

System Clock

DIM-DRAM 2.5MHz
MDX-DRAM-4 4.0MHz

350ns max.
200ns max.

465ns min.
325ns min.

REGULATOR

DATA

5V

MUX

BUFFER

MEMORY

ARRAY

2.5 MHz
8Kx8 8—MK4108
16Kx8 16—MK4108
32Kx8 16—MK4116

4.0MHz
16Kx8 8—MK4116
32Kx8 16—MK4116

ADDRESS SELECTION

Selection of 8K, 16K, or 32K contiguous memory blocks to reside at any 4K boundary.

WORD SIZE

8 Bits

MEMORY SIZE

MDX-DRAM8 - 8,192 bytes
MDX-DRAM16 - 16,384 bytes
MDX-DRAM32 - 32,768 bytes

ACCESS TIMES

SYSTEM INTERRUPT UNITS (SIU) = 0

SYSTEM CLOCK

MIN

MDX-DRAM 1.25MHz
MDX-DRAM-4 1.25MHz

MAX

2.5MHz
4.0MHz

VI-2
STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: I_{OH} = -3mA min. at 2.4 volts.
I_{OL} = 24mA min. at 0.5 volts

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+5V ± 5% at 0.6A max.
+12V ± 5% at 0.25A max.
-12V ± 5% at 0.03A max.

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (0.16 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin, 0.125 in centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/ICE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-DRAM8</td>
<td>Module with Operation Manual less mating connectors 8K Bytes (4108's) 2.5MHz</td>
<td>MK77750-0</td>
</tr>
<tr>
<td>MDX-DRAM16</td>
<td>16K Bytes (4116's) 2.5 MHz</td>
<td>MK77754-0</td>
</tr>
<tr>
<td>MDX-DRAM32</td>
<td>32K Bytes (4116's) 2.5MHz</td>
<td>MK77752-0</td>
</tr>
<tr>
<td>MDX-DRAM16-4</td>
<td>16K Bytes (4116's) 4.0MHz</td>
<td>MK77754-4</td>
</tr>
<tr>
<td>MDX-DRAM32-4</td>
<td>32K Bytes (4116's) 4.0MHz</td>
<td>MK77752-4</td>
</tr>
<tr>
<td>MDX-DRAM Operations Manual Only</td>
<td>MK79624</td>
<td></td>
</tr>
</tbody>
</table>
FEATURES

- STD and STD-Z80 BUS compatible
- Accepts the following industry standard EPROMs:
 - 2758 (1K x 8)
 - 2716 (2K x 8)
 - 2732 (4K x 8)
- Eight EPROM sockets for maximum storage of:
 - 8K x 8 using 2758’s
 - 16K x 8 using 2716’s
 - 32K x 8 using 2732’s
- Wait-state generator for 4MHz operation
- Selectable addressing on 4K boundaries
- Operates at 2.5MHz or 4.0MHz system speed
- Single +5 Volt supply
- 8-2716 EPROM’s supplied

DESCRIPTION

The MDX-EPROM is designed to be an EPROM memory expansion board for the Mostek MD Series™ of Z80-based microcomputers. The MDX-EPROM accepts the following EPROMs: 2758 (1K x 8), 2716 (2K x 8) and 2732 (4K x 8) which gives a maximum storage capacity of 8K, 16K, or 32K bytes respectively.

Starting address selection is provided for positioning the MDX-EPROM on any 4K boundary. A wait-state generator is also provided for optional 4MHz operation.
MDX-EPROM BLOCK DIAGRAM

MEMORY DECODE & CONTROL LOGIC

MEMORY ARRAY

CONTROL BUS BUFFER

ADDRESS BUS BUFFER

DATA BUS BUFFER

MEMORY ARRAY

MEMORY SIZE

8K x 8 using eight 2758’s
16K x 8 using eight 2716’s*
32K x 8 using eight 2732’s

*Shipped configuration

ADDRESS SELECTION

4K boundaries

WORD SIZE

8 Bits

MEMORY SIZE

8K x 8 using eight 2758’s
16K x 8 using eight 2716’s*
32K x 8 using eight 2732’s

*Shipped configuration

REQUIRED ACCESS TIME

<table>
<thead>
<tr>
<th>Memory Time</th>
<th>Min Access Time</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2758, 2716, 2732</td>
<td>450ns*</td>
<td>450ns</td>
</tr>
</tbody>
</table>

*One wait state must be added for 4MHz operation.

SYSTEM INTERRUPT UNITS (SIU) = 0

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
$|I_{OL}| = 24mA$ min. at 0.5 Volts
OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+ 5 Volts ± 5% at 0.45A*

*Does not include EPROMs. Add 100 mA for each EPROM.

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long

0.48 in. (1.22 cm) maximum profile thickness

0.062 in. (0.16 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-Pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-EPROM</td>
<td>Module with Operation Manual less mating connectors</td>
<td>MK77758</td>
</tr>
<tr>
<td></td>
<td>Includes eight 2716 EPROMs.</td>
<td></td>
</tr>
<tr>
<td>MDX-EPROM</td>
<td>Operations Manual only</td>
<td>MK79671</td>
</tr>
</tbody>
</table>
FEATURES

- STD and STD-Z80 BUS compatible
- 10K x 8 EPROM/ROM (2716’s not included)
- Selectable addressing on 2K boundaries
- Serial I/O channel:
 - RS - 232 and 20 mA interface
 - Reader-step control for Teletypes
 - Baud-rate generator (110-19200 Baud)
- 4MHz version available (MDX-EPROM/UART-4)
- Strap-selectable address

DESCRIPTION

The MDX-EPROM/UART is one of Mostek’s complete line of STD-Z80 BUS-compatible Z80 microcomputer modules.

Designed as a universal EPROM add-on module for the STD-Z80 BUS, the MDX-EPROM/UART provides the system designer with sockets to contain up to 10K x 8 of EPROM memory (5-2716’s) as shown in the Block Diagram.

The EPROM memories can be positioned to start on any 2K boundary within a 16K block of memory via a strapping option provided on the MDX-EPROM/UART.

Included on-board the MDX-EPROM/UART is a fully buffered asynchronous I/O port with a Teletype reader-step control. The address of the serial port is strap-selectable to one of 64 locations via six jumpers. A full duplex UART is used to receive and transmit data at the serial port. Operation and UART options are under software control. Once the unit has been programmed, no further changes are necessary unless there is a modification of the serial data format. Features of the UART include:
 - Full-duplex operation
 - Start-bit verification
 - Data word size variable from 5 to 8 bits
 - One or two stop-bit selection
 - Odd, even, or no parity option
 - One-word buffering on both transmit and receive

The MDX-EPROM/UART is also available in a 4MHz version. Circuitry is provided to force one wait-state each time on-board EPROMs or the UART are accessed.
MDX-EPROM/UART BLOCK DIAGRAM

WORD SIZE
8 Bits for PROM
5 to 8 Bits for Serial I/O

MEMORY SIZE
10K bytes of 2716 memory
(2716's not included)

MEMORY ADDRESSING
ROM/EPROM
2K blocks jumper-selectable for any 2K boundary within a given 16K block of the Z80 memory map.

MEMORY SPEED REQUIRED

<table>
<thead>
<tr>
<th>Memory</th>
<th>Access Time</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2716*</td>
<td>450ns</td>
<td>450ns</td>
</tr>
</tbody>
</table>

* Single 5-Volt type required

I/O ADDRESSING
On-board Serial I/O Port
- Control Port XXXXXXX01
- Data Port XXXXXXX00
- Modem and Reader Step Control XXXXXXX10

I/O TRANSFER RATE
110, 300, 600, 1200, 2400, 4800, 9600, 19200 Baud

SERIAL COMMUNICATIONS INTERFACE

<table>
<thead>
<tr>
<th>Signal</th>
<th>Buffer For</th>
<th>RS-232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted data</td>
<td>Output</td>
<td>Output</td>
</tr>
<tr>
<td>Received data</td>
<td>Input</td>
<td>Input</td>
</tr>
<tr>
<td>Reader Step Relay (RSR)</td>
<td>Output</td>
<td>(40mA)</td>
</tr>
<tr>
<td>Data Terminal Ready (DTR)</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Request to Send (RTS)</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Carrier Detect (CDET)</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Clear to Send (CTS)</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Data Set Ready (DSR)</td>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 0

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-EPROM/UART</td>
<td>250kHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>MDX-EPROM/UART-4</td>
<td>250kHz</td>
<td>4.0 MHz</td>
</tr>
</tbody>
</table>
STD BUS INTERFACE

Inputs: One 74LS Load max.
Outputs: $I_{OH} = -3\text{mA min. at 2.4 Volts}$
$\quad I_{OL} = 24\text{mA min. at 0.5 Volts}$

OPERATING TEMPERATURE RANGE

0°C to +60°C

POWER SUPPLY REQUIREMENTS

+12 Volts ± 5% at 50 mA max.
-12 Volts ± 5% at 35 mA max.
+ 5 Volts ± 5% at 1.2 A max.

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-EPROM/UART</td>
<td>Module with Operation Manual less EPROMs and mating connectors (2.5MHz version).</td>
<td>MK77753-0</td>
</tr>
<tr>
<td>MDX-EPROM/UART-4</td>
<td>Module with Operation Manual less EPROMs and mating connectors (4.0 MHz version).</td>
<td>MK77753-4</td>
</tr>
<tr>
<td></td>
<td>MDX-EPROM/UART Operations Manual Only</td>
<td>MK79604</td>
</tr>
</tbody>
</table>
FEATURES

- STD and STD-Z80 BUS compatible
- Three memory sizes:
 - 4K x 8 (MDX-SRAM4)
 - 8K x 8 (MDX-SRAM8)
- Selectable starting address on 4K boundaries
- 2.5 MHz and 4.0 MHz compatible
- Single +5 Volt supply

DESCRIPTION

The MDX-SRAM is designed to be a static RAM Memory expansion board for the Mostek MD Series™ of Z80-based microcomputers. It is available in two memory capacities: 4K bytes (MDX-SRAM4) and 8K bytes (MDX-SRAM8). Additionally, all MDX-SRAM boards are 2.5MHz and 4.0MHz compatible. Thus, the designer can choose from two options available and tailor the add-on static RAM directly to the system requirements.

The MDX-SRAM is designed using the state-of-art MK4118 (1K x 8) static RAM memory devices. No wait states are necessary for operating the MDX-SRAM at 2.5MHz or 4.0MHz. Address selection is provided on all MDX-SRAM cards for positioning the 4K or 8K of memory to start on any 4K boundary.
MDX-SRAM BLOCK DIAGRAM

MEMORY DECODE & CONTROL LOGIC

MEMORY ARRAY

CONTROL BUS BUFFER

ADDRESS BUS BUFFER

DATA BUS BUFFER

STD BUS OR STD-Z80 BUS

WORD SIZE

8 Bits

MEMORY SIZE

MDX-SRAM4 - 4,096 Bytes
MDX-SRAM8 - 8,192 Bytes

ADDRESS SELECTION

Selection of 4K or 8K contiguous memory blocks to begin on any 4K boundary.

TIMING

<table>
<thead>
<tr>
<th>Memory Access</th>
<th>Memory Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SRAM</td>
<td>250ns max.</td>
</tr>
<tr>
<td></td>
<td>250ns min.</td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 0

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts
$I_{OL} = 24mA$ min. at 0.5 Volts

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

<table>
<thead>
<tr>
<th>Boards</th>
<th>Current at +5V ± 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SRAM4</td>
<td>0.8A max</td>
</tr>
<tr>
<td>MDX-SRAM8</td>
<td>1.2A max</td>
</tr>
</tbody>
</table>
CARD DIMENSIONS
4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (0.16 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>SOLDER LUG Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SRAM4</td>
<td>4K Bytes (4118's) module with operation manual less mating connectors</td>
<td>MK77755</td>
</tr>
<tr>
<td>MDX-SRAM8</td>
<td>8K Bytes (4118's) module with operation manual less mating connectors</td>
<td>MK77756</td>
</tr>
<tr>
<td></td>
<td>MDX-SRAM Operations Manual Only</td>
<td>MK79673</td>
</tr>
</tbody>
</table>
FEATURES

- STD and STD-Z80 BUS compatible
- Can be strapped to accept the following industry-standard memory devices:

EPROM	**STATIC RAM**	**ROM**
 2758 (1K x 8) | MK4118 (1K x 8) |
 2716 (2K x 8) | MK4802 (2K x 8) | MK34000 (2K x 8)
 2732 (4K x 8) |
- Memories can be mixed to form a combination memory board
- Operates at 2.5MHz and 4.0MHz system clocks speeds
- Wait-state generator provided
- Single +5 Volt supply

DESCRIPTION

The MDX-UMC is one of Mostek’s complete line of STD-Z80 BUS-compatible microcomputer modules.

Designed as a universal memory card for the STD-Z80 BUS, the MDX-UMC provides the user with the capability of configuring the board to meet the system requirement of ROM/EPROM and/or RAM. By the use of strapping options, the user is able to configure pairs of sockets for ROM/EPROM/RAM to form a combination memory board.

Other MDX-UMC features include 4K boundary addressing and an optional wait-state generator to accommodate slower memories for 4MHz system clock operations.
MDX-UMC BLOCK DIAGRAM

MEMORY DECODE & CONTROL LOGIC

MEMORY ARRAY DEVICES*

EPROM
2758
2716
2732

RAM
MK4118
MK4802

ROM
MK34000

*MEMORY DEVICES CAN BE MIXED TO FORM A COMBINATION MEMORY BOARD

CONTROL BUS BUFFER

ADDRESS BUS BUFFER

DATA BUS BUFFER

MEMRQ, RD
WR, CLOCK

WAITRO

INPUTS:

One 74LS load max.

Outputs:

$\text{I}_{OH} = -3\text{mA min. at 2.4 Volts}$

$\text{I}_{OL} = 24\text{mA min. at 0.5 Volts}$

WORD SIZE

8 Bits

MEMORY SIZE

8 sockets

Sockets are strapped in pairs to accommodate the following memories.

EPROM
2758
2716
2732

STATIC RAM
MK4118
MK4802

ROM
MK34000

4K boundaries

SYSTEM INTERRUPT UNITS (SIU) = 0

OPERATING TEMPERATURES

0°C to 60°C

POWER REQUIREMENTS

+5V ± 5% at 0.450 A max.

Does not include power for memories

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long

0.48 in. (1.22cm) maximum profile thickness

0.062 in. (0.16cm) printed-circuit-board thickness

STD-BUS INTERFACE

VI-18
CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-UMC</td>
<td>Module with operation manual less mating connectors</td>
<td>MK77759</td>
</tr>
<tr>
<td></td>
<td>MDX-UMC Operation Manual Only</td>
<td>MK79667</td>
</tr>
</tbody>
</table>
System Interrupt Units

<table>
<thead>
<tr>
<th>CARD</th>
<th>SIU's</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-CPU1</td>
<td>1</td>
</tr>
<tr>
<td>MDX-CPU2</td>
<td>1</td>
</tr>
<tr>
<td>MDX-DRAM8/16/32</td>
<td>0</td>
</tr>
<tr>
<td>MDX-EPROM/UART</td>
<td>0</td>
</tr>
<tr>
<td>MDX-DEBUG</td>
<td>0</td>
</tr>
<tr>
<td>MDX-PIO</td>
<td>2</td>
</tr>
<tr>
<td>MDX-SIO</td>
<td>1</td>
</tr>
<tr>
<td>MDX-SST</td>
<td>0</td>
</tr>
<tr>
<td>MDX-FLP</td>
<td>1</td>
</tr>
<tr>
<td>MDX-MATH</td>
<td>1</td>
</tr>
<tr>
<td>MDX-A/D8</td>
<td>1</td>
</tr>
<tr>
<td>MDX-A10</td>
<td>0</td>
</tr>
<tr>
<td>MDX-A/D12</td>
<td>1</td>
</tr>
<tr>
<td>MDX-D/A8</td>
<td>0</td>
</tr>
<tr>
<td>MDX-D/A12</td>
<td>0</td>
</tr>
<tr>
<td>MDX-UMC</td>
<td>0</td>
</tr>
<tr>
<td>MDX-SRAM4/8/16</td>
<td>0</td>
</tr>
<tr>
<td>MDX-EPROM</td>
<td>0</td>
</tr>
<tr>
<td>MDX-INT</td>
<td>1</td>
</tr>
<tr>
<td>MDX-SC/D</td>
<td>1</td>
</tr>
</tbody>
</table>
HARDWARE FEATURES

- STD-Z80 BUS compatible
- 4 MHz version available
- Serial I/O Channel
- 10K bytes of ROM contain the following firmware: DDT-80, ASMB-80

DEBUGGER FEATURES

- Z80 Operating System with debug capability
- Channelized I/O for versatility
- I/O peripheral drivers supplied
- ROM-based

TEXT EDITOR FEATURES

- Input and modification of ASCII Text
- Line and character editing
- Alternate command buffers for pseudo-macro command capability
- ROM-based

ASSEMBLER FEATURES

- Assembles all Z80 mnemonics
- Object output in industry-standard hexadecimal format extended for Relocatable and Linkable Programs
- Over fifteen pseudo-ops
- Two-pass assembly
- ROM-based

LINKING LOADER FEATURES

- Loads into memory both relocatable and non-relocatable object output of the assembler
- Loads Relocatable modules anywhere in memory
- Automatically provides linkage of global symbols between object modules as they are loaded
- Prints system load map
- ROM-based

HARDWARE DESCRIPTION

The MDX-DEBUG module has sockets for 10K bytes of masked ROM that are filled with a Z80 firmware package (DDT-80/ASMB-80). This module has a STD-Z80 BUS interface and is available in both 2.5 MHz and 4.0 MHz version. Included on-board is a fully buffered asynchronous I/O port capable of 110-19200 Baud rates. Serial data interfaces are available for 20 mA current loop (with reader-step control) and RS-232. The on-board Baud Rate Generator is selectable to all common Baud rates from 110 to 19,200 Baud. The address of the serial port is selectable via 6 on-board jumpers.

DEBUGGER DESCRIPTION

DDT-80 is the Operating System for the MDX-DEBUG Module, residing in a 2K ROM (MK34000 Series) on the module itself. It provides the necessary tools and techniques to operate the system, i.e., to efficiently and conveniently perform the tasks necessary to develop microcomputer software. DDT-80 is designed to support the user from initial design through production testing. It allows the user to display and update memory, registers, and ports, load and dump object files, set breakpoints, copy blocks of memory, and execute programs.
DDT-80 COMMAND SUMMARY

M s - Display and/or update the contents of memory location s.
M s, f - Tabulate the contents to memory locations s through f.
P s - Display and/or update the content of I/O ports.
D s, f - Dump the contents of memory locations s through f in a format suitable to be read by the L command.
L - Load into memory, data which is in the appropriate format.
E s - Transfer control from DDT-80 to a user's program starting at location s.
H - Perform 16-bit hexadecimal addition and/or subtraction.
C s, f, d - Copy the contents of memory locations s through f to another location in memory starting at location d.
B s - Insert a breakpoint in a user's program (must be in RAM) at location s which transfers control back to DDT-80. This allows the user to intercept his program at a specific point (location s) and examine memory and CPU registers to determine if this program is working correctly.
Rx - Display the contents of the user registers.

The s, f, and d represent start, finish, and destination operands required for each command.

MEMORY, PORT AND REGISTER COMMANDS (M, P, R)

The M, P, and R commands provide the means for displaying the contents of specified memory locations, port addresses, or CPU registers. The M and P commands sequentially access memory locations or ports and display their contents. The user has the option of updating the content of the memory location or port. (Note some ports are output only and their contents cannot be displayed). The M command also gives the user access to the CPU registers through an area in RAM called the Register Map (discussed in the Execute and Breakpoint section below).

The M and R commands are used to tabulate blocks of memory locations (M) or the CPU registers (R). The M command will accept two operands, the starting and ending address of the block to be tabulated. The R command will accept either no operand or one. If no operand is specified, the CPU registers will be displayed without a heading. If an operand is specified, then a heading which labels the registers' contents will be displayed as well.

EXECUTE AND BREAKPOINT (E, B)

The E command is used to execute all programs, including aids such as the Assembler. The B command is used to set a breakpoint to exit from a program at some predetermined location for debugging purposes. At the instant of a breakpoint exit, the contents of all CPU registers are saved in a designated area of RAM called the Register Map. In the
Register Map, the register contents may be examined or mapped using the M command and a predefined mnemonic (or absolute address) of the storage location for that register (example: `PC `, `A `, ..., `SP`). The Register Map is also used to initialize the CPU registers whenever execution is initiated or resumed. Thus the E and B commands can be used together to initialize, execute, and examine the results of individual program segments.

The B command gives the user the option of having all CPU registers displayed when the breakpoint is encountered. This is done by entering a second operand to the B command. Otherwise, DDT-80 defaults to displaying the PC and AF registers. When all CPU registers are displayed, the format is the same as for the R command previously discussed.

LOAD, DUMP, AND COPY (L, D, C)

The L and D commands load and dump object files through the object I/O channel in standard Hex format. Checksums are used for error detection, and the addresses of questionable blocks are typed automatically while loading.

The C command will copy the contents of the memory block specified to another block of memory. There are no restrictions on the direction of the copy or on whether the blocks overlap.

HEXADECIMAL ARITHMETIC (H)

The H command is a dummy command used to allow hexadecimal addition and subtraction for expression evaluation without performing any other operation.

DDT-80 I/O CAPABILITIES

DDT-80 specifies I/O channels, designated 'Console', 'Object', and 'Source', to which any suitable devices may be assigned. The Channel Assignment Table is located in RAM where it may be examined or modified using the M command. The table addresses correspond to the channel's table address to correspond to the new peripheral driver routines. A set of peripheral driver routines is supplied and listed below. This scheme also allows the user to write a driver routine for his own peripheral, load it into memory, and easily configure that peripheral into the system.

DDT-80 I/O PERIPHERAL DRIVERS

1. A serial input driver (usually a keyboard).
2. A serial output driver (usually a CRT or teletype typehead).
3. A serial input driver which sends out a reader-step signal (usually a teletype reader).
4. A serial output driver which forces a delay after a carriage return (usually a Silent 700 typehead).
5. A parallel input driver (usually for high-speed paper tape input).
6. A parallel output driver (usually for high-speed paper tape output).
7. A parallel output driver (usually for a line printer).

TEXT EDITOR DESCRIPTION

The Text Editor permits random-access editing of ASCII character strings. It can be used as a line or character-oriented editor. Individual characters may be located by position or context. The Editor works on blocks of characters which are typically read into memory from magnetic tape or paper tape. Each edited block can be output to magnetic tape or paper tape after editing is completed. While the primary application for the Text Editor is in editing assembly language source statements, it may be applied to any ASCII text delimited by "carriage returns".

The Editor has a macro command processing option. Up to two sets of commands may be stored and processed at any time during the editing process.

All I/O is done via the DDT-80 channels. The Editor can be used with the ASMB-80 Assembler and Loader to edit, assemble, and load programs in memory without the need for external media for intermediate storage.

The following commands are recognized by the Text Editor:

- `An` - Advance record pointer n records
- `Bn` - Backup record pointer n records
- `Cn dS1dS2d` - Change string S1 to string S2 for n occurrences
- `Dn` - Delete next n records
- `E` - Exchange current record with records to be inserted
- `I` - Insert records
- `Ln` - Go to line number n
- `Mn` - Enter command buffers (pseudo-macro)
- `N` - Print top, bottom, and current line number
- `Pn` - Punch n records from buffer
- `R` - Read source records into buffer
- `Sn dS1d` - Search for nth occurrence of string S1

ASSEMBLER DESCRIPTION

The Assembler reads Z80 source mnemonics and pseudo-ops and outputs an assembly listing and object code. The assembly listing shows address, machine code, statement number, and source statement. The object code is in industry-standard hexadecimal format modified for relocatable, linkable assemblies.
The Assembler supports conditional assemblies, global symbols, relocatable programs, and a printed symbol table. It can assemble any length program limited only by a symbol table size which is user-selectable. Expressions involving addition and subtraction are allowed. A global symbol is categorized as “internal” if it appears as a label in the program; otherwise it is an “external” symbol. The printed symbol table shows which symbols are internal and which are external. The Assembler allows the user to select relocatable or non-relocatable assembly via the “PSECT” pseudo-op. Relocation records are placed in the object output for relocatable assemblies (the Mostek object format is defined below). The Assembler can be run as a single-pass assembler or as a learning tool. (In this mode, global symbols and forward references are not allowed.)

The following pseudo-ops are recognized by the Assembler:

- ORG - program origin
- EQU - equate label
- DEFL - define label
- DEFM - define message
- DEFB - define byte
- DEFW - define word
- DEFS - define storage
- END - end statement
- NAME - program name definition
- PSECT - program section definition
- GLOBAL - global symbol definition
- Supports the following assembler pseudo-ops
- EJECT - eject a page of listing
- TITLE - place heading at top of each page
- LIST - turn listing on
- NLIST - turn listing off

RELOCATING LINKING LOADER DESCRIPTION

The Relocating Linking Loader provides state-of-the-art capability for loading programs into memory by allowing loading and linking of any number of relocatable and non-relocatable object modules. Non-relocatable modules are always loaded at their starting address as defined by the ORG pseudo-op during assembly. Relocatable object modules can be positioned anywhere in memory at an offset address.

The loader automatically links any relocator global symbols which are used to provide communication or linkage between program modules. As object programs are loaded, a table containing global symbol references and definitions is built up. At the end of each module, the loader resolves all references to global symbols which are defined by either the current or a previously loaded module. It also prints on the console device the number of defined global symbols that have been referenced. The symbol table can be printed to list all global symbols and their load addresses. The number of object modules which can be loaded by the Loader is limited only by the amount of RAM available for the modules and the symbol table. Space for the symbol table is allocated dynamically downward in memory from either the top of memory or from a specified address entered as an operand of the load command.

All I/O is done via the DDT-80 channels. Assemblies can be done from source statements stored in memory (by the Editor). The object output can be directed to a memory buffer rather than to an external device. Thus, assembly and loading can be done without external storage media.

The Loader prints the beginning and ending address of each module as it is loaded. The transfer address as defined by the END pseudo-ops is printed for the first module loaded. The Loader execute command (E) can be used to automatically start execution at the transfer address.

The Loader Commands are the following:

- L offset - load object module at address “off-set” plus program origin address
- E - execute loaded program at transfer address of first module
- T - print global symbol table

MOSTEK OBJECT OUTPUT DEFINITION

Each record of an object module begins with a delimiter (colon or dollar sign) and ends with carriage return and line feed. A colon (:) is used for data records and the end-of-file record. A dollar sign ($) is used for records containing relocation information and linking information. All information is in ASCII. Each record is identified by “type”. The type is determined by the 8th and 9th bytes of the record which can take the following values:

- 00 - data
- 01 - end-of-file
- 02 - internal symbol
- 03 - external symbol
- 04 - relocation information
- 05 - module definition
OBJECT MODULE TYPES

<table>
<thead>
<tr>
<th>RECORD TYPE</th>
<th># OF BINARY DATA BYTES</th>
<th>START ADDRESS OF DATA</th>
<th>DATA</th>
<th>CHECK SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0 0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0 0</td>
<td>0 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INTERNAL SYMBOL NAME</td>
<td>0 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EXTERNAL SYMBOL NAME</td>
<td>0 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td># OF BINARY DATA BYTES</td>
<td>0 0 0 0 0 0 4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MODULE NAME</td>
<td>0 5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Check Sum is negative of the binary sum of all bytes except delimiter and carriage return/line feed.
2. Link Address points to last address in the data which uses the external symbol. This starts a backward link list through the data records for that external symbol. The list terminates at OFFFFFH.
3. The flags are one binary byte. Bit 0 is defined as:
 - 0 - absolute module
 - 1 - relocatable module
4. Maximum of 64 ASCII bytes.

WORD SIZE
- 8 bits for PROM
- 5 to 8 bits for serial I/O

MEMORY SIZE
- 10K bytes of firmware

MEMORY ADDRESSING
- 2K blocks jumper-selectable for any 2K boundary within a given 16K block of the Z80 memory map. MDX-DEBUG has ROMS strapped every 2K beginning at C0000H.

I/O ADDRESSING
- On board Serial I/O Port
- Control Port: XXXXXXX01
- Data Port: XXXXXXX00
- Module and Reader Step Control Port: XXXXXXX10
- XXXXXXX represents 6 strap-selectable address bits.

I/O TRANSFER RATE
- 110, 300, 600, 1200, 2400, 4800, 9600, 19200 BAUD

SERIAL COMMUNICATIONS INTERFACE

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>BUFFERED FOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted data</td>
<td>Output</td>
</tr>
<tr>
<td>Received data</td>
<td>Input</td>
</tr>
<tr>
<td>Data Terminal Ready (DTR)</td>
<td>Input</td>
</tr>
<tr>
<td>Request to Send (RTS)</td>
<td>Input</td>
</tr>
<tr>
<td>Carrier Detect (CDT)</td>
<td>Output</td>
</tr>
<tr>
<td>Clear to Send (CTS)</td>
<td>Output</td>
</tr>
<tr>
<td>Data Set Ready (DSR)</td>
<td>Output</td>
</tr>
<tr>
<td>Reader Step relay (RS)</td>
<td>Output (40 mA)</td>
</tr>
</tbody>
</table>

SYSTEM CLOCK
- MDX-DEBUG
- MDX-DEBUG-4

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 MHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>1.25 MHz</td>
<td>4.0 MHz</td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 0
STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: \(I_{OH} = -3 \text{ mA min. at 2.4 Volts} \)
\(I_{OL} = 24 \text{ mA min. at 0.5 Volts} \)

OPERATING TEMPERATURE

0°C to +60°C

POWER SUPPLY REQUIREMENT

+12 Volts ± 5% at 50 mA max.
-12 Volts ± 5% at 35 mA max.
+5 Volts ± 5% at 1.2 A max.

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (0.16 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDIER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

Serial I/O

26-pin
0.1 in. grid

FLAT RIBBON
Ansley 609-2600M

DISCRETE WIRES
Winchester
PGB26A
(housing)
Winchester
100-70020S
(contacts)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-DEBUG</td>
<td>Module with 10K bytes of firmware and Operations Manual. No mating connectors. 2.5 MHz version.</td>
<td>MK77950-0</td>
</tr>
<tr>
<td>MDX-DEBUG-4</td>
<td>Module with 10K bytes of firmware and Operations Manual. No mating connectors. 4.0 MHz version</td>
<td>MK77950-4</td>
</tr>
<tr>
<td></td>
<td>MDX-DEBUG Operations Manual only.</td>
<td>MK79611</td>
</tr>
<tr>
<td></td>
<td>Program Source Listing of 10K byte firmware package (DDT/ASMB-80) including comments and flow charts. (Available free with purchase of either MDX-DEBUG Module.)</td>
<td>MK78536 and MK78534</td>
</tr>
</tbody>
</table>

* The DDT-80 and ASMB-80 listings are available directly from Mostek by filling out a copy of the Software Licensing Agreement and returning it with the appropriate payment of Customer Purchase Order to:

Mostek Corporation
Microcomputer Systems Div.
1215 West Crosby Road
Carrollton, Texas 75006
STANDARD SOFTWARE LICENSING AGREEMENT

All Mostek Corporation products are sold on condition that the Purchaser agrees to the following terms:

1. The Purchaser agrees not to sell, provide, give away, or otherwise make available to any unauthorized persons, all or any part of, the Mostek software products listed below; including, but not restricted to: object code, source code and program listings.

2. The Purchaser may at any time demonstrate the normal operation of the Mostek software product to any person.

3. All software designed, developed and generated independently of, and not based on, Mostek’s software by purchaser shall become the sole property of purchaser and shall be excluded from the provisions of this Agreement. Mostek’s software which is modified with the written permission of Mostek and which is modified to such an extent that Mostek agrees that it is not recognizable as Mostek’s software shall become the sole property of purchaser.

4. Purchaser shall be notified by Mostek of all updates and modifications made by Mostek for a one-year period after purchase of said Mostek software product. Updated and/or modified software and manuals will be supplied at the current cataloged prices.

5. In no event will Mostek be held liable for any loss, expense or damage, of any kind whatsoever, direct or indirect, regardless of whether such arises out of the law of torts or contracts, or Mostek’s negligence, including incidental damages, consequential damages and lost profits, arising out of or connected in any manner with any of Mostek’s software products described below.

6. MOSTEK MAKES NO WARRANTIES OF ANY KIND, WHETHER STATUTORY, WRITTEN, ORAL, EXPRESSED OR IMPLIED (INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY AND WARRANTIES ARISING FROM COURSE OF DEALING OR USAGE OF TRADE) WITH RESPECT TO THE SOFTWARE DESCRIBED BELOW.

The Following Software Products Subject to this Agreement:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Description</th>
<th>Price*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ship To: ___________________________ Bill To: ___________________________

Method of Shipment: __________________________

Customer P.O. Number: __________________________

Agreed To:

PURCHASER
By: ___________________________
Title: ___________________________
Date: ___________________________

MOSTEK CORPORATION
By: ___________________________
Title: ___________________________
Date: ___________________________

* Prices Subject to Change Without Notice
FEATURES

- STD-Z80 BUS compatible
- User-programmable CTC provides:
 - Four external vectored interrupts
 - Four cascadable counter/timer channels
 - any combination of the above
- Z80 Daisy Chain Interrupt Expansion
 - Allows up to 40 interrupt devices
 - User selectable expansion of System Interrupt Units (SIU)
 - Required for systems over five SIU’s
- Nonmaskable Interrupt Input
- All input/output signals buffered
- 4MHz compatible (14, 24, 34, SIU)
- +5 Volt operation only

DESCRIPTION

The Interrupt-Timer Expansion Module, MDX-INT, is designed to be a versatile multimode unit. It provides external interrupt expansion of up to four lines, a non-maskable interrupt input, up to four cascadable timer channels, and internal interrupt expansion capability of up to 40 System Interrupt Units. All interrupts are Z80 compatible with full Mode 2 interrupt capability.

The MDX-INT permits up to four external interrupt inputs. This is possible by programming the MK3882 Counter Timer to function as an interrupt controller. When programming the CTC, the selected input channel is programmed to be in the counter mode with count set to one. The active edge as well as the interrupt vector locations are also specified by the user’s program. When an active input occurs, a Mode 2 interrupt is generated by the CTC and the MDX-CPU can vector directly to a service routine. After the interrupt, the CTC down counter is automatically reloaded with a count of one and the CTC begins looking for another active edge. Therefore, once initialized, a channel will automatically provide external interrupt capability.

Up to four channels can be used to provide external interrupts. Input is provided through the TRGO to TRG3 lines for channels zero thru three. When multiple channels are used, priorities are resolved within the CTC if more than one interrupt request is made simultaneously. Each channel has a unique vector address and each channel can be independently "masked" by disabling that channel’s local interrupt.

The nonmaskable interrupt is also provided as an input through this board. This line is tested by the MDX-CPU at the end of each instruction. It has priority over the normal interrupt and cannot be disabled under software control. Its usual function is to provide response to signals requiring immediate response, such as an impending power failure.

Each of the four CTC channels has an 8-bit Prescaler and 8-bit Down Counter that allows the circuit to be used as a counter or a timer as well as an interrupt generator. In the counter mode, a Zero Count output is provided that allows cascading of successive counters. In the counter mode,
external inputs can be counted automatically by the CTC and interrupt the processor after a predefined number of counts. In the timer mode, the CTC can generate timing intervals that are integer multiples of the system clock period. The Zero Count output can generate a uniform pulse train of the precise period. Therefore, precise time measurements can be made that are a function of a crystal clock's accuracy and stability.

The MDX-INT also provides internal interrupt expansion through a concept of System Interrupt Units (SIU). The interrupt system of STD-Z80 compatible CPU's will allow up to five System Interrupt Units without need of expansion. The MDX-INT has circuitry to allow expansion of board with up to 40 SIU’s. It must be the last card (the lowest priority) in the interrupt daisy chain. An SIU is defined as an interval of time equivalent to the worst-case propagation delay of the priority daisy chain through an MD board. A board with one interrupting peripheral component, such as an MDX-SIO, has one SIU. A board with two interrupting peripheral components, such as an MDX-PIO, has two SIU’s. A board with no interrupt capability has zero SIU’s.

The SIU expansion circuitry on the MDX-INT card monitors the data bus and PCI lines. Wait states are added during the RETI opcode to allow the PCI and PCO lines to stabilize. The Wait state generator on the MDX-INT is enabled when an interrupt is pending or under service and will insert a predetermined number wait states for 15, 25, or 40 SIU’s. The number of SIU’s that the system can handle is hardware-selectable on-board.

SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-INT</td>
<td>250 kHz</td>
<td>4.0 MHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

- Inputs: One 74LS Load max.
- Outputs: $I_{OH} = -3mA$ min. at 2.4 Volts $I_{OL} = 24mA$ min. at 0.5 Volts

SYSTEM INTERRUPT UNITS (SIU) = 1

POWER SUPPLY REQUIREMENTS

+5 Volts ±5% at 1.2 A Max.

WORD SIZE

- Data: 8 Bits I/O
- Address: 8 Bits using 4 Ports with 6-Bits Jumper Option

OPERATING TEMPERATURE RANGE

0°C to 60°C
INTERRUPTS

External Interrupts are handled to provide prioritized, maskable, Mode 2 interrupts compatible with the STD-Z80 Bus requirements. The external interrupts are edge-triggered with the active edge software-programmable.

Up to four external interrupt inputs can be handled. These are prioritized with channel 0 being highest priority.

The nonmaskable interrupt is provided as an input. It has priority over any maskable interrupt and forces the MDX-CPU to a restart location of 066H.

TIMER

Up to four counter/timer channels are available. The outputs can be cascaded for long word counts. Zero Count/Timeout outputs are provided on three channels.

CARD DIMENSIONS

4.5 in. (114.3 mm) wide by 6.5 in. (165.1 mm) long
0.48 in. (12.2 mm) maximum profile thickness
0.062 in. (0.16 mm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE-WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG Viking 3VH28/1CN5</td>
</tr>
<tr>
<td>CTC I/O</td>
<td>26-pin 0.100 in. centers</td>
<td>FLAT RIBBON Ansley 609-2600M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISCRETE WIRES Winchester PGB26A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(housing) Winchester 100-70020S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(contacts)</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-INT</td>
<td>2.5 MHz or 4.0 MHz board with Operations Manual less Mating Connector</td>
<td>MK77967</td>
</tr>
<tr>
<td></td>
<td>MDX-INT Operations Manual only</td>
<td>MK79780</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Provides an operator interface; switches and lamps
- 10K x 8 EPROM (2716's not included)
- Dual-purpose card, memory and/or diagnostic interface
- Interrupt-driven programmability
- Strap-selectable address
- 4 MHz Option
- Fully-buffered for MD Series expandability
- Diagnostic software package

DESCRIPTION

Designed as a system controller/diagnostics board, the MDX-SC/D provides the system designer with a tool to verify that various other MD Series modules are operational. The board is equipped with sockets to contain up to 10K x 8 of EPROM memory (5-2716's) as shown in the Block Diagram. The EPROM's can contain the diagnostic programs necessary for testing the modules or can contain user application programs.

The EPROM memories can be positioned to start on any 2K boundary within a 16K block of memory via a strapping option provided on the board.

For the 4MHZ version, circuitry is provided to force one wait state each time on-board EPROM's are accessed.

A three-position switch is provided at the top of the board. The switch is springloaded to the OFF position. The RESET position initializes the hardware and software diagnostics elements. The START position begins the diagnostic test which had been preset by the thumbwheel switches, also on the top of the board. At the conclusion of the test, the results are displayed by the LED Readouts. Data transfers from the switches to the bus and from the bus to the readouts are accomplished by the MK3881 PIO.

The PIO also permits total interrupt control so that full usage of the CPU interrupt capabilities can be utilized during data transfers. The PIO provides vectored interrupts and maintains the daisy-chain, priority interrupt logic compatible with the STD-Z80 BUS.
The address decoding, interface and bus management for the board are performed by the address decode and data bus circuit. The PIO ports have two addresses each; these are summarized below.

<table>
<thead>
<tr>
<th>PORT A</th>
<th>PORT B</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>XXXX X000</td>
</tr>
<tr>
<td>CONTROL</td>
<td>XXXX X001</td>
</tr>
</tbody>
</table>

The XX symbols stand for the upper five bits of the I/O channel address. These bits are jumper-selectable on the board in order to provide address-selectable, fully decoded ports.

MEDEX-80

MEDEX-80 is a diagnostic software package designed to operate with the MDX-SC/D card's thumbwheels, switch and display. The package consists of a control monitor, MDX-SC/D card interface handler, and numerous diagnostic tests. The package can operate as a stand-alone program or can be integrated with a user program. MEDEX-80 is designed to allow user-developed diagnostics to be adapted as extensions to the package.

MEMORY ADDRESSING

EPROM - 2K blocks jumper-selectable for any 2K boundary within a given 16K boundary of Z80 memory map.

MEMORY SPEED REQUIRED

<table>
<thead>
<tr>
<th>Memory</th>
<th>Access Time</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2716</td>
<td>450 ns</td>
<td>450 ns</td>
</tr>
<tr>
<td>* Single 5-Volt type required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INPUT/OUTPUT

Controlled by spring-loaded RESET/START switch with center off.
Test selected by two thumbwheel switches.
Test results indicated by two 7-segment LEDs.

INTERRUPTS

Vectored interrupts generated. Interrupt vector programmable upon initialization. Daisy-chained interrupt priority. Selected bit channels can be masked out under program control.

SYSTEM INTERRUPT UNITS (SIU) = 1

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SC/D</td>
<td>250 kHz</td>
</tr>
<tr>
<td>MDX-SC/D-4</td>
<td>250 kHz</td>
</tr>
</tbody>
</table>

STD BUS INTERFACE

Inputs: One 74LS Load max.
Outputs: $I_{OH} = -3\text{mA min. at 2.4 Volts}$
$I_{OL} = 24\text{mA min. at 0.5 Volts}$
OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+5 Volts ± 5% at 1.2 A max.

CARD DIMENSIONS

4.5 in. (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in. (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP Viking 3VH28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SC/D</td>
<td>Module with Operation Manual, 2.5 MHZ version</td>
<td>MK77963-0</td>
</tr>
<tr>
<td>MDX-SC/D-4</td>
<td>Module with Operation Manual, 4.0 MHZ version</td>
<td>MK77963-4</td>
</tr>
<tr>
<td>MEDEX-80</td>
<td>Diagnostic software for various MDX Series cards, distributed on diskette in Z80 Assembly source form</td>
<td>MK77968</td>
</tr>
</tbody>
</table>
FEATURES

- STD-Z80 BUS compatible
- Hardware single-step capability
- Compatible with DDT-80 Operating System
- +5 Volt only
- Both 2.5MHz and 4.0MHz

DESCRIPTION

The Mostek MDX-SST was designed to enhance the hardware and software debug capability for MD Series systems. The use of the MDX-SST with the MDX-CPU1, MDX-CPU2 and MDX-DEBUG boards allows the user to single-step instructions through RAM and/or EPROM/ROM with the capability of displaying all of the CPU registers on each instruction execution.

The MDX-SST board is implemented using the CPU's nonmaskable interrupt and is controlled by firmware from the keyboard. When the command to single step an instruction is given, the sequence of events is the same as executing a program except that a "1" is output to the single step control port (DFH) instead of a "0". The circuit decodes the double M1 instructions (CBH, DDH, EDH, or FDH) and M1 is used to clock a shift register circuit which (if a "1" is output to port DFH) generates a nonmaskable interrupt at the start of the instruction to be single stepped. The nonmaskable interrupt saves the address of execution on the stack and causes the next instruction to be fetched from address E066H in the operating system RAM. The operating system then jumps to E069H, clears the debug flip-flop by reading PORT DFH, saves the CPU registers in the scratch RAM, and waits for the next command.

The single-step command is implemented in DDT-80, which resides on the MDX-DEBUG board and has the following format.
S COMMAND (Single-step)

This command allows the user to start single-stepping from a given location for a given number of instructions and to display the CPU registers after each step.

Format:
.S aaaa,nn,b(cr) start single-stepping at location aaaa for nn steps or instructions. If b=0, display only the PC and AF registers; if b≠0, display all the CPU registers.
.S aaaa,nn(cr) the same as above with b=0 assumed.
.S aaaa(cr) the same as above with nn=1 and b=0 assumed.
.S (cr) b=0 assumed; aaaa is set equal to the contents of the user's PC.

The use of the MDX-SST board requires the MDX-CPU1 or MDX-CPU2 and the MDX-DEBUG. Also, system RAM must be present from FF00 to FFFF.

PORT ADDRESS (HEX)
DF

SYSTEM CLOCK
MIN. MAX.
500kHz 4.0MHz

SYSTEM INTERRUPT UNITS (SIU) = 0

STD BUS INTERFACE
Inputs: One 74LS load max.
Outputs: \(I_{OH} = -3\text{mA min. at 2.4 volts} \)
\(I_{OL} = 24\text{mA min. at 0.5 volts} \)

Operating Temperature
0°C to 60°C

Power Supply Requirements
+5VDC at 85mA

Card Dimensions
4.5 in (11.43cm) high by 6.50 in. (16.51cm) long
0.48 in (1.22cm) maximum profile thickness
0.062 in. (0.16cm) printed-circuit-board thickness

Connectors

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin 0.125 in. centers</td>
<td>PRINTED CIRCUIT Viking 3VH28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP Viking 3VH28/1CN5</td>
</tr>
</tbody>
</table>

VII-20
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-SST</td>
<td>Single-Step Module, includes Operations Manual</td>
<td>MK77958</td>
</tr>
<tr>
<td></td>
<td>MDX-SST Operations Manual Only</td>
<td>MK79638</td>
</tr>
</tbody>
</table>

VII-21
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Table of Contents</td>
</tr>
<tr>
<td>II</td>
<td>General Information</td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 BUS</td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing</td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output</td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory</td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions</td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories</td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing</td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing</td>
</tr>
<tr>
<td>XI</td>
<td>SDE Series Input/Output</td>
</tr>
<tr>
<td>XII</td>
<td>SDE Series Memory</td>
</tr>
<tr>
<td>XIII</td>
<td>SDE Series Accessories</td>
</tr>
<tr>
<td>XIV</td>
<td>Software Disk Based</td>
</tr>
<tr>
<td>XV</td>
<td>Development Systems</td>
</tr>
<tr>
<td>XVI</td>
<td>Systems Emulation Boards</td>
</tr>
<tr>
<td>XVII</td>
<td>Peripherals</td>
</tr>
</tbody>
</table>
INTRODUCTION

The following items are available as accessories to support design, development, and production of products designed around the Mostek MD Series Z80* microcomputer modules:

- **MDX-WW1**: Wire-wrap card with bussed power and ground
- **MDX-WW2**: Wire-wrap card without bussed power and ground
- **MD-EXT**: Extender card
- **MD-232DCE-C**: 25-pin D female MD cable
- **MD-232DTE-C**: 25-pin D male MD cable
- **MD-TTY-C**: Molex-TTY cable
- **MD-PPG-C**: PROM Programmer (PPG-8/16) interface cable
- **MD-CPRT-C**: MDX-PIO to Centronics Line Printer Interface Cable
- **MD-CC6**: 6-slot card cage
- **MD-CC12**: 12-slot card cage

WIRE-WRAP CARDS

The MDX-WW1 (MK77959) is a wire-wrap card with bussed power and ground lines on the board to facilitate fabrication of circuits using wire-wrap sockets. A series of plated-through holes are available on the top of the card for mounting connectors.

WW1 PHOTO MK77959

Figure 1

The MDX-WW2 (MK77952) is a wire-wrap card with all plated-through holes on a 0.100-inch grid. This allows mounting of both DIP sockets and discrete components for circuit fabrication. The plated-through holes accept 0.025-inch square posts.

WW2 PHOTO MK77952

Figure 2

EXTENDER CARD

The MD-EXT (MK77953) is a card that allows extending cards for ready access. The card has a ground trace in between each signal line to minimize stray coupling of the bus signals.

MD-EXT PHOTO MK77953

Figure 3

*Z80 is a registered Trademark of ZILOG
CABLES

The MD-232DCE-C (MK77955) is a cable designed to interface with either the MDX-SIO or MDX-EPROM/UART. One end has a 26-pin socket to connect to the board. The other end has a 25-pin female “D”-type connector. This allows the board to provide a Data Communication Equipment interface.

MD-232DCE-C MK77955

![Diagram of MD-232DCE-C](image)

The MD-232DTE-C (MK77970) is a cable designed to interface with either the MDX-SIO or MDX-EPROM/UART. One end has a 26-pin socket to connect to the board. The other end has a 25-pin male “D”-type connector. This allows the board to provide a Data Terminal Equipment interface.

MD-232DTE-C MK77970

![Diagram of MD-232DTE-C](image)

The MD-TTY-C (MK77956) is a cable designed to interface with either the MDX-SIO or MDX-EPROM/UART. One end has a 26-pin socket to connect to the board. The other end has a Molex connector that allows connection to the terminal block in a teletype.

MD-TTY-C MK77956

![Diagram of MD-TTY-C](image)

The MD-PPG-C (MK77957) is a cable designed to interface the MDX-PIO with the PPG-8/16 PROM Programmer.

MD-PPG-C MK77957

![Diagram of MD-PPG-C](image)

The MD-CPRT-C (MK79089) is a cable designed to interface the MATRIX System or the MDX-PIO with the Centronics Line Printer.

MD-CPRT-C MK79089

![Diagram of MD-CPRT-C](image)

CARD CAGES

Two card cage versions, MD-CC6 (MK77973) and MD-CC12 (MK77969), are available from Mostek. Both models have connectors on 0.75-inch centers and the cards are inserted horizontally.

MD-CC6 DRAWING WITH DIMENSIONS

![Diagram of MD-CC6](image)

The motherboard has eight plated-thru holes in which to insert 16-gauge wire (max.) for the power and ground connections. These are designated below:

```
1 2 3 4 5 6 7 8
GND -12V +5V +12V -5V AUX. GND.
```

The pins are denoted from left to right on the fab side of the motherboard.

Table 1 shows the interconnection of the power plane to the STD BUS.
Table 1

<table>
<thead>
<tr>
<th>Connection Pins (Left to Right)</th>
<th>Designator</th>
<th>STD Bus Pin No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>GND</td>
<td>3, 4</td>
</tr>
<tr>
<td>3</td>
<td>-12V</td>
<td>56</td>
</tr>
<tr>
<td>4, 5</td>
<td>+5V</td>
<td>1, 2</td>
</tr>
<tr>
<td>6</td>
<td>+12V</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>-5V</td>
<td>5, 6</td>
</tr>
<tr>
<td>8</td>
<td>AUX. GND</td>
<td>53, 54</td>
</tr>
</tbody>
</table>

Wire is not supplied with the card cage modules.

A connector is available on the lower-right edge of the motherboard for remoting +12V for a lamp and PB RESET if the user desires a remote reset switch. The configuration is shown below.

5 | +12V
4 | GND
3 | PB RESET
2 | GND
1 | KEY

The diagram shows the relative location of the connectors on the fab side of the motherboard.

MD-CC12 DRAWING WITH DIMENSIONS
Figure 10

MD-CC6/MD-CC12 MOTHERBOARD (FAB SIDE)

NOTE: Two stake pins are provided which are connected to bus pins 35 (IOEXP) and 36 (MEMEX). These signals are not used on Mostek MK cards and, if desired, can be wire-wrapped to the ground stake pins provided at the bottom of the motherboard (as shown).

PRIORITY INTERRUPT CHAIN

If a card slot is not used, the user can maintain the priority interrupt chain by strapping across the unused connector to the stake pins provided on the assembly side of the motherboard opposite pins 51 and 52.

The priority interrupt is from bottom to top on the six-slot card cage (MD-CC6) when viewed from the front with the components facing upward.

The priority interrupt for the twelve-slot card cage (MD-CC12) is from bottom to top on the right side, then from bottom to top on the left side when viewed from the front with the components facing upward. Thus the bottom-most right-hand board is the highest priority board and the top-most left-hand board is the lowest priority board.

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.680 in. (1.71 cm) maximum profile thickness
0.062 in. (0.16 cm) printed-circuit-board thickness
MD-CC6/MD-CC12 MOTHERBOARD

Figure 11

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH28/ICE5</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>WIRE WRAP Viking 3VH28/ICND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG Viking 3VH28/ICN5</td>
</tr>
<tr>
<td>Remote</td>
<td>5-pin SIP</td>
<td>CONN. HOUSING AMP 87499-9</td>
</tr>
<tr>
<td></td>
<td>0.100 in. centers</td>
<td>CONTACT PINS AMP87046-1</td>
</tr>
<tr>
<td>DESIGNATOR</td>
<td>DESCRIPTION</td>
<td>PART NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>MDX-WW1</td>
<td>MD Series wire-wrap card with bussed power and ground</td>
<td>MK77959</td>
</tr>
<tr>
<td>MDX-WW2</td>
<td>MD Series wire-wrap card without bussed power and ground</td>
<td>MK77952</td>
</tr>
<tr>
<td>MD-EXT</td>
<td>MD Series extender card</td>
<td>MK77953</td>
</tr>
<tr>
<td>MD-CC6</td>
<td>MD Series 6-slot card cage with STD BUS motherboard</td>
<td>MK77973</td>
</tr>
<tr>
<td>MD-CC12</td>
<td>MD Series 12-slot card cage with STD BUS motherboard</td>
<td>MK77969</td>
</tr>
<tr>
<td>MD-232DCE-C</td>
<td>26-pin to 25-pin D -RS232 cable</td>
<td>MK77955</td>
</tr>
<tr>
<td>MD-232DTE-C</td>
<td>MD Cable 25-pin D plug to 26-pin socket</td>
<td>MK77970</td>
</tr>
<tr>
<td>MD-TTY-C</td>
<td>26-pin to Molex-TTY connector</td>
<td>MK77966</td>
</tr>
<tr>
<td>MD-PPG-C</td>
<td>PROM Programmer (PPG-8/16) Interface Cable to MDX-PIO</td>
<td>MK77957</td>
</tr>
<tr>
<td>MD-CPRT-C</td>
<td>Centronics Line Printer Interface Cable to MDX-PIO</td>
<td>MK79089</td>
</tr>
</tbody>
</table>
FEATURES

- Triple output supply: +5 volts and ±12 volts
- 115/230 vac ±10%, 47-440 Hz
- Remote sensing on 5V output
- Overvoltage protection on 5V output (standard); optional on ±12V outputs
- ±0.05% regulation
- Foldback current limit
- I.C. regulated design
- UL recognized
- CSA certified

DESCRIPTION

The MD-PWR1 is an open-frame power supply. Designed to furnish power for the MDX-PROTO kit, the MD-PWR1 operates from 115/230 vac ±10% at a frequency range of 47 to 440 Hz. This input power is then transformed and regulated into the three output voltages, +5 VDC and ±12 VDC. The open-frame design allows for adequate cooling.
MD-PWR1 BLOCK DIAGRAM

![Block Diagram](image)

AC INPUT
115/230 vac, 47-440 Hz

DC OUTPUT
+5V @ 6.0A
±12V @ 1.7A
(Derate output current 10% for 50 Hz operation)

LINE REGULATION
±0.05% for a 10% line change

LOAD REGULATION
±0.05% for a 50% load change

OUTPUT RIPPLE
3.0 mV Pk-Pk max.

TRANSIENT RESPONSE
30 microseconds for 50% load change

SHORT CIRCUIT AND OVERVOLTAGE PROTECTION
Automatic current limit/foldback

REVERSE VOLTAGE PROTECTION
Provided on output and pass element

OVERVOLTAGE PROTECTION
Optional on ±12V outputs

REMOTE SENSING
Provided on 5V output, open-sense-lead protection built-in

STABILITY
±0.3% for 24 hours after warm up

TEMPERATURE RATING
0°C to 50°C full rated
(derate linearly to 40% at 70°C)

TEMPERATURE COEFFICIENT
±0.03%/°C max.

EFFICIENCY
5V output: 45%, ±12V output: 55%

VIBRATION AND SHOCK
Per MIL-STD-810B

SIZE
4.75 in (12.07 cm) wide x 11.0 in (27.94 cm) long x 2.75 in (6.99 cm) high

WEIGHT
8 lbs (3.6 kg)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-PWR1</td>
<td>Power Supply Module with prestripped and tinned wires</td>
<td>MK77964</td>
</tr>
</tbody>
</table>
FEATURES

- Standard 19-inch rack-mountable chassis
- Removable structural-foam front panel for internal access
- Front panel RESET switch and POWER indicator
- 12-slot card cage
- Cards mounted horizontally for ease of cooling and cable routing
- Self-contained power supply and 115 CFM fan
- 100/115/230 Volt 50/60 Hz operation

DESCRIPTION

The Mostek MD SERIES Rack-Mounted System (MD-RMC12) provides rack mounting for the MD Series Microcomputer modules. The system features a self-contained power supply designed to work on voltages and frequencies available worldwide. A structural foam front panel is provided with system RESET and POWER indicator. The front panel is designed with quick-release ball studs so that it can be quickly removed for access to internal components. Card cage and power supply may be removed individually from front or top for improved access. The cards are mounted in a horizontal plane with provisions for cabling over the card cage to the rear I/O panel. The back panel has an I/O panel pre-punched for twelve 25-pin "D" type connectors, one 50-pin "D" connector and one BNC connector. AC components on the back panel include: On/Off switch, voltage selection switch, fuse holder (3AG or 5 x 20 mm), and AC input receptacle/line filter.
INPUT POWER: 100/115/230 Volts AC ± 10%
50/60Hz

DC POWER AVAILABLE: +5 VDC at 12A max.
+12 VDC at 1.7A max.
-12 VDC at 1.7A max.

LOAD REGULATION: ± .05% for a 50% load change

OUTPUT RIPPLE: 3.0 mV Pk-Pk max.

TRANSIENT RESPONSE: 30 microseconds for a 50%
load change

SHORT CIRCUIT AND
OVERLOAD PROTECTION: Automatic current
limit/foldback

OVERVOLTAGE PROTECTION: +5 Volt output, set to
6.2 ± 0.4 Volts

STABILITY: ± 0.3% for 24 hours after warmup

THERMAL PROTECTION: Bi-metal thermostat on
primary AC line set to cut out at 180°F (82°C)

CARD CAGE: Twelve-slot for MD series module
11.4cm x 16.5 cm (4.5 x 6.5 in). No PC
modules are supplied.

FUSING:

<table>
<thead>
<tr>
<th>Line</th>
<th>Voltage</th>
<th>MK77966</th>
<th>MK77975</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>110/115V</td>
<td>3 Amp 3AG*</td>
<td>3 Amp 5 x 20 mm</td>
</tr>
<tr>
<td></td>
<td>230 V</td>
<td>1.5 Amp 3AG</td>
<td>1.5 Amp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 x 20 mm*</td>
</tr>
</tbody>
</table>

*Configuration as shipped

LINE CORD SUPPLIED:

<table>
<thead>
<tr>
<th>MK77966</th>
<th>MK77975</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to Belden model 17205B</td>
<td>Similar to Feller model 1100</td>
</tr>
</tbody>
</table>

FRONT PANEL CONTROLS: RESET switch
POWER ON Indicator

REAR PANEL CONTROLS: AC Power On/Off
AC fuse holder
AC line receptacle/filter
AC line voltage selector

WEIGHT: 25 lbs (11.3 kg)

CHASSIS: a) 19" rack-mountable using the two rails supplied
b) Slide mounting available with optional slide mounting kit. Requires two inches of panel space below the unit.

OPERATING TEMPERATURE RANGE: 0°C to 60°C

HEIGHT: 7.0 in. (17.8cm) panel space
7.3 in. (18.5cm) overall, including feet

WIDTH: 19.0 in. (48.3cm) at front panel
17.5 in. (44.5cm) behind front panel

DEPTH: 21.1 in. (53.6cm) with all protrusions
20.0 in. (50.8 cm) without foam front

HUMIDITY: Up to 90% relative, non-condensing
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-RMC12</td>
<td>Rack-mounted CPU subsystem with MD series 12-slot card cage with U.S. line cord and fuse. 100/115/230 Volts 50/60Hz AC operation, front panel, support bracket for rack mounting, and Operation Manual included.</td>
<td>MK77966</td>
</tr>
<tr>
<td>MD-RMC12-50</td>
<td>Same as above except with 5 x 20mm fuse and European line cord.</td>
<td>MK77975</td>
</tr>
<tr>
<td></td>
<td>MD-RMC12 Operations Manual Only</td>
<td>MK79738</td>
</tr>
</tbody>
</table>
FEATURES

- Standard 19-inch rack-mountable chassis; 7-inch panel height
- Removable structural foam disk bezel for internal access
- Front panel POWER-ON indicator
- Mounts two standard 8-inch floppy disk drives
- Disks mounted horizontally for low profile
- Self-contained power supply and 115 CFM fan
- 100/115/230 Volt, 50/60 Hz operation

GENERAL DESCRIPTION

The Mostek RMDFSS offers a solution to rack mounting two standard 8-inch floppy disk drives. The system features a self-contained power supply designed to work on voltages and frequencies available worldwide. An attractive structural foam-front disk bezel is provided with a power-on indicator. The disk bezel is designed with quick-release ball studs so that it can be easily removed for access to the drives. The drives are mounted in a horizontal plane for a low-profile appearance and to conserve panel height in the rack. Drives and power supply may be removed individually from front or top for ease of maintenance. The back panel has an I/O panel prepunched for one 50-pin "D" interface to the disk controller. AC components on the back panel include: On/Off switch, voltage selection switch, fuse holder (3AG or 5 x 20 mm) and AC input receptacle/line filter.
INPUT POWER
100/115/230 Volts AC ± 10% 50/60Hz

<table>
<thead>
<tr>
<th>Voltage</th>
<th>50Hz MK78185</th>
<th>60Hz MK78183</th>
</tr>
</thead>
<tbody>
<tr>
<td>110/115V</td>
<td>3 Amp 3AG*</td>
<td>3 Amp 5 x 20 mm</td>
</tr>
<tr>
<td>230 V</td>
<td>1.5 Amp 3AG</td>
<td>1.5 Amp 5 x 20mm*</td>
</tr>
</tbody>
</table>

DC POWER AVAILABLE
+5 VDC at 3.0A max.
-5 VDC at 0.5A max.
+24 VDC at 3.4A max.

LOAD REGULATION
± .05% for a 50% load change

OUTPUT RIPPLE
3.0 mV PK-PK max.

TRANSIENT RESPONSE
30 microseconds for a 50% load change

SHORT CIRCUIT AND OVERLOAD PROTECTION
Automatic current limit/foldback

OVERVOLTAGE PROTECTION
+5 Volt output set to 6.2 ± 0.4 Volts

STABILITY
± 0.3% for 24 hours after warmup

THERMAL PROTECTION
Bi-metal thermostat on primary AC line set to cut out at 180°F (82°C)

DISK DRIVES
Shugart 800-2 or equivalent

FUSING

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Line</th>
<th>MK78183</th>
<th>MK78185</th>
</tr>
</thead>
<tbody>
<tr>
<td>110/115V</td>
<td>3 Amp 3AG*</td>
<td>3 Amp 5 x 20 mm</td>
<td></td>
</tr>
<tr>
<td>230 V</td>
<td>1.5 Amp 3AG</td>
<td>1.5 Amp 5 x 20mm*</td>
<td></td>
</tr>
</tbody>
</table>

*Configuration as shipped

LINE CORD SUPPLIED

<table>
<thead>
<tr>
<th>MK78183</th>
<th>MK78185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to Belden model</td>
<td>Similar to Feller model</td>
</tr>
<tr>
<td>17205B</td>
<td>1100</td>
</tr>
</tbody>
</table>

FRONT PANEL INDICATOR
Power-on

REAR PANEL CONTROLS
AC Power On/Off
AC fuse holder
AC line receptacle/filter
AC line voltage selector

WEIGHT
50 lbs (22.7 kg)

OPERATING TEMPERATURE RANGE
0°C to 40°C (Disk Media Limitation)

DIMENSIONS
Height: 7.0 in. (17.8 cm) panel space
7.3 in. (18.5 cm) overall, includes feet
Width: 19.0 in. (48.3 cm) at front panel
17.5 in. (44.5 cm) behind front panel
Depth: 21.1 in. (54.0 cm) with all protrusions
20.0 in. (50.8 cm) without foam front

HUMIDITY
Up to 90% relative, noncondensing.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMDFSS</td>
<td>Rack-mountable dual floppy enclosure with 8-inch drives for 100/115/230 Volt operation. Includes interface cable to SDE-RMC6 or MD-RMC12, front disk bezel, support bracket for rack mounting and Operations Manual. 60Hz model.</td>
<td>MK78183</td>
</tr>
<tr>
<td>RMDFSS-50</td>
<td>50 Hz model.</td>
<td>MK78185</td>
</tr>
<tr>
<td></td>
<td>RMDFSS Operations Manual Only</td>
<td>MK79740</td>
</tr>
</tbody>
</table>
FEATURES

- Z80 Microprocessor
- 2K byte RAM capacity with 1K included
- Sockets for 8K bytes 2716 EPROM
- Crystal clock - 2.5 MHz
- Three TTL-buffered 8-bit OUTPUT ports
- Two TTL-buffered 8-bit INPUT ports
- Two interrupt inputs
- Single +5 volt power supply

DESCRIPTION

The MD-SBC1 is a complete Z80-based microcomputer on a 4½ inch by 6½ inch circuit module. All I/O is fully TTL-buffered and is brought to a 56-pin edge connector.

The smaller card size and the single power supply makes the MD-SBC1 easier to package and easier to use than most other modules. While the module size is small, no compromises have been made in computing power due to increasing MOS-LSI densities and the use of the Z80 microcomputer. The 40 buffered I/O lines and the 8K bytes of EPROM provide the capability to solve many control problems encountered by the OEM microcomputer user. The expandable MD Series (MDX) has the same form factor allowing easy expansion to a multi-board system with increased capability.

Figure 1 is a block diagram of the MD-SBC1. The basic module comes with 1K bytes of RAM expandable to 2K bytes by the addition of two 2114-type RAMs. Four 2716 sockets are provided for up to 8K byte of EPROM, and are decoded in 2K blocks starting at address zero. The output ports are 74LS244 latches which are brought to the card cage connector. The input ports are 74LS240 Octal Buffers with 4.7K Ohm pull-up resistors on the inputs. These input lines are also brought to the edge connector. The Z80-CPU is driven by a crystal clock at 2.5MHz (400nsec T-State).

Both the NMI and INT interrupt inputs to the Z80-CPU are terminated with 4.7K Ohm pull ups and brought to the card edge connector. An external clock can be used by changing strapping options on the board. Power-on-reset circuitry is included on the CPU's RESET input. Provision is made to expand the I/O capability through the use of on-board connectors.
MD-SBC1 BLOCK DIAGRAM

Figure 1

MASKABLE INTERRUPT
NON-MASKABLE INTERRUPT
RESET

EXTERNAL CLOCK

ON-BOARD CLOCK GENERATOR
2.5 MHz

INPUT PORT 00 DATA
INPUT PORT 01 DATA

PROCESSOR Z80

PROM-0
2048x8

PROM-1
2048x8

PROM-2
2048x8

PROM-3
2048x8

INPUT PORTS

DATA BUS

OUTPUT PORTS

RAM 1024x8

RAM 1024x8

BUS AND DECODED STROBES
TO I/O PORTS 02-07

SHADING INDICATES SOCKETS ONLY

WORD SIZE

Instruction: 8, 16, 24 or 32 bits
Data: 8 bits

CYCLE TIME

Clock period (T state): 400 ns at 2.5 MHz
Instruction Cycle: Min. 4 T states
Max. 23 T states

MEMORY CAPACITY

8K bytes of 2716 memory (none included)
2K bytes of 2114 memory (1K bytes included)

MEMORY ADDRESSING

<table>
<thead>
<tr>
<th>EPROM Number</th>
<th>HEX Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000-07FF</td>
</tr>
<tr>
<td>1</td>
<td>0800-0FFF</td>
</tr>
<tr>
<td>2</td>
<td>1000-17FF</td>
</tr>
<tr>
<td>3</td>
<td>1800-1FFF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAM Number</th>
<th>HEX Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>2000-23FF</td>
</tr>
<tr>
<td>Optional</td>
<td>2400-27FF</td>
</tr>
</tbody>
</table>

MEMORY SPEED REQUIRED

<table>
<thead>
<tr>
<th>Memory</th>
<th>Access Time Required</th>
<th>Cycle Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2716*</td>
<td>450nsec</td>
<td>450nsec</td>
</tr>
<tr>
<td>2114</td>
<td>450nsec</td>
<td>450nsec</td>
</tr>
</tbody>
</table>

*Single 5 volt type required

I/O ADDRESSING AND CAPACITY

<table>
<thead>
<tr>
<th>Port Type</th>
<th>HEX Address</th>
<th>Data Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>00 and 01</td>
<td>16 lines</td>
</tr>
<tr>
<td>Output</td>
<td>00, 01, 02</td>
<td>24 lines</td>
</tr>
</tbody>
</table>

I/O INTERFACES

Inputs: One 74LS load plus a 4.7K-Ohm pull up resistor

Outputs:
- \(I_{OH} = -3\,mA \) at \(V_{OH} = 2.4 \) volts
- \(I_{OL} = 24\,mA \) at \(V_{OL} = 0.5 \) volts

INTERRUPTS

Two (active low): NMI and INT. See Z80 CPU (MK3880) Technical Manual for a full description of Z80 interrupts.
SYSTEM CLOCK

<table>
<thead>
<tr>
<th></th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-SBC1</td>
<td>250kHz</td>
<td>2.5MHz</td>
</tr>
</tbody>
</table>

CARD DIMENSIONS

- 4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
- 0.48 in. (1.22 cm) maximum profile thickness
- 0.062 in. (0.16 cm) printed circuit board thickness

OPERATING TEMPERATURE RANGE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+5 volts ± 5% at 1.2A max (fully loaded)
(100mA per RAM, 100mA per EPROM)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD-SBC1</td>
<td>Complete Z80 Single Board Computer with Operations Manual less EPROMs and mating connector.</td>
<td>MK77851-0</td>
</tr>
<tr>
<td></td>
<td>MD-SBC1 Operations Manual only.</td>
<td>MK79609</td>
</tr>
</tbody>
</table>

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD-Z80 BUS</td>
<td>56-pin</td>
<td>PRINTED CIRCUIT</td>
</tr>
<tr>
<td></td>
<td>0.125 in. centers</td>
<td>Viking 3VH-28/1CE5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WIRE WRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH-28/1CND5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLDER LUG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viking 3VH-28/1CN5</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>General Information</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 BUS</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>SDE Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>SDE Series Memory</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>SDE Series Accessories</td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>Software Disk Based</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>Development Systems</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>Systems Emulation Boards</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>Peripherals</td>
<td></td>
</tr>
</tbody>
</table>
FEATURES

- Z80 CPU
- 20K x 8 EPROM
- Accepts 2708, 2716, or 2532 EPROM's
- 256 x 8 static scratchpad RAM on-board
- 16K (4K) x 8 dynamic RAM
- Z80 CTC - four counter/timer channels
- Restart to 0000H or E000H (switch option)
- On-board serial I/O port
- Software-programmable baud rate
- Current loop or RS-232-C (V.24) interface
- Four 8-bit parallel ports with handshake
- Ports buffered with TTL, socket-programmed
- Port direction in 4-bit blocks
- Programmable polarity on strobe lines
- Halt lamp
- Power-on-reset logic
- Fully hysterisis-buffered SDE bus

DESCRIPTION

The OEM-80E is a Z80 CPU-based computer board. The card has sufficient on-board I/O and memory to be used in a stand-alone mode in many applications, yet it is fully expandable to support more memory and I/O in applications requiring it. The five EPROM sockets on-board can be strapped to use a number of standard 24-pin ROM/EPROM products including PROMs and ROMs with capacities of up to 4K bytes each. The eight RAM sockets can be strapped for 4K or 16K RAMs, giving a maximum 16K bytes on-board. The Z80 built-in refresh logic reduces the area taken by the dynamic RAMs to that required by other manufacturers' 1K byte static RAM, the cost per bit being significantly reduced. Also on-board are two memory-decoding bipolar PROMs. These allow a wide range of RAM/PROM/ROM combinations to be selected by the user; if the exact combination required is not already supported, new PROMs can be easily programmed.

The user switch-selectable restart address allows the DDT-80 debug program to reside in the system without conflict with the user's own PROM-based software. If a problem develops, the user can switch from address 0 reset to address E000 (where DDT-80 resides) and use the powerful commands of the 2K byte DDT-80 to localize the problem.

The "E" format and DIN connectors allow quick integration into the user's system hardware. Putting all connectors on one card edge is a unique feature in microcomputer modules, although it is standard design practice for many large system builders. The simplified maintenance and clean cabling made possible by this technique should be appreciated by all experienced users.
MEMORY ADDRESSING AND CAPACITY

The recommended memory map is shown below:

- 0000-3FFF PROM (1 TO 16K)
- 4000-7FFF RAM (4 TO 16K)
- 8000-DFFF EXTERNAL MEMORY
- E000-E7FF DDT-80 (2K)
- E800-FFFF EXTERNAL MEMORY
- FFO0-FFFF SCRATCHPAD RAM (256 bytes, needed only if DDT-80 is used)

Memory cycle time required for the PROMs is 450 ns.

SERIAL I/O PORTS

A UART with 20mA current loop and RS-232-C (V.24) buffers/drivers provides a serial communication channel for interfacing to TTY or CRT terminals or serial printers. The baud rate is software-programmable over the range of 110 to 9600 baud.

PARALLEL I/O PORTS

The four parallel ports are designed to allow maximum flexibility in matching the MOS I/O ports to the real world of long lines or high voltages. Two ports support bidirectional TTL I/O with hysteresis inputs. The ports can also be programmed for input or output only. The other ports are supplied with sockets which support a number of standard TTL devices for buffering. A list of pin-compatible devices is given below:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>16mA TTL inverting output</td>
</tr>
<tr>
<td>7402</td>
<td>TTL inverting input</td>
</tr>
<tr>
<td>7408</td>
<td>16mA TTL non-inverting output</td>
</tr>
<tr>
<td>7426</td>
<td>16mA high-voltage inverting open-collector output</td>
</tr>
<tr>
<td>7437</td>
<td>48mA TTL inverting output</td>
</tr>
<tr>
<td>7438</td>
<td>48mA TTL inverting open-collector output</td>
</tr>
</tbody>
</table>

COUNTER/TIMER CHANNELS

Four counter/timer channels are provided on the card in a Z80-CTC chip. One channel is used as the baud rate generator of the serial I/O port. The other three channels are available to the user. The channels may be programmed as delay generators, event counters or simply discrete interrupt inputs with a programmable edge trigger. The device can generate four interrupts.

INTERRUPTS

The OEM-80E has nine on-board interrupts. They are:

- One Z80 CPU NMI (non-maskable interrupt)
- Four Z80 PIO(2) Mod 2 Interrupts
- Four Z80 CTC Mod 2 Interrupts

More interrupt devices (up to 128 total) can be added to the SDE bus.

BUS INTERFACE

All Z80 signals are buffered before leaving the OEM-80E. The buffering protects the MOS components from static charge during handling and from bus transients which could otherwise destroy these devices. The bus supports DMA transfers and the daisy-chained, multi-level interrupt structure of the Z80. The bus uses hysteresis-input receivers and current-limited bus drivers to improve the noise margin of the bus. Switching the bus drivers on only when data is needed and stable further reduces the noise on the bus.

POWER REQUIREMENTS

+5V ±5% at 1.5 A
+12V ±5% at 0.175 A
-12V ±5% at 0.1 A

OPERATING TEMPERATURE RANGE

0°C to 50°C

BOARD SIZE

233.4mm (9.19 in) X 250 mm (9.84 in.)

CONNECTORS

Two 64-pin DIN 41612 (a-c) indirect, male
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM-80E/4</td>
<td>OEM-80E/4 with 4K bytes of RAM (MK4027), 5 sockets for EPROM or ROM, 2 PIOs with sockets for TTL buffering logic, CTC, UART, socket for 256-byte scratch-pad RAM and sockets for memory mapping PROMs.</td>
<td>MK78122</td>
</tr>
<tr>
<td>OEM-80E/16</td>
<td>Same as OEM-80E/4 except with 16K bytes of RAM (MK4116)</td>
<td>MK78124</td>
</tr>
<tr>
<td>OEM-80E</td>
<td>Operations Manual only</td>
<td>MK78548</td>
</tr>
</tbody>
</table>
A/D-80E
MK78172-42, MK78172-56, MK78175-40, MK78177-26

FEATURES

A/D-80E/1791 - Analog Input/Output Board

MK78172-42
- Input ranges: ±5V, ±10V, 0 - 10V, 0 - 5V
- 16 Single Ended Input Channels
- 12 Bit A/D Converter
- Programmable Gain Option
- 2 D/A Output Channels with Scope Control

A/D-80E/1791 - Analog Input/Output Board

MK78172-56
- Input ranges: ±5V, ±10V, 0 - 10V, 0 - 5V
- 32 Differential Input Channels
- 12 Bit A/D Converter
- Programmable Gain Option
- 2 D/A Output Channels with Scope Control

A/D-80E-1795 - Analog Input/Output Board

MK78175-40
- Low-level, Wide-range Input
- Input Ranges: ±10mV to ±10V
- 16 Single Ended Input Channels

A/D-80E BOARD PHOTOS

MK78177-26
- Wide-range, Isolated Inputs
- Input Ranges: ±mV to ±10V
- 4 Double Ended Input Channels
- 12 Bit A/D Converter
- Programmable Gain Option
DESCRIPTION

The A/D-80E line of analog I/O systems is offered as a part of the SD Series. Available in four different versions with various user-specified options, the A/D-80E can be contoured with the right combination of analog I/O to meet the system designer's needs.

The A/D-80E line of analog I/O boards has been designed using DATAX-II™ data acquisition modules manufactured by Data Translation, Inc. Each DATAX module is a complete self-contained unit with multiple shielding for operation in a microprocessor system. This eliminates ground-loop and noise problems inherent in interconnection of separate modules.

A/D-80E INTERFACE

The Z80-PIO chip and some external logic are utilized to provide the interface for the A/D-80E. In this manner, the Z80-PIO chip is used to provide all the interrupt circuitry for Z80-Mode 2 operation, i.e., a vectored daisy chain priority interrupt structure.
A/D-80E ANALOG INPUT SPECIFICATION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of channels</td>
<td>16 single ended or 32 differential</td>
<td>16 single ended</td>
<td>4 differential</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>100 megOhm</td>
<td>100 megOhm</td>
<td>10 megOhm</td>
</tr>
<tr>
<td>Input Overvoltage</td>
<td>±35V non-destructive</td>
<td>±15V non-destructive</td>
<td>15V DC max.</td>
</tr>
<tr>
<td>Input Range</td>
<td>0-5V, ±5V, 0-10V, ±10V</td>
<td>±10mV to ±10V</td>
<td>0-10V unipolar, ±10V</td>
</tr>
<tr>
<td>Optional programmable gains</td>
<td>1, 2, 4, 8</td>
<td>Not Available</td>
<td>gains: 1, 10, 100, 500</td>
</tr>
<tr>
<td>Conversion resolution</td>
<td>12 bits</td>
<td>12 bits</td>
<td>12 bits</td>
</tr>
<tr>
<td>Linearity</td>
<td>±½ LSB</td>
<td>±½ LSB</td>
<td>±½ LSB</td>
</tr>
<tr>
<td>Inherent quantizing error</td>
<td>±½ LSB</td>
<td>±½ LSB</td>
<td>±½ LSB</td>
</tr>
<tr>
<td>Throughput</td>
<td>35kHz stand. 100kHz optional</td>
<td>31kHz</td>
<td>20 Hz random 40 Hz sequential</td>
</tr>
<tr>
<td>Power Requirements</td>
<td>+5V @ 2.0A Max</td>
<td>+5V @ 2.0A Max</td>
<td>+5V @ 2.0A Max</td>
</tr>
<tr>
<td>Mechanical printed-circuit board</td>
<td>8.5" x 12.0" x .65"</td>
<td>8.5" x 12.0" x .65"</td>
<td>8.5" x 12.0" x .65"</td>
</tr>
<tr>
<td>Temperature</td>
<td>0° - 70°</td>
<td>0° - 70°</td>
<td>0° - 70°</td>
</tr>
<tr>
<td>Implementation</td>
<td>Programmed I/O and Interrupt Functions</td>
<td>Programmed I/O and Interrupt Functions</td>
<td>Programmed I/O and Interrupt Functions</td>
</tr>
<tr>
<td>Device address</td>
<td>Selectable via jumper</td>
<td>Selectable via jumper</td>
<td>Selectable via jumper</td>
</tr>
</tbody>
</table>

ANALOG OUTPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>12 Bits</th>
<th>Z Axis Control -</th>
<th>The Interface contains all the control circuitry of Z axis and scope control mode bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution -</td>
<td>±½ LSB</td>
<td>Z Output (Intensity) - LO (0.8V) to HI (2.4V) TTL compatible into 50 Ohm termination</td>
<td></td>
</tr>
<tr>
<td>Linearity</td>
<td>±10V, 0-10V; @ 25mA minimum current output, all jumper selectable</td>
<td>Z Risetime - 100 nsec into 50 ft. of terminated COAX</td>
<td></td>
</tr>
<tr>
<td>Range -</td>
<td>±0.025%</td>
<td>Z Pulse Width - a. 0.5 microsecond b. 5 microsecond c. external RC 1 microsecond to 0.5 msec</td>
<td></td>
</tr>
<tr>
<td>Relative Accuracy -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Scale Settling -</td>
<td>0.1% - 1 microsecond, 0.01% - 3 microsecond into 50 ft., coaxial cable terminated with 470 Ohm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>25ppm/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D-80E/1791-16</td>
<td>High Level, Analog Input/Output (16 S.E. Inputs)</td>
<td>MK78172-42</td>
</tr>
<tr>
<td>A/D-80E/1791-32</td>
<td>High Level, Analog Input/Output (32 D.E. Inputs)</td>
<td>MK78172-56</td>
</tr>
<tr>
<td>A/D-80E/1795</td>
<td>Low Level, Non-Isolated Analog Input/Output</td>
<td>MK78175-40</td>
</tr>
<tr>
<td>A/D-80E/1798</td>
<td>Wide Range Isolated Analog Input</td>
<td>MK78177-26</td>
</tr>
<tr>
<td></td>
<td>A/D-80E Operations Manual Only</td>
<td>MK79660</td>
</tr>
</tbody>
</table>
FEATURES

- Four independent full-duplex channels
- Independent programmable baud rate clocks
- Data rates - 75 to 38.4K bits per second
- Receiver data registers quadruply-buffered
- Transmitter data registers double-buffered
- Asynchronous operation
- Binary synchronous operation
- HDLC or IBM SDLC operation
- Both CRC-16 and CRC-CCITT (-0 and -1) hardware implemented
- Modem control
- Operates as DTE or DCE
- Serial input and output as RS-232-C
- Address programmable
- Compatible with SDE BUS
- 4-Channel NRZI encoder/decoder

DESCRIPTION

The Multichannel Serial Input/Output Module, DCC-80E, is designed to be a multiprotocol asynchronous or synchronous I/O module for the SDE BUS. The module is designed around the Mostek® MK3887™ Z80-S10 which provides two full-duplex serial data channels. Each channel has an independent programmable baud rate clock generator to increase module flexibility. Each channel is capable of handling asynchronous, synchronous, and synchronous bit-oriented protocols such as IBM BiSync, SDLC, HDLC, and virtually any other serial protocol. It can generate CRC codes in any synchronous mode and can be programmed by the CPU for any traditional asynchronous format. The serial input and output data is fully buffered and is provided at the connector as RS-232-C levels. A modem control section is also provided for handshaking and status. The module can be jumper-configured as a data terminal (DTE) or as a modem (DCE) in order to facilitate a variety of interface configurations.

Figure 1 is a block diagram of the DCC-80E module which consists of eight main elements: the channel configuration headers, line drivers and receivers, MK3887 Z80-S10, programmable CTC baud rate generators, address decode, NRZI encoder/decoder, clock circuitry, and data bus buffers. Input and output to the board is provided via the SK2 connector. The configuration and pin out headers of each channel are identical.

Several features are available as options that are selected by the port-configuration header. The headers are used to select the orientation of the data communication interface. The DCC-80E can be selected to act as either a terminal or processor (Data Terminal Equipment - DTE) or as the modem (Data Communications Equipment - DCE). The channel-configuration
headers allow reconfiguration of data interchange and signals. This allows the data to be asynchronous or synchronous serial stream or synchronous NRZI encoded.

Line drivers and receivers provide the correct electrical signal levels, slew rate and impedance for interfacing RS-232-C peripherals.

The Mostek MK3887 Z80-SIO is the central element of this module. This device is a multifunction component designed to satisfy a wide variety of serial data communications requirements in microcomputer systems. Its basic role is that of a serial-to-parallel, parallel-to-serial converter/controller, but within that role it is configured by software programming so that its function can be optimized for a given serial data communications application. The MK3887 provides two independent, full-duplex channels: A and B. Each channel features the following:

ASYNCHRONOUS OPERATION
- 5, 6, 7, or 8 bits/character
- 1, 1 1/2 or 2 stop bits
- Even, odd or no parity
- X1, x16, x32, and x64 clock modes
- Break generation and detection
- Parity, Overrun, and Framing error detection

BINARY SYNCHRONOUS OPERATION
- One or two sync characters in separate registers
- Automatic sync character insertion
- CRC generation and checking

HDLC OR IBM SDLC OPERATION
- Automatic Zero Insertion and Deletion
- Automatic Flag Insertion
- Address Field Recognition
- I-Field Residue Handling
- Overrun protection for valid receive messages
- CRC generation and checking

The MK3887 also provides modem control inputs and outputs as well as daisy-chain priority interrupt logic. Eight different interrupt vectors can be generated by the SIO in response to various conditions affecting the data communications channel transmission and reception.

Address decoding, SDE BUS interface and bus management for the module are performed by the Address Decode and Data Bus circuit. The DCC-80E
contains command registers that are programmed to select the desired operational mode. The addressing scheme is as follows:

<table>
<thead>
<tr>
<th>PORT ADDRESS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 0H ...</td>
<td>CTC as baud-rate generator for Channel A</td>
</tr>
<tr>
<td>X 1H ...</td>
<td>CTC as programmable timer</td>
</tr>
<tr>
<td>X 2H ...</td>
<td>SIO Data Input/Output of Channel A</td>
</tr>
<tr>
<td>X 3H ...</td>
<td>SIO Status/Control for Channel A</td>
</tr>
<tr>
<td>X 4H ...</td>
<td>CTC as baud rate generator for Channel B</td>
</tr>
<tr>
<td>X 5H ...</td>
<td>CTC as programmable timer</td>
</tr>
<tr>
<td>X 6H ...</td>
<td>SIO Data Input/Output of Channel B</td>
</tr>
<tr>
<td>X 7H ...</td>
<td>SIO Status/Control for Channel B</td>
</tr>
<tr>
<td>X 8H ...</td>
<td>CTC as baud rate generator for Channel C</td>
</tr>
<tr>
<td>X 9H ...</td>
<td>CTC as programmable timer</td>
</tr>
<tr>
<td>X AH ...</td>
<td>SIO Data Input/Output of Channel C</td>
</tr>
<tr>
<td>X BH ...</td>
<td>SIO Status/Control for Channel C</td>
</tr>
<tr>
<td>X CH ...</td>
<td>CTC as baud generator for Channel D</td>
</tr>
<tr>
<td>X DH ...</td>
<td>CTC as programmable timer</td>
</tr>
<tr>
<td>X EH ...</td>
<td>SIO Data Input/Output of Channel D</td>
</tr>
<tr>
<td>X FH ...</td>
<td>SIO Status/Control for Channel D</td>
</tr>
</tbody>
</table>

The CTC channels used as baud rate generators are controlled through ports XOH, X4H, X8H, and XCH.

Remaining ports (X1H, X5H, X9H, XDH) may be used as programmable timers for Time-Out checks.

Ports X2H, X6H, XAH, and XEH are data channels of Z80-SIO devices. The CPU loads them with data to be sent and conversely reads back data assembled in the receiver buffer.

The write registers 0-7 of the SIO are preset by write operation on ports X3H, X7H, XBH, AND XFH to control proper operation.

(The X indicates the binary code necessary to represent which one of the 64 port addresses is selected.)

SERIAL BAUD RATES

Each channel has an individual programmable baud rate generator. The X1 multiplier on the Z80-SIO must be used in the synchronous mode. The X16, X32, or X64 Z80-SIO clock rate can be specified for the asynchronous mode. Table 1 indicates the possible baud rates available for both operation modes.

<table>
<thead>
<tr>
<th>STANDARD BAUD RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
</tr>
<tr>
<td>Standard Baud Rate</td>
</tr>
<tr>
<td>Asynchronous</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>4800</td>
</tr>
</tbody>
</table>

OPERATIONAL FEATURES

The channel interface connects DCC-80E to data terminal/communications equipment. It consists of four basic parts.

1. Drivers and Receivers for RS-232-C
2. NRZI encoder
3. NRZI clock recovery circuit

Operation of DCC-80E can be tailored to any functional environment by means of prewiring two jumper fields, per channel, to one desired configuration.

WORD SIZE

Data: 5,6,7,8 bits
I/O addressing: 8-bits

I/O CAPACITY

Serial: Four full-duplex serial ports, either synchronous or asynchronous. Special control registers and circuitry to permit implementation of SDLC, BiSync, Monosync, HDLC, and other formats can be programmed. All synchronous formats can be NRZI encoded.

I/O ADDRESSING

On-board fully programmable
INTERRUPTS
Generates vectored interrupts to 32 different locations corresponding to conditions within four SIO channels and four CTC channels. Interrupt vector location programmable. Daisy-chained priority interrupt circuitry.

OPERATING TEMPERATURE
0°C to 50°C

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC-80E</td>
<td>250kHz</td>
</tr>
<tr>
<td></td>
<td>2.5MHz</td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 3

POWER SUPPLY REQUIREMENTS
+12 volts ± 5% at 120mA max.
-12 volts ± 5% at 80mA max.
+5 volts ± 5% at 1.2 A max.

CARD DIMENSIONS
233.4 mm x 257.62 mm x 25 mm

ORDER INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC-80E</td>
<td>Four-channel data communication controller module with operations manual.</td>
<td>MK78192</td>
</tr>
<tr>
<td></td>
<td>DCC-80E Operations Manual Only</td>
<td>MK79812</td>
</tr>
</tbody>
</table>
FEATURES

- Soft-sector format compatible with IBM 3740 data entry system format
- Capable of controlling up to four flexible disk drives per subsystem
- Full disk initialization (Formatting)
- Full-sector (128 bytes) FIFO buffering for data
- Double buffering for control and status
- Automatic track-seek with verification
- Completely interruptable for real-time systems

APPLICATIONS

- Flexible disk-drive interface for use with Mostek's Software Development Board (OEM-80E) in a disk-based Z80 Development System (MATRIX).
- Single or multiple flexible disk-drive controller/formatter for disk-based OEM systems using the OEM-80E Single Board Computer.

DESCRIPTION

The FLP-80E is an add-on flexible disk controller module used to interface up to four flexible disk drives to the Mostek Software Development Board (OEM-80E).

The FLP-80E provides the necessary electronics to accomplish track selection, head loading, data transfer, error detection, flexible drive interface, status reporting and format generation/recognition. The FLP-80E is designed to operate with either Shugart SA-800 Single-Sided or SA-850 Double-Sided Flexible Disk Drives. In addition to functioning as an add-on card to the OEM-80E system, the FLP-80E may be utilized directly in OEM applications to control/format up to four flexible disk drives of either single- or dual-sided type in 8080A or Z80 systems.
AVAILABLE SOFTWARE

Software for the FLP-80E disk controller is the Mostek Disk Operating System (FLP-80DOS). A user can easily design his own OEM software package around 20 powerful disk operating system commands permitting complex record insertion, deletion, and position manipulation. Other software includes application packages such as an advanced monitor and debugger, disk-based Text Editor, Z80 Assembler, Relocating Linking Loader, Peripheral Interchange Program, and a channelized I/O system for each peripheral interface. These programs provide state-of-the-art software for developing Z80 programs as well as establishing a firm basis for OEM products. Further information is provided in the FLP-80DOS Data Sheet, MK78556.

OPERATING TEMPERATURE RANGE

-0°C to 50°C

POWER SUPPLY REQUIREMENTS (Typical)

+12V ± 5% at 0.006A
+5V ± 5% at 1.1A
-12V ± 5% at 0.03A

INTERFACE LEVELS

TTL Compatible

BOARD SIZE

250mm x 233.4mm x 18mm

BOTTOM CONNECTOR

Dual 64-pin Eurocard Connector, DIN 41612 form D; A and C pinned.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP-80E</td>
<td>FLP-80E Disk Controller Board with Operations Manual, FLP-80DOS bootstrap PROMs and diskette with FLP-80DOS Operations Manual.</td>
<td>MK78146</td>
</tr>
<tr>
<td></td>
<td>FLP-80E Operations Manual. Detailed description of use and operation of FLP-80E.</td>
<td>MK78561</td>
</tr>
<tr>
<td>FLP-80DOS Data Sheet</td>
<td>Disk Operating System data sheet.</td>
<td>MK78556</td>
</tr>
<tr>
<td></td>
<td>FLP-80DOS Operations Manual. Detailed description of the use and operation of FLP-80DOS.</td>
<td>MK78557</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>General Information</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 BUS</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>SDE Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>SDE Series Memory</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>SDE Series Accessories</td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>Software Disk Based</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>Development Systems</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>Systems Emulation Boards</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>Peripherals</td>
<td></td>
</tr>
</tbody>
</table>
FEATURES

square Memory Capacity
• RAM-80AE — 16,384 (16K) bytes using MK4027 RAM
• RAM-80BE — 16,384 (16K) bytes expandable to 65,536 (65K) bytes using MK4116 RAM
• RAM-80BE under page-mode operation — up to one megabyte of memory

square I/O Capacity (RAM-80BE only)
Four 8-bit ports with handshake lines

DESCRIPTION

The RAM-80E is designed to provide RAM expansion capability for the Z80-based OEM-80E microcomputer. For user flexibility, it is offered in two basic configurations designated RAM-80AE and RAM-80BE.

The RAM-80AE is the basic 16K-byte RAM board for users requiring the most economical means for adding RAM to an OEM-80E microcomputer. It is designed using the high-performance MK4027-4, 4096 x 1-bit dynamic RAM, and includes address strapping options for positioning the decoded memory space to start on any 4K incremental address boundary.

The RAM-80BE is a combination memory and I/O expansion board. The memory may be configured to have a memory capacity of 16K, 32K, 48K, or 65K bytes of RAM. This on-board memory expandability is made possible by population options of either eight, sixteen, twenty-four or thirty-two MK4116-4 (16,384 x 1 MOS dynamic RAM) memories. The RAM-80BE provides strapping options for positioning the decoded memory space to start on any 16K address boundary. In addition to the add-on memory, the RAM-80BE provides four 8-bit I/O ports from the two on-board MK3881 Z80 PIO circuits. Each I/O port is fully TTL-buffered and has two handshake lines per I/O port. The RAM-80BE also includes logic for "Page-Mode Operation" which permits up to 1 megabyte of memory (sixteen 65K x 8 RAM-80BEs) to be used in a single OEM-80E system.

A complete set of documentation for each RAM-80E board is available to ensure easy utilization.
MEMORY ACCESS TIME
345ns (maximum)

POWER SUPPLY REQUIREMENTS

<table>
<thead>
<tr>
<th>Voltage</th>
<th>RAM-80AE</th>
<th>RAM-80BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12V±5%</td>
<td>200mA typ.</td>
<td>200mA typ.</td>
</tr>
<tr>
<td></td>
<td>575mA max.</td>
<td>575mA max.</td>
</tr>
<tr>
<td>-12V±5%</td>
<td>25mA typ.</td>
<td>25mA typ.</td>
</tr>
<tr>
<td></td>
<td>30mA max.</td>
<td>30mA max.</td>
</tr>
<tr>
<td>+5V±5%</td>
<td>370mA typ.</td>
<td>1.1A typ.</td>
</tr>
<tr>
<td></td>
<td>550mA max.</td>
<td>1.5A max.</td>
</tr>
</tbody>
</table>

MEMORY CYCLE TIME
450ns (minimum)

BOARD SIZE
250 mm x 233.4 mm x 18 mm

OPERATING TEMPERATURE
0°C to 50°C

CONNECTOR
Dual 64-pin Eurocard Connector

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM-80AE</td>
<td>16,384-byte RAM board with 32-MK4027s</td>
<td>MK78109</td>
</tr>
<tr>
<td>RAM-80BE</td>
<td>Expandable 16,384-byte RAM board with 8-MK4116s, sockets for additional MK4116s, 2—MK3881 Z80 PIOs, plus page-mode capability.</td>
<td>MK78110</td>
</tr>
<tr>
<td>RAM-80BE</td>
<td>RAM-80BE Operations Manual. Complete description of the electrical specifications, timing, and circuit operation of the RAM-80BE. Also includes a detailed schematic diagram, assembly drawing and parts list.</td>
<td>MK78555</td>
</tr>
<tr>
<td></td>
<td>RAM-80AE Operations Manual. Complete description of the electrical specifications, timing, and circuit operation of the RAM-80AE. Also includes a detailed schematic diagram, assembly drawing, and parts list.</td>
<td>MK78574</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>General Information</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 BUS</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>SDE Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>SDE Series Memory</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>SDE Series Accessories</td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>Software Disk Based</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>Development Systems</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>Systems Emulation Boards</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>Peripherals</td>
<td></td>
</tr>
</tbody>
</table>
The following SD Accessories are available.

SDE-EXTENDER BOARD

SDE-RMC6 to CRT CABLE

RMS-DFE CABLE 50 PIN
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE-EXT</td>
<td>SDE Extender Board</td>
<td>MK79062</td>
</tr>
<tr>
<td>SDE-RMC6 to CRT</td>
<td>Interface Cable to CRT</td>
<td>MK79152</td>
</tr>
<tr>
<td>RMS-DFE Cable 50 Pin</td>
<td>Interface Cable to Floppy Disc Enclosure</td>
<td>MK79088</td>
</tr>
</tbody>
</table>
FEATURES

- Standard 19-inch rack-mountable chassis; 7-inch panel height
- Removable structural foam front panel for internal access
- Front panel RESET switch and POWER-ON indicator
- Six-slot card cage
- Cards mounted horizontally for ease of cooling and cable routing
- Self-contained power supply and 115 CFM fan
- 100/115/230 Volt 50/60 Hz operation

DESCRIPTION

The Mostek SD Series rack-mount system (SDE-RMC6) offers a solution to rack mounting the line of SDE Series Microcomputer modules. The system features a self-contained power supply designed to work on voltages and frequencies available world-wide. All components are easily removed from front or top for improved maintenance. An attractive structural foam front panel is provided with system RESET switch and POWER-ON indicator. The front panel is designed with quick-release ball studs so that it can be quickly removed for access to internal components. The cards are mounted in a horizontal plane with I/O cabling at the rear of the card cage. The back panel has an I/O panel pre-punched for twelve 25-pin “D” type connectors, one 50-pin “D” connector, and one BNC connector for versatility. AC components on the back panel were selected to meet UL and VDE requirements and include: On/Off switch, voltage selection switch, fuse holder (3AG or 5 x 20 mm), and AC input receptacle/line filter.
INPUT POWER
100/115/230 volts AC ± 10% 50/60Hz

DC POWER AVAILABLE
+5 VDC at 12A max.
+12 VDC at 1.7A max.
-12 VDC at 1.7A max.

LOAD REGULATION
± .05% for a 50% load change

OUTPUT RIPPLE
3.0 mV PK-PK max.

TRANSIENT RESPONSE
30 microseconds for a 50% load change

SHORT CIRCUIT AND OVERLOAD PROTECTION
Automatic current limit/foldback

OVERVOLTAGE PROTECTION
+5 Volt output, set to 6.2 ± 0.4 volts

STABILITY
± 0.3% for 24 hours after warmup

THERMAL PROTECTION
Bi-metal thermostat or primary AC line set to cut out at 180°F (82°C)

CARD CAGE
Six slot for SD/E series module (250mm x 233.4mm) (9.19 x 9.84 in). Wire-wrap tail connector provided for SK2 I/O connectors. All SK1 connectors wired one-to-one. No PC modules supplied.

FUSING

<table>
<thead>
<tr>
<th>Line Voltage</th>
<th>MK78182</th>
<th>MK78182-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>110/115V</td>
<td>3 Amp 3AG*</td>
<td>3 Amp 5 x 20 mm</td>
</tr>
<tr>
<td>230 V</td>
<td>1.5 Amp 3AG</td>
<td>1.5 Amp 5 x 20mm*</td>
</tr>
</tbody>
</table>

*Configuration as shipped

LINE CORD SUPPLIED

<table>
<thead>
<tr>
<th>MK78182</th>
<th>MK78182-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to Belden model 17205B</td>
<td>Similar to Feller model 1100</td>
</tr>
</tbody>
</table>

FRONT PANEL CONTROLS

RESET switch
POWER ON Indicator

REAR PANEL CONTROLS

AC Power On/Off
AC fuse holder
AC line receptacle/filter
AC line voltage selector

WEIGHT
25 lbs (11.3 kg)
CHASSIS

a) 19" rack-mountable using the two rails supplied.
b) Slide mounting available with optional slide mounting bit and requires two inches of panel space below the unit.

OPERATING TEMPERATURE RANGE

0°C to 60°C

HUMIDITY

Up to 90% relative, non-condensing

DIMENSIONS

Height: 7.0 in. (17.8 cm) panel space 7.3 in. (18.5 cm) overall, including feet
Width: 19.0 in. (48.3 cm) at front panel 17.5 in. (44.5 cm) behind front panel
Depth: 21.1 in. (53.6 cm) with all protrusions 20.0 in. (50.8 cm) without foam front

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDE-RMC6</td>
<td>Rack-mounted CPU subsystem with SD/E series six-slot card cage with U.S. line cord and fuse. 100/115/230 Volts 50/60 Hz AC operation front panel, rails for rack mounting and operation manual included.</td>
<td>MK78182-1</td>
</tr>
<tr>
<td>SDE-RMC6-50</td>
<td>Same as above except with 5 x 20 mm fuse and European line cord.</td>
<td>MK78182-2</td>
</tr>
<tr>
<td>SDE-RMC6 to CRT</td>
<td>CRT Interface Cable Only</td>
<td>MK78152</td>
</tr>
<tr>
<td></td>
<td>SDE-RMC6 Operations Manual Only</td>
<td>MK79783</td>
</tr>
</tbody>
</table>

The following Mostek modules are compatible with the above CPU subsystem

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>MK78550</th>
<th>MK78590</th>
<th>MK78572</th>
<th>MK78591</th>
<th>MK79709</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM-80E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM-80E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLP-80E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D-80E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

The Mostek FLP-80DOS software package is designed for the Mostek dual floppy disk Z80 Development System or an MD board system. Further information on this system can be found in the MATRIX™ Data Sheet. FLP-80DOS includes:

- Monitor
- Debugger
- Text Editor
- Z80 Assembler
- Relocating Linking Loader
- Peripheral Interchange Program
- Linker
- A Generalized I/O System For Peripherals

These programs provide state-of-the-art software for developing Z80 programs as well as establishing a firm basis for OEM products.

MONITOR

The Monitor provides user interface from the console to the rest of the software. The user can load and run system programs, such as the Assembler, using one simple command. Programs in object and binary format can be loaded into and dumped from RAM. All I/O is done via channels which are identified by Logical Unit Numbers. The Monitor allows any software device handler to be assigned to any Logical Unit Number. Thus, the software provides complete flexibility in configuring the system with different peripherals. The Monitor also allows two-character mnemonics to represent 16-bit address values. Using mnemonics simplifies the command language. Certain mnemonics are reserved for I/O device handlers such as ‘DK’ for the flexible disk handler. The user can create and assign his own mnemonics at any time from the console, thus simplifying the command language for his own use. The Monitor also allows “batch mode operation” from any input device or file.

The Monitor commands are:

- **$ASSIGN** - assign a Logic Unit Number to a device.
- **$CLEAR** - remove the assignment of a Logical Unit Number to a device.
- **$RTABLE** - print a list of current Logic Unit Number-to-Device assignments.
- **$DTABLE** - print default Logical Unit Number-to-Device assignments.
- **$LOAD** - load object modules into RAM.
- **$GTABLE** - print a listing of global symbol table.
- **$GINIT** - initialize global symbol table.
- **$DUMP** - dump RAM to a device in object format.
- **$GET** - load a binary file into RAM from disk.
- **$SAVE** - save a binary file on disk.
- **$BEGIN** - start execution of a loaded program.
- **$INIT** - initialize disk handler.
- **$DDT** - enter DDT debug environment.
- **IMPLIED RUN COMMAND** - get and start execution of a binary file.

DESIGNER’S DEVELOPMENT TOOL - DDT

The DDT debugger program is supplied in a combination of ... on the FLP-80DOS diskette,... and absolute Z80 programs. Standard commands allow displaying and modifying memory and CPU registers, setting breakpoints, and executing programs. Mnemonics are used to represent Z80 registers, thus simplifying the command language.
The allowed commands are:

- **B** - Insert a breakpoint in user’s program.
- **C** - Copy contents of a block of memory to another location in memory.
- **E** - Execute a program.
- **F** - Fill an area of RAM with a constant.
- **H** - 16-bit hexadecimal arithmetic.
- **L** - Locate and print every occurrence of an 8-bit pattern.
- **M** - Display, update, or tabulate the contents of memory.
- **P** - Display or update the contents of a port.
- **R** - Display the contents of the user’s register.
- **S** - Hardware single step - requires Mostek’s AIM-80 board or AIM-Z80A board.
- **W** - Software single step.
- **V** - Verify memory (compare two blocks and print differences).

TEXT EDITOR - EDIT

The FLP-80DOS Editor permits random-access editing of ASCII character strings. The Editor works on blocks of characters which are rolled in from disk. It can be used as a line-or-character-oriented editor. Individual characters may be located by position or context. Each edited block is automatically rolled out to disk after editing. Although the Editor is used primarily for creating and modifying Z80 assembly language source statements, it may be applied to any ASCII text delimited by “carriage returns”.

The Editor has a pseudo-macro command processing option. Up to two sets of commands may be stored and processed at any time during the editing process. The Editor allows the following commands:

- **An** - Advance record pointer n records.
- **Bn** - Backup record pointer n records.
- **Cn dS1dS2d** - Change string S1 to string S2 for n occurrences.
- **Dn** - Delete the next n records.
- **En** - Exchange current records with records to be inserted.
- **Fn** - If n = 0, reduce printout to console device (for TTY and slow consoles).
- **In** - Insert records.
- **Ln** - Go to line number n.
- **Mn** - Enter commands into one of two alternate command buffers (pseudo-macro).
- **Q** - Quit - Return to Monitor.
- **Sn dS1d** - Search for nth occurrence of string S1.
- **Tn** - Insert records at top of file before first record.
- **Vn** - Output n records to console device.
- **Wn** - Output n records to Logical Unit Number five (LUN 5) with line numbers.
- **Xn** - Execute alternate command buffer n.

Z80 ASSEMBLER - ASM

The FLP-80DOS Assembler reads standard Z80 source mnemonics and pseudo-ops and outputs an assembly listing and object code. The assembly listing shows address, machine code, statement number, and source statement. The code is in industry-standard hexadecimal format modified for relocatable, linkable assemblies.

The Assembler supports conditional assemblies, global symbols, relocatable programs, and a printed symbol table. It can assemble any length program, limited only by a symbol table size of over 400 symbols. Expressions involving arithmetic and logical operations are allowed. Although normally used as a two-pass assembler, the Assembler can also be run as a single-pass assembler or as a learning tool. The following pseudo-ops are supported:

- **COND** - same as IF.
- **DEFB** - define byte.
- **DEFL** - define label.
- **DEFS** - define message (ASCII).
- **DEFW** - define word.
- **END** - end statement.
- **ENDC** - same as ENDF.
- **ENDIF** - end of conditional assembly.
- **EQU** - equate label.
- **GLOBAL** - global symbol definition.
- **IF** - conditional assembly.
- **INCLUDE** - include another file within an assembly.
- **NAME** - program name definition.
- **ORG** - program origin.
- **PSECT** - program section definition.
- **EJECT** - eject a page of listing.
- **TITLE** - place heading at top of each page of listing.
- **LIST** - turn listing on.
- **NLIST** - turn listing off.

RELOCATING LINKING LOADER - RLL

The Mostek FLP-80DOS Relocating Linking Loader provides state-of-the-art capability for loading programs into memory. Loading and linking of any number of relocatable or non-relocatable object modules is done in one pass. A non-relocatable module is always loaded at its starting address as defined by the ORG pseudo-op during assembly. A relocatable object module can be positioned anywhere in memory at an offset address.

The Loader automatically links and relocates global symbols which are used to provide communication or linkage between program modules. As object modules are loaded, a table containing global symbol references and definitions is built up. The symbol table can be printed to list all global symbols and their load address. The number of object modules which can be loaded by the Loader is limited only by the amount of RAM available for the modules and the symbol table.

The Loader also loads industry-standard non-relocatable, non-linkable object modules.
LINKER - LINK

The Linker provides capability for linking object modules together and creating a binary (RAM image) file on disk. A binary file can be loaded using the Monitor GET or IMPLIED RUN command. Modules are linked together using global symbols for communication between modules. The linker produces a global symbol table and a global cross reference table which may be listed on any output device.

The Linker also provides a library search option for all global symbols undefined after the specified object modules are processed. If a symbol is undefined, the Linker searches the disk for an object file having the file-name of the symbol. If the file is found, it is linked with the main module in an attempt to resolve the undefined symbol.

PERIPHERAL INTERCHANGE PROGRAM - PIP

The Peripheral Interchange Program provides complete file maintenance facilities for the system. In addition, it can be used to copy information from any device or file to any other device or file. The command language is easy to use and resembles that used on DEC minicomputers. The following commands are supported:

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEND</td>
<td>Append files.</td>
</tr>
<tr>
<td>COPY</td>
<td>Copy files from any device to another device or file.</td>
</tr>
<tr>
<td>DIRECT</td>
<td>List Directory of specified Disk Unit.</td>
</tr>
<tr>
<td>ERASE</td>
<td>Delete a file.</td>
</tr>
<tr>
<td>FORMAT</td>
<td>Format a disk.</td>
</tr>
<tr>
<td>INIT</td>
<td>Initialize the disk handler.</td>
</tr>
<tr>
<td>RENAME</td>
<td>Rename a file.</td>
</tr>
<tr>
<td>STATUS</td>
<td>List number of used and available sectors on specified disk unit.</td>
</tr>
<tr>
<td>QUIT</td>
<td>Return to Monitor.</td>
</tr>
</tbody>
</table>

The first letter only of each command may be used.

DISK OPERATING SOFTWARE

The disk software, as well as being the heart of the MATRIX development system, can be used directly in OEM applications. The software consists of two programs which provide a complete disk handling facility.

INPUT/OUTPUT CONTROL SYSTEM - IOCS

The first package is called the I/O Control System (IOCS). This is a generalized blocker/deblocker which can interface to any device handler. Input and output can be done via the IOCS in any of four modes:
2. Line at a time, where the end of a line is defined by carriage return.
3. Multibyte transfers, where the number of bytes to be transferred is defined as the logical record length.
4. Continuous transfer to end-of-file, which is used for binary (RAM-image) files.

The IOCS provides easy application of I/O oriented packages to any device. There is one entry point, and all parameters are passed via a vector defined by the calling program. Any given handler defines the physical attributes of its device which are, in turn, used by the IOCS to perform blocking and deblocking.

FLOPPY DISK HANDLER - FDH

The Floppy Disk Handler (FDH) interfaces from the IOCS to a firmware controller for up to four floppy disk units. The FDH provides a sophisticated command structure to handle advanced OEM products. The firmware controller interfaces to Mostek's FLP-80E Controller Board. The disk format is IBM 3740 soft sectored. The software can be easily adapted to double-sided and double-density disks. The Floppy Disk Handler commands include:
- erase file
- create file
- open file
- close file
- rename file
- rewind file
- read next n sectors
- reread current sector
- read previous sector
- skip forward n sectors
- skip backward n sectors
- replace (rewrite) current sector
- delete n sectors

The FDH has advanced error recovery capability. It supports a bad sector map and an extensive directory which allows multiple users. The file structure is doubly-linked to increase data integrity on the disk, and a bad file can be recovered from either its start or end.
FLP-80 DOS Block Diagram

![Diagram of FLP-80 DOS block diagram](image)

Ordering Information

<table>
<thead>
<tr>
<th>Designator</th>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLP-80DOS</td>
<td>SDE based development system software (SD PROMs)</td>
<td>MK78142</td>
</tr>
<tr>
<td>FLP-80DOS</td>
<td>MD based development system software (MD PROMs)</td>
<td>MK77962</td>
</tr>
<tr>
<td>FLP-80DOS</td>
<td>FLP-80DOS Operations Manual Only</td>
<td>MK78557</td>
</tr>
</tbody>
</table>
FEATURES

- Multi-tasking executive
- Debugger which recognizes task data structures
- Macro files to facilitate building tasks
- Memory-pool manager
- Timer handler which simulates any number of timers using one hardware timer
- I/O drivers for line printer, terminal, and floppy disk
- Basic I/O service subroutines to facilitate building new I/O drivers
- Error-handler task which provides standard system error recovery

INTRODUCTION

The Mostek MITE-SO software package is designed for applications requiring asynchronous event handling of multiple tasks. MITE-SO provides the basic services for managing the CPU's resources in a real-time, multi-task environment. MITE-SO is a software package provided on diskette and includes:

- MITE-80
- MITE-80 Debug
- MITE-80 MACROS
- MITE-80 System Linkages
- MITE-80 Timer Handler
- MITE-80 Memory-Pool Manager

These programs provide the capability for controlling real-time, multiple-task applications as well as providing a way of developing and debugging real-time programs. The programs can be developed using a Mostek FLP-80DOS software package that includes a MACRO-80 Assembler.

MITE-80/BIOS is the Mostek Basic Input/Output Services software package. It provides a common set of routines to facilitate the design of I/O drivers and includes the I/O drivers for terminal, printer, and floppy disk. All of the MITE-80/BIOS modules are designed to operate under MITE-80. The MITE-80/BIOS package supplements MITE-80 in that the routines and drivers provided are designed for real-time multiple asynchronous applications. The MITE-80/BIOS package is provided on diskette and includes:

- MITE-80/BIOS Terminal Driver
- MITE-80/BIOS Printer Driver
- MITE-80/BIOS Floppy-Disk Driver
- MITE-80/BIOS Basic I/O Service Routines
- MITE-80/BIOS MACRO Files
- MITE-80/BIOS Equate Files
- MITE-80/BIOS Error-Handler Task

MITE-80

MITE-80 provides a user with centralized control of the Z80 CPU's resources. In managing this control, MITE-80 uses two data structures, a Task Control Block (TCB), and a Message Block (MB), as well as several system services that are callable from user programs.

TASK CONTROL BLOCK (TCB)

A TCB uniquely identifies a task within the system. Each TCB is a minimum 10 bytes in length and contains the task status, task priority, system link, message pointer, stack pointer, and task name. Each task is also required to provide a minimum of 16 bytes of stack area for MITE-80 usage. The number of tasks that MITE-80 can accommodate is limited only by the amount of user-allocated TCB memory. The determination of which task executes, and when, is accomplished by a status byte and a priority level. A task can be assigned any one of 127 priority levels and any number of tasks can share the same priority level.

MESSAGE BLOCK (MB)

An MB is used to transfer information between tasks. Each MB is a minimum eight bytes in length and contains status, message priority, system link, receiver pointer, and sender pointer. An optional data field can follow the MB; its contents and length are defined by user application. MBs can be sent with a queuing option of FIFO or LIFO and with the option of either specified priority or task priority. The order in which a task processes MBs is determined by the MB's priority level. Any one of 127 priority levels can be selected.

SERVICES

The MITE-80 services provided allow for the handling of
messages between tasks and for task creation and cancelling. Additional services allow for the control of interrupt events and CPU interrupts.

The Services provided are:

- **MBSN**: Send a message to a task.
- **MBSNW**: Send a message to a task and wait for a message to be available.
- **M8RSN**: Resend a message to a task.
- **M8RSNW**: Resend a message to a task and wait for a message to be available.
- **M8RCV**: Receive a message if one is available.
- **M8RCVW**: Receive a message, otherwise wait until one is available.
- **M8FWD**: Forward a message to a task.
- **M8FWDW**: Forward a message to a task and wait for a message to be available.
- **M8RET**: Return a message to the sending task.
- **M8RETW**: Return a message to the sending task and wait until a message is available.
- **M8CAN**: Cancel a message sent to a task.
- **M8FIND**: Find the TCB address of a specified task name.
- **M8WINT**: Wait for an interrupt event to be posted.
- **M8PINT**: Post an interrupt event which is completed.

MITE-80 SYSTEM LINKAGES

A system linkage file is provided which contains linkage addresses for the system routines. The user can link unique application programs to the MITE-80 services with this file. This file will minimize any impact on user programs whenever MITE-80 is enhanced.

MITE-80 TIMER HANDLER

A Timer Handler is provided for control over an MK3882 Counter Timer Circuit (CTC) chip. The timer can be used for applications requiring event time delays or for event watchdog alerts. The timer executes as a MITE-80 task. A maximum time duration of approximately 14 minutes in increments of 12.8 milliseconds is provided.

MITE-80 MEMORY-POOL MANAGER

A Memory-Pool Manager provides the user with a way of allocating and deallocating memory blocks. The user can configure an area of memory in up to 253 memory pools, with each pool consisting of a unique memory-block size. A macro is provided in the MITE-80 MACRO FILE to aid the user in configuring the pools.

MITE-80 MACROS

A macro file is provided to aid the user in defining and developing MITE-80 TCBs. The macros will construct and integrity-check a TCB from user-specified parameters. The macros will also generate code which will install the TCB into the MITE-80 system.

MITE-80/BIOS TERMINAL DRIVER

The Terminal Driver provides asynchronous input and output interface between user tasks operating under MITE-80 and an operator's terminal interfaced to an MDX-EPROM/UART Card. The Driver operates as a task under MITE-80 and can accommodate multiple terminal devices. Various parameters are user-configurable to allow the specifying of unique characteristics for each terminal.

MITE-80/BIOS PRINTER DRIVER

The Printer Driver provides output control between user tasks operating under MITE-80 and a printer interfaced to a Mostek MDX-PIO Card. The Driver operates as a task under MITE-80 and can accommodate multiple printer devices. Various Driver parameters are user-configurable to allow the specifying of unique characteristics for each printer.

MITE-80/BIOS FLOPPY-DISK DRIVER

The Floppy-Disk Driver provides input and output control between user tasks operating under MITE-80 and a floppy-disk drive interfaced to an MDX-FLP Card. The Driver operates as a task under MITE-80 and can accommodate multiple disk drives. The Driver can handle the standard
eight-inch and the mini 5.25-inch disk drives. Various Driver parameters are user-configurable to allow the specifying of unique characteristics for each disk drive.

MITE-80/BIOS BASIC I/O SERVICE ROUTINES

The basic I/O routines provide a common set of I/O services which can be used to facilitate the design of user-developed drivers. The routines provide functions that all drivers need, such as user-buffer-pointer maintenance, hardware initialization and character interpretation. All of the routines are re-entrant and can be used by as many Driver tasks as required by the application. The routines work with data provided in the calling task's Task Control Block and the Message Block currently being serviced by the Driver task.

The Mostek-supplied drivers for Terminal, Printer, and Floppy Disk all use the basic I/O routines. Memory savings can be realized by using the basic I/O routines since common functions such as buffer-pointer maintenance and special-character interpretation (carriage return, line feed, tab) required by many I/O drivers are centralized in the basic I/O service routines.

MITE-80/BIOS provides seven callable routines for accessing the common services:

```
CALL NAME SERVICES
IO?WHY  - Common decode of request and initialization
IO?GNC  - Get next character from buffer, for output
IO?PNC  - Put next character into buffer, for input
IO?ISR  - Interrupt service handling
IO?OPN  - Open device
IO?EOB  - End-of-Block Routine
IO?ILL  - Illegal operation processor
```

MITE-80/BIOS MACRO FILES

A pair of I/O macro files is provided to assist in constructing the Driver's Task Control Block along with their unique device characteristics. A general-purpose I/O task macro is also included for constructing the mandatory TCB parameters on user-developed Drivers.

MITE-80/BIOS EQUATE FILES

Two equate files are provided to support MITE-80/BIOS. The file IOTASK.EQU provides default definitions for various MITE-80/BIOS macros. The file BIOS.EQU provides definitions for the MITE-80/BIOS extensions to the MITE-80 task control block (TCB) and message block (MB).

MITE-80/BIOS ERROR-HANDLER TASK

The Error-Handler task provides a common facility for I/O error recovery for all MITE-80/BIOS driver tasks.

CONFIGURATION

The various modules of MITE-80/BIOS are designed to work with specific Mostek hardware:

Termial Driver:
MDX-EPROM/UART Card and one CTC Channel (MK3883 available on MDX-CPU Card), interfaced to a Hazeltine or equivalent terminal.

Printer Driver:
MDX-PIO Card interfaced to a Centronics type printer or equivalent.

Floppy-Disk Driver:
MDX-FLP Card interfaced to a Shugart type disk drive or equivalent.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITE-80/BIOS</td>
<td>MITE-80/BIOS Software Package. The software is supplied on Mostek diskette as relocatable object. The software includes MITE-80, MITE-80 DEBUG, MACROS, EQUATES, BIOS Timer Handler, Terminal Driver, Floppy-Disk Driver, Printer Driver, and Memory-Pool Manager. MITE-80/BIOS Operation Manual is included. The attached Standard Software License Agreement and Registration Form must accompany the Purchase Order.</td>
<td>MK77972</td>
</tr>
<tr>
<td></td>
<td>MITE-80 Operation Manual. Detailed description of the operation and use of the MITE-80 software package.</td>
<td>MK79726</td>
</tr>
<tr>
<td></td>
<td>BIOS Operation Manual. Detailed description of the operation and use of the BIOS-80 software package.</td>
<td>MK79784</td>
</tr>
</tbody>
</table>
FEATURES

- Meets ANSI standard on BASIC (X3.60 - 1978)
- Direct access to CPU I/O Ports
- Ability to read or write any memory location (PEEK, POKE)
- Arrays with up to 255 dimensions
- Dynamic allocation and deallocation of arrays
- IF...THEN...ELSE and IF...GO TO (both if's may be nested)
- Direct (immediate) execution of statements
- Error trapping, with error messages in English
- Four variable types: Integer, string, real and double-precision real
- Long variable names significant up to 40 characters
- Full PRINT USING capabilities for formatted output
- Extensive program editing facilities
- Trace facilities
- Can call any number of assembly-language subroutines
- Boolean (logical) operations
- Supports up to six sequential and random access files on floppy disk
- Variable record length in random access files from one to 128 bytes/record
- Complete set of file manipulation statements
- Occupies only 23K bytes, not including operating system
- Supports console and line printer I/O
- Allows console output to be redirected to the line printer
- WHILE...WEND structured construct
- Programs can be saved on disk in a protected format that cannot be listed on console

DESCRIPTION

Mostek ANSI BASIC is an extensive implementation of Microsoft BASIC for the Z80 microprocessor. Its features are comparable to the BASICS found on minicomputers and large mainframes. Mostek ANSI BASIC is among the fastest microprocessor BASICS available. Designed to operate on Mostek Systems with FLP-80DOS V2.1 and with 48K bytes or more memory, Mostek BASIC provides a sophisticated software development tool.

Mostek ANSI BASIC is implemented as an interpreter and is highly suitable for user-interactive processing. Programs and data are stored in a compressed internal format to maximize memory utilization. In a 64K system, 28K of user’s program and data storage area are available.

Unique features include long variable names, substring assignments and hexadecimal and octal constants. Many other features ease the task of programming complex functions. The Programmer is seldom limited by array size (up to 255 dimensions, with run-time allocation and deallocation) or I/O restrictions. Full PRINT USING capabilities allow formatted output, while both input and output may be performed with multiple sequential and random files on floppy disk as well as with the CPU I/O ports. Editing, error trapping, and trace facilities greatly simplify program debugging.
<table>
<thead>
<tr>
<th>Commands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO CLEAR</td>
</tr>
<tr>
<td>FILES LIST</td>
</tr>
<tr>
<td>NEW NULL</td>
</tr>
<tr>
<td>SAVE SYSTEM TRON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program Statements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL CHAIN COMMON</td>
</tr>
<tr>
<td>DEFINT DEFSTR DEFUSR</td>
</tr>
<tr>
<td>END ERASE ERROR</td>
</tr>
<tr>
<td>GOTO IF ... THEN(ELSE) IF ... GOTO</td>
</tr>
<tr>
<td>ON ... GOSUB ON ... GOTO</td>
</tr>
<tr>
<td>REM RESUME STOP</td>
</tr>
<tr>
<td>WHILE ... WEND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input/Output Statements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE DATA FIELD GET</td>
</tr>
<tr>
<td>LINE INPUT LINE INPUT#</td>
</tr>
<tr>
<td>NAME OPEN OUT</td>
</tr>
<tr>
<td>PRINT# USING WRITE#</td>
</tr>
<tr>
<td>INPUT# KILL LPRINT</td>
</tr>
<tr>
<td>LPRINT USING LSET NAME</td>
</tr>
<tr>
<td>PRINT USING PRINT#</td>
</tr>
<tr>
<td>READ RESTORE RESET</td>
</tr>
<tr>
<td>OPTION BASE STOP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>= - + * /</td>
</tr>
<tr>
<td>>= <> MOD NOT AND</td>
</tr>
<tr>
<td>OR XOR IMP EQU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arithmetic Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS ATN CDBL CINT COS</td>
</tr>
<tr>
<td>EXP ERR ERL FIX FRE</td>
</tr>
<tr>
<td>LOG RND SGN SIN SQR</td>
</tr>
<tr>
<td>USR VARPTR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>String Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC CHR$ HEX$ INSTR</td>
</tr>
<tr>
<td>MID$ OCT RIGHT$ SPACE$</td>
</tr>
<tr>
<td>STRINGS VAL LEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input/Output Functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVI CVS CVD DSKF EOF</td>
</tr>
<tr>
<td>INPUT$ LOC LOF LOG LPOS</td>
</tr>
<tr>
<td>MKI$ MKS$ PEEK POKE POS</td>
</tr>
<tr>
<td>WAI EOF INP</td>
</tr>
<tr>
<td>DESIGNATOR</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Mostek ANSI BASIC</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

In order to receive Mostek ANSI BASIC, the Mostek BASIC non-disclosure agreement must be signed and returned with each purchase order.
FEATURES

- All of ANSI standard FORTRAN IV (X3.9-1966) except complex data type
- Generates relocatable linkable object code
- Subroutines may be compiled separately and stored in a system library
- Compiles several hundred statements per minute in a single pass
- Enhancements include
 1. LOGICAL variables which can be used as integer quantities
 2. LOGICAL DO loops for tighter, faster execution of small-valued integer loops
 3. Mixed-mode arithmetic
 4. Hexadecimal constants
 5. Literals and Holleriths allowed in expressions
 6. Logical operations on integer data, .AND., .OR., .NOT., and .XOR. can be used for 16-bit or 8-bit Boolean operations
 7. READ/WRITE End-of-File or Error Condition transfer. END=n and ERR=n (where n is the statement number) can be included in READ or WRITE statements to transfer control to the specified statement on detection of an error or end-of-file condition
 8. ENCODE/DECODE for FORMAT operations to memory
- Long descriptive error messages
- Extended optimizations
- Z80-assemble-language subprograms may be called from FORTRAN programs

DESCRIPTION

Mostek’s FORTRAN IV Compiler package provides new capabilities for users of Z80-based microcomputer systems. Mostek FORTRAN is comparable to FORTRAN compilers on large mainframes and minicomputers. All of ANSI Standard FORTRAN X3.9-1966 is included except the COMPLEX data type. Therefore, users may take advantage of the many applications programs already written in FORTRAN.

Mostek FORTRAN IV is unique in that it provides a microprocessor FORTRAN development package that generates relocatable object modules. This means that only the subroutines and system routines required to run FORTRAN programs are loaded before execution. Subroutines can be placed in a system library so that users can develop a common set of subroutines that are used in their programs. Also, if only one module of a program is changed, it is necessary to re-compile only that module.

The standard library of subroutines supplied with FORTRAN includes:

- ABS
- INT
- AMAX0
- DMAX1
- MIN1
- SIGN
- DIM
- DEXP
- DLOG10
- DCOS
- DATAN
- DMOD
- OUT
- IABS
- IDINT
- AMAX1
- AMIN0
- DMIN1
- ISIGN
- DIM
- SNGL
- ALOG
- TANH
- DATAN
- POKE
- INP
- DABS
- AMOD
- MAXO
- MIN1
- FLOAT
- IFIX
- DSIGN
- DBLE
- ALOG10
- DSIN
- COS
- SQRT
- DSQRT
- ATAN2
- DATAN2
- INP
The library also contains routines for 32-bit and 64-bit floating point addition, subtraction, multiplication, division, etc. These routines are among the fastest available for performing these functions on the Z80.

A minimum system size of 48K bytes (including FLP-80DOS) is required to provide efficient optimization. The Mostek FORTRAN compiler optimizes the generated object code in several ways:

1. Common subexpression elimination. Common sub-expressions are evaluated once, and the value is substituted in later occurrences of the subexpression.

2. Peephole Optimization. Small sections of code are replaced by more-compact, faster code in special cases.

3. Constant folding. Integer constant expressions are evaluated at compile time.

4. Branch Optimizations. The number of conditional jumps in arithmetic and logical IFs is minimized.

Long descriptive error messages are another feature of the compiler. For instance:

?Statement unrecognized
is printed if the compiler scans a statement that is not an assignment or other FORTRAN statement. The last twenty characters scanned before the detected error are also printed.

As an option, the compiler generates a fully symbolic listing of the machine language to be generated. At the end of the listing, the compiler produces an error summary and tables showing the addresses assigned to labels, variables and constants.

LINKER

A relocating linking loader (LINK-80) and a library manager (LIB-80) are included in the Mostek FORTRAN package.

LINK-80 resolves internal and external references between the object modules loaded and also performs library searches for system subroutines and generates a load map of memory showing the locations of the main program, subroutines and common areas.

LIBRARY MANAGER

LIB-80 allows users to customize libraries of object modules. LIB-80 can be used to insert, replace or delete object modules within a library, or create a new library from scratch. Library modules and the symbol definitions they contain may also be listed.

XCPM UTILITY

A utility program (XCPM) is included which allows the user to copy FORTRAN source programs from CP/M diskettes to FLP-80DOS diskettes. At this point the programs can be compiled using the Mostek FORTRAN compiler.

FTRANS UTILITY

FTRANS allows the user to convert object programs produced by the Mostek Z80 assembler to a form that is linkable to FORTRAN programs.

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostek FORTRAN IV</td>
<td>FORTRAN IV high-level compiler to run on FLP-80DOS. Requires 48K bytes of RAM. Includes Operations Manual.</td>
<td>MK78158</td>
</tr>
<tr>
<td></td>
<td>Mostek FORTRAN IV Operations Manual only</td>
<td>MK79643</td>
</tr>
</tbody>
</table>
FEATURES

- Assembles standard 3870/F8 instruction set to produce relocatable, linkable object modules.
- Provides nested conditional assembly, an extensive expression evaluation capability, and an extended set of assembler pseudo-ops:
 - ORG - origin
 - EQU - equate
 - DC - define constant
 - DEFL - set/define macro label
 - DEFM - define message
 - DEFB - define byte
 - DEFW - define word
 - DEFS - define storage
 - END - end of program
 - GLOBAL - global symbol definition
 - NAME - module name definition
 - PSECT - program section definition
 - IF/ENDIF - conditional assembly
 - INCLUDE - include another file in source module
 - LIST/NLIST - list on/off
 - CLIST - code listing only of macro expansions
 - ELIST - list/no list of macro expansions
 - EJECT - eject a page of listing
 - TITLE - place title on listing

- Provides options for obtaining a printed cross-reference listing, terminating after pass one if errors are encountered, redefining standard MK3870 opcodes via macros, and obtaining an unused-symbol reference table.

- Provides the most advanced macro handling capability on the microcomputer market which includes:
 - optional arguments
 - default arguments
 - looping capability
 - global/local macro labels
 - nested/recursive expansions
 - integer/boolean variables
 - string manipulation
 - conditional expansion based on symbol definition
 - call-by-value facility
 - expansion of code-producing statements only
 - expansion of macro-call statements only

- An extended instruction set for the MK3870 is defined via a macro definition file and is shipped with the MACRO-70 diskette.
- Listing and object modules can be output on disk files or any device.
- Compatible with other Mostek 3870/F8 assemblers and FLP-80DOS Version 2.0 or higher. Requires 32K or more of system RAM.

DESCRIPTION

MACRO-70 is an advanced upgrade from the 3870/F8 Cross Assembler (FZCASM). In addition to its macro capabilities, it provides for nested conditional assembly and allows symbol lengths of any number of characters. It supports global symbols, relocatable programs, a symbol cross-reference listing, and an unused-symbol reference table. MACRO-70 is upward compatible with all other Mostek 3870/F8 Assemblers.

The Mostek 3870/F8 Macro Assembler (MACRO-70) is designed to run on the Mostek Dual-Disk Development System with 32K or more of RAM. It requires FLP-80DOS, Version 2.0 or higher. Macro pseudo-ops include the following:

- MACRO/MEND - define a macro
- MNEXT - step to next argument
- MIF - evaluate expression and branch to local macro label if true
- MGOTO - branch to local macro label
- MEXIT - terminate macro expansion
- MERROR - print error message in listing
- MLOCAL - define local macro label

Predefined macro-related parameters include the following:
- %NEXP - current number of this expansion
- %NARC - number of arguments passed to expansion
- #PRM - expand last-used argument
- %NPRM - number of last-used argument
- %NCHAR - number of characters in argument

The operations manual describes in detail all facilities available in MACRO-70 and provides a host of examples.
and sample print-outs. An extended instruction set which is
designed to ease programming for the MK3870 is defined
in the manual. The new instructions are provided on the
MACRO-70 diskette in the form of a macro definition file
which can be included in a source program.
Downloading to other Mostek systems is facilitated by a
utility program called F8DUMP, which is supplied on the
MACRO-70 diskette.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACRO-70</td>
<td>3870/F8 Macro Cross Assembler, binary program supplied on a standard FLP-80DOS diskette. Includes F8DUMP utility, an extended instruction set, macro definition file, and the Operations Manual.</td>
<td>MK79085</td>
</tr>
<tr>
<td>MACRO-70</td>
<td>Operations Manual</td>
<td>MK79635</td>
</tr>
</tbody>
</table>
FEATURES

- Assembles standard Z80 instruction set to produce relocatable, linkable, object modules
- Provides nested conditional assembly, an extensive expression evaluation capability, and an extended set of assembler pseudo-ops:

 ORG - origin
 EQU - equate
 DEFL - set/define macro label
 DEFM - define message
 DEFB - define byte
 DEFW - define word
 DEFS - define storage
 END - end of program
 GLOBAL - global symbol definition
 NAME - module name definition
 PSECT - program section definition
 IF/ENDIF - conditional assembly
 INCLUDE - include another file in source module
 LIST/NLIST - list on/off
 CLIST - code listing only of macro expansions
 ELIST - list/no list of macro expansions
 EJECT - eject a page of listing
 TITLE - place title on listing

- Provides options for obtaining a printed cross-reference listing, terminating after pass one if errors are encountered, redefining standard Z80 opcodes via macros, and obtaining an unused-symbol reference table.

- Provides the most advanced macro handling capability in the microcomputer market which includes:
 - optional arguments
 - default arguments
 - looping capability
 - global/local macro labels
 - nested/recursive expansions
 - integer/boolean variables
 - string manipulation
 - conditional expansion based on symbol definition
 - call-by-value facility
 - expansion of code-producing statements only
 - expansion of macro-call statement only

- Listing and object modules can be output on disk files or any device.
- Compatible with other Mostek Z80 assemblers and FLP-80DOS Version 2.0 or higher. Requires 32K or more of system RAM.

DESCRIPTION

MACRO-80 is an advanced upgrade from the FLP-80DOS Assembler (ASM). In addition to its macro capabilities, it provides for nested conditional assembly and allows symbol lengths of any number of characters. It supports global symbols, relocatable programs, a symbol cross-reference listing, and an unused-symbol reference table. MACRO-80 is upward compatible with all other Mostek Z80 assemblers.

The Mostek Z80 Macro Assembler (MACRO-80) is designed to run on the Mostek Dual-Disk Development System with 32K or more of RAM. It requires FLP-80DOS, Version 2.0 or higher. Macro pseudo-ops include the following:

- MACRO/MEND - define a macro
- MNEXT - step to next argument
- MIF - evaluate expression and branch to local macro label if true
- MGOTO - branch to local macro label
- MEXIT - terminate macro expansion
- MERROR - print error message in listing
- MLOCAL - define local macro label

Predefined macro-related parameters include the following:

- %NEXP - current number of this expansion
- %NARC - number of arguments passed to expansion
- #PRM - expand last-used argument
- %NPROM - number of last-used argument
- %NCHAR - number of characters in argument

The operations manual describes in detail all facilities available in MACRO-80 and provides a host of examples and sample print-outs.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACRO-80</td>
<td>Z80 Macro Assembler, binary program supplied on a standard FLP-80DOS diskette, with Operations Manual.</td>
<td>MK78165</td>
</tr>
<tr>
<td></td>
<td>MACRO-80 Operations Manual</td>
<td>MK79635</td>
</tr>
</tbody>
</table>
FEATURES

- Modular MDX board-level software
- User-expandable diagnostic software
- Stand-alone or integrated diagnostic package execution
- Interrupt-or non-interrupt-driven diagnostics
- Board-level diagnostics for:
 - CPU
 - SC/D
 - RAM
 - FLP
 - ROM
 - MATH
 - A/D 8

DESCRIPTION

MEDEX-80 is a diagnostic software package for the MDX series of cards. MEDEX-80 is an acronym for MDX Expandable Diagnostic Exercise software for the Z80. It is a modular software package designed to diagnose faulty MDX card(s) within a system configuration. MEDEX-80 can function as a stand-alone package or it can be integrated into a user’s software package. Only those modules applicable to a user’s requirements need be used.

MEDEX-80 can reside in either RAM or EPROM, and the amount of memory required is dependent on the standard modules selected and the unique user modules included in the package. This diagnostic software package is designed to operate with the following minimum hardware configuration:
- Mostek MDX-CPU card (MDX-CPU1 or CPU2)
- Mostek MDX-SC/D card

SOFTWARE DESCRIPTION

MEDEX-80 is comprised of system software and diagnostic software. The system software consists of initialization, monitor, and MDX-SC/D card handler. The diagnostics software consists of test programs for only those MDX cards having little or no on-card user configurability. For those MDX cards having extensive on-card user configurability, the diagnostic programs can be supplied by the user. The expandable structure of MEDEX-80 permits the inclusion of user-developed diagnostic programs within its structure. The diagnostic software modules that are supplied in MEDEX-80, version 2.0 are as follows:

1. MDINI - Initialization which provides the set-up requirements of other MEDEX-80 modules.
2. MDMON - Monitor which provides control supervision and interface to rest of diagnostic modules.
3. MDSCH - MDX-SC/D card handler which provides user interface to the card’s I/O devices.
4. MDRAM - Diagnostic RAM test which provides confidence test of RAM areas by means of pattern tests.
5. MDROM - Diagnostic ROM test which provides confidence test of ROM areas by means of checksums.
6. MDCTC - Diagnostic CTC test which provides confidence test of MDX-CPU card’s CTC by means of functional exercising.
7. MDSCD - SC/D card test which provides confidence test of MDX-SCD card by means of functional exercising.
8. MDFLP - Diagnostic Floppy Disk card test which provides confidence test of MDX-FLP card by means of functional exercising.
9. MDMTH - Diagnostic Math Card test which provides confidence test of AM 9511 Math Chip and MDX-MATH card by means of functional testing.
10. MDAD8 - Diagnostic A/D 8 card test which provides confidence test which provides confidence test of MDX-A/D 8 card by means of functional exercising.

A software users manual for each diagnostic module is provided on the MEDEX-80 diskette and provides indepth description of each module.
THEORY OF OPERATION

The basic theory of operation of both MEDEX-80 and the MDX-SC/D Card is as follows. The user provides a CPU control transfer to the MEDEX-80 initialization module through a jump instruction or a depressed switch action. This initialization module sets up the MEDEX-80 monitor, other MDX cards that need initialization, and the MDX-SC/D card. Once initialization is complete, the monitor takes control of the diagnostic system. To perform a test, the operator selects the desired diagnostic test number via the thumbwheels on the SC/D card. The RESET/START switch is then momentarily depressed to the Start position to activate the specified test number. The monitor validates the test number and transfers CPU control to the proper diagnostic test program. The display will indicate a “test in progress” readout. If the test is permitted to execute until completion of the selected diagnostic test, then, upon completion, the test results will be indicated in the display. The display indication of pass or fail, and type of fail, is dependent on the diagnostic test program. A different or same diagnostic test can now be executed following the cycle as just described. If the operator desires to terminate a diagnostic test in progress, or to reinitialize the diagnostic system, the RESET/START switch is momentarily depressed to the RESET position. The depression to the RESET position will cause the MEDEX-80 initialization module to again be executed, or cause execution of the users initialization (0000H) routine if the Reset Switch is strapped to PBRESET.

INTERRUPTS

MEDEX-80 utilizes the mode 2 interrupts of the Z80. Each diagnostic module’s initialization process will load its respective interrupt vector(s) on its respective MDX card. MEDEX-80 will initialize the CPU’s I register during its initialization. Whenever an interrupt occurs, the MDX Card’s interrupt vector is linked with the I register, forming an address which points to the respective entry address of the Diagnostic Interrupt Vector Table. An indirect branch to the address within this entry is then performed by the CPU and process control is transferred to the specified interrupt service routine.

The handling of an interrupt from an MDX card is the responsibility of the respective card’s diagnostic module. If a user elects not to involve interrupts within the diagnostic module test, then, during the diagnostic module’s initialization, the user should configure the MDX card’s interrupt control word to disable interrupts. During the MEDEX-80 initialization phase, the Z80 system-wide interrupt capability is disabled. MEDEX-80 will enable system-wide interrupt capability after all diagnostic modules have completed their unique initialization. During each diagnostic module’s initialization, the user should disable the unique MDX card’s interrupt. When the diagnostic module is selected to execute, the first operation should be to enable its respective MDX card’s interrupt capability, and upon completion of the test, the card’s interrupt capability should be disabled.

CONCEPT OF DIAGNOSTIC MODULE

The diagnostic module is a program which executes a specific test or tests, and, upon completion, outputs the test results to the operator display in the form of a coded number.

Each diagnostic module is composed of the following programs, or submodules:

1. Initialization - Provides the unique initialization requirements.

2. Test - Provides the unique test(s) to exercise and determine specific faults, determines the pass/fail decision on the performed test, and provides coded operator display.

3. ISR - Provides the unique interrupt service routine handling if applicable to this diagnostic module.

MEDEX-80 DISKETTE

A floppy diskette formatted in the IBM 3740 soft-sectored single-density fashion is provided with the SC/D Card. The diskette is readable on a FLP-80DOS-based MDX or MATRIX system. The diskette includes the following:

1. Modules - An assembly source-code file of each of the MEDEX-80 modules.

2. User Manuals - A software user manual for each of the above source modules. The user manual files are in ASCII text format for output to a printer. Each user manual has a unique section number which permits, once all sections are printed, the assembling into one MEDEX-80 User Manual.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDEX-80</td>
<td>MEDEX-80 diskette with 10 diagnostic software modules and a user manual (in ASCII test format) for each of the modules.</td>
<td>MK77968</td>
</tr>
<tr>
<td>MEDEX-80 Users Manual Only</td>
<td></td>
<td>MK79873</td>
</tr>
</tbody>
</table>
Standard License Agreement and Registration Form

All Mostek Corporation software products are sold on condition that the purchaser agrees to the following terms:

1. The Purchaser agrees not to sell, provide, give away, or otherwise make available to any unauthorized persons, all or any part of, the Mostek software products listed below, including, but not restricted to: object code, source code, and program listings. This license allows the purchaser to operate the software product only on the system referenced by serial number below. Mostek retains title to all Mostek software products including diskettes and tapes.

2. The Purchaser may at any time demonstrate the normal operation of the Mostek software product to any person.

3. Purchaser may not copy materials furnished with Mostek software products but copies may be obtained from Mostek. No part of the Mostek software products may be copied by Purchaser in printed or machine-readable form unless for the purpose of study, modification or back-up. Purchaser will place Mostek’s copyright notice on all copies and maintain records, available at Mostek’s request, of the location of the copies.

4. Mostek’s sole obligation shall be to make available to Purchaser all published modifications or updates made by Mostek to licensed software products which are published and made generally available within one (1) year from date of purchase, provided Purchaser has complied with the Software License Agreement and Registration Form.

5. In no event will Mostek be held liable for any loss, expense or damage, of any kind whatsoever, direct or indirect, including as a result of Mostek’s negligence. Mostek shall not be liable for any incidental damages, consequential damages and lost profits, arising out of or connected in any manner with any of Mostek’s software products described below.

6.MOSTEK MAKES NO WARRANTIES OF ANY KIND, WHETHER STATUTORY, WRITTEN, ORAL, EXPRESSED OR IMPLIED (INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY AND WARRANTIES ARISING FROM COURSE OR DEALING OR USAGE OF TRADE) WITH RESPECT TO THE SOFTWARE DESCRIBED BELOW.

7. Any license under this agreement may be terminated for breach by one month’s prior written notice and Purchaser will promptly return all copies of any parts of Mostek Software products.

List the following Software Products subject to this agreement

<table>
<thead>
<tr>
<th>Mostek Product Number (MK#)</th>
<th>Product Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AGREED TO:

PURCHASER

Name (PRINT)

Signature (PARTY)

Title

Date

PLEASE PRINT FOLLOWING INFORMATION:

Company Name

Date

Address

City ____________________________ State ____________________________ Zip Code __________

Country ____________________________ Telephone ()

Mostek Disk System Serial # ____________________________ or Mostek Disk Controller Serial # ____________________________

or □ Non Mostek Hardware

Date of Purchase ____________________________

Place of Purchase ____________________________

XIV-21
If you are purchasing this product from a Distributor, print the Distributor's name below and return this form to the Distributor; The distributor will provide a purchase order # and will then forward this form to the address below.

Distributor Name __

If you are purchasing this product direct from Mostek, check the Customer PO # box, provide your purchase order #, and return this form to the address below.

☐ Customer PO #
☐ Distributor PO #

RETURN THIS FORM TO:

Software Librarian, MS #510
Micro System Department
Mostek Corporation
1215 W. Crosby Road
P.O. Box 169
Carrollton, Texas 75006

*NOTE: Mostek will not ship this software product to customer until this signed form is received by the Mostek software librarian.
FEATURES

- Includes 23 useful subroutines and programs for the Z80, including:
 - Lawrence Livermore Lab’s Basic
 - Generalized sort program for up to eight fields per record
 - 8080 - Z80 source-code converter
 - Fast disk-to-disk copy utility
 - Hexadecimal Dump Utility to dump memory on files
 - Assembly Language Formatter Utility to format Z80 source into columns
 - Word Processor Program Version 2.0, used to format documents
 - Disk Recovery Utility used to recover bad disk files

- All programs are supplied in source, object, and binary format with complete documentation on a standard FLP-80DOS diskette

- Requires FLP-80DOS Version 2.0 or higher

DESCRIPTION

The Mostek FLP-80DOS Software Library is a collection of programs of general utility that run under FLP-80DOS Version 2.0 or higher. These programs are used quite extensively at Mostek. They are being offered in source format on diskette so that the user may not only use them as supplied, but may use them as a base for individually-tailored software.

This software library differs from other libraries in that all programs in the library have been developed or modified in-house. All programs in the library are in use at Mostek and all have some utility.

The FLP-80DOS Software Library Volume 1 consists of a User’s Guide and two diskettes containing the source and binary (or object for subroutines) forms for each one of the twenty-three included programs. In order to reduce the cost of the library, printed source listing are not supplied. The user can obtain a source listing easily by assembling the required source program. A brief User’s Guide is a part of each program source.

The FLP-80DOS Software Library is a “Level 2” product. “Level 2” software products are supplied by Mostek but are not supported in the areas of technical assistance or updates.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIB-80 Volume 1</td>
<td>Software Library including source, object, and binary</td>
<td>MK78164</td>
</tr>
<tr>
<td></td>
<td>formats on diskette, and a printed user’s guide.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Library Operation Manual Only</td>
<td>MK79621</td>
</tr>
</tbody>
</table>

XIV-23
INTRODUCTION

The Mostek MATRIX™ is a complete state-of-the-art, floppy disk-based computer. Not only does it provide all the necessary tools for software development, but it provides complete hardware/software debug through Mostek's AIM™ series of in-circuit emulation cards for the Z80, 8086, and 8088 as well as the 3870 family of single-chip microcomputers. The MATRIX has at its heart the powerful OEM-80E (Single Board Computer), the RAM-80BE (RAM I/O add-on board), and the FLP-80E (floppy disk controller board). Because these boards and software are available separately to OEM users, the MATRIX serves as an excellent test bed for developing systems applications.

The disk-based system eliminates the need for other mass storage media and provides ease of interface to any peripheral normally used with computers. The file-based structure for storage and retrieval consolidates the database and provides a reliable portable media to speed and facilitate software development.

The FLP-80DOS Disk Operating System is designed for maximum flexibility both in use and expansion to meet a multitude of end-user or OEM needs. FLP-80DOS is compatible with Mostek's SD and MD Series of OEM boards, allowing software designed on the MATRIX to be directly used in OEM board applications.

Development System Features

The MATRIX is an excellent integration of both hardware and software development tools for use throughout the complete system design and development phase. The software development is begun by using the combination of Mostek's Text Editor with "roll in-roll out" virtual memory operation and the Mostek relocating assembler. Debug can then proceed inside the MATRIX domain using its resources as if they were in the final system. Using combinations of the Monitor, Designer's Debugging Tool, execution time breakpoints, and single step/multistep operation along with a formatted memory dump, provides control for attacking those tough problems. The use of the Mostek AIM™ options provides extended debug with versatile hardware breakpoints on memory or port locations, a buffered in-circuit emulation cable for extending the software debug into its own natural hardware environment, and a history memory to capture bus transactions in real time for later examination.

The relocatable and linking feature of the assembler enables the use of contemporary modular design techniques whereby major system alterations can be made in small tractable modules. Using the Linker, the small modules can be combined to form a run-time module without major reassembly of the entire program.

Package System Features

From a system standpoint, the MATRIX has been designed to be the basis of an end product such as a small business/industrial computer. The flexibility provided in the FLP-80DOS operating system permits application programs to be as diverse as a high-level language compiler or a supervisory control system in the industrial environment. Other hardware options are available, with even more to be added. Expansion of the disk drive units to a total of four single-sided or double-sided units provides up to two megabytes of storage. This computer uses the third-generation Z80 processor supported with the power of a
complete family of peripheral chips. Through the use of its 158 instructions, including 16-bit arithmetic, bit manipulation, advanced block moves and interrupt handling, almost any application from communication concentrators to general purpose accounting systems is made easy.

OEM Features

The hardware and software basis for the MATRIX is also available separately to the OEM purchaser. Through a software licensing agreement, all Mostek software can be utilized on these OEM series of cards.

MATRIX SYSTEM SPECIFICATIONS

- Z80 CPU
- 4K-byte PROM bootstrap and Z80 debugger
- 60K bytes user RAM (56K contiguous)
- 4K bytes PROM bootstrap
- Eight 8-bit I/O ports using four PIOs with user-definable drivers/receivers
- Serial port: RS-232C and 20 mA current loop
- 4 channel counter/timer (CTC)
- Two single-density, single-sided disk drives; 250K bytes per floppy disk
- Three positions for AIM modules, A/D cards, Serial Interface, etc.

- Device drivers for paper tape readers, punches, card readers, line printers, Silent 700’s, Teletypes and CRT’s are included. Others can be added.
- PROM programmer I/O port. Programmer itself is optional.
- Bus compatible with Mostek SDE series of OEM boards

MATRIX RESIDENT SOFTWARE (FLP-80DOS)

A totally integrated package of resident software is offered in conjunction with the MATRIX consisting of:

Monitor
Text Editor
MACRO 80 Assembler
Linker
DDT-80 with extended debug through AIM™ modules
Peripheral Interchange Program
Floppy Disk Handler
I/O Control System
Device Driver Library
Batch Mode Operation

Monitor

The FLP-80DOS Monitor is the environment from which all activity in the system initiates. From the Monitor, any system routine such as PIP or a user-generated program is
begun by simply entering the program name. FLP-80DOS I/O is done in terms of logical unit numbers, as is commonly done in FORTRAN. A set of logical units is pre-assigned to default I/O drivers upon power up or reset. From the console the user can reassign any logical unit to any new I/O device and can also display logical unit assignments. Executable file creation can be done by the Save command; printable absolute object files can be produced using the Dump command.

Text Editor

The Text Editor permits editing/creating of any source file independent of the language being written. The Editor is both line and string oriented to give maximum utility and user flexibility. The Editor, through its virtual memory "roll in-roll out" technique, can edit a file whose length is limited only by maximum diskette storage. Included in the repertoire of 15 commands are macro commands to save time when encountering a redundant editing task. The Editor is also capable of performing in one operation all the commands which will fit into an 80-column command buffer.

The video Editor displays the text to be edited directly on the CRT screen as if it were a window into memory.

The window and cursor need only be positioned over the character to be changed. Then the new text can be added or the old deleted with the changed data displayed immediately on the screen. The video Editor allows programs (or any text) to be entered or corrected much more quickly and easily than TTY-oriented Editors allow.

Z80 Macro Assembler (MACRO-80)

The Mostek Z80 Macro Assembler (MACRO-80) is the most powerful macro assembler in the microcomputer market. In addition to its macro capabilities, it provides for nested conditional assembly and allows symbol lengths of any number of characters. It supports global symbols and relocatable programs. Features of MACRO-80 include the following:

- Assembles standard Z80 instruction set to produce relocatable, linkable, object modules.
- Provides nested conditional assembly, an extensive expression evaluation capability, and an extended set of assembler pseudo-ops:

DEF	- define storage
END	- end of program
GLOBAL	- global symbol definition
NAME	- module name definition
PSECT	- program section definition
IF/ENDIF	- conditional assembly
INCLUDE	- include another file in source module
LIST/NLIST	- list on/off
CLIST	- code listing only of macro expansions
ELIST	- list/no list of macro expansions
EJECT	- eject a page of listing
TITLE	- place title on listing

Provides options for obtaining a printed cross-reference listing, terminating after pass one if errors are encountered, redefining standard Z80 opcodes via macros, and obtaining an unused symbol reference table.

- Listing and object modules can be output on disk files or any device.
- Compatible with other Mostek Z80 assemblers and FLP-80DOS Version 2.0 higher.
- Provides the most advanced macro handling capability in the microcomputer market which includes:
 - optional arguments
 - default arguments looping capability
 - global/local macro labels
 - nested/recursive expansions
 - integer/boolean variables
 - string manipulation
 - conditional expansion based on symbol definition
 - call by value facility
 - expansion of code-producing statements only
 - expansion of macro call statement only

Macro pseudo-ops include the following:

MACRO/	- define a macro
MEND	- step to next argument
MNEXT	- evaluate expression and branch to local macro label if true
MIF	- branch to local macro label
MGOTO	- terminate macro expansion
MEXIT	- print error message in listing
MERROR	- define local macro label

Predefined macro-related parameters include the following:

%NEXP	- current number of this expansion
%NARC	- number of arguments passed to expansion
#PRM	- expand last used argument
%NPRM	- number of last used argument
%NCHAR	- number of characters in argument
The operations manual describes in detail all facilities available in MACRO-80 and provides a host of examples and sample print-outs.

Linker

The Linker program provides the capability of linking assembler-generated, absolute or relocatable object modules together to create a binary or run-time file. This process permits generation of programs which may require the total memory resources of the system. The linking process includes the library search option which, if elected, will link in standard library object files (device drivers, math pack functions) from disk to resolve undefined global symbols. Another option selects a complete global symbol cross-reference listing.

Peripheral Interchange Program (PIP)

PIP provides complete file maintenance activity for operations such as copy file from disk to disk, disk to peripheral, or any peripheral to any other peripheral supporting both file-structured and character-oriented devices. Key operations such as renaming, appending, and erasing files also exist along with status commands for diskette ID and vital statistics. PIP can search the diskette directories for any file or a file of a specific name, extension, and user number. The PIP operations are:

- **Append** - appends file 1 to file 2 without changing file 1.
- **Copy** - copies input files or data from an input device to an output file or device. The Copy command can be used for a variety of purposes such as listing files, concatenating individual files, or copying all the files on a single file from one disk unit (e.g. DKO) to a second disk unit (e.g. DK1)
- **Date** - allows the specifying of the date in day, month, and year format. The date specified will be used to date tag any file which is created or edited.
- **Directory** - lists the directory of a specified disk unit (DK0, DK1, etc.). The file name, extension, user number and creation or edited date are listed for each file in the directory. The user can also request listing-only files of a specified name, only files of a specified extension, or only files of a specified user number. The list device can be any device supported by the system as well as a file.
- **Erase** - erases a single file or files from a diskette in a specified disk unit. The user has the option to erase all files, only files of a specified file name, or only files of a specified user number.
- **Format** - takes completely-unformatted soft-sectored diskettes, formats to IBM 3740, and prepares to be a system diskette. Operation is performed on diskette unit 1 and a unique 11-character name is assigned to that diskette, if specified.
- **Init** - initializes maps in the disk handler when a new diskette has been inserted while in the PIP environment.
- **Rename** - renames a file, its extension, and user number to a file of name X, extension Y, and user Z.
- **Status** - lists all vital statistics of a diskette to any device. These include the number of allocated records, the number of used records, and the number of bad records
- **Quit** - returns to Monitor Environment.

DOS/Disk Handler

The heart of the FLP-80DOS software package is the Disk Operating System. Capable of supporting up to four single-density, single- or double-sided units, the system provides a file-structure orientation timed and optimized for rapid storage and retrieval. Program debug is enhanced by complete error reporting supplied with the DOS. Additionally, extensive error recovery and bad sector allocation insure data and file integrity. The DOS not only provides file reading and writing capability, but special pointer manipulation, record deletions, record insertions, skip records both forward and backward, as well as directory manipulation such as file creation, renaming, and erasure. The DOS is initiated by a calling vector which is a subset of the I/O control system vector or through the standard IOCS calling sequence to elect buffer allocation, blocking, and deblocking of data to a user-selectable, logical record type.

A unique dynamic allocation algorithm makes optimal use of disk storage space. Run-time (Binary) files are given first priority to large blocks of free space to eliminate overhead in operating system and overlay programs. The algorithm marks storage fragments as low priority and uses them only when the diskette is nearing maximum capacity. The DOS permits seven files to be opened for operations at any one time, thus permitting execution of complex application programs.
I/O Control System

The I/O Control System provides a central facility from which all calls to I/O can be structured. This permits a system applications program to dissolve any device dependence by utilizing the logical unit approach of large, main-frame computers. For example, a programmer may want to structure the utility to use logical unit No. 5 as the list device which normally in the system defaults to the line printer. He may, however, at run time, assign a different device for logical unit No. 5. The application program remains unchanged.

Interface by a user to IOCS is done by entering a device mnemonic in a table and observing the calling sequence format. IOCS supplies a physical buffer of desired length, handles buffer allocation, blocking, deblocking, and provides a logical record structure as specified by the user.

Batch-Mode Operation

In Batch-Mode Operation, a command file is built on disk or assigned to a peripheral input device such as a card reader. The console input normally taken from the keyboard is taken from this batch device or batch file. While operating under direction of a batch file, the console output prompts the user as normal, or the prompting can be directed to any other output device. The Batch operation is especially useful for the execution of redundant procedures not requiring constant attention of the operator.

HARDWARE DESCRIPTION

OEM-80E

The OEM-80E provides the essential CPU power of the system. While using the Z80 as the central processing unit, the OEM-80E is provided with other Z80 family peripheral chip support. Two Z80 PIO's give four completely programmable 8-bit parallel I/O ports with handshake from which the standard system peripherals are interfaced. Also on the card is the Z80-CTC counter/timer circuit which has three free flexible channels to perform critical counting and timing functions. Along with 16K of RAM, the OEM-80E provides five ROM/PROM sockets which can be utilized for 10/20K of ROM or 5/10K PROM. Four sockets contain the firmware portion of FLP-80DOS. The remaining socket can be strapped for other ROM/PROM elements.

RAM-80BE

The RAM-80BE adds additional memory with Mostek's MK4116 16K dynamic memory along with more I/O. These two fully-programmable 8-bit I/O ports with handshake provide additional I/O expansion as system needs grow. Standard system configuration is 48K bytes for a system total of 60K bytes user RAM (56K contiguous).

FLP-80E

Integral to the MATRIX system is the floppy controller. The FLP-80E is a complete IBM 3740 single-density/double-sided controller for up to four drives. The controller has 128 bytes of FIFO buffer resulting in a completely interruptable disk system.

OPTIONAL MODULES COMPATIBLE WITH MATRIX

AIM-80E (2.5 MHz max. clock rate)

The AIM-80E module provides extended debug for the MATRIX. In Z80 development, real-time in-circuit emulation permits debug of the hardware and the software at the most intimate level. Hardware single-step/multi-step with register trace, execution intercept on memory access, port access, or external trigger provides absolute control over any system regardless of how complex it is. The "pushbutton intercept" enables the programmer to perform a controlled recovery for those extremely difficult-to-trace processor-lock-out loops. With the memory clock selectable history module, any past 256 events of data, address, or control bus operation are captured in real time and may be displayed.

The AIM-80E includes 8K bytes of ROM firmware introducing unique software including a mnemonic disassembler for inverse assembly of history module contents of single-step/multi-step operations. "In-line" code disassembled to language mnemonics provides insight into execution results as if examining an assembler-generated listing. Extra added capability is the ROM-resident self-test of OEM-80E or target RAM.

AIM-Z80AE (4.0 MHz max. clock rate)

The AIM-Z80AE is an improved version of the above module usable at Z80-CPU clock rates of up to 4MHz. The AIM-Z80AE is a two-processor solution to in-circuit emulation which utilizes a Z80-CPU in the buffer box for accurate emulation at high clock rates with minimum restrictions on the target system. The AIM-Z80AE provides real-time emulation (no WAIT states) while providing full access to RESET, NMI and INT control lines. Eight single-byte software breakpoints (in RAM) are provided as well as one hardware trap (RAM or ROM). The emulation RAM on the AIM-Z80A is mappable into the target system in 256-byte
increments. A 1024 word x 48-bit history memory is triggerable by the hardware intercept and can be read back to the terminal to provide a formatted display of the Z80-CPU address, data, and control busses during the execution of the program under test. Several trigger options are available to condition the loading of the history memory.

A/D-80E

A family of 12-bit A/D and D/A modules for the MATRIX system. Options include single-ended or differential inputs up to 64 channels per module.

AIM-72E

The AIM-72E module provides debug and in-circuit emulation capabilities for the 3870 series microcomputers (3870, 3872, 3874 and 3876) on the MATRIX. Multiple-breakpoint capability and single-step operation allow the designer complete control over the execution of the 3870 Series microcomputer.

Register, Port display, and modification capability provides information needed to find system "bugs." All I/O is in the user's system connected to AIM-72 by a 40-pin interface cable.

The debugging operation is controlled by ZAIM-72, a mnemonic debugger which controls the interaction between the Z80 host computer and the 3870 slave. It includes a history module for the last 1024 CPU cycles and also supports all 3870 family circuits.

Assembly and linking is done using the MACRO-70 Assembler and the standard FLP-80DOS linker.

DDT

The Designer's Debugging Tool consists of commands for facilitating an otherwise difficult debugging process. The MATRIX rapid source changes through the editor and re-assemblies, followed by DDT operations close the loop on the debug cycle. The DDT commands include:

Memory - display, update, or tabulate memory
Port - display, update or tabulate I/O ports
Execute - execute user's program
Hexadecimal - performs 16 bit add/sub
Copy - copy one block to another

Summary of Editor Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance N</td>
<td>advance line pointer N line</td>
</tr>
<tr>
<td>Backup N</td>
<td>backs up N lines</td>
</tr>
<tr>
<td>Change</td>
<td>change N occurrences of String 1 to String 2</td>
</tr>
<tr>
<td>N/S1/S2</td>
<td>delete current line plus next N-1 lines of text</td>
</tr>
<tr>
<td>Delete N</td>
<td>exchanges current line plus next N-1 lines</td>
</tr>
<tr>
<td>Exchange N</td>
<td>lines with lines to be inserted while in insert mode</td>
</tr>
<tr>
<td>Get file</td>
<td>reads another file and inserts it into the file being edited after the current line</td>
</tr>
<tr>
<td>Insert</td>
<td>place Editor in insert mode. Text will be inserted after present line</td>
</tr>
<tr>
<td>Line N</td>
<td>place line pointer on Line N.</td>
</tr>
<tr>
<td>Macro 1 or Macro 2</td>
<td>defines Macro 1 or Macro 2 by the following string of Text Editor commands.</td>
</tr>
<tr>
<td>Put N file</td>
<td>outputs N lines of the file being edited to another disk file.</td>
</tr>
<tr>
<td>Quit</td>
<td>stores off file under editing process and returns to Monitor environment</td>
</tr>
<tr>
<td>Search N/S1</td>
<td>searches from existing pointer location until Nth occurrence of string S1 is located and prints it.</td>
</tr>
<tr>
<td>Top</td>
<td>inserts records at top of file before first line</td>
</tr>
<tr>
<td>Verify N</td>
<td>print current record to console plus next N-1 records while advancing pointer N records ahead.</td>
</tr>
<tr>
<td>Write N</td>
<td>prints current records plus next N-1 records to source output device while advancing pointer N records.</td>
</tr>
<tr>
<td>eXecute N</td>
<td>executes Macro 1 or Macro 2 as defined by Macro command.</td>
</tr>
<tr>
<td>Breakpoint</td>
<td>sets software trap in user code for interrupting execution in order to examine CPU registers</td>
</tr>
<tr>
<td>Register</td>
<td>- displays contents of user's registers</td>
</tr>
<tr>
<td>Offset</td>
<td>- enters address adder for debug of relocatable modules</td>
</tr>
<tr>
<td>Fill</td>
<td>- fills specified portion of memory with 8 bit byte</td>
</tr>
<tr>
<td>Verify</td>
<td>- compares two blocks of memory</td>
</tr>
<tr>
<td>Walk</td>
<td>- software single step/multistep</td>
</tr>
<tr>
<td>Quit</td>
<td>- returns to Monitor</td>
</tr>
</tbody>
</table>

Debuggers for other processors have similar or enhanced capability and are included with the appropriate AIM™.
INPUT VOLTAGE

100/115/230 volts AC± 10%
50 Hz (MK78189) or 60 Hz (MK78188)

OUTPUT VOLTAGES

CPU subsystem
 +5 VDC at 12 A max.
 +12 VDC at 1.7 A max.
 -12 VDC at 1.7 A max.

Disk subsystem
 +5 VDC at 3.0 A max.
 -5 VDC at 0.5 A max.
 +24 VDC at 3.4 A max.

HUMIDITY

Up to 90% relative, noncondensing.

MATERIAL

Structural Foam (Noryl)

WEIGHT

CPU Subsystem 25 lbs. (11.3 Kg)
Disk Subsystem 50 LBS. (22.7 Kg)

FAN CAPACITY

115 CFM

OVERALL DIMENSIONS

CPU subsystem - 8” high x 21” wide x 22” deep (20.3 cm x 53.3 cm x 55.8 cm)

ORDERING INFORMATION

BASIC SYSTEM

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX™</td>
<td>Z80 floppy disk-based microcomputer with 60K bytes of RAM (56K bytes contiguous RAM), 4K bytes PROM bootstrap, two 250K-byte single-density floppy disk drives with Operations Manual. Includes the software packages of FLP-80DOS and MACRO-80 distributed on diskette. Requires signed license agreement with purchase order.</td>
<td>MK78188 (60 Hz) MK78189 (60 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATRIX™ Operations Manual Only</td>
<td>MK79730</td>
</tr>
<tr>
<td></td>
<td>FLP-80DOS Operations Manual Only</td>
<td>MK78557</td>
</tr>
<tr>
<td></td>
<td>MACRO-80 Operations Manual Only</td>
<td>MK79635</td>
</tr>
<tr>
<td>DESIGNATOR</td>
<td>DESCRIPTION</td>
<td>PART NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>AIM-80E</td>
<td>2.5 MHz RAM-based Z80 In-Circuit Emulator with buffer box, cables and Operations Manual</td>
<td>MK78106</td>
</tr>
<tr>
<td>AIM-80E</td>
<td>AIM-80E Operations Manual Only</td>
<td>MK78559</td>
</tr>
<tr>
<td>AIM-Z80AE</td>
<td>4.0 MHz RAM-based Z80 In-Circuit Emulator with expanded history trace, buffer box, cables and Operations Manual</td>
<td>MK78181-1</td>
</tr>
<tr>
<td>AIM-Z80AE</td>
<td>16K Bytes emulation RAM</td>
<td>MK78181-2</td>
</tr>
<tr>
<td>AIM-Z80AE</td>
<td>32K Bytes emulation RAM</td>
<td></td>
</tr>
<tr>
<td>AIM-Z80AE</td>
<td>AIM-Z80AE Operations Manual Only</td>
<td>MK79650</td>
</tr>
<tr>
<td>AIM-72E</td>
<td>RAM-based In-Circuit Emulator for the 3870 series of single-chip microcomputers (3870, 3872, 3874 and 3876) with cables and Operations Manual</td>
<td>MK79077</td>
</tr>
<tr>
<td>AIM-72E</td>
<td>AIM-72E Operations Manual Only</td>
<td>MK79079</td>
</tr>
</tbody>
</table>
FEATURES

□ Z80 CPU based
□ 4K-byte PROM bootstrap and Z80 debugger
□ RAM option of 48K or 64K bytes
□ Two 8-bit I/O ports for Line Printer PROM programmer
□ Serial port: RS-232C and 20mA current Loop

□ One single-density, single-sided disk drive; 250K bytes per floppy disk
□ Device drivers for paper tape readers, punches, card readers, line printers, Silent 700's, Teletypes and CRT's are included. Others can be added
□ PROM programmer I/O port. Programmer itself is optional
□ BUS compatible with Mostek STD-Z80 MD Series boards
FEATURES

- STD-Z80 Bus compatible
- 6-slot card cage with mother board (MK77954)
- MDX-CPU1 module (MK77850-0, MK77850-4)
- MDX-DRAM8 module (MK77750-0): 2.5MHz version
- MDX-DRAM16-4 module (MK77754-4): 4MHz version
- MDX-DEBUG module (MK77950-0, MK77950-4)
- MD- WW2 Wire-wrap board (MK77952)
- MD-EXT Extender board (MK77593)
- Cables for RS-232 device (MK77955) or TTY (MK77956)
- 4MHz option available (MDX-PROTO-4)

DESCRIPTION

The Mostek MDX-CPU1 is the heart of an MD Series Z80 system. Based on the powerful Z80 microprocessor, the MDX-CPU1 can be used with great versatility in an OEM microcomputer system application. This is done simply by inserting custom ROM or EPROM memories into the sockets provided on the board and configuring them virtually anywhere within the Z80 memory map.

On-board memory is provided in the form of 4K of EPROM (two-2716's) and 256 bytes of scratchpad RAM as pictured in the block diagram. In addition, a MK3882 Counter/Timer Circuit is included on the MDX-CPU1 to provide counting and timing functions for the Z80. Either 2716 EPROM can be located at any 2K boundary within any given 16K block in the Z80 memory map via a jumper arrangement.

The MDX-CPU1 can be used in conjunction with the MDX-DEBUG and MDX-DRAM modules to utilize DDT-80 and ASMB-80 in system development. This is accomplished by strapping the scratchpad RAM to reside at location FFOO so that it will act as the Operating System RAM for DDT-80.

The MDX-CPU1 is also available in a 4MHz version (MDX-CPU1-4). In this version, one wait cycle is automatically inserted each time on-board memory is accessed by a read or write cycle. This is necessary to make the access times of the 2716 PROMs and the 3539 scratchpad RAM compatible with the MK3880-4 4MHz Z80-CPU.

MDX-DRAM DESCRIPTION

The MDX-DRAM is designed to be a RAM memory expansion board for the Mostek MD Series of Z80 based microcomputers. It is available in three memory capacities: 8K bytes (MDX-DRAM8), 16K bytes (MDX-DRAM16), and 32K bytes (MDX-DRAM32). Additionally, the MDX-DRAM16 and the MDX-DRAM32 are available in a 4MHz version. Thus, the designer can choose from the various options to tailor his add-on dynamic RAM directly to his system requirements.

The MDX-DRAM8 is designed using Mostek’s MK4108 8,192-bit dynamic RAM. The MDX-DRAM32 utilizes high-performance MK4116, 16K-bit dynamic RAMs which allow 4MHz versions of these boards to be offered. No wait-state insertion circuitry is required on any of the RAM cards.
Address selection is provided on all MDX-DRAM cards for positioning the 8K, 16K, or 32K of memory to start on any 4K boundary.

MDX-DEBUG DESCRIPTION

The MDX-DEBUG Module has sockets for 10K bytes of masked ROM that are populated with a Z80 firmware package (DDT-80/ASMB-80). This module has a STD BUS interface and is available in both 2.5MHz and 4.0MHz versions. Included on board is a fully buffered asynchronous I/O port capable of 110-19200 baud rates. Serial Data interfaces are available for 20mA current loop (with reader step control) and RS-232.

DEBUGGER DESCRIPTION

DDT-80 is the Operating System for the MDX-DEBUG Module and resides in a 2K ROM (MK34000 series). It provides the necessary tools and techniques to operate the system i.e., to efficiently and conveniently develop microcomputer software. DDT-80 is designed to support the user from initial design through production testing. It allows the user to display and update memory, registers and ports, load and dump object files, set breakpoints, copy blocks of memory, and execute programs.

DDT-80 COMMAND SUMMARY

- **M s** - Display and/or update the contents of memory location s.
- **M s, f** - Tabulate the contents of memory locations s through f.
- **P s** - Display and/or update the contents of I/O port s.
- **D s, f** - Dump the contents of memory locations s through f in a format suitable to be read by the L command.
- **L** - Load data which is in the appropriate format into memory.
- **E s** - Transfer control from DDT-80 to a user's program starting at location s.
- **H** - Perform 16-bit hexadecimal addition and/or subtraction.
- **C s, f, d** - Copy the contents of memory locations s through f to another location in memory starting at location d.
- **B s** - Insert a breakpoint in the user's program (must be in RAM) at location s which transfers control back to DDT-80. This allows the user to intercept his program at a specific point (location s) and examine memory and CPU registers to determine if his program is working correctly.
- **R** - Display the contents of user registers.

The s, f, and d represent start, finish, and destination operands required for each command.
MEMORY, PORT AND REGISTER COMMANDS

(M,P,R)

The M, P, and R commands provide the means for displaying the contents of specified memory locations, port addresses, or CPU registers. The M and P commands sequentially access memory locations or ports and display their contents. The user has the option of updating the content of the memory location or port. (Note some ports are output only and their contents cannot be read or displayed.) The M command also gives the user access to the CPU registers through an area in RAM called the Register Map (discussed in the Execute and Breakpoint section below).

The M and R commands are used to tabulate blocks of memory locations (M) or the CPU registers (R). The M command will accept two operands, the starting and ending addresses of the memory block to tabulated. The R command will accept either no operand or one. If no operand is specified, the CPU registers will be displayed without a heading. If an operand is specified, then a heading which labels the register contents will be displayed as well.

EXECUTE AND BREAKPOINT (E,B)

The E command is used to execute all programs, including aids such as the Assembler. The B command is used to set a breakpoint to exit from a program at some predetermined location for debugging purposes. At the instant of a breakpoint exit, the contents of all CPU registers are saved in a designated area of MDX-DEBUG RAM called the Register Map. In the Register Map, the register contents may be examined or modified using the M command and a predefined mnemonic (or absolute address) of the storage location for that register (example: PC, :A,...,SP). The Register Map is also used to initialize the CPU registers whenever execution is initiated or resumed. Thus the E and B commands can be used together to initialize, execute, and examine the results of individual program segments.

The B command gives the user the option of having all CPU registers displayed when the breakpoint is encountered. This is done by entering a second operand to the B command. Otherwise, DDT-80 defaults to displaying the PC and AF registers. When all CPU registers are displayed, the format is the same as for the R command previously discussed.

LOAD, DUMP, AND COPY, (L,D,C)

The L and D commands load and dump object files through the object I/O channel in standard industry Hex format. Check sums are used for error detection, and the addresses of questionable blocks are typed automatically while loading.

The C command will copy the contents of the memory block specified to another block of memory. There are no restrictions on the direction of the copy or on whether the blocks overlap.

HEXADECIMAL ARITHMETIC (H)

The H command is a dummy command used to allow hexadecimal addition and subtraction for expression evaluation without performing any other operation.

DDT-80 I/O CAPABILITIES

DDT-80 specifies I/O channels, designated 'Console', 'Object', and 'Source', to which any suitable devices may be assigned. The Channel Assignment Table is located in RAM where it may be examined or modified using the M command. The table addresses correspond to the I/O channels and the table contents correspond to the addresses of the peripheral driver routines. A channel which has a device assignment may have that device assignment changed using the M command. This is accomplished by merely modifying the table contents of that channel's table address to correspond to the new peripheral driver routine. A set of peripheral driver routines is supplied and listed below. This scheme also allows the user to write a driver routine for his own peripheral, load it into memory, and easily configure that peripheral into the system.

DDT-80 I/O PERIPHERAL DRIVERS

1. A serial input driver (usually a keyboard).
2. A serial output driver (usually a CRT or teletype typewriter).
3. A serial input driver which sends out a reader step signal (usually a teletype reader).
4. A serial output driver which forces a delay after a carriage return (usually a Silent 700 typewriter).
5. A parallel input driver (usually for high-speed paper tape input).
6. A parallel output driver (usually for high-speed paper tape output).
7. A parallel output driver (usually for a line printer).

TEXT EDITOR DESCRIPTION

The Text Editor permits random access editing of ASCII character strings. It can be used as a line or character-oriented editor. Individual characters may be located by position or context. The Editor works on blocks of characters which are typically read into memory from magnetic tape or paper tape. Each edited block can be output to magnetic tape or paper tape after editing is completed. While the primary application for the Text Editor is in editing assembly language source statements, it may be applied to any ASCII test delimited by "carriage returns".

The Editor has a macro command processing option. Up to two sets of commands may be stored and processed at any time during the editing process. All I/O is done via the DDT-80 channels. The Editor can be used with the Mostek...
ASMB-80 Assembler and Loader to edit, assemble, and load programs in memory without the need for external media for intermediate storage.

The following commands are recognized by the Text Editor:

- **An** - Advance record pointer n records
- **Bn** - Backup record pointer n records
- **Cn dS1dS2D** - Change string S1 to string S2 for n occurrences
- **Dn** - Delete n records
- **E** - Exchange current record with records to be inserted
- **I** - Insert records
- **Ln** - Go to line number n.
- **Mn** - Enter command buffers (pseudo-macro)
- **N** - Print top, bottom and current line number
- **Pn** - Punch n records from buffer
- **R** - Read source records into buffer
- **Sn dS1d** - Search for nth occurrence of signal S1

ASSEMBLER DESCRIPTION

The Assembler reads Z80 source mnemonics and pseudo-ops and outputs an assembly listing and object code. The assembly listing shows address, machine code, statement number, and source statement. The object code is in industry-standard hexadecimal format modified for relocatable, linkable assemblies.

The Assembler supports conditional assemblies, global symbols, relocatable programs and a printed symbol table. It can assemble any length program, limited only by a symbol table size which is user-selectable. Expressions involving addition and subtraction are allowed. A global symbol is categorized as “internal” if it appears as a label in the program; otherwise it is an “external” symbol. The printed symbol table shows which symbols are internal and which are external. The assembler allows the user to select relocatable or non-relocatable assembly via the “PSECT” pseudo-op. Relocation records are placed in the object output for relocatable assemblies. (The Mostek object format is defined below.) The Assembler can be run as a single-pass assembler or as a learning tool. (In this mode, global symbols and forward references are not allowed.) The following pseudo-ops are recognized by the Assembler:

- **EQU** - equate label
- **DEFL** - define label
- **DEFM** - define message
- **DEFB** - define byte
- **DEFW** - define word
- **DEFS** - define storage
- **END** - end statement
- **NAME** - program name definition
- **PSECT** - global symbol definition
- **EJECT** - eject a page of listing
- **TITLE** - place heading at top of each page

LIST - turn listing on
NLIST - turn listing off

RELOCATING LINKING LOADER DESCRIPTION

The Mostek Relocating Linking Loader provides state-of-the-art capability for loading programs into memory by allowing loading and linking of any number of relocatable and non-relocatable object modules. Non-relocatable modules are always loaded at their starting address as defined by the ORG pseudo-op during assembly. Relocatable object modules can be positioned anywhere in memory at an offset address.

The Loader automatically links and relocates global symbols which are used to provide communication or linkage between program modules. As object programs are loaded, a table containing global symbol references and definitions is built up. At the end of each module, the loader resolves all references to global symbols which are defined by either the current or a previously loaded module. It also prints on the console device the number of defined global symbols that have been referenced. The symbol table can be printed in order to list all global symbols and their load address. The number of object modules which can be loaded by the Loader is limited only by the amount of RAM available for the modules and the symbol table. Space for the symbol table is allocated dynamically downward in memory from either the top of memory or from a specified address entered as an operand of the load command.

All I/O is done via the DDT-80 channels. Assemblies can be done from source statements stored in memory (by the Editor). The object output can be directed to a memory buffer rather than to an external device. Thus, assembly and loading can be done without external storage media.

The Loader prints the beginning and ending address of each module as it is loaded. The transfer address as defined by the END pseudo-op is printed for the first module loaded. The Loader execute command (E) can be used to automatically start execution at the transfer address.

The Loader Commands are the following:

- **L offset** - load object module at address “offset” plus program origin address
- **E** - execute loaded program at transfer address of first module
- **T** - print global symbol table

MOSTEK OBJECT OUTPUT DEFINITION

Each record of an object module begins with a delimiter (colon or dollar sign) and ends with carriage return and line feed. A colon (:) is used for data records and end-of-file record. A dollar sign ($) is used for records containing relocation information and linking information. All information is in ASCII. Each record is identified by “type”. The type is determined by the 8th and 9th bytes of the record which
OBJECT MODULE TYPES

<table>
<thead>
<tr>
<th>RECORD TYPE</th>
<th>START ADDRESS OF DATA</th>
<th>DATA</th>
<th>CHECK SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td># OF BINARY DATA</td>
<td></td>
<td>DATA</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0 0</td>
<td>TRANSFER ADDRESS OF MODULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>CHECK SUM</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INTERNAL SYMBOL NAME</td>
<td>ADDRESS</td>
<td>CHECK SUM</td>
<td></td>
</tr>
<tr>
<td>0 2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EXTERNAL SYMBOL NAME</td>
<td>LINK ADDRESS</td>
<td>CHECK SUM</td>
<td></td>
</tr>
<tr>
<td>0 3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td># OF BINARY BYTES</td>
<td>ADDRESSES WHICH ...REQUIRE RELOCATION...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MODULE NAME</td>
<td>FLAGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Check Sum is negative of the binary sum of all bytes except delimiter and carriage return/line feed.
2. Link Address points to last address in the data which uses the external symbol. This starts a backward link list through the data records for that external symbol. The list terminates at OFFFHF.
3. The flags are one binary byte. Bit 0 is defined as:
 - 0 - absolute module
 - 1 - relocatable module
4. Maximum of 64 ASCII bytes.

MDX-CPU1 SPECIFICATIONS

WORD SIZE

- Instruction: 8, 16, 24, or 32 bits
- Data: 8 bits

CYCLE TIME

- Clock period or T state = 0.4 microsecond at 2.5MHz
- 0.25 microsecond at 4.0MHz
- Instructions required from 4 to 23 T states

MEMORY CAPACITY

- On-Board EPROM - 4K bytes (sockets only)
- On-Board RAM - 256 bytes
- Off-Board Expansion - Up to 65,536 bytes with user-Board Expansion - specified combinations of RAM, ROM, PROM

MEMORY ADDRESSING

- On-Board EPROM: jumper-selectable for any 2K boundary within a 16K block of Z80 memory map.
- On-Board RAM: FFF0-FFFF

MEMORY SPEED REQUIRED

- Memory: 2716*
- Access Time: 450ns
- Cycle Time: 450ns

*Single 5-volt type required
I/O ADDRESSING

On-Board Programmable Timer

<table>
<thead>
<tr>
<th>Port Address (HEX)</th>
<th>MK3882 Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>7C</td>
<td>0</td>
</tr>
<tr>
<td>7D</td>
<td>1</td>
</tr>
<tr>
<td>7E</td>
<td>2</td>
</tr>
<tr>
<td>7F</td>
<td>3</td>
</tr>
</tbody>
</table>

I/O CAPACITY

Up to 252 port address can be decoded off-board. Four port addresses are on-board. 252 + 4V = 256 total I/O ports.

Interrupts

Multi-level with three vectoring modes (Mode 0,1,2). Interrupt requests may originate from user-specified I/O or from the on-board MK3882 CTC.

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>System Clock Access Cycle Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-DRAM</td>
</tr>
<tr>
<td>MDX-DRAM-4</td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 1

STD BUS INTERFACE

Inputs: One 74LS load max.
Outputs: $I_{OH} = -3mA$ min. at 2.4 volts
 $I_{OL} = 24mA$ min. at 0.5 volts

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

5V ± 5% at 1.1A maximum

MDX-DRAM SPECIFICATIONS

WORD SIZE
8 bits

MEMORY SIZE
10K bytes of firmware

MEMORY ADDRESSING

2K blocks jumper-selectable for any 2K boundary within a given 16K block of the Z80 memory map. MDX-DEBUG has ROMs strapped every 2K beginning at C000H.
I/O ADDRESSING

On-board Serial I/O Port
Control Port: XXXXX01
Data Port: XXXXX00
Module and Reader Step Control Port: XXXXXX10
XXXXX represents six strap-selectable address bits

SYSTEM CLOCK

<table>
<thead>
<tr>
<th>Function</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-DEBUG</td>
<td>250KHz</td>
<td>2.5MHz</td>
</tr>
<tr>
<td>MDX-DEBUG-4</td>
<td>250KHz</td>
<td>4.0MHz</td>
</tr>
</tbody>
</table>

SERIAL COMMUNICATIONS INTERFACE

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>BUFFERED FOR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitted data</td>
<td>20mA</td>
</tr>
<tr>
<td>Received data</td>
<td>Current</td>
</tr>
<tr>
<td>Data Terminal Read (DTR)</td>
<td>Loop</td>
</tr>
<tr>
<td>Request to Send (RTS)</td>
<td></td>
</tr>
<tr>
<td>Carrier Detect (CDT)</td>
<td></td>
</tr>
<tr>
<td>Clear to Send (CTS)</td>
<td></td>
</tr>
<tr>
<td>Data Set Ready (DSR)</td>
<td></td>
</tr>
<tr>
<td>Reader Step relay (RS)</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM INTERRUPT UNITS (SIU) = 0

STD BUS INTERFACE

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs: One 74LS load max.</td>
<td></td>
</tr>
<tr>
<td>Outputs: IOH = -3mA min. at 2.4 volts</td>
<td></td>
</tr>
<tr>
<td>IOL = 24mA min. at 0.5 volts</td>
<td></td>
</tr>
</tbody>
</table>

OPERATING TEMPERATURE

0°C to 60°C

POWER SUPPLY REQUIREMENTS

+12 Volts ± 5% at 50 mA max.
-12 Volts ± 5% at 35 mA max.
+5 Volts ± 1.2 mA max.

I/O TRANSFER RATE

110, 300, 600, 1200, 2400, 4800, 9600, 19200 baud

CARD DIMENSIONS

4.5 in. (11.43 cm) high by 6.50 in. (16.51 cm) long
0.48 in. (1.22 cm) maximum profile thickness
0.062 in. (.016 cm) printed-circuit-board thickness

CONNECTORS

<table>
<thead>
<tr>
<th>Function</th>
<th>Configuration</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial I/O</td>
<td>26-pin</td>
<td>FLAT RIBBON</td>
</tr>
<tr>
<td></td>
<td>0.100 in. grid</td>
<td>Ansley 609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2600M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DISCRETE WIRES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PGB26A (housing)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winchester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-700205 (contacts)</td>
</tr>
</tbody>
</table>
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDX-PROTO</td>
<td>Prototyping package with Operations Manuals, 2.5 MHz version. Note: 2.5 MHz version includes 8K dynamic RAM board MDX-DRAM8 only.</td>
<td>MK77951</td>
</tr>
<tr>
<td>MDX-PROTO-4</td>
<td>Prototyping package with Operations Manuals, 4.0 MHz version. Note: 4.0 MHz version includes 16K dynamic RAM board MDX-DRAM16-4.</td>
<td>MK77951-4</td>
</tr>
<tr>
<td>I</td>
<td>Table of Contents</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>General Information</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>STD-Z80 BUS</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>MDX Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>MD Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>MD Series Memory</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>MD Series Special Functions</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>MD Series Accessories</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>MD Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>SDE Series Data Processing</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>SDE Series Input/Output</td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>SDE Series Memory</td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>SDE Series Accessories</td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td>Software Disk Based</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>Development Systems</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>Systems Emulation Boards</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>Peripherals</td>
<td></td>
</tr>
</tbody>
</table>
HARDWARE FEATURES

- Direct interface with OEM-80E
- Single-step/multistep with register trace
- Execution intercept (breakpoint) intercepts on memory access, port access, external trigger, event counter, or delay counter
- Push-button execution intercept
- 256 x 32 history memory which samples Data Bus, Address Bus, M1, MREQ, RD, IORQ, and four external probes
- History memory clock-selectable from M1, MREQ, IORQ, or INTERRUPT ACKNOWLEDGE
- Selectable history memory clock conditions: read only, write only, DMA only, or external probe only (high or low)
- 8K x 8 ROM memory (firmware)

SOFTWARE FEATURES

- ROM-resident mnemonic dis-assembler
- ROM-resident RAM test for SDB or target RAM

DESCRIPTION

AIM-80E provides Z80 system debug assistance for both software and hardware via in-circuit emulation. (See Block Diagram)

Single-step/multistep allows the programmer to trace through a program and display the CPU registers after each instruction. The execution intercept feature allows suspending program execution on the nth occurrence of an address or other specified condition. If the program has begun an unknown sequence, the intercept pushbutton will return the system to the single-step mode. Single-step and execution intercept (breakpoint) operate in RAM or ROM/PROM.

Hardware debugging is aided greatly by use of the 256 x 32 history memory which monitors bus transactions for a specified period. This information may then be displayed on the console. The data bus, address bus, M1, MREQ, RD, IORQ, and inputs from four probes are sampled and stored in the history memory upon every occurrence of the user-specified clock (M1, MREQ, IORQ, or interrupt acknowledge) qualified by the user-specified conditions (read only, write only, DMA only, probe High only, or probe Low only). Upon the occurrence of the selected intercept, AIM-80E returns control to the system debug (DDT-80). The history memory may then be displayed (See Figure 1) with or without mnemonic dis-assembly.
AIM-80E PRINT OUT EXAMPLE
(User entries underlined)

. I E + T 2
TRIG ON (MREQ I 0DRQ/+/~) M
EVENT CNT (I-FF) 2
DELAY CNT (O-FF) 3
CLOCK ON (M1 * MREQ/ IDQ, INTA) MR IO
ONLY IF (RD/ MR/ DMA/ M/H)
.E 0
0065 2421

Set intercept at address 0002H with trigger option
Trigger on MREQ
After 2 occurrences
Delay 1 clock after trigger
Clock history (sample) memory on MREQ or IORQ
No qualifying conditions selected
Begin execution at address 0002H
Intercept occurs at second occurrence of address 2 with a delay of one.

At this point the history memory contains the bus transactions which occurred before the intercept.

. I F, - E 2

Control Bus
Probes (red, blue, green, yellow)

Memory Address Bus contents
Data Bus contents
Dis-assembled instructions
Offset from trigger

OS ADDR DB
-08 0000 3E LD A,20H
-09 0001 20
-09 0002 03 OUT C0,A
-08 0003 00
-07 0000 20
-06 0004 3C INC A
-06 0005 3C INC A
-06 0006 3C INC A
-06 0007 03 JP 0002H
-02 0008 02
-01 0009 00
+00 0002 03 OUT C0,A
+01 0003 00
+02 0000 23
+03 0004 3C INC A
-FO ?

First occurrence of address 0002H
Trigger (OS = 0) (2nd occurrence of address 0)
Delay 1 count after trigger
No more data in history module

USING THE AIM-80E

AIM-80E may be added directly to any OEM-80E system. All system bus signals are wired one to one between OEM-80E and AIM-80E. Voltage requirements for the AIM-80E are the same as for the OEM-80E. Programs may be debugged in OEM-80E memory space or, with the target interface buffer box (AIM-80X), may be debugged in the target environment. Dynamic memory mapping allows target memory to be simulated using OEM-80E system RAM. All peripheral devices of the OEM-80E are still functions with the AIM-80E.

SYSTEM Firmware

To minimize the impact of the AIM-80E, firmware is resident in one MK36000, 8K x 8 ROM. This firmware is completely compatible with DDT-80 firmware and includes five new commands for control of the AIM-80E. The interactive nature of the commands makes operation simple and avoids operator errors. The ROM-resident dis-assembler makes correlation with the user's source listing easier and reduces the necessity of memorizing op codes.

OPERATING FREQUENCY
2.5 MHz (with OEM-80E)

INTERFACE
OEM-80E compatible

TOP CONNECTORS
One 40-pin 3M ribbon
One 50-pin 3M ribbon

OPERATING TEMPERATURE RANGE
0°C to +50°C

POWER SUPPLY REQUIREMENTS (Typical)
+12V ± 5% at 12mA
+5V ± 5% at 1.0 Amp
BOARD SIZE
250mm x 233.4mm x 18mm

BOTTOM CONNECTORS
Dual 64-pin Eurocard Connector, DIN 41612, form D; A and C Pinned

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-80E</td>
<td>AIM-80E Control Card includes AIM-80E Firmware and AIM-80E Operations Manual</td>
<td>MK78106</td>
</tr>
<tr>
<td></td>
<td>Target Interface Buffer (AIM-80X) includes: cables, connectors, 4 probe clips</td>
<td></td>
</tr>
<tr>
<td>AIM-80E</td>
<td>AIM-80E Operations Manual only</td>
<td>MK78559</td>
</tr>
</tbody>
</table>
HARDWARE FEATURES

- Direct interface to Mostek's development system
- In-circuit emulation of Z80 or Z80A microprocessors
- Real-time execution (4 MHz - no wait states)
- Flexible breakpoints (hardware and eight single-byte software)
- Single-step execution
- 16K bytes emulation RAM (expandable to 32K bytes)
- Memory Mappable into Target system in 256 byte blocks
- Illegal write to memory detection
- Nonexistent memory access detect
- Forty-eight channel by 1024 words history memory
- Event counter
- Delay counter
- Execution T-state timer
- Keyboard escape function

SOFTWARE FEATURES

- Simple-to-use, single character commands
- Flexible display format includes disassembly of opcodes
- System configuration parameters stored on disk for future use

DESCRIPTION

AIM-Z80AE is an advanced development tool which provides debug assistance for both software and hardware via in-circuit emulation of the Z80 microprocessor. Use of the AIM-Z80AE is completely transparent to the user's final system configuration (referred to as the Target). No memory space or ports are used and all signals including RESET, INT and NMI are functional during emulation.

Single-step circuitry allows the user to execute Target instructions one at a time to see the exact effect of each instruction. Single step is functional in ROM as well as RAM.

Sixteen K bytes of emulation RAM may be mapped into the Target memory map at any desired address so that software may be developed even before Target memory is available.

Breakpoint-detect circuitry allows real-time execution to proceed to any desired point in the user's program and then terminate with all registers and status information saved so that execution may later be resumed. Real-time execution may also be terminated at any time by enabling the Escape Key. EVENT and DELAY counters give added flexibility for viewing the exact point of interest in the user's program.

A 48-channel history circuit will simultaneously record any bus transaction which the user may desire to see. The address bus, data bus and control signals plus eighteen external probes which can be used to monitor the Target system's circuitry at other points are recorded by the History circuit.
USING THE AIM-Z80AE

AIM-Z80AE is partitioned on three modules. The Control and History modules are installed directly into the development system. Cables from these modules connect to the Buffer module which plugs directly into the Target system’s Z80 CPU socket. After AIM-Z80AE is installed, the development system is powered up and the system booted up as normal. All development system software and hardware are still functional. The software to control AIM-Z80AE (AIMZ80) is initialized by using the implied run command. AIMZ80 will sign on, take control of the Target system and allow the user to initialize the Target system and use any of the AIMZ80 commands to load, test, and debug his Target program. An example of the use of some of the AIMZ80 commands is given in the following examples.
$AIMZ80(CR) <Run AIM-Z80AE control program (1)

AIMZ80 VERSION 1.0 <Sign on message (2)

,I E000,EFFF(CR) <Initialize Target memory map (3)

IS THIS BLOCK SYSTEM MEMORY? (Y/N) Y (CR)

ARE WRITES ALLOWED? (Y/N) Y (CR)

,I (CR) <Display Target memory map (4)

S = SYSTEM MEMORY T = TARGET MEMORY P = WRITES PROTECTED

<table>
<thead>
<tr>
<th>Address</th>
<th>0000</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
<th>7000</th>
<th>8000</th>
<th>9000</th>
<th>A000</th>
<th>B000</th>
<th>C000</th>
<th>D000</th>
<th>E000</th>
<th>F000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>T T T T T</td>
<td></td>
</tr>
</tbody>
</table>

In the above example the system was initialized by entering AIMZ80 (1), the sign on message was printed (2), and then the I command was used to map Target address space E000 through EFFF to use the System Emulation RAM (3). The I command with no operands was then used to display the current Target memory map configuration (4).
In this example, the M command is used to examine Target memory locations E000 through E006 (1), then a software breakpoint is set at address E004 (2), and execution is started at address E000 (3). The Software breakpoint is encountered at (4), and the current state of the Z80 registers is displayed. The T command is then used to tabulate 4 history samples starting 4 samples prior to the breakpoint last encountered (5). Carriage Return is then entered to display the next sample which is the breakpoint code (6). Next all breakpoints are cleared (7).
SPECIFYING HISTORY OPTIONS

EXAMPLE 3

,B H,O (CR) <Specify history options

PA7----PAO A15-----------------A0

TRIGGER WORD IS: XXXX XXXX 0000 0000 0000 0000
UPDATE: XXXX XXXX 1110 0000 0000 0000

TRIGGER STROBE IS (MRD,LE) ; TO CHANGE SELECT ONE:
MRD(0) MWR(1) MREQ(2) IORD(3)
IOWR(4) IORQ(5) INTA(6) PA8(7) [,LE(8),TE(9)]

EVENT COUNT IS: 0001 (CR)

DELAY COUNT IS: 000 4(CR)

HISTORY CLOCK IS (MRD MWR IORD IOWR) ; TO CHANGE SELECT ANY:
MRD(0) MWR(1) MRF(2)
IORD(3) IOWR(4) PA8+(5) PA8-(6) 0,1,2,3,4(CR)

HISTORY CLOCK ENABLE IS (ALL) CYCLES ; TO CHANGE SELECT ONE:
ALL(0) DMA(1) CPU(2) PA7L(3) PA7H(4)
TWORD(6) [,PB8L(8),PB8H(9)]

In this example, the H,O option is selected to specify History or Hardware breakpoint options (1). The system then allows the user to update the trigger word (2), the trigger strobe (3), the EVENT COUNT (4), the DELAY COUNT (5), the history clock source (6), and finally the history clock enable signal.
HARDWARE BREAKPOINT
EXAMPLE 4

,B E000,H(CR) < Set hardware breakpoint at E000 (1)
,E E000,(CR) < Begin execution at E000 (2)
,HWBP ENCOUNTERED < Hardware breakpoint encountered (3)

In this example, a hardware breakpoint is set at address E000 (1), and execution is started at address E000 (2). After the EVENT COUNT and DELAY COUNT are satisfied, the hardware breakpoint is encountered (3) and the Z80 registers are printed. Next the T command is used to tabulate the history memory starting at the earliest sample (4). The history memory tabulation gives the offset from the breakpoint, the address bus, the data bus, the disassembled opcodes, the type of bus cycle, the A probes and the B probes (5).

In this example, a hardware breakpoint is set at address E000 (1), and execution is started at address E000 (2). After the EVENT COUNT and DELAY COUNT are satisfied, the hardware breakpoint is encountered (3) and the Z80 registers are printed. Next the T command is used to tabulate the history memory starting at the earliest sample (4). The history memory tabulation gives the offset from the breakpoint, the address bus, the data bus, the disassembled opcodes, the type of bus cycle, the A probes and the B probes (5).

BLOCK DIAGRAM DESCRIPTION

As shown in the block diagram, AIM-Z80AE consists of three modules. The buffer module, which contains the Target Z80A CPU, plugs directly into the Target system CPU socket. Address, data and control signals are buffered and cabled to the Control and History modules which are installed in the development system. The control module has the circuitry for detecting the breakpoint conditions. It forces execution to begin in the System Interface RAM which is loaded with an interface program and is shadowed into the Target memory space. This control program makes the Target CPU a slave to the development system. When the user desires to resume execution, the control program activates the execution control circuit and execution resumes at the desired address. The 16K byte emulation RAM may be mapped to appear at any address space in the Target memory map.

The History module has a 24-bit comparator circuit to detect the hardware breakpoint condition, the event counter, and the delay counter. Sampling into the 48 channel-by-1024 word history RAM is controlled by the History control circuit. The Timer circuit is used to count Target processor clocks for logging elapsed execution time.
AIM-Z80AE SOFTW ARE

AIMZ80 is the software designed to operate the AIM-Z80AE system on Mostek’s Dual Floppy Disk Microcomputers. It is supplied on standard FLP-80DOS diskette. The software has the same command structure as other Mostek debuggers. The commands available with AIMZ80 are summarized below. Designations s, f, and d stand for operands.

.B s,f Set hardware or software breakpoint at memory location s.
.C s,f,d Copy the Target memory block s through f to Target memory starting at d.
.D s,f Dump the Target memory block s through f to any desired disk file.
.E s,f Begin real time execution at Target memory address s with an optional breakpoint set at f.
.F s,f,d Fill the Target memory block s through f with data d.
.G s Get binary file s and load it into Target memory.
.H Hexadecimal arithmetic.
.I s,f Initialize the memory map for the Target memory block s through f.
.L s,f,d Locate data d in Target memory range s through f.
.M s Display and update Target memory at location s.
.M s,f,d Tabulate Target memory locations s through f. Option d specifies disassemble of Target memory.
.O s Set relative offset equal to s for all address operands. Extremely useful in debugging relocatable modules.
.P s Display and update Target port number s.
.Q Quit and return to FLP-80DOS Monitor.
.R s,f Display Target registers. Option s specifies the number of registers to be displayed and option f specifies if the heading is to be included.
.S s,f Single step starting at Target location s for f number of steps.
.T s,f Tabulate s locations of the history RAM starting at an offset of f locations from the breakpoint address.
.V s,f,d Verify Target memory block s through f against file d
.W s Write in parallel to logical unit s all output.

Target system programs are developed using the Mostek resident assembler or Macro assembler and linked using the resident Linker. AIMZ80 is then used to complete debugging on the user’s Target system.
ELECTRICAL SPECIFICATIONS

Operating Temperature Range 0°C to +50°C

Target Power Supply Requirements (typical)
+5V 5% @ 500mA

System Power Supply Requirements (typical)
+5V 5% @ 2.5A
+12V 5% @ 100mA
-12V 10% @10mA

Interface: MATRIX and SYS-80F compatible

Operating Frequency - 500KHz to 4MHz (Z80 PHI clock)

Target Interface - All signals meet the specifications for the MK3880-4 (Z80A CPU) with the following exceptions:
1. The output low voltage is 0.5 v max at 1.8 mA for the ADDRESS, DATA, IORQ, RFSH, HALT, and BUSAK signals.
2. The input low current is 400μA max for the PHI clock, RESET, INT, NMI, and DATA signals.
3. The input high current is 20μA max for the PHI clock, RESET, INT, NMI, and DATA signals.
4. The signals M1, MREQ, RD, and WR have a maximum of 25 ns added propagation delay.
5. The input signals RESET, INT, and NMI have a maximum of 45ns added propagation delay.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM-Z80AE-16</td>
<td>Includes the AIM-Z80AE in circuit emulation control module, history module, buffer modules, cabling, operation manual and software on diskette. The emulation Control module is capable of simulating up to 16K bytes of Target memory.</td>
<td>MK78181-1</td>
</tr>
<tr>
<td>AIM-Z80AE-32</td>
<td>Same as AIM-Z80AE-16 but the emulation Control module is capable of simulating up to 32K bytes of Target memory.</td>
<td>MK78181-2</td>
</tr>
<tr>
<td>AIM-Z80AE</td>
<td>Operation manual only</td>
<td>MK79650</td>
</tr>
</tbody>
</table>

XVI-12
FEATURES

- Interfaces directly to MATRIX™
- All 128 ASCII codes
- 32 displayable control codes (in monitor mode)
- Displays up to 96 characters, including lower case
- Keyboard layout similar to that of typewriter
- Separate 18 key numeric pad
- Switch-selectable inverse video
- Cursor addressing
- EIA interface
- Baud rates up to 9.6 KB
- Auxiliary unidirectional EIA output controlled by DC2 (on) and DC4 (off)
- 5 x 8 Dot Matrix

DESCRIPTION

The Mostek CRT is a high-performance, keyboard display unit that is fully compatible with the MATRIX™ microcomputer system.

The character set consists of 96 displayable upper and lower-case characters with lower-case descenders. The display may be switch-selected to be standard video (white on black) or reverse video (black on white).

The Mostek CRT can be interfaced to any computer system that provides a RS-232 serial asynchronous interface.
OPERATING CHARACTERISTICS

TERMINAL CONTROL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Keyboard</th>
<th>Remote Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAR SCREEN</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CLEAR TO END OF LINE</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CLEAR TO END OF SCREEN</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>AUDIBLE ALARM</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>BACKSPACE</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>KEYBOARD LOCK</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>KEYBOARD UNLOCK</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>TAB</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>MONITOR MODE</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

CURSOR CONTROL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Keyboard</th>
<th>Remote Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURSOR ADDRESS (XY)</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>INCREMENTAL CURSOR CONTROL</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>HOME CURSOR</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

SPECIFICATION

DISPLAY CHARACTERISTICS

- Characters per line: 80
- Lines per display: 24
- Screen capacity: 1920 characters
- All 128 ASCII codes
- 96 displayable characters including lower case
- 32 displayable control codes

Remote Command

- Character size: 5 x 8 dot matrix
- Refresh rate: 50/60 frames/sec
- Cursor: Block, Flashing Block, Underline, or Flashing Underline

INTERFACE

- Full or Half Duplex (W.E. modem 103A compatible or W.E. Modem 202C/D using character turnaround).
- EIA RS-232-C connector.
- Eight Baud Rates: 110, 150, 300, 1200, 1800, 2400, 4800, 9600.
- Parity: Odd, Even, 1, 0 or off
- No. of Stop Bits: one (two at 110 Baud)

EXTERNAL CONTROLS

- Auto Scroll
- Contrast
- Power On/Off
- Half Duplex/Full Duplex
- Auto LF/Cr Control
- Reverse Video or Standard Video
- Upper/Lower Case
- Parity
- Baud rate
- EIA or Current Loop

ELECTRICAL

- Power consumption: 60 watts, nominal
- Power input: 115 V, 60 Hz; 115 V, 50 Hz

MECHANICAL

- Size (nominal): 15 in. (38 cm) high, 18.5 in. (47 cm) wide, 23.25 in. (59 cm) deep
- Weight: 38 lbs. (17 kg)

ENVIRONMENTAL

- Temperature: 10°C to 40°C
- Storage Temperature: 0°C to 85°C
- Humidity: 10 to 90% relative, non-condensing
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT</td>
<td>Mostek CRT terminal featuring all 128 ASCII codes, 96 displayable characters including lower case, 80 characters by 24 lines, typewriter-like keyboard layout, cursor addressing, EIA interface and Baud rates to 9.6 K Baud. Includes RS-232 interface cable (MK78152).</td>
<td>MK78190-1</td>
</tr>
<tr>
<td>CRT-50</td>
<td>Same as above but for 50 Hz operation.</td>
<td>MK78190-2</td>
</tr>
<tr>
<td>SDE-RMC6 to CRT</td>
<td>CRT interface cable only.</td>
<td>MK78152</td>
</tr>
<tr>
<td>MD-232 DCE-C</td>
<td>CRT to MDX-SIO, MDX-DEBUG or MDX-EPROM/UART</td>
<td>MK77955</td>
</tr>
</tbody>
</table>
FEATURES

- Interfaces directly to MATRIX™
- Prints 120 characters per second
- Up to 132 characters per line
- Prints original plus five copies
- Character elongation
- Eight inches per second paper slew rate
- Ribbon cartridge
- 7x7 dot matrix, 64-character ASCII
- Tractor feed/Pin feed platen
- Parallel interface

DESCRIPTION

The Mostek line printer is a state-of-the-art microprocessor-controlled, dot matrix line printer that prints at the rate of 120 characters per second. The printer has a maximum print width of 132 characters with a horizontal format of ten characters per inch and six lines per inch vertical. Elongated (double-width) characters are software-selectable.

The Mostek line printer interfaces directly to the MATRIX™ Microcomputer System and can be interfaced easily to other computer systems supporting parallel I/O.
SPECIFICATIONS

Print performance - Minimum throughout

<table>
<thead>
<tr>
<th>Printer Speed (cps)</th>
<th>Max Print</th>
<th>10Char/ Line (lpm)</th>
<th>80Char/ Line (lpm)</th>
<th>122Char/ Line (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>702</td>
<td>120</td>
<td>132...</td>
<td>200</td>
<td>74</td>
</tr>
</tbody>
</table>

Character
7x7 dot matrix

Format
Ten Characters per inch horizontal
Six Lines per inch vertical
Elongated (double-width) characters software-selectable

Forms Handling
Tractor feed, for rear or bottom feed forms
8 ips slew rate
Usable paper 4 in. (102 mm) to 17.3 in. (439 mm) width
Paper tension adjustment

Ribbon System
Ribbon cartridge
Continuous ribbon 9/16 in. (14 mm) wide, 20 yards (18.3 meters) long.
Mobius loop allows printing on upper and lower portion on alternate passes.

Panel Indicators
Power On: Indicates AC power is applied to printer.
Select: Indicates printer can receive data.
Alert: Indicates operator-correctable error condition.

Operator Controls
Select/deselect
Forms thickness
Top of form
Horizontal forms positioning
Vertical forms positioning
Power ON/OFF
Single line feed
Paper empty override
Self-test

INTERFACE DRIVERS AND RECEIVERS

ALL INPUT/OUTPUT SIGNALS ARE TTL COMPATIBLE

RECEIVER:

DRIVER:

CONNECTOR: AMPHENOL 57 40360 SERIES, 36-PIN (CENTRONICS 31310019)

INTERFACE TIMING

PARALLEL DATA

DATA STROBE

ACKNOWLEDGE

BUSY

ACK DELAY FOR NORMAL DATA

ACK DELAY FOR BUSY CONDITION

ACK

BUSY

BUSY DELAY
Internal Controls
Auto motor control: Turns stepping motors off when no data is received.
Electronic top of form: Allows paper to space to top of form when command is received.
Preset for 11 in. (279 mm) or 12 in. (305 mm) forms Opt. VFU must be used for other form lengths.

Data Input
7- or 8-bit ASCII parallel; microprocessor electronics; TTL levels with strobe.
Acknowledge pulse indicates that data was received.

INTERFACING

Electrical Requirements
50/60 Hz, 115/230 VAC; -10%/-15% of Nominal
Tappable Transformer (100, 110, 115, 120, 200, 220, 230, 240 VAC).

Physical Dimensions

Model 702
- **Weight:** 60 lbs. (27 Kg)
- **Width:** 24.5 in. (622 mm)
- **Height:** 8 in. (203 mm)
- **Depth:** 18 in. (457 mm)

Temperature
- Operating: 40°F to 100°F (4.4°C to 37.7°C)
- Storage: -10°F to 160°F (-40°C to 71.1°C)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>Mostek line printer featuring 120 cps operation, 7x7 dot matrix, 10 cpi, and paper slew rate of 8 ips. Includes MATRIX™ cable, 60 Hz operation.</td>
<td>MK78191-1</td>
</tr>
<tr>
<td>LP-50</td>
<td>Same as above but for 50 Hz operation.</td>
<td>MK78191-2</td>
</tr>
<tr>
<td>MD-CPRT-C</td>
<td>MATRIX System or MDX-PIO to Centronics Line Printer Interface cable.</td>
<td>MK79089</td>
</tr>
</tbody>
</table>
PPG 8/16-PROM Programmer

MK79181-1

FEATURES

- Programs, reads, and verifies 2708-, 2758-, and 2716-type PROMs (2758 and 2716 PROMS must be 5-Volt only type)
- Interfaces to MATRIX and MDX-PIO
- Driver software included on system diskette for FLP-80DOS
- Zero-insertion-force socket
- Power and programming indicators

DESCRIPTION

The PPG-8/16 PROM Programmer is a peripheral which provides a low-cost means of programming 2708, 2758, or 2716 PROMs. It is compatible with Mostek’s MATRIX Microcomputer Development System and the MDX-PIO. The PPG-8/16 has a generalized computer interface (two 8-bit I/O ports) allowing it to be controlled by other types of host computers with user-generated driver software. A complete set of documentation is provided with the PPG-8/16 which describes the internal operation and details user’s operating procedures.

The PPG-8/16 is available in a metal enclosure for use with the MATRIX™ and the MDX-PIO. Interface cables for either the MATRIX or MDX-PIO must be purchased separately.

SOFTWARE DESCRIPTION

The driver software accomplishes four basic operations.

These are (1) loading data into host computer memory, (2) reading the contents of a PROM into host computer memory, (3) programming a PROM from the contents of the host computer memory, and (4) verifying the contents of a PROM with the contents of the host computer memory.

The driver software is provided on the FLP-80DOS system diskette. The user documentation provided with the PPG-8/16 fully explains programming procedures to enable a user to develop a software driver on a different host computer.
PPG8/16 BLOCK DIAGRAM

J1 CONNECTOR
TO HOST COMPUTER

J2 CONNECTOR
TO +5, -12, +12 POWER SUPPLY

8 BIT LATCH
A0 - A7
A8 - A9
A8 - A10
2758
MK2708/
MK2716
SOCKET

PORT A

A STB

B STB

PORT B

BUFFER

-5 VDC REGULATOR

POWER LED

PROGRAM LED

STEP-UP VOLTAGE REGULATOR

+27.5 VDC

+12 VDC

-5 VDC

+5 VDC

PROGRAM PULSE CONVERTER

MODE SELECT CIRCUIT

CS/WE

PROGRAM

+5 VDC at 100 mA typical
-12 VDC at 50 mA typical

+12 VDC at 250 mA typical

PROGRAMMING TIME
2708 - 2.5 minutes
2758 - 0.9 minutes
2716 - 1.8 minutes

INTERFACE
25-pin control connector (D type)
40-pin control connector (0.1-in. centers card edge)
for AID-80F, SDB-80, SDB-50/70, or MATRIX™
12-pin power connector (0.156-in. centers card edge)
All control signals are TTL-compatible

OPERATING TEMPERATURE
0°C - 60°C

POWER REQUIREMENTS

2758/16 BLOCK DIAGRAM.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPG-8/16</td>
<td>PROM Programmer for 2708/2758/2716 PROMs with Operations Manual for interface with MATRIX.</td>
<td>MK79081-1</td>
</tr>
<tr>
<td>MATRIX to PPG-8/16</td>
<td>PPG-8/16 Interface Cable for MATRIX</td>
<td>MK79090</td>
</tr>
<tr>
<td>MD-PPG-C</td>
<td>PPG-8/16 Interface Cable for MDX-PIO</td>
<td>MK77957</td>
</tr>
<tr>
<td></td>
<td>PPG-8/16 Operations Manual</td>
<td>MK79603</td>
</tr>
</tbody>
</table>

*NOTE: The PPG-8/16 will only program the 2708, 2758, and 2716 PROMs. The 2758 and 2716 are 5 Volt only type PROMs. THE PPG-8/16 WILL NOT PROGRAM THE TI2716 MULTIPLE-VOLTAGE 2K x 8 PROM.
FEATURES

- Standard 19-inch rack-mountable chassis; 7-inch panel height
- Removable structural foam disk bezel for internal access
- Front panel POWER-ON indicator
- Mounts two standard 8-inch floppy disk drives
- Disks mounted horizontally for low profile
- Self-contained power supply and 115 CFM fan
- 100/115/230 Volt, 50/60 Hz operation

GENERAL DESCRIPTION

The Mostek RMDFSS offers a solution to rack mounting two standard 8-inch floppy disk drives. The system features a self-contained power supply designed to work on voltages and frequencies available worldwide. An attractive structural foam-front disk bezel is provided with a power-on indicator. The disk bezel is designed with quick-release ball studs so that it can be easily removed for access to the drives. The drives are mounted in a horizontal plane for a low-profile appearance and to conserve panel height in the rack. Drives and power supply may be removed individually from front or top for ease of maintenance. The back panel has an I/O panel prepunched for one 50-pin "D" interface to the disk controller. AC components on the back panel include: On/Off switch, voltage selection switch, fuse holder (3AG or 5 x 20 mm) and AC input receptacle/line filter.
INPUT POWER
100/115/230 Volts AC ± 10% 50/60Hz

DC POWER AVAILABLE
+5 VDC at 3.0A max.
-5 VDC at 0.5A max.
+24 VDC at 3.4A max.

LOAD REGULATION
± .05% for a 50% load change

OUTPUT RIPPLE
3.0 mV PK-PK max.

TRANSIENT RESPONSE
30 microseconds for a 50% load change

SHORT CIRCUIT AND OVERLOAD PROTECTION
Automatic current limit/foldback

OVERVOLTAGE PROTECTION
+5 Volt output set to 6.2 ± 0.4 Volts

STABILITY
± 0.3% for 24 hours after warmup

THERMAL PROTECTION
Bi-metal thermostat on primary AC line set to cut out at 180°F (82°C)

DISK DRIVES
Shugart 800-2 or equivalent

FUSING
Line Voltage

<table>
<thead>
<tr>
<th>Voltage</th>
<th>MK78183</th>
<th>MK78185</th>
</tr>
</thead>
<tbody>
<tr>
<td>110/115V</td>
<td>3 Amp 3AG*</td>
<td>3 Amp 5 x 20 mm</td>
</tr>
<tr>
<td>230 V</td>
<td>1.5 Amp 3AG</td>
<td>1.5 Amp 5 x 20mm*</td>
</tr>
</tbody>
</table>

*Configuration as shipped

LINE CORD SUPPLIED

<table>
<thead>
<tr>
<th>MK78183</th>
<th>MK78185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to Belden model</td>
<td>Similar to Feller model</td>
</tr>
<tr>
<td>17205B</td>
<td>1100</td>
</tr>
</tbody>
</table>

FRONT PANEL INDICATOR
Power-on

REAR PANEL CONTROLS
AC Power On/Off
AC fuse holder
AC line receptacle/filter
AC line voltage selector

WEIGHT
50 lbs (22.7 kg)

OPERATING TEMPERATURE RANGE
0°C to 40°C (Disk Media Limitation)

DIMENSIONS
Height: 7.0 in. (17.8 cm) panel space
7.3 in. (18.5 cm) overall, includes feet
Width: 19.0 in. (48.3 cm) at front panel
17.5 in. (44.5 cm) behind front panel
Depth: 21.1 in. (54.0 cm) with all protrusions
20.0 in. (50.8 cm) without foam front

HUMIDITY
Up to 90% relative, noncondensing.
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMDFSS</td>
<td>Rack-mountable dual floppy enclosure with 8-inch drives for 100/115/230 Volt operation. Includes interface cable to SDE-RMC6 or MD-RMC12, front disk bezel, support bracket for rack mounting and Operations Manual. 60Hz model.</td>
<td>MK78183</td>
</tr>
<tr>
<td>RMDFSS-50</td>
<td>50 Hz model.</td>
<td>MK78185</td>
</tr>
<tr>
<td></td>
<td>RMDFSS Operations Manual Only</td>
<td>MK79740</td>
</tr>
</tbody>
</table>