

5V ASYNCHRONOUS SRAMs	
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

SRAM DATA BOOK

2805 East Columbia Road Boise, Idaho 83706 Telephone: 208-368-3900 Fax: 208-368-4431 Micron DataFax[™]: 208-368-5800 Customer Comment Line: U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 208-368-3342

©1994, Micron Semiconductor, Inc. Printed in the U.S.A.

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. Micron DataFax is a service mark of Micron Semiconductor, Inc.

-RON

Front — A variety of features highlight Micron's SRAM product line. Shown at left, a circuitry backdrop rendered from a scanning electron microscope. Bottom right, the intricate memory of a 256K SRAM wafer, etched in silicon, which reflects the many hues of the natural color spectrum.

Back — Micron's Boise, Idaho, headquarters.

IMPORTANT NOTICE

Micron Semiconductor, Inc. (Micron), reserves the right to change products or specifications without notice. Customers are advised to obtain the latest versions of product specifications, which should be considered in evaluating a product's appropriateness for a particular use. There is no assurance that Micron's semiconductor products are appropriate for any application by a customer.

MICRON MAKES NO WARRANTIES, EX-PRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANT-ABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN COMPLIANCE WITH MICRON'S SPECIFICATION SHEET FOR THE PRODUCT AT THE TIME OF DE-LIVERY. IN NO EVENT SHALL MICRON BE LIABLE FOR ANY INDIRECT, SPECIAL, IN-CIDENTAL OR CONSEQUENTIAL DAM-AGES AS A RESULT OF THE PERFOR-MANCE, ORFAILURE TOPERFORM, OF ANY MICRON PRODUCT.

ANY CLAIM AGAINST MICRON MUST BE MADE WITHIN 90 DAYS FROM THE DATE OF SHIPMENT BY MICRON AND MICRON HAS NO LIABILITY THEREAFTER. Micron's liability is limited to replacement of defective product or either Customer or Micron may elect refund of amounts paid in lieu of replacement. The warranty covers only defects arising under normal use and not malfunctions resulting from misuse, abuse, modification, or repairs by anyone other than Micron.

MICRON'S PRODUCTS ARE NOT AUTHO-RIZED FOR USE AS CRITICAL COMPO-NENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRIT-TEN APPROVAL OF THE PRESIDENT OF MICRON. Life support devices or systems are those which are intended to support or sustain life and whose failure to perform can be reasonably expected to result in a significant injury or death to the user. Critical components are those whose failure to perform can be reasonably expected to cause failure of a life support device or system or affect its safety or effectiveness.

MICRON DOES NOT WARRANT PRODUCT TO BE FREE OF CLAIMS OF PATENT IN-FRINGEMENT BY ANY THIRD PARTY AND DISCLAIMS ANY SUCH WARRANTY OR INDEMNIFICATION AGAINST PATENT IN-FRINGEMENT.

Dear Customer:

Micron Semiconductor, Inc., is dedicated to the design, manufacture and marketing of high-quality, highly reliable memory components. Our corporate mission is:

"To be a world-class team developing advantages for our customers."

At Micron, we are investing time, talent and resources to bring you the finest DRAMs, SRAMs and other specialty memory products. We have developed a unique intelligent burn-in system, AMBYX[®], which evaluates and reports the quality level of each and every component we produce.

We are dedicated to continuous improvement of all our products and services. This means continual reduction of electrical and mechanical defect levels. It also means the addition of new services such as "just-in-time" delivery and electronic data interchange programs. And when you have a design or application question, you can get the answers you need from one of Micron's applications engineers.

We're proud of our products, our progress and our performance. And we're pleased that you're choosing Micron as your memory supplier.

The Micron Team

ADVANTAGES

Micron Semiconductor brings quality, productivity and innovation together to provide advantages for our customers. Our products feature some of the industry's fastest speeds. And we establish delivery standards based on customer expectations, including JIT programs, made possible by ever-increasing product reliability.

COMPONENT INTEGRATED CIRCUITS

Micron entered the memory market in 1978, first designing, then manufacturing dynamic random access memory (DRAM). From there, we developed high-performance fast static RAM (SRAM), multiport DRAM (including triple-port DRAM), and a variety of other memory products.

As we bring innovative memory solutions to our customers, we enjoy recognition for our achievements. Micron's Triple-Port DRAM was the first IC ever to incorporate a second, independent serial access port, allowing unparalleled flexibility in data manipulation. Micron's Triple-Port received the 1990 "Product of the Year" award from *Electronic Products* magazine.

SPECIALTY MEMORY PRODUCTS

Beyond our standard component memory, Micron is introducing many revolutionary products that we expect will follow the Triple-Port tradition. Micron continues to forge ahead into new and exciting frontiers.

We are pleased to be first to market with our compact, easy-to-install 88-pin DRAM card. Ideal for laptop, notebook and other portable systems, Micron's DRAM Card offers both high density and low power within JEDEC and JEIDA specifications.*

DIE SALES

In addition to our durable packaging, Micron also provides memory devices in bare die form. These are increasingly in demand for use in highly specialized applications. Micron's bare die products are available both in 6" wafers and wafflepacks.

CUSTOM MANUFACTURING SERVICES

For total project management, Micron offers valueadded services. These include both standard contract manufacturing services for system-level products including design, assembly, customer kitted assembly, comprehensive quality testing or shipping as well as complete turnkey services covering all phases of production. Our component and system-level manufacturing facilities are centrally located in Boise, Idaho, so the component products you need are readily available.

MICRON DATAFAX

When you can't afford to wait for critical product information or specifications, Micron offers a convenient solution available 24 hours a day, every day. Micron DataFax enables you to make automated requests for data sheets, product literature, and other information from your fax machine. Just dial 208-368-5800 from your fax machine and Micron DataFax will give you instructions on how to order documents, including an index of documents. Once your order is placed, Micron DataFax will process your order, faxing up to two documents per call to your fax machine.

QUALITY

Without a doubt, quality is the most important thing we provide to every Micron customer with each Micron shipment. That's because we believe that quality must be internalized consistently at each level of our company. We provide every Micron team member with the training and motivation needed to make Micron's quality philosophy a reality.

One way we have measurably improved both productivity and product quality is through our own quality improvement program formed by individuals throughout the company. Micron quality teams get together to address a wide range of issues within their areas. We consistently and regularly perform a company-wide selfassessment based on the Malcolm Baldrige National Quality Award criteria. We've also implemented statistical process controls to evaluate every facet of the memory design, fabrication, assembly and shipping process. And our AMBYX intelligent burn-in and test system** gives Micron a unique edge in product reliability.

These quality programs recently resulted in Micron becoming one of the first U.S. semiconductor manufacturers to receive ISO 9001 certification. ISO 9001 is the most comprehensive level of certification in the internationally recognized ISO family of specifications. The certification implies that Micron's systems for accepting orders, reviewing customers' specifications, manufacturing and testing products, and delivering those products to its customers are quality controlled and produce consistent results.

*See NOTE, page v.

**For more information on AMBYX, see Section 6.

ABOUT THIS BOOK

CONTENT

The 1995 SRAM Data Book from Micron Semiconductor provides complete specifications on Micron's standard SRAMs, Synchronous SRAMs and SRAM Modules.

The SRAM Data Book is one of three product data books Micron currently publishes. Its two companion volumes include our DRAM Data Book and Flash Data Book. As product lines continue to diversify, more data books will be released.

SECTION ORGANIZATION

Micron's 1995 SRAM Data Book contains a detailed Table of Contents with sequential and numerical indexes of products as well as a complete product selection guide. The Data Book is organized into nine sections:

- Sections 1–4: Individual product families. Each contains a product selection guide followed by data sheets.
- Section 5: Technical/application notes.
- Section 6: Summary of Micron's unique quality and reliability programs and testing operation, including our AMBYX intelligent burn-in and test system.*
- Section 7: Packaging information.
- Section 8: Sales information, including a list of sales representatives and distributors worldwide.

DATA SHEET SEQUENCE

Data sheets in this book are ordered first by width and second by depth. For example, the SRAM section begins with the $256K \times 1$ followed by 1 Meg x 1, the $64K \times 4$ and all other x4 configurations in order of ascending depth. Next come the x8 products, etc., as applicable to the specific product family.

DATA SHEET DESIGNATIONS

As detailed in the table below, each Micron product data sheet is classified as either Advance, Preliminary or Final. In addition, new product data sheets that are new additions are designated with a "New" indicator in the tab area of each page.

SURVEY

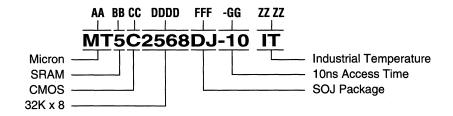
We have included a removable, postage-paid survey form in the front of this book. Your time in completing and returning this survey will enhance our efforts to continually improve our product literature.

For more information on Micron product literature, or to order additional copies of this publication, contact:

Micron Semiconductor, Inc. 2805 East Columbia Road Boise, ID 83706 Phone: 208-368-3900 Fax: 208-368-4431 Micron DataFax: 208-368-5800 Customer Comment Line: U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 208-368-3342

DATA SHEET MARKING	DEFINITION
Advance	This data sheet contains initial descriptions of products still under development.
Preliminary	This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.
No Marking	This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
New	This data sheet (which may be either Advance, Preliminary or Final) is a new addition to the data book.

DATA SHEET DESIGNATIONS


NOTE: Micron uses acronyms to refer to certain industry-standard-setting bodies. These are defined below: EIA/JEDEC—Electronics Industry Association/Joint Electron Device Engineering Council JEIDA—Japanese Electronics Industry Development Association PCMCIA—Personal Computer Memory Card International Association

*Micron's Quality/Reliability Handbook is available by calling 208-368-3900.

PREFACE PRODUCT NUMBERING

EXPANDED COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Product MT

BB – PRODUCT FAMILY

Flash	
DRAM	
SGRAM	41
SRAM	
Synchronous SRAM	

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	
Flash CMOS	F
Low Voltage Flash CMOS	LF

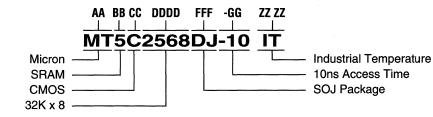
DDDD – DEVICE NUMBER

(Can be modified to indicate variations)

Flash	Density, Configuration
DRAM	
TPDRAM	Width, Density
SRAM	Total Bits, Width
Synchronous SRAM	Density, Width

E – DEVICE VERSIONS

(Alphabetic characters only; located between D and F when required.)


JEDEC Test Mode (4 Meg DRAM)	J
Errata on Base Part	Q

FFF – PACKAGE CODES

PLASTIC	
DIP	Blank
DIP (Wide Body)	W
ZIP	
LCC	EJ
SOP/SOIC	SG
QFP	LG
TSOP (Type I)	VG
TSOP (Type I, Reversed)	
TSOP (Type II)	
TSOP (Reversed)	RG
TSOP (Longer)	TL
SOJ	
SOJ (Reversed)	DR
SOJ (Longer)	

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

- -

GG – ACCESS TIME

-5	5ns or 50ns
-6	6ns or 60ns
-7	7ns or 70ns
-8	8ns or 80ns
-10	10ns or 100ns
-12	12ns or 120ns
-15	
-17	17ns
-20	
-25	25ns
-35	35ns
-45	45ns
-53	
-55	

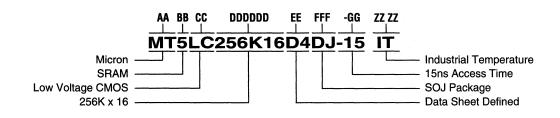
ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as V $\,$ L $\,$ IT.

Interim	. I
Low Voltage	٧


ZZ ZZ – PROCESSING CODES (continued)

DRAMs	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh)	S
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Power, Low Volt Data Retention	LP
Flash	
Bottom Boot	B
Top Boot	T
EPI Wafer	
Commercial Testing	
$0^{\circ}C$ to $+70^{\circ}C$	Riank
-40°C to +85°C	IT
-40°C to +85°C -40°C to +125°C	IT AT
-40°C to +85°C	IT AT
-40°C to +85°C -40°C to +125°C	IT AT
-40°C to +85°C -40°C to +125°C -55°C to +125°C Special Processing Engineering Sample	IT AT XT ES
-40°C to +85°C -40°C to +125°C -55°C to +125°C Special Processing Engineering Sample Mechanical Sample	IT AT XT ES MS
-40°C to +85°C -40°C to +125°C -55°C to +125°C Special Processing Engineering Sample Mechanical Sample Sample Kit*	IT AT XT ES
-40°C to +85°C -40°C to +125°C -55°C to +125°C Special Processing Engineering Sample Mechanical Sample Sample Kit* Tape-and-Reel*	IT AT XT ES MS SK TR
-40°C to +85°C -40°C to +125°C -55°C to +125°C Special Processing Engineering Sample Mechanical Sample Sample Kit*	IT AT XT ES MS SK TR

* Used in device order codes; this code is not marked on device.

PREFACE PRODUCT NUMBERING

NEW COMPONENT NUMBERING SYSTEM

AA - PRODUCT LINE IDENTIFIER

Micron Product MT

BB – PRODUCT FAMILY

4
41
43
48
5
58

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	
BICMOS	В
Low Voltage BiCMOS	

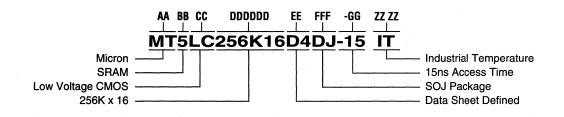
DDDDDD - DEVICE NUMBER

Depth, Width

Example:

1M16 = 1 megabit deep by 16 bits v memory.	
No Letter	Bits
К	
Μ	Megabits
G	Gigabits

EE – DEVICE VERSIONS


(The first character is an alphabetic character only; the second character is a numeric character only.) Specified by individual data sheet.

FFF – PACKAGE CODES

Plastic	
DIP	Blank
DIP (Wide Body)	W
ZIP	
LCC	EJ
SOP/SOIC	SG
QFP	LG
TSOP (Type II)	TG
TSOP (Reversed)	RG
TSOP (Longer)	TL
SOJ	
SOJ (Wide)	DW
SOJ (Reversed)	
SOJ (Longer)	

NEW COMPONENT NUMBERING SYSTEM (continued)

GG – ACCESS TIME

-5		5ns or 50ns
-7		7ns or 70ns
-8		8ns or 80ns
-9		9ns or 90ns
-10		10ns or 100ns
-12		12ns or 120ns
-15		15ns or 150ns
-17	••••••••	17ns
-20		20ns
-35		35ns
-45		45ns
-55		55ns

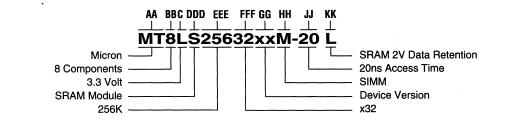
ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as V L IT.

Interim	 	
Low Voltage	 	V


ZZ ZZ – PROCESSING CODES (continued)

DRAMs	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh	
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Volt Data Retention, Low Power	LP
EPI Wafer	
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	
-55°C to +125°C	XT
Special Processing	
Engineering Sample	ES
Mechanical Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	BC

* Used in device order codes; this code is not marked on device.

MODULE NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Semiconductor Product MT

BB – NUMBER OF MEMORY COMPONENTS

C – PROCESS TECHNOLOGY

LOW VOLTAGE (3.3V)	L	

DDD – RAM FAMILY

D
DT
S
ST
SY
SYT

EEE – DEPTH

FFF – WIDTH

GG – DEVICE VERSIONS

Specified by individual data sheet (Synchronous SRAM only)

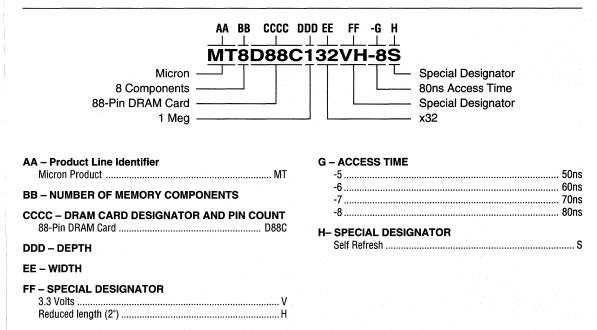
HH – PACKAGE CODE

Gold Plated SIMM/DIMM	G
ZIP	Z
SIP	N
SIMM/DIMM	M
Small Outline DIMM	H
Small Outline Gold DIMM	HG
Double-Sided SIMM (1 or 4 Meg x 36 Only)	DM
Double-Sided SIMM (Gold 1 or 4 Meg x 36 Only)	DG

JJ - ACCESS TIME

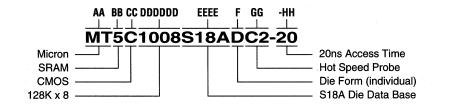
-10	10ns
-12	
-15	
-17	
-20	
-25	
-35	35ns
-6	
-7	
-8	

KK – MODULE SPECIAL DESIGNATOR


SRAM

2V data retention	- 1 - C
Low Power	
Low Power, 2V data retention	LP
DRAM	
Low Power (Extended Refresh)	L
ECC	C
Extended Data Out	X
Self Refresh	S
16 Meg DRAM 4,096 Refresh	B

PREFACE PRODUCT NUMBERING


DRAM CARD NUMBERING SYSTEM

PREFACE PRODUCT NUMBERING

DIE PRODUCT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Component Product	MT
BB – PRODUCT FAMILY	

SRAM	
DRAM	
Synchronous SRAM	
• • • • • • • • • • • • • • • • • • •	

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	LC

DDDDDD - DEVICE NUMBER

When no alpha character appears	as part of this section, the
section is defined as:	
DRAM	Width, Density
SRAM	Total Bits, Width
Synchronous SRAM	Depth, Width

When an alpha character occurs as part of this section, the section is defined as: Depth, Width

Example:

1M16 = 1 megabit deep by 16 bits wide = 16 megabits of total memory.

No Letter	Bits
К	Kilobits
	Megabits
	Gigabits

EEEE – DIE DATA BASE REVISION

F – FORM

Die Form	D
	W

GG – TESTING LEVELS

Standard Probe (0° to 70°C)	C1
Hot Speed Probe (0° to 70°C)	C2
Known Good Die (0° to 70°C)	C3

HH – ACCESS TIME

(Applicable for C2 and C3 only)	
-5	5ns or 50ns
-6	6ns or 60ns
-7	7ns or 70ns
-8	8ns or 80ns
-9	
-10	10ns or 100ns
-12	12ns or 120ns
-15	15ns or 150ns
-17	17ns
-20	20ns
-25	25ns
-35	35ns
-45	45ns
-50 (SRAM only)	50ns
-SS (C2 only)	

5V ASYNCHRONOUS SRAMs

MT5C2561	256K x 1
MT5C1001	1 Meg x 1
MT5C2564	U
MT5C2565	64K x 4
MT5C1005	
MT5C256K4A1	
MT5C2568	
MT5C1008	
MT5C128K8A1	
MT5C64K16A1	64K x 16
СЕ	CHIP ENABLE
BE	BYTE ENABLE

3V ASYNCHRONOUS SRAMs

MT5LC2561	
MT5LC1001	
MT5LC2564	
MT5LC2565	64K x 4
MT5LC1005	
MT5LC256K4D4	256K x 4
MT5LC1M4D4	1 Meg x 4
MT5LC2568	
MT5LC1008	128K x 8
MT5LC128K8D4	
MT5LC512K8D4	512K x 8
MT5LC64K16D4	64K x 16
MT5LC256K16D4	256K x 16
CE BE	

<u>CE</u> only 1-1 <u>CE</u> only 1-11 <u>CE</u> only 1-21 $\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$ 1-31 <u>CE & OE</u> 1-41 CE & OE, Revolutionary Pinout 1-51 <u>CE & OE</u> 1-61 <u>CE1</u>, CE2 & <u>OE</u>...... 1-71 CE & OE, Revolutionary Pinout 1-81 BE, CE & OE, Revolutionary Pinout 1-91 OUTPUT ENABLE OE

REVOLUTIONARY PINOUT CENTER PIN POWER AND GROUND

PAGE

$\overline{\text{CE}}$ only with separate I/O	2-1
CE only with separate I/O	2-9
CE only	2-17
CE & OE	2-25
$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	2-33
CE, Revolutionary Pinout	2-41
CE & OE, Revolutionary Pinout	2-51
$\overline{\operatorname{CE}} \And \overline{\operatorname{OE}}$	2-59
$\overline{\text{CE1}}$, CE2 & $\overline{\text{OE}}$	2-67
CE & OE, Revolutionary Pinout	2-75
CE & OE, Revolutionary Pinout	2-85
BE, CE & OE, Revolutionary Pinout	2-93
$\overline{\text{BE}}, \overline{\text{CE}} \And \overline{\text{OE}}$	2-103
	ENABLE GROUND

SYNCHRONOUS SRAMs

AON

MT58LC64K18B2	64K x 18
MT58LC64K18M1	64K x 18
MT58LC64K18C4	64K x 18
MT58LC64K18A6	64K x 18
MT58LC32K32B2	.32K x 32
MT58LC32K32C4	.32K x 32
MT58LC32K36B2	.32K x 36
MT58LC32K36C4	.32K x 36

SyncBurst [™] , Interleaved, Linear	3-1
SyncBurst, Linear	3-1
SyncBurst, Interleaved, Linear	3-17
SyncBurst, Linear	3-17
SyncBurst	3-33
SyncBurst, Interleaved, Pipelined	3-49
SyncBurst, Interleaved	3-65
SyncBurst, Interleaved, Pipelined	3-81

SRAM MODULES

MT8S6432	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-1
MT8LS643264K x 32	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-9
MT4S12832 128K x 32	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-17
MT4LS12832128K x 32	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-25
MT8S25632	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-33
MT8LS25632	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-41
MT8LS1321 Meg x 32	$\overline{\operatorname{CE}}$ & $\overline{\operatorname{OE}}$	4-49
MT2LSYT3264T1 32K x 64	SyncBurst, Linear	4-57
MT2LSYT3264T2 32K x 64	SyncBurst, Interleaved	4-57
MT2LSYT3264T4 32K x 64	SyncBurst, Interleaved, Pipelined	4-69
MT2LSYT3264T6 32K x 64	SyncBurst, Linear, Pipelined	4-69
MT2LSYT3264B2 32K x 64	SyncBurst, Interleaved, Linear	4-81
MT2LSYT3264C4 32K x 64	SyncBurst, Interleaved, Linear,	
	Pipelined	4-87
MT2LSYT3272T1 32K x 72	SyncBurst, Linear	4-93
MT2LSYT3272T2 32K x 72	SyncBurst, Interleaved	4-93
MT2LSYT3272T4 32K x 72	SyncBurst, Interleaved, Pipelined	4-107
MT2LSYT3272T6 32K x 72	SyncBurst, Linear, Pipelined	4-107
MT2LSYT3272B2 32K x 72	SyncBurst, Interleaved, Linear	4-121
MT2LSYT3272C4 32K x 72	SyncBurst, Interleaved, Linear,	
	Pipelined	4-129
MT4LSY6472T1 64K x 72	SyncBurst, Linear	4-93
MT4LSY6472T2 64K x 72	SyncBurst, Interleaved	4-93
MT4LSY6472T4 64K x 72	SyncBurst, Interleaved, Pipelined	4-107
MT4LSY6472T6 64K x 72	SyncBurst, Linear, Pipelined	4-107
MT4LSYT6472B2	SyncBurst, Interleaved, Linear	4-121
MT4LSYT6472C4	SyncBurst, Interleaved, Linear,	
	Pipelined	4-129
CE CHIP ENABLE	ое оuтрит	
CD CHIF ENABLE	01101	DINADED

PREFACE Rev. 11/94

PAGE

MICRON

PAGE

TN-00-01	Moisture Absorption in Plastic Packages	5-1
TN-00-02	Tape-and-Reel Procedures	5-3
TN-05-02	SRAM Bus Contention Design Considerations	5-9
TN-05-03	5V SRAM Capacitive Loading	5-13
TN-05-06	1 Meg Evolutionary Pinout SRAM Typical (5V) Operating Curves	5-15
TN-05-07	256K SRAM Typical (5V) Operating Curves	5-17
TN-05-13	1 Meg Low-Power SRAMs	5-19
TN-05-14	SRAM Thermal Design Considerations	5-23
TN-05-16	A Designer's Guide to 3.3V SRAMs	5-29
TN-05-17	Low-Power Memory Design Using Data Retention	5-35
TN-05-19	SRAMs and Low-Voltage Data Retention	5-39
TN-05-20	3.3V SRAM Capacitive Loading	5-41
TN-05-21	High-Speed Memory Design Techniques	5-43
TN-05-22	1 Meg Revolutionary Pinout SRAM Typical (5V) Operating Curves	5-49
TN-05-23	256K SRAM Typical (3.3V) Operating Curves	5-53
TN-58-01	SyncBurst™ SRAM Design for Compatibility	5-55
TN-58-02	Design Tips: 32K x 36 Synchronous SRAM	5-63
TN-58-03	SyncBurst™ SRAMs in Asynchronous Designs	5-69

PRODUCT RELIABILITY

PAGE

Overview		6-1
Process Flow Chart	e	6-9

PACKAGE INFORMATION

Index	7-1
Package Drawings	7-2

SALES INFORMATION

PAGE

Customer Service Notes	8-1
Product Numbering System	8-15
Ordering Information and Examples	8-22
North American Sales Representatives and Distributors	8-23
International Sales Representatives and Distributors	8-35

NUMERICAL INDEX

MIC

RON

Part #, MT:		
2LSYT3264B2	. SRAM MODULE	 4-81
2LSYT3264C4	. SRAM MODULE	 4-87
2LSYT3264T1	. SRAM MODULE	 4-57
2LSYT3264T2	. SRAM MODULE	 4-57
2LSYT3264T4	. SRAM MODULE	 4-69
2LSYT3264T6	. SRAM MODULE	 4-69
2LSYT3272B2	. SRAM MODULE	 4-121
2LSYT3272C4	. SRAM MODULE	 4-129
2LSYT3272T1	. SRAM MODULE	 4-93
2LSYT3272T2	. SRAM MODULE	 4-93
2LSYT3272T4	. SRAM MODULE	 4-107
2LSYT3272T6	. SRAM MODULE	 4-107
4LS12832	. SRAM MODULE	 4-25
4LSY6472T1	. SRAM MODULE	 4-93
4LSY6472T2	. SRAM MODULE	 4-93
4LSY6472T4	. SRAM MODULE	 4-107
4LSY6472T6	. SRAM MODULE	 4-107
4LSYT6472B2	. SRAM MODULE	 4-121
4LSYT6472C4	. SRAM MODULE	 4-129
4S12832	. SRAM MODULE	 4-17
58LC32K32B2	SYNC. SRAM	 3-33
58LC32K32C4	SYNC. SRAM	3-49
58LC32K36B2		 3-65
58LC32K36C4	SYNC. SRAM	3-81
58LC64K18A6	SYNC. SRAM	 3-17
58LC64K18B2	SYNC. SRAM	 3-1
58LC64K18C4	SYNC. SRAM	 3-17
58LC64K18M1	SYNC. SRAM	 3-1
5C1001		 1-11
5C1005	5V SRAM	1-41
5C1008	5V SRAM	1-71
5C128K8A1	5V SRAM	1-81
5C2561	5V SRAM	 1-1
5C2564	5V SRAM	1-21
5C2565	5V SRAM	 1-31
5C2568	5V SRAM	 1-61
5C256K4A1		 1-51
5C64K16A1		 1-91
5LC1001	3.3V SRAM	 2-9

NUMERICAL INDEX (continued)

RON

M

Part #, MT:	
	3.3V SRAM
5LC2561	3.3V SRAM
5LC2564	3.3V SRAM
	3.3V SRAM
	3.3V SRAM
	3.3V SRAM
5LC256K4D4	3.3V SRAM
	3.3V SRAM
5LC64K16D4	3.3V SRAM
8LS132	SRAM MODULE
	SRAM MODULE
	SRAM MODULE
	SRAM MODULE
856432	SRAM MODULE

• • • • • • • • • • • • • • • • • • • •		2-33
		2-67
	••••••	2-75
		2-51
		2-1
		2-17
••••••		
		2-25
		2-59
		2-103
		2-41
		2-85
		2-93
		4-49
••••••		
	e parte de la company	4-41
		4-9
		4-33
		4-1
•••••		<u></u>

5V ASYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

ION

Memory	Memory Control		Access	Package/I		
Configuration	Functions	Number	Time (ns)	PDIP	SOJ	Page
256K x 1	CE only	MT5C2561	10, 12, 15, 20, 25	24	24	1-1
1 Meg x 1	CE only	MT5C1001	12, 15, 20, 25	28	28	1-11
64K x 4	CE only	MT5C2564	10, 12, 15, 20, 25	24	24	1-21
64K x 4	CE and OE	MT5C2565	10, 12, 15, 20, 25	28	28	1-31
256K x 4	CE and OE	MT5C1005	12, 15, 20, 25	28	28	1-41
256K x 4	CE, OE and Revolutionary Pinout	MT5C256K4A1	12, 15, 20, 25	-	32	1-51
32K x 8	CE and OE	MT5C2568	10, 12, 15, 20, 25	28	28	1-61
128K x 8	CE1, CE2 and OE	MT5C1008	12, 15, 20, 25	32	32	1-71
128K x 8	CE, OE and Revolutionary Pinout	MT5C128K8A1	12, 15, 20, 25	-	32	1-81
64K x 16	CE, OE, Byte Enable and Revolutionary Pinout	MT5C64K16A1	12, 15, 20, 25	-	44	1-91

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

3.3V ASYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Package/N	lo. of Pins	
Configuration	Functions	Number	Time (ns)	PDIP	SOJ	Page
256K x 1	CE only with separate I/O	MT5LC2561	12, 15, 20, 25	24	24	2-1
1 Meg x 1	CE only with separate I/O	MT5LC1001	15, 17, 20, 25	28	28	2-9
64K x 4	CE only	MT5LC2564	12, 15, 20, 25	24	24	2-17
64K x 4	CE and OE	MT5LC2565	12, 15, 20, 25	28	28	2-25
256K x 4	CE and OE	MT5LC1005	15, 17, 20, 25	28	28	2-33
256K x 4	CE, OE and Revolutionary Pinout	MT5LC256K4D4	12, 15, 20, 25	-	32	2-41
1 Meg x 4	CE, OE and Revolutionary Pinout	MT5LC1M4D4	12, 15, 20, 25, 35	-	32	2-51
32K x 8	CE and OE	MT5LC2568	12, 15, 20, 25	28	28	2-59
128K x 8	CE1, CE2 and OE	MT5LC1008	15, 17, 20, 25	32	32	2-67
128K x 8	CE, OE and Revolutionary Pinout	MT5LC128K8D4	12, 15, 20, 25	-	32	2-75
512K x 8	CE, OE and Revolutionary Pinout	MT5LC512K8D4	12, 15, 20, 25, 35	-	36	2-85
64K x 16	CE, OE, Byte Enable and Revolutionary Pinout	MT5LC64K16D4	12, 15, 20, 25	-	44	2-93
256K x 16	CE, OE, Byte Enable	MT5LC256K16D4	12, 15, 20, 25, 35	- 1 - 1 - 1	54	2-103

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

SYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	Supply	Control	Part	Access	Cycle	Package	and Numb	er of Pins	
Configuration	Voltage	Functions	Number	Time (ns)	Time (ns)	PLCC	TQFP	DIE	Page
64K x 18	3.3V	SyncBurst™, Interleaved, Linear	MT58LC64K18B2	9,10,11,12,14	15,15,15,20,20	52	100	CD1/CD2	3-1
64K x 18	3.3V	SyncBurst, Linear	MT58LC64K18M1	9,10,11,12,14	15,15,15,20,20	52	100	CD1/CD2	3-1
64K x 18	3.3V	SyncBurst, Interleaved, Linear	MT58LC64K18C4	4.5,5,6,7,8	8,10,12,15,20	52	100	CD1/CD2	3-17
64K x 18	3.3V	SyncBurst, Linear	MT58LC64K18A6	4.5,5,6,7,8	8,10,12,15,20	52	100	CD1/CD2	3-17
32K x 32	3.3V	SyncBurst	MT58LC32K32B2	9,10,11,12,14	15,15,15,20,20	-	100	CD1/CD2	3-33
32K x 32	3.3V	SyncBurst, Interleaved Burst, Pipelined	MT58LC32K32C4	4.5,5,6,7,8	8,10,12,15,20	•	100	CD1/CD2	3-49
32K x 36	3.3V	SyncBurst, Interleaved Burst	MT58LC32K36B2	9,10,11,12,14	15,15,15,20,20	-	100	CD1/CD2	3-65
32K x 36	3.3V	SyncBurst, Interleaved Burst, Pipelined	MT58LC32K36C4	4.5,5,6,7,8	8,10,12,15,20	-	100	CD1/CD2	3-81

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

PREFACE PRODUCT SELECTION

SRAM MODULE PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Packa	ge and No	. of Pins	l de la secondada Maria de la secondada
Configuration	Functions	Number	Time (ns)	ZIP	SIMM	DIMM	Page
64K x 32	CE and OE	MT8S6432	12, 15, 20, 25	64	64	-	4-1
64K x 32	CE and OE	MT8LS6432	15, 20, 25	64	64	-	4-9
128K x 32	CE and OE	MT4S12832	15, 20, 25	64	64	-	4-17
128K x 32	CE and OE	MT4LS12832	17, 20, 25	64	64		4-25
256K x 32	CE and OE	MT8S25632	15, 20, 25	64	64	-	4-33
256K x 32	CE and OE	MT8LS25632	17, 20, 25	64	64		4-41
1 Meg x 32	CE and OE	MT8LS132	15, 20, 25, 35	72	72	-	4-49
32K x 64	SyncBurst™, Linear Burst	MT2LSYT3264T1	9, 10, 11, 12			160	4-57
32K x 64	SyncBurst, Interleaved Burst	MT2LSYT3264T2	9, 10, 11, 12	-	-	160	4-57
32K x 64	SyncBurst, Interleaved Burst, Pipelined	MT2LSYT3264T4	5, 6, 7, 8	-	-	160	4-69
32K x 64	SyncBurst, Linear Burst, Pipelined	MT2LSYT3264T6	5, 6, 7, 8	-	-	160	4-69
32K x 64	SyncBurst, Linear/Interleaved Burst	MT2LSYT3264B2	9, 10, 11, 12	-	-	160	4-81
32K x 64	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT2LSYT3264C4	5, 6, 7, 8		-	160	4-87
32K x 72	SyncBurst, Linear Burst	MT2LSYT3272T1	9, 10, 11, 12	-	- • •	160	4-93
32K x 72	SyncBurst, Interleaved Burst	MT2LSYT3272T2	9, 10, 11, 12	- 1	-	160	4-93
32K x 72	SyncBurst, Interleaved Burst, Pipelined	MT2LSYT3272T4	5, 6, 7, 8	-	-	160	4-107
32K x 72	SyncBurst, Linear Burst, Pipelined	MT2LSYT3272T6	5, 6, 7, 8	-	-	160	4-107
32K x 72	SyncBurst, Linear/ Interleaved Burst	MT2LSYT3272B2	9, 10, 11, 12	-	-	160	4-12
32K x 72	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT2LSYT3272C4	5, 6, 7, 8	-	-	160	4-129
64K x 72	SyncBurst, Linear Burst	MT4LSY6472T1	9, 10, 11, 12	·	-	160	4-93
64K x 72	SyncBurst, Interleaved Burst	MT4LSY6472T2	9, 10, 11, 12		-	160	4-93
64K x 72	SyncBurst, Interleaved Burst, Pipelined	MT4LSY6472T4	5, 6, 7, 8	-		160	4-107
64K x 72	SyncBurst, Linear Burst, Pipelined	MT4LSY6472T6	5, 6, 7, 8	-	-	160	4-107
64K x 72	SyncBurst, Linear/ Interleaved Burst	MT4LSYT6472B2	9, 10, 11, 12	-	-	160	4-12
64K x 72	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT4LSYT6472C4	5, 6, 7, 8	-		160	4-129

TECHNICAL NOTE SELECTION GUIDE

Technical Note	Title	Page
TN-00-01	Moisture Absorption in Plastic Packages	5-1
TN-00-02	Tape-and-Reel Procedures	5-3
TN-05-02	SRAM Bus Contention Design Considerations	5-9
TN-05-03	5V SRAM Capacitive Loading	5-13
TN-05-06	1 Meg Evolutionary Pinout SRAM Typical (5V) Operating Curves	5-15
TN-05-07	256K SRAM Typical (5V) Operating Curves	5-17
TN-05-13	1 Meg Low-Power SRAMs	5-19
TN-05-14	SRAM Thermal Design Considerations	5-23
TN-05-16	A Designer's Guide to 3.3V SRAMs	5-29
TN-05-17	Low-Power Memory Design Using Data Retention	5-35
TN-05-19	SRAMs and Low-Voltage Data Retention	5-39
TN-05-20	3.3V SRAM Capacitive Loading	5-41
TN-05-21	High-Speed Memory Design Techniques	5-43
TN-05-22	1 Meg Revolutionary Pinout SRAM Typical (5V) Operating Curves	5-49
TN-05-23	256K SRAM Typical (3.3V) Operating Curves	5-53
TN-58-01	SyncBurst™ SRAM Design for Compatibility	5-55
TN-58-02	Design Tips: 32K x 36 Synchronous SRAM	5-63
TN-58-03	SyncBurst™ SRAMs in Asynchronous Designs	5-69

PREFACE PRODUCT SELECTION

MIC

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

5V ASYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Package/	No. of Pins		
Configuration	Functions	Number	Time (ns)	PDIP	SOJ	Page	
256K x 1	CE only	MT5C2561	10, 12, 15, 20, 25	24	24	1-1	
1 Meg x 1	CE only	MT5C1001	12, 15, 20, 25	28	28	1-11	
64K x 4	CE only	MT5C2564	10, 12, 15, 20, 25	24	24	1-21	
64K x 4	\overline{CE} and \overline{OE}	MT5C2565	10, 12, 15, 20, 25	28	28	1-31	
256K x 4	\overline{CE} and \overline{OE}	MT5C1005	12, 15, 20, 25	28	28	1-41	
256K x 4	CE, OE and Revolutionary Pinout	MT5C256K4A1	12, 15, 20, 25	-	32	1-51	
32K x 8	CE and OE	MT5C2568	10, 12, 15, 20, 25	28	28	1-61	
128K x 8	CE1, CE2 and OE	MT5C1008	12, 15, 20, 25	32	32	1-71	
128K x 8	CE, OE and Revolutionary Pinout	MT5C128K8A1	12, 15, 20, 25	-	32	1-81	
64K x 16	CE, OE, Byte Enable and Revolutionary Pinout	MT5C64K16A1	12, 15, 20, 25	-	44	1-91	

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

MT5C2561 256K x 1 SRAM

256K x 1 SRAM

14 D D 13 D CE

FEATURES	Г	
 High speed: 10, 12, 15, 20 and High-performance, low-power 		PIN ASSIGNMENT (Top View)
 process Single +5V ±10% power supp 	1	24-Pin DIP
 Easy memory expansion with 		(SA-3)
 All inputs and outputs are TT 		
i in nip un una curp un ure i i	2 company	
OPTIONS	MARKING	A1 [] 2 23 [] A17
Timing		A2 [] 3 22 [] A16
10ns access	-10	A3 [] 4 21 [] A15
12ns access	-12	A4 [] 5 20]] A14
15ns access	-15	A5 [6 19] A13
20ns access	-20	A6 [7 18] A12
25ns access	-25	A7 [8 17] A11
		A8 [9 16] A10
• Packages	NT	Q [10 15] A9
Plastic DIP (300 mil)	None	WE [11 14] D
Plastic SOJ (300 mil)	DJ	Vss [12 13] CE
 2V data retention (optional) 	L	
 Low power (optional) 	Р	24-Pin SOJ
Temperature		(SD-1)
Commercial (0° C to +70°C)	None	
Industrial $(-40^{\circ}\text{C to }+85^{\circ}\text{C})$		A0 [1 24] Vcc
Automotive (-40°C to +125°C		A1 🛛 2 23 🗅 A17
Extended (-55°C to +125°C		A2 [] 3 22 [] A16 A3 [] 4 21 [] A15
		A4 [] 5 20 [] A14
Part Number Example: MT50	.2561DJ-15 P	A5 🛛 6 19 🗍 A13
NOTE: Not all combinations of operating		A6 C 7 18 A12
and low power are necessarily available. Ple	ase contact the factory for availabil-	A7 [] 8 17 [] A11 A8 [] 9 16 [] A10
ity of specific part number combinations.		
		WE 0 11 14 p <u>p</u>

GENERAL DESCRIPTION

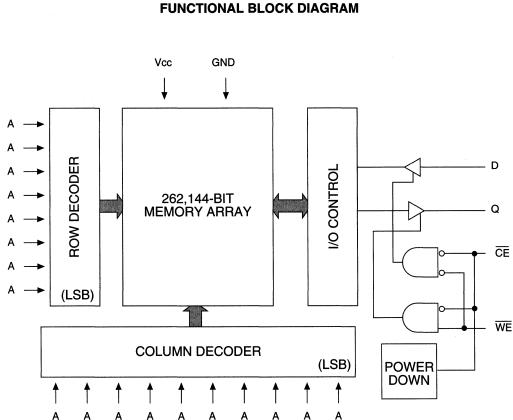
SRAM

The MT5C2561 is organized as a 262,144 x 1 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (CE) with all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes LOW. The device offers a reduced power standby mode when

disabled. This allows system designers to meet low standby power requirements.


Vss 🕻 12

The "P" version provides a reduction in both operating current (Icc) and TTL standby current (ISB1). The latter is achieved through the use of gated inputs on the \overline{WE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C2561 256K x 1 SRAM

TRUTH TABLE

MODE	CE	WE	INPUT	OUTPUT	POWER
STANDBY	н	X	DON'T CARE	HIGH-Z	STANDBY
READ	L	Н	DON'T CARE	Q	ACTIVE
WRITE	L	L	DATA-IN	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	1V to Vcc +1V
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	IL:	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	. 1

				- 	· · · ·	MAX]	
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-10†	-12†	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	130	200	180	165	150	140	mA	3, 13
	P version	lcc	100	-	-	140	125	120	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	24	55	50	45	40	35	mA	13
	P version	ISB1	1.4	-	-	4	4	4	mA	13
	$\label{eq:cell} \overline{CE} \geq Vcc \ -0.2V; \ Vcc = MAX \\ V_{IN} \leq Vss \ +0.2V \ or \\ V_{IN} \geq Vcc \ -0.2V; \ f = 0 \\ \end{array}$	ISB2	0.6	5	5	5	5	5	mA	13
	P version	ISB2	0.4	-	⁻	3	3	3	mA	13

[†]P version not available with this speed.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 5V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 5V ±10%)

	:	-10 -12		-15		-20			25				
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle													
READ cycle time	^t RC	10		12		15		20		25		ns	
Address access time	^t AA	1.1	10		12		15		20		25	ns	
Chip Enable access time	^t ACE	1.1	10		12		15		20		25	ns	
Output hold from address change	tOH	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	¹ LZCE	3		3		3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		5		6		8	1. T.	9		9	ns	6, 7
Chip Enable to power-up time	tPU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		10		12		15		20		25	ns	4
WRITE Cycle													
WRITE cycle time	tWC	10		12	1.1	15		20		25		ns	
Chip Enable to end of write	tCW	7		8		10		12		15		ns	1.4
Chip Enable to end of write (P and LP version)	tCW	-		-		12		12		15		ns	
Address valid to end of write	tAW	7		8		10		12	·	15		ns	
Address valid to end of write (P and LP version)	^t AW	-		-		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	1		1		1		1		1	1947 - L	ns	1.1
WRITE pulse width	tWP	7		8		10		12		15		ns	
Data setup time	^t DS	6		7		7		10		10		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	2		2		2		2		2		ns	7
Write Enable to output in High-Z	^t HZWE		5		6		7		8		10	ns	6, 7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C2561 SRAMs. (-40°C \leq T_A \leq 125°C - AT) (-55°C \leq T_A \leq 125°C - XT)

· · · · · · · · · · · · · · · · · · ·					MAX		al de la companya de La companya de la comp		
DESCRIPTION	CONDITIONS	SYMBOL	-10	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ tRC outputs open	lcc	210	190	170	160	150	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	65	60	50	45	40	mA	
	CE ≥ Vcc -0.2V; Vcc = MAX VIN ≤ Vss +0.2V or VIN ≥ Vcc -0.2V; f = 0	ISB2	6	6	6	6	6	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDIT	IONS	SYMBOL	MAX	UNITS	NOTES
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) VIN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR	400	μA	
	or $\leq 0.2V$	Vcc = 3V	ICCDR	600	μA	· .

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; Vcc = 5V ±10%)

DESCRIPTION	· · · · ·		-12		-15		-20		-25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MAX MIN		MIN	MAX	UNITS	NOTES
READ Cycle											
Output hold from address change	^t OH	2	· ·	2		2		2	1	ns	
Chip Enable to output in Low-Z	^t LZCE	2	1.1	2		2	1	2		ns	7
WRITE Cycle		· · · ·	1.1							·	·····
Address hold from end of write	tAH	2		2		2		2		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_A \le 125^{\circ}C - AT) (-55^{\circ}C \le T_A \le 125^{\circ}C - XT)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN MAX		UNITS	NOTES	
Input High (Logic 1) Voltage		Viн	2.3	Vcc +1	V	1	

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C2561 SRAMs.

 $(-40^{\circ}C \le T_A \le 125^{\circ}C - AT) (-55^{\circ}C \le T_A \le 125^{\circ}C - XT)$

			· ·	M	AX			1917) 1917
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ ${}^{t}RC$ outputs open	lcc	195	175	165	155	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	60	50	45	40	mA	
	$\label{eq:cell} \begin{split} \overline{CE} \geq & Vcc \ -0.2V; \ Vcc \ = MAX \\ & ViN \leq Vss \ +0.2V \ or \\ & ViN \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	7	7	7	7	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDI	FIONS	SYMBOL	MAX	UNITS	NOTES
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V		500	μA	
	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR	800	μA	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C; -55°C $\leq T_A \leq 125$ °C; Vcc = 5V ± 10%)

DESCRIPTION		-1	2	-1	5	-	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			1997 - 1997 1997 - 1997		- 1						1.1
Output hold from address change	^t OH	2		2	1.1	2		2		ns	1997 - 19
Chip Enable to output in Low-Z	^t LZCE	2		2		2		2		ns	7
WRITE Cycle											
Address hold from end of write	^t AH	2		2		2		2		ns	1.1

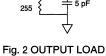
ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (-40°C \leq T_A \leq 85°C)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		Viн	2.3	Vcc +1	V	1	

MT5C2561 256K x 1 SRAM

AC TEST CONDITIONS

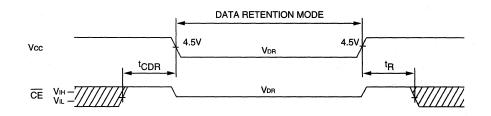
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2


NOTES

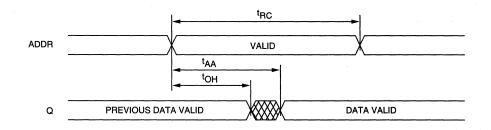
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- Test conditions as specified with the output loading 5. as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with $C_{L} = 5pF$ as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

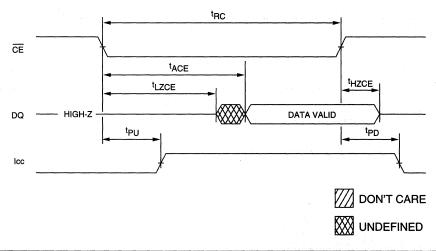
- +5V 480 0 30 pF 255
- Fig. 1 OUTPUT LOAD EQUIVALENT

EQUIVALENT

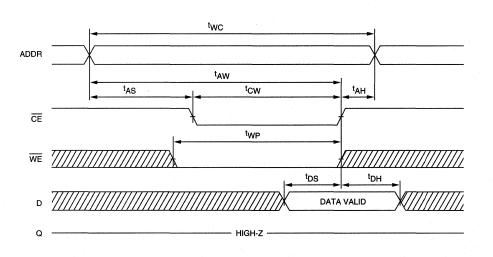

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 15ns cycle time.
- 14. Typical currents are measured at 25°C.

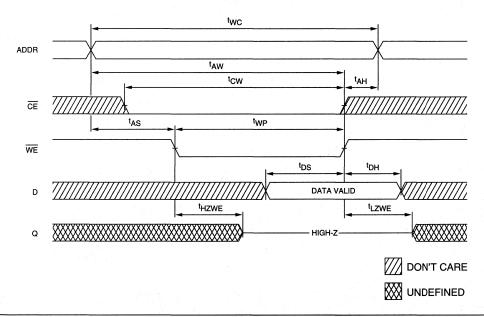
DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)


DESCRIPTION	CONDITION	S	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) ViN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		125	300	μΑ	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		100	300	μΑ	14
		Vcc = 3V	ICCDR		150	500	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10


MT5C2561 256K x 1 SRAM

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

MT5C2561 256K x 1 SRAM

MT5C1001 1 MEG x 1 SRAM

SRAM

1 MEG x 1 SRAM

F	EA	Т	UR	ES	

- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with \overline{CE} option
- All inputs and outputs are TTL-compatible

OPTIONS	MARKING
• Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
• Packages Plastic DIP (400 mil) Plastic SOJ (400 mil)	None DJ
 2V data retention (optional) 2V data retention, low power (op	L tional) LP
Temperature	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT
Automotive (-40°C to +125°C)	AT
Extended (-55°C to +125°C)	XT
	TDI OG I

Part Number Example: MT5C1001DJ-20 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

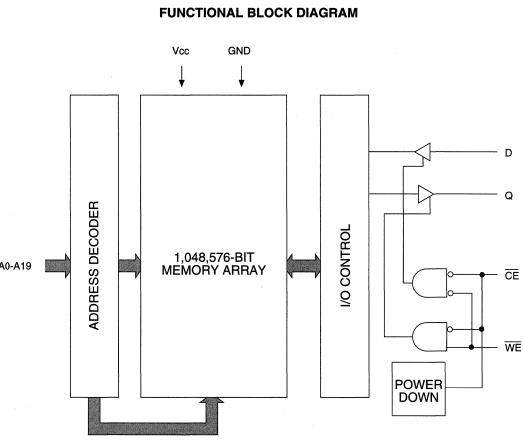
The MT5C1001 is organized as a 1,048,576 x 1 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) capability. This enhancement can place the outputs in High-Z for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while \overline{CE} goes LOW. The device offers a reduced power standby mode when dis-

PIN ASSIGNMENT (Top View)									
28-Pi i (SA		28-Pin SOJ (SD-3)							
			- 						
A10 [1	28] Vcc	A10 [1	28 🛛 Va						
A11 [2	27 🛛 A9	A11 [2	27 🛛 A9						
A12 🛛 3	26 🛛 A8	A12 🛛 3	26 🗅 A8						
A13 🛛 4	25 🛛 A7	A13 🛛 4	25 🗎 A7						
A14 [5	24 🛛 A6	A14 🛛 5	24 👌 A6						
A15 [6	23 🛛 A5	A15 🛛 6	23 🗎 A5						
NC [7	22 🛛 A4		22 🗎 A4						
A16 [8	21] NC	A16 🖸 8	21 D NC						
A17 [9	20 🛛 A3	A17 🛛 9	20 🏽 A3						
A18 0 10	19] A2	A18 🛛 10	19 🏽 A2						
A19 [11	18] A1	A19 🛛 11	18 🗋 A1						
Q [12	17] AO	Q [] 12	17 🛛 A0						
WE [13	16] D	WE [13	16 D						
Vss [14	15] CE	Vss [14	15 CE						

abled. This allows system designers to meet low standby power requirements.


The "L" and "LP" versions each provide a 70 percent reduction in CMOS standby current (Isb2) over the standard version. The LP version also provides a 90 percent reduction in TTL standby current (Isb1) through the use of gated inputs on the WE and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C1001 1 MEG x 1 SRAM

TRUTH TABLE

MODE	CE	WE	INPUT	OUTPUT	POWER
STANDBY	н	X	DON'T CARE	HIGH-Z	STANDBY
READ	L	н	DON'T CARE	Q	ACTIVE
WRITE	L	L	DATA-IN	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7	v
Storage Temperature (plastic)55°C to +150°	Ċ
Power Dissipation	W
Short Circuit Output Current 50m	
Voltage on Any Pin Relative to Vss1V to Vcc +1	V

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C ≤ T _A	\leq 70°C; Vcc =	5V ±10%)
-----------------------	--------------------	----------

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Ин	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage	······	VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILi	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vout ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

	and the second secon Second second	ан 1910 - Ал			М	AX	•		
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; $V_{CC} = MAX$ f = MAX = 1/ ^t RC outputs open	lcc	107	195	170	145	130	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	75	65	50	45	mA	13
	LP version only	İSB1	1.3	3	3	3	3	mA	13
	$\label{eq:constraint} \begin{split} \overline{CE} \geq & \text{Vcc -0.2V}; \ \text{Vcc} = \text{MAX} \\ & \text{ViN} \leq & \text{Vss} + 0.2 \text{V or} \\ & \text{ViN} \geq & \text{Vcc} - 0.2 \text{V}; \ f = 0 \end{split}$	ISB2	0.4	5	5	5	5	mA	13
	L and LP versions only	ISB2	0.3	1.5	1.5	1.5	1.5	mA	13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	С	6	pF	4
Output Capacitance	Vcc = 5V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V ±10%)

			12		15	-1	20		25		1.1
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	tRC	12		15		20		25		ns	
Address access time	^t AA	-	12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tОН	3	ale de la composition	3	1.11		1. A. A. A.	5	1. S.	ns	1.1
Chip Enable to output in Low-Z	^t LZCE	3		5	1.	5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25	ns	
WRITE Cycle					•	2					
WRITE cycle time	tWC	12		15		20	Γ	25		ns	
Chip Enable to end of write	tCW	8	· .	10		12		15		ns	
Address valid to end of write	^t AW	8		10	1	12		15		ns	
Address setup time	^t AS	0		0		0		0			
Address hold from end of write	tAH	0	1.0	0	1	0	1	0		ns	
WRITE pulse width	tWP	8		9		12		15		ns	
Data setup time	^t DS	6		7	[.	8		10	- -	ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		6		8		10	ns	6, 7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C1001 SRAMs. (-40°C \leq T_A \leq 85°C)

						AX			
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-20	-25	-35	-45	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	155	140	130	125	mA	3, 13
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	50	45	40	40	mA	13
LP version only	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	1.3	6	6	6	6	mA	13
	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc - 0.2V; \ Vcc = MAX} \\ & ViN \leq Vss + 0.2V \ or \\ & ViN \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.4	5	5	5	5	mA	13
L version and LP version	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc \ -0.2V; \ Vcc = MAX} \\ & ViN \leq Vss + 0.2V \ or \\ & ViN \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	0.3	2	2	2	2	mA	13

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	170	μA	14
	ViN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	325	μA	14

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C \leq T_A \leq 85°C; V_{CC} = 5V ±10%)

DECODINE		-:	20	-2	25	-3	15	-4	15		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
WRITE Cycle	· · · · ·				-						
Address hold from end of write	tAH	1		1		1		1		ns	

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C1001 SRAMs.

 $(-40^{\circ}C \le T_A \le 125^{\circ}C - AT) (-55^{\circ}C \le T_A \le 125^{\circ}C - XT)$

				MAX					
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-20	-25	-35	-45	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	155	140	130	125	mA	3, 13
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	60	55	50	47	mA	13
	$\label{eq:cellson} \begin{split} & \frac{\text{CE2} \leq \text{Vss} + 0.2\text{V};}{\text{CE1} \geq \text{Vcc} - 0.2\text{V}; \ \text{Vcc} = \text{MAX}} \\ & \text{ViN} \leq \text{Vss} + 0.2\text{V} \ \text{or} \\ & \text{ViN} \geq \text{Vcc} - 0.2\text{V}; \ \text{f} = 0 \end{split}$	ISB2	0.4	7	7	7	7	mA	13
L version only	$\label{eq:cellson} \begin{split} & CE2 \leq Vss \ \text{+}0.2V; \\ \hline CE1 \geq Vcc \ \text{-}0.2V; \ Vcc \ \text{=} \ MAX \\ & V_{\text{IN}} \leq Vss \ \text{+}0.2V \ \text{or} \\ & V_{\text{IN}} \geq Vcc \ \text{-}0.2V; \ f = 0 \end{split}$	ISB2	0.3	5	5	5	5	mA	13

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITION	-	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	1,000	μA	14
	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	1,500	μA	14

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; Vcc = 5V ±10%)

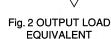
DESCRIPTION		-1	2	-1	5	-;	20	-:	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
Output hold from address change	^t OH	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		3		3		ns	7
WRITE Cycle						<i></i>	· · · · · · · · · · · · · · · · · · ·				
Address hold from end of write	^t AH	1	2000	1		1	-	1		ns	

MICRON

MT5C1001 1 MEG x 1 SRAM

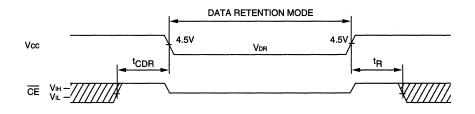
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

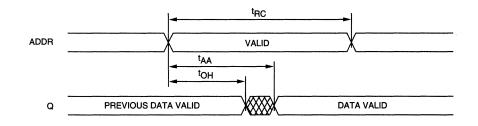

NOTES

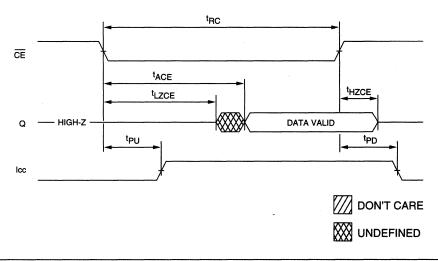
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

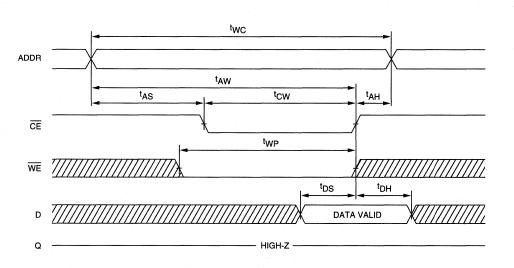

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.

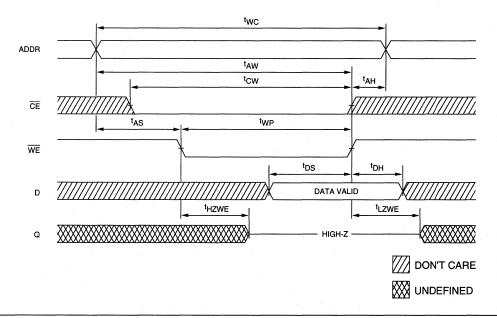
DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)


DESCRIPTION	CONDITION	S	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		35	150	μΑ	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		60	250	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		35	150	μA	14
LP version		Vcc = 3V	ICCDR		60	250	μA	14
Chip Deselect to Data Retention Time		ning and an and an	^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1 8,9





WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. © 1994, Micron Semiconductor, Inc.

MT5C2564 64K x 4 SRAM

64K x 4 SRAM

FEATURES

SRAM

- High speed: 10, 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL-compatible

OPTIONS	MARKING
Timing	
10ns access	-10
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
• Packages Plastic DIP (300 mil) Plastic SOJ (300 mil)	None DJ
 2V data retention (optional) Low power (optional)	L P
• Temperature Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Automotive (-40°C to +125°C) Extended (-55°C to +125°C)	C) AT

• Part Number Example: MT5C2564DJ-15 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

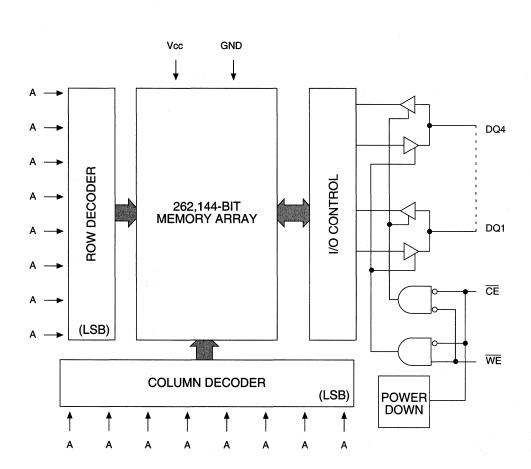
GENERAL DESCRIPTION

The MT5C2564 is organized as a 65,536 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) with all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is accomplished when WE remains HIGH and \overline{CE} goes LOW. The device offers a reduced power standby mode when

PIN A	SSIGNM	ENT (Top View)
24-Pin (SA-		24-Pin SOJ (SD-1)
A0 [1 A1 [2 A2 [3 A3 [4 A4 [5 A5 [6 A6 [7 A7 [8 A8 [9 A9 [10 CE [11 Vss [12	24] Vcc 23] A15 22] A14 21] A13 20] A12 19] A11 18] A10 17] DQ4 16] DQ3 15] DQ2 14] DQ1 13] WE	A0 1 24) Vcc A1 2 23) A15 A2 3 22) A14 A3 4 21) A13 A4 5 20) A12 A5 6 19) A11 A6 7 18) A10 A7 8 17) DQ4 A8 9 10 15) DQ2 CE 11 14) DQ1) WE


disabled. This allows system designers to meet low standby power requirements.

The "P" version provides a reduction in both operating current (Icc) and TTL standby current (Isb1). The latter is achieved through the use of gated inputs on the \overline{WE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C2564 Rev. 11/94

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	X	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	-1V to Vcc +1V
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C ≤ T ₄	≤ 70°C;	Vcc = 5V	±10%)
-----------------------	---------	----------	-------

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		νн	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	v	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	lol = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

					··.	MAX]	
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-10†	-12†	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ ViL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	130	200	180	165	150	140	mA	3, 13
	P version	lcc	100	-	-	140	125	120	mA	3, 13
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	24	55	50	45	40	35	mA	13
	P version	ISB1	1.4	-	· · · -	4	4	4	mA	13
	$\label{eq:cell} \begin{split} \overline{CE} \geq & Vcc \ \text{-}0.2V; \ Vcc = MAX \\ & V_{\text{IN}} \leq Vss \ \text{+}0.2V \ \text{or} \\ & V_{\text{IN}} \geq Vcc \ \text{-}0.2V; \ \text{f} = 0 \end{split}$	ISB2	0.6	5	5	5	5	7	mA	13
	P version	ISB2	0.4	-	-	3	3	3	mA	13

[†]P version not available with this speed.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	6	pF	4
Output Capacitance	Vcc = 5V	Со	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

DESCRIPTION			CONDI	TIONS			SYMB	OL	MAX	ι	INITS	N	DTES
Input Capacitance		T_ =	25°C;	f = 1	MHz		Cı		6		pF		4
Output Capacitance	-	~	Vcc			· -	Co		6		pF		4
ELECTRICAL CHARACTERISTIC Note 5) (0°C \leq T _A \leq 70°C; Vcc = 5V ±10%		D RE	ECON	/ME	NDEI	D AC	OPI	ERA	TING	CO	NDIT	ION	S
	1	· ·	10		12	-1	5	-	20	-	25	<u> </u>	
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN		UNITS	NOTES
READ Cycle	L	1									1		
READ cycle time	^t RC	10	1	12		15		20		25		ns	1
Address access time	^t AA		10		12		15		20		25	ns	
Chip Enable access time	^t ACE	1.000	10		12		15		20		25	ns	
Output hold from address change	tОН	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3	12.1	3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		5		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		10		12		15		20		25	ns	4
WRITE Cycle										1			
WRITE cycle time	tWC	10		12		15		20		25		ns	1
Chip Enable to end of write	tCW	7		8		10		12		15		ns	
Chip Enable to end of write (P and LP version)	tCW	-		-		12		12		15		ns	
Address valid to end of write	^t AW	7		8		10		12		15		ns	
Address valid to end of write (P and LP version)	tAW	-		-		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	1		1		1	· · · ·	1		1		ns	
WRITE pulse width	^t WP1	7		8		10	· · ·	12		15		ns	
WRITE pulse width	^t WP2	10		12		12		15		15		ns	
Data setup time	^t DS	6		7		7		10		10		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	2	12.	2		2	1.1	2		2		ns	7
Write Enable to output in High-Z	HZWE	-	1.1	<u> </u>		-		-		-			6,7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C2564 SRAMs. (-40°C \leq T_A \leq 85°C)

					MAX		Alaysia		
DESCRIPTION	CONDITIONS	SYMBOL	-10	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	210	190	170	160	150	mA	3
Power Supply Current: Standby	$\overline{CE} \ge V_{IH}$; $V_{CC} = MAX$ $f = MAX = 1/ {}^{t}RC$ outputs open	ISB1	65	60	50	45	40	mA	
	CE ≥ Vcc -0.2V; Vcc = MAX VIN ≤ Vss +0.2V or VIN ≥ Vcc -0.2V; f = 0	ISB2	6	6	6	6	6	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDI	SYMBOL	MAX	UNITS	NOTES	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR	400	μA	a di generali a
	Vin ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR	600	μA	an an Talay, at

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 85$ °C)

DESCRIPTION		, .°1	2	-1	5	-	20	-	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			1.000				a tali ta				
Output hold from address change	^t OH	2		2		2	1.1	2		ns	
Chip Enable to output in Low-Z	^t LZCE	2	1.1	2	4.	2		2		ns	7
WRITE Cycle	1	a dia									
Address hold from end of write	tAH	2		2		2		2		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (-40°C \leq T_A \leq 85°C)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.3	Vcc +1	V	1

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C2564 SRAMs. (-40°C $\leq T_A \leq 125$ °C - AT) (-55°C $\leq T_A \leq 125$ °C - XT)

				M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	195	175	165	155	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	İSB1	60	50	45	40	mA	13
	$\label{eq:cell} \begin{split} \overline{CE} \geq Vcc \ -0.2V; \ Vcc = MAX \\ ViN \leq Vss \ +0.2V \ or \\ ViN \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	7	7	7	7	mA	13

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDI	TIONS	SYMBOL	MAX	UNITS	NOTES
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) ViN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR	500	μA	
	or $\leq 0.2V$	Vcc = 3V	ICCDR	800	μA	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; Vcc = 5V ±10%)

DESCRIPTION		-1	2	-1	5	-	20	-2	25		
DESCRIPTION	SYM		MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
Output hold from address change	10H	2		2		2		2		ns	
Chip Enable to output in Low-Z	^t LZCE	2		2		2		2		ns	7
WRITE Cycle					••••••••••••••••••••••••••••••••••••••		•				
Address hold from end of write	^t AH	2		2		2		2		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_A \le 125^{\circ}C - AT) (-55^{\circ}C \le T_A \le 125^{\circ}C - XT)$

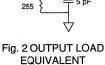
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.3	Vcc +1	V	1

MT5C2564 64K x 4 SRAM

AC TEST CONDITIONS

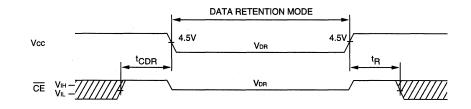
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

NOTES

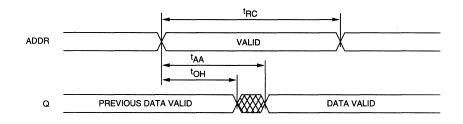

- 1. All voltages referenced to Vss (GND).
- -3V for pulse width $< {}^{t}RC/2$. 2.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with $C_1 = 5pF$ as in Fig. 2. Transition is measured \pm 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

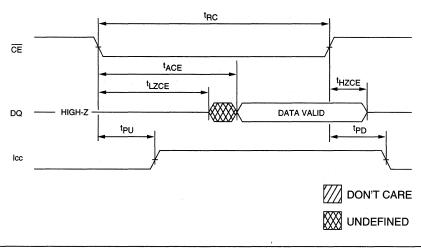
+5V 480 O 30 pF 255

Fig. 1 OUTPUT LOAD EQUIVALENT

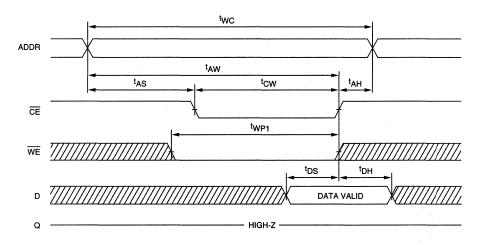

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 15ns cycle time.
- 14. Typical currents are measured at 25°C.

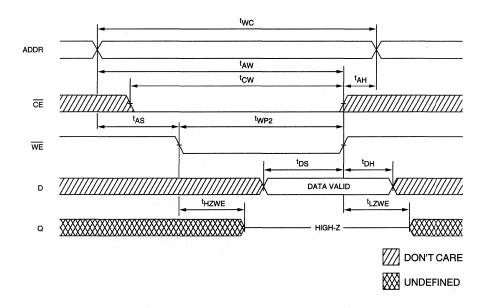
DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)


DESCRIPTION	CONDITION	CONDITIONS		MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR	· · · · · · · · · · · · · · · · · · ·	125	300	μA	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		100	300	μΑ	14
LP version		Vcc = 3V	ICCDR		150	500	μΑ	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 10


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10


MICHON

MT5C2564 64K x 4 SRAM

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

MICRON

MT5C2565 64K x 4 SRAM

SRAM

64K x 4 SRAM

WITH OUTPUT ENABLE

FEATURES

- High speed: 10, 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single $+5V \pm 10\%$ power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible

OPTIONS Timing 	MARKING
10ns access	-10
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
• Packages Plastic DIP (300 mil) Plastic SOJ (300 mil)	None DJ
 2V data retention (optional) Low power (optional)	L P
• Temperature Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Automotive (-40°C to +125°C Extended (-55°C to +125°C	C) AT
• Death Manula an Economia MTEC	DECEDI 1E I

• Part Number Example: MT5C2565DJ-15 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

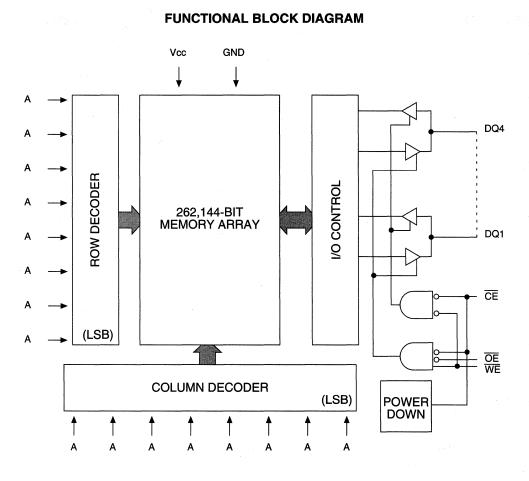
The MT5C2565 is organized as a 65,536 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable $\overline{(CE)}$ and output enable $\overline{(OE)}$ with this organization. These enhancements can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is accomplished when WE remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode

PIN ASSIGNMENT (Top View) 28-Pin SOJ 28-Pin DIP (SD-2) (SA-4)										
(SE	D-2)	(SA-4)								
		·	7							
	28 D Vcc 27 D A15	NC [1	28] Vcc							
A0 [] 2 A1 [] 3	27 µ A15 26 □ A14	A0 🛛 2	27 🛛 A15							
A2 [] 4	25 🛛 A13	A1 🛛 3	26 🛛 A14							
A3 [5	24 🛛 A12	A2 4	25 🛛 A13							
A4 □ 6 A5 □ 7	23 🗅 A11 22 🗍 A10	A3 5	24 A12							
A6 [] 8	21 D NC	A4 6	23 A11							
47 0 9	20 D NC	A5 7	22 A10							
A8 [10	19 DQ4		Г							
A9 [] 11 ∑Ē [] 12	18 🛛 DQ3 17 🗋 DQ2	A6 [8	21 0 NC							
	16 DQ1	A7 [9	20] NC							
ss [14	15 🛛 WE	A8 🛛 10	19 🛛 DQ4							
<u></u>		A9 [11	18 DQ3							
		CE 12	17 DQ2							
		OE 13	16 DQ1							
		Vss 14	15 1 WE							
		V 55 U 14								

5V ASYNCHRONOUS SRAM


when disabled. This allows system designers to meet low standby power requirements.

The "P" version provides a reduction in both operating current (Icc) and TTL standby current (Isbi). The latter is achieved through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C2565 64K x 4 SRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	H	Q	ACTIVE
NOT SELECTED	Н	Ľ	Н	HIGH-Z	ACTIVE
WRITE	X	L	L	D	ACTIVE

MICERON SEMICONDUCTOR. INC.

MT5C2565 64K x 4 SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	1V to Vcc +1V
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
	νн	2.2	Vcc+1	V	1
	VIL	-0.5	0.8	V	1, 2
$0V \le V_{IN} \le V_{CC}$	ILi	-5	5	μΑ	
Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-5	5	μA	
І он = -4.0mA	Vон	2.4		V	1
IoL = 8.0mA	Vol		0.4	V	1
	Vcc	4.5	5.5	V	1
	$0V \le V_{IN} \le V_{CC}$ Output(s) disabled $0V \le V_{OUT} \le V_{CC}$ $I_{OH} = -4.0mA$	$\begin{tabular}{ c c c c c } \hline V_{IH} & V_{IL} & \\ \hline & V_{IL} & $	VIH 2.2 VIL -0.5 $0V \le V_{IN} \le V_{CC}$ ILI -5 $0V \le V_{OUT} \le V_{CC}$ ILo -5 $1OH = -4.0mA$ VOH 2.4 $IoL = 8.0mA$ VoL Vol	VIH 2.2 Vcc+1 VIL -0.5 0.8 $0V \le V_{IN} \le V_{CC}$ IL1 -5 5 $0V \le V_{OUT} \le V_{CC}$ IL0 -5 5 $0V \le V_{OUT} \le V_{CC}$ IL0 -5 5 $IOH = -4.0mA$ VOH 2.4 0.4	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

an an Araba an Araba. An an Araba an Araba							MAX			1	
DESCRIPTION		CONDITIONS	SYMBOL	ТҮР	-10†	-12†	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	f =	≤ VIL; Vcc = MAX MAX = 1/ ^t RC putputs open	lcc	130	200	180	165	150	140	mA	3, 13
and the second second second second second second second second second second second second second second second		P version	lcc	100	-	-	140	125	120	mA	3, 13
Power Supply Current: Standby	f =	2 Viн; Vcc = MAX MAX = 1/ ^t RC putputs open	ISB1	24	55	50	45	40	35	mA	13
		P version	ISB1	1.4	in the second	2003 <mark>-</mark> 0020	4	4	4	mA	13
	Vin	cc -0.2V; Vcc = MAX ≤ Vss +0.2V or ≥ Vcc -0.2V; f = 0	ISB2	0.6	5	5	5	5	7	mA	13
		P version	ISB2	0.4	-	-	3	3	3	mA	13

[†]P version not available with this speed.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 5V	Со	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

DESCRIPTION			COND	TIONS			SYMB	0L	MAX	ι	INITS	N	OTES
Input Capacitance		T_ =	25°C	f = 1	MHz		Cı		6		pF		4
Output Capacitance	-		Vcc	= 5V		F	Co		6		pF		4
ELECTRICAL CHARACTERISTIC (Note 5) (0°C \leq T _A \leq 70°C; Vcc = 5V \pm 10%		D RE	ECON	/ME	NDE	D AC	; OPI	ERA	TING		NDIT	ION	S
	1		10		12		15		20		25	T	<u> </u>
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN MAX		UNITS	NOTES
READ Cycle	1									l		-	
READ cycle time	^t RC	10		12		15		20		25		ns	[
Address access time	^t AA		10		12		15		20		25	ns	
Chip Enable access time	^t ACE		10		12		15		20		25	ns	
Output hold from address change	ťОН	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	¹ LZCE	3		3		3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		5		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		10		12		15		20		25	ns	4
Output Enable access time	^t AOE		5		6		8		8		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output disable to out put in High-Z	^t HZOE		5		6		6		7		7	ns	6
WRITE Cycle													
WRITE cycle time	†WC	10	1	12		15		20		25		ns	
Chip Enable to end of write	^t CW	7		8		10		12		15		ns	
Chip Enable to end of write (P and LP version)	^t CW	-		-	1	12		12		15		ns	
Address valid to end of write	tAW	7		8		10		12		15		ns	
Address valid to end of write (P and LP version)	^t AW	-		-		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	. 1		1		1		1		1		ns	
WRITE pulse width	^t WP1	7		8		10		12		15		ns	
WRITE pulse width	^t WP2	10		12		12		15		15		ns	
Data setup time	^t DS	6		7		7		10		10		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
					1	T	1						
Write disable to output in Low-Z	LZWE	2	1 × 1 × 1	2		2		2		2		ns	7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C2565 SRAMs. (-40°C \leq T_A \leq 125°C - AT) (-55°C \leq T_A \leq 125°C - XT)

					MAX				4.11
DESCRIPTION	CONDITIONS	SYMBOL	-10	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le VIL; Vcc = MAX$ f = MAX = 1/ ^t RC outputs open	lcc	210	190	170	160	150	mA	3
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	65	60	50	45	40	mA	
	$\label{eq:cell} \begin{split} \overline{CE} \geq & \text{Vcc -0.2V}; \ \text{Vcc = MAX} \\ & \text{ViN} \leq & \text{Vss +0.2V or} \\ & \text{ViN} \geq & \text{Vcc -0.2V}; \ f = 0 \end{split}$	ISB2	6	6	6	6	6	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

DESCRIPTION	SCRIPTION CONDITIONS			MAX	UNITS	NOTES
Data Retention Current $\overline{CE} \ge (Vcc - 0.2V)$ L version $ViN \ge (Vcc - 0.2V)$		Vcc = 2V	ICCDR	400	μΑ	
	on ViN ≥ (Vcc -0.2V) - or ≤ 0.2V		ICCDR	600	μΑ	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR	400	μA	
LP version		Vcc = 3V	ICCDR	600	μA	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; Vcc = 5V ±10%)

DESCRIPTION		-12		-15		-20		-25			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle							11. 1. 1. 1. 1.				
Output hold from address change	^t OH	2		2	1.0	2		2		ns	1
Chip Enable to output in Low-Z	^t LZCE	2		2		2	and the second	2	jer de	ns	7
WRITE Cycle										an an an an an an an an an an an an an a	
Address hold from end of write	^t AH	2		2		2		2		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_A \le 125^{\circ}C - AT) (-55^{\circ}C \le T_A \le 125^{\circ}C - XT)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.3	Vcc +1	٧	1

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C2565 SRAMs. (-40°C $\leq T_A \leq 125$ °C - AT) (-55°C $\leq T_A \leq 125$ °C - XT)

			M					
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}; V_{CC} = MAX$ f = MAX = 1/ ^t RC outputs open	lcc	195	175	165	155	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	60	50	45	40	mA	
	$\label{eq:cell} \begin{split} \overline{CE} \geq & Vcc \ -0.2V; \ Vcc \ = MAX \\ & ViN \leq Vss \ +0.2V \ or \\ & ViN \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	7	7	7	7	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

DESCRIPTION	CONDIT	IONS	SYMBOL	MAX	UNITS	NOTES
Data Retention Current	CE ≥ (Vcc -0.2V) VIN ≥ (Vcc -0.2V) -	Vcc = 2V	ICCDR	500	μA	
	or ≤ 0.2V	Vcc = 3V	ICCDR	800	μA	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR	500	μΑ	
LP version		Vcc = 3V	ICCDR	800	μΑ	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C; -55°C $\leq T_A \leq 125$ °C; Vcc = 5V ±10%)

DESCRIPTION		-1	2	-1	5	-	20	-:	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
Output hold from address change	tOH	2		2		2		2		ns	
Chip Enable to output in Low-Z	^t LZCE	2		2	1.0	2		2		ns	7
WRITE Cycle			1								
Address hold from end of write	tAH	2		2		2		2		ns	· · · · · ·

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (-40°C \leq T_A \leq 85°C)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.3	Vcc +1	V	1

MT5C2565 64K x 4 SRAM

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 15ns cycle time.
- 14. Typical currents are measured at 25°C.

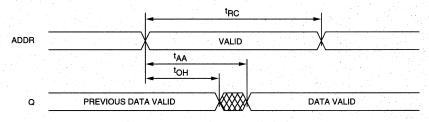
DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

DESCRIPTION	CONDITION	S	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		1.	V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		125	300	μΑ	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μΑ	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		100	300	μA	14
LP version		Vcc = 3V	ICCDR		150	500	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time		No. 1997 A. A. A. A. A. A. A. A. A. A. A. A. A.	tR	^t RC			ns	4, 11

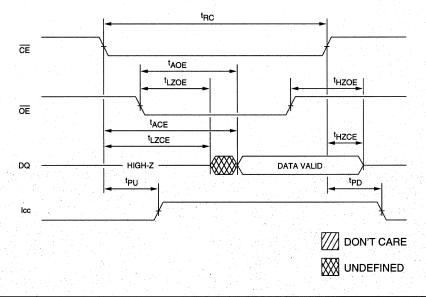
Vcc

CE

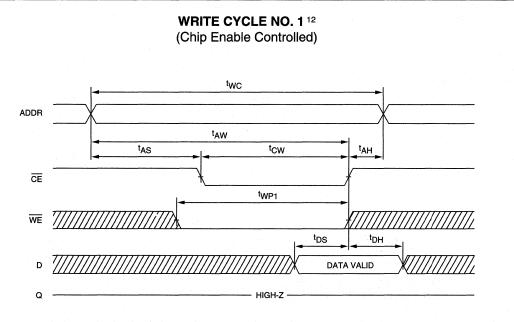
VIII _7

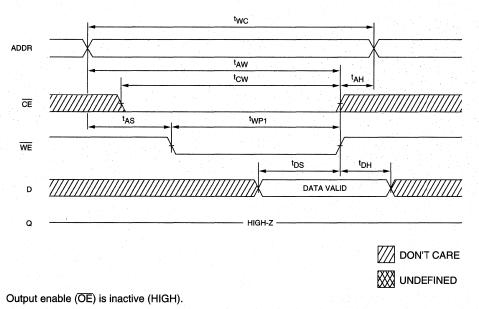

tR

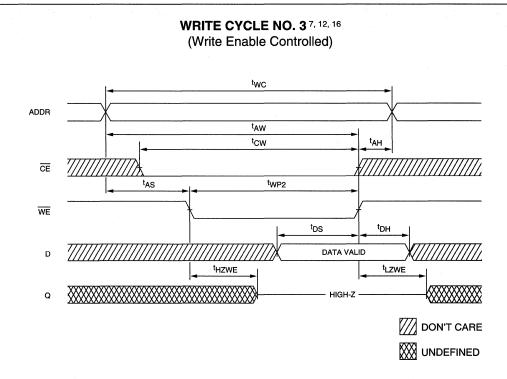
LOW Vcc DATA RETENTION WAVEFORM


^tCDR

READ CYCLE NO. 1 8,9


VDR


READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 2^{7, 12, 15} (Write Enable Controlled)

NOTE:

NOTE: Output enable (\overline{OE}) is active (LOW).

MICRON SEMICONDUCTOR, INC.

MT5C1005 256K x 4 SRAM

SRAM

256K x 4 SRAM

5V ASYNCHRONOUS SRAN

WITH OUTPUT ENABLE

FEATURES

- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible
- Fast OE access time: 6ns

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
 Packages Plastic DIP (400 mil) Plastic SOJ (400 mil) 	None DJ
 2V data retention (optional) 2V data retention, low power (option)	L ional) LP
• Temperature Commercial (0°C to +70°C) Industrial (-40°C to +85°C) Automotive (-40°C to +125°C) Extended (-55°C to +125°C)	None IT AT XT

• Part Number Example: MT5C1005DJ-20 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

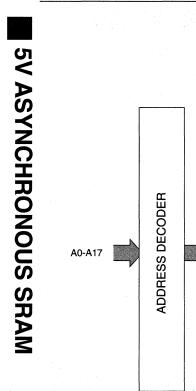
GENERAL DESCRIPTION

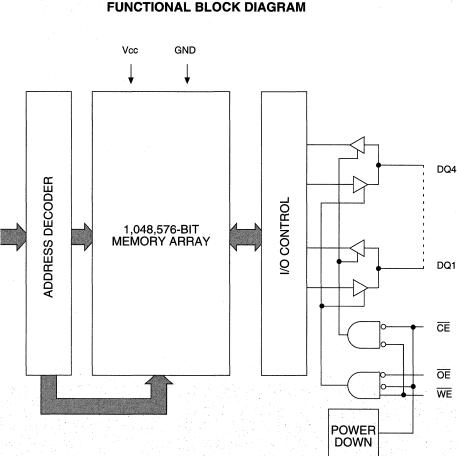
The MT5C1005 is organized as a 262,144 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) with this organization. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while output enable (\overline{OE})

PIN ASSIGNM	ENT (Top View)
28-Pin DIP (SA-5)	28-Pin SOJ (SD-3)
A7 1 28) Vcc A8 2 27) A6 A9 3 26) A5 A10 [4 25) A4 A11 [5 24] A3 A12 [6 23] A2 A13 [7 22] A1 A14 [8 21] A0 A15 [9 20] NC A16 [10 19] DQ4 A17 [11 18] DQ3 CE [12 17] DQ2 OE [13 16] DQ1 Vss [14 15] WE	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


and $\overline{\text{CE}}$ go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.


The "L" and "LP" versions each provide a 70 percent reduction in CMOS standby current (Isb2) over the standard version. The LP version also provides a 90 percent reduction in TTL standby current (Isb1) through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C1005 256K x 4 SRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	н	Q	ACTIVE
NOT SELECTED	Н	L	H	HIGH-Z	ACTIVE
WRITE	X	Ļ	L	D	ACTIVE

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994. Micron Semiconductor, Inc.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Ин	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		ViL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	IL.	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	lo∟ = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1.

					M	AX	41.5		
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	195	170	145	130	mA	3, 13
Power Supply Current: Standby	CE ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	75	65	50	45	mA	13
(LP version only	ISB1	1.3	3	3	3	3	mA	13
	$\label{eq:cell} \begin{split} \overline{CE} \geq & \text{Vcc -0.2V}; \ \text{Vcc} = \text{MAX} \\ & \text{ViN} \leq & \text{Vss} + 0.2 \text{V} \text{ or} \\ & \text{ViN} \geq & \text{Vcc} - 0.2 \text{V}; \ f = 0 \end{split}$	ISB2	0.4	5	5	5	5	mA	13
	L and LP versions only	ISB2	0.3	1.5	1.5	1.5	1.5	mA	13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	6	pF	4
Output Capacitance	Vcc = 5V	Со	6	pF	4

Micron Semiconductor, Inc., re

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

		-	12	-	15	-1	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle		· .						• • • • •	•		
READ cycle time	tRC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tOH	3		3		3	-	5		ns	
Chip Enable to output in Low-Z	^t LZCE	3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0	·	0		0		0		ns	
Chip disable to power-down time	tPD		12		15		20		25	ns	
Output Enable access time	^t AOE		5	1	6		6		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		4	1.1	5		6		10	ns	6
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	^t CW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	5 ° 1
Address hold from end of write	^t AH	0		0		0		0		ns	
WRITE pulse width	^t WP1	8		9		12		15		ns	
WRITE pulse width	^t WP2	10		12		15		15		ns	
Data setup time	^t DS	6		7		8		10		ns	
Data hold time	^t DH	0		0		0		0	1	ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE	- 1	6		6		8		10	ns	6, 7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C1005 SRAMs. (-40°C \leq T_A \leq 85°C)

					M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-20	-25	-35	-45	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	155	140	130	125	mA	3, 13
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	50	45	40	40	mA	13
LP only	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	1.3	6	6	6	6	mA	13
	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc - 0.2V; \ Vcc = MAX} \\ & V_{IN} \leq Vss + 0.2V \ or \\ & V_{IN} \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.4	5	5	5	5	mA	13
L version and LP version	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc - 0.2V; \ Vcc = MAX} \\ & V_{IN} \leq Vss + 0.2V \ or \\ & V_{IN} \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.3	2	2	2	2	mA	13

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	5	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	170	μA	14
	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	325	μA	14

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C \leq T_A \leq 85°C; Vcc = 5V \pm 10%)

			20	-1	25		5	-4	45		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
WRITE Cycle										les desta	
Address hold from end of write	tAH	1		1	1.1.1	1		1		ns	

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C1005 SRAMs. (-40°C \leq T_A \leq 125°C - AT) (-55°C \leq T_A \leq 125°C - XT)

					M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-20	-25	-35	-45	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	155	140	130	125	mA	3, 13
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	60	55	50	47	mA	13
	$\label{eq:cellson} \begin{split} \hline CE2 &\leq Vss + 0.2V;\\ \hline CE1 &\geq Vcc - 0.2V; \ Vcc = MAX\\ VIN &\leq Vss + 0.2V \ or\\ VIN &\geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.4	7	7	7	7	mA	13
L version only	$\label{eq:cellson} \begin{split} & CE2 \leq Vss + 0.2V;\\ \hline CE1 \geq Vcc - 0.2V; \ Vcc = MAX\\ & V_{IN} \leq Vss + 0.2V \ or\\ & V_{IN} \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.3	5	5	5	5	mA	13

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	S	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	1,000	μΑ	14
	ViN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	1,500	μA	14

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C $\leq T_A \leq 125^{\circ}C - AT$; -55°C $\leq T_A \leq 125^{\circ}C - XT$; Vcc = 5V ±10%)

		-2	20	-2	25	-:	15	-4	45		1.11
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle					· · · · ·						
Output hold from address change	tОН	3	1.1	3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3	1	3		3		3		ns	7
WRITE Cycle			· · · ·								
Address hold from end of write	tAH	1		1 1		1		1		ns	

MT5C1005 256K x 4 SRAM

AC TEST CONDITIONS

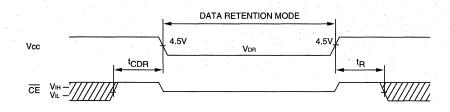
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output loadS	See Figures 1 and 2

NOTES

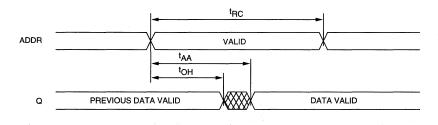
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- Test conditions as specified with the output loading 5. as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_{I} = 5 pF$ as in Fig. 2. Transition is measured $\pm 500 mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

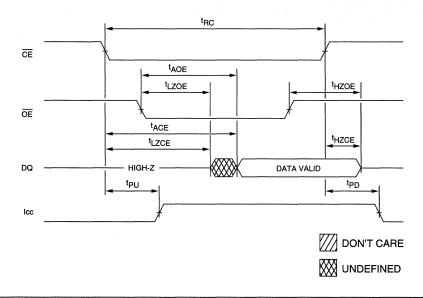
+5V 480 Q 30 pF 255

Fig. 1 OUTPUT LOAD EQUIVALENT


- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 20ns cvcle time.
- 14. Typical currents are measured at 25°C.

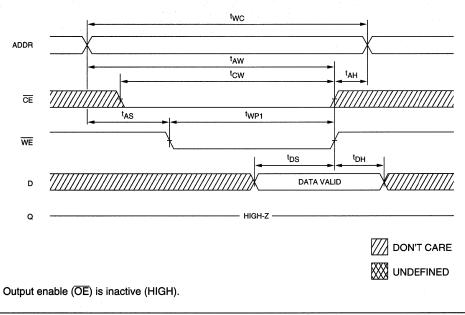
DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)


DESCRIPTION	CONDITION	CONDITIONS		MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		35	150	μA	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		60	250	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		35	150	μA	14
LP version		Vcc = 3V	ICCDR		60	250	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC	, and the start		ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

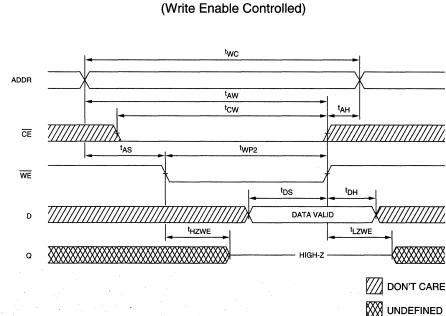
READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10



MT5C1005 256K x 4 SRAM

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)



WRITE CYCLE NO. 2¹² (Write Enable Controlled)

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. @1994, Micron Semiconductor, Inc.

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

5V ASYNCHRONOUS SRAM

MT5C256K4A1 **REVOLUTIONARY PINOUT 256K x 4 SRAM**

SRAM

FEATURES

256K x 4 SRAM

REVOLUTIONARY PINOUT WITH SINGLE CHIP ENABLE

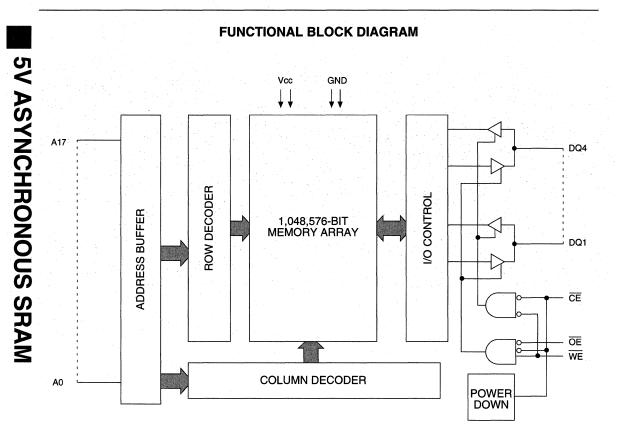
noise immunity • Easy memory expansio • Automatic CE power d • All inputs and outputs	and ground pins for greater on with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ options lown are TTL-compatible	PIN ASS		NMENT (To 2-Pin SOJ (SD-5)	op View)
	v-power, CMOS double-metal	NC [<u> </u>	32] A4
process		A3 [] A5
• Single +5V ±10% powe		A0 E A2 E	1 S.] A6
• Fast OE access times: 6	, 6 , 10 and 12ns	A1 [] A7
OPTIONS	MARKING	A0 [] A8
	MARNING] OE
 Timing 12ns access 	10	DQ1 E] DQ4
12ns access 15ns access	-12 -15	Vcc E] Vss
20ns access	-13 -20	Vss [and the second second second second second second second second second second second second second second second	Vcc
25ns access	-20 -25	DQ2	1.1	ſ] DQ3
2011s access	-23	WED		[] A9
 Packages 		A17 [12	21	-] A10
32-pin SOJ (400 mil)	DJ	A16 [20	
• W data ratantian (anti	onal) L	A15 [14	19] A12
• 2V data retention (opti	unal) L	A14 [15	18] A13
 Temperature 		NC E	16	17] NC
Commercial (0°C to +2	70°C) None		<u> </u>	<i>_</i>	
Part Number Example:	MT5C256K4A1DJ-15 L				

5V ASYNCHRONOUS SRAM

GENERAL DESCRIPTION

The MT5C256K4A1 is organized as a 262,144 x 4 SRAM using a four-transistor memory cell with a high-speed, lowpower CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable $\overline{(CE)}$ and output enable (OE) with this organization. This enhancement can place the outputs in High-Z for additional flexibility in system design.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{OE} and \overline{CE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C256K4A1 Rev. 11/94

MT5C256K4A1 REVOLUTIONARY PINOUT 256K x 4 SRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

PIN DESCRIPTIONS

SOJ PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
5, 4, 3, 2, 32, 31, 30, 29, 28, 22, 21, 20, 19, 18, 15, 14, 13, 12	A0-A17	Input	Address Inputs: These inputs determine which cell is addressed.
11	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle.
6	CE	Input	Chip Enable: This active LOW input is used to enable the device. When CE is HIGH, the chip is disabled and automatically goes into standby power mode.
27	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
7, 10, 23, 26	DQ1-DQ4	Input/ Output	SRAM Data I/O: Data inputs and tristate data outputs.
8, 24	Vcc	Supply	Power Supply: 5V ±10%
9, 25	Vss	Supply	Ground: GND
1, 16, 17	NC	-	No Connect: These signals are not internally connected.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	-1V to Vcc +1V
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	۷	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILi	-5	5	μΑ	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Voн	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

	MAX								
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	200	330	280	230	200	mA	3, 14
Power Supply Current: Standby	CE ≥ Vін; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	45	80	70	60	50	mA	14
	$\label{eq:cell} \begin{split} \overline{CE} \geq Vcc \ -0.2V; \ Vcc = MAX \\ V_{IN} \leq Vss \ +0.2V \ or \\ V_{IN} \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	0.75	5	5	5	7	mA	14

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	5	pF	4
Output Capacitance	Vcc = 5V	Co	5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 5, 15) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

		-	12	-	15		20		25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	tRC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE	-	12		15		20		25	ns	·
Output hold from address change	tOH	4		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	4		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6	1.	6		8		8	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25	ns	
Output Enable access time	^t AOE		6		8		10		12	ns	1.1.1
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6		6		8		8	ns	6
WRITE Cycle											
WRITE cycle time	tWC	12		15	[20		25	$\mathcal{C}_{i,j} \in \mathcal{C}_{i}$	ns	
Chip Enable to end of write	tCW	10		12		13	a sanagari	15		ns	e produce de
Address valid to end of write	tAW	9		10		12		14		ns	
Address setup time	tAS	0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0	a de la composition de la composition de la composition de la composition de la composition de la composition de	ns	
WRITE pulse width	^t WP1	9		10		12		14	1	ns	
WRITE pulse width	^t WP2	9		10	1.14	12	149	14	1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	ns	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (
Data setup time	^t DS	6		8	1.1	10	1. 1.	10	1	ns	
Data hold time	^t DH	0		0		0	1	0		ns	1
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6	1. A. A. A.	6		8	1.1	8	ns	6, 7

MT5C256K4A1 REVOLUTIONARY PINOUT 256K x 4 SRAM

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	s 1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

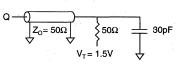
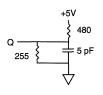



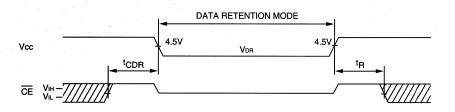
Fig. 1 OUTPUT LOAD EQUIVALENT

- NOTES
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates. The specified value applies with the outputs

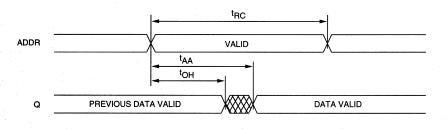
unloaded and $f = \frac{1}{tRC (MIN)}$ Hz.

- This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

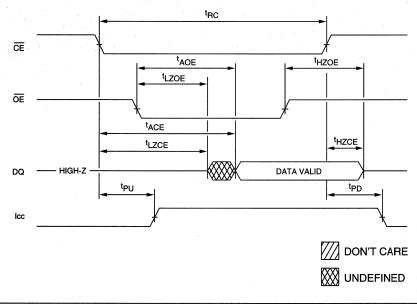
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical currents are measured at 25°C.
- 14. Typical values are measured at 25°C, 5V and 15ns cycle time.
- 15. Contact Micron for extended temperature (IT/AT/ XT) timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

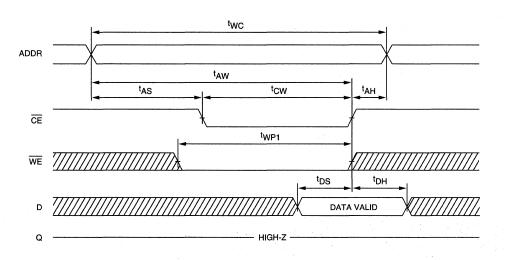
DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		70	300	μΑ	13
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μA	13
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11



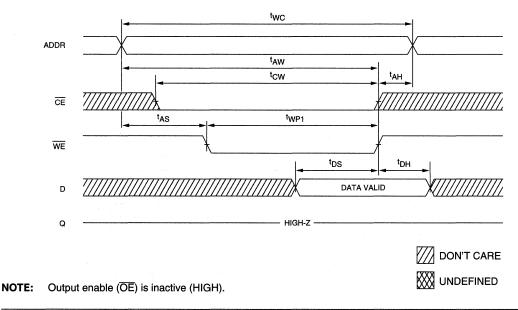
MT5C256K4A1 REVOLUTIONARY PINOUT 256K x 4 SRAM


LOW Vcc DATA RETENTION WAVEFORM

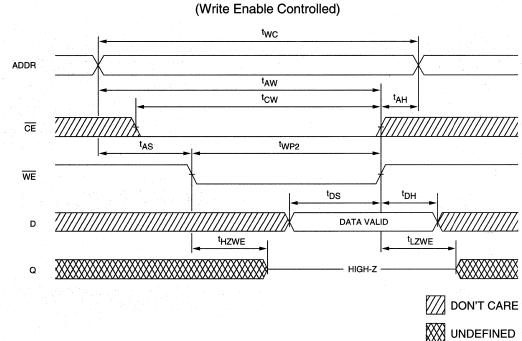
READ CYCLE NO. 1^{8,9}



READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 1¹² (Chip Enable Controlled)


WRITE CYCLE NO. 2¹² (Write Enable Controlled)

MT5C256K4A1 REVOLUTIONARY PINOUT 256K x 4 SRAM

WRITE CYCLE NO. 3^{7, 12}

5V ASYNCHRONOUS SRAM

NOTE: Output enable (\overline{OE}) is active (LOW).

MT5C256K4A1 REVOLUTIONARY PINOUT 256K x 4 SRAM

MT5C2568 32K x 8 SRAM

SRAM

32K x 8 SRAM

FEATURES

- High speed: 10, 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible

OPTIONS	MARKING
Timing	
10ns access	-10
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
• Packages Plastic DIP (300 mil) Plastic SOJ (300 mil)	None DJ
 2V data retention (optional) Low power (optional)	L P
Temperature	
Commercial (0°C to +70°C)	None
Industrial $(-40^{\circ}C \text{ to } +85^{\circ}C)$	IT
Automotive (-40°C to +125°C	
Extended (-55°C to +125°C) XT

• Part Number Example: MT5C2568DJ-20 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

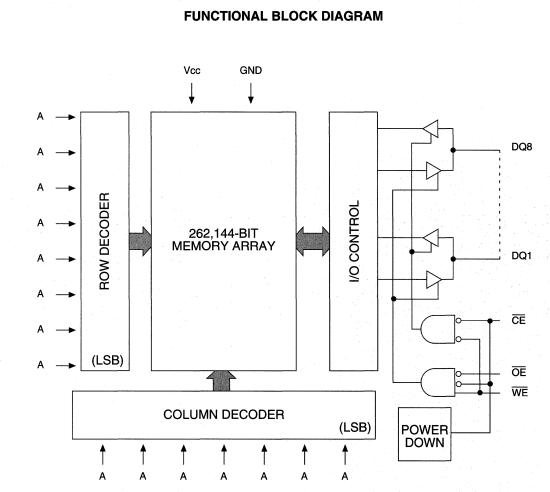
GENERAL DESCRIPTION

The MT5C2568 is organized as a 32,768 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) with this organization. These enhancements can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is accomplished when WE remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode

	PIN A	٩S	SIG	NME	NT	(To	op Viev	v)			
28-Pin DIP (SA-4)					28-Pin SOJ (SD-2)						
A14 [A12] A7 [A6] A5 [A3] A2 [A1] A0 [DQ1] DQ2]	2 3 4 5 6 7 8 9 10 11 12	27 26 25 24 23 22 21 20 19 18 17	 Vcc WE A13 A8 A9 A11 OE A10 CE DQ8 DQ7 DQ6 		A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ1 DQ2 DQ3 Vss	C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C 12		27 26 25 24 23 22 21 20 19 18 17 16	Vcc WE A13 A8 A9 A11 OE A10 DE DQ8 DQ7 DQ6 DQ5 DQ4		
DQ3 [Vss [] DQ5] DQ4								


when disabled. This allows system designers to meet low standby power requirements.

The "P" version provides a reduction in both operating current (Icc) and TTL standby current (ISB1). The latter is achieved through the use of gated inputs on the WE, OE and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MICHON

MT5C2568 32K x 8 SRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	X	Н	X	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	H	HIGH-Z	ACTIVE
WRITE	X	L	L	D	ACTIVE

5V ASYNCHRONOUS SRAM

MT5C2568 Rev. 11/94

Micron Sem

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C; Vcc = 5V $\pm 10\%$)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	IL	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

							MAX]	
DESCRIPTION	CON	DITIONS	SYMBOL	TYP	-10†	-12†	-15†	-20	-25	UNITS	NOTES
Power Supply Current: Operating	f = MA	; Vcc = MAX X = 1/ ^t RC uts open	lcc	130	200	180	165	150	140	mA	3, 13
	Ρv	rersion	lcc	100	-	-	140	125	120	mA	3, 13
Power Supply Current: Standby	f = MA	; Vcc = MAX X = 1/ ^t RC uts open	ISB1	24	55	50	45	40	35	mA	13
	Pv	rersion	ISB1	1.4		-	4	4	4	mA	13
	Vin ≤ Vs	.2V; Vcc = MAX ss +0.2V or c -0.2V; f = 0	ISB2	0.6	5	5	5	5	5	mA	13
	Pv	rersion	ISB2	0.4	-	-	3	3	3	mA	13

[†]P version not available with this speed.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	С	6	pF	4
Output Capacitance	Vcc = 5V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V ±10%)

		-1	0	-1	2	-1	5	-2	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle	•		•			•							
READ cycle time	^t RC	10		12		15		20		25		ns	
Address access time	^t AA		10		12		15		20		25	ns	
Chip Enable access time	^t ACE		10		12		15		20		25	ns	
Output hold from address change	^t OH	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		5		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		10	-	12		15		20		25	ns	4
Output Enable access time	^t AOE		5		6		8		8		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output disable to out put in High-Z	^t HZOE		5		6		6		7		7	ns	6
WRITE Cycle													
WRITE cycle time	tWC	10		12		15		20		25		ns	
Chip Enable to end of write	^t CW	7		8		10		12		15		ns	
Chip Enable to end of write (P and LP version)	^t CW	-		-		12		12		15		ns	
Address valid to end of write	tAW	7		8		10		12		15		ns	
Address valid to end of write (P and LP version)	tAW			-		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	1		1		1		1		1		ns	
WRITE pulse width	^t WP1	7		8		10		12		15		ns	
WRITE pulse width	tWP2	10		12		12		15		15		ns	
Data setup time	^t DS	6		7		7		10	1	10		ns	
Data hold time	^t DH	0		0		0		0		0	ŀ	ns	
Write disable to output in Low-Z	^t LZWE	2		2		2		2		2		ns	7
Write Enable to output in High-Z	^t HZWE		5		6		7	÷.,	8		10	ns	6, 7

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C2568 SRAMs. (-40°C \leq T_A \leq 85°C)

					MAX				
DESCRIPTION	CONDITIONS	SYMBOL	-10	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ tRC outputs open	lcc	210	190	170	160	150	mA	3
Power Supply Current: Standby	$\overline{CE} \ge V_{IH}$; $V_{CC} = MAX$ $f = MAX = 1/ {}^{t}RC$ outputs open	ISB1	65	60	50	45	40	mA	
	$\label{eq:cellson} \begin{split} \overline{CE} \geq & Vcc \ \text{-}0.2V; \ Vcc = MAX \\ & V_{\text{IN}} \leq & Vss \ \text{+}0.2V \ \text{or} \\ & V_{\text{IN}} \geq & Vcc \ \text{-}0.2V; \ f = 0 \end{split}$	ISB2	6	6	6	6	6	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDI	SYMBOL	MAX	UNITS	NOTES	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) ViN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR	400	μA	
	or $\leq 0.2V$	Vcc = 3V	ICCDR	600	μA	er pela

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C \leq T_A \leq 85°C)

DESCRIPTION		-1	2	-1	5	-20		-25			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle				1 A.							
Output hold from address change	^t OH	2		2		2		2		ns	
Chip Enable to output in Low-Z	^t LZCE	2		2		2		2		ns	7
WRITE Cycle											
Address hold from end of write	tAH	2		2		2		2	1.1.1.1	ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_A \le 85^{\circ}C)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.3	Vcc +1	V	1

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C2568 SRAMs. (-40°C $\leq T_A \leq 125$ °C - AT) (-55°C $\leq T_A \leq 125$ °C - XT)

1. A				M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}; V_{CC} = MAX$ f = MAX = 1/ ^t RC outputs open	lcc	195	175	165	155	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	60	50	45	40	mA	
	$\label{eq:cell} \begin{split} \overline{CE} \geq & Vcc \ -0.2V; \ Vcc \ = MAX \\ & V_{IN} \leq & Vss \ +0.2V \ or \\ & V_{IN} \geq & Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	7	7	7	7	mA	

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDI	SYMBOL	MAX	UNITS	NOTES	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) ViN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR	500	μA	
	$VIN \ge (VCC - 0.2V)$ or $\le 0.2V$	Vcc = 3V	ICCDR	800	μA	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 13) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; V_{CC} = 5V ±10%)

DESCRIPTION		-1	2	-1	15	-	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
Output hold from address change	HO ¹	2		2		2		2		ns	
Chip Enable to output in Low-Z	^t LZCE	2		2		2		2	· · ·	ns	7
WRITE Cycle								e di i			
Address hold from end of write	^t AH	2		2		2		2	a sa ta s	ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(-40°C \leq T_A \leq 125°C - AT) (-55°C \leq T_A \leq 125°C - XT)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.3	Vcc +1	V	1

AC TEST CONDITIONS

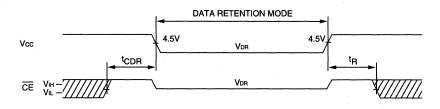
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

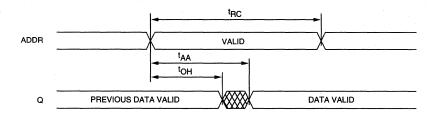
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

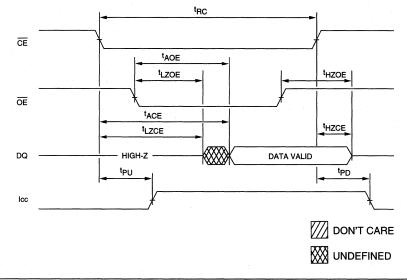
Fig. 1 OUTPUT LOAD EQUIVALENT

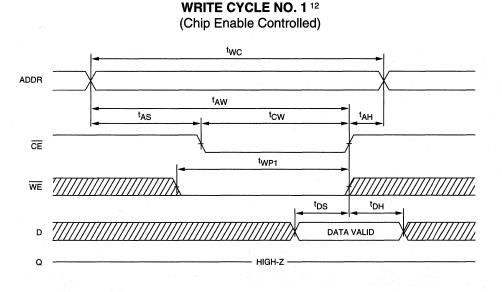
5V ASYNCHRONOUS SRAM

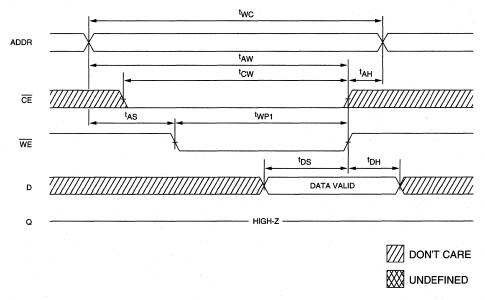

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 15ns cycle time.
- 14. Typical currents are measured at 25°C.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

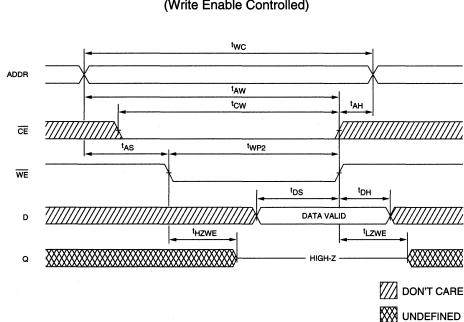

DESCRIPTION	CONDITION	S	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		125	300	μA	14
	or $\leq 0.2V$	Vcc = 3V	ICCDR		175	500	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		100	300	μA	14
LP version		Vcc = 3V	ICCDR		150	500	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM


READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10

MT5C2568 32K x 8 SRAM



WRITE CYCLE NO. 2¹² (Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).

WRITE CYCLE NO. 3^{7, 12, 16} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5C1008 128K x 8 SRAM

128K x 8 SRAM

■ 5V ASYNCHRONOUS SRA

WITH OUTPUT ENABLE

FEATURES

SRAM

- High speed: 12, 15, 20 and 25
- Available in 300 mil- and 400 mil-wide SOJ packages
 High-performance, low-power, CMOS double-metal
- Single +5V ±10% power supply
- Easy memory expansion with CE1, CE2 and OE options
- All inputs and outputs are TTL-compatible
- Fast OE access time: 6ns

OPTIONS	MARKING
• Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
 Packages Plastic DIP (400 mil) Plastic SOJ (400 mil) Plastic SOJ (300 mil) 	None DJ SJ
 2V data retention (optional) 2V data retention, low power (option)	L nal) LP
• Temperature Commercial (0°C to +70°C)	None

Commercial	(0°C to +70°C)	None
Industrial	(-40°C to +85°C)	IT
Automotive	(-40°C to +125°C)	AT
Extended	(-55°C to +125°C)	XT

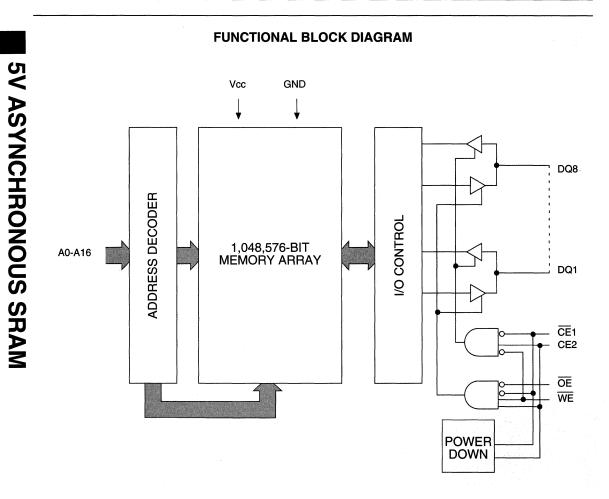
• Part Number Example: MT5C1008DJ-20 L

NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

The MT5C1008 is organized as a 131,072 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers dual chip enables (CE1, CE2) and an output enable (OE). This enhancement can place the outputs in High-Z for additional flexibility in system design.


32-Pin DIP (SA-6)	32-F (SD-	Pin SOJ
		4, 30-5)
NC 1 32 Vcc		
A16 2 31 A15		32 Vcc 31 A15
A14 0 3 30 0 CE2	A16 L 2 A14 T 3	31 🛛 A15 30 🗍 CE2
A12 4 29 WE	A14 U 3 A12 U 4	29 T WE
A7 0 5 28 0 A13	A7 [] 5	28 🛛 A13
A6 0 6 27 0 A8	A6 0 6	27 1 48
A5 0 7 26 0 A9	A5 [] 7	26 A9
A4 0 8 25 0 A11	A4 🛛 8	25 A11
A3 0 9 24 0 OE	A3 🖸 9	24 🛛 OE
A2 0 10 23 0 A10	A2 [10	23 🛛 A10
A1 0 11 22 0 CE1	A1 [11	22 🗋 CE1
A0 [12 21] DQ8	A0 [12	21 🗍 DQ8
DQ1 [] 13 20 [] DQ7	DQ1 [13	20 DQ7
DQ2 [14 19] DQ6	DQ2 [14	19 DQ6
DQ3 [15 18] DQ5	DQ3 🛛 15	18 🗋 DQ5
Vss [] 16 17 [] DQ4	Vss [16	17 DQ4

Writing to these devices is accomplished when write enable (WE) and $\overline{CE1}$ inputs are both LOW and CE2 is HIGH. Reading is accomplished when WE and CE2 remain HIGH and $\overline{CE1}$ and \overline{OE} go LOW. The device offers reduced power standby modes when disabled. This allows system designers to meet low standby power requirements.

The "L" and "LP" versions each provide a 70% reduction in CMOS standby current (ISB2) over the standard version. The "LP" version also provides a 90% reduction in TTL standby current (ISB1). This is achieved by including gated inputs on the \overline{WE} , \overline{OE} and address lines. The gated inputs also facilitate the design of battery backed systems where the designer needs to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C1008 128K x 8 SRAM

TRUTH TABLE

MODE	ŌE	CE1	CE2	WE	DO	POWER
STANDBY	X	н	X	x	HIGH-Z	STANDBY
STANDBY	X	Х	L	X	HIGH-Z	STANDBY
READ	L	L	н	н	Q	ACTIVE
NOT SELECTED	Н	L	н	Н	HIGH-Z	ACTIVE
WRITE	X	L	н	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V
Storage Temperature (plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current 50mA
Voltage on Any Pin Relative to Vss1V to Vcc +1V

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C ≤ T _A	≤ 70°C; Vcc =	5V ±10%)
-----------------------	---------------	----------

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	Іон = -4.0mA	И И ОН	2.4		V	1
Output Low Voltage	IOL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

				·	М	AX			
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ Vін; CE1 ≤ VіL; Vcc = MAX f = MAX = 1/ ¹RC outputs open	lcc	107	195	170	145	130	mA	3, 14
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	75	65	50	45	mA	14
	LP version only	ISB1	1.3	3	3	3	3	mA	14
	$\label{eq:cellson} \begin{array}{ c c } CE2 \leq Vss + 0.2V;\\ \hline CE1 \geq Vcc \ -0.2V; \ Vcc = MAX\\ V_{IN} \leq Vss + 0.2V \ or\\ V_{IN} \geq Vcc \ -0.2V; \ f=0 \end{array}$	ISB2	0.4	5	5	5	5	mA	14
	L and LP versions only	ISB2	0.3	1.5	1.5	1.5	1.5	mA	14

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 5V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

			12	-	15	-	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			•••••••••••••••••				J		•		4
READ cycle time	^t RC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	ЧOН	3		3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		10	ns	6, 7
Chip Enable to power-up time	tPU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25	ns	
Output Enable access time	^t AOE		5		6		6		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		4		5		6		10	ns	6
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	tCW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	1
Address setup time	tAS	0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		ns	
WRITE pulse width	^t WP1	8		9		12		15		ns	
WRITE pulse width	^t WP2	10		12		15		15		ns	
Data setup time	^t DS	6		7		8		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	HZWE		6		6		8		10	ns	6, 7

MT5C1008 128K x 8 SRAM

INDUSTRIAL TEMPERATURE SPECIFICATIONS (IT)

The following specifications are to be used for Industrial Temperature (IT) MT5C1008 SRAMs. (-40°C \leq T_A \leq 85°C)

					MAX				
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-20	-25	-35	-45	UNITS	NOTES
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	107	155	140	130	125	mA	3, 14
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	50	45	40	40	mA	14
LP version only	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	1.3	6	6	6	6	mA	14
	$\label{eq:cellson} \begin{split} & \frac{\text{CE2} \leq \text{Vss} + 0.2\text{V};}{\text{CE1} \geq \text{Vcc} - 0.2\text{V}; \ \text{Vcc} = \text{MAX}} \\ & \text{ViN} \leq \text{Vss} + 0.2\text{V or} \\ & \text{ViN} \geq \text{Vcc} - 0.2\text{V}; \ \text{f} = 0 \end{split}$	ISB2	0.4	5	5	5	5	mA	14
L version and LP version	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc - 0.2V; \ Vcc = MAX} \\ & ViN \leq Vss + 0.2V \ or \\ & ViN \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.3	2	2	2	2	mA	14

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	170	μA	15
	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	325	μA	15

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C $\leq T_A \leq 85^{\circ}$ C; Vcc = 5V ±10%)

DESCRIPTION			-20		-25		-35		-45			
		SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
WRITE Cycle			1.1.1									e de serve
Address hold from	n end of write	 ^t AH	1.		1		· 1		1	1	ns	

AUTOMOTIVE AND EXTENDED TEMPERATURE SPECIFICATIONS (AT AND XT)

The following specifications are to be used for Automotive Temperature (AT) and Extended Temperature (XT) MT5C1008 SRAMs. (-40°C \leq T_A \leq 125°C - AT) (-55°C \leq T_A \leq 125°C - XT)

					M	AX						
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-20	-25	-35	-45	UNITS	NOTES			
Power Supply Current: Operating	CE2 ≥ VIH; CE1 ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	Icc	107	155	140	130	125	mA	3, 13			
Power Supply Current: Standby	CE2 ≤ Viн or CE1 ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	37	60	55	50	47	mA	13			
	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq V_{SS} + 0.2V;}{CE1 \geq V_{CC} - 0.2V; V_{CC} = MAX} \\ & V_{IN} \leq V_{CS} + 0.2V or \\ & V_{IN} \geq V_{CC} - 0.2V; f = 0 \end{split}$	ISB2	0.4	7	7	7	7	mA	13			
L version only	$\label{eq:cellson} \begin{split} & \frac{CE2 \leq Vss + 0.2V;}{CE1 \geq Vcc - 0.2V; \ Vcc = MAX} \\ & V_{IN} \leq Vss + 0.2V \ or \\ & V_{IN} \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.3	5	5	5	5	mA	13			

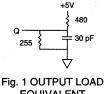
DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Data Retention Current	CE1 ≥ (Vcc -0.2V) or CE2 ≤ (Vss +0.2V)	Vcc = 2V	ICCDR		35	1,000	μA	15
	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	1,500	μA	15

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

Refer to commercial temperature timing parameters for specifications not listed here. (Notes 5, 14) (-40°C $\leq T_A \leq 125$ °C - AT; -55°C $\leq T_A \leq 125$ °C - XT; Vcc = 5V ±10%)

		-20		-25		-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle				11.11				e pros			
Output hold from address change	^t OH	3	1.00	3	11.5	3	1.10	3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		3		3		ns	7
WRITE Cycle											
Address hold from end of write	tAH	1		1		1		1		ns	



AC TEST CONDITIONS

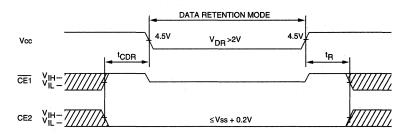
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

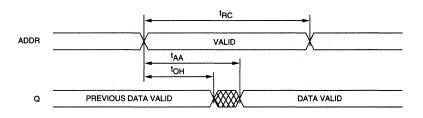
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_{I} = 5 pF$ as in Fig. 2. Transition is measured $\pm 500 mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.

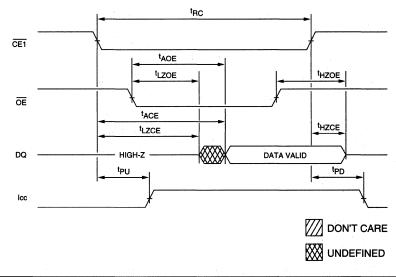
EQUIVALENT

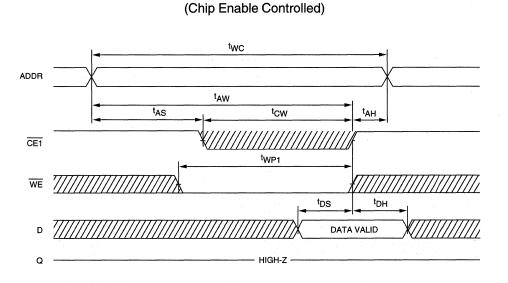
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. CE2 timing is the same as $\overline{CE1}$ timing. The waveform is inverted.
- 13. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 14. Typical values are measured at 5V, 25°C and 20ns cycle time.
- 15. Typical currents are measured at 25°C.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

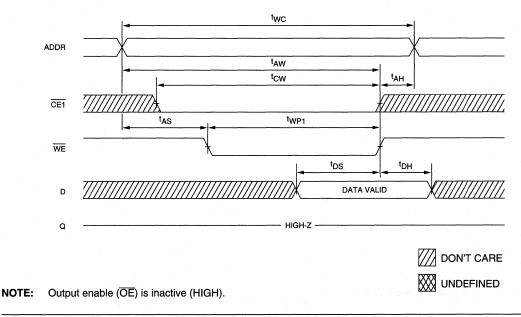
DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE1} \ge (Vcc - 0.2V)$ or CE2 $\le (Vss + 0.2V)$	Vcc = 2V	ICCDR		35	150	μΑ	15
	Vin ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		60	250	μA	15
Data Retention Current	CE1 ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		35	150	μA	15
LP version	or CE2 \leq (Vss +0.2V)	Vcc = 3V	ICCDR		60	250	μA	15
Chip Deselect to Data Retention Time			^t CDR	0		a de la	ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


5V ASYNCHRONOUS SRAN

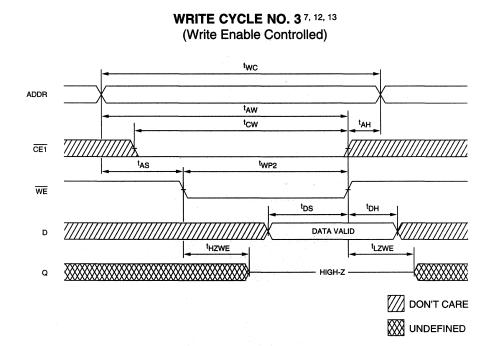

LOW Vcc DATA RETENTION WAVEFORM


READ CYCLE NO. 1^{8,9}

READ CYCLE NO. 2^{7, 8, 10, 12}



MT5C1008 128K x 8 SRAM


WRITE CYCLE NO. 1 12, 13

WRITE CYCLE NO. 2^{12, 13} (Write Enable Controlled)

5V ASYNCHRONOUS SRAM

5V ASYNCHRONOUS SRAM

NOTE: Output enable (OE) is active (LOW).

MICEON SEMICONDUCTOR, INC.

MT5C128K8A1 REVOLUTIONARY PINOUT 128K x 8 SRAM

SRAM

128K x 8 SRAM

WITH SINGLE CHIP ENABLE, REVOLUTIONARY PINOUT

FEATURES

- High speed: 12, 15, 20 and 25ns
- Multiple center power and ground pins for greater noise immunity
- Easy memory expansion with \overline{CE} and \overline{OE} options
- Automatic CE power down
- All inputs and outputs are TTL-compatible
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Fast OE access times: 6, 8, 10 and 12ns

0	PTI	ON	IC		
U	1 1 1	U	N ()		

MARKING

Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
• 2V data retention (optional)	L
• Temperature Commercial (0°C to +70°C)	None
 Packages 32-pin SOJ (400 mil) 	DJ
• Part Number Example: MT5C1	28K8A1DJ-25 I

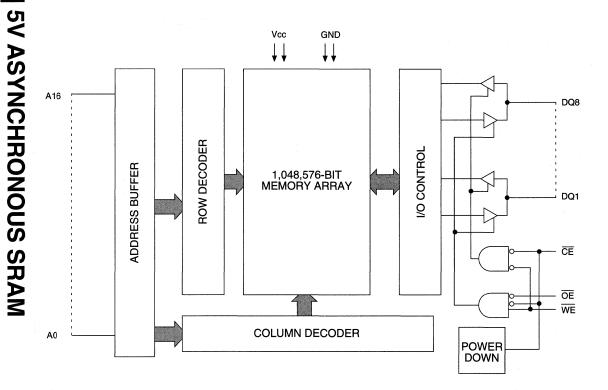
PIN ASSIGNMENT (Top View)

32-Pin SOJ (SD-5)

			_						
A3	þ	1			 	 	32	þ	A4
A2	Ц	2					31	þ	A5
A1	d	3					30	þ	A6
A0	Ц	4					29	þ	A7
CE	Ц	5					28	þ	ŌĒ
DQ1	q	6					27	þ	DQ8
DQ2	Ц	7					26	þ	DQ7
Vcc	q	8					25	þ	Vss
Vss	þ	9					24	þ	Vcc
DQ3	þ	10					23	þ	DQ6
DQ4	Ц	11					22	þ	DQ5
WE	Ц	12					21	þ	A8
A16	þ	13					20	þ	A9
A15	Ц	14					19	þ	A10
A14	þ	15					18	þ	A11
A13	þ	16					17	þ	A12

GENERAL DESCRIPTION

The MT5C128K8A1 is organized as a 131,072 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.


This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) with this organization. This enhancement can place the outputs in High-Z for additional flexibility in system design. Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL-compatible.

MT5C128K8A1 REVOLUTIONARY PINOUT 128K x 8 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Η	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L.	L	D	ACTIVE

PIN DESCRIPTIONS

SOJ PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
4, 3, 2, 1, 32, 31, 30, 29, 21, 20, 19, 18, 17, 16, 15, 14, 13	A0-A16	Input	Address Inputs: These inputs determine which cell is addressed.
12	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle.
5	CE	Input	Chip Enable: This active LOW input is used to enable the device. When CE is HIGH, the chip is disabled and automatically goes into standby power mode.
28	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
6, 7, 10, 11, 22, 23, 26, 27	DQ1-DQ8	Input/ Output	SRAM Data I/O: Data inputs and tristate data outputs.
8, 24	Vcc	Supply	Power Supply: 5V ±10%
9, 25	Vss	Supply	Ground: GND

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		Vı∟	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	lон = -4.0mA	Vон	2.4		v	1
Output Low Voltage	lo∟ = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1

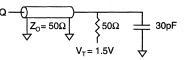
					М	AX			
DESCRIPTION	CONDITIONS	SYMBOL	TYP	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	TE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	200	330	280	230	200	mA	3, 14
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	45	80	70	60	50	mA	14
	$\label{eq:cell} \begin{split} \overline{CE} \geq Vcc & -0.2V; \ Vcc = MAX \\ V_{IN} \leq Vss + 0.2V \ or \\ V_{IN} \geq Vcc - 0.2V; \ f = 0 \end{split}$	ISB2	0.75	5	5	5	7	mA	14

CAPACITANCE

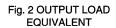
DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
InputCapacitance	T _A = 25°C; f = 1 MHz	С	5	pF	4
Output Capacitance	Vcc = 5V	Co	5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 5, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 5V ±10%)


		-	12		15	-:	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle					•						
READ cycle time	^t RC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15	1.1	20		25	ns	
Output hold from address change	^t OH	4		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	4		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		8	ns	6, 7
Chip Enable to power-up time	tPU	0		0	1.1	0		0		ns	
Chip disable to power-down time	^t PD		12		15	100	20		25	ns	
Output Enable access time	^t AOE		6	1.1.1.1.1.1.1	8		10		12	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0	1.1	0	and at the	ns	
Output disable to output in High-Z	^t HZOE	1.4.1.1.4	6		6		8		8	ns	6
WRITE Cycle	19. U.S. 6										
WRITE cycle time	tWC	12		15		20	1.1	25		ns	
Chip Enable to end of write	tCW	10		12		13	11	15	1.11	ns	
Address valid to end of write	tAW	9		10	200	12	1.5	14		ns	
Address setup time	^t AS	0		0	1	0	a shekara	0		ns	
Address hold from end of write	tAH	0		0	1.1.1.1	0	1.1.1.1.1.1	0		ns	1.1.1
WRITE pulse width	tWP1	9		10	tion in the	12	1.00	14		ns	
WRITE pulse width	tWP2	9		10		12		14	1997 - S. 1997 -	ns	
Data setup time	^t DS	6	·	8		10		10		ns	
Data hold time	^t DH	0	1.1	0	11 Q. 1	0		0	1	ns	
Write disable to output in Low-Z	^t LZWE	3		-3		3	S	3		ns	7
Write Enable to output in High-Z	HZWE	1. A. 1. A.	6	1100	6		8		8	ns	6,7

MT5C128K8A1 **REVOLUTIONARY PINOUT 128K x 8 SRAM**


AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load S	See Figures 1 and 2

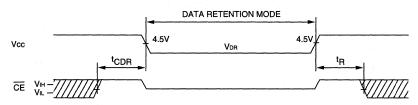
Fig. 1 OUTPUT LOAD EQUIVALENT

- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates. The specified value applies with the outputs

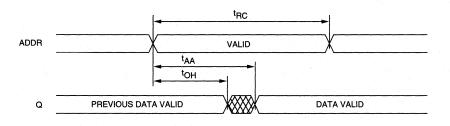
unloaded and f = TRC (MIN) Hz.

- This parameter is sampled. 4.
- Test conditions as specified with the output loading 5. as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L =$ 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

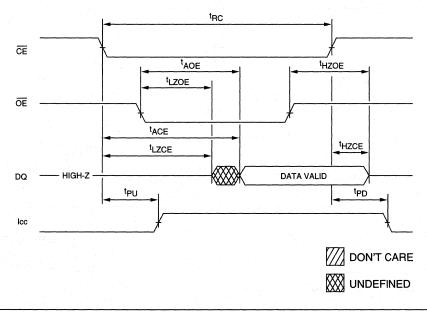
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- Typical currents are measured at 25°C.
- 14. Typical values are measured at 25°C, 5V and 15ns cycle time.
- 15. Contact Micron for extended temperature (IT/AT/ XT) timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

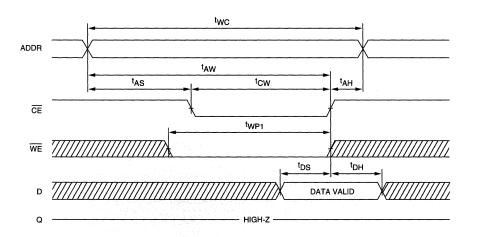
DESCRIPTION	CONDITION	S	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			. V .	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		70	300	μΑ	13
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μA	13
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11



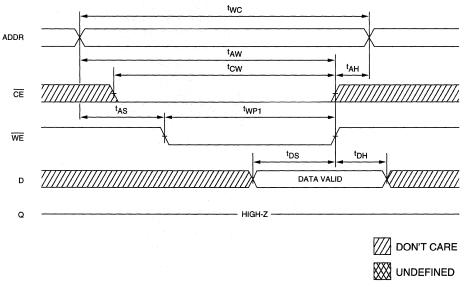
MT5C128K8A1 REVOLUTIONARY PINOUT 128K x 8 SRAM


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

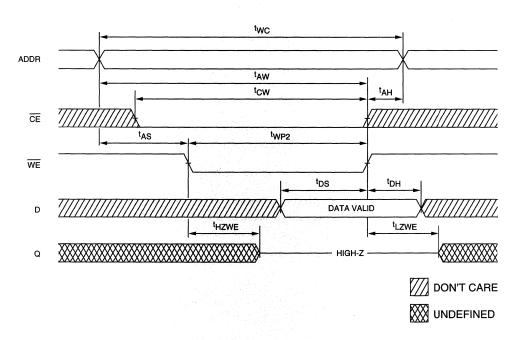


READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)



NOTE: Output enable (OE) is inactive (HIGH).

MT5C128K8A1 REVOLUTIONARY PINOUT 128K x 8 SRAM

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5C128K8A1 REVOLUTIONARY PINOUT 128K x 8 SRAM

SRAM

FEATURES

64K x 16 SRAM

REVOLUTIONARY PINOUT WITH OUTPUT ENABLE AND BYTE WRITES

44-Pin SOJ

(SD-7)

2

4

5

7

8

10 11

12

13

14

15

16

17

44 D A5

43 A6

42 D A7 41 0E

40 BHE

39 BLE

38 DQ16 37 DQ15

36 DQ14

35 DQ13

33 U Vcc

32 DQ12

30 0 0010 29 DQ9

34 Vss

31 0011

28 D NC

27 1 48

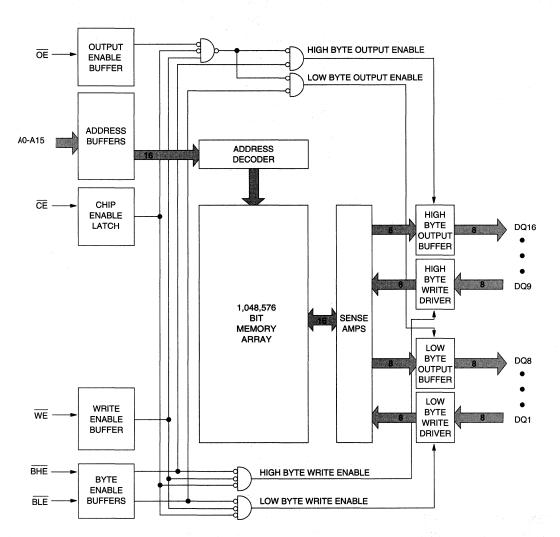
26 A9

• Fast access times: 12, 15, 20 and 25ns Fast output enable access time: 6, 8, 10 and 12ns Multiple center power and ground pins for improved noise immunity High-performance, low-power, CMOS double-metal process A4 [1 Single +5V $\pm 10\%$ power supply A3 [Individual byte controls for both READ and WRITE A2 0 3 A1 [cycles AO D All inputs and outputs are TTL-compatible CE 0 6 DQ1 DQ2 **OPTIONS** MARKING DQ3 [9 Timing DQ4 Vcc 12ns access -12 Vas 15ns access -15 DQ5 20ns access -20 DQ6 25ns access -25 DO7 DQ8 WE [Packages A15 1 18 44-pin SOJ (400 mil) DI A14 0 19 A13 2 20 2V data retention (optional) L A12 21 NC 22 Temperature Commercial (0°C to +70°C) None Part Number Example: MT5C64K16A1DJ-15 L

GENERAL DESCRIPTION

The MT5C64K16A1 is organized as a 65,536 x 16 SRAM using a four-transistor memory cell with a high-speed, lowpower CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable $\overline{(CE)}$ and output enable (OE) capabilities. This enhancement can place the output pin in High-Z for additional flexibility in system design.


The MT5C64K16A1 SRAM integrates a 64K x 16 SRAM core with peripheral circuitry consisting of active LOW chip enable, separate upper and lower byte enables and a fast output enable.

Separate byte enable controls (BLE and BHE) allow individual bytes to be written and read. BLE controls DQ1-DQ8, the lower bits. BHE controls DQ9-DQ16, the upper bits.

The MT5C64K16A1 operates from a single +5V power supply and all inputs and outputs are fully TTLcompatible.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ and TSOP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
5, 4, 3, 2, 1, 44, 43, 42, 27, 26, 25, 24, 21, 20, 19, 18	A0-A15	Input	Address Inputs: These inputs determine which cell is accessed.
17	WE	Input	Write Enable: This input determines if the cycle is a READ or a WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle
39, 40	BLE, BHE	Input	Byte Enables: These active LOW inputs allow individual bytes to be written or read. When BLE is LOW, data is written or read to the lower byte, DQ1-DQ8. When BHE is LOW, data is written or read to the upper byte, DQ9-DQ16.
6	CE	Input	Chip Enable: This signal is used to enable the device. When \overline{CE} is HIGH, the chip automatically goes into standby power mode.
41	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
22, 23, 28	NC	-	No Connect: These signals are not internally connected.
7, 8, 9, 10, 13, 14, 15, 16, 29, 30, 31, 32, 35, 36, 37, 38	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16.
11, 33	Vcc	Supply	Power Supply: +5V ±10%
12, 34	Vss	Supply	Ground: GND

TRUTH TABLE

MODE	CE	ŌE	WE	BLE	BHE	DQ1-DQ8	DQ9-DQ16	POWER
STANDBY	Н	Х	X	X	X	HIGH-Z	HIGH-Z	STANDBY
LOW BYTE READ (DQ1-DQ8)	• L	L	Н	L	H	D	HIGH-Z	ACTIVE
HIGH BYTE READ (DQ9-DQ16)	L	L	н	Ĥ	L	HIGH-Z	D	ACTIVE
WORD READ (DQ1-DQ16)	L	L	Н	L	L	D	D	ACTIVE
WORD WRITE (DQ1-DQ16)	L	Х	L	L	L	Q	Q	ACTIVE
LOW BYTE WRITE (DQ1-DQ8)	L	Х	L	L	Н	Q	HIGH-Z	ACTIVE
HIGH BYTE WRITE (DQ9-DQ16)	L	х	L	Н	L	HIGH-Z	Q	ACTIVE
OUTPUT DISABLE	L	Н	Н	Х	X	HIGH-Z	HIGH-Z	ACTIVE
	L	X	X	H	Н	HIGH-Z	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1V to 7V
Storage Temperature (plastic)	
Short Circuit Output Current	50mA
Voltage at Any Pin Relative toVss	1V to Vcc+1V
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

5V ASYNCHRONOUS SRAM

0°C≤T _A	≤ 70°C;	Vcc = 5V	±10%)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	l Li	-5	5	μA	
Output Leakage Current	Output(s) disabled, 0V ≤ Vouτ ≤ Vcc	ILo	-5	5	μA	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	v	1
Supply Voltage		Vcc	4.5	5.5	v	1

					М	AX			
DESCRIPTION	CONDITIONS	SYMBOL	TYPICAL	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX outputs open f = MAX = 1/ ^t RC	lcc	200	330	280	230	200	mA	3, 15
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX outputs open f = MAX = 1/ ^t RC	ISB1	45	70	60	50	40	mA	15
	CE ≥ Vcc - 0.2V Vcc = MAX; VIN ≤ Vss +0.2V or VIN ≥ Vcc -0.2V; f = 0	ISB2	0.75	5	5	5	7	mA	15

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Cı		5	pF	4
Input/Output Capacitance (D/Q)	Vcc = 5V	Cı/o		5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 16) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 5V ±10%)

DESCRIPTION			12		15		-20	.	-25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			•								
READ cycle time	tRC	12	1	15		20		25		ns	
Address access time	tAA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20	1.1.1.1.1.1	25	ns	
Output hold from address change	tОН	4		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	4		5		5		5		ns	6, 7
Chip disable to output in High-Z	tHZCE		6		6		8		8	ns	6, 7
Output Enable access time	^t AOE		6		8		10		12	ns	
Output Enable to output in Low-Z	^t LZOE	0		0	1	0		0		ns	6, 7
Output disable to output in High-Z	^t HZOE		6		6		8		8	ns	6, 7
Byte Enable access time	^t ABE		6		8		10		12	ns	
Byte Enable to output in Low-Z	^t LZBE	0		0		0		0		ns	6, 7
Byte disable to output in High-Z	^t HZBE		6	1	6		8		8	ns	6, 7
WRITE Cycle					1.00						
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	tCW	10		12		13		15		ns	
Address valid to end of write	tAW	9		10		12		14		ns	
Address setup time	tAS	0	1	0	1	0		0		ns	
Address hold from end of write	tAH	0		0	1	0		0		ns	
Write pulse width	tWP	9		10	1	12		14		ns	
Data setup time	tDS	6		8	1.1	10	· · · ·	10		ns	
Data hold time	^t DH	0	1.1.1.1	0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3	1	3	1	3	Sec. Sec.	3	11.00	ns	6, 7
Write Enable to output in High-Z	tHZWE		6		6		8		8	ns	6, 7
Byte Enable to end of write	tBW	9		10		12		14		ns	1.

 $Z_0 = 50\Omega$

Q

255

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load See	Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates. The specified value applies with the outputs

unloaded and
$$f = \frac{1}{{}^{t}RC (MIN)}Hz$$

- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, ^tHZOE is less than ^tLZOE, and ^tHZBE is less than ^tLZBE.
- 8. Any combination of write enable, chip enable and byte enable can initiate and terminate a WRITE cycle.

- 9. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 10. Device is continuously selected. Chip enable is held in its active state.

Fig. 2 OUTPUT LOAD EQUIVALENT 30pF

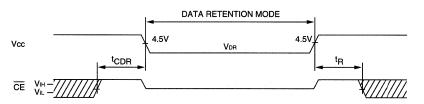
50Ω

+5V

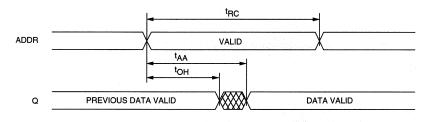
5 pF

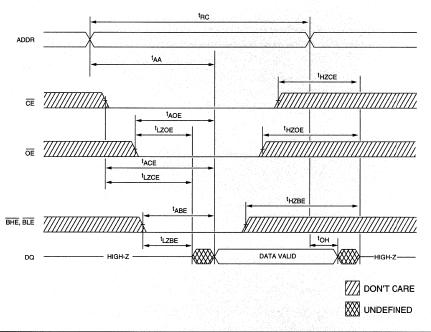
 $V_{T} = 1.5V$

Fig. 1 OUTPUT LOAD EQUIVALENT

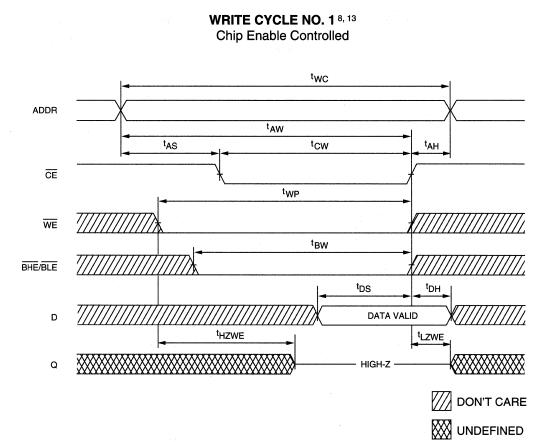

- **11.** Address valid prior to, or coincident with, the latest occurring chip enable.
- 12. BHE and BLE are held in their active state (LOW).
- 13. The output will be in the High-Z state if output enable is HIGH.
- 14. Typical currents are measured at 25°C.
- 15. Typical values are measured at 25°C, 5V and 15ns cycle time.
- 16. Contact Micron for extended temperature (IT/AT/ XT) timing and current specifications; they may differ from the commercial temperature range specifications shown in this data sheet.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)


DESCRIPTION	CONDITION	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) ViN ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		70	300	μA	14
	or ≤ 0.2V	Vcc = 3V	ICCDR		175	500	μΑ	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

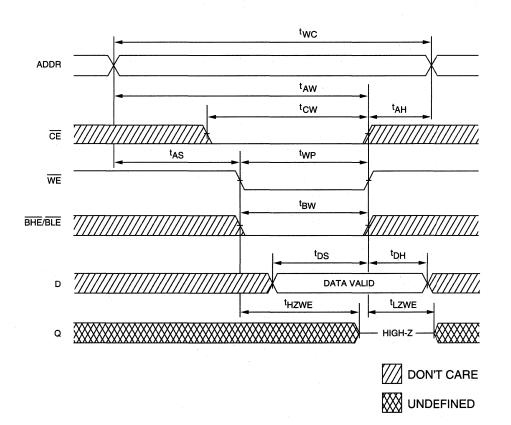

LOW Vcc DATA RETENTION WAVEFORM

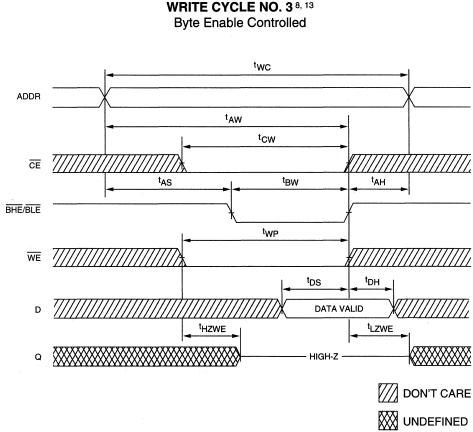
READ CYCLE NO. 1 9, 10, 12



READ CYCLE NO. 27,9

5V ASYNCHRONOUS SRAM




MT5C64K16A1 Rev. 11/94

WRITE CYCLE NO. 2^{8, 13} Write Enable Controlled

WRITE CYCLE NO. 3^{8, 13}

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice ©1994, Micron Semiconductor, Inc.

MT5C64K16A1 Rev. 11/94

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

3.3V ASYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Package/I	lo. of Pins	
Configuration	Functions	Number	Time (ns)	PDIP	SOJ	Page
256K x 1	CE only with separate I/O	MT5LC2561	12, 15, 20, 25	24	24	2-1
1 Meg x 1	CE only with separate I/O	MT5LC1001	15, 17, 20, 25	28	28	2-9
64K x 4	CE only	MT5LC2564	12, 15, 20, 25	24	24	2-17
64K x 4	CE and OE	MT5LC2565	12, 15, 20, 25	28	28	2-25
256K x 4	CE and OE	MT5LC1005	15, 17, 20, 25	28	28	2-33
256K x 4	CE, OE and Revolutionary Pinout	MT5LC256K4D4	12, 15, 20, 25		32	2-41
1 Meg x 4	CE, OE and Revolutionary Pinout	MT5LC1M4D4	12, 15, 20, 25, 35	-	32	2-51
32K x 8	CE and OE	MT5LC2568	12, 15, 20, 25	28	28	2-59
128K x 8	CE1, CE2 and OE	MT5LC1008	15, 17, 20, 25	32	32	2-67
128K x 8	CE, OE and Revolutionary Pinout	MT5LC128K8D4	12, 15, 20, 25	-	32	2-75
512K x 8	CE, OE and Revolutionary Pinout	MT5LC512K8D4	12, 15, 20, 25, 35	-	36	2-85
64K x 16	CE, OE, Byte Enable and Revolutionary Pinout	MT5LC64K16D4	12, 15, 20, 25	-	44	2-93
256K x 16	CE, OE, Byte Enable	MT5LC256K16D4	12, 15, 20, 25, 35	-	54	2-103

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

MICRON

MT5LC2561 256K x 1 SRAM

SRAM

256K x 1 SRAM

LOW VOLTAGE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL voltage standards

OPTIONS Timing 	MARKING
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
 Packages Plastic DIP (300 mil) Plastic SOJ (300 mil) 	None DJ
 2V data retention (optional) Temperature	L
Commercial (0°C to +70°C)	None

• Part Number Example: MT5LC2561DJ-15 L

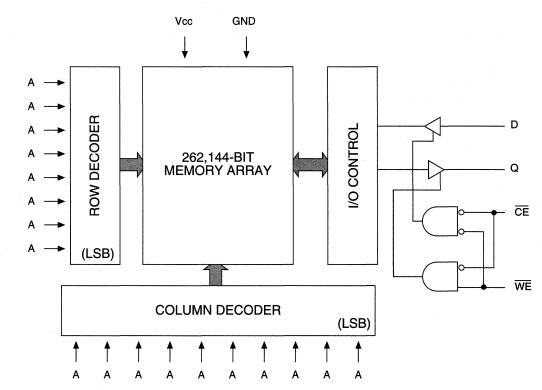
PIN ASSIGNMENT (Top View) 24-Pin DIP 24-Pin SOJ (SA-3) (SD-1) 24 Vcc A0 [A0 [1 24 🖞 Vcc 23 🛛 A17 A1 2 2 23 A17 A1 [A2 🛛 3 22 🛛 A16 22 A16 A2 1 3 A3 [4 21 🛛 A15 20 A14 A3 [21 A15 A4 🛛 5 A5 [6 19 🛛 A13 A4 [] 5 20 🛛 A14 A6 0 7 18 🗅 A12 17 A11 19 A13 A5 🕇 6 A7 1 8 A8 🛛 9 16 🗅 A10 18 A12 A6 [] 7 Q [10 WE [11 15 🗅 A9 A7 🛛 8 17 A11 14 D D 13 0 CE Vss [12 16 🛛 A10 A8 [] Q 1 10 15 A9 WE [11 14 🛛 D 12 13 CE Vss 🛛

GENERAL DESCRIPTION

The MT5LC2561 is organized as a 262,144 x 1 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) with all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is


accomplished when $\overline{\text{WE}}$ remains HIGH and $\overline{\text{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC2561 256K x 1 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	INPUT	OUTPUT	POWER
STANDBY	Н	X	DON'T CARE	HIGH-Z	STANDBY
READ	L	Н	DON'T CARE	Q	ACTIVE
WRITE	L	L	DATA-IN	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss.	0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS SYMBOL		MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage	a a galana da galanda	Vін	2.0	5.5	V	1, 2	
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	V	1, 2	
Input Leakage Current	$0V \le V$ IN $\le V$ CC	IL	-1	1	μA		
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μA		
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1	
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1	
Supply Voltage	15, 20 and 25ns	Vcc	3.0	3.6	V		
Supply Voltage	12ns	Vcc	3.1	3.5	V	1	

				MAX				1		
DESCRIPTION	CONDITIONS	SYM	ТҮР	-12**	-15	-20	-25	UNITS	NOTES	
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX outputs open f = MAX = 1/tRC	lcc	75	125	110	95	90	mA	3, 13	
Power Supply Current: Standby	<u>CE</u> ≥ Vін; Vcc = MAX outputs open f = MAX = 1/tRC	ISB1	17	35	30	25	25	mA	13	
	CE ≥ Vcc - 0.2V; Vcc = MAX ViN ≥ Vcc - 0.2V or ViN ≤ Vss + 0.2V	ISB2	1.0	3	3	3	3	mA	13	

**The P version of this part is not available at 12ns.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сı	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$)

		-1	12	-1	15	-2	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	^t OH	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3	1	3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	4
Chip disable to power-down time	^t PD		12		15		20		25	ns	4
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	^t CW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	tAH	1		1		1		1		ns	
WRITE pulse width	tWP	8		10		12		15		ns	
Data setup time	^t DS	7		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10	ns	6, 7

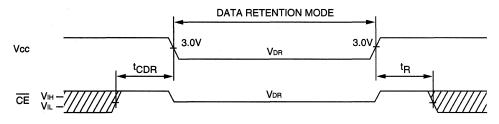
MT5LC2561 256K x 1 SRAM

AC TEST CONDITIONS

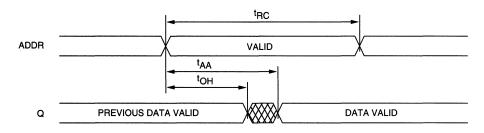
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

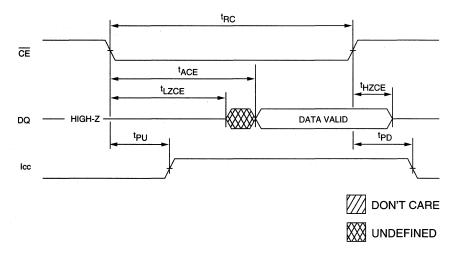
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq tRC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than LZWE.

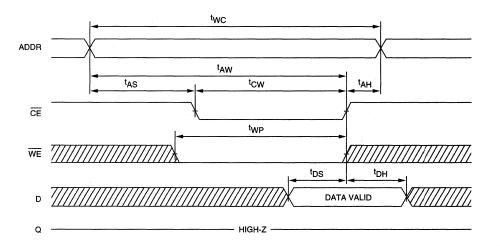

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 15ns cycle time.
- 14. Typical currents are measured at 25°C.
- 15. Vcc is 3.3V ±0.3V for the 15, 20 and 25ns speed grades and $3.3V \pm 0.2V$ for the 12ns speed grade.

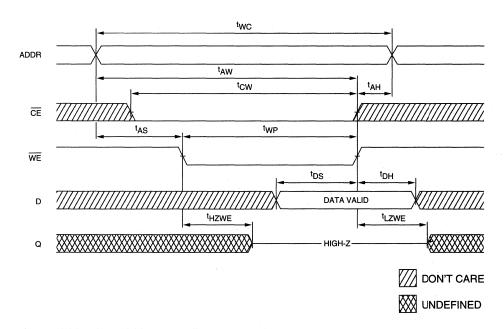
DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V	
Data Retention Current	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	ICCDR		310	500	μΑ	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		tR	^t RC			ns	4, 11


DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 1¹²

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

MT5LC2561 256K x 1 SRAM

PRELIMINARY

MT5LC1001 1 MEG x 1 SRAM

SRAM

1 MEG x 1 SRAM

LOW VOLTAGE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 15, 17, 20 and 25ns
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3 power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
• Timing 15ns access 17ns access 20ns access 25ns access	-15 -17 -20 -25
Packages Plastic DIP (400 mil) Plastic SOJ (400 mil)	None DJ
• 2V data retention (optional)	L
• 2V data retention, low power (optiona	l) LP
• Temperature Commercial (0°C to +70°C)	None

Part Number Example: MT5LC1001DJ-20 L

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

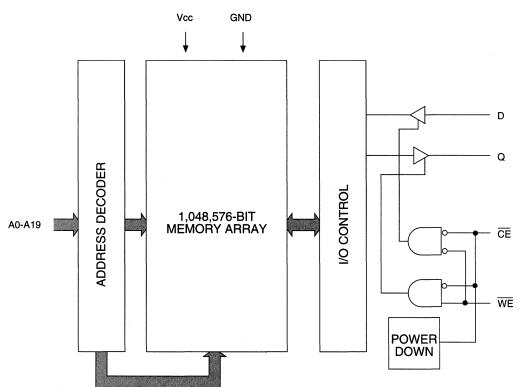
The MT5LC1001 is organized as a 1,048,576 x 1 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) capability. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while \overline{CE} goes LOW. The device offers a reduced power standby mode when dis-

	28-Pin DIP (SA-5)		28-Pin SOJ (SD-3)				
A10 [1 A11 [2 A12 [3 A13 [4 A14 [5 A15 [6 NC [7 A16 [8 A17 [9 A18 [10 A19 [11 Q [12 WE [13 Vss [14	28 Vcc 27 A9 26 A8 25 A7 24 A6 23 A5 24 A6 23 A5 24 A4 21 A4 21 A2 18 A1 17 A0 16 D 15 CE	A10 [1 A11 [2 A12 [3 A13] 4 A14 [5 A15 [6 NC [7 A16 [8 A17 [9 A18 [10 A19 [11] Q [12 WE [13] Vss [14	28 Vcc 27 A9 26 A8 25 A7 24 A6 23 A4 21 D 20 A3 19 A2 18 A1 17 A0 16 D 15 CE				

abled. This allows system designers to meet low standby power requirements.


The "LP" version provides a reduction in both CMOS standby current (ISB2) and TTL standby current (ISB1) over the standard part. This is achieved through the use of gated inputs on the WE and address lines, which also facilitates the design of battery-backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

PRELIMINARY

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	INPUT	OUTPUT	POWER
STANDBY	Н		DON'T CARE	HIGH-Z	STANDBY
READ	L	H	DON'T CARE	Q	ACTIVE
WRITE	L	L	DATA-IN	HIGH-Z	ACTIVE

MT5LC1001 1 MEG x 1 SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		VIн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILi	-1	1	μΑ	
Output Leakage Current	Output(s) disabled 0V ≤ Vouт ≤ Vcc	ILo	-1	1	μΑ	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

						M	AX			
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-15	-17	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}; V_{CC} = MAX$ outputs open $f = MAX = 1/{}^{t}RC$	lcc	ALL	70	155	145	135	125	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX		STD, L	20	45	40	35	30	mA	13
Current. Standby	outputs open f = MAX = 1/ ^t RC	ISB1	LP	1.5	3	3	3	3	mA	
	CE ≥ Vcc - 0.2V; Vcc = MAX	ISB2	STD, L	1.0	3	3	3	3	mA	13
	$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le V_{SS} + 0.2V$		LP	0.7	1.5	1.5	1.5	1.5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1	MHz Ci	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

PRELIMINARY

MT5LC1001 1 MEG x 1 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) (0°C ≤ T_A ≤ 70°C)

		-15 -17		-20		-25					
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	15		17		20		25		ns	
Address access time	^t AA		15		17		20		25	ns	
Chip Enable access time	^t ACE		15		17		20		25	ns	
Output hold from address change	tOH	3		3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		7		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		15		17		20		25	ns	
WRITE Cycle											
WRITE cycle time	tWC	15		17		20		25		ns	
Chip Enable to end of write	tCW	10		12		12		15		ns	
Address valid to end of write	tAW	10		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0		ns	
WRITE pulse width	tWP	9		12		12		15		ns	
Data setup time	^t DS	7		8		8		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		5		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10	ns	6, 7

PRELIMINARY

+3.3V

MT5LC1001 1 MEG x 1 SRAM

AC TEST CONDITIONS

Input pulse levels Vss to 3			
Input rise and fall times	3ns		
Input timing reference levels	1.5V		
Output reference levels	1.5V		
Output load S	See Figures 1 and 2		

NOTES

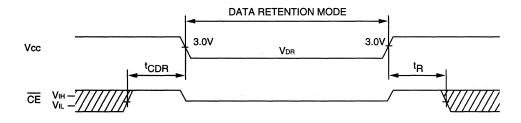
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq tRC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with $C_1 = 5pF$ as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

353

Fig. 1 OUTPUT LOAD EQUIVALENT

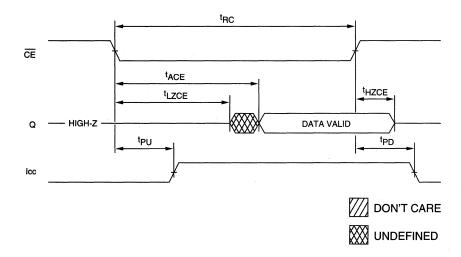
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.
- 15. Contact the factory for IT/AT/XT specifications.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

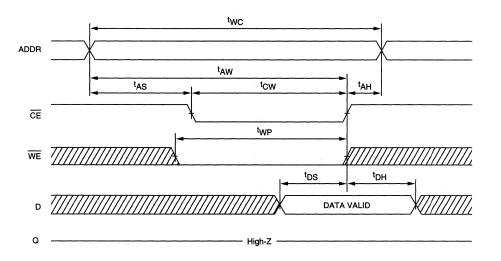

DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V	·
Data Retention Current L version	$\overline{CE} \ge Vcc - 0.2V$ Other inputs: $V_{IN} \ge Vcc - 0.2V$ or $V_{IN} \le Vss + 0.2V$ $Vcc = 2V$		ICCDR	145	260	μΑ	14
Data Retention Current LP version	CE≥Vcc -0.2V Vcc = 2V		ICCDR	145	260	μA	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11

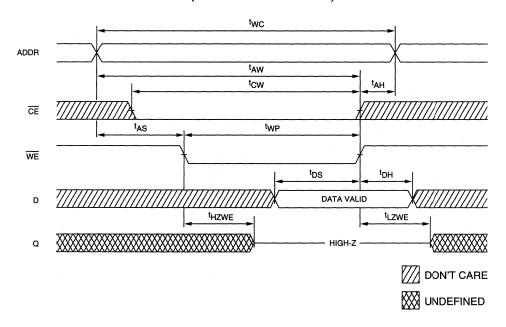
MT5LC1001 Rev. 11/94

MT5LC1001 1 MEG x 1 SRAM


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 2 7, 8, 10



MT5LC1001 1 MEG x 1 SRAM

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

3.3V ASYNCHRONOUS SRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

MT5LC1001 1 MEG x 1 SRAM

MT5LC2564 64K x 4 SRAM

SRAM

64K x 4 SRAM

LOW VOLTAGE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
Packages	
Plastic DIP (300 mil)	None
Plastic SOJ (300 mil)	DJ
• 2V data retention (optional)	L
• Temperature Commercial (0°C to +70°C)	None

• Part Number Example: MT5LC2564DJ-15 L

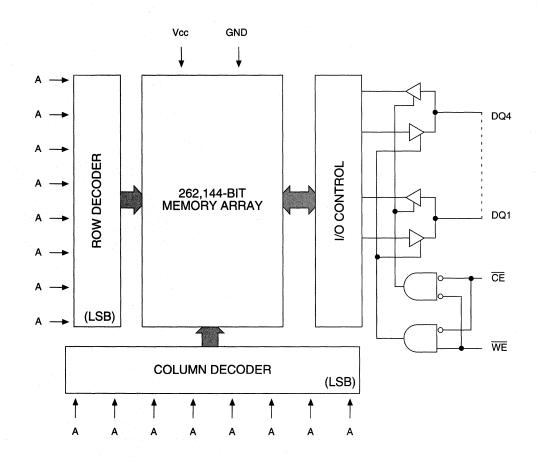
PIN ASSIGNMENT (Top View) 24-Pin DIP 24-Pin SOJ (SD-1) (SA-3) 24 Vcc A0 24 🛛 Vcc A0 [1 A1 2 23 🛛 A15 A1 [2 23 🗋 A15 A2 [22 🗅 A14 3 A2 22 🛛 A14 A3 [4 21 1 A13 20 A12 21 A13 A4 0 5 4 A3 A5 [6 19 🖞 A11 5 20 A12 A4 A6 [7 18 🖞 A10 19 🛛 A11 A7 0 8 17 DQ4 A5 6 A8 [9 16 DQ3 18 A10 15 DQ2 14 DQ1 13 WE A6 10 A9 🛛 CE [11 17 DQ4 Α7 Г 8 Vss 🛛 12 A8 9 16 DQ3 Ц 15 DQ2 A9 Ц 10 ĈĒ ГÍ 11 14 DQ1 13 🛛 WE Vss 12

GENERAL DESCRIPTION

The MT5LC2564 is organized as a 65,536 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (CE) with all organizations. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to


LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC2564 64K x 4 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	X	HIGH-Z	STANDBY
READ	L	н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vss	0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage	15, 20 and 25ns	Vcc	3.0	3.6	V	1
Supply Voltage	12ns	Vcc	3.1	3.5	V	1

					М	AX]	
DESCRIPTION	CONDITIONS	SYM	ТҮР	-12**	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX outputs open f = MAX = 1/ ^t RC	lcc	75	125	110	95	90	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX outputs open f = MAX = 1/ ^t RC	ISB1	17	35	30	25	25	mA	13
	$\label{eq:constraint} \begin{array}{c} \overline{CE} \geq V_{\rm CC} - 0.2V; \\ V_{\rm CC} = MAX \\ V_{\rm IN} \geq V_{\rm CC} - 0.2V \mbox{ or } \\ V_{\rm IN} \leq V_{\rm SS} + 0.2V \end{array}$	ISB2	1.0	3	3	3	3	mA	13

**The P version of this part is not available at 12ns.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

			12	-1	15	-2	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	10H	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	4		3		3	1	3		ns	7
Chip disable to output in High-Z	^t HZCE		6		8		9		9	ns	6,7
Chip Enable to power-up time	tPU	0	1	0		0		0		ns	4
Chip disable to power-down time	^t PD		12		15		20		25	ns	4
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	tCW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	^t AH	1		1		1		1		ns	
WRITE pulse width	^t WP1	8		10		12		15		ns	
WRITE pulse width	^t WP2	12		12		15		15		ns	
Data setup time	^t DS	7		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10	ns	6, 7

MT5LC2564 64K x 4 SRAM

+3.3V

319

5 pF

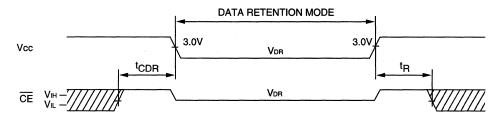
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

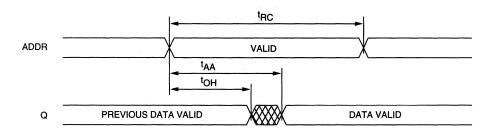

NOTES

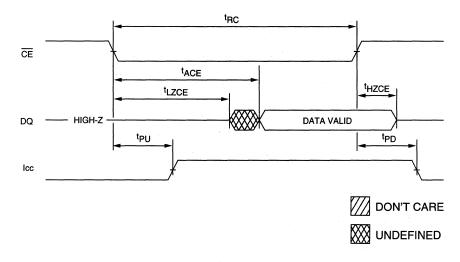
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le tRC/2$ Undershoot: $V_{IL} \ge -2.0V$ for $t \le tRC/2$ Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 200mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

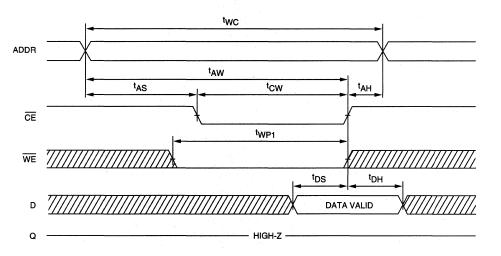

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.
- 15. Vcc is 3.3V ±0.3V for the 15, 20 and 25ns speed grades and 3.3V ±0.2V for the 12ns speed grade.

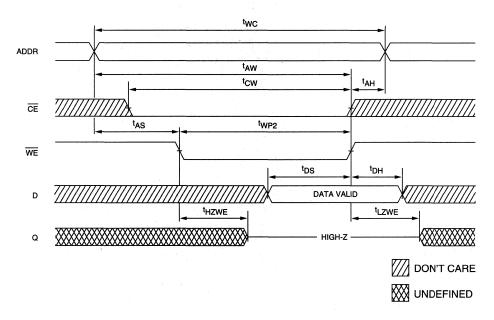
DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)


DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V	
Data Retention Current	$\label{eq:cell} \begin{split} \overline{CE} \geq & Vcc \ -0.2V \\ Other inputs: \\ V_{IN} \geq Vcc \ -0.2V \\ or \ V_{IN} \leq Vss + 0.2V \\ Vcc \ = 2V \end{split}$	ICCDR		310	500	μA	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 1¹²

(Chip Enable Controlled)

WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

MT5LC2564 64K x 4 SRAM

MT5LC2565 64K x 4 SRAM

SRAM

64K x 4 SRAM

LOW VOLTAGE WITH OUTPUT ENABLE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- ٠ Single +3.3V ±0.3V power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing 12ns access	10
	-12
15ns access	-15
20ns access	-20
25ns access	-25
Packages	
Plastic DIP (300 mil)	None
Plastic SOJ (300 mil)	DJ
• 2V data retention (optional)	L
• Temperature Commercial (0°C to +70°C)	None

Part Number Example: MT5LC2565DJ-15 L

PIN ASSIGNMENT (Top View) 28 Vcc 27 A15 26 A14 25 A13 24 A12 23 🛛 A11 22 A10 21 D NC 20 | NC 19 | DQ4 18 | DQ3 17 DQ2 16 DQ1 15 WE

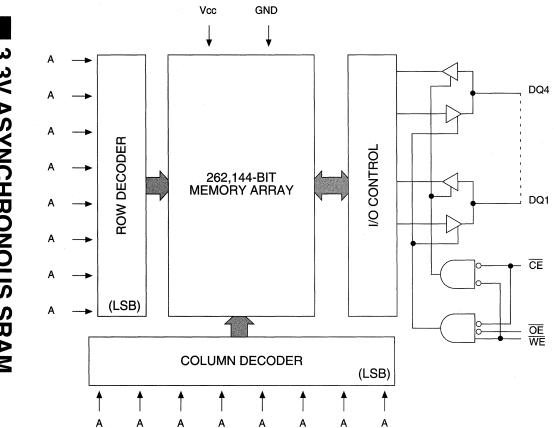
3.3V ASYNCHRONOUS SRAM

28-Pin DIP 28-Pin SOJ (SA-4) (SD-2) NC [] 1 28 Vcc NC [1 A0 C 2 A1 C 3 A2 C 4 A3 C 5 A0 🛛 2 27 A15 A1 [3 26 A14 25 A13 A2 [4 A4 0 6 A3 🛛 5 24 A12 A5 C 7 A6 C 8 A7 C 9 A8 C 10 A4 1 6 23 A11 22 A10 A5 17 A9 [] 11 CE [] 12 OE [] 13 21 NC A6 1 8 A7 🛛 9 20 0 NC A8 🛛 10 19 DQ4 Vss [14 A9 11 18 DQ3 CE 12 17 DQ2 16 DQ1 OE [13 Vss [14 15 WE

GENERAL DESCRIPTION

The MT5LC2565 is organized as a 65,536 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable $\overline{(CE)}$ and output enable $\overline{(OE)}$ with this organization. These enhancements can place the outputs in High-Z for additional flexibility in system design.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC2565 64K x 4 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	н	· · L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to V	/ss0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouт ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1.
Supply Voltage	15, 20 and 25ns	Vcc	3.0	3.6	V	·; 1 ;
Supply Voltage	12ns	Vcc	3.1	3.5	V	1

					M	AX		1	
DESCRIPTION	CONDITIONS	SYM	ТҮР	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V \Vdash; V cc = MAX$ outputs open $f = MAX = 1/{}^{t}RC$	lcc	75	125	110	95	90	mA	3, 13
Power Supply Current: Standby	$\overline{CE} \ge V_{IH}$; $V_{CC} = MAX$ outputs open $f = MAX = 1/{}^{t}RC$	ISB1	17	35	30	25	25	mA	13
	$\overline{CE} \ge Vcc - 0.2V;$ $Vcc = MAX$ $V_{IN} \ge Vcc - 0.2V \text{ or}$ $V_{IN} \le Vss + 0.2V$	ISB2	1.0	3	3	3	3	mA	13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 3.3V	Со	6	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

		-	12	-1	5	-2	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	tRC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tOH	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0	-	0		ns	4
Chip disable to power-down time	^t PD		12		15		20		25	ns	4
Output Enable access time	^t AOE		6		7		8		8	ns	
Output Enable to output in Low-Z	^t LZOE	0	1	0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6		6		7		7	ns	6
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	tCW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	tAH	1		1		1		1		ns	
WRITE pulse width	^t WP1	8		10		12		15		ns	
WRITE pulse width	^t WP2	12		12		15		15		ns	
Data setup time	^t DS	7		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10	ns	6, 7

MT5LC2565 64K x 4 SRAM

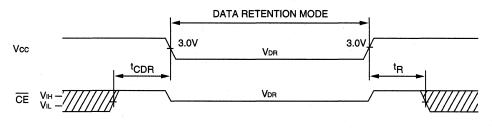
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

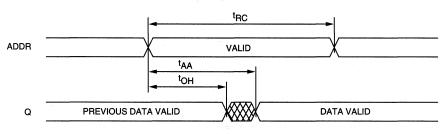
NOTES

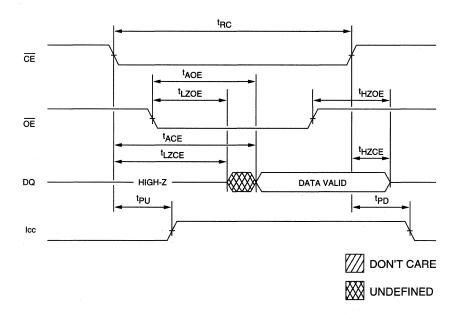
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {tRC/2}$ Undershoot: $V_{IL} \ge -2.0V$ for $t \le {tRC/2}$ Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

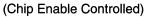
Fig. 1 OUTPUT LOAD EQUIVALENT

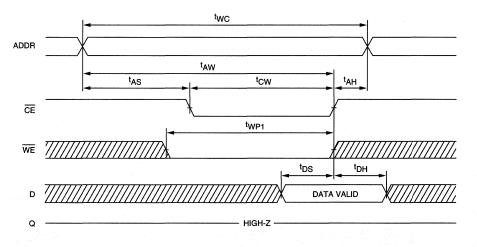

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.
- Vcc is 3.3V ±0.3V for the 15, 20 and 25ns speed grades and 3.3V ±0.2V for the 12ns speed grade.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

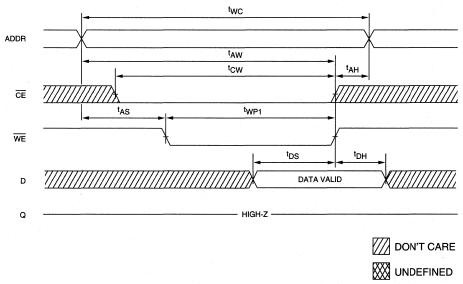

DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V	
Data Retention Current	CE ≥ Vcc -0.2V Other inputs: VIN ≥ Vcc -0.2V or VIN ≤ Vss+0.2V Vcc = 2V	ICCDR		310	500	μΑ	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

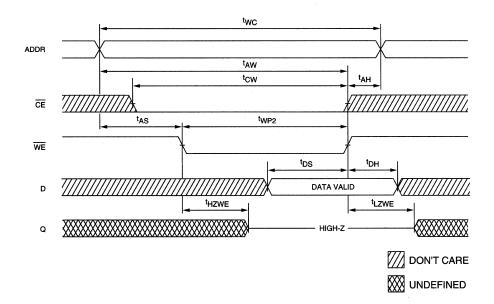

READ CYCLE NO. 1^{8,9}



READ CYCLE NO. 27, 8, 10



WRITE CYCLE NO. 1¹²


WRITE CYCLE NO. 2^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).

NOTE: Output enable (OE) is active (LOW).

MT5LC1005 256K x 4 SRAM

SRAM

256K x 4 SRAM

LOW VOLTAGE WITH OUTPUT ENABLE

PIN ASSIGNM	IENT (Top View)
28-Pin DIP (SA-5)	28-Pin SOJ (SD-3)
A7 1 28 Vcc A8 2 27 A6 A9 3 26 A5 A10 4 25 A4 A11 5 24 A3 A12 6 23 A2 A13 7 22 A1 A14 8 21 A0 A15 9 20 NC A16 10 19 DQ4 A17 11 18 DQ3 CE 12 17 DQ2 OE 13 16 DQ1 Vss 14 15 WE	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

3.3V ASYNCHRONOUS SRAM

FEATURES

- All I/O pins are 5V tolerant
- High speed: 15, 17, 20 and 25ns
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible
- Fast OE access time: 6, 7 and 8ns
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing 15ns access	-15
17ns access	-17
20ns access	-20
25ns access	-25
• Packages Plastic DIP (400 mil) Plastic SOJ (400 mil)	None DJ
• 2V data retention (optional)	L
• 2V data retention, low power (option	al) LP
• Temperature Commercial (0°C to +70°C)	None

Part Number Example: MT5LC1005DJ-15 LP

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

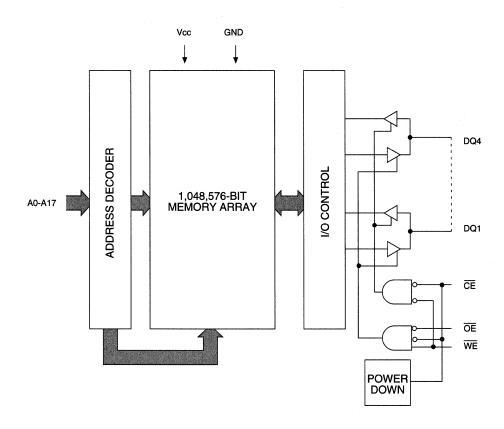
GENERAL DESCRIPTION

The MT5LC1005 is organized as a 262,144 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (CE) capability. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while output enable (\overline{OE}) and \overline{CE} are LOW. The device offers a reduced power stand-

by mode when disabled. This allows system designers to meet low standby power requirements.


The "LP" version provides a reduction in both CMOS standby current (ISB2) and TTL standby current (ISB1) over the standard part. This is achieved through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery-backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC1005 256K x 4 SRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	- L	Н	HIGH-Z	ACTIVE
WRITE	X	L	L	^a D	ACTIVE

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V t	o +4.6V
VIN0.5V t	o +6.0V
Storage Temperature (plastic)55°C to	+150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$(0^{\circ}C \leq T_{A})$	≤ 70°C;	Vcc = 3.3V	±0.3V)
---------------------------	---------	------------	--------

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage	· · · ·	Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μΑ	1
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μΑ	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

						M	AX]	
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-15	-17	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}; V_{CC} = MAX$ outputs open $f = MAX = 1/{^{I}RC}$	lcc	ALL	70	155	145	135	125	mA	3, 13
Power Supply		land	STD, L	20	45	40	35	30	mA	13
Current: Standby		ISB1	ISB1	LP	1.5	3	3	3	3	mA
	<u>CE</u> ≥ Vcc - 0.2V; Vcc = MAX	ISB2	STD, L	1.0	3	3	3	3	mA	13
	$V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or}$ $V_{\text{IN}} \le V_{\text{SS}} + 0.2V$		LP	0.7	1.5	1.5	1.5	1.5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

MT5LC1005 256K x 4 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

		-	15	-	17	-1	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									1.1		
READ cycle time	^t RC	15		17		20		25		ns	
Address access time	^t AA		15		17		20		25	ns	
Chip Enable access time	^t ACE		15		17		20		25	ns	
Output hold from address change	tOH	3		3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		5		ns	7
Chip disable to output in High-Z	tHZCE		6		7		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		15		17		20		25	ns	
Output Enable access time	tAOE	1	6		6		7		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	tHZOE		6		6		7		8	ns	6
WRITE Cycle	· ·										
WRITE cycle time	tWC	15		17		20		25		ns	
Chip Enable to end of write	^t CW	10		12		12		15		ns	
Address valid to end of write	tAW	10		12		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	1
Address hold from end of write	^t AH	0		0		0		0		ns	
WRITE pulse width	^t WP1	9		12		12		15		ns	
WRITE pulse width	tWP2	12		8		15		15		ns	
Data setup time	^t DS	7		7		8		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	tLZWE	3		3		3		5		ns	7
Write Enable to output in High-Z	tHZWE		6		7		8		10	ns	6, 7

MT5LC1005 256K x 4 SRAM

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

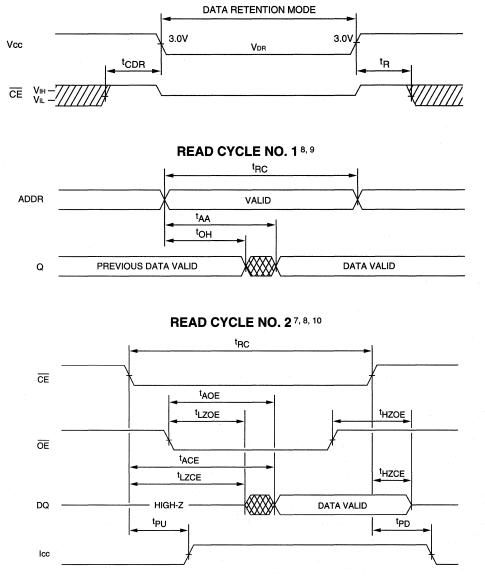
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq {}^{t}RC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_{L} = 5 pF$ as in Fig. 2. Transition is measured $\pm 200 mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

8. $\overline{\text{WE}}$ is HIGH for READ cycle.

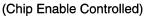
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 25ns cycle time.
- 14. Typical currents are measured at 25°C.

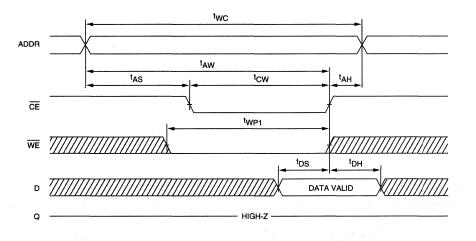

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

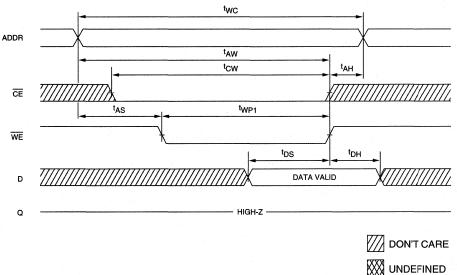
DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V	
Data Retention Current L version	CE Vcc -0.2V Other inputs: VIN ≥ Vcc -0.2V or VIN ≤ Vss+0.2V Vcc = 2V	ICCDR		145	260	μA	14
Data Retention Current LP version	<u>CE</u> ≥ Vcc -0.2V Vcc = 2V	ICCDR		145	260	μΑ	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11

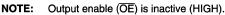
MT5LC1005 256K x 4 SRAM

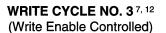
LOW Vcc DATA RETENTION WAVEFORM

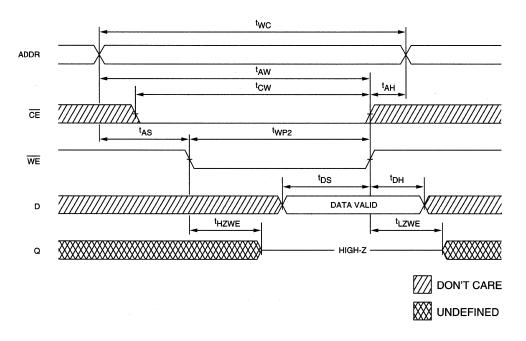

DON'T CARE


3.3V ASYNCHRONOUS SRAM


MT5LC1005 256K x 4 SRAM


WRITE CYCLE NO. 1¹²


WRITE CYCLE NO. 2¹² (Write Enable Controlled)



MT5LC1005 256K x 4 SRAM

NOTE: Output enable (OE) is active (LOW).

MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM

SRAM

256K x 4 SRAM

REVOLUTIONARY PINOUT, 3.3V OPERATION WITH SINGLE CHIP ENABLE

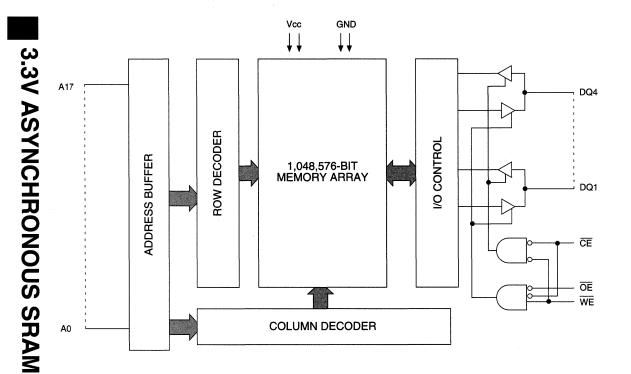
FEATURES				
• All I/O pins are 5V tolerant		PIN ASSIGNME	NT (Top View)	
• High speed: 12*, 15, 20 and 25	ns			
 Multiple center power and granoise immunity 	ound pins for greater	32-Pin		
· Easy memory expansion with	$\overline{\text{CE}}$ and $\overline{\text{OE}}$ options	(SD	-5)	
 Automatic CE power down 				
• All inputs and outputs are TT				
 High-performance, low-power 	r, CMOS double-metal		32] A4	
process			31 🛛 A5 30 🗋 A6	
• Single +3.3V ±0.3V power sup	ply	A2 [] 3 A1 [] 4	29 🗋 A7	1
• Fast OE access times: 8, 10 and	l 12ns		29 1 A7 28 1 A8	
 Complies to JEDEC low-volta 	ge TTL standards			
			26 T DQ4	÷.
OPTIONS	MARKING		25 🛛 Vss	
Timing		Vss 🛛 9	24 🛛 Vcc	
12ns access	-12*	DQ2 [10	23 DQ3	
15ns access	-15	WE 0 11	22 A9	
20ns access	-20	A17 [12	21 🗍 A10	
25ns access	-25	A16 🛛 13	20 🗍 A11	1.1
		A15 [14	19 🗍 A12	
Packages		A14 🗌 15	18 🗍 A13	-
32-pin SOJ (400 mil)	DJ	NC 🛛 16	17 🗍 NC	
• 2V data retention (optional)	L			
• Temperature Commercial (0°C to +70°C)	None			
• Part Number Example: MT5L	.C256K4D4DJ-20 L			
*Consult the factory for availability.				

GENERAL DESCRIPTION

The MT5LC256K4D4 is organized as a 262,144 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) capability. This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is


accomplished when $\overline{\text{WE}}$ remains HIGH while output enable $(\overline{\text{OE}})$ and $\overline{\text{CE}}$ are LOW. The device offers a reduced power standby mode when disabled. This allows system designers to achieve their low standby power requirements.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DO	POWER	
STANDBY	Х	Н	X	HIGH-Z	STANDBY	
READ	L	L	н	Q	ACTIVE	
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE	
WRITE	Х	L	L	D	ACTIVE	

PIN DESCRIPTIONS

SOJ AND TSOP Pin Numbers	SYMBOL	TYPE	DESCRIPTION
5, 4, 3, 2, 32, 31, 30, 29, 28, 22, 21, 20, 19, 18, 15, 14, 13, 12	A0-A17	Input	Address Inputs: These inputs determine which cell is addressed.
11	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle.
6	CE	Input	Chip Enable: This active LOW input is used to enable the device. When CE is HIGH, the chip is disabled and automatically goes into standby power mode.
27	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
7, 10, 23, 26	DQ1-DQ4	Input/ Output	SRAM Data I/O: Data inputs and tristate data outputs.
8, 24	Vcc	Supply	Power Supply: 3.3V ±0.3V
9, 25	Vss	Supply	Ground: GND
1, 16, 17	NC	-	No Connect: These signals are not internally connected.

ABSOLUTE MAXIMUM RATINGS*

to +4.6V
to +6.0V
o +150°C
1W
50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

3.3V ASYNCHRONOUS SRAM

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le Vcc$	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

					M	AX]	
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	165	280	230	180	160	mA	3, 15
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	35	60	50	40	35	mA	15
	$\label{eq:constraint} \begin{array}{c} \overline{CE} \geq V_{\rm CC} \mbox{-}0.2V; \\ V_{\rm CC} = MAX \\ V_{\rm IN} \leq V_{\rm SS} \mbox{+}0.2V \mbox{ or } \\ V_{\rm IN} \geq V_{\rm CC} \mbox{-}0.2V; \mbox{f} = 0 \end{array}$	ISB2	0.5	5	5	5	5	mA	15

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Cı	5	pF	4
Output Capacitance	Vcc =3.3V	Co	5	pF	4

MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

DESCRIPTION		-12		-15		-20		-25			
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			•		.	•					
READ cycle time	tRC	12		15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tOH	3		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	4		5		5		- 5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		8	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25	ns	
Output Enable access time	^t AOE		6		8		10		12	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6		6		8		8	ns	6
WRITE Cycle											
WRITE cycle time	tWC	12		15	1	20		25		ns	-
Chip Enable to end of write	tCW	10		12		13		15		ns	· · · ·
Address valid to end of write	tAW	9		10		12		14		ns	
Address setup time	tAS	0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0		ns	
WRITE pulse width	tWP1	9		10		12		14		ns	
WRITE pulse width	tWP2	10		10	5	12		14		ns	
Data setup time	^t DS	6		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		6		8		8	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

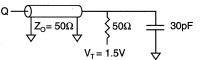
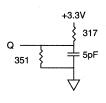



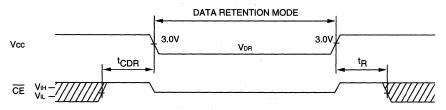
Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

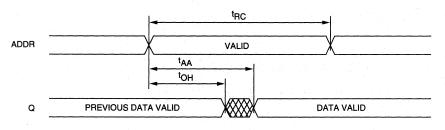
- 1. All voltages referenced to Vss (GND).
- Overshoot: VIH ≤ +6.0V for t ≤ ^tRC/2 Undershoot: VIL ≥ -2.0V for t ≤ ^tRC/2 Power-up: VIH ≤ +6.0V and Vcc ≤ 3.1V for t ≤ 200msec.
- 3. Icc is dependent on output loading and cycle rates. The specified value applies with the outputs

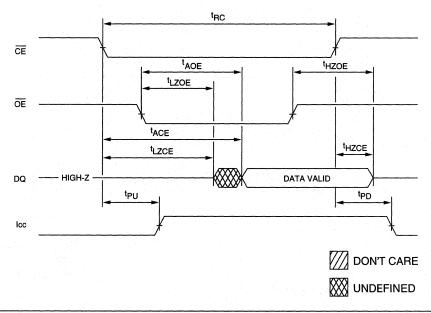
unloaded and $f = \frac{1}{t_{RC} (MIN)} Hz.$

- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ±200mV from steady state voltage.

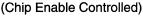

- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. The output will be in the High-Z state if output enable is high.
- 14. Typical currents are measured at 25°C.
- 15. Typical values are measured at 3.3V, 25°C and 15ns cycle time.

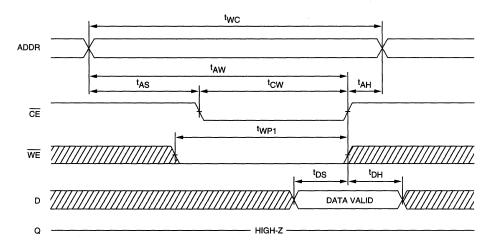
DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$ $or \le 0.2V$	Vcc = 2V	ICCDR		70	300	μΑ	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

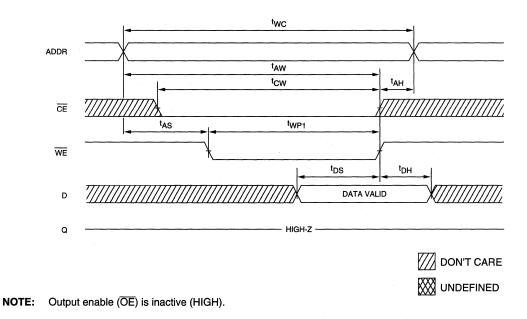

LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

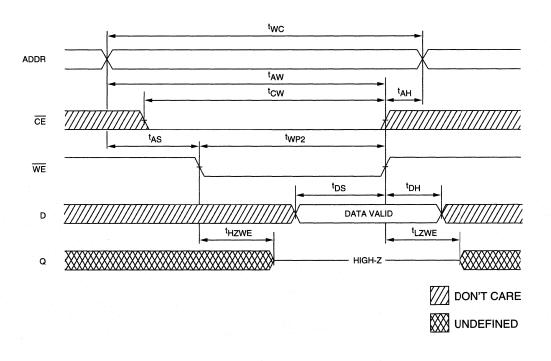

READ CYCLE NO. 27, 8, 10



Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.



WRITE CYCLE NO. 1¹²


WRITE CYCLE NO. 2¹² (Write Enable Controlled)

MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM

WRITE CYCLE NO. 3^{7, 12, 13} (Write Enable Controlled)

3.3V ASYNCHRONOUS SRAM

NOTE: Output enable (OE) is active (LOW).

MT5LC256K4D4 REVOLUTIONARY PINOUT 256K x 4 SRAM

ADVANCE

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

SRAM

1 MEG x 4 SRAM

3.3V OPERATION WITH OUTPUT ENABLE, REVOLUTIONARY PINOUT

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20, 25 and 35ns
- High-performance, low-power, CMOS double-metal process
- Multiple center power and ground pins for improved noise immunity
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible
- Fast OE access time: 6, 8, 10, 12 and 15ns
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
35ns access	-35
Packages	
Plastic SOJ (400 mil)	DJ
• 2V data retention (optional)	L
• Temperature Commercial (0°C to +70°C)	None

• Part Number Example: MT5LC1M4D4DJ-20

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

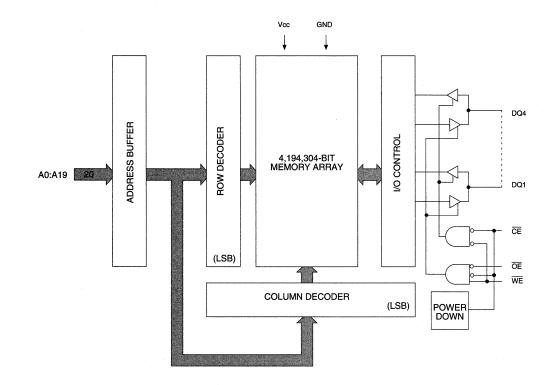
GENERAL DESCRIPTION

The MT5LC1M4D4 is organized as a 1,048,576 x 4 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron 4 Meg SRAMs are fabricated using double-layer metal, triple-layer polysilicon technology.

This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers chip enable ($\overline{\text{CE}}$) and output enable ($\overline{\text{OE}}$) capability. These enhancements can place the outputs in High-Z for additional flexibility in system design.

PIN ASSIGNMENT (Top View)					
	32-Pin SC (SD-5)	D1			
A0 d	1	32 A19			
A1 0	2	31 A18			
A2 [3	30 🛛 A17			
A3 🗆	4	29 🛛 A16			
A4 [5	28 🛛 A15			
	6	27 🛛 OE			
DQ1 C	7	26 🛛 DQ4			
Vcc [8	25 🛛 Vss			
Vss [9	24 🛛 Vcc			
DQ2	10	23 🛛 DQ3			
WED	11	22 🗎 A14			
A5 [12	21 🛛 A13			
A6 🗆	13	20 🛛 A12			
A7 [14	19 🛛 A11			
A8 [15	18 A10			
А9 Ц	16	17] TF*			
* TF = Test Function. See	note 14.				

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while output enable (\overline{OE}) and \overline{CE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.


All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

ADVANCE

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	X	н	Х	HIGH-Z	STANDBY
READ	L	L	H	Q	ACTIVE
NOT SELECTED	Н	L	н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

THERMAL IMPEDANCE (estimated)

PACKAGE	NUMBER OF PINS	θ _{JC} (°C/W)	θ _{JA} (°C/W)	NOTES
SOJ	32	15	60	13, 15
TSOP	32	5	70	13, 15

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	-0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Junction Temperature**	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.2	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vout ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	lo _L = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

					MAX]	
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC; outputs open	lcc	185	165	160	155	145	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	80	75	70	70	65	mA	
	$\overline{CE} \ge V_{CC} - 0.2V;$ $V_{CC} = MAX; f = 0$ $VIN \ge V_{CC} - 0.2V \text{ or}$ $VIN \le VSS + 0.2$	ISB2	1.0	1.0	1.0	1.0	1.0	mA	

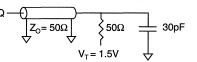
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	5	pF	4
Output Capacitance	Vcc = 3.3V	Co	7	pF	4

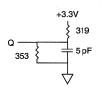
ADVANCE

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Notes 5, 13) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 3.3V ±0.3V)

DESCRIPTION		-1	12	-	15	-1	20	-:	25	-:	35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle						· · · · · · · · · · · · · · · · · · ·							
READ cycle time	^t RC	12		15		20		25		35		ns	
Address access time	^t AA		12		15		20		25		35	ns	
Chip Enable access time	^t ACE	-	12		15		20		25		35	ns	
Output hold from address change	tOH	3		3		3		3	1	3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		7		8		10		15	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0	1	0		ns	4
Chip disable to power-down time	^t PD		12		15		20		25		35	ns	4
Output Enable access time	^t AOE		6		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		5		6		7		10		12	ns	6
WRITE Cycle		L	·			.							· · · · · · · · · · · · · · · · · · ·
WRITE cycle time	tWC	12		15		20		25	Γ	35	1	ns	1.1
Chip Enable to end of write	tCW	8		10		12		15		20		ns	
Address valid to end of write	tAW	8		10		12		15		20		ns	1
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0		0		ns	
WRITE pulse width	^t WP1	8		10		12		15		20		ns	1
WRITE pulse width	^t WP2	11		12		15		15		20		ns	1.
Data setup time	^t DS	6		7		8		10		15		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		5		5		5		ns	7
Write Enable to output in High-Z	^t HZWE		5		6		8		10		15	ns	6,7


MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

AC TEST CONDITIONS

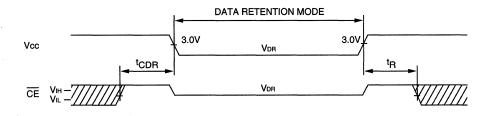
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

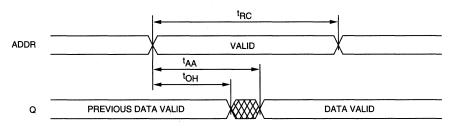
Fig. 2 OUTPUT LOAD EQUIVALENT

- NOTES
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}RC/2$ Undershoot: $V_{IL} \le -2.0V$ for $t \le {}^{t}RC/2$ Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.

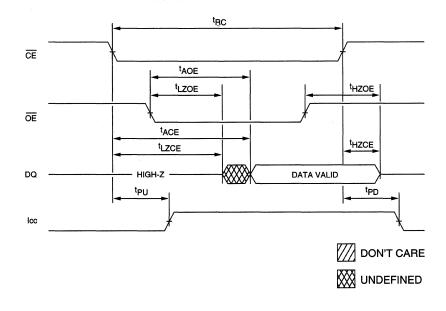
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- Micron does not warrant functionality nor reliability of any product in which the junction temperature exceeds 150°C. Care should be taken to limit power to acceptable levels.
- 14. The test function pin (TF) can be treated as a no connect pin. However, it is recommended that the pin be grounded.
- 15. The thermal impedance numbers assume the device is socketed on a PC board and air flow is zero.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

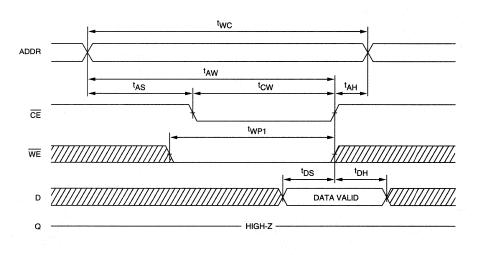
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2		V	
Data Retention Current	CE ≥ (Vcc -0.2V) VIN ≥ (Vcc -0.2V) or ≤ 0.2V Vcc = 2.0V	ICCDR		700	μA	
Chip Deselect to Data Retention Time		^t CDR	0		ns	4
Operation Recovery Time		^t R	^t RC		ns	4, 11

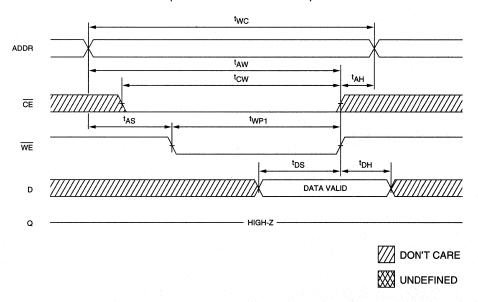


MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

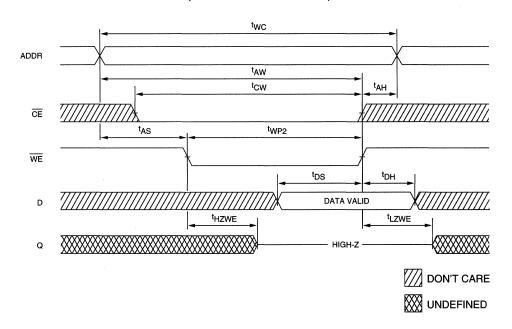

READ CYCLE NO. 27, 8, 10


3.3V ASYNCHRONOUS SRAM

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)


NOTE: Output enable (OE) is inactive (HIGH).

MT5LC1M4D4 REVOLUTIONARY PINOUT 1 MEG x 4 SRAM

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

MT5LC2568 32K x 8 SRAM

SRAM

32K x 8 SRAM

LOW VOLTAGE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20 and 25
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL-compatible
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
Packages	
Plastic DIP (300 mil)	None
Plastic SOJ (300 mil)	DJ
• 2V data retention (optional)	L
Temperature	
Commercial (0°C to +70°C)	None

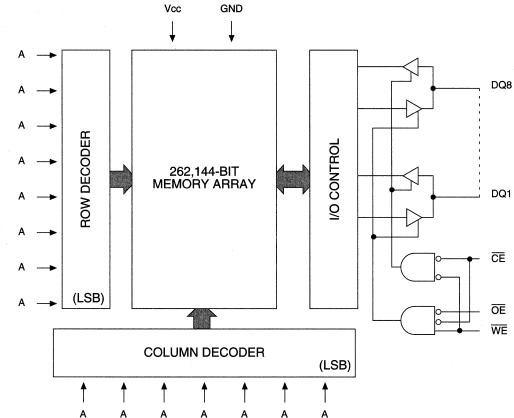
• Part Number Example: MT5LC2568DJ-15 L

PIN ASSIGNMENT (Top View)								
	in DIP A-4)		28-Pin SOJ (SD-2)					
	<u> </u>							
A14 🛛 1	28] Vcc	A14		28 Vcc				
A12 🛛 2	27 🛛 WE	A12 A7		27 D WE				
A7 🛛 3	26 🛛 A13			26 🛛 A13 25 🗋 A8				
A6 [4	25 🛛 A8	A0 A5		23 L A8 24 L A9				
A5 🛛 5	24 🛛 A9	A3 A4	– • • •	23 🛛 A11				
A4 [6	23 🛛 A11	A3						
A3 🛛 7	22 0E	A2	8 1	21 🛛 A10				
A2 [8	21 A10	A1	d 9	20 🛛 CE				
A1 [9	20 1 CE		c 10	19 🛛 DQ8				
A0 [10	19 DQ8		C 11	18 DQ7				
DQ1 [11	18 DQ7		C 12	17 DQ6				
DQ1 [11	17 DQ6	DQ3		16 DQ5				
7	· F	VSS	C 14	15 DQ4				
DQ3 [13	16 DQ5							
Vss [14	15] DQ4							
		<u>.</u>						

GENERAL DESCRIPTION The MT5LC2568 is organized as a 32,768 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) with this organization. These enhancements can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is accomplished when WE remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.


All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

3.3V ASYNCHRONOUS SRAM

MT5LC2568 32K x 8 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	H	L	н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

3.3V ASYNCHRONOUS SRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vs	s0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Ин	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILi	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage	15, 20 and 25ns	Vcc	3.0	3.6	V	. 1
Supply Voltage	12ns	Vcc	3.1	3.5	V	1

1		·			M	AX	_]	
DESCRIPTION	CONDITIONS	SYM	ТҮР	-12**	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{\text{IL}}; V_{CC} = MAX$ outputs open $f = MAX = 1/^{t}RC$	lcc	75	125	110	95	90	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX outputs open f = MAX = 1/ ^t RC	ISB1	17	35	30	25	25	mA	13
	CE ≥ Vcc - 0.2V; Vcc = MAX ViN ≥ Vcc - 0.2V or ViN ≤ Vss + 0.2V	ISB2	1.0	3	3	3	3	mA	13

**The P version of this part is not available at 12ns.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Cı	6	pF	4
Output Capacitance	Vcc = 3.3V	Co	6	pF	4

3.3V ASYNCHRONOUS SRAN

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

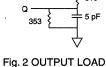
(Note 5, 13, 15) (0°C ≤ T_A ≤ 70°C)

		-	12	-	15		20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -									· · · ·	
READ cycle time	tRC	12	- · · ·	15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tOH	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		3		3		ns	7
Chip disable to output in High-Z	^t HZCE		6		8		9		9	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	4
Chip disable to power-down time	tPD		12		15		20		25	ns	4
Output Enable access time	^t AOE		6		7		8		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6		6		7		7	ns	6
WRITE Cycle								-			
WRITE cycle time	tWC	12		15	1	20		25		ns	
Chip Enable to end of write	^t CW	8		10		12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address setup time	tAS	0	· .	0		0		0		ns	1
Address hold from end of write	tAH	1		1		1		1		ns	
WRITE pulse width	tWP1	8		10		12		15	1.1	ns	
WRITE pulse width	tWP2	12		12		15		15		ns	
Data setup time	^t DS	7		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	^t HZWE		6		7		8		10	ns	6,7

MT5LC2568 32K x 8 SRAM

AC TEST CONDITIONS

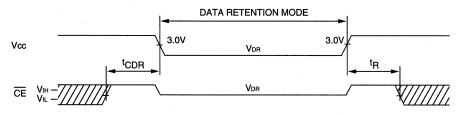
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2


NOTES

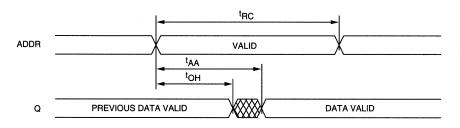
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq {}^{t}RC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with C_{I} = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

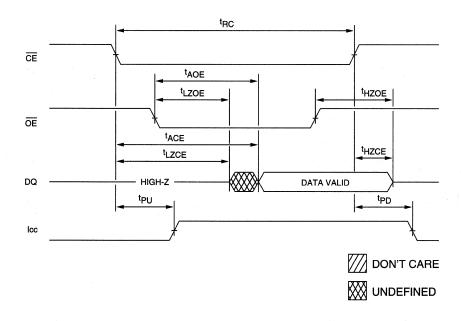
Fig. 1 OUTPUT LOAD EQUIVALENT

EQUIVALENT

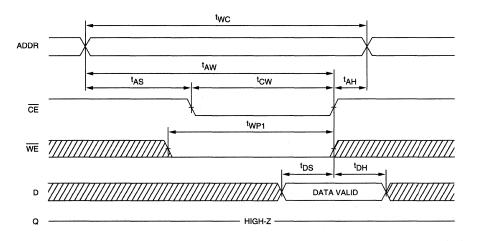

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.
- 15. Vcc is 3.3V ±0.3V for the 15, 20 and 25ns speed grades and 3.3V ±0.2V for the 12ns speed grade.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

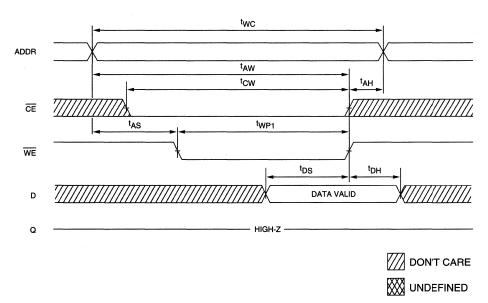

DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			v	
Data Retention Current	$\label{eq:constraint} \begin{array}{c} \overline{CE} \geq Vcc \mbox{ -0.2V} \\ Other \mbox{ inputs:} \\ V_{IN} \geq Vcc \mbox{ -0.2V} \\ or \ V_{IN} \leq Vss \mbox{ +0.2V} \\ Vcc \mbox{ = 2V} \end{array}$	ICCDR		310	500	μA	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

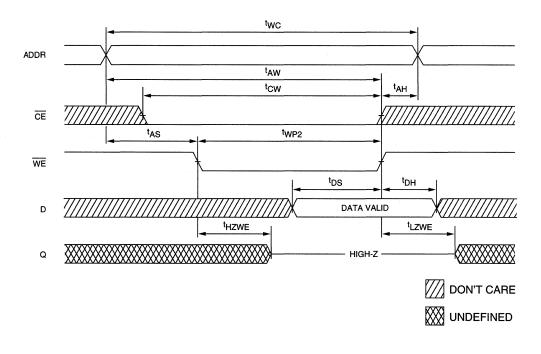


READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1¹²

(Chip Enable Controlled)


WRITE CYCLE NO. 2¹² (Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5LC1008 128K x 8 SRAM

(SD-4)

(SD-5)

32 U Vcc

31 A15

30 CE2

29 0 WE

28 🛱 A13

27 🗋 A8

26 🕇 A9

25 A11

24 h OE

23 A10

22 CE1

20 h DQ7

19 DQ6

18 🛛 DQ5

17 DQ4

SRAM

128K x 8 SRAM

LOW VOLTAGE WITH OUTPUT **ENABLE**

FEATURES • All I/O pins are 5V tolerant PIN ASSIGNMENT (Top View) High speed: 15, 17, 20 and 25ns 32-Pin DIP 32-Pin SOJ High-performance, low-power, CMOS double-metal process (SA-6) Single $+3.3V \pm 0.3V$ power supply Easy memory expansion with $\overline{CE1}$, CE2 and \overline{OE} options All inputs and outputs are TTL-compatible NC 1 32 Vcc NC 1 **[**2 31 A15 A16 A16 C 2 Fast OE access time: 6, 7 and 8ns A14 **d** 3 30 CE2 A14 🛛 3 Complies to JEDEC low-voltage TTL standards A12 0 4 A12 14 29 h WE A7 [5 28 A A13 A7 1 5 **OPTIONS** MARKING A6 [6 A6 **d** 6 27 D A8 A5 🛛 7 Timing A5 **d** 7 26 D A9 A4 🖸 8 15ns access -15 A4 25 A A11 18 A3 🛛 9 d 9 24 0 OE -17 AЗ 17ns access A2 [10 **C** 10 23 A10 A2 -20 A1 [11 20ns access 22 CE1 A1 0 11 A0 [12 25ns access -25 d 12 21 DQ8 DQ1 0 13 A0 Packages DQ2 0 14 DQ1 0 13 20 DQ7 DQ3 [15 Plastic DIP (400 mil) None DQ2 [14 19 DQ6 Vss [16 Plastic SOJ (400 mil) 18 DQ5 DI DQ3 [15 Plastic SOJ (300 mil) SJ Vss 0 16 17 DQ4 2V data retention (optional) L 2V data retention, low power (optional) LP Temperature Commercial (0°C to +70°C) None Part Number Example: MT5LC1008DJ-15 LP

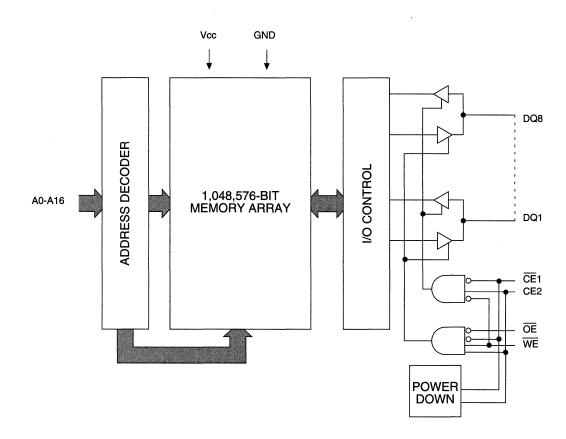
NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

The MT5LC1008 is organized as a 131,072 x 8 SRAM using a four-transistor memory cell with a high-speed, lowpower CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers dual chip enables (CE1, CE2). This enhancement can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and $\overline{CE1}$ inputs are both LOW and CE2 is HIGH. Reading is accomplished when WE and CE2 remain HIGH and CE1 goes LOW. The device offers reduced power standby modes when disabled. These modes allow system designers to meet low standby power requirements.


The "LP" version provides a reduction in both CMOS standby current (ISB2) and TTL standby current (ISB1) over the standard part. This is achieved through the use of gated inputs on the WE, OE and address lines. The gated inputs also facilitate the design of battery-backed systems where the designer needs to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC1008 128K x 8 SRAM

TRUTH TABLE

MODE	ŌE	CE1	CE2	WE	DQ	POWER
STANDBY	X	н	X	Х	HIGH-Z	STANDBY
STANDBY	X	Х	L	X	HIGH-Z	STANDBY
READ	L	L	н	н	Q	ACTIVE
NOT SELECTED	Н	Ľ	н	Н	HIGH-Z	ACTIVE
WRITE	X	L	н	L	D	ACTIVE

MT5LC1008 128K x 8 SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to V	Vss0.5V to +4.6V
VIN	-0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	
Input High (Logic 1) Voltage		Vін	2.0	5.5	V	
Input Low (Logic 0) Voltage		ViL	-0.3	0.8	V	
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi -	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	e a
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	
Supply Voltage		Vcc	3.0	3.6	V	

					MAX					
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-15	-17	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE1 ≤ VI∟ and CE2 ≥ VIH; Vcc = MAX; outputs open f = MAX = 1/łRC	lcc	ALL	70	155	145	135	125	mA	3, 14
Power Supply Current: Standby		ISB1	STD, L	20	45	40	35	30	mA	14, 15
	outputs open f = MAX = 1/ ^t RC		LP	1.5	3	3	3	3	mA	
	$\overline{CE1} \ge Vcc - 0.2V \text{ or}$ $CE2 \le Vss + 0.2V$	ISB2	STD, L	1.0	3	3	3	3	mA	14.10
	Vcc = MAX ViN ≥ Vcc - 0.2V or ViN ≤ Vss + 0.2V		LP	0.7	1.5	1.5	1.5	1.5	mA	14, 16

CAPACITANCE

DESCRIPTION	CONDITIONS		SYMBOL	MAX	UNITS	NOTES
Input Capacitance		T _A = 25°C; f = 1 MHz	Сі	6	pF	4
Output Capacitance		Vcc = 3.3V	Co	6	pF	4

NOTES 1, 2 1, 2

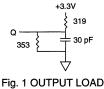
> 1 1 1

MT5LC1008 128K x 8 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

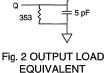
(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

		-	15	-	17	-1	20	-:	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	15		17		20		25		ns	
Address access time	^t AA		15	,	17		20		25	ns	
Chip Enable access time	tACE		15		17		20		25	ns	
Output hold from address change	tOH	3		3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		7		8		10	ns	6,7
Chip Enable to power-up time	tPU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		15		17		20		25	ns	
Output Enable access time	^t AOE		6		6		7		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6	ŀ	6		7		8	ns	6
WRITE Cycle											
WRITE cycle time	tWC	15		17		20		25		ns	
Chip Enable to end of write	tCW	10		12		12		15		ns	
Address valid to end of write	tAW	10		12		12		15		ns	
Address setup time	tAS	0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0		ns	
WRITE pulse width	^t WP1	9		12		12		15		ns	
WRITE pulse width	^t WP2	12		13		15		15		ns	1
Data setup time	^t DS	7		8		8		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		5		ns	7
Write Enable to output in High-Z	tHZWE		6		7		8		10	ns	6, 7


MT5LC1008 128K x 8 SRAM

AC TEST CONDITIONS

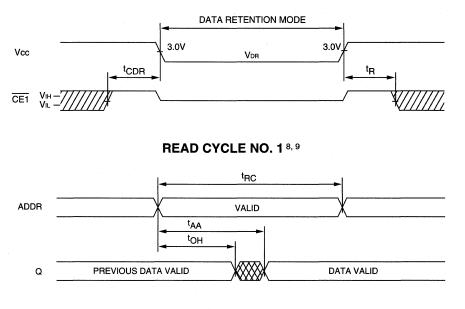
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2


NOTES

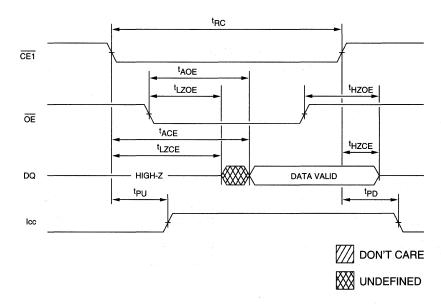
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq tRC/2$ Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: VIH \leq +6.0V and Vcc \leq 3.1V for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_{L} = 5pF$ as in Fig. 2. Transition is measured $\pm 200mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- 8. WE is HIGH for READ cycle.

EQUIVALENT

- 9. Device is continuously selected. All chip enables and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. CE2 timing is the same as $\overline{CE1}$ timing. The wave form is inverted.
- 13. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 14. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 15. One chip enable must be inactive; the other may be \geq VIH or \leq VIL.
- 16. One chip enable must be inactive; the other may be \leq Vss +0.2 or \geq Vcc -0.2.
- 17. Typical currents are measured at 25°C.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

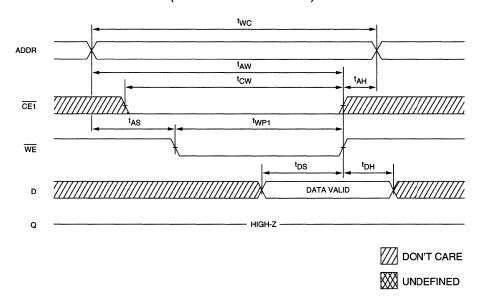
DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V	
Data Retention Current L version	$\overline{CE1} \ge Vcc - 0.2V$ or $CE2 \le Vss + 0.2V$ Other inputs: $ViN \ge Vcc - 0.2V$ or $ViN \le Vss + 0.2V$ $Vcc = 2V$	ICCDR		145	260	μΑ	16, 17
Data Retention Current LP version	$\overline{CE1} \ge Vcc - 0.2V$ or CE2 $\le Vss + 0.2V$ Vcc = 2V	ICCDR		145	260	μA	16, 17
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11



MT5LC1008 128K x 8 SRAM

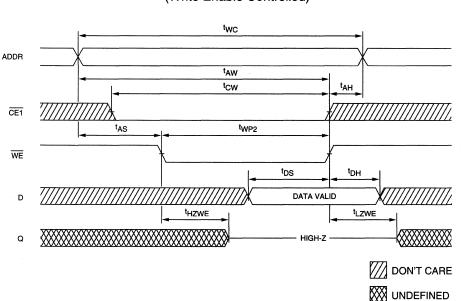
LOW Vcc DATA RETENTION WAVEFORM 12

READ CYCLE NO. 27, 8, 10, 12



MT5LC1008 128K x 8 SRAM

WRITE CYCLE NO. 2^{12, 13} (Write Enable Controlled)



NOTE: Output enable (OE) is inactive (HIGH).

-ON

MT5LC1008 128K <u>x 8 SRAM</u>

WRITE CYCLE NO. 3^{7, 12, 13} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5LC128K8D4 REVOLUTIONARY PINOUT 128K x 8 SRAM

SRAM

128K x 8 SRAM

REVOLUTIONARY PINOUT, 3.3V OPERATION WITH SINGLE CHIP ENABLE

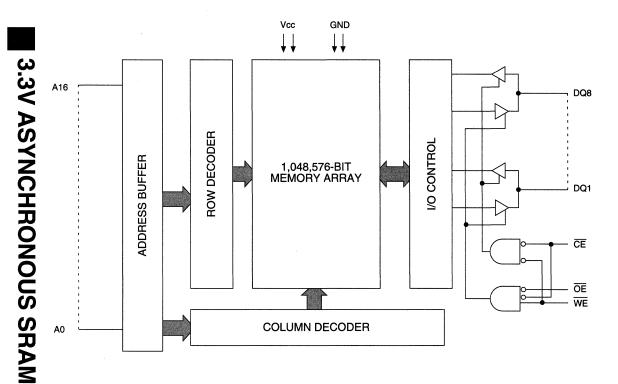
FEATURES PIN ASSIGNMENT (Top View) • All I/O pins are 5V tolerant • High speed: 12*, 15, 20 and 25ns Multiple center power and ground pins for greater 32-Pin SOJ noise immunity Easy memory expansion with \overline{CE} and \overline{OE} options (SD-5) Automatic CE power down All inputs and outputs are TTL-compatible High-performance, low-power, CMOS double-metal АЗ 🛛 32 D A4 1 process A2 🛛 2 31 h A5 Single 3.3V ±0.3V power supply 30 🖞 A6 A1 🛛 3 Fast OE access times: 8, 10 and 12ns 4 29 H A7 AO 🛛 · Complies to JEDEC low-voltage TTL-standards 28 D OE CE d 5 6 27 h DQ8 DQ1 F **OPTIONS** MARKING DQ2 7 26 h DQ7 Timing 8 25 Ϧ Vss Vcc [12ns access -12* 1 Vcc 9 24 Vss II 15ns access -15 23 D DQ6 роз П 10 20ns access -20 DQ4 :11 22 D DQ5 25ns access -25 WE D 12 21 T A8 Packages 13 20 T A9 A16 [32-pin SOJ (400 mil) DJ 19 🗋 A10 A15 🛛 14 18 🗋 A11 A14 15 2V data retention (optional) L 16 17 A12 A13 🛛 Temperature Commercial (0°C to +70°C) None Part Number Example: MT5LC128K8D4DJ-20 L *Consult the factory for availability.

GENERAL DESCRIPTION

The MT5LC128K8D4 is organized as a 131,072 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable (\overline{CE}) and output enable (\overline{OE}) capability. This enhancement can place the output in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and chip enable inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes


LOW. The device offers a reduced power standby mode when disabled. This allows system designers to achieve their low standby power requirements.

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

MT5LC128K8D4 REVOLUTIONARY PINOUT 128K x 8 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

PIN DESCRIPTIONS

SOJ AND TSOP Pin Numbers	SYMBOL	TYPE	DESCRIPTION
4, 3, 2, 1, 32, 31, 30, 29, 21, 20, 19, 18, 17, 16, 15, 14, 13	A0-A16	Input	Address Inputs: These inputs determine which cell is addressed.
12	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle.
5	CE	Input	Chip Enable: This active LOW input is used to enable the device. When \overline{CE} is HIGH, the chip is disabled and automatically goes into standby power mode.
28	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
6, 7, 10, 11, 22, 23, 26, 27	DQ1-DQ8	Input/ Output	SRAM Data I/O: Data inputs and tristate data outputs.
8, 24	Vcc	Supply	Power Supply: 3.3V ±0.3V
9, 25	Vss	Supply	Ground: GND

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Va	ss0.5V to +4.6V
VIN	0.5V +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

3.3V ASYNCHRONOUS SRAM

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	v	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	1Lı	-1	1	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vouт ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

					M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	165	280	230	180	160	mA	3, 15
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	35	60	50	40	35	mA	15
	CE Vcc -0.2V; Vcc = MAX ViN ≤ Vss +0.2V ViN ≥ Vcc -0.2V; f = 0 0	ISB2	0.5	5	5	5	5	mA	15

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	5	pF	4
Output Capacitance	Vcc =3.3V	Co	5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

DESCRIPTION		-	12	-15		-20		-25		1.5	
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle		h	- 			••••••••••••••••••••••••••••••••••••••					
READ cycle time	^t RC	12	T	15		20		25		ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tон	3	1	4		4		4		ns	
Chip Enable to output in Low-Z	LZCE	4		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		6		8		8	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip disable to power-down time	^t PD		12		15		20		25	ns	
Output Enable access time	^t AOE		6		8		10		12	ns	
Output Enable to output in Low-Z	^t LZOE	0	1	0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6		6		8		8	ns	6
WRITE Cycle				A	.		L			· · · · · · · · · · · · · · · · · · ·	
WRITE cycle time	tWC	12	Γ	15	1	20		25	[ns	
Chip Enable to end of write	^t CW	10		12	1	13		15		ns	
Address valid to end of write	tAW	9		10	1	12		14		ns	
Address setup time	tAS	0		0		0		0		ns	
Address hold from end of write	^t AH	0		0	,	0	1	0		ns	
WRITE pulse width	^t WP1	9		10		12		14		ns	
WRITE pulse width	tWP2	10	1	10	1	12		14		ns	
Data setup time	^t DS	6	1	8		10		10		ns	
Data hold time	^t DH	0	1.1	0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	7
Write Enable to output in High-Z	HZWE		6		6		8		8	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

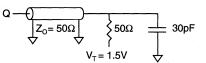
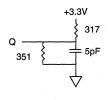



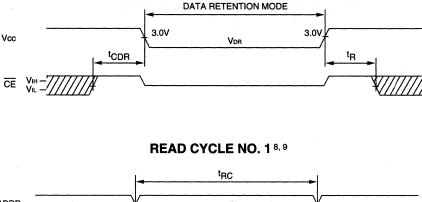
Fig. 1 OUTPUT LOAD EQUIVALENT

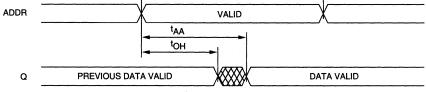
NOTES

- 1. All voltages referenced to Vss (GND).
- Overshoot: VIH ≤ +6.0V for t ≤ ^tRC/2 Undershoot: VIL ≥ -2.0V for t ≤ ^tRC/2 Power-up: VIH ≤ +6.0V and Vcc ≤ 3.1V for t ≤ 200msec.
- Icc is dependent on output loading and cycle rates. The specified value applies with the outputs

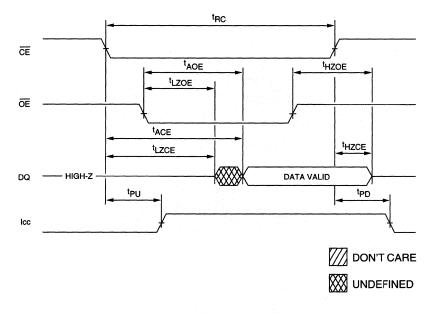
unloaded and $f = \frac{1}{{}^{t}RC (MIN)} Hz.$

- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ±200mV from steady state voltage.

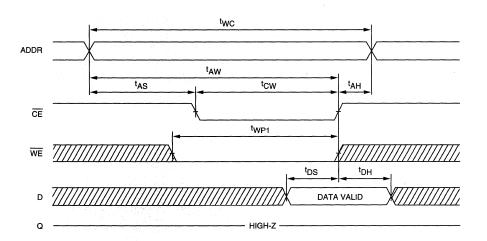

- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = read cycle time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. The output will be in the High-Z state if output enable is high.
- 14. Typical currents are measured at 25°C.
- 15. Typical values are measured at 3.3V, 25°C and 15ns cycle time.

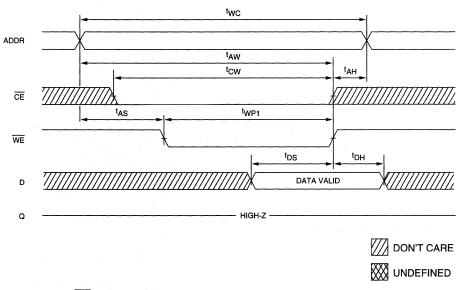

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

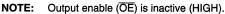
DESCRIPTION	CONDITION	S	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$ $or \le 0.2V$	Vcc = 2V	ICCDR		70	300	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11



LOW Vcc DATA RETENTION WAVEFORM

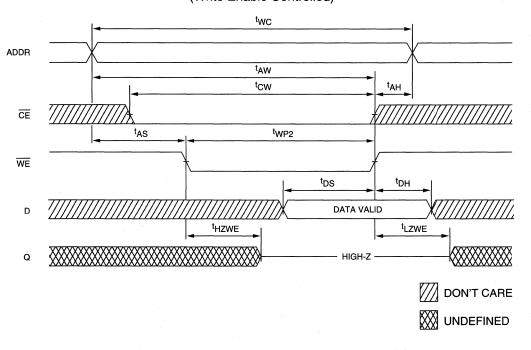

READ CYCLE NO. 27, 8, 10


Micron Semiconductor, Inc., reserves the right to shange products or specifications without notice. @1994, Micron Semiconductor, Inc.



WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)



MT5LC128K8D4 Rev. 11/94

WRITE CYCLE NO. 3 7, 12, 13 (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5LC128K8D4 REVOLUTIONARY PINOUT 128K x 8 SRAM

ADVANCE

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

SRAM

EFATTIDEC

512K x 8 SRAM

3.3V OPERATION WITH OUTPUT ENABLE, REVOLUTIONARY PINOUT

 FEATURES All I/O pins are 5V tolerant High speed: 12, 15, 20, 25 and 3 High-performance, low-power process Multiple center power and gro noise immunity Single +3.3V ±0.3V power supple Easy memory expansion with 6 All inputs and outputs are TTL Fast OE access time: 6, 8, 10, 12 Complies to JEDEC low-voltage 	A0 [A1 [A2 [A3 [2 35 3 34 4 33	D NC A18 A17 A16	
 Complies to JEDEC low-voltage 				
OPTIONS	MARKING	DQ1 E		
• Timing		DQ1 L		E State State State
12ns access	-12	Vcc E	the second second second second second second second second second second second second second second second s	E Contraction of the second se
15ns access	-12		10 27	F
20ns access	-20	DQ3		T .
25ns access	-25	DQ4	12 25	
35ns access	-35	WE		A14
55115 decess	55	A5 C	14 23	A13
Packages		A6 D	15 22	A12
Plastic SOJ (400 mil)	DJ	A7 [16 21	D A11
• OV data actuation (antianal)	L	A8 [17 20	A10
• 2V data retention (optional)		A9 🖸	18 19	
 Temperature Commercial (0°C to +70°C) 	None			
Part number example: MT5LC	512K8D4DJ-20 L			
NOTE: Not all combinations of speed, dat necessarily available. Please contact the facto number combinations.				
		* TF = Test Function. See	e note 14.	

GENERAL DESCRIPTION

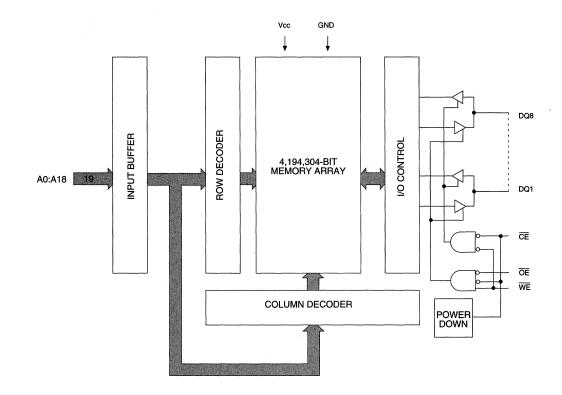
MT5LC512K8D4

The MT5LC512K8D4 is organized as a 524,288 x 8 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron 4 Meg SRAMs are fabricated using double-layer metal, triple-layer polysilicon technology.

For flexibility in high-speed memory applications, Micron offers chip enable $(\overline{\text{CE}})$ and output enable $(\overline{\text{OE}})$ capability. These enhancements can place the outputs in High-Z for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW. Reading is

accomplished when $\overline{\text{WE}}$ remains HIGH and $\overline{\text{CE}}$ goes LOW. The device offers a reduced power standby mode when disabled. This allows system designers to meet low standby power requirements.


All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

ADVANCE

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	н	Х	HIGH-Z	STANDBY
READ	. L ·	L	н	Q	ACTIVE
NOT SELECTED	Н	L	н	HIGH-Z	ACTIVE
WRITE	Х	× L	L	D	ACTIVE

THERMAL IMPEDANCE (estimated)

PACKAGE	NUMBER OF PINS	θ _{JC} (°C/W)	θ _{JA} (°C/W)	NOTES
SOJ	36	15	55	13, 15
TSOP	36	5	65	13, 15

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vs	s0.5V to +4.6V
VIN	0.5 to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Junction Temperature**	+150°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.2	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	v	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μΑ	
Output Leakage Current	Output(s) disabled 0V ≤ Vouτ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	lo∟ = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	V	1

DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX outputs open f = MAX = 1/tRC	lcc	185	165	160	155	145	mA	3
Power Supply Current: Standby	CE ≥ VIн; Vcc = MAX outputs open f = MAX = 1/tRC	ISB1	80	75	70	70	65	mA	
	CE ≥ Vcc - 0.2V; Vcc = MAX VIN ≥ Vcc - 0.2V or VIN ≤ Vss + 0.2V; f = 0	ISB2	1.0	1.0	1.0	1.0	1.0	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	5	pF	4
Output Capacitance	Vcc = 3.3V	Co	7	pF	4

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 5, 13) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 3.3V ±0.3V)

DESCRIPTION			12		15	-1	20	-1	25	-:	35		
DESCIII HON	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle													
READ cycle time	tRC	12		15		20		25		35		ns	
Address access time	^t AA		12		15		20		25		35	ns	
Chip Enable access time	^t ACE		12		15		20		25		35	ns	
Output hold from address change	^t OH	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		7		8		10		15	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		12		15		20	-	25		35	ns	4
Output Enable access time	^t AOE		6		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		5		6		7		10		12	ns	6
WRITE Cycle			•					••••••					
WRITE cycle time	tWC	12		15		20		25		35		ns	
Chip Enable to end of write	^t CW	8		10		12		15		20		ns	
Address valid to end of write	tAW	8		10		12		15		20		ns	
Address setup time	^t AS	0		0		0		0	1	0	1.	ns	
Address hold from end of write	^t AH	0		0		0	1	0	1	0		ns	
WRITE pulse width	^t WP1	8	-	10		12		15	1	20	1	ns	
WRITE pulse width	^t WP2	11		12		15		15		20		ns	
Data setup time	^t DS	6		7		8		10		15	1.14	ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		5		5		5		ns	7
Write Enable to output in High-Z	^t HZWE		5		6		8		10		15	ns	6,7

30pF

MT5LC512K8D4 **REVOLUTIONARY PINOUT 512K x 8 SRAM**

= 50Ω

0

353

50Ω

+3.3V 319

5 pF

V_⊤ = 1.5V Fig. 1 OUTPUT LOAD

EQUIVALENT

AC TEST CONDITIONS

Input pulse levels Vss to 3.0	VC
Input rise and fall times 3	ns
Input timing reference levels 1.8	5V
Output reference levels 1.5	5V
Output load See Figures 1 and	12

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH \leq +6.0V for t \leq tRC/2 Undershoot: VIL \geq -2.0V for t \leq tRC/2 Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \leq 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured $\pm 200mV$ from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.

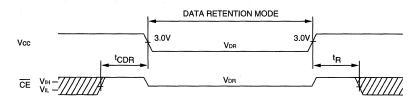
9. Device is continuously selected. All chip enables and output enables are held in their active state.

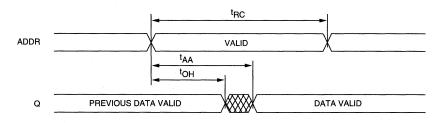
Fig. 2 OUTPUT LOAD EQUIVALENT

- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Micron does not warrant functionality nor reliability of any product in which the junction temperature exceeds 150°C. Care should be taken to limit power to acceptable levels.
- 14. The test function pin (TF) can be treated as a no connect pin. However, it is recommended that the pin be grounded.
- 15. The thermal impedance numbers assume the device is socketed on a PC board and air flow is zero.

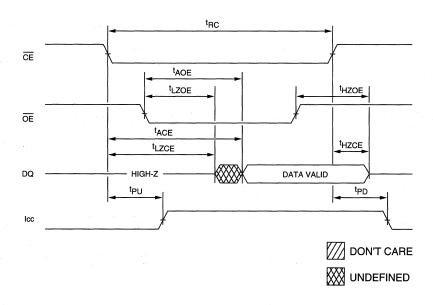
DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Vcc for Retention Data		VDR	2		V		
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{CE} \geq (Vcc~-0.2V) \\ ViN \geq (Vcc~-0.2V) \\ or \leq 0.2V \\ Vcc~= 2V \end{array}$	ICCDR		700	μA		
Chip Deselect to Data Retention Time		^t CDR	0		ns	4	
Operation Recovery Time		^t R	^t RC		ns	4, 11	



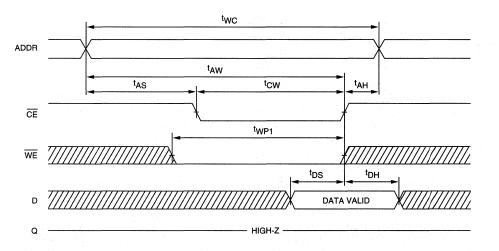

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

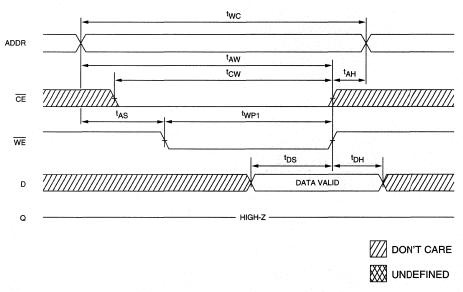
ADVANCE


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

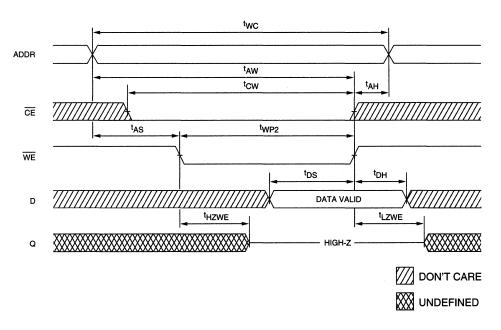

READ CYCLE NO. 27, 8, 10




MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

WRITE CYCLE NO. 1¹²

WRITE CYCLE NO. 2¹² (Write Enable Controlled)


NOTE: Output enable (OE) is inactive (HIGH).

ADVANCE

MT5LC512K8D4 REVOLUTIONARY PINOUT 512K x 8 SRAM

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT5LC512K8D4 Rev. 11/94

PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

SRAM

64K x 16 SRAM

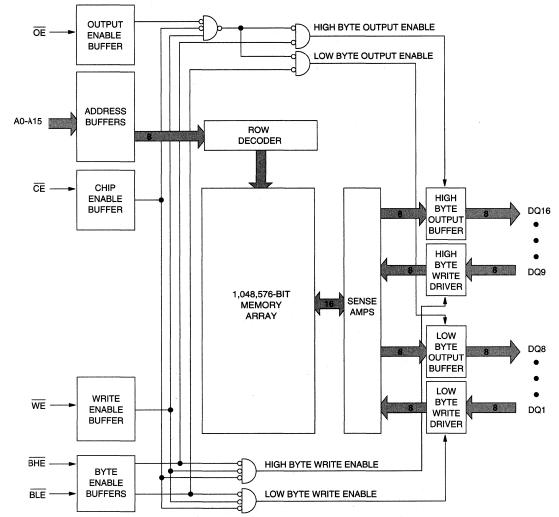
REVOLUTIONARY PINOUT 3.3V OPERATION WITH OUTPUT ENABLE

FEATURES	
All I/O pins are 5V tolerant	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
• Fast access times: 12*, 15, 20 and 25ns	PIN ASSIGNMENT (Top View)
 High-performance, low-power, CMOS double-met 	tal
process	44-Pin SOJ
 Multiple center power and ground pins for improv 	(SD-7)
noise immunity	
 Single +3.3V ±0.3V power supply 	A4 [1 4] A5
Individual byte controls for both READ and WRIT	A4 U 1 44 U A5 FE A3 U 2 43 U A6
cycles	A2 3 42 A7
All inputs and outputs are TTL-compatible	
• Fast OE access time: 8, 10 and 12ns	AO [5 40] BHE
Complies to JEDEC low-voltage TTL standards	CE (6 39) BLE
Complies to JEDEC tow-voltage 11E standards	DQ1 [7 33] DQ16
OPTIONS MARKING	DQ2 [8 37] DQ15
	DQ3 [] 9 36 [] DQ14
Timing	DQ4 [] 10 35 [] DQ13
12ns access -12*	Vcc [] 11 34 [] Vss
15ns access -15	Vss [] 12 33 [] Vcc DQ5 [] 13 22 [] DQ12
20ns access -20	DQ6 [14 31] DQ11
25ns access -25	DQ7 [] 15 30]] DQ10
Packages	
	WE [17 28] NC
44-pin SOJ (400 mil) DJ	A15 [] 18 27 [] A8
2V data retention (optional) L	DQ8 16 28 DQ9 WE 17 28 NC A15 18 27 A8 A14 19 28 A9 A13 20 25 A10 A12 21 21 21
그는 회사는 사람들을 수많이 많이 많다. 그는 것은 것은 것은 것이 없는 것이 않은 것이 없는 것이 없 않 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않이 않	A13 [20 25] A10
Temperature	
Commercial (0°C to +70°C) None	NC [22 23] NC
Part Number Example: MT5LC64K16D4DJ-20 L	
Consult the factory for availability.	
GENERAL DESCRIPTION	
The MT5LC64K16D4 is organized as a 65,536 x 16 SR	KAM

The MT5LC64K16D4 is organized as a 65,536 x 16 SRAM using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT5LC64K16D4 SRAM integrates a $64K \times 16$ SRAM core with peripheral circuitry consisting of active LOW chip enable, separate upper and lower byte enables and a fast output enable.

Separate byte enable controls (BLE and BHE) allow individual bytes to be written and read. BLE controls DQ1-DQ8, the lower bits. BHE controls DQ9-DQ16, the upper bits.


All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

FUNCTIONAL BLOCK DIAGRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

PIN DESCRIPTIONS

SOJ and TSOP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
5, 4, 3, 2, 1, 44, 43, 42, 27, 26, 25, 24, 21, 20, 19, 18	A0-A15	Input	Address Inputs: These inputs determine which cell is accessed.
17	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle
39, 40	BLE, BHE	Input	Byte Enables: These active LOW inputs allow individual bytes to be written or read. When BLE is LOW, data is written or read to the lower byte, DQ1-DQ8. When BHE is LOW, data is written or read to the upper byte, DQ9-DQ16.
6	CE	Input	Chip Enable: This signal is used to enable the device. When \overline{CE} is HIGH, the chip automatically goes into standby power mode.
41	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
22, 23, 28	NC	-	No Connect: These signals are not internally connected.
7, 8, 9, 10, 13, 14, 15, 16, 29, 30, 31, 32, 35, 36, 37, 38	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16.
11, 33	Vcc	Supply	Power Supply: +3.3V ±0.3V
12, 34	Vss	Supply	Ground: GND

TRUTH TABLE

MODE	CE	ŌE	WE	BLE	BHE	DQ1-DQ8	DQ9-DQ16	POWER
STANDBY	н	Х	Х	X	X	HIGH-Z	HIGH-Z	STANDBY
LOW BYTE READ (DQ1-DQ8)	L	L	Н	L	Н	D	HIGH-Z	ACTIVE
HIGH BYTE READ (DQ9-DQ16)	L	L	Н	н	L	HIGH-Z	D	ACTIVE
WORD READ (DQ1-DQ16)	L	L	Н	L	L	D	D	ACTIVE
WORD WRITE (DQ1-DQ16)	L	x	L	L	L	Q	Q	ACTIVE
LOW BYTE WRITE (DQ1-DQ8)	L	х	L	L	Н	Q	HIGH-Z	ACTIVE
HIGH BYTE WRITE (DQ9-DQ16)	L	х	L	Н	L	HIGH-Z	Q	ACTIVE
	L	H	Н	Х	Х	HIGH-Z	HIGH-Z	ACTIVE
OUTPUT DISABLE	L	X	X	H	H	HIGH-Z	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss.	0.5V to 4.6V
VIN	0.5V to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

3.3V ASYNCHRONOUS SRAM

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Ин	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ Vcc	lLi –	-1	1	μA	
Output Leakage Current	Output(s) disabled, 0V ≤ Vouт ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	3.0	3.6	v	

					M/	٩X			
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-12	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	165	280	230	180	160	mA	3, 15
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	32	60	50	40	35	mA	15
	$\label{eq:cell} \begin{split} \overline{CE} \geq Vcc \mbox{ -0.2V}; \ Vcc = MAX \\ V_{IN} \leq Vss \mbox{ +0.2V} \ or \\ V_{IN} \geq Vcc \mbox{ -0.2V}; \ f = 0 \end{split}$	ISB2	0.5	5	5	5	5	mA	15

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	5	pF	4
Input/Output Capacitance (D/Q)	Vcc = 3.3V	Cı/o	5	pF	4

PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$)

		-	·12		15	-:	20	-1	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			A	And the second second second					-		
READ cycle time	tRC	12		15		20		25	1	ns	
Address access time	^t AA		12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20		25	ns	
Output hold from address change	tOH	3		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	4		5		5		5		ns	6, 7
Chip disable to output in High-Z	^t HZCE		6		6		8		8	ns	6, 7
Output Enable access time	^t AOE		6		8		10		12	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		ns	6, 7
Output disable to output in High-Z	^t HZOE		6		6		8		8	ns	6, 7
Byte Enable access time	^t ABE		6		8		10		12	ns	
Byte Enable to output in Low-Z	^t LZBE	0		0		0		0		ns	6, 7
Byte disable to output in High-Z	^t HZBE		6		6		8		8	ns	6, 7
WRITE Cycle											
WRITE cycle time	tWC	12		15		20		25	[ns	
Chip Enable to end of write	tCW	10		12		13		15		ns	
Address valid to end of write	^t AW	9		10		12		14		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	tAH	0		0		0		0		ns	
Write pulse width	tWP	9		10		12		14		ns	
Data setup time	^t DS	6		8		10		10		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		3		3		ns	6, 7
Write Enable to output in High-Z	^t HZWE		6		6		8		8	ns	6, 7
Byte Enable to end of write	^t BW	9		10	· · · · ·	12		14		ns	

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

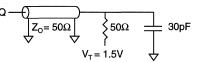
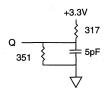



Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

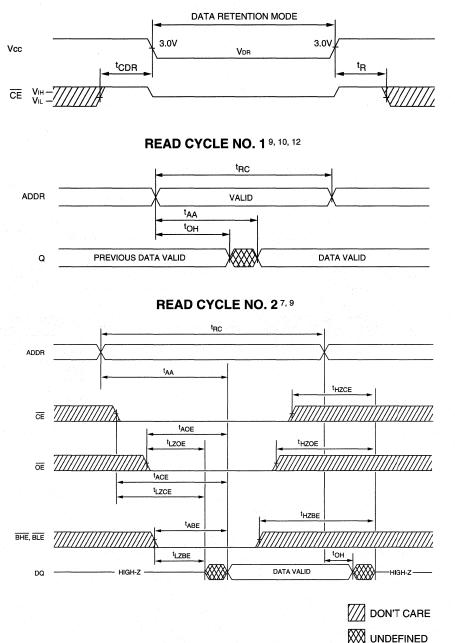
- 1. All voltages referenced to Vss (GND).
- Overshoot: VIH ≤ +6.0V for t ≤ ^tRC/2 Undershoot: VIL ≥ -2.0V for t ≤ ^tRC/2 Power-up: VIH ≤ +6.0V and Vcc ≤ 3.1V for t ≤ 200msec.
- 3. Icc is dependent on output loading and cycle rates.

The specified value applies with the outputs unloaded and $f = \frac{1}{{}^{t}RC (MIN)}$ Hz.

- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.

- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- Any combination of write enable, chip enable and byte enable can initiate and terminate a WRITE cycle.
- 9. \overline{WE} is HIGH for READ cycle.
- 10. Device is continuously selected. Chip enable is held in its active state.
- 11. Address valid prior to, or coincident with, the latest occurring chip enable.
- 12. BHE and BLE are held in their active state (LOW).
- 13. The output will be in the High-Z state if output enable is HIGH.
- 14. Typical currents are measured at 25°C.
- 15. Typical values are measured at 3.3V, 25°C and 15ns cycle time.

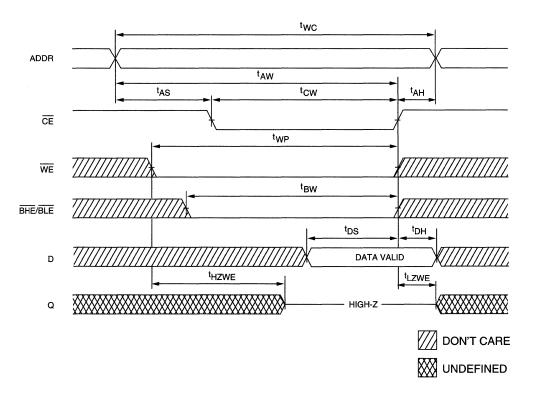
DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$ $or \le 0.2V$	Vcc = 2V	ICCDR		70	300	μA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

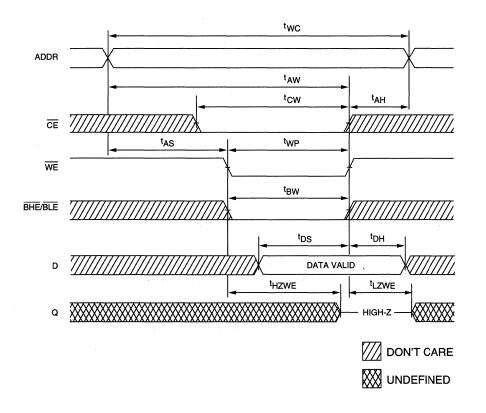
LOW Vcc DATA RETENTION WAVEFORM


3.3V ASYNCHRONOUS SRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

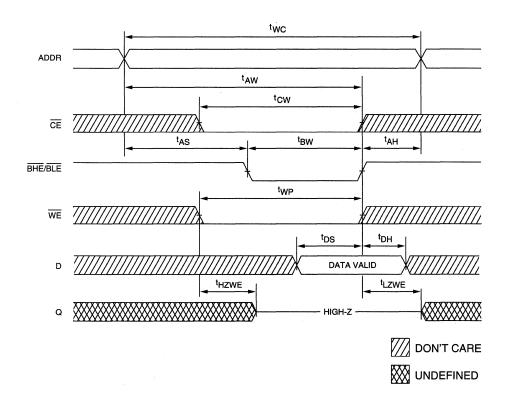
WRITE CYCLE NO. 1^{8, 13} Chip Enable Controlled



PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

WRITE CYCLE NO. 2^{8, 13} Write Enable Controlled



PRELIMINARY

MT5LC64K16D4 REVOLUTIONARY PINOUT 64K x 16 SRAM

WRITE CYCLE NO. 3^{8, 13} Byte Enable Controlled

ADVANCE

3.3V ASYNCHRONOUS SRAN

MT5LC256K16D4 256K x 16 SRAM

SRAM

256K x 16 SRAM

3.3V OPERATION WITH OUTPUT ENABLE

FEATURES

- All I/O pins are 5V tolerant
- High speed: 12, 15, 20, 25 and 35ns
- Multiple center power and ground pins for improved noise immunity
- Single +3.3V ±0.3V power supply
- Easy memory expansion with chip enable(CE) and output enable (OE) options
- All inputs and outputs are TTL-compatible
- Fast OE access time: 6, 8, 10, 12 and 15ns
- High-performance, low-power, CMOS double-metal process
- Complies to JEDEC low-voltage TTL standards

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
35ns access	-35
Packages	
Plastic SOJ (400 mil)	DJ
• 2V data retention (optional)	L
• Temperature Commercial (0°C to +70°C)	None

• Part number example: MT5LC256K16D4DJ-20 L

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

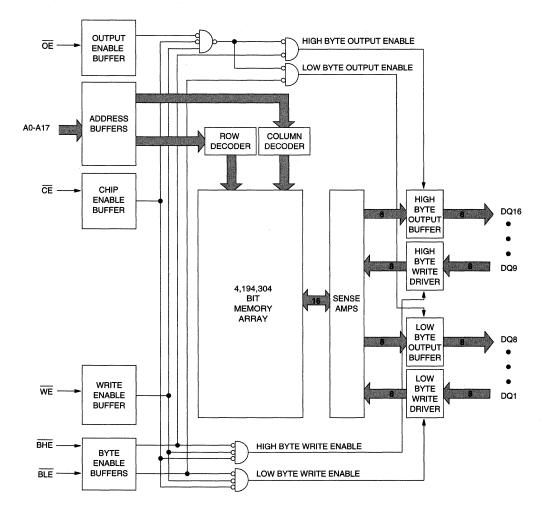
GENERAL DESCRIPTION

The MT5LC256K16D4 is organized as a $262,144 \times 16$ using a four-transistor memory cell with a high-speed, low-power CMOS process. Micron 4 Meg SRAMs are fabricated using a double-layer metal, triple-layer polysilicon technology.

This device offers multiple center power and ground pins for improved performance. For flexibility in high-speed memory applications, Micron offers \overline{CE} and \overline{OE} capabilities. These enhancements can place the outputs in High-Z for additional flexibility in system design.

54-Pi	n SOJ* (S	D-8)	
		54 A17 53 A16	
A1 🛛 3		52 🗍 A15	
A2 4 A3 5		51 A14 50 NC	
		49 DQ8	
DQ10 🗍 7		48 🗍 DQ7	
Vcc 🛛 8		47 🗌 Vcc	
Vss 9 DQ11 10		46 🗍 Vss 45 🗍 DQ6	
DQ12 11		44 T DQ5	
BHE 12		43 T BLE	
CE [13		42 🗍 OE	
Vcc [] 14		41 🗍 Vss	
WE 15 DQ13 16		40 🗌 NC 39 🗍 DQ4	
DQ13 110		38 DQ3	
Vss 18		37 🗍 Vss	
Vcc 🗌 19		36 🗋 Vcc	
DQ15 🗍 20 DQ16 🗍 21		35 🗋 DQ2 34 🗍 DQ1	
DQ16 21 NC 22		34 DQ1 33 A13	
A4 23		32 T A12	
A5 🗍 24		31 🗍 A11	
A6 🗌 25		30 🗍 A10	
A7 🗌 26 A8 🗌 27		29 A9 28 TF**	

Writing to these devices is accomplished when write enable (WE) and \overline{CE} inputs are both LOW and the appropriate byte enables (BHE and BLE) are in their proper states. Reading is accomplished when WE remains HIGH and \overline{CE} and \overline{OE} go LOW and the appropriate byte enables (BHE and BLE) are in their proper states. The device offers a reducedpower standby mode when disabled. This allows system designers to meet low standby power requirements.


Separate byte enable controls (BLE and BHE) allow individual bytes to be written and read. BLE controls the lower bits (DQ1-DQ8). BHE controls the upper bits (DQ9-DQ16).

All devices operate from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible. These 3.3V devices are ideal for 3.3V-only and mixed 3.3V and 5V systems. All input pins and bidirectional pins are 5Vtolerant, meaning that 5V devices can directly drive these devices without increased current or any damaging effects. Refer to Technical Note TN-05-16 for further information.

ADVANCE

MT5LC256K16D4 256K x 16 SRAM

FUNCTIONAL BLOCK DIAGRAM

IRON

PIN DESCRIPTIONS

:RON

SOJ and TSOP PIN NUMBERS	SYMBOL	ТҮРЕ	DESCRIPTION
2-5, 23-27, 29-33, 51-54	A0-A17	Input	Address Inputs: These inputs determine which cell is accessed.
15	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle
12, 43	BHE, BLE	Input	Byte Enables: These active LOW inputs allow individual bytes to be written or read. When BLE is LOW, data is written to or read from the lower byte, D1-D8. When BHE is LOW, data is written to or read from the upper byte, D9-D16.
13	CE	Input	Chip Enable: This signal is used to enable the device. When \overline{CE} is HIGH, the chip goes into standby power mode.
42	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
28	TF	Test Pin	Test Function: This pin can be treated as a No Connect. However, it is recommended that this pin be connected to GND.
1, 22, 40, 50	NC	-	No Connect: These signals are not internally connected.
6, 7, 10, 11, 16, 17, 20, 21, 34, 35, 38, 39, 44, 45, 48, 49	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
8, 14, 19, 36, 47	Vcc	Supply	Power Supply: +3.3V ±0.3V
9, 18, 37, 41, 46	Vss	Supply	Ground: GND

TRUTH TABLE

MODE	CE	ŌE	WE	BLE	BHE	DQ1-DQ8	DQ9-DQ16	POWER
STANDBY	Н	Х	Х	Х	Х	HIGH-Z	HIGH-Z	STANDBY
LOW BYTE READ (DQ1-DQ8)	Ľ	Ľ	Н	L	н	D	HIGH-Z	ACTIVE
HIGH BYTE READ (DQ9-DQ16)	L	L	Н	H	L	HIGH-Z	D	ACTIVE
WORD READ (DQ1-DQ16)	L	L	H	L	L	D	D	ACTIVE
WORD WRITE (DQ1-DQ16)	L	X	L	L	L	Q	Q	ACTIVE
LOW BYTE WRITE (DQ1-DQ8)	L	X	L	L	н	Q	HIGH-Z	ACTIVE
HIGH BYTE WRITE (DQ9-DQ16)	L	X	L	Н	L	HIGH-Z	Q	ACTIVE
OUTPUT DISABLE	L	н	н	Х	X	HIGH-Z	HIGH-Z	ACTIVE
·	L	Х	Х	Н	н	HIGH -Z	HIGH-Z	ACTIVE

THERMAL IMPEDANCE (estimated)

PACKAGE	NUMBER OF PINS	θ _{JC} (°C/W)	θ _{JA} (°C/W)	NOTES
SOJ	54	15	55	15, 17
TSOP	54	5	65	15, 17

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	0.5 to +6.0V
Storage Temperature (plastic)	55°C to +150°C
Short Circuit Output Current	50mA
Junction Temperature**	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See the Application Information section at the end of this data sheet for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 0.3V)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.2	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μΑ	
Output Leakage CurrentOutput(s) disabled $0V \le Vout \le Vcc$		ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	<u>ः</u> ्1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	់ ាំ។
Supply Voltage		Vcc	3.0	3.6	V	1

					MAX]	andar an an an Shart An An
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{\text{IL}}; V_{\text{CC}} = MAX$ f = MAX = 1/ ^t RC outputs open	lcc	200	180	170	160	150	mA	3
Power Supply Current: Standby	$\overline{CE} \ge V_{IH}$; $V_{CC} = MAX$ f = MAX = 1/ ^t RC outputs open	ISB1	80	75	70	70	65	mA	
	CE ≥ Vcc -0.2V; Vcc = MAX ViN ≤ Vss +0.2V or ViN ≥ Vcc -0.2V; f = 0	ISB2	1.0	1.0	1.0	1.0	1.0	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	5	pF	4
Output Capacitance	Vcc = 3.3V	Со	7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 5, 15) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 3.3V ±0.3V)

DESCRIPTION		-1	2	-1	5	-2	20	-:	25	-:	85		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle													
READ cycle time	tRC	12		15		20		25		35		ns	
Address access time	tAA		12		15		20		25		35	ns	
Chip Enable access time	^t ACE		12		15		20		25		35	ns	
Output hold from address change	^t OH	3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		6		7		8		10		15	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	4
Chip disable to power-down time	^t PD		12		15		20		25		35	ns	4
Output Enable access time	^t AOE		6		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output disable to output in High-Z	^t HZOE		5		6		7		10		12	ns	6
Byte Enable access time	^t ABE		7		8		10		12		15	ns	
Byte Enable to output in Low-Z	^t LZBE	0		0		0		0		0		ns	
Byte Enable to output in High-Z	^t HZBE		7		8		8		8		10	ns	
WRITE Cycle													
WRITE cycle time	tWC	12		15		20		25		35		ns	
Chip Enable to end of WRITE	^t CW	8		10		12		15		20		ns	
Address valid to end of WRITE	^t AW	8		10		12		15	1	20		ns	
Address setup time	tAS	0		0		0		0	I	0		ns	
Address hold from end of WRITE	tAH	0		0		0		0		0		ns	
WRITE pulse width	^t WP1	8		10		12		15		20		ns	
WRITE pulse width	tWP2	11		12		15		15		20		ns	
Data setup time	^t DS	6		7		8		10		15		ns	
Data hold time	^t DH	0		0		0		0		0	1.	ns	
Write disable to output in Low-Z	^t LZWE	3		3		5		5		5		ns	7
Write Enable to output in High-Z	^t HZWE		5		6		8		10		15	ns	6, 7
Byte Enable to end of WRITE	tBW	8	1	9		12		14		18		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

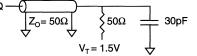
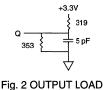
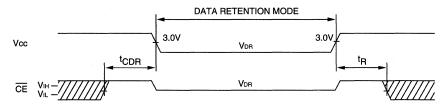



Fig. 1 OUTPUT LOAD EQUIVALENT

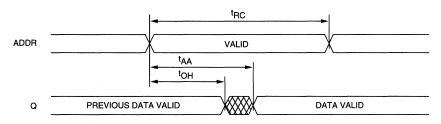
EQUIVALENT

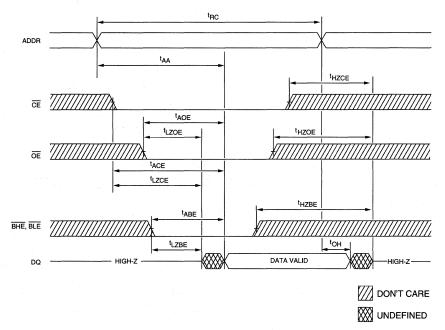
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}RC/2$ Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}RC/2$ Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- ^tHZCE, ^tHZOE, ^tHZBE and ^tHZWE are specified with C_L = 5pF as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enables are held in their active state.

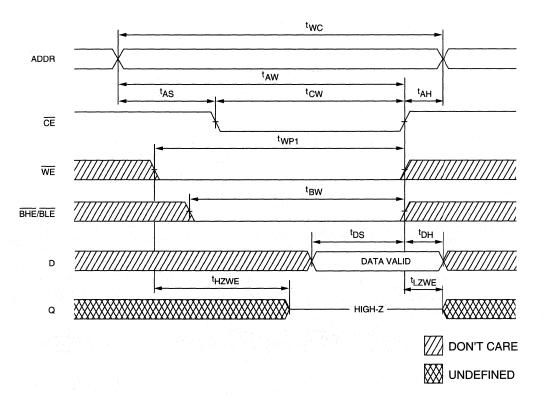

- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ${}^{t}RC = READ$ cycle time.
- 12. Chip enable, write enable and byte enables can initiate and terminate a WRITE cycle.
- 13. BLE and BLH determine what outputs are active during the READ cycle.
- 14. The output will be in a High-Z state if \overline{OE} is HIGH.
- 15. Micron does not warrant functionality nor reliability of any product in which the junction temperature exceeds 150°C. Care should be taken to limit power to acceptable levels.
- 16. The test function pin (TF) can be treated as a no connect pin. However, it is recommended that the pin be grounded.
- 17. The thermal impedance numbers assume the device is socketed on a PC board and air flow is zero.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

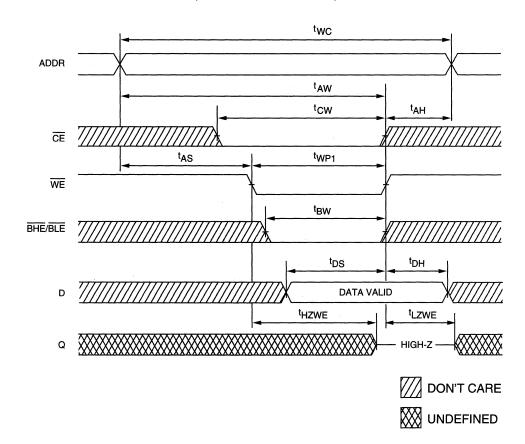

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2		V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $ViN \ge (Vcc - 0.2V)$ $or \le 0.2V$ $Vcc = 2V$	ICCDR		700	μA	
Chip Deselect to Data Retention Time		^t CDR	0		ns	4
Operation Recovery Time		^t R	^t RC		ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9,13}



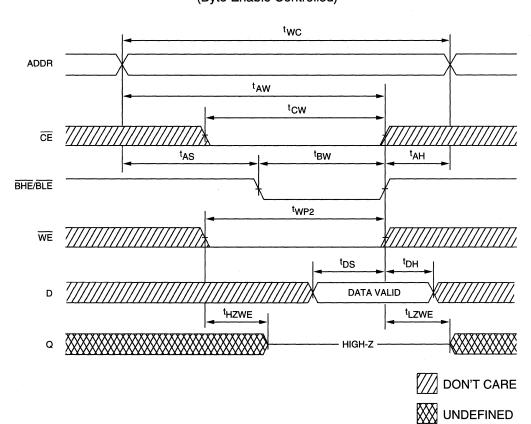
READ CYCLE NO. 27, 8, 10


WRITE CYCLE NO. 1 ^{12,14} (Chip Enable Controlled)

LHON

WRITE CYCLE NO. 2^{7, 12, 14} (Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).


MT5LC256K16D4 Rev. 11/94

ADVANCE

MT5LC256K16D4 256K x 16 SRAM

3.3V ASYNCHRONOUS SRAM

NOTE: Output enable (OE) is active (LOW).

APPLICATION INFORMATION

THERMAL CONSIDERATIONS

This section describes how to determine the junction temperature during operating conditions. It is essential that the maximum junction temperature of the 4 Meg SRAM is not exceeded. If this temperature is exceeded it is necessary to add external cooling such as forced airflow or change the operating conditions. The maximum junction temperature for Micron SRAMs is 150°C. The limiting temperature factor is not the SRAM but the mold compound which prevents reliable operating temperatures significantly about 150°C. However, it is advisable to run the part as cool as possible since reliability (FIT rates) are exponentially dependent upon junction temperature.

The calculation of the actual junction temperature begins with a power calculation followed by a junction temperature calculation. Equations 1 and 2 below show how T_j is determined using the ambient temperature, thermal resistance and operating power. If an airflow is introduced into a system then Equation 2 should be used with an airflow thermal multiplier. Specific thermal resistances are given in Micron technical note "SRAM Thermal Design Considerations" (TN-05-14) and in individual data sheets.

$$T_{j} = T_{A} + P * \theta_{JA}$$
(1)

$$T_{j} = T_{A} + P * \theta_{JA} * \theta_{M}$$
(2)

- T_j = Junction temperature of the active portion of the silicon die (°C)
- T_A = Ambient air temperature (°C) at which the device is operated
- P = Average power dissipation of the device (W)

 θ_{IA} = Junction to ambient thermal resistance (°C/W)

 θ_{M}^{i} = Airflow multiplier. This value changes for different values of airflow over the part (fpm).

To solve the above equations the average operating power must be calculated. Total power has three separate components (P_1 , P_2 and P_3). P_1 is the operating power dissipated by the chip, P_2 is the AC output power due to the capacitive load and P_3 is the DC output power due to TTL DC load current (P_3 is usually negligible). For this example we have chosen P_2 such that outputs are switching from a logic LOW state to a logic HIGH state which gives the worst case output AC current. A complete description of these equations and their derivation is given in Micron technical note (TN-58-02) "Design Tips: 32K x 36 Synchronous SRAM."

$$P_1 = Vcc Icc$$

$$P_{2} = \frac{C_{L} (V_{CC} [V_{OH} - V_{OL}] - 0.5 [V_{OH}^{2} - V_{OL}^{2}]) N_{S}}{\overline{T}}$$

$$P_3 = (Vcc - V_{OH}) I_O N_H + V_{OL} I_I N_L$$

Vcc Supply voltage = Icc = Supply current Capacitive output loading C_L = т Clock period = VOH = Output high voltage V_{OL} Output low voltage = Output current on DQ lines which are high IO = Input current on DO lines which are low I = $\tilde{N}_{\rm H}$ Number of DQ lines which are high = N_L = Number of DQ lines which are low.

Table 1 EFFECTS OF AIRFLOW ON 4 MEG SRAM SOJ PACKAGES

Package	Air Flow	θ _M Multiplier
PSOJ	200 fpm	0.7 - 0.75
PSOJ	500 fpm	0.55 - 0.65

ADDITIONAL INFORMATION

For more information on thermal considerations see Micron's technical notes, "SRAM Thermal Design Considerations" and "Design Tips: 32K x 36 Synchronous SRAM." These notes explain how to calculate thermal resistance and how to improve thermal performance in much greater detail. Also available is Micron's *Quality and Reliability Handbook*, which gives an explanation of how thermal impedances are calculated.

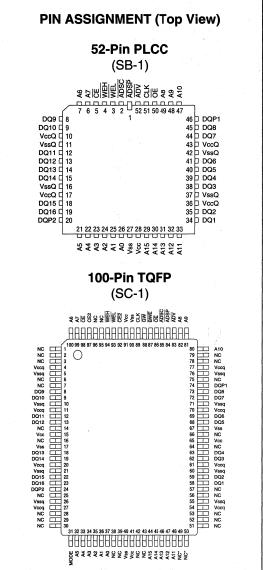
5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7 -
SALES INFORMATION	8

SYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	mory Supply Control		Part	Access	Access Cycle		Package and Number of Pins			
Configuration	Voltage	Functions	Number	Time (ns)	Time (ns)	PLCC	TQFP	DIE	Page	
64K x 18	3.3V	SyncBurst™, Interleaved, Linear	MT58LC64K18B2	9,10,11,12,14	15,15,15,20,20	52	100	CD1/CD2	3-1	
64K x 18	3.3V	SyncBurst, Linear	MT58LC64K18M1	9,10,11,12,14	15,15,15,20,20	52	100	CD1/CD2	3-1	
64K x 18	3.3V	SyncBurst, Interleaved, Linear	MT58LC64K18C4	4.5,5,6,7,8	8,10,12,15,20	52	100	CD1/CD2	3-17	
64K x 18	3.3V	SyncBurst, Linear	MT58LC64K18A6	4.5,5,6,7,8	8,10,12,15,20	52	100	CD1/CD2	3-17	
32K x 32	3.3V	SyncBurst	MT58LC32K32B2	9,10,11,12,14	15,15,15,20,20	-	100	CD1/CD2	3-33	
32K x 32	3.3V	SyncBurst, Interleaved Burst, Pipelined	MT58LC32K32C4	4.5,5,6,7,8	8,10,12,15,20	-	100	CD1/CD2	3-49	
32K x 36	3.3V	SyncBurst, Interleaved Burst	MT58LC32K36B2	9,10,11,12,14	15,15,15,20,20	-	100	CD1/CD2	3-65	
32K x 36	3.3V	SyncBurst, Interleaved Burst, Pipelined	MT58LC32K36C4	4.5,5,6,7,8	8,10,12,15,20	-	100	CD1/CD2	3-81	

NOTE: 1. Many Micron components are available in bare die form. Contact Micron Semiconductor, Inc., for more information.

PRELIMINARY



MT58LC64K18B2/M1 64K x 18 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

64K x 18 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS, BURST COUNTER

Pin 49 is reserved for A16, pin 50 for A17

FEATURES

- Fast access times: 9, 10, 11, 12 and 14ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant I/O
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data and control
- Internally self-timed WRITE cycle
- Burst control pins (interleaved or linear burst sequence)
- Automatic power-down for portable applications
- High density, high speed packages
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available

OPTIONS	MARKING
Timing	
9ns access/15ns cycle	- 9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
14ns access/20ns cycle	-14
Packages	
52-pin PLCC	EJ
100-pin TQFP	LG
Low power	Р
• 2V data retention, low power	L

Part Number Examples

BASE PART NO.	VERSION SUFFIX	PACKAGE	BURST SEQUENCE
MT58LC64K18	M1	EJ	Linear
MT58LC64K18	B2	EJ	Interleaved
MT58LC64K18	B2	LG	Interleaved (Mode = NC) Linear (Mode = GND)

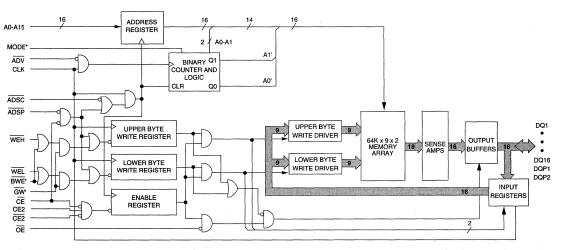
GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

MT58LC64K18B2/M1 64K x 18 SYNCBURST[™] SRAM

GENERAL DESCRIPTION (continued)

The MT58LC64K18B2/M1 SRAM integrates a 64K x 18 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (\overline{CE}), two additional chip enables for easy depth expansion ($\overline{CE2}$, CE2), burst control inputs (ADSC, ADSP, ADV), byte write enables (WEH, WEL, BWE), and global write (\overline{GW}).


Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to two bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor $\overline{(ADSP)}$ or address status controller $\overline{(ADSC)}$ input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. WEL controls DQ1-DQ8 and DQP1. WEH controls DQ9-DQ16 and DQP2, conditioned by BWE being LOW. GW LOW causes all bytes to be written.

The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The MT58LC64K18B2/M1 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V-tolerant. The device is ideally suited for 486, Pentium™, 680x0 and PowerPC[™] systems and those systems which benefit from a wide synchronous data bus.

FUNCTIONAL BLOCK DIAGRAM

*LG package only

NOTE: The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

MT58LC64K18B2/M1 64K x 18 SYNCBURST[™] SRAM

BURST ADDRESS TABLE (MODE = NC or MT58LC64K18B2 EJ device)

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)		
XX00	XX01	XX10	XX11		
XX01	XX00	XX11	XX10		
XX10	XX11	XX00	XX01		
XX11	XX10	XX01	XX00		

BURST ADDRESS TABLE (MODE = GND or MT58LC64K18M1 EJ device)

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)			
XX00	XX01	XX10	XX11			
XX01	XX10	XX11	XX00			
XX10	XX11	XX00	XX01			
XX11	XX00	XX01	XX10			

PIN DESCRIPTIONS

PLCC PINS	TQFP PINS	SYMBOL	TYPE	DESCRIPTION
26, 25, 24, 23, 22, 21, 7, 6, 49, 48, 47, 33, 32, 31, 30, 29	37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 80, 48, 47, 46, 45, 44	A0-A15	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
4, 3	94, 93	WEH, WEL	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. WEL controls DQ1-DQ8 and DQP1. WEH controls DQ9-DQ16 and DQP2. Data I/O are tristated if either of these inputs are LOW.
n/a	87	BWE	Input	Byte Write Enable: This active LOW input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
n/a	88	GW	Input	Global Write: This active LOW input allows a full 18-bit WRITE to occur independent of the BWE and WEn lines and must meet the setup and hold times around the rising edge of CLK.
51	89	CLK	Input	Clock: This signal registers the address, data, chip enable, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
5	98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
n/a	92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded.

SYNCHRONOUS SRAM

PIN DESCRIPTIONS (continued)

97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to
86			enable the device. This input is sampled only when a new external address is loaded.
7	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and $\overline{\text{ADSC}}$ but dependent upon $\overline{\text{CE}}$ being LOW.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if \overline{CE} is LOW. \overline{ADSC} is also used to place the chip into power-down state when \overline{CE} is HIGH.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23	DQ1-DQ16	Input/ Output	SRAM Data I/O: Low Byte is DQ1-DQ8. High Byte is DQ9- DQ16. Input data must meet setup and hold times around the rising edge of CLK.
74, 24	DQP1, DQP2	Input/ Output	Parity Data I/O: Low Byte Parity is DQP1. High Byte Parity is DQP2.
15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
17, 40, 67, 90	Vss	Supply	Ground: GND
4, 11, 20, 28, 54, 77, 61, 70	Vccq	Supply	Isolated Output Buffer Supply: +3.3V \pm 5%
6, 10, 21, 26, 60, 55, 71, 76	Vssq	Supply	Isolated Output Buffer Ground: GND
1, 2, 3, 6, 7, 14, 16, 25, 28, 29, 30, 38, 39, 42, 43,49, 50, 51, 52, 53, 56, 57, 64, 66, 75,	NC	-	No Connect: These signals are not internally connected. These signals may be connected to ground to improve package heat dissipation.
	85 31 58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23 74, 24 15, 41, 65, 91 17, 40, 67, 90 4, 11, 20, 28, 54, 77, 61, 70 6, 10, 21, 26, 60, 55, 71, 76 1, 2, 3, 6, 7, 14, 16, 25, 28, 29, 30, 38, 39, 42, 43,49, 50, 51, 52, 53, 56,	85 ADSC 31 MODE 58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23 DQ1-DQ16 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23 DQP1, DQP2 15, 41, 65, 91 Vcc 17, 40, 67, 90 Vss 4, 11, 20, 28, 54, 77, 61, 70 Vccq 6, 10, 21, 26, 60, 55, 71, 76 Vssq 1, 2, 3, 6, 7, 14, 16, 25, 28, 29, 30, 38, 39, 42, 43, 49, 50, 51, 52, 53, 56, 57, 64, 66, 75, NC	85 ADSC Input 31 MODE Input 31 MODE Input 58, 59, 62, 63, 8, 9, 12, 13, 18, 19, 22, 23 DQ1-DQ16 Input/ Output 74, 24 DQP1, DQP2 Input/ Output 15, 41, 65, 91 Vcc Supply 17, 40, 67, 90 Vss Supply 6, 10, 21, 26, 00, 55, 71, 76 Vssq Supply 1, 2, 3, 6, 7, 14, 16, 25, 28, 29, 30, 38, 39, 42, 43, 49, 50, 51, 52, 53, 56, 57, 64, 66, 75, NC -

MT58LC64K18B2/M1 64K x 18 SYNCBURST[™] SRAM

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	ŌĒ	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	X	X	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	X	X	X	X	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	н	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	н	Х	н	L	X / 1	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	н	L	Х	Ŷ	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	Н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	н	н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	Н	L	Х	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	X	X	н	Н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	X	X	X	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	X	Н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	X	Х	X	н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	н	Н	н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	X	X	н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	н	Н	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	Н	L	Х	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (WEH, WEL, and BWE) are LOW or GW is LOW. WRITE=H means all byte write enable signals and GW are HIGH.
 - 2. WEL enables writes to DQ1-DQ8 and DQP1. WEH enables writes to DQ9-DQ16 and DQP2.
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signal and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

		in the second second second second second second second second second second second second second second second		
Function	GW	BWE	WEL	WEH
READ	Н	н	Х	Х
READ	Н	L	Н	Н
WRITE LOW Byte	н	L.	L	Н
WRITE HIGH Byte	Н	L	н	L
WRITE all bytes	Н	L	L	L
WRITE all bytes	1. L .	Х	Х	X

PARTIAL TRUTH TABLE FOR WRITES

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vs	s0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V ±5% unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vouτ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1

							MAX				
DESCRIPTION	CONDITIONS	SYM	TYP	VER	-9	-10	-11	-12	-14	UNITS	NOTES
Power Supply Current: Operating	Device selected; all inputs $\leq V_{IL}$ or $\geq V_{IH}$; cycle time $\geq {}^{t}KC$ MIN; Vcc = MAX; outputs open	Icc	175	ALL	250	250	225	200	200	mA	3, 12 13
Power Supply Current: Idle	$\label{eq:constraint} \begin{array}{l} \hline Device \ selected; \ Vcc = MAX; \\ \hline ADSC, \ \overline{ADSP}, \ \overline{ADV}, \ \overline{GW}, \ \overline{BW} \geq V_{\text{IH}}; \\ all \ inputs \leq Vss \ +0.2 \ or \geq Vcc \ -0.2; \\ cycle \ time \geq {}^{t}KC \ MIN; \ outputs \ open \end{array}$	Icc1	28	ALL	45	45	45	40	40	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX;		0.5	STD	5	5	5	5	5	mA	10.10
	all inputs \leq Vss +0.2 or \geq Vcc -0.2; all inputs static; CLK frequency = 0	ISB2	0.2	P	2	2	2	2	2	mA	12, 13
TTL Standby	Device deselected; Vcc = MAX;	ISB3	15	STD	25	25	25	25	25	mA	10.10
	all inputs \leq VIL or \geq VIH; all inputs static; CLK frequency = 0		10	Р	18	18	18	18	18	mA	12, 13
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB4	30	ALL	50	50	50	45	45	mA	12, 13

CAPACITANCE

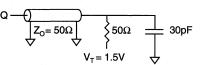
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	pF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

THERMAL CONSIDERATIONS

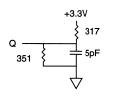
DESCRIPTION	CONDITIONS	SYMBOL	PLCC TYP	TQFP TYP	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still air, soldered on 4.25 x	θ _{JA}	45	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer PCB	θ _{JC}	15	1	°C/W	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 3.3V ±5%)

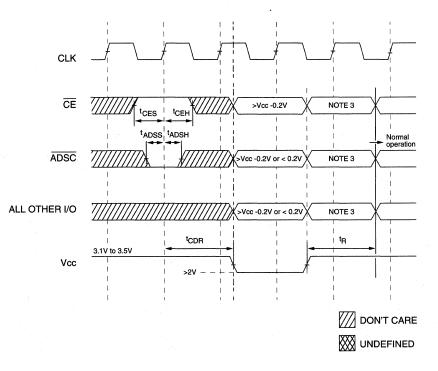

DESCRIPTION		-	9	-1	0	-1	1	-	12	-	14		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock		A											
Clock cycle time	^t KC	15		15		15		20		20		ns	
Clock HIGH time	^t KH	4		5		5		6		6		ns	
Clock LOW time	^t KL	4		5		5		6		6		ns	
Output Times													
Clock to output valid	^t KQ		9		10		11		12		14	ns	
Clock to output invalid	^t KQX	3		3		3		3		3		ns	
Clock to output in Low-Z	^t KQLZ	5		5		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5		5		6		6	ns	6, 7
OE to output valid	^t OEQ		5		5		5		6		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ		5		5		5		6		6	ns	6, 7
Setup Times								· .					
Address	tAS	2.5		2.5		2.5		3		3		ns	8, 10
Address Status (ADSC, ADSP)	^t ADSS	2.5		3		3		3		3		ns	8, 10
Address Advance (ADV)	^t AAS	2.5		3		3		3		3		ns	8, 10
Byte Write Enables (WEH, WEL, GW, BWE)	tWS	2.5		3		3		3		3		ns	8, 10
Data-in	^t DS	2.5		3	· · ·	3		3		3		ns	8, 10
Chip Enable (CE)	^t CES	2.5	1.1	3		3		3		3		∽ ns	8, 10
Hold Times													
Address	tAH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Address Status (ADSC, ADSP)	^t ADSH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Address Advance (ADV)	tAAH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Byte Write Enables (WEH, WEL, GW, BWE)	tWH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Data-in	^t DH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Chip Enable (CE)	^t CEH	0.5		0.5		0.5		0.5		0.5		ns	8, 10

AC TEST CONDITIONS


Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

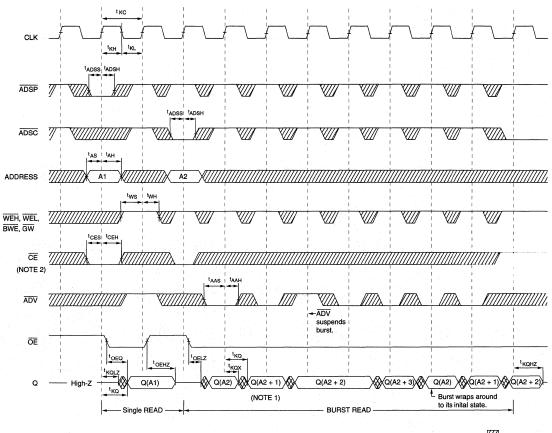
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC / 2$. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC / 2$. Power-up: $V_{IH} \le +6.0V$ and $Vcc \le 3.1V$ for $t \le 200$ msec.
- Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte Write enable LOW and ADSP HIGH for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

Fig. 1 OUTPUT LOAD EQUIVALENT


- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the stated DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu$ A.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

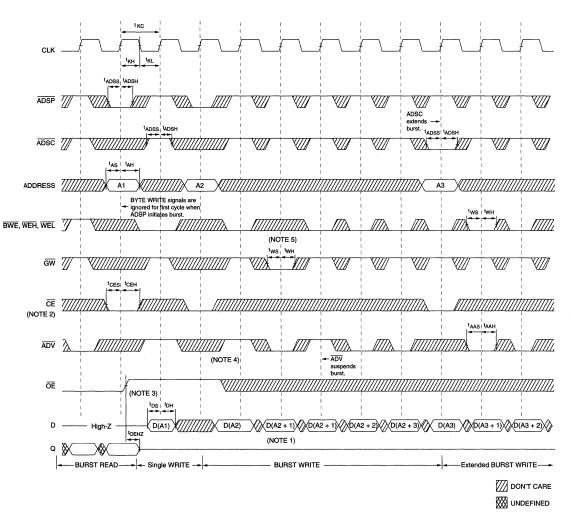
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			v
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}}, \ \overline{\text{CE2}} \geq (\text{Vcc} \ \text{-}0.2\text{V}), \ \text{CE2} \leq 0.2\text{V} \\ \text{V}_{\text{IN}} \geq (\text{Vcc} \ \text{-}0.2\text{V}) \ \text{or} \leq 0.2\text{V} \\ \text{Vcc} = 2\text{V} \end{array}$	ICCDR		TBD	μA	15
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 16
Operation Recovery Time		^t R	^t KC		ns	4



- NOTE: 1. All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.
 - 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

MT58LC64K18B2/M1 64K x 18 SYNCBURST[™] SRAM

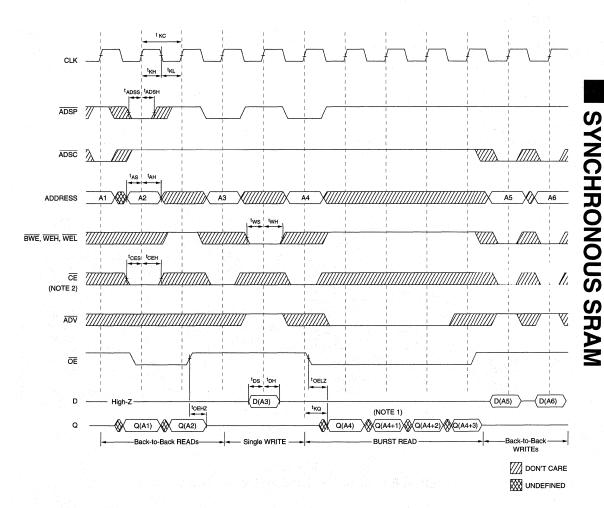
READ TIMING


SYNCHRONOUS SRAN

NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.

- 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
- 3. Timing is shown assuming that the device was not enabled before entering into this sequence. DE does not cause Q to be driven until after the following clock rising edge.

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.


WRITE TIMING

NOTE:

- 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by $\overline{\text{GW}}$ LOW or $\overline{\text{GW}}$ HIGH and $\overline{\text{BWE}}$, $\overline{\text{WEH}}$, and $\overline{\text{WEL}}$ LOW.

READ/WRITE TIMING

NOTE:

- 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 4. GW is HIGH.
 - 5. Back-to-back READs may be controlled by either ADSP or ADSC.

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron $64K \times 18$ Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

 $\Delta^t KQ = 0.016 \text{ ns}/pF \times \Delta C_L pF.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the

device is a 12ns part, the worst case ^tKQ becomes 11.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 64K x 18 Synchronous SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 64K depth to 128K depth with no extra logic.

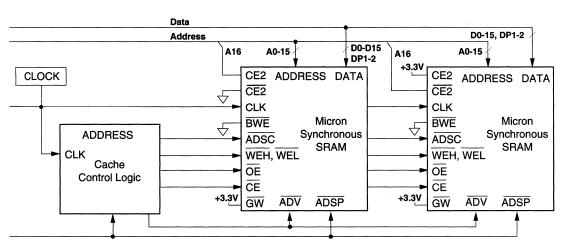


Figure 3 DEPTH EXPANSION FROM 64K x 36 TO 128K x 36

APPLICATION EXAMPLE

- **B**O

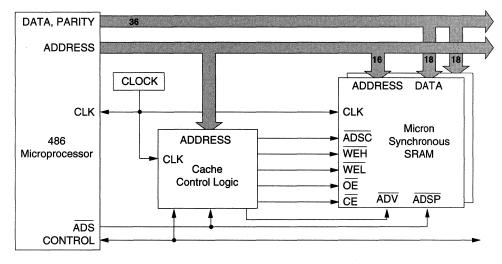
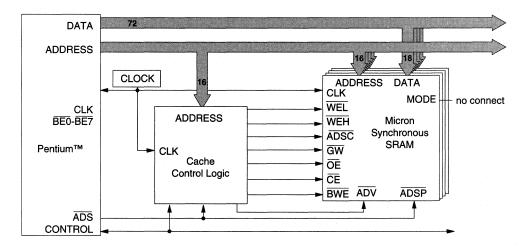
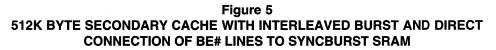




Figure 4 256K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 50 MHz 80486 USING TWO MT58LC64K18B2EJ-12 SYNCHRONOUS SRAMs

FEATURES

• Fast OE: 5 and 6ns

address pipelining

5V-tolerant I/O

• Single +3.3V ±5% power supply

Internally self-timed WRITE cycle

High density, high speed packages

Low capacitive bus loading

DIMMs also available

4.5ns access/8ns cycle

5ns access/10ns cycle 6ns access/12ns cycle

7ns access/15ns cvcle

8ns access/20ns cycle

2V data retention, low power

Part Number Examples

VERSION

SUFFIX

A6

C4

C4

PACKAGE

EJ

EJ

LG

OPTIONS

Timing

 Packages 52-pin PLCC

100-pin TQFP

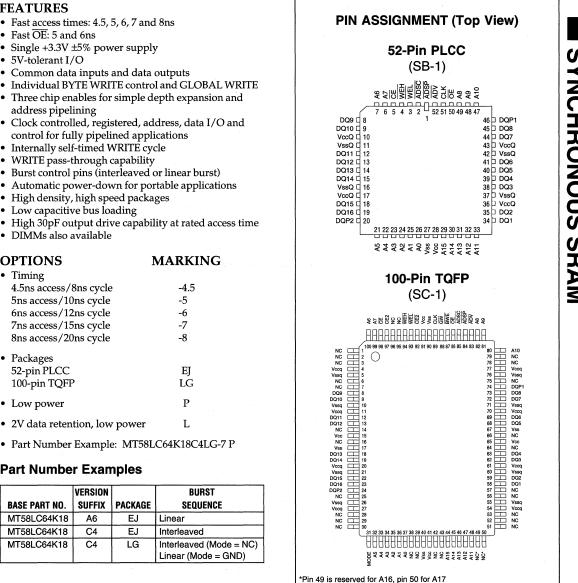
Low power

BASE PART NO.

MT58LC64K18

MT58LC64K18

MT58LC64K18


WRITE pass-through capability

MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

64K x 18 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS AND OUTPUTS AND BURST COUNTER

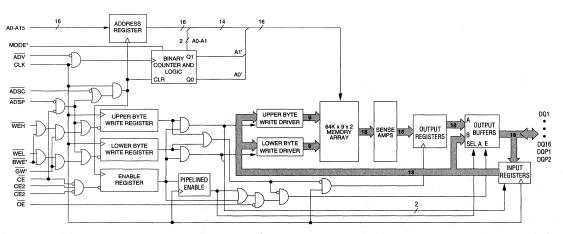
SYNCHRONOUS SRAM

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58LC64K18 SRAM integrates a 64K x 18 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), two additional chip enables for easy depth expansion (CE2, CE2), burst control inputs (ADSC, ADSP, ADV) byte write enables (WEH, WEL, BWE) and global write (GW).

Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to two bytes wide as controlled by the write control inputs.


Burst operation can be initiated with either address status processor (ADSP) or address status controller (ADSC) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. WEL controls DQ1-DQ8 and DQP1. WEH controls DQ9-DQ16 and DQP2, conditioned by BWE being LOW. GW LOW causes all bytes to be written. WRITE passthrough makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by OE to improve cache system response. The device incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance.

The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The MT58LC64K18 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5Vtolerant. The device is ideally suited for PentiumTM and PowerPCTM pipelined systems and systems that benefit from a very wide high-speed data bus.

FUNCTIONAL BLOCK DIAGRAM

*LG package only

NOTE: 1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

BURST ADDRESS TABLE (MODE = NC or MT58LC64K18C4 EJ device)

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

BURST ADDRESS TABLE (MODE = GND or MT58LC64K18A4 EJ device)

First Address (external)	Second Address (internal)	Third Address (internal)	Fourth Address (internal)		
XX00	XX01	XX10	XX11		
XX01	XX10	XX11	XX00		
XX10	XX11	XX00	XX01		
XX11	XX00	XX01	XX10		

PIN DESCRIPTIONS

PLCC PINS	TQFP PINS	SYMBOL	TYPE	DESCRIPTION
26, 25, 24, 23, 22, 21, 7, 6, 49, 48, 47, 33, 32, 31, 30, 29	37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 80, 48, 47, 46, 45, 44	A0-A15	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
4, 3	94, 93	WEH, WEL	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. WEL controls DQ1-DQ8 and DQP1. WEH controls DQ9-DQ16 and DQP2. Data I/O are tristated if either of these inputs are LOW.
n/a	87	BWE	Input	Byte Write Enable: This active LOW input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
n/a	88	GW	Input	Global Write: This active LOW input allows a full 18-bit WRITE to occur independent of the BWE and WEn lines and must meet the setup and hold times around the rising edge of CLK.
51	89	CLK	Input	Clock: This signal registers the address, data, chip enable, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
5	98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
n/a	92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded.

PIN DESCRIPTIONS (continued)

PLCC PINS	TQFP PINS	SYMBOL	TYPE	DESCRIPTION
n/a	97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded.
50	86	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
52	83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
1	84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC but dependent upon CE being LOW.
2	85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if \overline{CE} is LOW. \overline{ADSC} is also used to place the chip into power-down state when \overline{CE} is HIGH.
n/a	31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
34, 35, 38, 39, 40, 41, 44, 45, 8, 9, 12, 13, 14, 15, 18, 19	58, 59, 62, 63, 68, 69, 72, 73, 8, 9, 12, 13, 18, 19, 22, 23	DQ1-DQ16	Input/ Output	SRAM Data I/O: Low Byte is DQ1-DQ8. High Byte is DQ9- DQ16. Input data must meet setup and hold times around the rising edge of CLK.
46, 20	74, 24	DQP1, DQP2	Input/ Output	Parity Data I/O: Low Byte Parity is DQP1. High Byte Parity is DQP2.
28	15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
27	17, 40, 67, 90	Vss		Ground: GND
10, 17, 36, 43	4, 11, 20, 28, 54, 61, 70, 77	Vccq	Supply	Isolated Output Buffer Supply: +3.3V ±5%
11, 16, 37, 42	6, 10, 21, 26, 55, 60, 71, 76	Vssq	Supply	Isolated Output Buffer Ground: GND
	1, 2, 3, 6, 7, 14, 16, 25, 28, 29, 30, 38, 39, 42, 43, 49, 50, 51, 52, 53, 56, 57, 64, 66, 75,	NC		No Connect: These signals are not internally connected. These signals may be connected to ground to improve package heat dissipation.
	78, 79, 95, 96		t et	

PARTIAL TRUTH TABLE FOR WRITES

Function	GW	BWE	WEL	WEH
READ	H	Н	Х	Х
READ	Н	L	Н	H
WRITE Low Byte	Н		L.	Н
WRITE High Byte	Η ·	L	Н	L
WRITE all bytes	e H	Ľ	L	L
WRITE all bytes	L	Х	х	Х

PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE	and the second	PRESENT CYC	LE			NEXT CYCLE
OPERATION	WEs	OPERATION	CE	WEs	ŌE	OPERATION
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L ^{2, 3}	Initiate READ cycle Register A(n), $Q = D(n-1)$	L	Η	L	Read D(n)
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	No new cycle Q = D(n-1)	Н	Η	L	No carry-over from previous cycle
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L ^{2, 3}	No new cycle Q = HIGH-Z	Н	Η	Н	No carry-over from previous cycle
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L ²	No new cycle $Q = D(n-1)$ for one byte	Н	H	L	No carry-over from previous cycle

NOTE: 1. Previous cycle may be either BURST or NONBURST cycle.

2. BWE is LOW when one or two WEn is LOW.

3. GW LOW will yield identical results.

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	Х	X	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	н	Х	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	н	L	X	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	н	Х	H	L	Х	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	н	Ĺ	Х	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	н	H	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	Н	н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	н	н	L	Х	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	X	Х	Х	н	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	Х	н	н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	X	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	X	Н	L	Н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	н	н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	Х	X	X	Н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	н	н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	X	н	н	н	н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	н	Х	Х	X	н	н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	н	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	Н	н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	н	L	Х	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (WEL or WEH) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.
 - 2. WEL enables WRITEs to DQ1-DQ8, DQP1. WEH enables WRITEs to DQ9-DQ16, DQP2.
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a WRITE operation following a READ operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V to +4.6V
VIN0.5V to +6V
Storage Temperature (plastic)55°C to +150°C
Junction Temperature** +150°C
Short Circuit Output Current 100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 5% unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		VIH	2.0	5.5	V	1,2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vout ≤ Vcc	ILo	-1	1	μА	
Output High Voltage	Іон = -4.0mA	Voн	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1

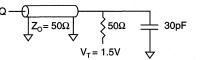
					1	e.	MAX			1		
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-4.5	-5	-6	-7	-8	UNITS	NOTES	
Power Supply Current: Operating	Device selected; all inputs ≤ V _I L or ≥ V _I H; cycle time ≥ t KC MIN; Vcc = MAX; outputs open	lcc	ALL	180	400	335	300	250	210	mA	3, 12, 13	
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC, ADSP, GW, BWs, ADV ≥ VIн; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc1	ALL	30	65	60	55	50	45	mA	12, 13	
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB2	STD	0.5	5	5	5	5	5	mA	12, 13	
	all inputs static; CLK frequency = 0	1002	Р	0.2	2	2	2	2	2	mA		
TTL Standby	Device deselected; $Vcc = MAX$; all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB3	STD	15	25	25	25	25	25	mA	12, 13	
	all inputs static; CLK frequency = 0		Р	8	18	18	18	18	18	mA		
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB4	ALL	30	65	60	55	50	45	mA	12, 13	

CAPACITANCE

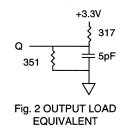
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	рF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	PLCC TYP	TQFP TYP	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still air, soldered on 4.25 x	θ_{JA}	45	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer PCB	θ _{JC}	15	1	°C/W	


ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 5%)


DESCRIPTION		-4	.5	-	5	-	6		-7	-	8		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock													
Clock cycle time	^t KC	8		10		12		15		20		ns	
Clock HIGH time	^t KH	3		4	-	4.5		5		6		ns	
Clock LOW time	^t KL	3		4		4.5		5		6		ns	
Output Times													
Clock to output valid	^t KQ		4.5		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2		2		2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		4		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		4.5		5		5		6		6	ns	6, 7
OE to output valid	^t OEQ	· .	4.5	- 10 - 10 - 10 - 10	5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ	1.5	3		4	1.5	5		6		6	ns	6,7
Setup Times													
Address	^t AS	2.5		2.5		2.5		2.5		3		ns	8, 10
Address Status (ADSC, ADSP)	^t ADSS	2.5		2.5		2.5		2.5	1	3		ns	8, 10
Address Advance (ADV)	^t AAS	2.5		2.5		2.5	1.1	2.5		3		ns	8, 10
Write Signals	tWS	2.5		2.5	1.1	2.5		2.5	1. X.	3		ns	8, 10
(WEL, WEH, BWE, GW)			a se pr	1.1		11				2.1			in the second
Data-in	tDS	2.5		2.5		2.5	1.	2.5	$e \in [1], [2]$	3		ns	8, 10
Chip Enables (CE, CE2, CE2)	^t CES	2.5	1877 - 1877 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	2.5	1.11	2.5	t de la com	2.5	1100	3		ns	8, 10
Hold Times									na si				
Address	tAH	0.5		0.5		0.5		0.5	111	0.5	-	ns	8, 10
Address Status (ADSC, ADSP)	^t ADSH	0.5		0.5		0.5		0.5	1.1.1.1	0.5	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	ns	8, 10
Address Advance (ADV)	^t AAH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Write Signals	tWH	0.5		0.5		0.5	1.1	0.5		0.5		ns	8, 10
(WEL, WEH, BWE, GW)													
Data-in	^t DH	0.5		0.5		0.5		0.5	a ser à	0.5		ns	8, 10
Chip Enables (CE, CE2, CE2)	^t CEH	0.5		0.5	1	0.5		0.5		0.5		ns	8, 10

AC TEST CONDITIONS

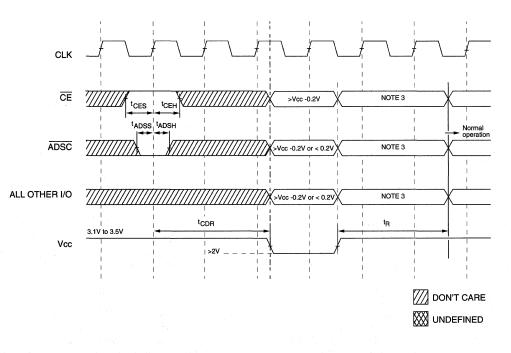
Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $\forall H \le +6.0V \text{ for } t \le {}^{t}KC / 2.$ Undershoot: $\forall IL \ge -2.0V \text{ for } t \le {}^{t}KC / 2.$ Power-up: $\forall H \le +6.0V \text{ and } Vcc \le 3.1V$ for $t \le 200 \text{ms}$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least two clock cycles before data retention mode is entered.

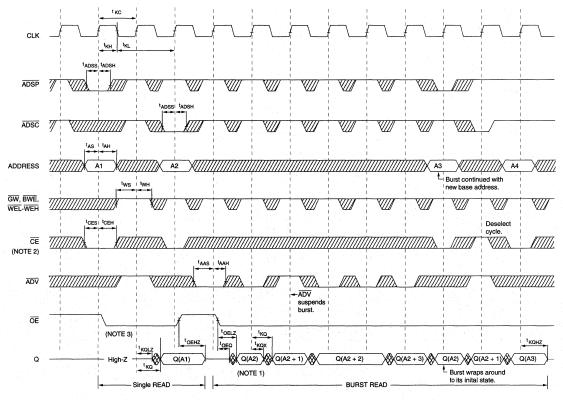


MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V
Data Retention Current	$ \overrightarrow{\text{CE2}} \geq (\text{Vcc -0.2V}), \text{CE2} \leq 0.2 \text{V} \\ \overrightarrow{\text{Vin}} \geq (\text{Vcc -0.2V}) \text{ or } \leq 0.2 \text{V} \\ \overrightarrow{\text{Vcc}} = 2 \text{V} $	ICCDR		TBD	μA	15
Chip Deselect to Data Retention Time		^t CDR	2 ^t KC		ns	4, 16
Operation Recovery Time		^t R	2 ^t KC		ns	4

LOW Vcc DATA RETENTION WAVEFORM

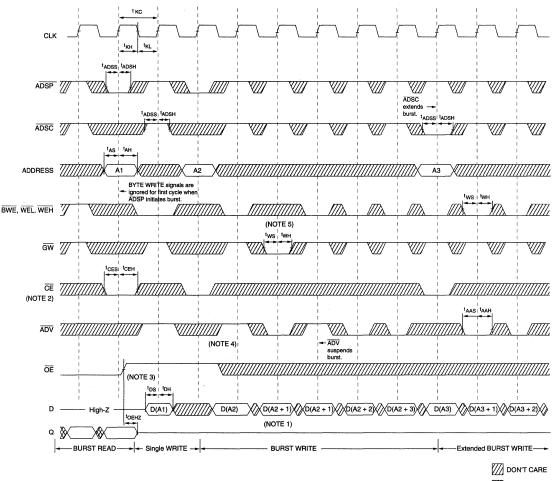


NOTE: 1. All inputs must be ≥ Vcc - 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.

- Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the
 other deselect cycle sequences may also be used.
- 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

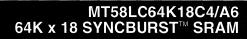
MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

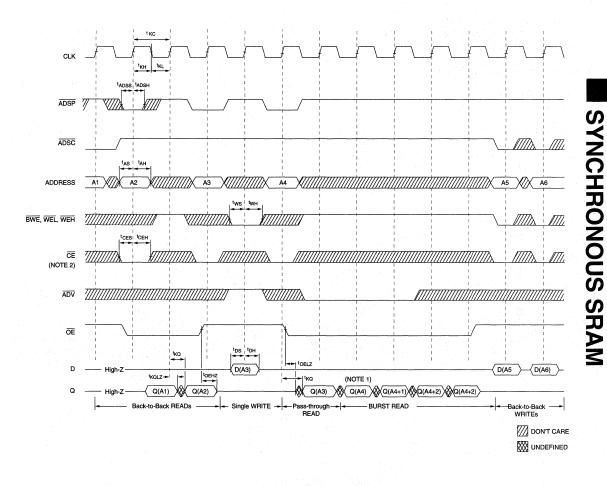
READ TIMING



DON'T CARE

- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. \overline{OE} does not cause Q to be driven until after the following clock rising edge.


WRITE TIMING


- W UNDEFINED

- NOTE:
 - 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by GW LOW or GW HIGH and BWE, WEL and WEH LOW.

_ | _

READ/WRITE TIMING

- NOTE: 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 4. GW is HIGH.
 - 5. Back-to-back READs may be controlled by either ADSP or ADSC.

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron 64K x 18 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

$\Delta^t KQ = 0.016 \text{ ns}/pF \times \Delta C_L pF.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the device is an 8ns part, the worst case ^tKQ becomes 7.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 64K x 18 Synchronous SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 64K depth to 128K depth with no extra logic. The chip enables are pipelined to allow contention-free transition between Micron devices which are physically and electrically close together.

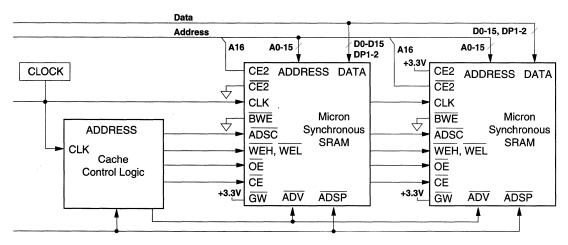


Figure 3 DEPTH EXPANSION FROM 64K x 18 TO 128K x 18 USING TQFP PACKAGES

MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

BON

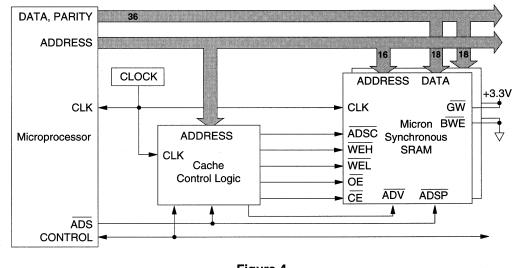


Figure 4 256K BYTE 50 MHz SECONDARY CACHE WITH PARITY AND BURST USING TWO MT58LC64K18C4LG-8 SYNCBURST SRAMs

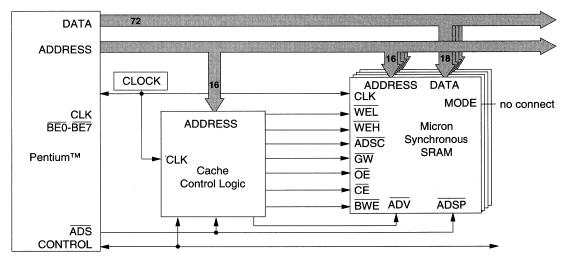


Figure 5 256K BYTE SECONDARY CACHE WITH PARITY, INTERLEAVED BURST AND DIRECT CONNECTION OF BE# LINES TO SYNCBURST SRAM

MT58LC64K18C4/A6 64K x 18 SYNCBURST[™] SRAM

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

32K x 32 SRAM

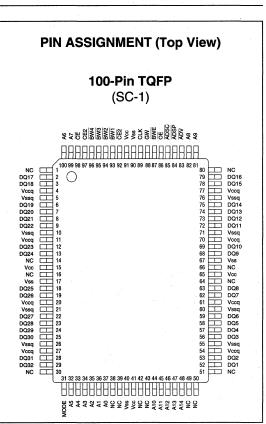
REGISTERED INPUTS, BURST COUNTER

NEW SYNCHRONOUS SRAN

FEATURES

- Fast access times: 9, 10, 11, 12 and 14ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant I/O
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- · Clock controlled, registered, address, data and control
- Internally self-timed WRITE cycle
- Burst control pins (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available

_ _ _ _ _


OPTIONS	MARKING
Timing	
9ns access/15ns cycle	- 9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
14ns access/20ns cycle	-14
Packages	
100-pin TQFP	LG
• Low power	Р
• 2V data retention, low power	L

Part Number Example: MT58LC32K32B2LG-12 P

GENERAL DESCRIPTION

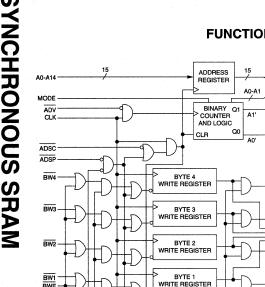
The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58LC32K32B2 SRAM integrates a 32K x 32 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), two additional chip enables for easy depth expansion (CE2, CE2), burst control inputs (ADSC, ADSP, ADV) byte write enables (BW1, BW2, BW3, BW4, BWE) and global write (GW).

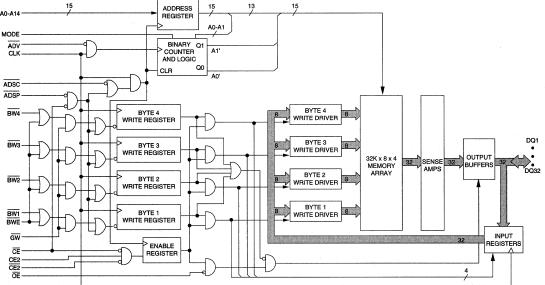
Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to four bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (\overline{ADSP}) or address status controller (\overline{ADSC}) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (\overline{ADV}).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. <u>BW1</u> controls DQ1-DQ8, <u>BW2</u> controls DQ9-DQ16, <u>BW3</u>



GENERAL DESCRIPTION (continued)


controls DQ17-DQ24, and BW4 controls DQ25-DQ32, conditioned by BWE being LOW. GW LOW causes all bytes to be written.

The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The MT58LC32K32B2 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5Vtolerant. The device is ideally suited for 486, Pentium™, 680X0 and PowerPC[™] systems and systems that benefit from a very wide data bus. The device is also ideal in generic 32- and 64-bit-wide applications.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

RON

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
37, 32, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
93, 94, 95, 96	<u>BW1, BW2,</u> BW3, BW4	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A Byte Write Enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW1 controls DQ1-DQ8. BW2 controls DQ9- DQ16. BW3 controls DQ17-DQ24 and BW4 controls DQ25- DQ32. Data I/O are tristated if any of these four inputs are LOW.
89	CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
86	ŌE	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and $\overline{\text{ADSC}}$ but dependent upon CE2 and $\overline{\text{CE2}}$. $\overline{\text{ADSP}}$ is ignored if $\overline{\text{CE}}$ is HIGH. Power down state is entered if CE2 is LOW or $\overline{\text{CE2}}$ is HIGH.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.

NEW SYNCHRONOUS SRAM

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

PIN DESCRIPTIONS (continued)

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
87	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW	Input	Global Write: This active low input allows a full 32-bit WRITE to occur independent of the $\overline{\text{BWE}}$ and $\overline{\text{BWn}}$ lines and must meet the setup and hold times around the rising edge of CLK.
1, 14, 16, 30, 38, 39, 42, 43, 49, 50, 51, 64, 66, 80	NC	-	No Connect: These signals are not internally connected.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 64, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ1-DQ32		SRAM Data I/O: Byte 1 is DQ1-DQ8; Byte 2 is DQ9-DQ16; Byte 3 is DQ17-DQ24; Byte 4 is DQ25-DQ32. Input data must meet setup and hold times around the rising edge of CLK.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
17, 40, 67, 90	Vss	Supply	Ground: GND
4, 11, 20, 27, 54, 61, 70, 77	VccQ	Supply	Isolated Output Buffer Supply: +3.3V ±5%
5, 10, 21, 26, 55, 60, 71, 76	VssQ	Supply	Isolated Output Buffer Ground: GND

INTERLEAVED BURST ADDRESS TABLE (MODE = NC)

First Address (External)	First Address (External) Second Address (Internal)		Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	t Address (External) Second Address (Internal)		Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
X.,,X10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselected Cycle, Power-down	None	Н	X	X	X	L	X	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	H	X	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	Н	L	X	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	Н	L	X	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	Н	L	X	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	H	L	Х	Х	Х	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	H	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L L	Н	Н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	н	° L	Х	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	Н	н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	X	Х	X	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	X	Н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	X	Х	Н	н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	Х	Х	X	н	L	L	X	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	X	X	X	Н	Н	Н	н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	Н	H	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	Н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	X	н	Н	L	Х	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW1, BW2, BW3 or BW4) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.
 - 2. BW1 enables WRITEs to Byte 1 (DQ1-DQ8). BW2 enables WRITEs to Byte 2 (DQ9-DQ16). BW3 enables WRITEs to Byte 3 (DQ17-DQ24). BW4 enables WRITEs to Byte 4 (DQ25-DQ32).
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a WRITE operation following a READ operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

PARTIAL TRUTH TABLE FOR WRITEs

Function	GW	BWE	BW1	BW2	BW3	BW4
READ	Ή	Н	Х	X	Х	х
READ	н	L	н	н	Н	Н
WRITE Byte 1	н	L	L	н	Н	Н
WRITE all bytes	н	L	L	L	L	L
WRITE all bytes	L	X	X	Х	X	Х

NOTE: Using BWE and BW1 through BW4, any one or more bytes may be written.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; T_C \leq 110°C; Vcc = 3.3V $\pm 5\%$ unless otherwise noted)

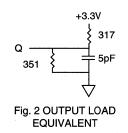
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le Vcc$	ILı	-1	1	μA	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vout ≤ Vcc	ILo	-1	1	μΑ	
Output High Voltage	Iон = -4.0mA	Voн	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1

										1	
					MAX						
DESCRIPTION	CONDITIONS	SYM	VER	TYP	-9	-10	-11	-12	-14	UNITS	NOTES
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ Vi∟ or ≥ Viн; cycle time ≥ ^t KC MIN; outputs open	lcc	ALL	180	270	270	250	225	225	mA	3, 12, 13
Power Supply Current: Idle	$\begin{array}{l} \hline \text{Device selected; Vcc} = \text{MAX;} \\ \hline \text{ADSC, } \overline{\text{ADSP, }} \text{GW, } \overline{\text{BWs, }} \overline{\text{ADV}} \geq \text{V}\text{\tiny H}\text{;} \\ \text{all inputs} \leq \text{Vss} + 0.2 \text{ or} \geq \text{Vcc} - 0.2\text{;} \\ \text{cycle time} \geq {}^{t}\text{KC} \text{ MIN} \end{array}$	Icc1	ALL	28	45	45	45	40	40	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB2	STD	0.5	5	5	5	5	5	mA	12, 13
	all inputs static; CLK frequency = 0	1582	Р	0.2	2	2	2	2	2	mA	12, 13
TTL Standby	Device deselected; Vcc = MAX; all inputs \leq VIL or \geq VIH;	ISB3	STD	15	25	25	25	25	25	mA	12. 13
al an an an an an an an an an an an an an	all inputs static; CLK frequency = 0	1303	Ρ	8	18	18	18	18	18	mA	12, 10
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB4	ALL	30	50	50	50	45	45	mA	12, 13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	3	4	pF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air, Soldered on 4.25 x	θ_{JA}	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer circuit board	θ _{JC}	1	°C/W	


DESCRIPTION	CONDITIONS				S	YMBOL	T	(P	MAX	X	UNIT	S N	OTES	
Input Capacitance	Τ ₄ =	25°C;	5°C; f = 1 MHz			Cı	3		4		pF		4	
Input/Output Capacitance (DQ)	Vcc = 3.3V				Co		6	7		pF		4		
HERMAL CONSIDERATIO	DNS					-								
DESCRIPTION		CONDITIONS				SYMBOL		ТҮР		UNITS		OTES		
Thermal resistance - Junction to Ambient		Still Air, Soldered on			d on 4	.25 x	5x θ _{JA}		20		°C/W			
Thermal resistance - Junction to Case		1.125 inch 4-layer circ			circui	t board			1		°C/W			
Note 5) (0°C \leq T _A \leq 70°C; Vcc = 3 Description	SYM	MIN	9 MAX	-1 MIN	0 Max	-1 MIN	1 MAX	MIN	12 MAX	 MIN	14 MAX	UNITS	NO	
Clock			min		minin									
Clock cycle time	tKC	15		15		15		20		20		ns	<u> </u>	
Clock HIGH time	^t KH	4		5		5		6		6		ns		
Clock LOW time	^t KL	4		5		5		6		6		ns		
Output Times		L	L						 ,				1	
Clock to output valid	^t KQ		9		10		11		12		14	ns		
Clock to output invalid	^t KQX	3		3		3		3		3		ns		
Clock to output in Low-Z	^t KQLZ	5		5		5		5		5		ns	6,	
Clock to output in High-Z	^t KQHZ		5		5		5		6		6	ns	6,	
OE to output valid	^t OEQ		5		5		5		6		6	ns	9	
· · · · · · · · · · · · · · · · · · ·														
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	<u> </u>	
OE to output in Low-Z OE to output in High-Z	^t OELZ ^t OEHZ	0	5	0	5	0	5	0	6	0	6	ns ns	<u> </u>	
OE to output in Low-Z OE to output in High-Z Setup Times	^t OEHZ	l			5		5		6		6	ns	6,	
OE to output in Low-Z OE to output in High-Z Setup Times Address	^t OEHZ	2.5		2.5	5	2.5	5	3	6	3	6	ns ns	6, 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP)	^t OEHZ ^t AS ^t ADSS	2.5 2.5		2.5 3	5	2.5 3	5	3 3	6	3	6	ns ns ns	6, 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV)	^t OEHZ ^t AS ^t ADSS ^t AAS	2.5 2.5 2.5		2.5 3 3	5	2.5 3 3	5	3 3 3	6	3 3 3	6	ns ns ns ns	6, 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals	^t OEHZ ^t AS ^t ADSS	2.5 2.5		2.5 3	5	2.5 3	5	3 3	6	3	6	ns ns ns	6, 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV)	^t OEHZ ^t AS ^t ADSS ^t AAS	2.5 2.5 2.5		2.5 3 3	5	2.5 3 3	5	3 3 3	6	3 3 3	6	ns ns ns ns	6, 6, 8, 1 8, 1 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW)	^t OEHZ ^t AS ^t ADSS ^t AAS ^t WS	2.5 2.5 2.5 2.5		2.5 3 3 3	5	2.5 3 3 3	5	3 3 3 3	6	3 3 3 3	6	ns ns ns ns ns	6, 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in	^t OEHZ ^t AS ^t ADSS ^t AAS ^t WS ^t DS	2.5 2.5 2.5 2.5 2.5 2.5		2.5 3 3 3 3	5	2.5 3 3 3 3	5	3 3 3 3 3	6	3 3 3 3 3	6	ns ns ns ns ns ns	6, 8, 1 8, 1 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2)	^t OEHZ ^t AS ^t ADSS ^t AAS ^t WS ^t DS	2.5 2.5 2.5 2.5 2.5 2.5		2.5 3 3 3 3	5	2.5 3 3 3 3	5	3 3 3 3 3	6	3 3 3 3 3	6	ns ns ns ns ns ns	6, 8, 1 8, 1 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times	¹ OEHZ ¹ AS ¹ ADSS ¹ AAS ¹ WS ¹ DS ¹ CES	2.5 2.5 2.5 2.5 2.5 2.5 2.5		2.5 3 3 3 3 3 3 3	5	2.5 3 3 3 3 3 3	5	3 3 3 3 3 3 3	6	3 3 3 3 3 3 3 3	6	ns ns ns ns ns ns ns	6, 8, 1 8, 1 8, 1 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address	¹ OEHZ ¹ AS ¹ ADSS ¹ AAS ¹ WS ¹ US ¹ CES ¹ CES ¹ AH	2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 3 3 3 3 3 3 0.5	5	2.5 3 3 3 3 3 3 3 0.5	5	3 3 3 3 3 3 0.5	6	3 3 3 3 3 3 3 0.5	6	ns ns ns ns ns ns ns ns	6, 8, 8, 8, 8, 8, 8, 8, 8, 8,	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Status (ADSC, ADSP)	¹ OEHZ ¹ AS ¹ ADSS ¹ AAS ¹ WS ¹ US ¹ CES ¹ CES ¹ AH ¹ ADSH	2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 3 3 3 3 3 3 0.5 0.5	5	2.5 3 3 3 3 3 3 3 0.5 0.5	5	3 3 3 3 3 3 0.5 0.5	6	3 3 3 3 3 3 0.5 0.5	6	ns ns ns ns ns ns ns ns ns	6, 8, 1 8, 1 8, 1 8, 1 8, 1 8, 1 8, 1	
OE to output in Low-Z OE to output in High-Z Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Status (ADSC, ADSP) Address Advance (ADSC, ADSP) Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals	¹ OEHZ ¹ AS ¹ ADSS ¹ AAS ¹ WS ¹ US ¹ DS ¹ CES ¹ CES ¹ AH ¹ ADSH ¹ AAH	2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5		2.5 3 3 3 3 3 3 0.5 0.5 0.5	5	2.5 3 3 3 3 3 3 3 0.5 0.5 0.5	5	3 3 3 3 3 3 3 0.5 0.5 0.5	6	3 3 3 3 3 3 3 0.5 0.5 0.5	6	ns ns ns ns ns ns ns ns ns ns	6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

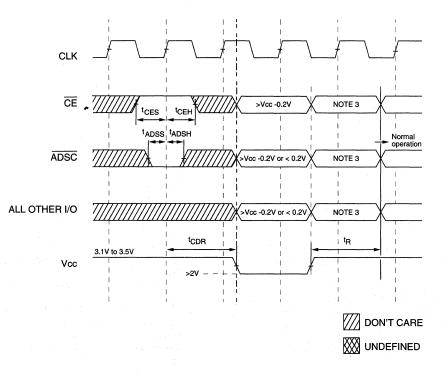
Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC / 2$. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC / 2$. Power-up: $V_{IH} \le +6.0V$ and $Vcc \le 3.1V$ for $t \le 200ms$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

E K

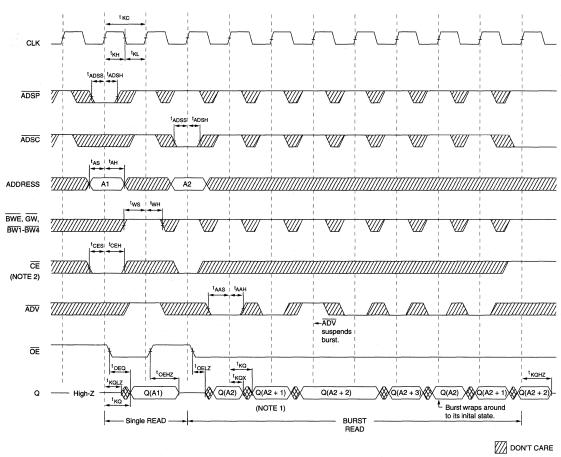


MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2		4	V
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}} \in \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \text{CE2} \leq 0.2\text{V} \\ \overline{\text{ViN}} \geq (\text{Vcc -0.2V}) \text{ or } \leq 0.2\text{V} \\ \overline{\text{Vcc}} = 2\text{V} \end{array}$	ICCDR		TBD	μA	15
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 16
Operation Recovery Time		^t R	^t KC		ns	4

NOTE:

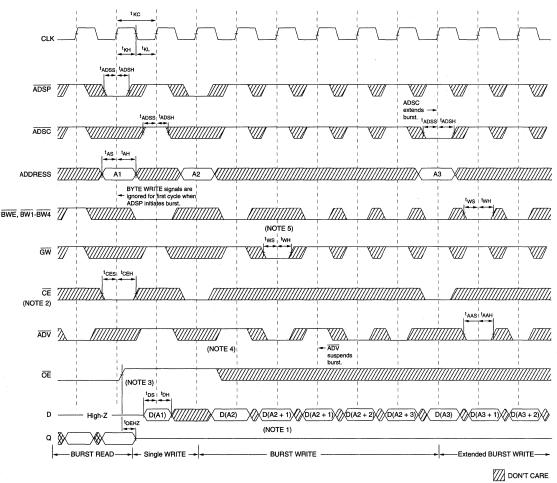

- 1. All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee Iccor in data retention mode. If inputs are between these levels or left floating, Iccor may be exceeded.
 - Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the
 other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

NEW

SYNCHRONOUS SRAN

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

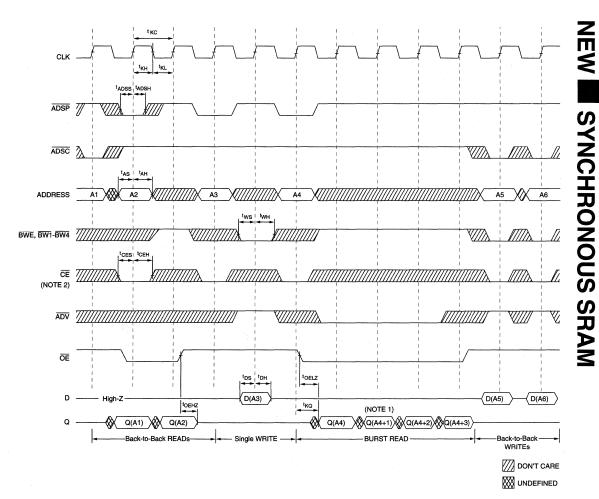
READ TIMING



- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

WRITE TIMING


NOTE:

NEW SYNCHRONOUS SRAM

- 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by GW LOW or GW HIGH and BWE, BW1- BW4 LOW.

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

READ/WRITE TIMING

NOTE: 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.

- 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
- 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
- 4. GW is HIGH.

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron 32K x 32 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

 $\Delta^t KQ = 0.016 \text{ ns}/pF \times \Delta C_L pF.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the

device is a 12ns part, the worst case ^tKQ becomes 11.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 32K x 32 Synchronous SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 32K depth to 64K depth with no extra logic.

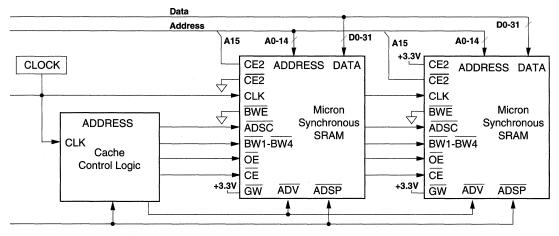


Figure 3 DEPTH EXPANSION FROM 32K x 32 TO 64K x 32

NEW SYNCHRONOUS SRAN

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

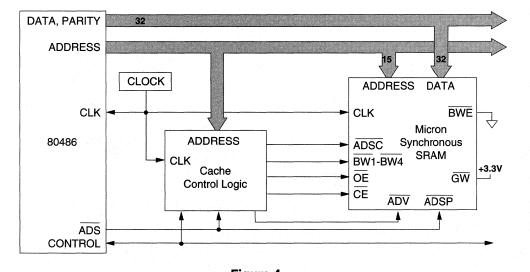
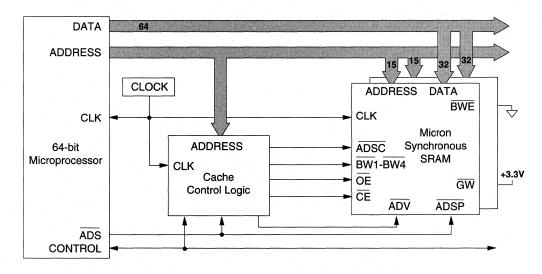
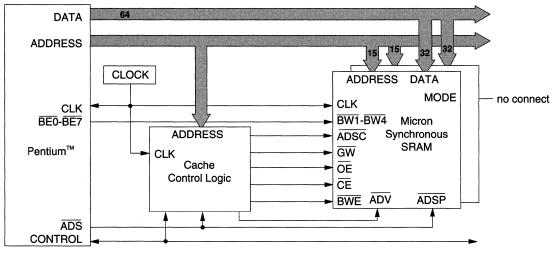


Figure 4 128K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 50 MHz 80486 USING ONE MT58LC32K32B2LG-12 SYNCHRONOUS SRAM




Figure 5 256K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 66 MHz PENTIUM USING TWO MT58LC32K32B2LG-9 SYNCHRONOUS SRAMs

Micron Semiconductor, Inc., reserves the right to change products or specifications without hotice @1994, Micron Semiconductor, Inc.

MT58LC32K32B2 32K x 32 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

Figure 6 256K BYTE SECONDARY CACHE WITH PARITY, INTERLEAVED BURST AND DIRECT CONNECTION OF BE# LINES TO SYNCBURST SRAM

SYNCHRONOUS SRAN

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

32K x 32 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS AND OUTPUTS AND BURST COUNTER

PIN ASSIGNMENT (Top View) 100-Pin TQFP (SC-1) . 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 NC 80 NC DQ16 <u>HHHHHHH</u> DQ17 HHHH ()79 DQ15 Vccq DQ18 78 77 Vccq Vssq DQ14 Vssa 76 75 74 73 72 71 70 DQ19 DQ20 DQ13 DQ12 DQ21 DQ22 DQ11 IHHHHH IABBB Vssq Vccq Vssq 10 11 Vcca DQ23 DQ24 DQ10 DQ9 12 69 68 67 13 I H H H H Vss NC NC 14 Vcc HHH 66 65 64 63 62 61 NC 16 Vcc NC DQ8 Vss DQ25 H 18 DQ26 19 DQ7 Vcca 20 Vccq Vssq DQ27 ПАНАНАНА 21 60 59 Vssq DQ6 22 DQ28 DQ29 DQ5 DQ4 23 58 57 56 55 54 24 DQ30 25 DO3 Vssq 26 Vssq Vcca 27 Vcco DQ31 DQ32 28 53 DQ2 52 DQ1 29 NC 51

FEATURES

- Fast access times: 4.5, 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant I/O
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pins (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available

OPTIONS	MARKING
Timing	
4.5ns access/8ns cycle	-4.5
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Packages	
100-pin TQFP	LG
• Low power	Р
• 2V data retention, low power	L

• Part Number Example: MT58LC32K32C4LG-7 P

GENERAL DESCRIPTION

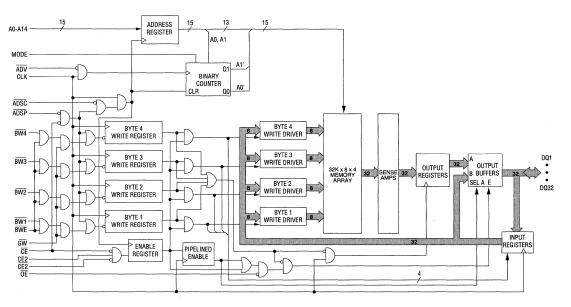
The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58LC32K32C4SRAM integrates a 32K \times 32SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), two additional chip enables for easy depth expansion (CE2, CE2), burst

control inputs (ADSC, ADSP, ADV) byte write enables (BW1, BW2, BW3, BW4, BWE) and global write (GW).

Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to four bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (\overline{ADSP}) or address status controller (\overline{ADSC}) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (\overline{ADV}).



MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

GENERAL DESCRIPTION (continued)

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW1 controls DQ1-DQ8, BW2 controls DQ9-DQ16, BW3 controls DQ17-DQ24, and BW4 controls DQ25-DQ32, conditioned by BWE being LOW. GW LOW causes all bytes to be written. WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by \overline{OE} to improve cache system response. The device incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance. The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The MT58LC32K32C4 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V-tolerant. The device is ideally suited for PentiumTM and PowerPCTM pipelined systems and systems that benefit from a very wide high-speed data bus.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
93, 94, 95, 96	<u>BW1, BW2,</u> BW3, BW4	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A Byte Write Enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW1 controls DQ1-DQ8. BW2 controls DQ9-DQ16. BW3 controls DQ17-DQ24 . BW4 controls DQ25-DQ32. Data I/O are tristated if any of these four inputs are LOW.
89	CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
86	OE	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC but dependent upon CE2 and CE2. ADSP is ignored if CE is HIGH. Power-down state is entered if CE2 is LOW or CE2 is HIGH.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.

NEW SYNCHRONOUS SRAM

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

PIN DESCRIPTIONS (continued)

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
87	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW	Input	Global Write: This active low input allows a full 32-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
1, 14, 16, 30, 38, 39, 42, 43, 49, 50, 51, 64, 66, 80	NC	-	No Connect: These signals are not internally connected.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ1-DQ32	Input/ Output	SRAM Data I/O: Byte 1 is DQ1-DQ8; Byte 2 is DQ9-DQ16; Byte 3 is DQ17-DQ24; Byte 4 is DQ25-DQ32. Input data must meet setup and hold times around the rising edge of CLK.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
17, 40, 67, 90	Vss	Supply	Ground: GND
4, 11, 20, 27, 54, 61, 70, 77	VccQ	Supply	Isolated Output Buffer Supply: +3.3V ±5%
5, 10, 21, 26, 55, 60, 71, 76	VssQ	Supply	Isolated Output Buffer Ground: GND

PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE	PRESENT CYC	NEXT CYCLE				
OPERATION	BWs	OPERATION	CE	BWs	ŌE	OPERATION
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	Initiate READ cycle Register A(n), Q = D(n-1)	Ĺ	Н	L	Read D(n)
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L ^{2, 3}	No new cycle Q = D(n-1)	н	Н	Ľ	No carry-over from previous cycle
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L ^{2, 3}	No new cycle Q = HIGH-Z	Н	Н	Н	No carry-over from previous cycle
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L ²	No new cycle $Q = D(n-1)$ for one byte	Н	Н	L	No carry-over from previous cycle

NOTE: 1. Previous cycle may be either BURST or NONBURST cycle.

- 2. $\overline{\text{BWE}}$ is LOW when one or more $\overline{\text{BWn}}$ is LOW.
- 3. GW LOW will yield identical results.

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

INTERLEAVED BURST ADDRESS TABLE (MODE = NC)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	First Address (External) Second Address (Internal)		Fourth Address (Internal)				
XX00	XX01	XX10	XX11				
XX01	XX10	XX11	XX00				
XX10	XX11	XX00	XX01				
XX11	XX00	XX01	XX10				

PARTIAL TRUTH TABLE FOR WRITEs

Function	GW	BWE	BW1	BW2	BW3	BW4
READ	Н	н	X	X	X	X
READ	Н	L	Н	Н	Н	н
WRITE Byte 1	H	L	L	· H ·	H	н
WRITE all bytes	Н	L	L	L	L	L
WRITE all bytes	Ľ	X	X	X	X	X

NOTE: Using BWE and BW1 through BW4, any one or more bytes may be written.

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	Х	Х	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	Ľ	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	X	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	н	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	Н	L	Х	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	Н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	Н	Н	Ľ	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	н	L	Х	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	Х	Н	H	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	Х	H.	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	н	Х	Х	X	н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	н	н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	н	Х	Х	Х	Н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	н	н	Н	н	н	L-H	High-Z
READ Cycle, Suspend Burst	Current	н	Х	Х	Х	Н	Н	H	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	н	Н	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	H	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	н	X	Х	Х	Н	Н	L	Х	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW1, BW2, BW3 or BW4) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.
 - 2. BW1 enables WRITEs to Byte 1 (DQ1-DQ8). BW2 enables WRITEs to Byte 2 (DQ9-DQ16). BW3 enables WRITEs to Byte 3 (DQ17-DQ24). BW4 enables WRITEs to Byte 4 (DQ25-DQ32).
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a WRITE operation following a READ operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Va	ss0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V ±5% unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-1	1	μA	14
Output Leakage Current	Output(s) disabled, $0V \le Vout \le Vcc$	ILo	-1	1	μA	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol	an an an an an an an an an an an an an a	0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1

DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-4.5	-5	-6	-7	-8	UNITS	NOTES
Power Supply Current: Operating	Device selected; all inputs ≤ VIL or ≥ VIH; cycle time ≥ t KC MIN; Vcc = MAX; outputs open	lcc	ALL	180	425	360	315	270	225	mA	3, 12, 13
$ \begin{array}{ c c c c c } \hline Power Supply \\ \hline Current: Idle \\ \hline ADSC, ADSP, GW, BWs, AI \\ all inputs \leq Vss +0.2 \text{ or } \geq Vc \\ \hline cycle time \geq {}^{t}KC MIN \end{array} $		Icc1	ALL	30	65	60	55	50	45	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB2	STD	0.5	5	5	5	5	5	mA	12, 13
	all inputs static; CLK frequency = 0	1002	Р	0.2	2	2	2	2	2	mA	12, 10
TTL Standby	Device deselected; Vcc = MAX; all inputs \leq VIL or \geq VIH;	ISB3	STD	15	25	25	25	25	25	mA	12, 13
사실에 가지 가 있었어요. 이 것은 것은 것 같아요.	all inputs static; CLK frequency = 0	1000	Р	8	18	18	18	18	18	mA	,
Clock Running	$\begin{array}{l} \mbox{Device deselected; Vcc = MAX;} \\ \mbox{all inputs \leq Vss +0.2 or \geq Vcc -0.2;} \\ \mbox{CLK cycle time \geq $^tKC MIN$} \end{array}$	ISB4	ALL	30	65	60	55	50	45	mA	12, 13

Π \$ SYNCHRONOUS SRA

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

CAPACITANCE

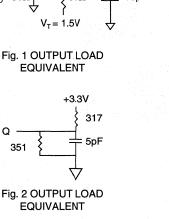
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	pF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air, Soldered on 4.25 x	θ_{JA}	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer circuit board	θ _{JC}	1	°C/W	-

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

DESCRIPTION		CONDIT	IONS		S	YMBOL	Т	YP	MAX		UNITS	S N	OTES
Input Capacitance	T_ =	25°C:	f = 1 N	1Hz		Ci		3	4		pF		4
Input/Output Capacitance (DQ)	~	Vcc = 3.3V			Со		6	7		pF		4	
HERMAL CONSIDERATIO	ONS												
DESCRIPTION		[CC	DNDITI	ONS		SYN	MBOL	TY	.	UNIT	S N	OTES
Thermal resistance - Junction to	Ambient	Still	Air, S			.25 x	e	JA	20		°C/M	_	
Thermal resistance - Junction to	Case	1.125	inch 4	1-lavei	circui	t board		JC	1		°C/M		
ELECTRICAL CHARACTEF Note 5) ($0^{\circ}C \le T_A \le 70^{\circ}C$; $V_{CC} = 3$.		1	.5		5				•7		8		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTE
Clock		•									•		
Clock cycle time	^t KC	8		10		12		15		20		ns	
Clock HIGH time	^t KH	3		4		4.5		5		6		ns	
Clock LOW time	^t KL	3		4		4.5		5		6		ns	
Output Times													
Clock to output valid	^t KQ		4.5		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2		2		2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		4		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		4.5		5		5		6		6	ns	6, 7
OE to output valid	^t OEQ		4.5		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	6, 7
	^t OEHZ		3		4		5		6		6	ns	6, 7
OE to output in High-Z	1										-		
Setup Times													8,10
Setup Times Address	^t AS	2.5		2.5		2.5		2.5		3		ns	· · · · · · · · · · · · · · · · · · ·
Setup Times Address Address Status (ADSC, ADSP)	^t ADSS	2.5		2.5	-	2.5		2.5		3		ns ns	· · · · · · · · · · · · · · · · · · ·
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV)	tADSS tAAS	2.5 2.5		2.5 2.5		2.5 2.5		2.5 2.5		3 3			8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals	^t ADSS	2.5		2.5		2.5		2.5		3		ns	8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW)	tADSS tAAS tWS	2.5 2.5 2.5		2.5 2.5 2.5		2.5 2.5 2.5		2.5 2.5 2.5		3 3 3		ns ns	8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in	tADSS tAAS tWS tDS	2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5		3 3 3 3		ns ns	8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2)	tADSS tAAS tWS	2.5 2.5 2.5		2.5 2.5 2.5		2.5 2.5 2.5		2.5 2.5 2.5		3 3 3		ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times	^t ADSS ^t AAS ^t WS ^t DS ^t CES	2.5 2.5 2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5 2.5		3 3 3 3 3		ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address	tADSS tAAS tWS tDS tCES tAH	2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 2.5		2.5 2.5 2.5 2.5 2.5 0.5		3 3 3 3 3 0.5		ns ns ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Address Status (ADSC, ADSP)	tADSS tAAS tWS tDS tCES tAH tADSH	2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5		3 3 3 3 3 0.5 0.5		ns ns ns ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Address Status (ADSC, ADSP) Address Advance (ADV)	tadss taas tws tos tos tces tah tadsh taah	2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		3 3 3 3 3 0.5 0.5 0.5		ns ns ns ns ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Address Status (ADSC, ADSP)	tADSS tAAS tWS tDS tCES tAH tADSH	2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 2.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5		3 3 3 3 3 0.5 0.5		ns ns ns ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10
Setup Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals (BW1, BW2, BW3, BW4, BWE, GW) Data-in Chip Enables (CE, CE2, CE2) Hold Times Address Address Status (ADSC, ADSP) Address Advance (ADV) Write Signals	tadss taas tws tos tos tces tah tadsh taah	2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5		3 3 3 3 3 0.5 0.5 0.5		ns ns ns ns ns ns ns ns	8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10 8, 10

30pF


MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

50Ω

 $Z_0 = 50\Omega$

Q

351

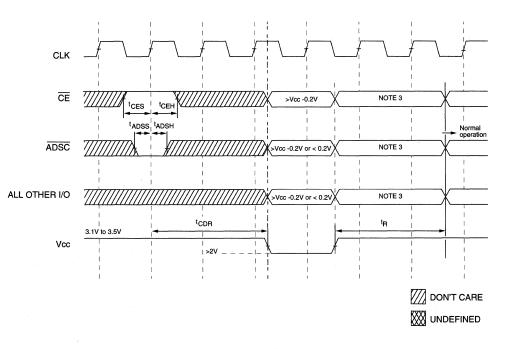
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \leq +6.0V$ for $t \leq {}^{t}KC / 2$.
- Undershoot: $V \parallel \ge -2.0V$ for $t \le {}^{t}KC / 2$. Power-up: $V_{H} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200 \text{ms}$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with $C_{L} = 5pF$ as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

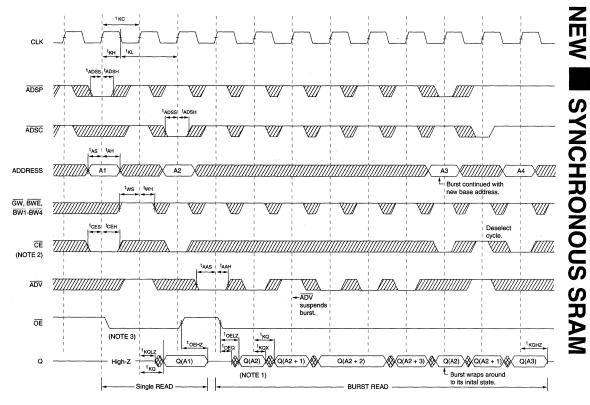
- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of ±10µA.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least two clock cycles before data retention mode is entered.



MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Vcc for Retention Data		VDR	2			V	
Data Retention Current	$\label{eq:cellson} \begin{array}{l} \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \text{V}_{\text{IN}} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \text{Vcc} = 2\text{V} \end{array}$	ICCDR		TBD	μΑ	15	
Chip Deselect to Data Retention Time		^t CDR	2 ^t KC		ns	4, 16	
Operation Recovery Time		^t R	2 ^t KC		ns	4	

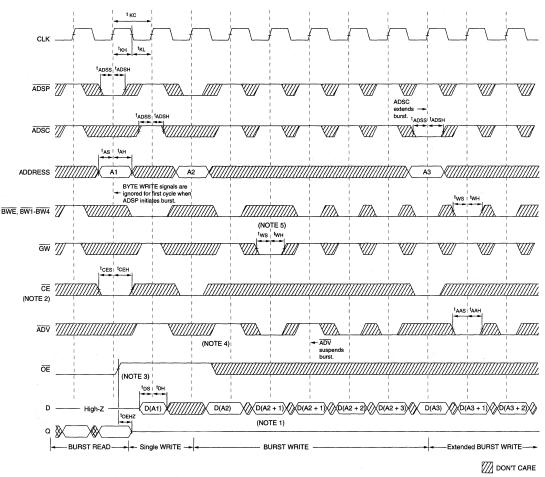


NOTE:

- I. All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee Iccor in data retention mode. If inputs are between these levels or left floating, Iccor may be exceeded.
 - 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

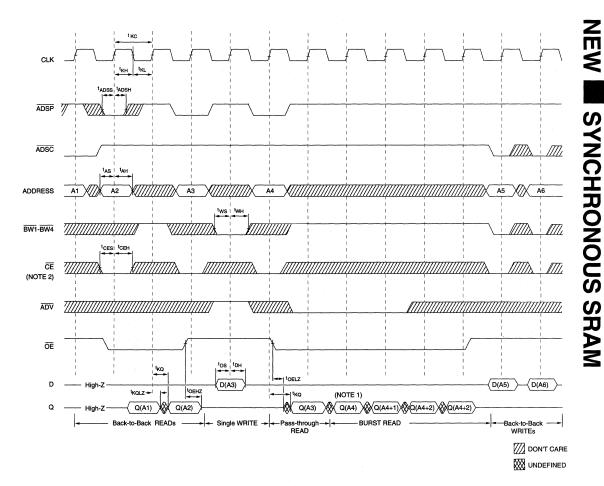
MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

READ TIMING



DON'T CARE

- NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.


WRITE TIMING

- NOTE:
 - 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by GW LOW or GW HIGH and BWE, BW1- BW4 LOW.

READ/WRITE TIMING

NOTE:

- Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 4. GW is HIGH.
 - 5. Back-to-back READs may be controlled by either ADSP or ADSC.

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron 32K x 32SyncBurst SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

 $\Delta^{t}KQ = 0.016 \text{ ns}/\text{pF} \times \Delta C_{L} \text{ pF}.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the device is a 12ns part, the worst case ^tKQ becomes 11.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 32K x 32 SyncBurst SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 32K depth to 64K depth with no extra logic. The chip enables are pipelined to allow contention-free transition between Micron devices which are physically and electrically close together.

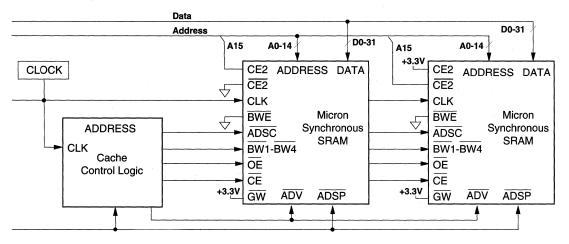
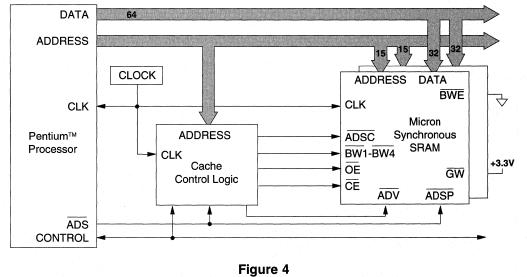



Figure 3 DEPTH EXPANSION FROM 32K x 32 TO 64K x 32

APPLICATION EXAMPLES

256K BYTE SECONDARY CACHE WITH INTERLEAVED BURST FOR 66 MHz PENTIUM™ USING TWO MT58LC32K32B2LG-9 SYNCBURST SRAMs

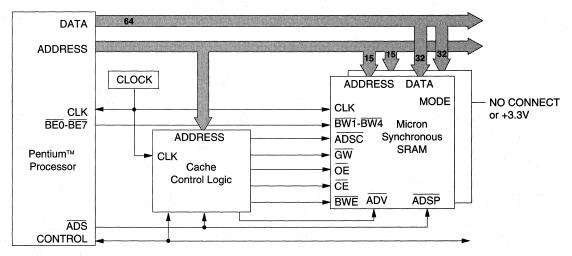


Figure 5 256K BYTE SECONDARY CACHE WITH INTERLEAVED BURST AND DIRECT CONNECTION OF BE# LINES TO SYNCBURST SRAM

MT58LC32K32C4 32K x 32 SYNCBURST[™] SRAM

SYNCHRONOUS SRAN

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

32K x 36 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS, BURST COUNTER

PIN ASSIGNMENT (Top View) 100-Pin TOFP (SC-1) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 DQP3 T DQP2 DQ17 ()79 DQ16 DQ18 DQ15 HUUUUUUU Vccq Vssq DQ19 Vccq Vssq DQ14 DQ20 DQ21 DQ13 DQ12 DQ22 Vssq Vccq DQ23 9 10 DQ11 Vssq HHHH HHHH Vccq DQ10 11 DQ24 NC Vcc NC 13 DQ9 Vss NC Vcc NC ET. 15 H P Vss 17 17 18 19 20 21 21 22 23 DQ25 DQ26 Ħ DQ8 DQ7 Vccq Vssq DQ27 DQ28 DQ29 IHHHH Vccq Vssq DQ6 DQ5 DQ4 23 24 1 HHHHH DQ29 DQ30 Vssq Vccq DQ31 25 DQ3 26 Vssq 27 Vccq DQ2 28 DQ32 DQP4 29 52 51 1.1 DQ1 DQP1 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to four bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (\overline{ADSP}) or address status controller (\overline{ADSC}) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (\overline{ADV}).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written.

FEATURES

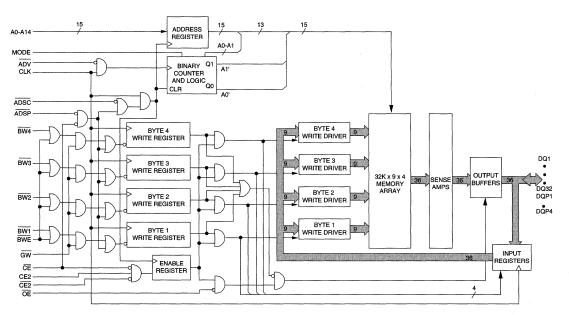
- Fast access times: 9, 10, 11, 12 and 14ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant I/O
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- · Clock controlled, registered, address, data and control
- Internally self-timed WRITE cycle
- Burst control pins (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available

OPTIONS MARKING Timing - 9 9ns access/15ns cycle 10ns access/15ns cycle -10 11ns access/15ns cycle -11 -12 12ns access/20ns cycle 14ns access/20ns cycle -14 Packages 100-pin TQFP LG Р Low power L 2V data retention, low power Part Number Example: MT58LC32K36B2LG-12 P

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58LC32K36B2SRAM integrates a 32K x 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), two additional chip enables for easy depth expansion (CE2, CE2), burst control inputs (ADSC, ADSP, ADV) byte write enables (BW1, BW2, BW3, BW4, BWE) and global write (GW).


MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

GENERAL DESCRIPTION (continued)

BW1 controls DQ1-DQ8 and DQP1, BW2 controls DQ9-DQ16 and DQP2, BW3 controls DQ17-DQ24 and DQP3, and BW4 controls DQ25-DQ32 and DQP4, conditioned by BWE being LOW. GW LOW causes all bytes to be written.

The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation. The MT58LC32K36B2 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5Vtolerant. The device is ideally suited for 486, Pentium[™], 680X0 and PowerPC[™] systems and systems that benefit from a very wide data bus. The device is also ideal in generic 36- and 72-bit-wide applications.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

PIN DESCRIPTIONS

ION

TOFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
93, 94, 95, 96	<u>BW1, BW2,</u> BW3, BW4	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A Byte Write Enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW1 controls DQ1-DQ8 and DQP1. BW2 controls DQ9-DQ16 and DQP2. BW3 controls DQ17- DQ24 and DQP3. BW4 controls DQ25-DQ32 and DQP4. Data I/O are tristated if any of these four inputs are LOW.
89	CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
86	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC but dependent upon CE2 and CE2. ADSP is ignored if CE is HIGH. Power-down state is entered if CE2 is LOW or CE2 is HIGH.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

PIN	DES	CRIPT	IONS	(continued)
				(

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
87	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW	Input	Global Write: This active low input allows a full 36-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
14, 16, 38, 39, 42, 43, 49, 50, 64, 66	NC	-	No Connect: These signals are not internally connected.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ1-DQ32		SRAM Data I/O: Byte 1 is DQ1-DQ8; Byte 2 is DQ9-DQ16; Byte 3 is DQ17-DQ24; Byte 4 is DQ25-DQ32. Input data must meet setup and hold times around the rising edge of CLK.
51, 80, 1, 30	DQP1-DQP4		Parity Data I/O: Byte 1 Parity is DQP1; Byte 2 Parity is DQP2; Byte 3 Parity is DQP3; Byte 4 Parity is DQP4.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
17, 40, 67, 90	Vss	Supply	Ground: GND
4, 11, 20, 27, 54, 61, 70, 77	VccQ	Supply	Isolated Output Buffer Supply: +3.3V ±5%
5, 10, 21, 26, 55, 60, 71, 76	VssQ	Supply	Isolated Output Buffer Ground: GND

INTERLEAVED BURST ADDRESS TABLE (MODE = NC)

First Address (External)	First Address (External) Second Address (Internal)		Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	irst Address (External) Second Address (Internal)		Fourth Address (Internal)		
XX00	XX01	XX10	XX11		
XX01	XX10	XX11	XX00		
XX10	XX11	XX00	XX01		
XX11	XX00	XX01	XX10		

MT58LC32K36B2 32K x 36 SYNCBURST™ SRAM

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	X	X	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	L	X	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	Н	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	н	Х	н	L	Х	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	н	L	X	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	н	н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	н	н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L.	Н	Н	L	Х	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	X	Х	Х	Н	н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	X	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	X	н	L	Н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	Х	Х	X	н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	н	н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	Н	H	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	Н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	н	Х	X	X	Н	Н	L	Х	L-H	D

- NOTE: 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW1, BW2, BW3 or BW4) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.
 - BW1 enables WRITEs to Byte 1 (DQ1-DQ8, DQP1). BW2 enables WRITEs to Byte 2 (DQ9-DQ16, DQP2). BW3 enables WRITEs to Byte 3 (DQ17-DQ24, DQP3). BW4 enables WRITEs to Byte 4 (DQ25-DQ32, DQP4).
 - 3. All inputs except $\overline{\text{OE}}$ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a WRITE operation following a READ operation, \overline{OE} must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

PARTIAL TRUTH TABLE FOR WRITEs

Function	GW	BWE	BW1	BW2	BW3	BW4
READ	Н	Н	Х	X	Х	X
READ	Н	L	Н	Н	Н	н
WRITE Byte 1	Н	L	L	Н	Н	н
WRITE all bytes	Н	L	L	L	L C	L
WRITE all bytes	L	X	X	Х	Х	Х

NOTE: Using BWE and BW1 through BW4, any one or more bytes may be written.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vs	s0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V $\pm 5\%$ unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	ILi	-1	1	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vou⊤ ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1 - 1

							MAX		na an an Taonacht				
DESCRIPTION	CONDITIONS	SYM	VER	TYP	-9	-10	-11	-12	-14	UNITS	NOTES		
Power Supply Current: Operating	Device selected; all inputs ≤ Vi∟ or ≥ Viн; cycle time ≥ ^t KC MIN; Vcc = MAX; outputs open	lcc	ALL	200	300	300	275	250	250	mA	3, 12 13		
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC, ADSP, ADV, GW, BW ≥ VIH; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc1	ALL	28	45	45	45	40	40	mA	12, 13		
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; all inputs static; CLK frequency = 0			ISB2	STD	0.5	5	5	5	5	5	mA	
			Р	0.2	2	2	2	2	2	mA	12, 13		
TTL Standby	Device deselected; Vcc = MAX;		STD	15	25	25	25	25	25	mA	10.10		
	all inputs $\leq V_{IL}$ or $\geq V_{IH}$; all inputs static; CLK frequency = 0	ISB3	Ρ	8	18	18	18	18	18	mA	12, 13		
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB4	ALL	30	50	50	50	45	45	mA	12, 13		

SYNCHRONOUS SRAM

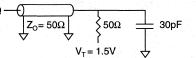
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	pF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

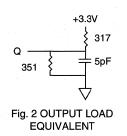
THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	TYP	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air, Soldered on 4.25 x	θ_{JA}	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer circuit board	θ ^{JC}	1	°C/W	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 3.3V ±5%)

DESCRIPTION		-	9	-1	0	-1	1	-	12	-1	14		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock													
Clock cycle time	^t KC	15		15		15		20		20		ns	
Clock HIGH time	^t KH	4		5		5		6		6		ns	
Clock LOW time	^t KL	4		5		5		6		6		ns	
Output Times													
Clock to output valid	^t KQ		9		10		11		12		14	ns	
Clock to output invalid	^t KQX	3		3		3		3		3		ns	
Clock to output in Low-Z	^t KQLZ	5		5		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5		5		6		6	ns	6, 7
OE to output valid	^t OEQ		5		5		5		6		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ		5		5		5		6		6	ns	6, 7
Setup Times													
Address	^t AS	2.5		2.5		2.5		3		3		ns	8, 10
Address Status (ADSC, ADSP)	^t ADSS	2.5		3		3		3		3		ns	8, 10
Address Advance (ADV)	^t AAS	2.5		3		3		3	1.	3		ns	8, 10
Write Signals	tWS	2.5		3		3		3		3		ns	8, 10
(BW1, BW2, BW3, BW4, BWE, GW)												1.15	
Data-in	^t DS	2.5		3	1.1	3		3		3		ns	8, 10
Chip Enables (CE, CE2, CE2)	^t CES	2.5		3		3		3		3		ns	8, 10
Hold Times													
Address	^t AH	0.5		0.5		0.5	1	0.5		0.5		ns	8, 10
Address Status (ADSC, ADSP)	^t ADSH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Address Advance (ADV)	^t AAH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Write Signals	tWH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
(BW1, BW2, BW3, BW4, BWE, GW)													
Data-in	^t DH	0.5		0.5		0.5		0.5		0.5		ns	8, 10
Chip Enables (CE, CE2, CE2)	^t CEH	0.5		0.5		0.5		0.5		0.5		ns	8, 10


MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

AC TEST CONDITIONS

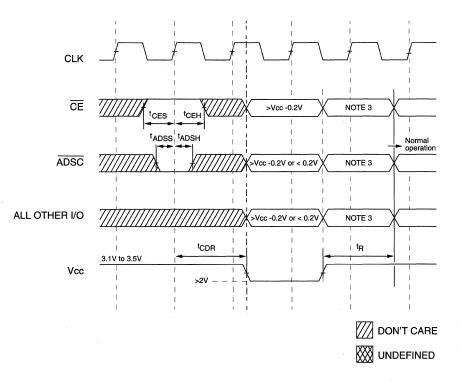
Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC / 2$.
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

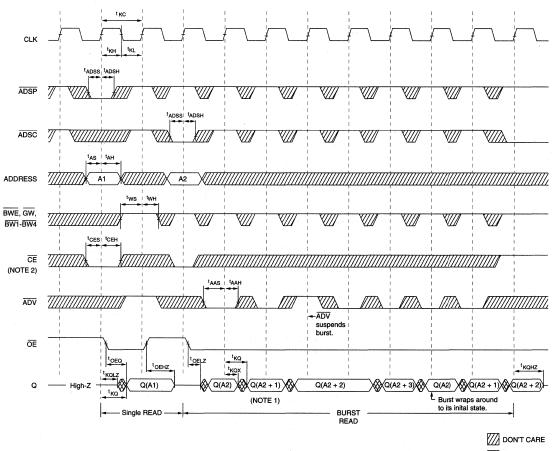


MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			v
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}}, \ \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \text{Vin} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \text{Vcc} = 2\text{V} \end{array}$	ICCDR		TBD	μA	15
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 16
Operation Recovery Time		^t R	^t KC		ns	4

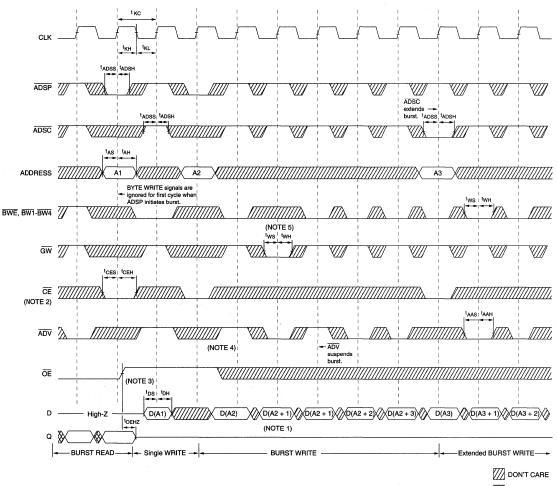
LOW Vcc DATA RETENTION WAVEFORM


- NOTE: 1. All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.
 - 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

SYNCHRONOUS SRAM

READ TIMING

:[**—**])

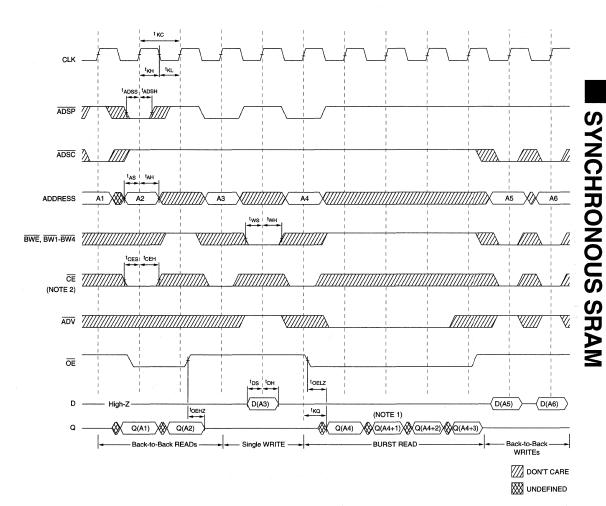

SYNCHRONOUS SRAM

- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. Timing is shown assuming that the device was not enabled before entering into this sequence. \overline{OE} does not cause Q to be driven until after the following clock rising edge.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

WRITE TIMING

W UNDEFINED


NOTE:

SYNCHRONOUS SRAM

- Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by GW LOW or GW HIGH and BWE, BW1- BW4 LOW.

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

READ/WRITE TIMING

NOTE: 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.

- 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
- 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
- 4. GW is HIGH.

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron 32K x 36 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

 $\Delta^t KQ = 0.016 \text{ ns}/pF \times \Delta C_L pF.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the

device is a 12ns part, the worst case ^tKQ becomes 11.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 32K x 36 Synchronous SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 32K depth to 64K depth with no extra logic.

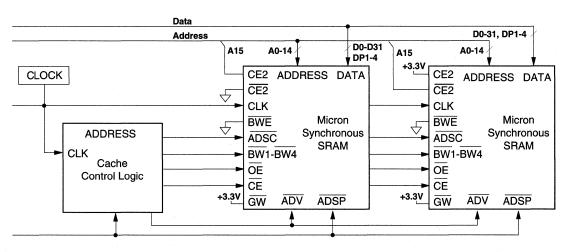


Figure 3 DEPTH EXPANSION FROM 32K x 36 TO 64K x 36

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

:BON

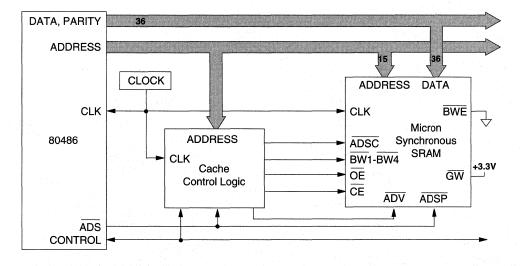
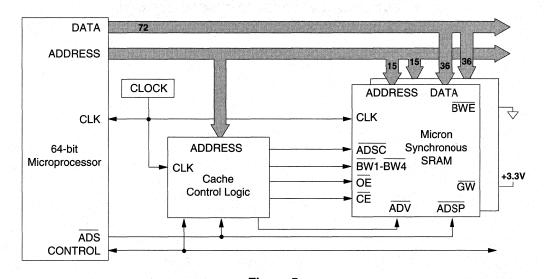
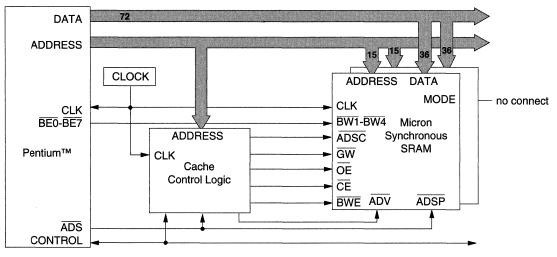



Figure 4 128K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 50 MHz 80486 USING ONE MT58LC32K36B2LG-12 SYNCHRONOUS SRAM

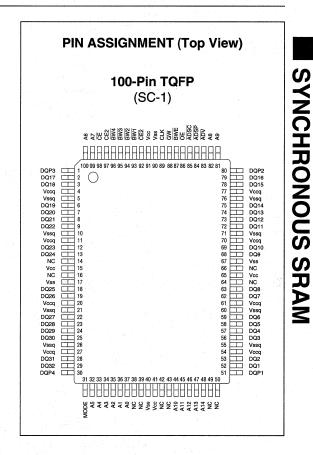


SYNCHRONOUS SRAM

MT58LC32K36B2 32K x 36 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

Figure 6 256K BYTE SECONDARY CACHE WITH PARITY, INTERLEAVED BURST AND DIRECT CONNECTION OF BE# LINES TO SYNCBURST SRAM



MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM

SYNCHRONOUS SRAM

32K x 36 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS AND OUTPUTS AND BURST COUNTER

FEATURES

- Fast access times: 4.5, 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant I/O
- · Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pins (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- DIMMs also available

OPTIONS	MARKING
Timing	
4.5ns access/8ns cycle	-4.5
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Packages	
100-pin TQFP	LG
• Low power	Р
• 2V data retention, low power	L

Part Number Example: MT58LC32K36C4LG-7 P

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58LC32K36C4SRAM integrates a 32K \times 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable (CE), two additional chip enables for easy depth expansion (CE2, CE2), burst

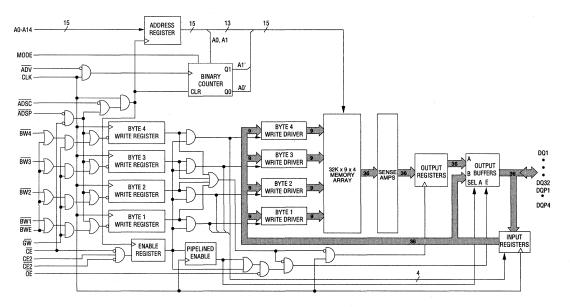
control inputs (ADSC, ADSP, ADV) byte write enables (BW1, BW2, BW3, BW4, BWE) and global write (GW).

Asynchronous inputs include the output enable (\overline{OE}) , clock (CLK) and burst mode (MODE). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to four bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (ADSP) or address status controller (ADSC) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

MT58LC32K36C4 Rev. 11/94

MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM


GENERAL DESCRIPTION (continued)

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. <u>BWT</u> controls DQ1-DQ8 and DQP1, <u>BW2</u> controls DQ9-DQ16 and DQP2, <u>BW3</u> controls DQ17-DQ24 and DQP3, and <u>BW4</u> controls DQ25-DQ32 and DQP4, conditioned by <u>BWE</u> being LOW. <u>GW</u> LOW causes all bytes to be written. WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by <u>OE</u> to improve cache system response. The device incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance. The "L" version of this device has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The MT58LC32K36C4 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5Vtolerant. The device is ideally suited for PentiumTM and PowerPCTMpipelined systems and systems that benefit from a very wide high-speed data bus.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

SYNCHRONOUS SRAM

MICEON

MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM

PIN DESCRIPTIONS

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
93, 94, 95, 96	<u>BW1, BW2,</u> BW3, BW4	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A Byte Write Enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW1 controls DQ1-DQ8 and DQP1. BW2 controls DQ9-DQ16 and DQP2. BW3 controls DQ17- DQ24 and DQP3. BW4 controls DQ25-DQ32 and DQP4. Data I/O are tristated if any of these four inputs are LOW.
89	CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
98	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
92	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
86	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
83	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
84	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and \overline{ADSC} but dependent upon CE2 and $\overline{CE2}$. \overline{ADSP} is ignored if \overline{CE} is HIGH. Power-down state is entered if CE2 is LOW or $\overline{CE2}$ is HIGH.
85	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
87	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW	Input	Global Write: This active low input allows a full 36-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
14, 16, 38, 39, 42, 43, 49, 50, 64, 66	NC	- 	No Connect: These signals are not internally connected.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ1-DQ32		SRAM Data I/O: Byte 1 is DQ1-DQ8; Byte 2 is DQ9-DQ16; Byte 3 is DQ17-DQ24; Byte 4 is DQ25-DQ32. Input data must meet setup and hold times around the rising edge of CLK.
51, 80, 1, 30	DQP1-DQP4		Parity Data I/O: Byte 1 Parity is DQP1; Byte 2 Parity is DQP2; Byte 3 Parity is DQP3; Byte 4 Parity is DQP4.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
15, 41, 65, 91	Vcc	Supply	Power Supply: +3.3V ±5%
17, 40, 67, 90	Vss	Supply	Ground: GND
4, 11, 20, 27, 54, 61, 70, 77	VccQ	Supply	Isolated Output Buffer Supply: +3.3V ±5%
5, 10, 21, 26, 55, 60, 71, 76	VssQ	Supply	Isolated Output Buffer Ground: GND

PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE	PRESENT CYC	NEXT CYCLE				
OPERATION	BWs	OPERATION	CE	BWs	ŌE	OPERATION
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	Initiate READ cycle Register A(n), Q = D(n-1)	L	Н	L	Read D(n)
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L ^{2, 3}	No new cycle Q = D(n-1)	Н	Н	L	No carry-over from previous cycle
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	No new cycle Q = HIGH-Z	Н	Н	н	No carry-over from previous cycle
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L ²	No new cycle $Q = D(n-1)$ for one byte	Н	н	L	No carry-over from previous cycle

NOTE: 1. Previous cycle may be either BURST or NONBURST cycle.

- 2. BWE is LOW when one or more BWn is LOW.
- 3. GW LOW will yield identical results.

MT58LC32K36C4 32K x 36 SYNCBURST™ SRAM

INTERLEAVED BURST ADDRESS TABLE (MODE = NC)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)			
XX00	XX01	XX10	XX11			
XX01	XX00	XX11	XX10			
XX10	XX11	XX00	XX01			
XX11	XX10	XX01	XX00			

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

PARTIAL TRUTH TABLE FOR WRITEs

Function	GW	BWE	BW1	BW2	BW3	BW4
READ	н	Н	X	Х	X	X
READ	: H	L	н	Н	Н	Н
WRITE Byte 1	н	L	L	Н	H	Н
WRITE all bytes	н	L	L	L	L	L
WRITE all bytes	L	Х	х	Х	Х	X

NOTE: Using BWE and BW1 through BW4, any one or more bytes may be written.

TRUTH TABLE

OPERATION	ADDRESS USED	CE	CE2	CE2	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ
Deselected Cycle, Power-down	None	Н	X	Х	X	L	Х	X	X	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	Х	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	X	L	X	Х	X	X	L-H	High-Z
Deselected Cycle, Power-down	None	Ľ	Х	² L	н	L	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	н	L	Х	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	Н	L	X	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	н	L	Х	Ľ	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	H	Н	L	Х	H	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	Н	L	Х	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	X	Х	н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	X	н	Н	Ľ	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	X	X	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	X	X	Н	L	Н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	X	X	н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	н	Х	X	X	H H	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Х	X	н	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	X	Н	н	Н	н	H	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	X	н	Н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	Х	Х	Х	н	Н	Н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	н	н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	X	X	Н	Н	L .	X	L-H	D

- **NOTE:** 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW1, BW2, BW3 or BW4) and BWE are LOW or GW is LOW. WRITE=H means all byte write enable signals are HIGH.
 - BW1 enables WRITEs to Byte 1 (DQ1-DQ8, DQP1). BW2 enables WRITEs to Byte 2 (DQ9-DQ16, DQP2). BW3 enables WRITEs to Byte 3 (DQ17-DQ24, DQP3). BW4 enables WRITEs to Byte 4 (DQ25-DQ32, DQP4).
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a WRITE operation following a READ operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vs	s0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See technical note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V $\pm5\%$ unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILı	-1	1	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vouт ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA	Vон	2.4		V	1, 11
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1, 11
Supply Voltage		Vcc	3.1	3.5	V	1

					MAX]	
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-4.5	-5	-6	-7	-8	UNITS	NOTES
Power Supply Current: Operating	Device selected; all inputs ≤ V⊫ or ≥ V⊮; cycle time ≥ ^t KC MIN; Vcc = MAX; outputs open	lcc	ALL	200	475	400	350	300	250	mA	3, 12, 13
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC, ADSP, GW, BWs, ADV ≥ VIH; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc1	ALL	30	65	60	55	50	45	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB2	STD	0.5	5	5	5	5	5	mA	12, 13
	all inputs static; CLK frequency = 0	1302	Р	0.2	2	2	2	2	2	mA	12, 10
TTL Standby	Device deselected; Vcc = MAX; all inputs \leq VIL or \geq VIH;	ISB3	STD	15	25	25	25	25	25	mA	12, 13
	all inputs static; CLK frequency = 0		Р	8	18	18	18	18	18	mA	
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB4	ALL	30	65	60	55	50	45	mA	12, 13

CAPACITANCE

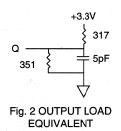
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1 MHz	Сі	3	4	рF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	7	pF	4

DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air, Soldered on 4.25 x	θ _{JA}	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer circuit board	θ _{JC}	1	°C/W	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

DESCRIPTION			CC	ONDITI	DNS		SY	MBOL	TY	P	UNITS	S N	OTES
Thermal resistance - Junction to	Ambient	Still	Air, S	oldere	d on 4	.25 x	e	JA	20		°C/W	1	
Thermal resistance - Junction to	Case	1.125	inch 4	1-laver	circui	t board	_	JC JC	1		°C/M	1	
ELECTRICAL CHARACTER Note 5) (0°C $\leq T_A \leq 70°C$; Vcc = 3.		ANE) REG	сом	MEN	DED	AC C	OPEF	RATIN	IG C	OND	ΙΤΙΟΝ	IS
		-4	.5		5	-6			-7		8	-	
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTE
Clock									h	L			
Clock cycle time	^t KC	8		10		12		15		20		ns	
Clock HIGH time	^t KH	3		4		4.5		5		6		ns	
Clock LOW time	^t KL	3		4		4.5		5		6		ns	
Output Times													
Clock to output valid	^t KQ		4.5		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2		2		2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		4		5		5		5		ns	6, 1
Clock to output in High-Z	^t KQHZ		4.5		5		5		6		6	ns	6, 1
OE to output valid	^t OEQ		4.5		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		0		ns	6, '
OE to output in High-Z	^t OEHZ		3		4		5		6		6	ns	6, 1
Setup Times													
Address	^t AS	2.5		2.5		2.5		2.5		3		ns	8, 1
Address Status (ADSC, ADSP)	^t ADSS	2.5		2.5		2.5		2.5		3		ns	8, 1
Address Advance (ADV)	^t AAS	2.5		2.5		2.5		2.5		3		ns	8, 1
Write Signals (BW1, BW2, BW3, BW4, BWE, GW)	tWS	2.5		2.5		2.5		2.5		3		ns	8, 1
Data-in	^t DS	2.5		2.5		2.5		2.5		3		ns	8, 1
Chip Enables (CE, CE2, CE2)	^t CES	2.5		2.5		2.5		2.5		3		ns	8, 1
Hold Times									1	14			
Address	tAH	0.5		0.5		0.5		0.5		0.5		ns	8, 1
Address Status (ADSC, ADSP)	^t ADSH	0.5		0.5		0.5		0.5		0.5		ns	8, 1
	1 74 411	0.5	1	0.5		0.5		0.5		0.5		ns	8, 1
Address Advance (ADV)	tAAH	0.0									<u> </u>		
	tWH	0.5		0.5		0.5		0.5		0.5		ns	8, 1
Address Advance (ADV) Write Signals				-		0.5 0.5		0.5 0.5		0.5 0.5		ns ns	8, ⁻ 8, ⁻

30pF



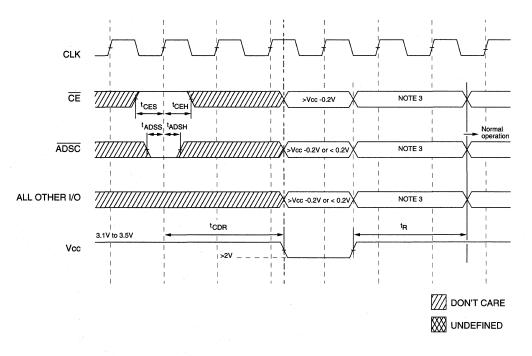
Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load S	See Figures 1 and 2

$Q \xrightarrow{Z_0 = 50\Omega} \begin{cases} 50\Omega \\ V_T = 1.5V \end{cases}$

Fig. 1 OUTPUT LOAD EQUIVALENT

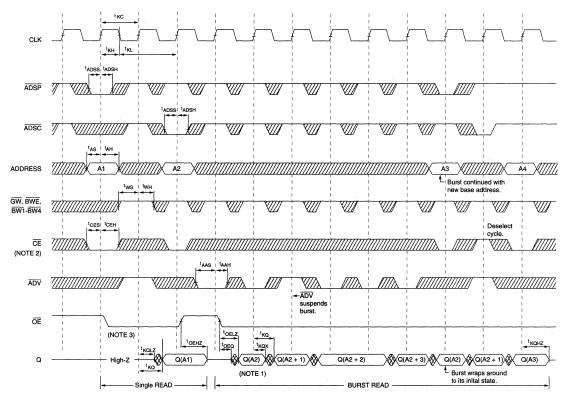
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC / 2$.
- Undershoot: $VIL \ge -2.0V$ for $t \le {}^{t}KC / 2$.Power-up: $VIH \le +6.0V$ and $Vcc \le 3.1V$
for $t \le 200ms$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC or ADV LOW) or ADSP LOW for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.


- SYNCHRONOUS SRA
- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least two clock cycles before data retention mode is entered.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}2} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \overline{\text{ViN}} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \overline{\text{Vcc}} = 2\text{V} \end{array}$	ICCDR		TBD	μA	15
Chip Deselect to Data Retention Time		^t CDR	2 ^t KC		ns	4, 16
Operation Recovery Time	· · · · · · · · · · · · · · · · · · ·	^t R	2 ^t KC		ns	4



NOTE: 1. All inputs must be ≥ Vcc - 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.

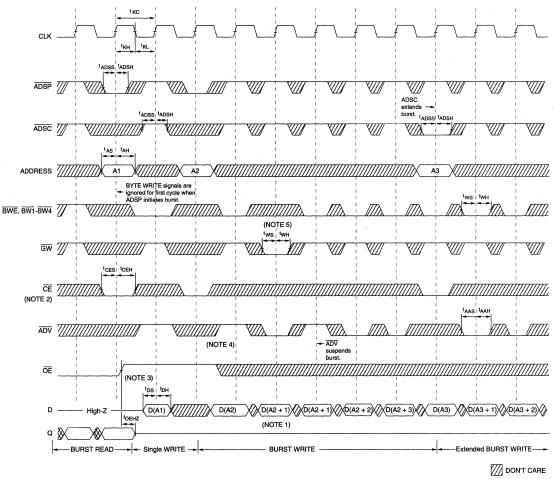
- 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
- 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM

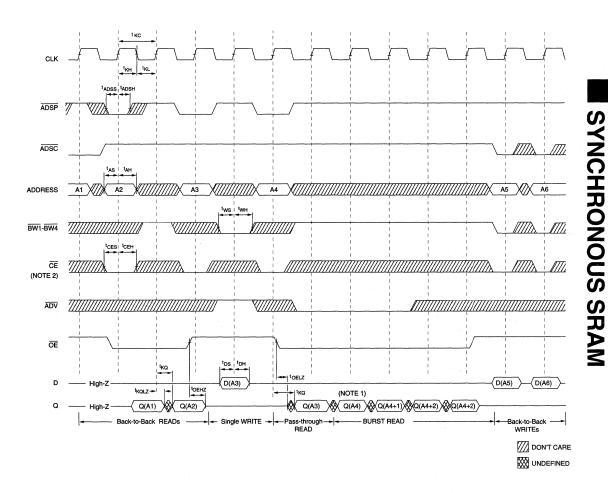
READ TIMING

DON'T CARE

SYNCHRONOUS SRAM


NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.

- 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
- 3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.


MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM

WRITE TIMING

- NOTE:
 - Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 4. ADV must be HIGH to permit a WRITE to the loaded address.
 - 5. Full width WRITE can be initiated by GW LOW or GW HIGH and BWE, BW1- BW4 LOW.

READ/WRITE TIMING

NOTE:

- 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
 - 2. CE2 and CE2 have timing identical to CE. On this diagram, when CE is LOW, CE2 is LOW and CE2 is HIGH. When CE is HIGH, CE2 is HIGH and CE2 is LOW.
 - 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 4. GW is HIGH.
 - 5. Back-to-back READs may be controlled by either ADSP or ADSC.

APPLICATION INFORMATION

LOAD DERATING CURVES

The Micron 32K x 36 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

$\Delta^{t}KQ = 0.016 \text{ ns/pF} \times \Delta C_{L} \text{ pF.}$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_L is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by 0.016 x 8 = 0.128ns. If the device is a 12ns part, the worst case ^tKQ becomes 11.87ns (approximately).

Consult the factory for copies of I/O current versus voltage curves and capacitive loading derating curves.

DEPTH EXPANSION

The Micron 32K x 36 Synchronous SRAM incorporates two additional chip enables to facilitate simple depth expansion. As shown in Figure 3, this permits easy cache upgrades from 32K depth to 64K depth with no extra logic. The chip enables are pipelined to allow contention-free transition between Micron devices which are physically and electrically close together.

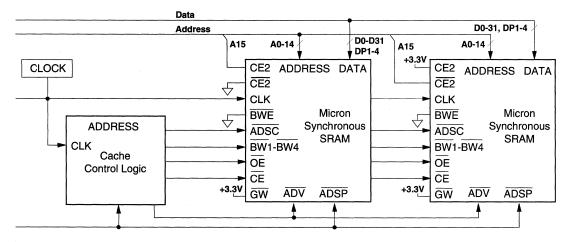


Figure 3 DEPTH EXPANSION FROM 32K x 36 TO 64K x 36

MT58LC32K36C4 32K x 36 SYNCBURST[™] SRAM

APPLICATION EXAMPLES

LHON

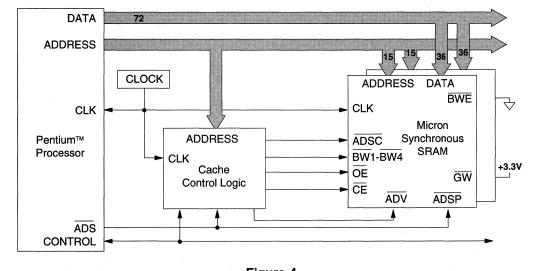


Figure 4 256K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 66 MHz PENTIUM USING TWO MT58LC32K36B2LG-9 SYNCHRONOUS SRAMs

Figure 5 256K BYTE SECONDARY CACHE WITH PARITY, INTERLEAVED BURST AND DIRECT CONNECTION OF BE# LINES TO SYNCBURST SRAM

MT58LC32K36C4 32K x 36 SYNCBURST™ SRAM

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

SRAM MODULE PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Packag	e and No	. of Pins	
Configuration	Functions	Number	Time (ns)	ZIP	SIMM	DIMM	Page
64K x 32	CE and OE	MT8S6432	12, 15, 20, 25	64	64	-	4-1
64K x 32	CE and OE	MT8LS6432	15, 20, 25	64	64	-	4-9
128K x 32	CE and OE	MT4S12832	15, 20, 25	64	64	-	4-17
128K x 32	CE and OE	MT4LS12832	17, 20, 25	64	64	-	4-25
256K x 32	CE and OE	MT8S25632	15, 20, 25	64	64	-	4-33
256K x 32	CE and OE	MT8LS25632	17, 20, 25	64	64	-	4-41
1 Meg x 32	CE and OE	MT8LS132	15, 20, 25, 35	72	72	-	4-49
32K x 64	SyncBurst™, Linear Burst	MT2LSYT3264T1	9, 10, 11, 12	-		160	4-57
32K x 64	SyncBurst, Interleaved Burst	MT2LSYT3264T2	9, 10, 11, 12	-	-	160	4-57
32K x 64	SyncBurst, Interleaved Burst, Pipelined	MT2LSYT3264T4	5, 6, 7, 8	-	-	160	4-69
32K x 64	SyncBurst, Linear Burst, Pipelined	MT2LSYT3264T6	5, 6, 7, 8	-	-	160	4-69
32K x 64	SyncBurst, Linear/Interleaved Burst	MT2LSYT3264B2	9, 10, 11, 12	-	-	160	4-81
32K x 64	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT2LSYT3264C4	5, 6, 7, 8	-	-	160	4-87
32K x 72	SyncBurst, Linear Burst	MT2LSYT3272T1	9, 10, 11, 12	-	.=	160	4-93
32K x 72	SyncBurst, Interleaved Burst	MT2LSYT3272T2	9, 10, 11, 12	-	-	160	4-93
32K x 72	SyncBurst, Interleaved Burst, Pipelined	MT2LSYT3272T4	5, 6, 7, 8	-	-	160	4-107
32K x 72	SyncBurst, Linear Burst, Pipelined	MT2LSYT3272T6	5, 6, 7, 8	-	-	160	4-107
32K x 72	SyncBurst, Linear/ Interleaved Burst	MT2LSYT3272B2	9, 10, 11, 12	-	-	160	4-121
32K x 72	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT2LSYT3272C4	5, 6, 7, 8	-	-	160	4-129
64K x 72	SyncBurst, Linear Burst	MT4LSY6472T1	9, 10, 11, 12	-	-	160	4-93
64K x 72	SyncBurst, Interleaved Burst	MT4LSY6472T2	9, 10, 11, 12	-	-	160	4-93
64K x 72	SyncBurst, Interleaved Burst, Pipelined	MT4LSY6472T4	5, 6, 7, 8	-	-	160	4-107
64K x 72	SyncBurst, Linear Burst, Pipelined	MT4LSY6472T6	5, 6, 7, 8	-	-	160	4-107
64K x 72	SyncBurst, Linear/ Interleaved Burst	MT4LSYT6472B2	9, 10, 11, 12	-	-	160	4-121
64K x 72	SyncBurst, Linear/ Interleaved Burst, Pipelined	MT4LSYT6472C4	5, 6, 7, 8	-	-	160	4-129

MICHON

MT8S6432 64K x 32 SRAM MODULE

SRAM MODULE

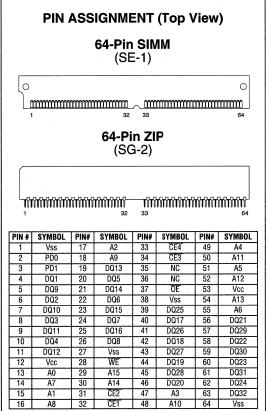
64K x 32 SRAM

FEATURES

- High speed: 12, 15, 20 and 25ns
- High-performance, low-power CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with CE and OE functions
- Low profile
- Industry-standard pinout
- All inputs and outputs are TTL-compatible
- Upgradable with 128K x 32 and 256K x 32 modules

OPTIONS	MARKING
• Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
Packages	
64-pin SIMM	Μ
64-pin ZIP	Z
• 2V data retention (optional)	L
 Low power (optional) 	Р
• Part Number Example: MT8	S6432Z-15 P

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

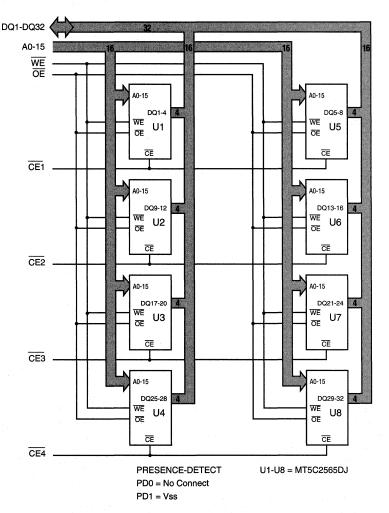

GENERAL DESCRIPTION

The MT8S6432 is a high-speed SRAM memory module containing 65,536 words organized in a x32-bit configuration. The module consists of eight $64K \times 4$ fast SRAMs mounted on a 64-pin, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable (WE) and chip enable (CE) inputs are both LOW. Reading is accomplished when WE remains HIGH and \overline{CE} and output enable (OE) are LOW. \overline{CE} and / or OE can set the output in a High-Z state for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density, allowing interchangeable use of alternate density, industry-standard modules. Four chip enable inputs, ($\overline{CE1}$, $\overline{CE2}$, $\overline{CE3}$ and $\overline{CE4}$) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology.



All module components may be powered from a single +5V DC supply and all inputs and outputs are fully TTL-compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

The "P" version provides a reduction in both operating current (Icc) and TTL standby current (Isb). The latter is achieved through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

MT8S6432 64K x 32 SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	rsig L ija	L	н	Q	ACTIVE
NOT SELECTED	H	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +7V	1
Storage Temperature	2
Power Dissipation 8W	I
Short Circuit Output Current 50mA	1
Voltage on Any Pin Relative to Vss1V to Vcc +1V	1

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDIT	IONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		· · · ·	VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	A0-A15, WE, OE	IL:1	-40	40	μA	
		CE1-CE4	ILi2	-10	10	μΑ	
Output Leakage Current	Output(s) disabled	DQ1-DQ32	ILo	-5	5	μΑ	
A Contract of the second second second second second second second second second second second second second s	$0V \le V$ OUT $\le V$ CC						
Output High Voltage	Юн = -4	.0mA	Voн	2.4		V	1
Output Low Voltage	IOL = 8.	0mA	Vol		0.4	V	1
Supply Voltage			Vcc	4.5	5.5	V	1
en an					· .		
				М	AX		
DESCRIPTION	CONDITIONS	SYMBOL T	YP -12 [†]	-15†	-20	-25 U	NITS NOTES
Operating Current	$\overline{CE} < V_{\mu} : V_{\alpha\alpha} = MA$	V I I			1		

						M	AX]	ана. 1911 г. – Каланана 1911 г. – Калананана
DESCRIPTION	CC	ONDITIONS	SYMBOL	ТҮР	-12†	-15†	-20	-25	UNITS	NOTES
Operating Current TTL Input Levels	$\overline{CE} \le V_{IL}$; Vcc = MAX f = MAX = 1/ tRC outputs open		Icc	824	1,520	1,360	1,200	1,040	mA	3, 13
	F	P Version	Icc	768	1	-	1,080	1,000	mA	3, 13
Power Supply Current: Standby	f = N	$\overline{CE} \ge V_{H}; V_{CC} = MAX$ $f = MAX = 1/ {}^{t}RC$ outputs open		192	440	400	360	320	mA	13
	F	Version	ISB1	11.2	-	-	32	32	mA	13
	Vin ≤	$\overline{CE} \ge V_{CC} - 0.2V; V_{CC} = MAX$ $V_{IN} \le V_{SS} + 0.2V \text{ or}$ $V_{IN} \ge V_{CC} - 0.2V; f = 0$		4.8	40	40	40	40	mA	13
	F	P Version	ISB2	3.2		-	3	3	mA	13

[†] P version not available with this speed.

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A15, WE, OE	T _A = 25°C; f = 1 MHz	С	60	рF	4
Input Capacitance: CE1- CE4	Vcc = 5V	C12	15	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5V ±10%)

ON

		-	12	-	15	-1	20	-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle								·	·		
READ cycle time	tRC	12		15		20		25	1	ns	
Address access time	^t AA	-	12		15		20		25	ns	
Chip Enable access time	^t ACE		12		15		20	4.1	25	ns	
Output hold from address change	tOH	3		3	1	3		3		ns	
Chip Enable LOW to output in Low-Z	^t LZCE	3		3		3		3		ns	7
Chip Enable to output in High-Z	^t HZCE		6	1.1.4	8		9		9	ns	6, 7
Chip Enable LOW to power-up time	tPU	0		0		0		0		ns	
Chip Enable HIGH to power-down time	^t PD		12		15		20		25	ns	T.
Output Enable access time	^t AOE		6		8		8		8	ns	
Output Enable LOW to output in Low-Z	^t LZOE	0	100	0		0		0		ns	
Output Enable HIGH to output in High-Z	tHZOE		6		6		7		7	ns	6
WRITE Cycle				.							
WRITE cycle time	tWC	12		15		20		25		ns	
Chip Enable to end of write	tCW	8	· ·	10	×	12		15		ns	
Chip Enable to end of write (P-version)	^t CW	-		-	1	12		15		ns	
Address valid to end of write	tAW	8		10		12		15		ns	
Address valid to end of write (P-version)	tAW	-		-		12		15		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	^t AH	1		1		1		1		ns	
WRITE pulse width	^t WP1	8		10		12		15		ns	
WRITE pulse width	tWP2	12		12		15		15	1. A. A. A.	ns	1
Data setup time	^t DS	7		7		10		10		ns	· ·
Data hold time	^t DH	0		0		0		0		ns	
Write Enable LOW to output in Low-Z	^t LZWE	2		2		2		2		ns	7
Write Enable HIGH to output in High-Z	tHZWE		6	0	7	0	8	0	10	ns	6,7

MT8S6432 64K x 32 SRAM MODULE

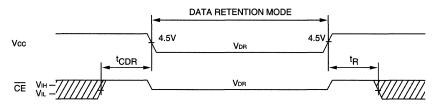
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

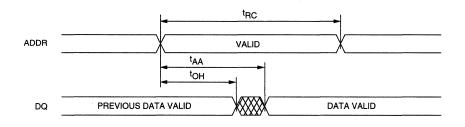
Fig. 1 OUTPUT LOAD EQUIVALENT

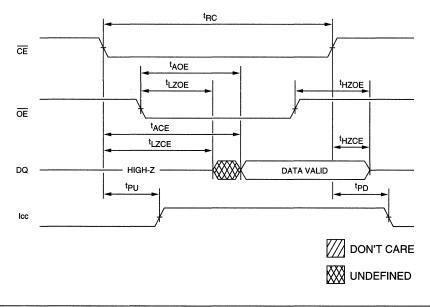
NOTES

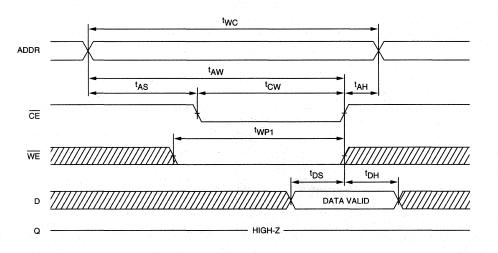
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

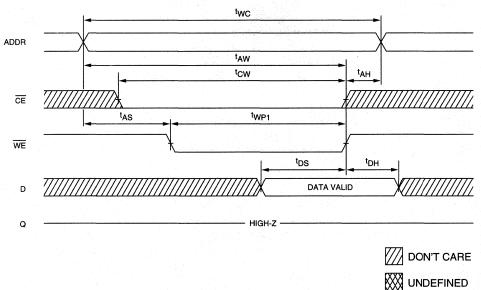

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC=Read Cycle Time
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 20ns cycle time.
- 14. Typical values are measured at 25°C.

DATA RETENTION ELECTRICAL CHARACTERISTICS

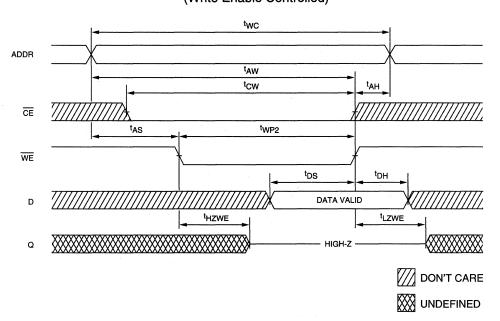

DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$ $V_{IN} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		1.0	2.4	mA	14
L Version	or $\leq 0.2V$	Vcc = 3V	ICCDR		1.4	4	mA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		1.0	2.4	mA	14
LP Version		Vcc = 3V	ICCDR		1.4	4	mA	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4,11


LOW Vcc DATA-RETENTION WAVEFORM


READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 2^{7, 8, 10}

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc. WRITE CYCLE NO. 1¹² (Chip Enable Controlled)


WRITE CYCLE NO. 2^{7, 12, 15} (Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).

WRITE CYCLE NO. 3^{7, 12, 16} (Write Enable Controlled)

SRAM MODULE

NOTE: Output enable (\overline{OE}) is active (LOW).

MT8LS6432 64K x 32 SRAM MODULE

SRAM MODULE

64K x 32 SRAM

LOW VOLTAGE

DQ12

Vcc

A0

A7

A1

A8

11

12

13

14

15

16

27

28

29

30

31

32

Vss

WF

A15

A14

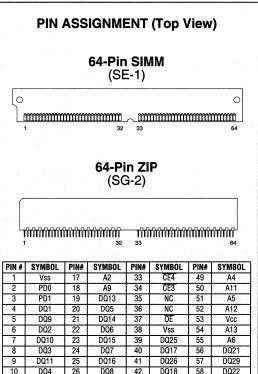
CE2

CE1

FEATURES

- High speed: 15, 20 and 25ns
- High-performance, low-power CMOS process
- Single $+3.3V \pm 0.3V$ power supply
- 5V-tolerant I/O
- Easy memory expansion with CE and OE options
- Low profile
- Industry-standard pinout
- All inputs and outputs are TTL-compatible
- Upgradable with 128K x 32 and 256K x 32 modules

OPTIONS		MARKING
 Timing 		
15ns access		-15
20ns access		-20
25ns access		-25
 Packages 		
64-pin SIMM		М
64-pin ZIP		Ζ
• 2V data retention	on (optional)	Ľ


• Part Number Example: MT8LS6432Z-20 L

GENERAL DESCRIPTION

The MT8LS6432 is a high-speed SRAM memory module containing 65,536 words organized in a x32-bit configuration. The module consists of eight low voltage 64K x 4 fast SRAMs mounted on a 64-pin, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable (WE) and chip enable (CE) inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and output enable (OE) are LOW. CE and /or OE can set the output in a High-Z state for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density, allowing interchangeable use of alternate density, industry standard

modules. Four chip enable inputs, $(\overline{CE1}, \overline{CE2}, \overline{CE3})$ and $\overline{CE4}$) are used to enable the module's 4 bytes independently.

43

44

45

46

47

48

D027

D019

DQ28

DQ20

A3

A10

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +3.3V DC supply and all inputs and outputs are fully TTLcompatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

59

60

61

62

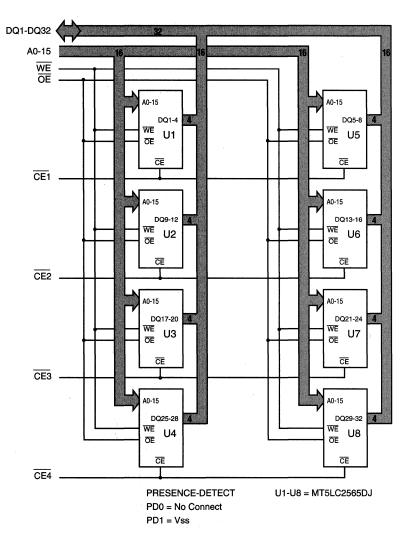
64

DQ30

D023

DQ31

DQ24


DQ32

Vss

MT8LS6432 64K x 32 SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	н	L	н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

MT8LS6432 64K x 32 SRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	0.5V to +6.0V
Storage temperature	55°C to +125°C
Power dissipation	8W
Short circuit output current	50mA
Voltage on Any Pin Relative to Vss	1V to Vcc +1V

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Vін	2.0	5.5V	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	A0-A15, WE, OE	IL:1	-8	8	μA	
		CE1-CE4	IL2	-2	2	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vou⊤ ≤ Vcc	DQ1-DQ32	ILo	-1	1	μA	
Output High Voltage	Іон = -4	.0mA	Vон	2.4		V	1
Output Low Voltage	lo∟ = 8.0mA		Vol		0.4	V	1
Supply Voltage			Vcc	3.0	3.6	V	1

					<u> </u>	al and	di shekara	<u>2</u> - 1 - 1 - 1	
						MAX			
DESCRIPTION	CONDITIONS	SYMBOL	VER	ТҮР	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX outputs open f = MAX = 1/tRC	lcc	STD, L	584	1,000	880	760	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX outputs open f = MAX = 1/tRC	ISB1	STD, L	136	280	240	200	mA	13
	CE ≥ Vcc - 0.2V; Vcc = MAX ViN ≥ Vcc - 0.2V or VIN ≤ Vss + 0.2V	ISB2	STD, L	8	24	24	24	mA	13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A15, WE, OE	T _A = 25°C; f = 1 MHz	CI1	56	pF	4
Input Capacitance: CE1-CE4	Vcc = 3.3V	Cı2	15	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	7	pF	4

MT8LS6432 64K x 32 SRAM MODULE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 0.3V)

DESCRIPTION		-	15	-:	20	-2	5		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle		•••••							
READ cycle time	tRC	15	1	20		25		ns	
Address access time	^t AA		15		20		25	ns	
Chip Enable access time	^t ACE		15		20		25	ns	
Output hold from address change	tОН	3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3	1	3		3		ns	
Chip disable to output in High-Z	^t HZCE		8		9		9	ns	6, 7
Chip Enable to power-up time	tPU	0	· ·	0		0		ns	4
Chip disable to power-down time	^t PD		15		20		25	ns	4
Output Enable access time	^t AOE		7		8		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output disable to output in High-Z	tHZOE		6		7		7	ns	6
WRITE Cycle		.					•		
WRITE cycle time	tWC	15		20		25		ns	
Chip Enable to end of write	tCW	10		12		15		ns	
Address valid to end of write	tAW	10		12		15		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	1		1		1		ns	
WRITE pulse width	tWP1	10		12		15		ns	
WRITE pulse width	tWP2	12		15		15		ns	
Data setup time	^t DS	8		10		10		ns	
Data hold time	^t DH	0		0		0		ns	
Write disable to output in Low-Z	tLZWE	3	1.	3		3		ns	7
Write Enable to output in High-Z	tHZWE		7		8		10	ns	6, 7

MT8LS6432 64K x 32 SRAM MODULE

AC TEST CONDITIONS

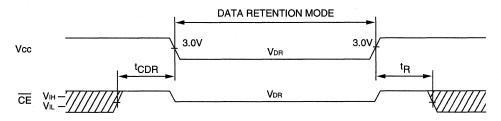
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1 <i>.</i> 5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

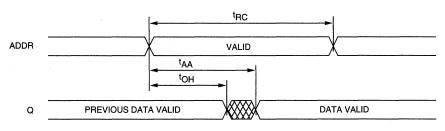
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $VIH \le +6.0$ for $t \le tKC/2$ Undershoot: $VIL \ge -2.0$ for $t \le tKC/2$ Power-up: $VIH \le +6.0$ for and $Vcc \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

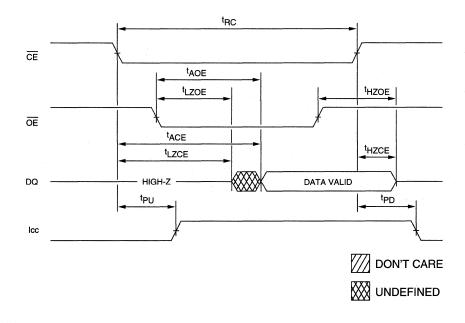
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ${}^{t}RC = READ$ cycle time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 25ns cycle time.
- Typical currents are measured at 25°C. MAX is over operating temperature range.


DESCRIPTION CONDITIONS SYMBOL MIN TYP MAX UNITS NOTES 2 ٧ Vcc for Retention Data VDR **Data Retention Current** $\overline{CE} \ge Vcc - 0.2V$ Other inputs: **ICCDR** 2.48 4 mΑ 14 $V_{IN} \ge V_{CC} - 0.2V$ or VIN ≤ Vss+0.2V Vcc = 2V^tCDR Chip Deselect to Data 0 ns 4 **Retention Time** ťΒ ^tRC **Operation Recovery Time** 4, 11 ns

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

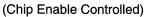


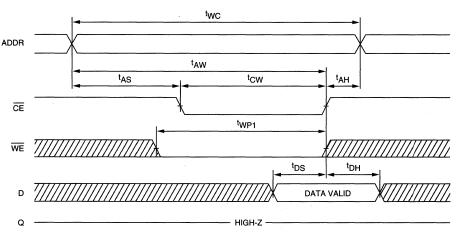
MT8LS6432 64K x 32 SRAM MODULE


LOW Vcc DATA RETENTION WAVEFORM

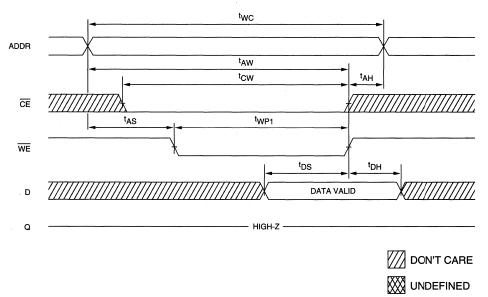
READ CYCLE NO. 1^{8,9}

READ CYCLE NO. 27, 8, 10




SRAM MODULE

MT8LS6432 64K x 32 SRAM MODULE


WRITE CYCLE NO. 1 12

WRITE CYCLE NO. 27, 12

(Write Enable Controlled)

NOTE: Output enable (OE) is inactive (HIGH).

MT8LS6432 64K x 32 SRAM MODULE

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT4S12832 128K x 32 SRAM MODULE

SRAM MODULE

128K x 32 SRAM

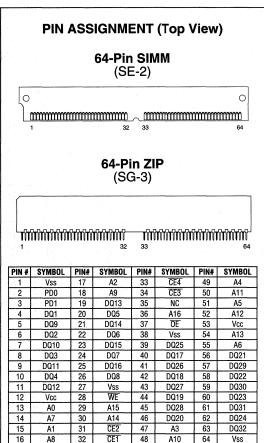
FEATURES

- High speed: 15, 20 and 25ns
- High-density 512KB design
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply
- Easy memory expansion with CE and OE functions
- All inputs and outputs are TTL-compatible
- Industry standard pinout
- Low profile
- Upgradable to a 256K x 32 module

OPTIONS		MARK	ING
• Timing 15ns access 20ns access 25ns access		-15 -20 -25	
 Packages 64-pin SIMM 64-pin ZIP 		M Z	
 2V data retention 2V data retention 	n (optional) n, low power	(optional) LP	

• Part Number Example: MT4S12832M-15 LP

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.


GENERAL DESCRIPTION

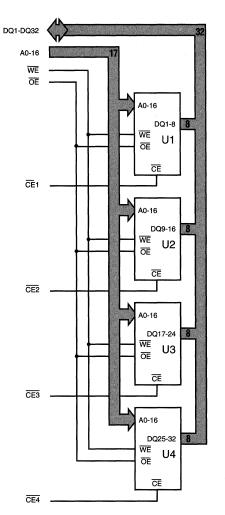
The MT4S12832 is a high-speed SRAM memory module containing 131,072 words organized in a x32-bit configuration. The module consists of four 128K x 8 fast SRAMs mounted on a 64-pin, single-sided, FR4-printed circuit board.

Data is written into the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and output enable (\overline{OE}) are LOW. \overline{CE} and /or \overline{OE} can set the output in a High-Z state for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density allowing interchangeable use of alternate density, industry-standard modules. Four chip enable inputs, $(\overline{CE1}, \overline{CE2}, \overline{CE3}$ and $\overline{CE4}$) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single

+5V supply and all inputs and outputs are fully TTL-compatible.


The "L" and "LP" versions each provide a 70 percent reduction in CMOS standby current (ISB2) over the standard version. The "LP" version also provides a 90 percent reduction in TTL standby current (ISB1). This is achieved by including gated inputs on the WE, \overline{OE} and address lines. The gated inputs also facilitate the design of battery backed systems where the designer needs to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

MT4S12832 Rev. 11/94

FUNCTIONAL BLOCK DIAGRAM

MICRON

U1-U4 = MT5C1008DJ

PRESENCE-DETECT PD0 = No Connect PD1 = No Connect

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss.	1V to +7V
Storage Temperature	55°C to +125°C
Power Dissipation	4W
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	1V to Vcc +1V

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDIT	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage			Vін	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage			VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	A0-A16, WE, OE	IL:1	-20	20	μA	
		CE1-CE4	IL12	-5	5	μA	
Output Leakage Current	Output(s) disabled 0V ≤ Vout ≤ Vcc	DQ1-DQ32	ILo	-5	5	μA	
Output High Voltage	Іон = -4	.0mA	Vон	2.4		V	1
Output Low Voltage	IOL = 8.	.0mA	Vol		0.4	V	1
Supply Voltage			Vcc	4.5	5.5	V	1

					MAX		1	
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	428	780	640	580	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	148	300	260	220	mA	13
	LP version only	ISB1	5.2	12	12	12	mA	13
	CE Vcc -0.2V; Vcc = MAX VIL ≤ Vss +0.2V VIH ≥ Vcc -0.2V; f = 0	ISB2	1.6	20	20	20	mA	13
	L and LP versions only	ISB2	1.2	6	6	6	mA	13

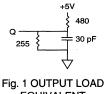
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A16, WE, OE	T _A = 25°C; f = 1 MHz	Cı	35	pF	4
Input Capacitance: CE1- CE4	Vcc = 5V	Ci2	10	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	10	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

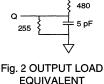
(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V ±10%)

DESCRIPTION		-15		-2	20	-2	:5		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			.						
READ cycle time	^t RC	15		20		25		ns	
Address access time	^t AA		15		20		25	ns	
Chip Enable access time	^t ACE		15	·	20		25	ns	
Output hold from address change	tОН	3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	7
Chip disable to output in High-Z	tHZCE		6		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip disable to power-down time	^t PD		15		20		25	ns	
Output Enable access time	^t AOE		6		6		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output disable to output in High-Z	tHZOE		5		6		10	ns	6
WRITE Cycle									
WRITE cycle time	tWC	15		20		25		ns	
Chip Enable to end of write	tCW	10		12		15		ns	
Address valid to end of write	tAW	10	1	12		15		ns	
Address setup time	tAS	0		0		0		ns	
Address hold from end of write	tAH	0	T	0		0		ns	
WRITE pulse width	^t WP1	9		12		15		ns	
WRITE pulse width	tWP2	12		15		15		ns	
Data setup time	^t DS	7		8		10		ns	
Data hold time	^t DH	0		0		0		ns	
Write disable to output in Low-Z	tLZWE	3		3		3		ns	7
Write Enable to output in High-Z	tHZWE		6		8		10	ns	6, 7


MT4S12832 128K x 32 SRAM MODUL

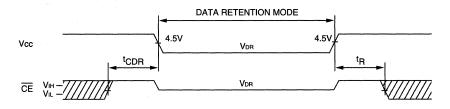
AC TEST CONDITIONS

-		Vec to 2 OV	
	Input pulse levels		
	Input rise and fall times	3ns	
	Input timing reference levels	1.5V	
	Output reference levels	1.5V	
	Output load	See Figures 1 and 2	

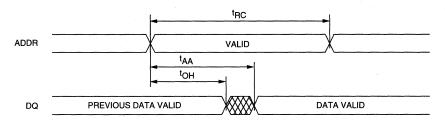

NOTES

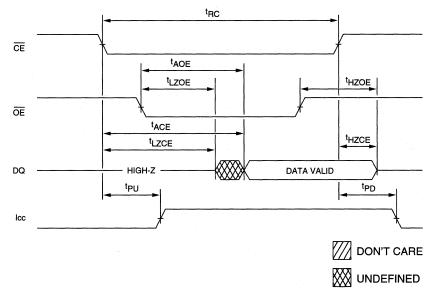
- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1, unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with C_{I} = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

EQUIVALENT

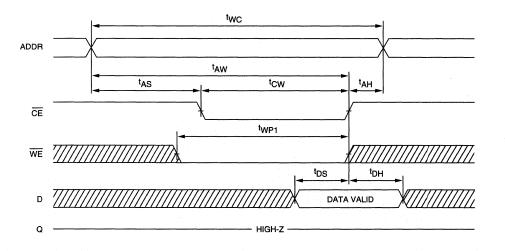

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. ^tRC=Read Cycle Time
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 25ns cycle time.
- 14. Typical currents are measured at 25°C.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

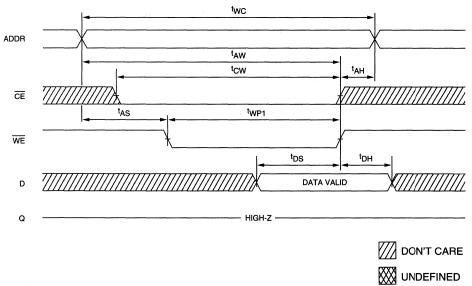

DESCRIPTION	CONDITIONS		SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		140	600	μA	14
Data Retention Current	VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V	ICCDR		240	1,000	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		140	600	μA	14
LP Version		Vcc = 3V	ICCDR		240	1,000	μA	14
Chip Deselect to Data Retention Time		·	^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4,11

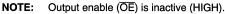

LOW Vcc DATA-RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

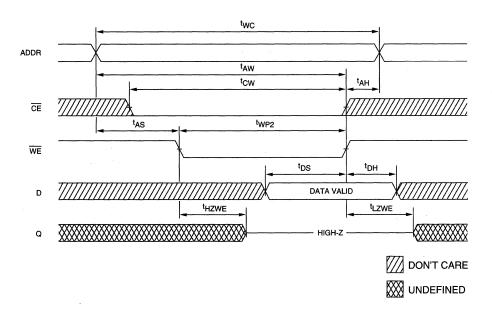


READ CYCLE NO. 27, 8, 10





WRITE CYCLE NO. 1¹² (Chip Enable Controlled)


WRITE CYCLE NO. 2¹² (Write Enable Controlled)

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

SRAM MODUL

MT4LS12832 128K x 32 SRAM MODUL

SRAM MODULE

FEATURES

- High speed: 17, 20 and 25ns
- High-density 512KB design
- High-performance, low-power, CMOS double-metal process
- Single $+3.3V \pm 0.3V$ power supply
- 5V-tolerant I/O
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ functions •
- All inputs and outputs are TTL-compatible
- Industry-standard pinout
- Low profile
- Upgradable to a 256K x 32 module

OPTIONS

MARKING

OLITONS	
Timing	
17ns access	-17
20ns access	-20
25ns access	-25
 Packages 	
64-pin SIMM	М
64-pin ZIP	Z
• 2V data retention (optional	al) L
• 2V data retention, low por	

Part Number Example: MT4LS12832M-20 LP

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.

GENERAL DESCRIPTION

The MT4LS12832 is a high-speed SRAM memory module containing 131,072 words organized in a x32-bit configuration. The module consists of four low voltage128K x 8 fast SRAMs mounted on a 64-pin, single-sided, FR4printed circuit board.

Data is written into the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and output enable (\overline{OE}) are LOW. \overline{CE} and $/ \text{ or } \overline{OE}$ can set the output in a High-Z state for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density allowing interchangeable use of alternate density, industrystandard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single

			64-Pi n (SE	SIN E-2)	ЛМ		
Lo							0
11	mmm	mm		~ m	mmmm	mm	mmm
	1		32	33			64
					_		
			64-Pi		Ρ		
			(SC	3-3)			
6				·			
							- 1
1	MMMMMM	វិលិលិ				TITTITTI	
ר י		TTTTTTT	1111111111 32	ТП 33		TITATI	
1 		ហាហា			TITTTTTTTTTTTTTT	TITITI	
	n n n n n n n n n n n n n n n n n n n	ហាហាហ			ANT ANT ANT ANT ANT ANT ANT ANT ANT ANT	າກາກາ	
	ATATATATATATA SYMBOL	177777777 [PIN#]			NTITITITITI Symbol	TITITITI PIN#	
PIN # 1			32	33	SYMBOL CE4		64
PIN #	SYMBOL	PIN#	32 Symbol	33 PIN#	SYMBOL	PIN#	64 Symbol
PIN # 1	SYMBOL Vss	PIN# 17	32 SYMBOL A2	33 PIN# 33	SYMBOL CE4	PIN# 49	64 Symbol A4
PIN # 1 2	SYMBOL Vss PD0	PIN# 17 18	32 SYMBOL A2 A9	33 PIN# 33 34	SYMBOL CE4 CE3	PIN# 49 50	64 SYMBOL A4 A11
PIN # 1 2 3	SYMBOL Vss PD0 PD1	PIN# 17 18 19	32 SYMBOL A2 A9 DQ13	33 PIN# 33 34 35	SYMBOL CE4 CE3 NC A16 OE	PIN# 49 50 51	64 SYMBOL A4 A11 A5
PIN # 1 2 3 4 5 6	SYMBOL Vss PD0 PD1 DQ1	PIN# 17 18 19 20	32 SYMBOL A2 A9 DQ13 DQ5	33 PIN# 33 34 35 36	SYMBOL CE4 CE3 NC A16	PIN# 49 50 51 52	64 SYMBOL A4 A11 A5 A12
PIN # 1 2 3 4 5	SYMBOL Vss PD0 PD1 DQ1 DQ9	PIN# 17 18 19 20 21	32 SYMBOL A2 A9 DQ13 DQ5 DQ14	33 PIN# 33 34 35 36 37	SYMBOL CE4 CE3 NC A16 OE	PIN# 49 50 51 52 53	64 SYMBOL A4 A11 A5 A12 Vcc
PIN # 1 2 3 4 5 6	SYMBOL Vss PD0 PD1 DQ1 DQ9 DQ2	PIN# 17 18 19 20 21 22	32 SYMBOL A2 A9 DQ13 DQ5 DQ14 DQ6	33 PIN# 33 34 35 36 37 38	SYMBOL CE4 CE3 NC A16 OE Vss	PIN# 49 50 51 52 53 54	64 SYMBOL A4 A11 A5 A12 Vcc A13
PIN # 1 2 3 4 5 6 7	SYMBOL Vss PD0 PD1 DQ1 DQ9 DQ2 DQ20	PIN# 17 18 19 20 21 22 23	32 SYMBOL A2 A9 DQ13 DQ5 DQ14 DQ6 DQ15	33 PIN# 33 34 35 36 37 38 39	SYMBOL CE4 CE3 NC A16 OE Vss DQ25	PIN# 49 50 51 52 53 54 55	64 SYMBOL A4 A11 A5 A12 Vcc A13 A6
PIN # 1 2 3 4 5 6 7 8	SYMBOL Vss PD0 PD1 DQ1 DQ9 DQ2 DQ10 DQ3	PIN# 17 18 19 20 21 22 23 23 24	32 SYMBOL A2 A9 DQ13 DQ5 DQ14 DQ6 DQ15 DQ7	33 PIN# 33 34 35 36 37 38 39 40	SYMBOL CE4 CE3 NC A16 OE Vss DQ25 DQ17	PIN# 49 50 51 52 53 54 55 56	64 SYMBOL A4 A11 A5 A12 Vcc A13 A6 DQ21
PIN # 1 2 3 4 5 6 7 8 9	SYMBOL Vss PD0 PD1 DQ1 DQ9 DQ2 DQ10 DQ3 DQ11	PIN# 17 18 19 20 21 22 23 24 25	32 SYMBOL A2 A9 DQ13 DQ5 DQ14 DQ6 DQ15 DQ7 DQ16	33 9 IN# 33 34 35 36 37 38 39 40 41	SYMBOL CE4 CE3 NC A16 OE Vss DQ25 DQ17 DQ26	PIN# 49 50 51 52 53 54 55 56 57	64 SYMBOL A4 A11 A5 A12 Vcc A13 A6 DQ21 DQ29
PIN # 1 2 3 4 5 6 7 8 9 10	SYMBOL Vss PD0 PD1 DQ1 DQ9 DQ2 DQ10 DQ3 DQ11 DQ11 DQ4	PIN# 17 18 19 20 21 22 23 24 25 26	32 SYMBOL A2 A9 DQ13 DQ5 DQ14 DQ6 DQ15 DQ7 DQ16 DQ8	33 PIN# 33 34 35 36 37 38 39 40 41 42	SYMBOL CE4 CE3 NC A16 OE Vss DQ17 DQ26 DQ18	PIN# 49 50 51 52 53 54 55 56 57 58	64 SYMBOL A4 A11 A5 A12 Vcc A13 A6 DQ21 DQ29 DQ22

+3.3V DC supply and all inputs and outputs are fully TTLcompatible.

46

47

48

DQ20

A3

A10

62

63

64

DQ24

DQ32

Vss

The "L" and "LP" versions each provide a significant reduction in CMOS standby current (ISB2) over the standard version. The "LP" version also provides a significant reduction in TTL standby current (ISB1). This is achieved by including gated inputs on the \overline{WE} , \overline{OE} and address lines. The gated inputs also facilitate the design of battery backed systems where the designer needs to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

14

15

16

Α7

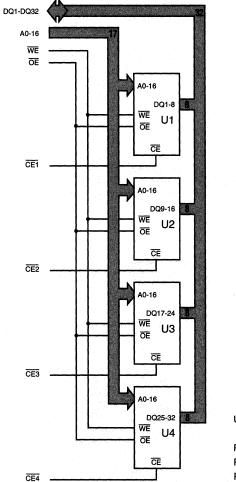
A1

A8

30

31

32


A14

CF2

CE1

MT4LS12832 128K x 32 SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

U1-U4 = MT5LC1008DJ

PRESENCE-DETECT PD0 = No Connect PD1 = No Connect

TRUTH TABLE

MODE	OE	CE	WE	DQ	POWER
STANDBY	X	н	Х	HIGH-Z	STANDBY
READ	L	L	н	Q	ACTIVE
NOT SELECTED	Н	L	н	HIGH-Z	ACTIVE
WRITE	X	L	L	D	ACTIVE

MT4LS12832 Rev. 11/94

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relat	ive to Vss0.5V to +4.6V
VIN	0.5V to +6.0V
Storage temperature	
Power dissipation	
	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDIT	IONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.0	5.5V	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.3	0.8	V	1,2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	A0-A16, WE, OE	ILI1	-4	4	μΑ	
		CE1-CE4	IL12	-1	1	μA	
Output Leakage Current	Output(s) disabled	DQ1-DQ32	ILo	-1	1	μA	
	$0V \le VOUT \le VCC$	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1.1	
Output High Voltage	Юн = -4	Іон = -4.0mA		2.4	an Brainn	V	1
Output Low Voltage	IOL = 8.	.0mA	Vol		0.4	V	1
Supply Voltage			Vcc	3.0	3.6	V	1

						MAX			
DESCRIPTION	CONDITIONS	SYMBOL	VER	ТҮР	-17	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	ALL	280	620	580	540	mA	3, 13
Power Supply Current: Standby	$\overline{CE} \ge V_{IH}; V_{CC} = MAX$ $f = MAX = 1/ {}^{t}RC$	ISB1	STD,L	80 6	180 12	160 12	140 12	mA mA	13
	outputs open		LF		12	12	12		
	<u>CE</u> ≥ Vcc -0.2V; Vcc = MAX VIN ≤ Vss +0.2V or		STD,L	4	12	12	12	mA	13
	$VIN \le VSS + 0.2V$ or $VIN \ge Vcc - 0.2V$; f = 0	ISB2	LP	2.8	6	6	6	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A16, WE, OE	$T_{A} = 25^{\circ}C; f = 1 MHz$	Cıı	30	pF	4
Input Capacitance: CE1-CE4	Vcc = 3.3V	Cı2	8	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION			17	-1	20	-2	5		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle		•••••••••••••••							
READ cycle time	tRC	17		20	1	25		ns	
Address access time	^t AA		17		20		25	ns	
Chip Enable access time	^t ACE		17		20		25	ns	
Output hold from address change	tOH	3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	7
Chip disable to output in High-Z	tHZCE		7		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip disable to power-down time	^t PD		17		20		25	ns	
Output Enable access time	^t AOE		6		7		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output disable to output in High-Z	tHZOE		6		7		8	ns	6
WRITE Cycle	······································						· · ·	······	
WRITE cycle time	tWC	17	1	20		25		ns	
Chip Enable to end of write	tCW	12		12		15		ns	
Address valid to end of write	tAW	12		12		15		ns	
Address setup time	tAS	0		0		0		ns	
Address hold from end of write	tAH	0		0		0		ns	
WRITE pulse width	tWP1	12		12		15		ns	· · · · · · · · · · · · · · · · · · ·
WRITE pulse width	tWP2	13		15	1	15		ns	
Data setup time	^t DS	8		8		10		ns	
Data hold time	^t DH	0	T	0		0		ns	
Write disable to output in Low-Z	tLZWE	3		3		5		ns	7
Write Enable to output in High-Z	tHZWE		7		8		10	ns	6, 7

MT4LS12832 128K x 32 SRAM MODULE

AC TEST CONDITIONS

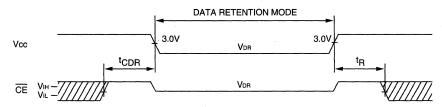
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

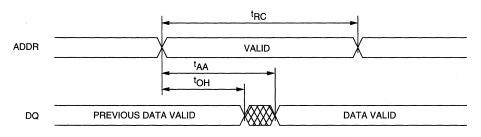
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le t KC/2$ Undershoot: VIL \geq -2.0V for t \leq tKC/2 Power-up: $V_{IH} \ge +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1, unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_1 =$ 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

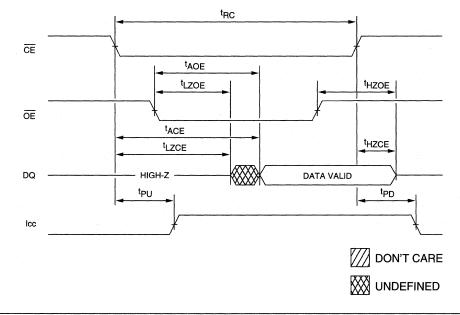
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. tRC=READ cycle time
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25°C.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only)

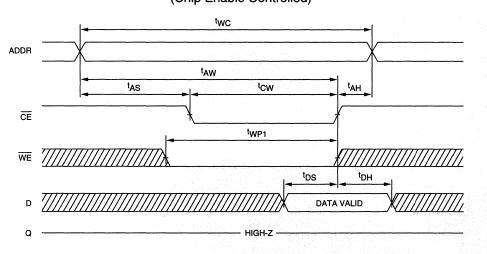
DESCRIPTION	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V	
Data Retention Current L version	$\label{eq:cell} \begin{array}{c} \overline{CE} \geq Vcc \ -0.2V \\ Other \ inputs: \\ V_{IN} \geq Vcc \ -0.2V \\ or \ V_{IN} \leq Vss + 0.2V \\ Vcc = 2V \end{array}$	ICCDR		580	1,040	μΑ	14
Data Retention Current	<u>CE</u> ≥ Vcc -0.2V Vcc = 2V	ICCDR		580	1,040	μA	14
Chip Deselect to Data Retention Time		^t CDR	0			ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11

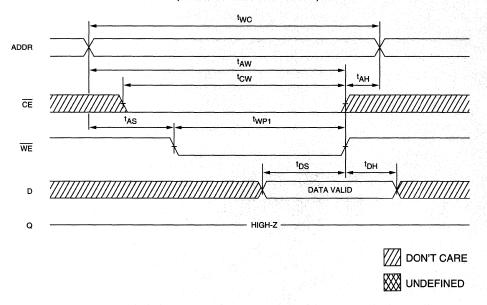


MT4LS12832 128K x 32 SRAM MODULE


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

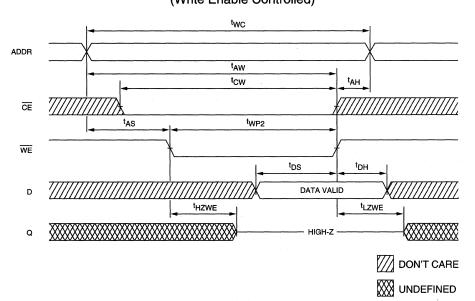

READ CYCLE NO. 27, 8, 10



MT4LS12832 128K x 32 SRAM MODULE

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)



NOTE: Output enable (OE) is inactive (HIGH).

MT4LS12832 128K x 32 SRAM MODULE

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

MT4LS12832 Rev. 11/94

MICRON

MT8S25632 256K x 32 SRAM MODULE

SRAM MODULE

256K x 32 SRAM

FEATURES

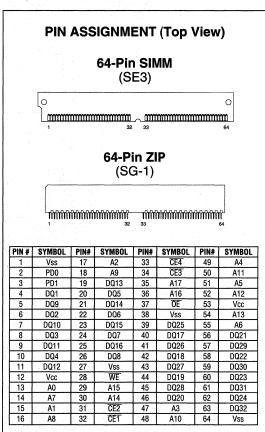
- High speed: 15, 20 and 25ns
- High-density 1MB design
- High-performance, low-power, CMOS double-metal process
- Single +5V ±10% power supply_____
- Easy memory expansion with CE and OE functions
- Industry-standard pinout
- All inputs and outputs are TTL-compatible
- Low profile
 OPTIONS

MARKING

 Timing 		
15ns access	-15	
20ns access	-20	
25ns access	-25	
 Packages 		
64-pin SIMM	Μ	
64-pin ZIP	Ζ	
• 2V data retenti	on (optional) L	
• 2V data retenti	on, low power (optional) LP	

• Part Number Example: MT8S25632Z-15 L

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.


GENERAL DESCRIPTION

The MT8S25632 is a high-speed SRAM memory module containing 262,144 words organized in a x32-bit configuration. The module consists of eight 256K x 4 fast SRAMs mounted on a 64-pin, double-sided, FR4-printed circuit board.

Data is written into the SRAM memory when write enable (WE) and chip enable (CE) inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and output enable (OE) are LOW. CE and /or OE can set the output in High-Z for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density allowing interchangeable use of alternate density, industry standard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology.

All module components may be powered from a single +5V supply and all inputs and outputs are fully TTL-compatible.

The "L" and "LP" versions each provide a 70 percent reduction in CMOS standby current (IsB2) over the standard version. The "LP" version also provides a 90 percent reduction in TTL standby current (IsB1) through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

RON

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Storage Temperature	55°C to +125°C
Power Dissipation	
Short Circuit Output Current	50mA
Voltage on Any Pin Relative to Vss	1V to Vcc +1V

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5V \pm 10\%)$

DESCRIPTION	CONDIT	IONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Vін	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage			VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	A0-A17, WE, OE	IL:1	-40	40	μA	
		CE1-CE4	IL12	-10	10	μΑ	
Input/Output	Output(s) disabled	DQ1-DQ32	ILo	-5	5	μΑ	
Leakage Current	$0V \le V$ OUT $\le V$ CC						
Output High Voltage	Іон = -4	.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.	IoL = 8.0mA			0.4	V	1
Supply Voltage			Vcc	4.5	5.5	V	1

				1			a shara a shara a she	
					MAX			
DESCRIPTION	CONDITIONS	SYMBOL	ТҮР	-15	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	856	1,560	1,280	1,160	mA	3, 13
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	296	600	440	400	mA	13
	LP version only	ISB1	10.4	24	24	24	mA	13
	$\label{eq:constraint} \begin{split} \overline{CE} \geq & Vcc \ -0.2V; \ Vcc = MAX \\ & V_{IN} \leq Vss \ +0.2V \ or \\ & V_{IN} \geq Vcc \ -0.2V; \ f = 0 \end{split}$	ISB2	3.2	40	40	40	mA	13
	L and LP versions only	ISB2	2.4	12	12	12	mA	13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance; A0-A17, WE, OE	T _A = 25°C; f = 1 MHz	Ci1	60	pF	4
Input Capacitance; CE1-CE4	Vcc = 5V	Ci2	15	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	10	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION	· · · · · · · · · · · · · · · · · · ·		15	-:	20	-2	5		NOTES
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	
READ Cycle								L	
READ cycle time	^t RC	15	1	20		25		ns	
Address access time	^t AA		15		20		25	ns	
Chip Enable access time	^t ACE		15		20		25	ns	
Output hold from address change	tон	3		3		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	7
Chip disable to output in High-Z	tHZCE		6		8		10	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip disable to power-down time	^t PD		15		20		25	ns	
Output Enable access time	^t AOE		6		6		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output disable to output in High-Z	tHZOE		5		6		10	ns	6
WRITE Cycle									
WRITE cycle time	tWC	15	Γ	20		25		ns	
Chip Enable to end of write	^t CW	10	1	12		15		ns	
Address valid to end of write	tAW	10	1	12		15		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
WRITE pulse width	^t WP1	9		12		15		ns	
WRITE pulse width	tWP2	12		15		15		ns	
Data setup time	^t DS	7		8		10		ns	
Data hold time	^t DH	0	1	0		0		ns	
Write disable to output in Low-Z	tLZWE	3		3		3		ns	7
Write Enable to output in High-Z	tHZWE		6		8		10	ns	6, 7

MT8S25632 256K x 32 SRAM MODULE

AC TEST CONDITIONS

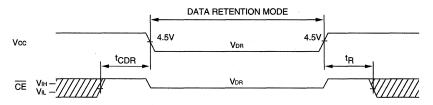
Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	. See Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3V for pulse width $< {}^{t}RC/2$.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured $\pm 500mV$ from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

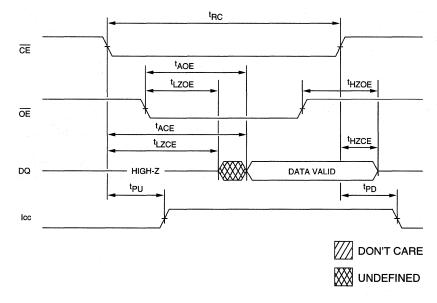
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. tRC=Read Cycle Time
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 5V, 25°C and 25ns cycle time.
- 14. Typical values are measured at 25°C.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP Versions Only)

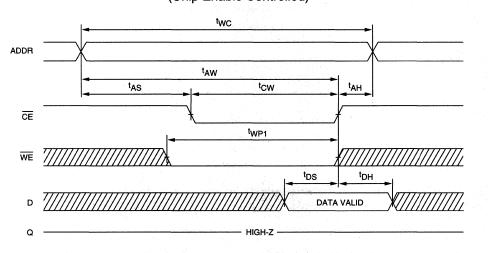
DESCRIPTION	CONDITION	CONDITIONS SYMBOL		MIN	ТҮР	MAX	UNITS	NOTES
Vcc for Retention Data				2			V	
	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		280	1,200	μΑ	14
Data Retention Current L Version	Vin ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3V			480	2,000	μA	14
Data Retention Current	$\overline{CE} \ge (Vcc - 0.2V)$	Vcc = 2V	ICCDR		280	1,200	μA	14
LP Version		Vcc = 3V	ICCDR		240	2,000	μΑ	14
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4,11

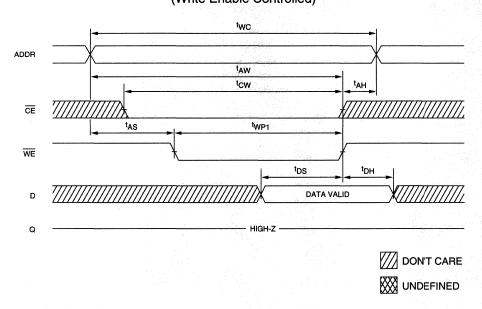


MT8S25632 256K x 32 SRAM MODULE


LOW Vcc DATA-RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}


READ CYCLE NO. 27, 8, 10



MT8S25632 256K x 32 SRAM MODULE

WRITE CYCLE NO. 1¹² (Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)

SRAM MODULE

NOTE: Output enable (OE) is inactive (HIGH).

WRITE CYCLE NO. 37, 12

SRAM MODULE

NOTE: Output enable (OE) is active (LOW).

MT8LS25632 256K x 32 SRAM MODULE

256K x 32 SRAM

LOW VOLTAGE

SRAM MODULE

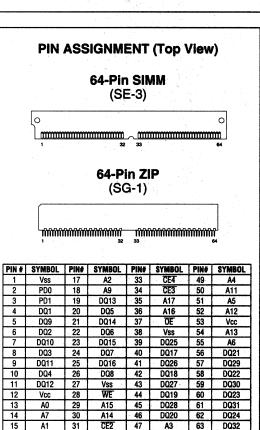
FEATURES

- High speed: 17, 20 and 25ns
- High-density 1MB design
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ± 0.3V power supply
- 5V-tolerant I/O
- Easy memory expansion with CE and OE functions
- Industry-standard pinout
- All inputs and outputs are TTL-compatible
- Low profile

OPTIONS	MARKING
• Timing 17ns access 20ns access 25ns access	-17 -20 -25
 Packages 64-pin SIMM 64-pin ZIP 	M Z
 2V data retention (optional) 2V data retention, low power (optional)	L) LP

• Part Number Example: MT8LS25632Z-20 LP

NOTE: Not all combinations of speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations.


GENERAL DESCRIPTION

The MT8LS25632 is a high-speed SRAM memory module containing 262,144 words organized in a x32-bit configuration. The module consists of eight low voltage 256K x 4 fast SRAMs mounted on a 64-pin, double-sided, FR4-printed circuit board.

Data is written into the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and output enable (\overline{OE}) are LOW. \overline{CE} and / or \overline{OE} can set the output in High-Z for additional flexibility in system design and memory expansion.

PD0 and PD1 identify the module's density allowing interchangeable use of alternate density, industry standard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology.

All module components may be powered from a single +3.3V DC supply and all inputs and outputs are fully TTL-compatible.

48

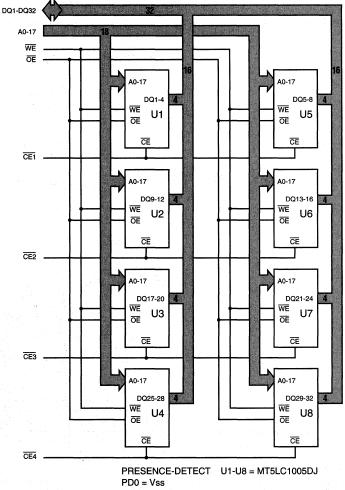
A10

64

Vss

The "L" and "LP" versions each provide a significant reduction in CMOS standby current (ISB2) over the standard version. The "LP" version also provides a significant reduction in TTL standby current (ISB1) through the use of gated inputs on the \overline{WE} , \overline{OE} and address lines, which also facilitates the design of battery backed systems. That is, the gated inputs simplify the design effort and circuitry required to protect against inadvertent battery current drain during power-down, when inputs may be at undefined levels.

16


A8

32

CE1

MT8LS25632 256K x 32 SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

PD1 = Vss

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	X	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
NOT SELECTED	Н	L	н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

MT8LS25632 Rev. 11/94

MT8LS25632 256K x 32 SRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to V	ss0.5V to +4.6V
VIN	-0.5V to +6.0V
Storage temperature	55°C to +125°C
Power dissipation	8W
Short circuit output current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	CONDIT	IONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.0	5.5V	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	A0-A17, WE, OE	IL:1	-8	8	μA	
		CE1-CE4	IL12	-2	2	μA	$(1,1)^{(n-1)} = (1,1)^{(n-1)}$
Input/Output Leakage Current	Output(s) disabled 0V ≤ Vouт ≤ Vcc	DQ1-DQ32	ILo	-1	1	μA	
Output High Voltage	Юн = -4	.0mA	Vон	2.4	91 1	V	1.
Output Low Voltage	IOL = 8.	.0mA	Vol		0.4	V	1
Supply Voltage			Vcc	3.0	3.6	V	1

						MAX			
DESCRIPTION	CONDITIONS	SYM	VER	TYP	-17	-20	-25	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	lcc	ALL	560	1,240	1,160	1,080	mA	3, 13
Power Supply Current: Standby	$\overline{CE} \ge V_{H}; V_{CC} = MAX$ f = MAX = 1/ ^t BC	RC ISB1	STD,L	160	360	320	280	mA	13
Current: Standby	outputs open		LP	12	24	24	24	mA	
	$\overline{CE} \ge Vcc - 0.2V; Vcc = MAX$		STD,L	8	24	24	24	mA	13
	VIN ≤ Vss +0.2V or VIN ≥ Vcc -0.2V; f = 0	ISB2	LP	5.6	12	12	12	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A17, WE, OE	T _A = 25°C; f = 1 MHz	Ci1	50	pF	4
Input Capacitance: CE1-CE4	Vcc = 3.3V	Cı2	15	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	8	pF	4

MT8LS25632 256K x 32 SRAM MODULE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 3.3V \pm 0.3V)$

DESCRIPTION	1. A. 1997	-	-17		20	-2	5		NOTES
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	
READ Cycle	1			••••••••••••••••••••••••••••••••••••••					
READ cycle time	tRC	17	1	20		25		ns	
Address access time	^t AA		17		20		25	ns	
Chip Enable access time	^t ACE		17		20		25	ns	
Output hold from address change	tOH	3		3		5	8. S. S.	ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5	1.1	ns	7
Chip disable to output in High-Z	^t HZCE	-	7		8		10	ns	6, 7
Chip Enable to power-up time	tPU	0		0	1	0		ns	
Chip disable to power-down time	^t PD		17		20		25	ns	
Output Enable access time	^t AOE		6		7		8	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output disable to output in High-Z	^t HZOE		6	· · ·	7	·	8	ns	6
WRITE Cycle									
WRITE cycle time	tWC	17		20		25		ns	
Chip Enable to end of write	tCW	12		12		15		ns	
Address valid to end of write	tAW	12		12		15		ns	
Address setup time	tAS	0		0		0		ns	
Address hold from end of write	tAH	0		0		0		ns	
WRITE pulse width	tWP1	12		12		15		ns	
WRITE pulse width	tWP2	13		15		15		ns	
Data setup time	tDS	8		8		10		ns	
Data hold time	^t DH	0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		3		5		ns	7
Write Enable to output in High-Z	^t HZWE	1	7		8	a tan	10	ns	6, 7

MT8LS25632 256K x 32 SRAM MODUL

AC TEST CONDITIONS

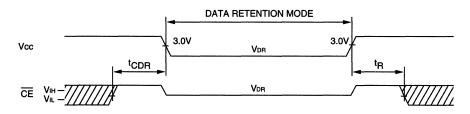
Input pulse levels	Vss to 2.8V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

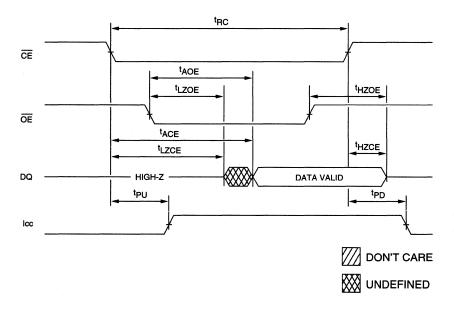
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: VIH $\leq +6.0V$ for t $\leq tKC/2$ Undershoot: $V_{IL} \ge -2.0V$ for $t \le t KC/2$ Power-up: $V_{\rm IH} \ge +6.0V$ and $V_{\rm CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1, unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with C_{I} = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

Fig. 1 OUTPUT LOAD EQUIVALENT

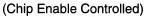
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables are held in their active state.
- 10. Address valid prior to, or coincident with, latest occurring chip enable.
- 11. tRC=READ cycle time
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical currents are measured at 25 °C. MAX is over operating temperature range.

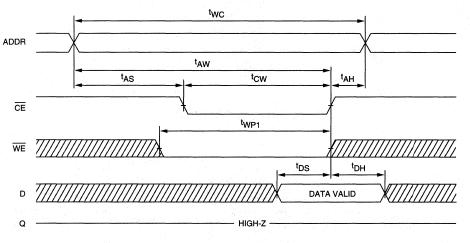

DATA RETENTION ELECTRICAL CHARACTERISTICS (L and LP versions only) DESCRIPTION CONDITIONS Т TVD MAY UNITE NOTES

DESCRIPTION	CONDITION2	STMBUL	INIIN	ITP	MAX	UNIIS	NULES
Vcc for Retention Data		Vdr	2			V	
Data Retention Current L Version	$\overline{CE} \ge Vcc - 0.2V$ Other inputs: $V_{IN} \ge Vcc - 0.2V$ or $V_{IN} \le Vss + 0.2V$ $Vcc = 2V$	ICCDR		1.16	2.08	mA	14
Data Retention Current LP Version	$\overline{CE} \ge Vcc - 0.2V$ $Vcc = 2V$	ICCDR		1.16	2.08	mA	14
Chip Deselect to Data Retention Time		^t CDR	0		n tan sa san Tan sa san Tan sa sa	ns	4
Operation Recovery Time		^t R	^t RC			ns	4, 11

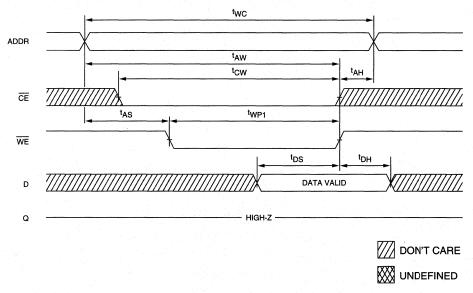

MT8LS25632 256K x 32 SRAM MODULE

LOW Vcc DATA RETENTION WAVEFORM


ADDR PREVIOUS DATA VALID DATA VALID

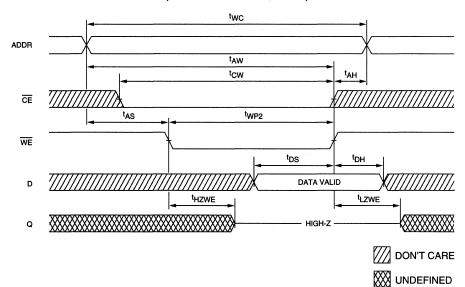

READ CYCLE NO. 27, 8, 10

MT8LS25632 256K x 32 SRAM MODULE



WRITE CYCLE NO. 2¹²

(Write Enable Controlled)



NOTE: Output enable (OE) is inactive (HIGH).

MT8LS25632 256K x 32 SRAM MODULE

WRITE CYCLE NO. 37, 12

(Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

SRAM MODULE

MT8LS132 1 MEG x 32 SRAM MODULE

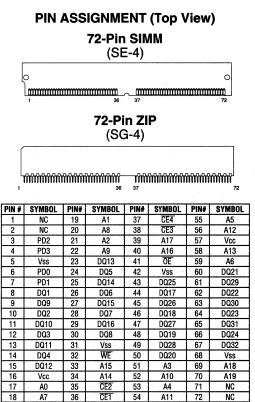
SRAM MODULE

1 MEG x 32 SRAM

3.3V WITH OUTPUT ENABLE

FEATURES

- All I/O pins are 5V tolerant
- Complies with JEDEC low-voltage TTL standards
- Industry-compatible pinout
- High speed: 15, 20, 25 and 35ns
- High-density 4MB design
- High-performance, low-power, CMOS double-metal process
- Single +3.3V ±0.3V power supply
- Easy memory expansion with CE function
- · All inputs and outputs are TTL-compatible
- Low profile (.610 inches maximum height)

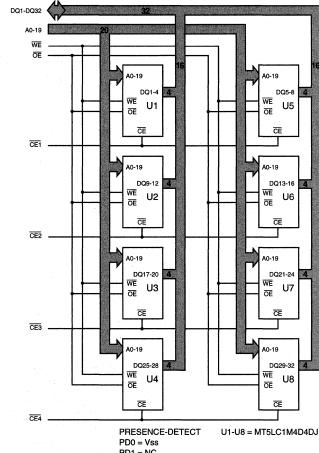

OPTIONS		MA	RKING
 Timing 			
15ns access			-15
20ns access			-20
25ns access			-25
35ns access			-35
 Packages 			
72-pin SIMM			Μ
72-pin ZIP			Z
• 2V data retention (option	nal)		L

• Part Number Example: MT8LS132M-20 L

GENERAL DESCRIPTION

The MT8L S132 is a high-speed SRAM memory module containing 1,048,576 words organized in a x32-bit configuration. The module consists of eight 3.3V 1Meg x 4 fast SRAMs mounted on a 72-pin, double-sided, FR4-printed circuit board. They are specially processed to operate from 3.0V to 3.6V for low-voltage memory systems.

Data is written into the SRAM memory when write enable (WE) and chip enable (CE) inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and output enable (OE) are LOW. CE and/or OE can set the output in High-Z for additional flexibility in system design and memory expansion.


PD0 - PD3 identify the module's density allowing interchangeable use of alternate density, industry standard modules. Four chip enable inputs ($\overline{CE1}$, $\overline{CE2}$, $\overline{CE3}$ and $\overline{CE4}$) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +3.3V power supply and all inputs and outputs are fully TTL-compatible and 5V tolerant. These low-voltage modules are ideal for mixed 3.3V and 5V systems.

MT8LS132 1 MEG x 32 SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM

PD1 = NC PD2 = Vss

PD3 = NC

TRUTH TABLE

MODE	ŌE	CE	WE	DQ	POWER
STANDBY	X	Н	X	HIGH-Z	STANDBY
READ	L	L	н	Q	ACTIVE
READ	H S	L	Н	HIGH-Z	ACTIVE
WRITE	X	L	L	D	ACTIVE

MT8LS132 1 MEG x 32 SRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to	o Vss0.5V to +4.6V
VIN	0.5V to +6.0V
Storage Temperature	55°C to +125°C
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 0.3V)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Ин	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	A0-A19, WE, OE	IL11	-8	8	μA	
		CE1-CE4	IL12	-2	2	μA	
Input/Output Leakage Current	Output(s) disabled $0V \le Vout \le Vcc$	DQ1-DQ32	ILo	-1	1	μA	
Output High Voltage	Іон = -4.0mA		Voн	2.4		V	1
Output Low Voltage	IoL = 8.0mA		Vol		0.4	V	1
Supply Voltage				3.0	3.6	V	1

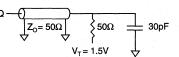
				M	AX			
DESCRIPTION	CONDITIONS	SYMBOL	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ ^t RC outputs open	Icc	1,480	1,320	1,280	1,240	mA	3
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC outputs open	ISB1	640	600	560	560	mA	
	$\label{eq:cell} \hline \overrightarrow{CE} \geq Vcc \ -0.2V; \ Vcc = MAX \\ V_{IN} \leq Vss \ +0.2V \ or \\ V_{IN} \geq Vcc \ -0.2V; \ f = 0 \\ \hline \hline$	ISB2	8	8	8	8	mA	

CAPACITANCE

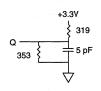
DESCRIPTION	CONDITIONS	SYMBOL	MAX	UNITS	NOTES
Input Capacitance; A0-A19, WE, OE	T _A = 25°C; f = 1 MHz	CI1	48	pF	4
Input Capacitance; CE1-CE4	Vcc = 3.3V	CI2	12	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o	8	pF	4

MT8LS132 1 MEG x 32 SRAM MODULE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5) ($0^{\circ}C \le T_A \le 70^{\circ}C$; Vcc = 3.3V ±0.3V)

DECODIDITION		-1	15	-1	20	-:	25	.5 -35			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MAX	MIN	UNITS	NOTES
READ Cycle											
READ cycle time	^t RC	15		20		25		35		ns	
Address access time	^t AA		15		20		25		35	ns	
Chip Enable access time	^t ACE		15		20		25		35	ns	
Output hold from address change	^t OH	3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		5		5		5		ns	7
Chip disable to output in High-Z	^t HZCE		7		8		10		15	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		ns	4
Chip disable to power-down time	^t PD		15		20		25		35	ns	4
Output Enable access time	^t AOE		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0	1	ns	
Output disable to output in High-Z	^t HZOE		6		7		10		12	ns	6
WRITE Cycle	L									-	
WRITE cycle time	tWC	15		20		25		35		ns	
Chip Enable to end of write	tCW	10		12	$r^{(1)} = r^{(1)}$	15		20		ns	1.00
Address valid to end of write	^t AW	10		12		15	1. 1. 1. I.	20		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	tAH	0	-	0		0		0		ns	6
WRITE pulse width	^t WP1	10		12	11	15		20		ns	
WRITE pulse width	tWP2	12		15		15		20		ns	
Data setup time	^t DS	7		8		10		15		ns	
Data hold time	^t DH	0		0		0		0		ns	
Write disable to output in Low-Z	^t LZWE	3		5		5		5		ns	7
Write Enable to output in High-Z	^t HZWE		6		8		10		15	ns	6, 7


MT8LS132 1 MEG x 32 SRAM MODULE

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

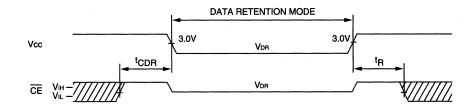
Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

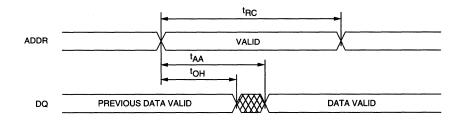
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {tRC/2}$. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {tRC/2}$. Power-up: $V_{IH} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE, ^tHZOE and ^tHZWE are specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ±200mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

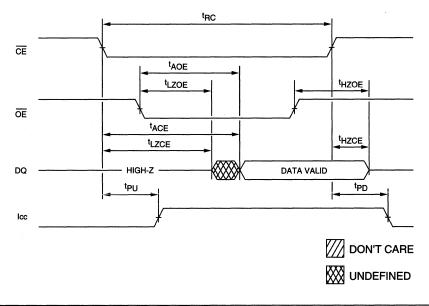
- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. Chip enable and output enables are held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable and write enable can initiate and terminate a WRITE cycle.
- 13. Typical values are measured at 25°C.


DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITION	S	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2	and a first State		v	
Data Retention Current	CE ≥ (Vcc -0.2V) VIN ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 2V	ICCDR			5.6	mA	
Chip Deselect to Data Retention Time		^t CDR	0			ns	4	
Operation Recovery Time			^t R	^t RC			ns	4,11

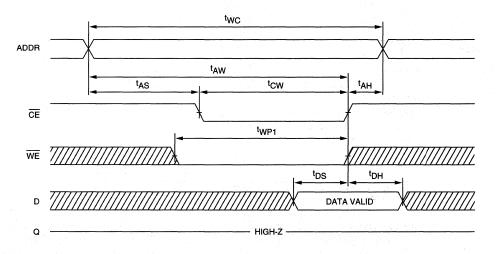


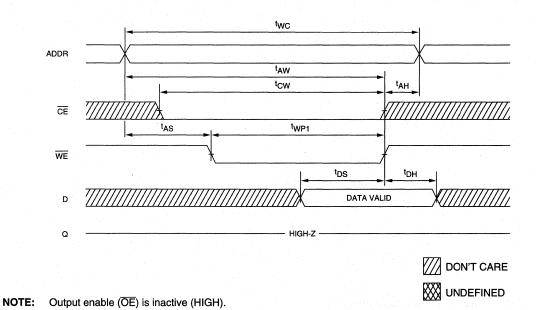
MT8LS132 1 MEG x 32 SRAM MODULE


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1^{8,9}

READ CYCLE NO. 27, 8, 10

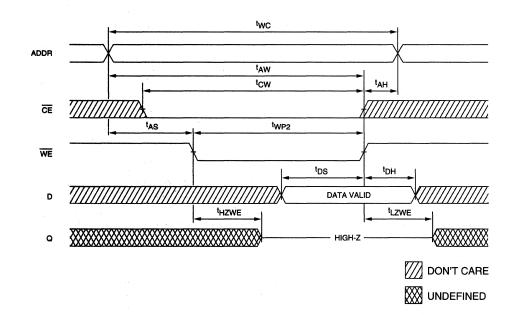



MT8LS132 <u>1 MEG x 32 SRAM</u> MODULE

WRITE CYCLE NO. 1¹²

(Chip Enable Controlled)

WRITE CYCLE NO. 2¹² (Write Enable Controlled)



NEW SRAM MODULE

MT8LS132 1 MEG x 32 SRAM MODULE

WRITE CYCLE NO. 3^{7, 12} (Write Enable Controlled)

NOTE: Output enable (OE) is active (LOW).

NEW SRAM MODULE

MT2LSYT3264T1/T2 32K x 64 SYNCHRONOUS SRAM MODULE

SYNCHRONOUS SRAM MODULE

32K x 64 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS AND BURST COUNTER

FEATURES

- 80 position dual read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 9, 10, 11 and 12ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control
- · Clock controlled and registered inputs
- Internally self-timed WRITE cycle
- Burst control pins (interleaved T2 or linear burst T1)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS	MARKING
Timing	
9ns access/15ns cycle	-9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
Burst sequence	
Linear Burst	T1
486/Pentium™ Burst	T2
Packages	
160-lead DIMM (gold)	G
• Low power (optional)	Р
• 2V data retention low power (optional	1) I

- 2V data retention, low power (optional)
- Part Number Example: MT2LSYT3264T2G-10 L

GENERAL DESCRIPTION

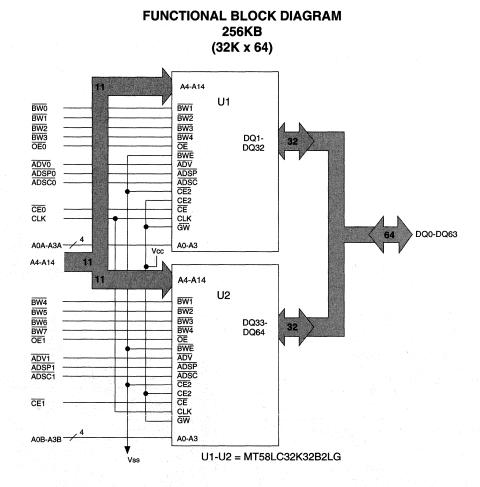
The Micron SyncBurst[™] SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT2LSYT3264T1/T2 module integrates two $32K \times 32$ synchronous SRAMs. All synchronous inputs pass through registers controlled by positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, data inputs, active LOW chip enables (CE0-1), burst control inputs (ADSC0-1, ADSP0-1, ADV0-1) and byte write enables (BW0-7).

Asynchronous inputs include the output enables $(\overline{OE0}-1)$ and the clock (CLK). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

PIN ASSIGNMENT (Top View) 160-Lead, Dual Read-out DIMM (SF-1)

PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	
1	Vss	41	Vss	81	Vss	121	Vss	
2	DQ62	42	DQ10	82	DQ63	122	DQ11	
3	Vcc	43	Vcc	83	83 RSVD		RSVD	
4	DQ60	44	DQ8	84	DQ61	124	DQ9	
5	Vcc	45	NC	85	RSVD	125	NC	
6	DQ58	46	Vcc	86	DQ59	126	RSVD	
7	DQ56	47	DQ6	87	DQ57	127	DQ7	
8	Vss	48	DQ4	88	Vss	128	DQ5	
9	NC	49	DQ2	89	NC	129	DQ3	
10	DQ54	50	DQ0	90	DQ55	130	DQ1	
11	DQ52	51	Vss	91	DQ53	131	Vss	
12	DQ50	52	AOA	92	DQ51	132	AOB	
13	Vss	53	A1A	93	Vss	133	A1B	
14	DQ48	54	A2A	94	DQ49	134	A2B	
15	DQ46	55	A3A	95	DQ47	135	A3B	
16	DQ44	56	A5	96	DQ45	136	A4	
17	DQ42	57	Vss	97	DQ43	137	Vss	
18	Vss	58	A7	98	Vss	138	A6	
19	DQ40	59	A9	99 DQ41		139	A8	
20	NC	60	A11	100	NC	140	A10	
21	DQ38	61	A13	101	DQ39	141	A12	
22	DQ36	62	NC	102	DQ37	142	A14	
23	DQ34	63	Vss	103	DQ35	143	Vss	
24	Vss	64	PD0	104	Vss	144	NC	
25	DQ32	65	Vss	105	DQ33	145	Vss	
26	DQ30	66	RSVD	106	DQ31	146	CLK	
27	DQ28	67	RSVD	107	DQ29	147	RSVD	
28	DQ26	68	Vss	108	DQ27	148	Vss	
29	DQ24	69	BW6	109	DQ25	149	BW7	
30	Vss	70	BW4	110	Vss	150	BW5	
31	NC	71	BW2	111	NC	151	BW3	
32	DQ22	72	BWO	112	DQ23	152	BW1	
33	DQ20	73	Vss	113	DQ21	153	Vss	
34	Vcc	74	ADSCO	114	RSVD	154	ADSC1	
35	DQ18	75	CEO	115	DQ19	155	CE1	
36	Vss	76	ADVO	116	Vss	156	ADV1	
37	DQ16	77	OEO	117	DQ17	157	0E1	
38	Vcc	78	Vcc	118	RSVD	158	RSVD	
39	DQ14	79	ADSPO	119	DQ15	159	ADSP1	
40	DQ12	80	Vss	120	DQ13	160	Vss	



GENERAL DESCRIPTION (continued)

Burst operation can be initiated with either address status processor ($\overline{ADSP0-1}$) or address status controller ($\overline{ADSC0-1}$) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pins ($\overline{ADV0-1}$).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. <u>BW0</u> controls DQ0-DQ7, <u>BW1</u> controls DQ8-DQ15, <u>BW2</u> controls DQ16-DQ23, <u>BW3</u> controls DQ24-DQ31 and so forth. The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V tolerant. This module is ideally suited to Pentium[™] systems and those systems which benefit from a very wide data bus.

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
56, 58-61, 136, 138-142	A4-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
69-72, 149-152	BW0-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7. BW1 controls DQ8-DQ15. BW2 controls DQ16-DQ23. BW3 controls DQ24-DQ31, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
146	CLK	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
75, 155	CE0-CE1	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
52-55, 132-135	А0А-АЗА, А0В-АЗВ	Input	Synchronous Address Input: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. These lower order address signals are provided for the two data banks to simplify the interface to many cache controllers.
77, 157	OE0-OE1	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
76, 156	ADV0-ADV1	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
79, 159	ADSP0-ADSP1	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be latched. A READ is performed using the new address, independent of the byte write enables and ADSC. ADSP is ignored if CE is HIGH.
74, 154	ADSC0-ADSC1	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be latched. A READ or WRITE is performed using the new address if all chip enables are active. Power-down state is entered if one or more chip enables are inactive.
66, 83, 85, 114, 118, 123, 126, 147, 158	RSVD	-	No Connect: These pins are reserved.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
2, 4, 6-7, 10-12, 14, 16-17, 19, 21-23, 25-29, 32-33, 35, 37, 39-40, 42, 44, 47-50, 82, 84, 86-87, 90-92, 94-97, 99, 101-103, 105-109, 112-113, 115, 117, 119-120, 122, 124, 127-130	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
3, 5, 34, 38, 43, 46, 78	Vcc	Supply	Power Supply: +3.3V ±5%
1, 8, 13, 18, 24, 30, 36, 41, 51, 57, 63, 68, 73, 80, 81, 88, 93, 98, 104, 110, 116, 121, 131, 137, 143, 148, 153, 160	Vss	Supply	Ground: GND

INTERLEAVED BURST ADDRESS TABLE (MODE = NC) MT2LSYT3264T2

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)		
XX00	XX01	XX10	XX11		
XX01	XX00	XX11	XX10		
XX10	XX11	XX00	XX01		
XX11	XX10	XX01	XX00		

LINEAR BURST ADDRESS TABLE (MODE = GND) MT2LSYT3264T1

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)		
XX00	XX01	XX10	XX11		
XX01	XX10	XX11	XX00		
XX10	XX11	XX00	XX01		
XX11	XX00	XX01	XX10		

PRESENCE-DETECT TABLE

DENSITY	PDO
• 256KB	NC
512KB	Vss

TRUTH TABLE

OPERATION	ADDRESS	CE	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ0-63
	USED								
Deselected Cycle, Power-down	None	Н	X	L.	X	X	X	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	X	X	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	X	X	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	Н	L	X	L	X	L-H	D
READ Cycle, Begin Burst	External	L	Н	L.	X	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	H	L	X	H	H	L-H	High-Z
READ Cycle, Continue Burst	Next	X	н	н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	X	Н	H	L	H	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	X	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	X	Н	L	H	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	X	H H	H H	L	La	X	L-H	D
WRITE Cycle, Continue Burst	Next	Н	X	Н	L	Ľ	X	L-H	D
READ Cycle, Suspend Burst	Current	Х	H	H	H	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	X	H	H	Н	н	H	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	X	Н	H	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	X	Н	Н	H	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Н	Н	н	L	X	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	X	Н	Н	L	X	L-H	D

- NOTE: 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW0, BW1, BW2, etc.) are LOW. WRITE=H means all byte write enable signals are HIGH.
 - 2. BW0 enables writes to Byte 1 (DQ0-DQ7). BW1 enables writes to Byte 2 (DQ8-DQ15). BW2 enables writes to Byte 3 (DQ16-DQ23). BW3 enables writes to Byte 4 (DQ24-DQ31) and so forth.
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V to +4.6V
VIN
Storage Temperature (plastic)55°C to +125°C
Short Circuit Output Current 100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Vcc = $3.3V \pm 5\%$ unless otherwise noted)

DESCRIPTION	COND	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage			Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		· · · · · · · · · · · · · · · · · · ·	Vı∟	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	BW0-7	IL:1	-1	1	μΑ	
		A4-A15	IL12	-4	4	μA	
		All other inputs	ILıз	-2	2	μA	
Output Leakage Current) Disabled, out ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон =	-4.0mA	Vон	2.4		V	1, 11
Output Low Voltage	lol = 8.0mA		Vol		0.4	V	1, 11
Supply Voltage			Vcc	3.1	3.5	V	1

					MAX				1	
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-9	-10	-11	-12	UNITS	NOTES
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ V⊩ or ≥ V⊮; cycle time ≥ ^t KC MIN; outputs open	Icc1	ALL	360	540	540	500	450	mA	3, 12, 13
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC, ADSP, ADV ≥ Viн; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc2	ALL	56	90	90	90	80	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB1	STD	1.0	10	10	10	10	mA	12, 13
	all inputs static; CLK frequency = 0		Р	0.4	4	4	4	4	mA	12, 10
TTL Standby	Device deselected; $Vcc = MAX$; all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB2	STD	30	50	50	50	50	mA	12, 13
all inputs static; CLK frequency = 0		1002	Р	16	36	36	36	36	mA	12, 10
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB3	ALL	60	100	100	100	90	mA	12, 13

MT2LSYT3264T1/T2 32K x 64 SYNCHRONOUS SRAM MODULE

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A4-A14, CLK	T _A = 25°C; f = 1 MHz	CI1		10	pF	4
Input Capacitance: ADSP0-1 or ADV0-1, ADSC0-1	Vcc = 3.3V	Cı2		5	pF	4
Input Capacitance: BW0-7, OE0-1, CE0-1, A0A-A3A, A0B-A3B		Сіз		5	pF	4
Input/Output Capacitance: DQ0-63		Co		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (Vcc = 3.3V ±5%)

DESCRIPTION		1	9		10		11		12		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock		1	1010 A		and the						
Clock cycle time	^t KC	15	The service	15		15		20		ns	
Clock HIGH time	^t КН	4		5		5		6		ns	a na seo anna a C
Clock LOW time	^t KL	4		5	A GUILLING	5		6		ns	
Output Times			100000								
Clock to output valid	^t KQ	The second	9	an an an an an an an an an an an an an a	10		11		12	ns	
Clock to output invalid	^t KQX	3		3	2.90 ¹⁰¹	3		3		ns	
Clock to output in Low-Z	^t KQLZ	5	an an an an	5	an an an an an an an an an an an an an a	5		5	2.000 में स्वरत के इ.स. इ.स. इ.स. इ.स. इ.स. इ.स. इ.स. इ.स.	ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5	1472	5		6	ns	6, 7
OE to output valid	^t OEQ	100	5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0	1980 - 1987 -	0		0		ns	6, 7
OE to output in High-Z	^t OEHZ	and the second	5	an we de la fait de la fait de la fait de la fait de la fait de la fait de la fait de la fait de la fait de la	5		5		6	ns	6, 7
Setup Times				an an an an an an an an an an an an an a			104 (J. 1997) 1997 - State State State State State State State State State State State State State State State State State St			an an an an an an an an an an an an an a	
Address	^t AS	2.5		2.5		2.5		3		ns	8, 10
Address Status (ADSC0-1, ADSP0-1)	^t ADSS	2.5	1.000	3		3		3		ns	8, 10
Address Advance (ADV0-1)	TAAS	2.5	and second they	3		3		3		ns	8, 10
Byte Write Enables (BW0-7)	tWS	2.5	and set of the	3		3		3		ns	8, 10
Data-in	^t DS	2.5		3		3		3		ns	8, 10
Chip Enable (CE0-1)	^t CES	2.5		3		3		3		ns	8, 10
Hold Times	and the m				ng an teachar	ar nan ar				tan sa sa sa sa sa sa sa sa sa sa sa sa sa	
Address	^t AH	0.5	Proce parties	0.5	11.00	0.5		0.5	alon, tront t	ns	8, 10
Address Status (ADSCO-1, ADSPO-1)	^t ADSH	0.5		0.5	1987 B. R. S.	0.5	$\sum_{i=1}^{n} (1, i) \in \mathbf{K}_{i} \to \mathbf{K}_{i} \to \mathbf{K}_{i}$	0.5		ns	8, 10
Address Advance (ADV0-1)	^t AAH	0.5		0.5	and the second	0.5		0.5		ns	8, 10
Byte Write Enables (BW0-7)	tWH	0.5	and a strength of a	0.5	real plan syre	0.5	2.1.8	0.5		ns	8, 10
Data-in	^t DH	0.5	C. C. C. C.	0.5	Sector Brand	0.5	1. JULY 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.5	and Section	ns	8, 10
Chip Enable (CE0-1)	^t CEH	0.5	and the second se	0.5	apera in side	0.5		0.5		ns	8, 10

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load S	See Figures 1 and 2

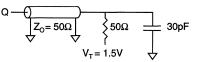


Fig. 1 OUTPUT LOAD EQUIVALENT

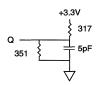
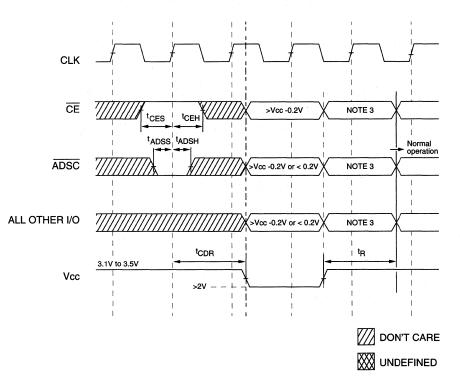


Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $\forall H \le +6.0 \forall$ for $t \le {}^{t}KC / 2$.
 - $\begin{array}{ll} Undershoot: \ \ VIL \geq -2.0V \ for \ t \leq {}^t\!KC \ /2. \\ Power-up: & VIH \leq +6.0V \ and \ Vcc \leq 3.1V \\ for \ t \leq 200msec. \end{array}$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times.
- OE is a "don't care" when a byte write enable is sampled LOW.

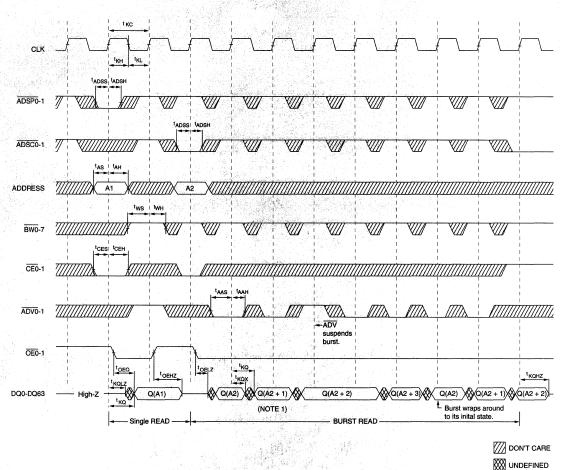

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values.
- 12. "Device deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical values are measured at 25°C.
- 15. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V
Data Retention Current	$ \overrightarrow{\text{CE}}, \ \overrightarrow{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \text{ViN} \geq (\text{Vcc -0.2V}) \text{ or } \leq 0.2\text{V} \\ \text{Vcc} = 2\text{V} $	ICCDR		TBD	μA	14
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 15
Operation Recovery Time		^t R	^t KC		ns	4

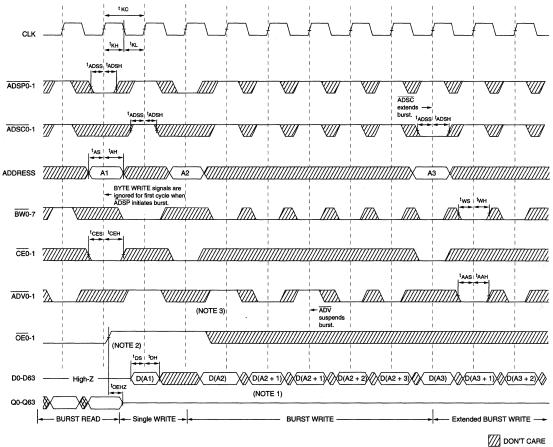
LOW Vcc DATA RETENTION WAVEFORM

 All inputs must be ≥ Vcc - 0.2V or ≤ 0.2V to guarantee Iccor in data retention mode. If inputs are between these levels or left floating, Iccor may be exceeded.


- 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
- 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

NOTE:

READ TIMING



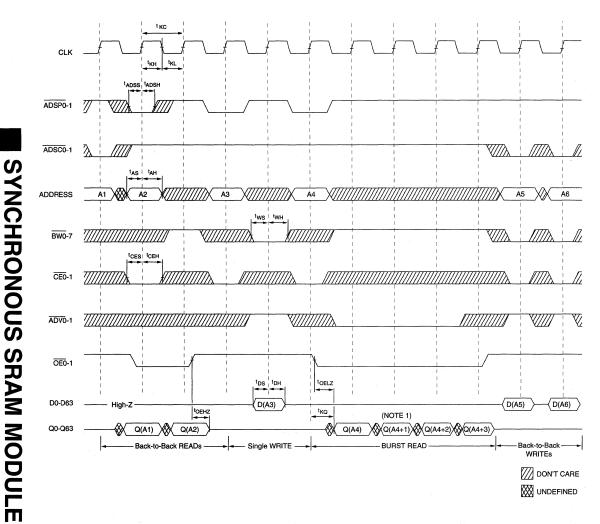
- NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.

MT2LSYT3264T1/T2 Rev. 11/94

MT2LSYT3264T1/T2 32K x 64 SYNCHRONOUS SRAM MODULE

WRITE TIMING

SYNCHRONOUS SRAM MODULE


NOTE:

- E: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 3. ADV must be HIGH to permit a WRITE to the loaded address.

MT2LSYT3264T1/T2 32K x 64 SYNCHRONOUS SRAM MODULE

READ/WRITE TIMING

NOTE: 1. Q(A3) refers to output from address A3. Q(A3+1) refers to output from the next internal burst address following A3.

2. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

SYNCHRONOUS SRAM MODULE

32K x 64 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS, OUTPUTS AND BURST COUNTER

FEATURES

- 80 position dual read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control
- WRITE pass-through capability
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- Burst control pins (interleaved T4 or linear burst T6)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS	MARKING
Timing	
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Burst sequence	
Interleaved Burst	T4
Linear Burst	T6
Packages	
160-lead DIMM (gold)	G
Low power (optional)	Р
• 2V data retention, low power (optional	l) L
Part Number Example: MT2LSYT326	64T4G-6 L

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT2LSYT3264T4/T6 module integrates two 32K x 32 synchronous SRAMs. All synchronous inputs pass through registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, data inputs, active LOW chip enables (CE0-1), burst control inputs (ADSC0-1, ADSP0-1, ADV0-1) and byte write enables (BW0-7).

Asynchronous inputs include the output enables ($\overline{OE0}$ -1) and the clock (CLK). The data-out (Q), enabled by \overline{OE} , is

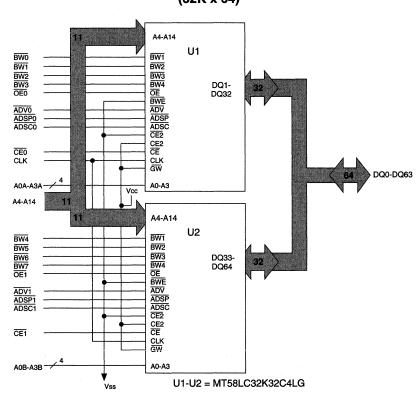
PIN ASSIGNMENT (Top View) 160-Lead, Dual Read-out DIMM (SF-1)

PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBO
1	Vss	41	Vss	81	Vss	121	Vss
2	DQ62	42	DQ10	82	DQ63	122	DQ11
3	Vcc	43	Vcc	83	RSVD	123	RSVD
4	DQ60	44	DQ8	84	DQ61	124	DQ9
5	Vcc	45	NC	85	RSVD	125	NC
6	DQ58	46	Vcc	86	DQ59	126	RSVD
7	DQ56	47	DQ6	87	DQ57	127	DQ7
8	Vss	48	DQ4	88	Vss	128	DQ5
9	NC	49	DQ2	89	NC	129	DQ3
10	DQ54	50	DQO	90	DQ55	130	DQ1
11	DQ52	51	Vss	91	DQ53	131	Vss
12	DQ50	52	A0A	92	DQ51	132	AOB
13	Vss	53	A1A	93	Vss	133	A1B
14	DQ48	54	A2A	94	DQ49	134	A2B
15	DQ46	55	A3A	95	DQ47	135	A3B
16	DQ44	56	A5	96	DQ45	136	A4
17	DQ42	57	Vss	97	DQ43	137	Vss
18	Vss	58	A7	98	Vss	138	A6
19	DQ40	59	A9	99	DQ41	139	A8
20	NC	60	A11	100	NC	140	A10
21	DQ38	61	A13	101	DQ39	141	A12
22	DQ36	62	NC	102	DQ37	142	A14
23	DQ34	63	Vss	103	DQ35	143	Vss
24	Vss	64	PD0	104	Vss	144	NC
25	DQ32	65	Vss	105	DQ33	145	Vss
26	DQ30	66	RSVD	106	DQ31	146	CLK
27	DQ28	67	RSVD	107	DQ29	147	RSVD
28	DQ26	68	Vss	108	DQ27	148	Vss
29	DQ24	69	BW6	109	DQ25	149	BW7
30	Vss	70	BW4	110	Vss	150	BW5
31	NC	71	BW2	111	NC	151	BW3
32	DQ22	72	BWO	112	DQ23	152	BW1
33	DQ20	73	Vss	113	DQ21	153	Vss
34	Vcc	74	ADSCO	114	RSVD	154	ADSC1
35	DQ18	75	CEO	115	DQ19	155	CE1
36	Vss	76	ADVO	116	Vss	156	ADV1
37	DQ16	77	OEO	117	DQ17	157	OE1
38	Vcc	78	Vcc	118	RSVD	158	RSVD
39	DQ14	79	ADSPO	119	DQ15	159	ADSP1
40	DQ12	80	Vss	120	DQ13	160	Vss

Micron Semiconductor, Inc., reserves the right to change products or specifications without notil, © 1994, Micron Semiconductor, Ir SyncBurst is a trademark of Micron Semiconductor, Ir Pentium is a trademark of IBM Corporatio PowerPC is a trademark of IBM Corporatio

GENERAL DESCRIPTION (continued)

also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.


Burst operation can be initiated with either address status processor ($\overline{ADSP0-1}$) or address status controller ($\overline{ADSC0-1}$) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pins ($\overline{ADV0-1}$).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW0 controls DQ0-DQ7, BW1 controls DQ8-DQ15, BW2 controls DQ16-DQ23, $\overline{BW3}$ controls DQ24-DQ31 and so forth.

The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V tolerant. This module is ideally suited to Pentium[™] and PowerPC[™] pipelined systems and systems that benefit from a very wide high-speed data bus.

FUNCTIONAL BLOCK DIAGRAM 256KB (32K x 64)

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
56, 58-61, 136, 138-142	A4-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
69-72, 149-152	BW0-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7. BW1 controls DQ8-DQ15. BW2 controls DQ16-DQ23. BW3 controls DQ24-DQ31, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
146	CLK	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
75, 155	CE0-CE1	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
52-55, 132-135	A0A-A3A, A0B-A3B	Input	Synchronous Address Input: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. These lower order address signals are provided for the two data banks to simplify the interface to many cache controllers.
77, 157	OE0-OE1	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
76, 156	ADV0-ADV1	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
79, 159	ADSP0-ADSP1	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be latched. A READ is performed using the new address, independent of the byte write enables and ADSC. ADSP is ignored if CE is HIGH.
74, 154	ADSC0-ADSC1	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be latched. A READ or WRITE is performed using the new address if all chip enables are active. Power-down state is entered if one or more chip enables are inactive.
66, 83, 85, 114, 118, 123, 126, 147, 158	RSVD		No Connect: These pins are reserved.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
2, 4, 6-7, 10-12, 14, 16-17, 19, 21-23, 25-29, 32-33, 35, 37, 39-40, 42, 44, 47-50, 82, 84, 86-87, 90-92, 94-97, 99, 101-103, 105-109, 112-113, 115, 117, 119-120, 122, 124, 127-130	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
3, 5, 34, 38, 43, 46, 78	Vcc	Supply	Power Supply: +3.3V ±5%
1, 8, 13, 18, 24, 30, 36, 41, 51, 57, 63, 68, 73, 80, 81, 88, 93, 98, 104, 110, 116, 121, 131, 137, 143, 148, 153, 160	Vss	Supply	Ground: GND

INTERLEAVED BURST ADDRESS TABLE (MODE = NC) MT2LSYT3264T4

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND) MT2LSYT3264T6

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE		PRESENT CYC	NEXT CYCLE			
OPERATION	BWs	OPERATION	CE	BWs	ŌE	OPERATION
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L	Initiate READ cycle Register A(n), Q = D(n-1)	L	H	L	Read D(n)
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L	No new cycle Q = D(n-1)	н	н	L	No carry-over from previous cycle
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L	No new cycle Q = HIGH-Z	н	н	н	No carry-over from previous cycle
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L	No new cycle $Q = D(n-1)$ for one byte	Н	н	L	No carry-over from previous cycle

NOTE: Previous cycle may be either BURST or NONBURST cycle.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

TRUTH TABLE

OPERATION	ADDRESS USED	CE	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ0-63
Deselected Cycle, Power-down	None	Н	X	L	X	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	X	X	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	X	X	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	н	L	X	L	X	L-H	D
READ Cycle, Begin Burst	External	L	н	L	X	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	Н	L	X	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	н	н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	X	Н	н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	X	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	X	Н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	X	н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	Х	Н	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	X	Н	н	H	н	н	L-H	High-Z
READ Cycle, Suspend Burst	Current	н	X	н	н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	н	X	н	Н	Н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	н	¹ H	н	5 . L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	X	H.	н	L	X	L-H	D

NOTE: 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW0, BW1, BW2, etc.) are LOW. WRITE=H means all byte write enable signals are HIGH.

2. BW0 enables writes to Byte 1 (DQ0-DQ7). BW1 enables writes to Byte 2 (DQ8-DQ15). BW2 enables writes to Byte 3 (DQ16-DQ23). BW3 enables writes to Byte 4 (DQ24-DQ31) and so forth.

3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.

- 4. Wait states are inserted by suspending burst.
- 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
- 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
- ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

PRESENCE-DETECT TABLE

DENSITY	PDO
• 256KB	NC
512KB	Vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss.	0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +125°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Vcc = 3.3V \pm 5% unless otherwise noted)

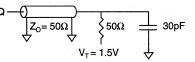
DESCRIPTION	COND	CONDITIONS		MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage	en en stationen ditte stat		Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le Vcc$	BW0- 7	IL:1	-1	1	μΑ	
		A4-A15	IL12	-4	4	μΑ	
		All other inputs	ILıз	-2	2	μA	
Output Leakage Current) Disabled, out ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон =	-4.0mA	Vон	2.4		V	1
Output Low Voltage	Iol =	8.0mA	Vol		0.4	v	1
Supply Voltage			Vcc	3.1	3.5	V	1

	ander Na status ander ander ander ander ander ander ander ander ander ander ander ander ander ander ander ander ander	tan la				M	AX]	
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-5	-6	-7	-8	UNITS	NOTES
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ V⊩ or ≥ V⊮; cycle time ≥ ^t KC MIN; outputs open	Icc1	ALL	360	720	630	540	450	mA	3, 12
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC, ADSP, ADV ≥ Viн; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc2	ALL	60	120	110	100	90	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB1	STD	1.0	10	10	10	10	mA	12, 13
	all inputs static; CLK frequency = 0		Р	0.4	4	4	4	4	mA	12, 10
TTL Standby	Device deselected; $Vcc = MAX$; all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB2	STD	30	50	50	50	50	mA	12, 13
	all inputs static; CLK frequency = 0	1302	Р	16	36	36	36	36	mA	
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	lsвз	ALL	60	120	110	100	90	mA	12, 13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A4-A14, CLK	T _A = 25°C; f = 1 MHz	CI1		10	pF	4
Input Capacitance: ADSP0-1, ADV0-1, OE0-1, CE0-1	Vcc = 3.3V	Cı2		5	pF	4
Input Capacitance: BW0-7, ADSC0-1, A0A-A3A, A0B-A3B		Сіз		5	pF	4
Input/Output Capacitance: DQ0-63		Co		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5) (Vcc = 3.3V ±5%)

DESCRIPTION			5	-	6	-	7	-	8		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock		•	<u>.</u>								
Clock cycle time	^t KC	10	T	12		15		20		ns	
Clock HIGH time	^t КH	4		4.5		5		6		ns	1
Clock LOW time	^t KL	4		4.5		5		6		ns	
Output Times											
Clock to output valid	^t KQ		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2	-	2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		5		5		5	1.1	ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5		6	÷.,	6	ns	6, 7
OE to output valid	^t OEQ		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ		4		5		6		6	ns	6, 7
Setup Times								1.0			
Address	^t AS	2.5		2.5		2.5		3		ns	8, 10
Address Status (ADSC0-1, ADSP0-1)	^t ADSS	2.5		2.5		2.5		3		ns	8, 10
Address Advance (ADV0-1)	^t AAS	2.5		2.5		2.5		3		ns	8, 10
Byte Write Enables (BW0-7)	tWS	2.5		2.5		2.5		3		ns	8, 10
Data-in	tDS	2.5		2.5		2.5		3		ns	8, 10
Chip Enable (CE0-1)	^t CES	2.5		2.5		2.5		3		ns	8, 10
Hold Times											1
Address	tAH	0.5	N	0.5		0.5		0.5		ns	8, 10
Address Status (ADSC0-1, ADSP0-1)	^t ADSH	0.5		0.5		0.5		0.5		ns	8, 10
Address Advance (ADV0-1)	^t AAH	0.5		0.5		0.5		0.5		ns	8, 10
Byte Write Enables (BW0-7)	tWH	0.5		0.5		0.5		0.5		ns	8, 10
Data-in	^t DH	0.5		0.5		0.5		0.5		ns	8, 10
Chip Enable (CE0-1)	^t CEH	0.5		0.5		0.5		0.5		ns	8, 10

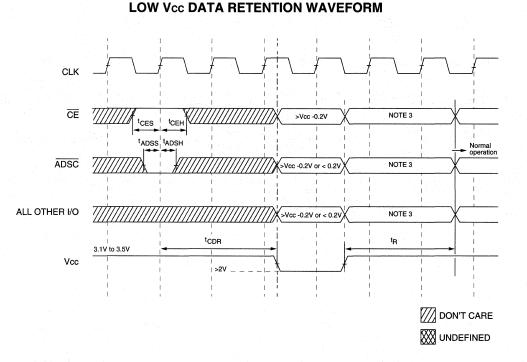
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

NOTES

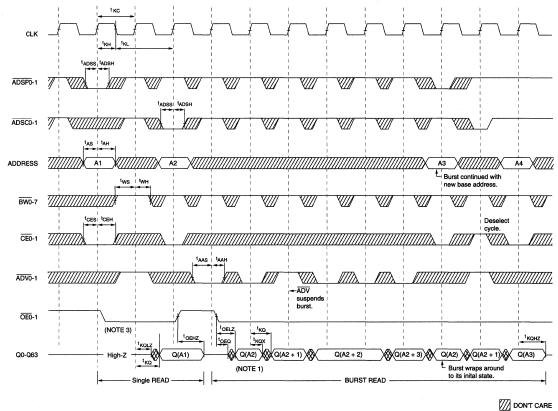
- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{\text{IH}} \le +6.0V$ for $t \le {}^{\text{t}}KC / 2$.
 - Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC / 2$. Power-up: $V_{IH} \le +6.0V$ and $Vcc \le 3.1V$
- for t ≤ 200msec.
 Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ± 500 mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.


- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values.
- 12. "Device deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical values are measured at 25°C.
- 15. The device must have a deselect cycle applied at least two clock cycles before data retention mode is entered.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

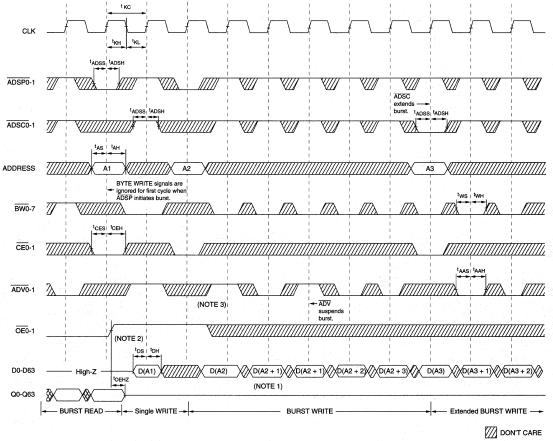
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}}, \ \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \overline{\text{ViN}} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \overline{\text{Vcc}} = 2\text{V} \end{array}$	ICCDR		TBD	μA	14
Chip Deselect to Data Retention Time		^t CDR	2 ^t KC		ns	4, 15
Operation Recovery Time		^t R	2 ^t KC		ns	4


NOTE: 1. All inputs must be \geq Vcc - 0.2V or \leq 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.

- Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the
 other deselect cycle sequences may also be used.
- 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

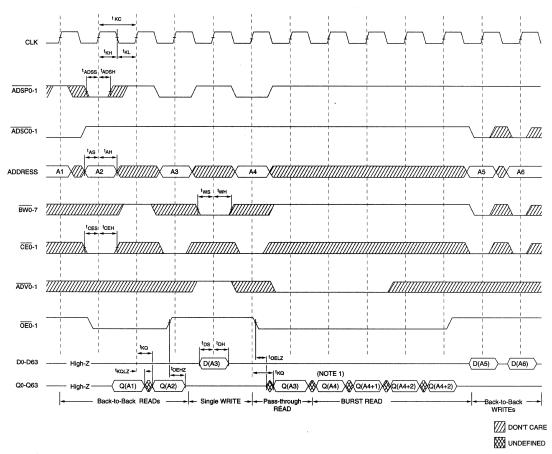
READ TIMING



- NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

WRITE TIMING


NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.

- 2. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
- 3. ADV must be HIGH to permit a WRITE to the loaded address.

MT2LSYT3264T4/T6 32K x 64 SYNCHRONOUS SRAM MODULE

READ/WRITE TIMING

SYNCHRONOUS SRAM MODULE

- NOTE: 1. Q(A3) refers to output from address A3. Q(A3+1) refers to output from the next internal burst address following A3.
 - The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 3. Back-to-back READs may be controlled by either ADSP or ADSC.

SYNCHRONOUS SRAM MODULE

32K x 64 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS AND BURST COUNTER

FEATURES

- 80 position dual-read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 9, 10, 11 and 12ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- · Clock controlled, registered, address, data and control
- Internally self-timed WRITE cycle
- Burst control pins (interleaved or linear burst)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS	MARKING
Timing	
9ns access/15ns cycle	-9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
Packages	
160-lead DIMM (gold)	G
Low power (optional)	Р
• 2V data retention, low power (optional	l) L

Part Number Example: MT2LSYT3264B2G-9 L

GENERAL DESCRIPTION

The Micron Synchronous SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

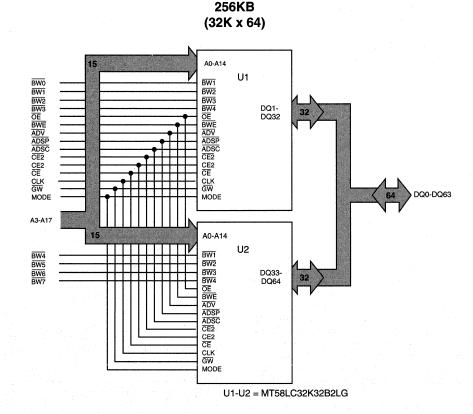
The MT2LSYT3264B2 module integrates two 32K x 32 synchronous SRAMs. All synchronous inputs pass through registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, data inputs, active LOW chip enable (\overline{CE}), two additional chip enables for easy depth expansion (CE2, $\overline{CE2}$), burst control inputs (\overline{ADSC} , \overline{ADSP} , \overline{ADV}) and byte write enables ($\overline{BW0}$ - $\overline{BW7}$, \overline{BWE}) and global write (\overline{GW}).

Asynchronous inputs include the output enable (\overline{OE}) and the clock (CLK) and burst mode (MODE). The Data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

PIN ASSIGNMENT (Top View) 160-Lead, Dual Read-out DIMM (SF-1)

PIN #	SYMBOL.	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL
1	Vss	41	GW	81	Vss	121	CE2
2	DQO	42	Vcc2	82	DQ1	122	RSVD
3	Vcc2	43	RSVD	83	RSVD	123	RSVD
4	DQ2	44	A13	84	DQ3	124	A14
5	DQ4	45	MODE	85	DQ5	125	ADV
6	DQ6	46	A15	86	DQ7	126	A16
7	RSVD	47	A17	87	DQ8	127	NC
8	Vss	48	NC	88	Vss	128	NC
9	DQ9	49	DQ32	89	DQ10	129	DQ33
10	DQ11	50	NC	90	DQ12	130	NC
11	DQ13	51	Vss	91	DQ14	131	Vss
12	Vcc2	52	DQ34	92	RSVD	132	DQ35
13	DQ15	53	DQ36	93	RSVD	133	DQ37
14	DQ16	54	DQ38	94	Vss	134	DQ39
15	Vss	55	DQ40	95	DQ17	135	RSVD
16	DQ18	56	BW4	96	DQ19	136	BW5
17	DQ20	57	Vss	97	DQ21	137	Vss
18	ŌE	58	BW6	98	DQ22	138	BW7
19	Vss	59	DQ41	99	Vss	139	DQ42
20	BWO	60	DQ43	100	BWT	140	DQ44
21	DQ23	61	DQ45	101	RSVD	141	DQ46
22	DQ24	62	Vcc2	102	DQ25	142	RSVD
23	Vcc2	63	DQ47	103	RSVD	143	DQ48
24	DQ26	64	RSVD	104	DQ27	144	DQ49
25	DQ28	65	DQ50	105	DQ29	145	DQ51
26	DQ30	66	DQ52	106	DQ31	146	DQ53
27	RSVD	67	DQ54	107	A6	147	DQ55
28	A5	68	Vss	108	A8	148	Vss
29	A7	69	PRD0	109	A10	149	PRD1
30	A9	70	Vcc2	110	A12	150	RSVD
31	BW2	71	DQ56	111	BW3	151	RSVD
32	Vss	72	DQ57	112	Vss	152	DQ58
33	BWE	73	Vss	113	CLK	153	Vss
34	A11	74	DQ59	114	A3	154	DQ60
35	A4	75	DQ61	115	CE2	155	DQ62
36	RSVD	76	DQ63	116	RSVD	156	RSVD
37	ADSC	77	PRD2	117	ADSP	157	PRD3
38	RSVD	78	Vcc2	118	RSVD	158	RSVD
39	CE	79	NC	119	RSVD	15	NC
40	Vss	80	Vss	120	Vss	160	Vss

GENERAL DESCRIPTION (continued)


Burst operation can be initiated with either address status processor (\overline{ADSP}) or address status controller (\overline{ADSC}) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (\overline{ADV}).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. <u>BW0</u> controls DQ0-DQ7, <u>BW1</u> controls DQ8-DQ15, <u>BW2</u> controls DQ16-DQ23, <u>BW3</u> controls DQ24-DQ31 and so forth, conditioned by <u>BWE</u> being LOW. <u>GW</u> LOW causes all bytes to be written.

The "L" version of this module has a data retention option which is useful for battery backup mode of opera-

tion. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL compatible and 5V tolerant. This module is ideally suited to PentiumTM and Power PCTM systems and systems that benefit from a very wide data bus. The module is also ideal in generic 32- and 64-bit-wide applications. For additional functional and timing information consult the MT58LC32K32B2 synchronous SRAM data sheet.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC32K32B2 synchronous SRAM data sheet for more detailed functional information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
28-30, 34-35, 44, 46-47, 107-110, 114, 124, 126	A3-A17	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
20, 31, 56, 58, 100, 111, 136, 138	<u>BW0</u> -7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7. BW1 controls DQ8-DQ15. BW2 controls DQ16-DQ23. BW3 controls DQ24-DQ31, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
113	CLK	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
39	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
121	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to nable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
115	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
18	ŌE	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
125	ĀDV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
117	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and $\overline{\text{ADSC}}$, but dependent upon CE2 and $\overline{\text{CE2}}$. $\overline{\text{ADSP}}$ is ignored if $\overline{\text{CE}}$ is HIGH. Power-down state is entered if CE2 is LOW or $\overline{\text{CE2}}$ is HIGH.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
37	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.
7, 27, 36, 38, 43, 64, 83, 92, 93, 101, 103, 116, 118, 119, 122, 123, 135, 142, 150, 151, 156, 158	RSVD		No Connect: These pins are reserved.
33	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
41	GW	Input	Global Write: This active low input allows a full 32-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
45	MODE	Input	Mode: This input selects the burst sequence. A low on this pin selects LINEAR BURST. A NC or HIGH on this pin selects INTERLEAVED BURST. Do not alter input state while device is operating.
2, 4-6, 9-11, 13-14, 16-17, 21-22, 24-26, 49, 52-55, 59-61, 63, 65-67, 71-72, 74-76, 82, 84-87, 89-91, 95-98, 102, 104-106, 129, 132-134, 139-141, 143-147, 152, 154-155	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
3, 12, 23, 42, 62, 70, 78	Vcc2	Supply	Power Supply: +3.3V ±5%
1, 8, 15, 19, 32, 40, 51, 57, 68, 73, 80, 81, 88, 94, 99, 112, 120, 131, 137, 148, 153, 160	Vss	Supply	Ground: GND

PRESENCE-DETECT TABLE

Description	Size	PRD3	PRD2	PRD1	PRDO
None		NC	NC	NC	NC
Synchronous Pipelined	256KB	NC	Vss	NC	NC
Synchronous Pipelined	512KB	NC	Vss	NC	Vss
Synchronous	256KB	NC	Vss	Vss	NC
Synchronous	512KB	NC	Vss	Vss	Vss
Asynchronous	256KB	NC	NC	NC	Vss
Asynchronous	512KB	NC	NC	Vss	NC
Reserved		NC	NC	Vss	Vss

MT2LSYT3264B2 Rev. 11/94

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V	to +4.6V
VIN	V to +6V
Storage Temperature (plastic)55°C t	o +125°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	COND	ITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage		and a state of the	VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	BW0-7	IL ₁₁	-1	¹ . 1. 1.	μA	7
		A3-A17	IL12	-4	4	μA	7
		All other inputs	ILıs	-2	2	μA	7
Output Leakage Current) Disabled, out ≤ Vcc	ILo	-1	1	μΑ	
Output High Voltage	Іон =	-4.0mA	Vон	2.4		V	1
Output Low Voltage	lol =	8.0mA	Vol		0.4	V	1
Supply Voltage			Vcc	3.1	3.5	V	1

(Vcc = $3.3V \pm 5\%$ unless otherwise noted)

						MAX					
DESCRIPTION	CONDITIONS	SYM	VER	ТҮР	-9	-10	-11	-12	UNITS	NOTES	
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ Vi∟ or ≥ Viн; cycle time ≥ ^t KC MIN; outputs open	Icc1	ALL	360	540	540	500	450	mA	3, 5, 6	
Power Supply Current: Idle	Device selected; Vcc = MAX; GW, BW, ADSC, ADSP, ADV ≥ VIH; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	Icc2	ALL	56	90	90	90	80	mA	5, 6	
CMOS Standby	Device deselected; Vcc = MAX;		STD	1.0	10	10	10	10	mA		
	all inputs \leq Vss +0.2 or \geq Vcc -0.2; all inputs static; CLK frequency = 0	ISB1	Р	0.4	4	4	4	4	mA	5, 6	
TTL Standby	Device deselected; Vcc = MAX;		STD	30	50	50	50	50	mA		
	all inputs ≤ Vi∟ or ≥ Viн; all inputs static; CLK frequency = 0	ISB2	Р	16	36	36	36	36	mA	5, 6	
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB3	ALL	60	100	100	100	90	mA	5, 6	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A3-A17, ADSC, GW, MODE	T _A = 25°C; f = 1 MHz	CI1		10	рF	4
Input Capacitance: ADSP, ADV, CLK, OE, CE, BWE	Vcc = 3.3V	Cı2		10	pF	4
Input Capacitance: BW0-7		Сіз		5	pF	4
Input/Output Capacitance: DQ0-63		Co		8	pF	4

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2	-		V
Data Retention Current	CE, CE2 ≥ (Vcc -0.2V), CE2 VIN ≥ (Vcc -0.2V) or ≤ 0.2 Vcc = 2V		ICCDR		TBD	μΑ	8
Chip Deselect to Data Retention Time			^t CDR	^t KC		ns	4, 9
Operation Recovery Time			tR	^t KC		ns	4
Undershoot: VIL ≥ -2.0V	V for t ≤ ^t KC /2. for t ≤ ^t KC /2. V and Vcc ≤ 3.1V	6. Ty	OWN mode pical values cle time.		sured at 3.		VER- nd 20n

- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- "Device deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device

- 6. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 7. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu$ A.
- Typical values are measured at 25°C.
- 9. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

SYNCHRONOUS SRAM MODULE

32K x 64 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS, OUTPUTS AND BURST COUNTER

PIN ASSIGNMENT (Top View)

160-Lead, Dual Read-out DIMM

(SF-1)

FEATURES

- 80 position dual-read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pins (interleaved or linear burst)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS		MARKING
UP HUNS		MAKKING

Timing	
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Packages	
160-lead DIMM (gold)	G
• Low power (optional)	Р
• 2V data retention, low power (optional)	L

• Part Number Example: MT2LSYT3264C4G-5 P

GENERAL DESCRIPTION

The Micron Synchronous SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

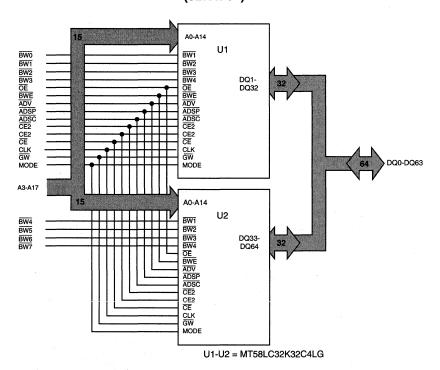
The MT2LSYT3264C4 module integrates two 32K x 32 synchronous SRAMs. All synchronous inputs pass through registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, data inputs, active LOW chip enable (\overline{CE}), two additional chip enables for easy depth expansion (CE2, $\overline{CE2}$), burst control inputs (\overline{ADSC} , \overline{ADSP} , \overline{ADV}) and byte write enables ($\overline{BW0}$ - $\overline{BW7}$, \overline{BWE}) and global write (\overline{GW}).

Asynchronous inputs include the output enable (\overline{OE}) and the clock (CLK) and burst mode (MODE). The Data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be

PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL
1	Vss	41	GW	81	Vss	121	CE2
2	DQO	42	Vcc2	82	DQ1	122	RSVD
3	Vcc2	43	RSVD	83	RSVD	123	RSVD
4	DQ2	44	A13	84	DQ3	124	A14
5	DQ4	45	MODE	85	DQ5	125	ADV
6	DQ6	46	A15	86	DQ7	126	A16
7	RSVD	47	A17	87	DQ8	127	NC
8	Vss	48	NC	88	Vss	128	NC
9	DQ9	49	DQ32	89	DQ10	129	DQ33
10	DQ11	50	NC	90	DQ12	130	NC
11	DQ13	51	Vss	91	DQ14	131	Vss
12	Vcc2	52	DQ34	92	RSVD	132	DQ35
13	DQ15	53	DQ36	93	RSVD	133	DQ37
14	DQ16	54	DQ38	94	Vss	134	DQ39
15	Vss	55	DQ40	95	DQ17	135	RSVD
16	DQ18	56	BW4	96	DQ19	136	BW5
17	DQ20	57	Vss	97	DQ21	137	Vss
18	ŌE	58	BW6	98	DQ22	138	BW7
19	Vss	59	DQ41	99	Vss	139	DQ42
20	BWO	60	DQ43	100	BW1	140	DQ44
21	DQ23	61	DQ45	101	RSVD	141	DQ46
22	DQ24	62	Vcc2	102	DQ25	142	RSVD
23	Vcc2	63	DQ47	103	RSVD	143	DQ48
24	DQ26	64	RSVD	104	DQ27	144	DQ49
25	DQ28	65	DQ50	105	DQ29	145	DQ51
26	DQ30	66	DQ52	106	DQ31	146	DQ53
27	RSVD	67	DQ54	107	A6	147	DQ55
28	A5	68	Vss	108	A8	148	Vss
29	A7	69	PRD0	109	A10	149	PRD1
30	A9	70	Vcc2	110	A12	150	RSVD
31	BW2	71	DQ56	111	BW3	151	RSVD
32	Vss	72	DQ57	112	Vss	152	DQ58
33	BWE	73	Vss	113	CLK	153	Vss
34	A11	74	DQ59	114	A3	154	DQ60
35	A4	75	DQ61	115	CE2	155	DQ62
36	RSVD	76	DQ63	116	RSVD	156	RSVD
37	ADSC	77	PRD2	117	ADSP	157	PRD3
38	RSVD	78	Vcc2	118	RSVD	158	RSVD
39	ĈE	79	NC	119	RSVD	15	NC
40	Vss	80	Vss	120	Vss	160	Vss

GENERAL DESCRIPTION (continued)

from one to eight bytes wide as controlled by the byte write enables.


Burst operation can be initiated with either address status processor (ADSP) or address status controller (ADSC) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW0 controls DQ0-DQ7, BW1 controls DQ8-DQ15, BW2 controls DQ16-DQ23, BW3 controls DQ24-DQ31 and so forth, conditioned by BWE being LOW. GW LOW causes all bytes to be written. WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by OE to improve cache system response. The module incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance.

The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL compatible and 5V tolerant. This module is ideally suited to PentiumTM and Power PCTM systems and systems that benefit from a very wide data bus. The module is also ideal in generic 32- and 64-bit-wide applications. For additional functional and timing information consult the MT58LC32K32C4 synchronous SRAM data sheet.

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC32K32C4 synchronous SRAM data sheet for more detailed functional information.

MT2LSYT3264C4 32K x 64 SYNCHRONOUS SRAM MODULE

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
28-30, 34-35, 44, 46-47, 107-110, 114, 124, 126	A3-A17	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
20, 31, 56, 58, 100, 111, 136, 138	BW0-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle.BW0 controls DQ0-DQ7. BW1 controls DQ8-DQ15. BW2 controls DQ16-DQ23. BW3 controls DQ24-DQ31, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
113	CLK	Input	Clock: This signal latches the address, data, chip enables, bytewrite enables and burst control inputs on its rising edge. Allsynchronous inputs must meet setup and hold times around the clock's rising edge.
39	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
121	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
115	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
18	OE	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
125	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
117	ADSP	Input	Synchronous Address Status Processor: This active LOW inputinterrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC, but dependent upon CE2 and CE2. ADSP is ignored if CE is HIGH. Power-down state is entered if CE2 is LOW or CE2 is HIGH.
37	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external addressto be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.

MT2LSYT3264C4 32K x 64 SYNCHRONOUS SRAM MODULE

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
7, 27, 36, 38, 43, 64, 83, 92, 93, 101, 103, 116, 118, 119, 122, 123, 135, 142, 150, 151, 156, 158	RSVD		No Connect: These pins are reserved.
33	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
41	GW	Input	Global Write: This active low input allows a full 32-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
45	MODE	Input	Mode: This input selects the burst sequence. A low on this pin selects LINEAR BURST. A NC on this pin selects INTER- LEAVED BURST. Do not alter input state while device is operating.
2, 4-6, 9-11, 13-14, 16-17, 21-22, 24-26, 49, 52-55, 59-61, 63, 65-67, 71-72, 74-76, 82, 84-87, 89-91, 95-98, 102, 104-106, 129, 132-134, 139-141, 143-147, 152, 154-155	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
3, 12, 23, 42, 62, 70, 78	Vcc2	Supply	Power Supply: +3.3V ±5%
1, 8, 15, 19, 32, 40, 51, 57, 68, 73, 80, 81, 88, 94, 99, 112, 120, 131, 137, 148, 153, 160	Vss	Supply	Ground: GND

PRESENCE-DETECT TABLE

Description	Size	PRD3	PRD2	PRD1	PRD0
None		NC	NC	NC	NC
Synchronous Pipelined	256KB	NC	Vss	NC	NC
Synchronous Pipelined	512KB	NC	Vss	NC	Vss
Synchronous	256KB	NC	Vss	Vss	NC
Synchronous	512KB	NC	Vss	Vss	Vss
Asynchronous	256KB	NC	NC	NC	Vss
Asynchronous	512KB	NC	NC	Vss	NC
Reserved		NC	NC	Vss	Vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V to +4.6V	
VIN	
Storage Temperature (plastic)55°C to +125°C	
Short Circuit Output Current 100mA	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(Vcc = 3.3V \pm 5\% \text{ unless otherwise noted})$

DESCRIPTION	COND	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage			Vін	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage			Vi∟	-0.3	0.8	V	1, 2
Input Leakage Current	Input Leakage Current $0V \le V_{IN} \le V_{CC}$ BW0-7		ILit	-1	1	μΑ	7
		A3-A17	IL12	-4	4	μΑ	7
		All other inputs	IL13	-2	2	μA	7
Output Leakage Current	Output(s) 0V ≤ Vo	ILo	-1	1	μA		
Output High Voltage	Іон = -	-4.0mA	Vон	2.4		V	1
Output Low Voltage	IOL =	Vol		0.4	V	1	
Supply Voltage		Vcc	3.1	3.5	V	1	

								1.1	_			
						MAX						
DESCRIPTION	CONDITIONS	SYM	VER	түр	-5	-6	-7	-8	UNITS	NOTES		
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ V⊩ or ≥ V⊮; cycle time ≥ ^t KC MIN; outputs open	Icc1	ALL	360	720	630	540	450	mA	3, 5, 6		
Power Supply Current: Idle	$\begin{array}{l} \hline \text{Device selected; Vcc} = \text{MAX;}\\ \hline \text{GW, BW, } \overline{\text{ADSC}}, \overline{\text{ADSP}}, \overline{\text{ADV}} \geq \text{V}\text{\tiny H}\text{;}\\ \text{all inputs} \leq \text{Vss} + 0.2 \text{ or} \geq \text{Vcc} - 0.2\text{;}\\ \text{cycle time} \geq {}^{t}\text{KC} \text{ MIN} \end{array}$	Icc2	ALL	60	120	110	100	90	mA	5, 6		
CMOS Standby	Device deselected; Vcc = MAX;		STD	1.0	10	10	10	10	mA			
	all inputs \leq Vss +0.2 or \geq Vcc -0.2; all inputs static; CLK frequency = 0	ISB1	Р	0.4	4	4	4	4	mA	5, 6		
TTL Standby	Device deselected; Vcc = MAX;	ISB2	STD	30	50	50	50	50	mA	5.0		
	all inputs ≤ Vi∟ or ≥ Viн; all inputs static; CLK frequency = 0		Р	16	36	36	36	36	mA	5, 6		
Clock Running	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		ALL	60	120	110	100	90	mA	5, 6		

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A3-A17, ADSC, GW, MODE	T _A = 25°C; f = 1 MHz	Ci1		10	pF	4
Input Capacitance: ADSP, ADV, CLK, OE, CE, BWE	Vcc = 3.3V	Cı2		10	pF	4
Input Capacitance: BW0-7		Сіз		5	pF	4
Input/Output Capacitance: DQ0-63		Со		8	pF	4

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2			V
Data Retention Current	$ \overline{CE}, \overline{CE2} \ge (Vcc - 0.2V), CE2 \le 0.2V \\ V_{IN} \ge (Vcc - 0.2V) \text{ or } \le 0.2V \\ Vcc = 2V $	ICCDR		TBD	μA	8
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 9
Operation Recovery Time		^t R	^t KC		ns	4

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC / 2$.
 - Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC /2$. Power-up: $V_{IH} \le +6.0V$ and $Vcc \le 3.1V$ for $t \le 200ms$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. "Device deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device

selected" means device is active (not in POWER-DOWN mode).

- 6. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 7. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 8. Typical values are measured at 25°C.
- 9. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

MT2LSYT3264C4 Rev. 11/94

SYNCHRONOUS SRAM MODULE

FEATURES

- 80 position dual read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 9, 10, 11 and 12ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control
- · Clock controlled, registered address, data and control
- Internally self-timed WRITE cycle
- Burst control pins (interleaved T2 or linear burst T1)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS	MARKING
• Timing	
9ns access/15ns cycle	-9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
Burst sequence	
Linear Burst	T1
486/Pentium [™] Burst	T2
Packages	
160-lead DIMM (gold)	G
Low power (optional)	Ρ
• 2V data retention, low power (option	al) L

• 2V data retention, low power (optional)

 Part Number Examples: MT2LSYT3272T2G-10 L MT4LSY6472T2G-10 L

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT2LSYT3272T1/T2 module integrates two 32K x 36 synchronous SRAMs and the MT4LSY6472T1/T2 integrates four 64K x 18 synchronous SRAMs. All synchronous inputs pass through registers controlled by positive-edge-triggered clock inputs (CLK0 and CLK1*). The synchronous inputs include all addresses, data inputs, active LOW chip enables (CE0-1), burst control inputs (ADSC0-1, ADSP0-1, ADV0-1) and byte write enables (BW0-7).

32K, 64K x 72 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS AND BURST COUNTER

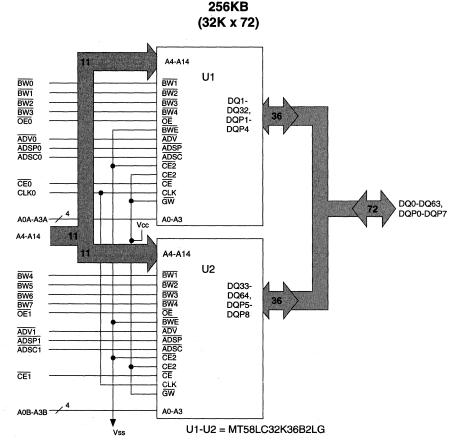
PIN ASSIGNMENT (Top View)

160-Lead, Dual Read-out DIMM (SF-1) 32K x 72

(SF-3) 64K x 72

PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBO
1	Vss	41	Vss	81	Vss	121	Vss
2	DQ62	42	DQ10	82	DQ63	122	DQ11
3	Vcc	43	Vcc	83	RSVD	123	RSVD
4	DQ60	44	DQ8	84	DQ61	124	DQ9
5	Vcc	45	DQPO	85	RSVD	125	DQP1
6	DQ58	46	Vcc	86	DQ59	126	RSVD
7	DQ56	47	DQ6	87	DQ57	127	DQ7
8	Vss	48	DQ4	88	Vss	128	DQ5
9	DQP6	49	DQ2	89	DQP7	129	DQ3
10	DQ54	50	DQO	90	DQ55	130	DQ1
11	DQ52	51	Vss	91	DQ53	131	Vss
12	DQ50	52	A0A	92	DQ51	132	AOB
13	Vss	53	A1A	93	Vss	133	A1B
14	DQ48	54	A2A	94	DQ49	134	A2B
15	DQ46	55	A3A	95	DQ47	135	A3B
16	DQ44	56	A5	96	DQ45	136	A4
17	DQ42	57	Vss	97	DQ43	137	Vss
18	Vss	58	A7	98	Vss	138	A6
19	DQ40	59	A9	99	DQ41	139	A8
20	DQP4	60	A11	100	DQP5	140	A10
21	DQ38	61	A13	101	DQ39	141	A12
22	DQ36	62	A15*	102	DQ37	142	A14
23	DQ34	63	Vss	103	DQ35	143	Vss
24	Vss	64	PD0	104	Vss	144	NC
25	DQ32	65	Vss	105	DQ33	145	Vss
26	DQ30	66	NC/CLK1*	106	DQ31	146	CLKO
27	DQ28	67	RSVD	107	DQ29	147	RSVD
28	DQ26	68	Vss	108	DQ27	148	Vss
29	DQ24	69	BW6	109	DQ25	149	BW7
30	Vss	70	BW4	110	Vss	150	BW5
31	DQP2	71	BW2	111	DQP3	151	BW3
32	DQ22	72	BWO	112	DQ23	152	BW1
33	DQ20	73	Vss	113	DQ21	153	Vss
34	Vcc	74	ADSCO	114	RSVD	154	ADSC
35	DQ18	75	CEO	115	DQ19	155	CET
36	Vss	76	ADVO	116	Vss	156	ADV1
37	DQ16	77	OEO	117	DQ17	157	OE1
38	Vcc	78	Vcc	118	RSVD	158	RSVD
39	DQ14	79	ADSPO	119	DQ15	159	ADSP
40	DQ12	80	Vss	120	DQ13	160	Vss

GENERAL DESCRIPTION (continued)


Asynchronous inputs include the output enable (\overline{OE}) and the clocks (CLK0 and CLK1*). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

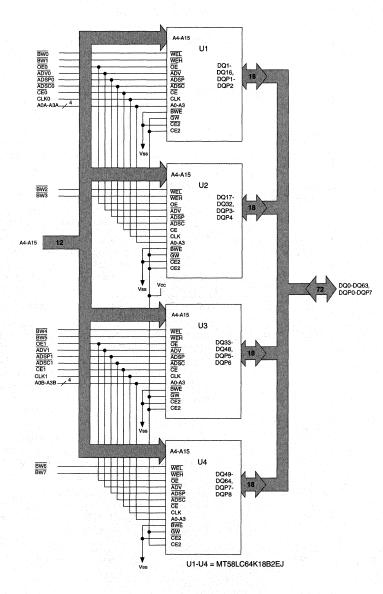
Burst operation can be initiated with either address status processor ($\overline{ADSP0-1}$) or address status controller ($\overline{ADSC0-1}$) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pins ($\overline{ADV0-1}$).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW0 controls DQ0-DQ7 and DQP0, BW1 controls DQ8-DQ15 and DQP1, BW2 controls DQ16-DQ23 and DQP2, BW3 controls DQ24-DQ31 and DQP4 and so forth.

The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V-tolerant. This module is ideally suited to PentiumTM systems and those systems which benefit from a very wide data bus.

FUNCTIONAL BLOCK DIAGRAM


NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PRELIMINARY

MICHON

MT2LSYT3272T1/T2, MT4LSY6472T1/T2 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM 512KB (64K x 72)

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

RON

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
56, 58-62, 136, 138-142	A4-A15	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
69-72, 149-152	BWO-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7 and DQP0. BW1 controls DQ8-DQ15 and DQP1. BW2 controls DQ16-DQ23 and DQP2. BW3 controls DQ24-DQ31 and DQP3, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
66, 146	CLK0-CLK1	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. (CLK1 used on 64K x 72 only).
75, 155	CE0-CE1	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
52-55, 132-135	АОА-АЗА, АОВ-АЗВ	Input	Synchronous Address Input: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. These lower order address signals are provided for the two data banks to simplify the interface to many cache controllers.
77, 157	OE0-OE1	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
76, 156	ADV0-ADV1	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
79, 159	ADSP0-ADSP1	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be latched. A READ is performed using the new address, independent of the byte write enables and $\overline{\text{ADSC}}$. $\overline{\text{ADSP}}$ is ignored if $\overline{\text{CE}}$ is HIGH.
74, 154	ADSC0-ADSC1	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be latched. A READ or WRITE is performed using the new address if all chip enables are active. Power-down state is entered if one or more chip enables are inactive.
83, 85, 114, 118, 123, 126, 147, 158	RSVD	-	No Connect: These pins are reserved.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
2, 4, 6-7, 10-12, 14, 16-17, 19, 21-23, 25-29, 32-33, 35, 37, 39-40, 42, 44, 47-50, 82, 84, 86-87, 90-92, 94-97, 99, 101-103, 105-109, 112-113, 115, 117, 119-120, 122, 124, 127-130	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
9, 20, 31, 45, 89, 100, 111, 125	DQP0-DQP7	Input/ Output	Parity Data I/O: Byte 1 Parity is DQP0; Byte 2 Parity is DQP1 and so forth.
3, 5, 34, 38, 43, 46, 78	Vcc	Supply	Power Supply: +3.3V ±5%
1, 8, 13, 18, 24, 30, 36, 41, 51, 57, 63, 68, 73, 80, 81, 88, 93, 98, 104, 110, 116, 121, 131, 137, 143, 148, 153, 160	Vss	Supply	Ground: GND
L			

INTERLEAVED BURST ADDRESS TABLE (MODE = NC) MT2LSYT3272T2, MT4LSY6472T2

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)		
XX00	XX01	XX10	XX11		
XX01	XX00	XX11	XX10		
XX10	XX11	XX00	XX01		
XX11	XX10	XX01	XX00		

LINEAR BURST ADDRESS TABLE (MODE = GND) MT2LSYT3272T1, MT4LSY6472T1

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

PRESENCE-DETECT TABLE

DENSITY	PDO
256KB	NC
512KB	Vss

TRUTH TABLE

OPERATION	ADDRESS USED	CE	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ0-63, DQP0-7
Deselected Cycle, Power-down	None	H	X	Ľ	Х	X	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	Х	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Х	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	Н	L	X	L	X	L-H	D
READ Cycle, Begin Burst	External	L	Н	L	Х	Н	L	L-H	Q
READ Cycle, Begin Burst	External	L	н	L	X	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	X	Н	н	L	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	X	н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	X	н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	н	X	Н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	X	н	Н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	X	Н	н	н	Н	н	L-H	High-Z
READ Cycle, Suspend Burst	Current	н	X	н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	X	н	Н	н	Н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	X	н	н	H ·	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	н	X	н	Н	L	Х	L-H	D

- NOTE:
 - X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW0, BW1, BW2, etc.) are LOW. WRITE=H means all byte write enable signals are HIGH.

 <u>BW0</u> enables writes to Byte 1 (DQ0-DQ7, DQP0). <u>BW1</u> enables writes to Byte 2 (DQ8-DQ15, DQP1). <u>BW2</u> enables writes to Byte 3 (DQ16-DQ23, DQP2). <u>BW3</u> enables writes to Byte 4 (DQ24-DQ31, DQP3) and so forth.

- 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 4. Wait states are inserted by suspending burst.
- 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
- 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
- ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss0.5V to +4.6V
VIN
Storage Temperature (plastic)
Short Circuit Output Current 100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Vcc = $3.3V \pm 5\%$ unless otherwise noted)

DESCRIPTION	COND	ITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Ин	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le VIN \le VCC$	BW0-BW7	IL11	-1	1	μΑ	
	1	A4-A15	ILı2	-4	4	μΑ	1
		All other inputs	IL13	-2	2	μΑ	
Output Leakage Current		Disabled, out ≤ Vcc	ILo	-1	1	μΑ	la de la composición de la composición de la composición de la composición de la composición de la composición Composición de la composición de la comp
Output High Voltage	Іон = -	-4.0mA	Vон	2.4		V	1
Output Low Voltage	lol = 8.0mA		Vol		0.4	V	1
Supply Voltage			Vcc	3.1	3.5	V	1

										-	
							M	AX			in A
DESCRIPTION	CONDITIONS	SYM	VER	SIZE	TYP	-9	-10	-11	-12	UNITS	NOTES
Power Supply Current: Operating	Device selected; all inputs \leq VIL or \geq VIH; cycle time \geq ^t KC MIN; Vcc = MAX; outputs open	Icc1	ALL	256KB 512KB	400 700	600 1,000	600 1,000	550 900	500 800	mA mA	3, 12, 13
Power Supply Current: Idle	$\label{eq:additional} \begin{array}{l} \hline \text{Device selected; Vcc} = \text{MAX;} \\ \hline \text{ADSC, ADSP, ADV} \geq \text{V}\textsc{H}\textsc{i}; \\ \text{all inputs} \leq \text{Vss} + 0.2 \text{ or} \geq \text{Vcc} - 0.2\textsc{;} \\ \hline \text{cycle time} \geq {}^{t}\text{KC MIN} \end{array}$	Icc2	ALL	256KB 512KB	56 112	90 180	90 180	90 180	80 160	mA mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2;	ISB1	STD	256KB 512KB	1.0 2.0	10 20	10 20	10 20	10 20	mA mA	12, 13
	all inputs static; CLK frequency = 0		Р	256KB 512KB	0.4 0.8	4 8	4 8	4 8	4 8	mA mA	
TTL Standby	Device deselected; Vcc = MAX; all inputs ≤ Vi∟ or ≥ Viн;	ISB2	STD	256KB 512KB	30 60	50 100	50 100	50 100	50 100	mA mA	12, 13
	all inputs static; CLK frequency = 0	1. 1	Р	256KB 512KB	16 40	36 72	36 72	36 72	36 72	mA mA	
Clock Running	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; CLK cycle time \geq ^t KC MIN	ISB3	ALL	256KB 512KB	60 120	100 200	100 200	100 200	90 180	mA mA	12, 13

SYNCHRONOUS SRAM MODULE

MT2LSYT3272T1/T2, MT4LSY6472T1/T2 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

CAPACITANCE

		M/	AX			
DESCRIPTION	CONDITIONS	SYMBOL	32K	64K	UNITS	NOTES
Input Capacitance: A4-A15	T _A = 25°C; f = 1 MHz	CI1	10	18	pF	4
Input Capacitance: ADSP0-1, ADV0-1, CLK0-1, OE0-1, CE0-1, ADSC0-1, A0A-A3A, A0B-A3B		Cı2	5	10	pF	4
Input Capacitance: BW0-7		Сіз	5	5	pF	4
Input/Output Capacitance: DQ0-63, PDQ0-7		Co	8	8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (Vcc = 3.3V ±5%)

		-	9	-	10	-1	11	-	12		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock								1.0			
Clock cycle time	^t KC	15		15		15		20		ns	
Clock HIGH time	^t KH	4		5		5		6		ns	
Clock LOW time	^t KL	4		5		5		6		ns	
Output Times			-							· · ·	
Clock to output valid	^t KQ		9		10		11		12	ns	
Clock to output invalid	^t KQX	3		3		3		3		ns	
Clock to output in Low-Z	^t KQLZ	5		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5		- 5		6	ns	6, 7
OE to output valid	^t OEQ		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ		5		5		5		6	ns	6, 7
Setup Times											
Address	tAS	2.5		2.5		2.5		3		ns	8, 10
Address Status (ADSC0-1, ADSP0-1)	^t ADSS	2.5		3		3		3		ns	8, 10
Address Advance (ADV0-1)	^t AAS	2.5	in the second	3		3		3		ns	8, 10
Byte Write Enables (BW0-7)	tWS	2.5		3		3		3		ns	8, 10
Data-in	^t DS	2.5		3		3		3	1	ns	8, 10
Chip Enable (CE0-1)	^t CES	2.5		3		3		3		ns	8, 10
Hold Times								19 M		- e e - 1	al an an a
Address	tAH	0.5		0.5		0.5		0.5		ns	8, 10
Address Status (ADSC0-1, ADSP0-1)	tADSH	0.5		0.5		0.5	1.11	0.5		ns	8, 10
Address Advance (ADV0-1)	^t AAH	0.5		0.5		0.5		0.5		ns	8, 10
Byte Write Enables (BW0-7)	tWH	0.5		0.5		0.5		0.5		ns	8, 10
Data-in	^t DH	0.5		0.5		0.5		0.5	$2 e^{i \lambda_{1} \lambda_{2}}$	ns	8, 10
Chip Enable (CE0-1)	^t CEH	0.5		0.5	1.1	0.5		0.5		ns	8, 10

PRELIMINARY

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

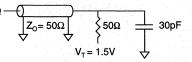


Fig. 1 OUTPUT LOAD EQUIVALENT

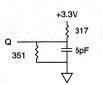
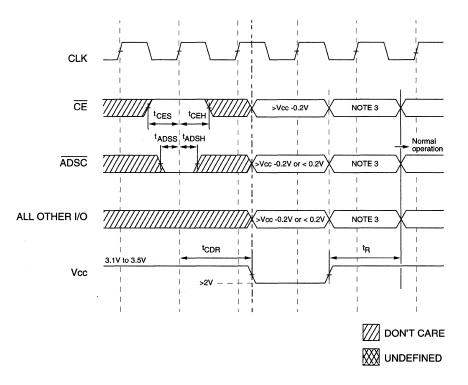


Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $\forall H \le +6.0V \text{ for } t \le {}^{t}KC / 2.$ Undershoot: $\forall IL \ge -2.0V \text{ for } t \le {}^{t}KC / 2.$ Power-up: $\forall IL \ge -2.0V \text{ and } Vcc \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with $C_L = 5pF$ as in Fig. 2. Transition is measured ± 500 mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

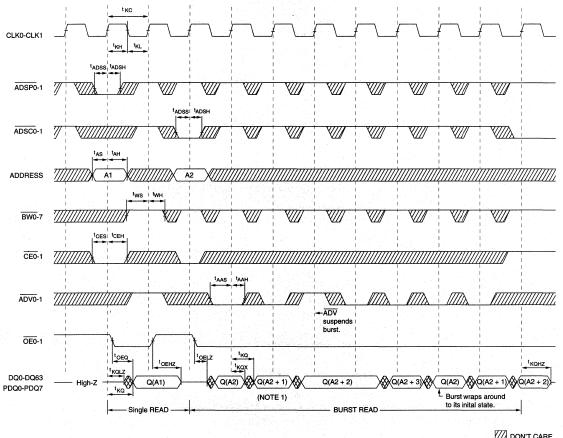

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values.
- 12. "Device deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical values are measured at 25°C.
- 15. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE}}, \ \overline{\text{CE2}} \geq (\text{Vcc} \ \text{-}0.2\text{V}), \ \text{CE2} \leq 0.2\text{V} \\ \\ \overline{\text{Vin}} \geq (\text{Vcc} \ \text{-}0.2\text{V}) \ \text{or} \leq 0.2\text{V} \\ \\ \\ \overline{\text{Vcc}} = 2\text{V} \end{array}$	ICCDR		TBD	μA	14
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 15
Operation Recovery Time	· · · · · · · · · · · · · · · · · · ·	^t R	^t KC		ns	4

LOW Vcc DATA RETENTION WAVEFORM

NOTE:

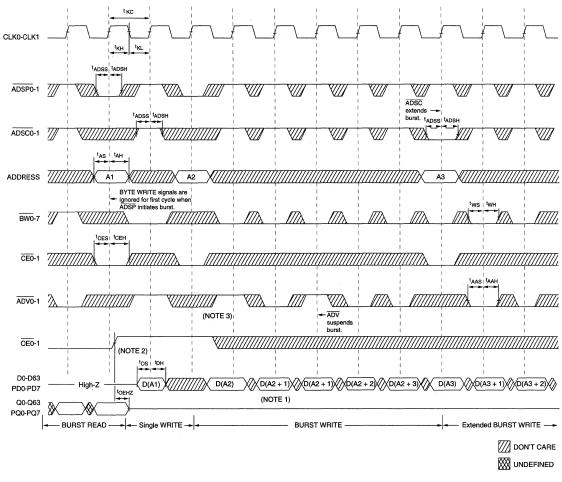

- All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.
 - 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

PRELIMINARY

MT2LSYT3272T1/T2, MT4LSY6472T1/T2 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

READ TIMING

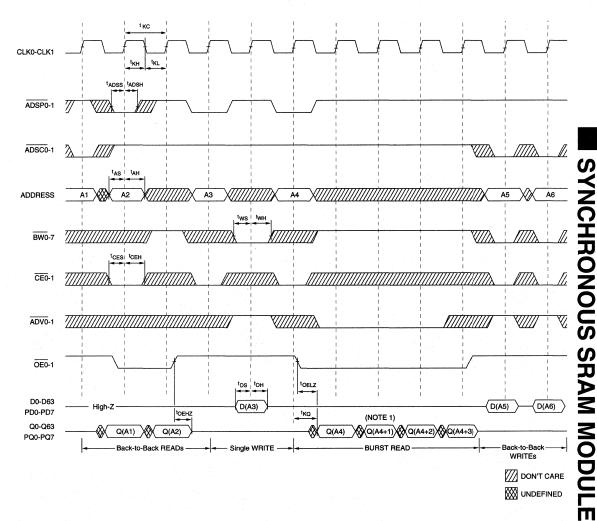
DON'T CARE


SYNCHRONOUS SRAM MODUL

Ш

- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. Timing is shown assuming that the device was not enabled before entering this sequence. \overline{OE} does not cause Q to be driven until after the following clock rising edge.

WRITE TIMING



- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 3. ADV must be HIGH to permit a WRITE to the loaded address.

PRELIMINARY

READ/WRITE TIMING

NOTE: 1. Q(A3) refers to output from address A3. Q(A3+1) refers to output from the next internal burst address following A3.

- The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
- 3. Back-to-back READs may be controlled by either ADSP or ADSC.

PRELIMINARY

MT2LSYT3272T4/T6, MT4LSY6472T4/T6 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

SYNCHRONOUS SRAM MODULE

FEATURES

- 80 position dual read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control
- WRITE pass-through capability
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- Burst control pins (interleaved T4 or linear burst T6)
- Low capacitive bus loading
- · High 30pF output drive capability at rated access time

OPTIONS	nan an	MARKING
 Timing 		
Eng agagag	10mg greate	1 E 22

5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Burst sequence	
Interleaved Burst	T4
Linear Burst	T6
Packages	
160-lead DIMM (gold)	G
Low power (optional)	Р
• 2V data retention, low power (optional)	L

 Part Number Examples: MT2LSYT3272T4G-6 L MT4LSY6472T4G-6 L

GENERAL DESCRIPTION

The Micron SyncBurst[™] SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT2LSYT3272T4/T6 module integrates two 32K x 36 synchronous SRAMs and the MT4LSY6472T4/T6 integrates four 64K x 18 synchronous SRAMs. All synchronous inputs pass through registers controlled by positive-edge-triggered clock inputs (CLK0 and CLK1*). The synchronous inputs include all addresses, data inputs, active LOW chip enables (CE0-1), burst control inputs (ADSC0-1, ADSP0-1, ADV0-1) and byte write enables (BW0-7).

32K, 64K x 72 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS, OUTPUTS AND BURST COUNTER

PIN ASSIGNMENT (Top View)

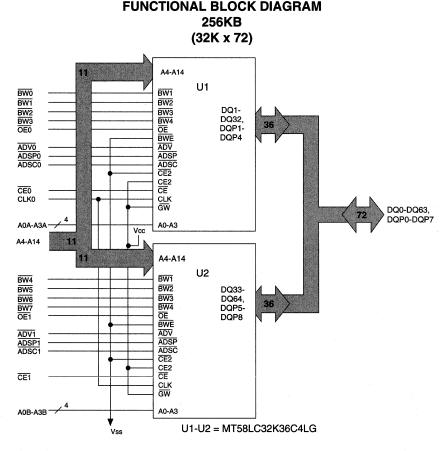
160-Lead, Dual Read-out DIMM

(SF-1) 32K x 72 (SF-3) 64K x 72

PIN #	# SYMBOL PIN # SYMBOL PIN # SYMBOL PIN # SY						
1	Vss	41	Vss	81	Vss	121	SYMBO Vss
		41					
2	DQ62		DQ10	82	DQ63	122	DQ11
3	Vcc	43	Vcc	83	RSVD	123	RSVD
4	DQ60	44	DQ8	84	DQ61	124	DQ9
5	Vcc	45	DQPO	85	RSVD	125	DQP1
6	DQ58	46	Vcc ·	86	DQ59	126	RSVD
7	DQ56	47	DQ6	87	DQ57	127	DQ7
8	Vss	48	DQ4	88	Vss	128	DQ5
9	DQP6	49	DQ2	89	DQP7	129	DQ3
10	DQ54	50	DQO	90	DQ55	130	DQ1
11	DQ52	51	Vss	91	DQ53	131	Vss
12	DQ50	52	AOA	92	DQ51	132	AOB
13	Vss	53	A1A	93	Vss	133	A1B
14	DQ48	54	A2A	94	DQ49	134	A2B
15	DQ46	55	A3A	95	DQ47	135	A3B
16	DQ44	56	A5	96	DQ45	136	A4
17	DQ42	57	Vss	97	DQ43	137	Vss
18	Vss	58	A7	98	Vss	138	A6
19	DQ40	59	A9	99	DQ41	139	A8
20	DQP4	60	A11	100	DQP5	140	A10
21	DQ38	61	A13	101	DQ39	141	A12
22	DQ36	62	A15*	102	DQ37	142	A14
23	DQ34	63	Vss	103	DQ35	143	Vss
24	Vss	64	PD0	104	Vss	144	NC
25	DQ32	65	Vss	105	DQ33	145	Vss
26	DQ30	66	NC/CLK1*	106	DQ31	146	CLKO
27	DQ28	67	RSVD	107	DQ29	147	RSVD
28	DQ26	68	Vss	108	DQ27	148	Vss
29	DQ24	69	BW6	109	DQ25	149	BW7
30	Vss	70	BW4	110	Vss	150	BW5
31	DQP2	71	BW2	111	DQP3	151	BW3
32	DQ22	72	BWO	112	DQ23	152	BW1
33	DQ20	73	Vss	113	DQ21	153	Vss
34	Vcc	74	ADSCO	114	RSVD	154	ADSC1
35	DQ18	75	CEO	115	DQ19	155	CE1
36	Vss	76	ADV0	116	Vss	156	ADV1
37	DQ16	77	<u>OEO</u>	117	DQ17	157	0E1
38	Vcc	78	Vcc	118	RSVD	158	RSVD
39	DQ14	79	ADSP0	119	DQ15	159	ADSP1
40	DQ12	80	Vss	120	DQ13	160	Vss

4-107

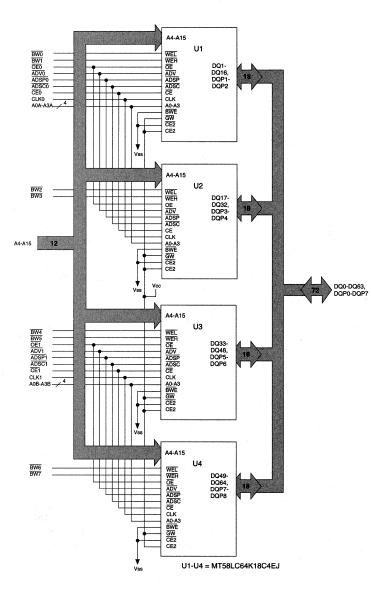
GENERAL DESCRIPTION (continued)


Asynchronous inputs include the output enables ($\overline{OE0-1}$) and the clocks (CLK0 and CLK1*). The data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

Burst operation can be initiated with either address status processor (ADSP0-1) or address status controller (ADSC0-1) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pins (ADV0-1).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW0 controls DQ0-DQ7 and DQP0, BW1 controls DQ8DQ15 and DQP1, BW2 controls DQ16-DQ23 and DQP2, BW3 controls DQ24-DQ31 and DQP4 and so forth.

The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.


The module operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V tolerant. This module is ideally suited to Pentium[™] and PowerPC[™] pipelined systems and systems that benefit from a very wide high-speed data bus.

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

FUNCTIONAL BLOCK DIAGRAM 512KB (64K x 72)

PRELIMINARY

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See Truth Table, pin descriptions and timing diagrams for detailed information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
56, 58-62, 136, 138-142	A4-A15	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
69-72, 149-152	BW0-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7 and DQP0. BW1 controls DQ8-DQ15 and DQP1. BW2 controls DQ16-DQ23 and DQP2. BW3 controls DQ24-DQ31 and DQP3, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
66, 146	CLK0-CLK1	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. (CLK1 used on 64K x 72 only).
75, 155	CE0-CE1	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
52-55, 132-135	АОА-АЗА, АОВ-АЗВ	Input	Synchronous Address Input: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. These lower order address signals are provided for the two data banks to simplify the interface to many cache controllers.
77, 157	OE0-OE1	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
76, 156	ADV0-ADV1	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
79, 159	ADSP0-ADSP1	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be latched. A READ is performed using the new address, independent of the byte write enables and $\overline{\text{ADSC}}$. ADSP is ignored if $\overline{\text{CE}}$ is HIGH.
74, 154	ADSC0-ADSC1	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be latched. A READ or WRITE is performed using the new address if all chip enables are active. Power-down state is entered if one or more chip enables are inactive.
83, 85, 114, 118, 123, 126, 147, 158	RSVD		No Connect: These pins are reserved.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(\$)	SYMBOL	TYPE	DESCRIPTION
2, 4, 6-7, 10-12, 14, 16-17, 19, 21-23, 25-29, 32-33, 35, 37, 39-40, 42, 44, 47-50, 82, 84, 86-87, 90-92, 94-97, 99, 101-103, 105-109, 112-113, 115, 117, 119-120, 122, 124, 127-130	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK.
9, 20, 31, 45, 89, 100, 111, 125	DQP0-DQP7	Input/ Output	Parity Data I/O: Byte 1 Parity is DQP0; Byte 2 Parity is DQP1 and so forth.
3, 5, 34, 38, 43, 46, 78	Vcc	Supply	Power Supply: +3.3V ±5%
1, 8, 13, 18, 24, 30, 36, 41, 51, 57, 63, 68, 73, 80, 81, 88, 93, 98, 104, 110, 116, 121, 131, 137, 143, 148, 153, 160	Vss	Supply	Ground: GND

INTERLEAVED BURST ADDRESS TABLE (MODE = NC) MT2LSYT3272T4, MT4LSY6472T4

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND) MT2LSYT3272T6, MT4LSY6472T6

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX10	XX11	XX00
XX10	XX11	XX00	XX01
XX11	XX00	XX01	XX10

PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE	PRESENT CYC	NEXT CYCLE				
OPERATION	BWs	OPERATION	CE	BWs	ŌE	OPERATION
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L	Initiate READ cycle Register A(n), Q = D(n-1)	L	Н	L	Read D(n)
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L	No new cycle Q = D(n-1)	Н	Н	Ľ	No carry-over from previous cycle
Initiate WRITE cycle, all bytes Address = $A(n-1)$, data = $D(n-1)$	All L	No new cycle Q = HIGH-Z	Н	Н	н	No carry-over from previous cycle
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L	No new cycle $Q = D(n-1)$ for one byte	Н	н	L	No carry-over from previous cycle

NOTE: Previous cycle may be either BURST or NONBURST cycle.

TRUTH TABLE

OPERATION	ADDRESS USED	CE	ADSP	ADSC	ADV	WRITE	ŌE	CLK	DQ0-63, DQP0-7
Deselected Cycle, Power-down	None	H ·	Х	L	Х	Х	Х	L-H	High-Z
READ Cycle, Begin Burst	External	L	L	Х	Х	Х	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Х	Х	Х	н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	н	L	Х	н	L	L-H	Q
READ Cycle, Begin Burst	External	L	н	L	X	н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	X	н	Н	L	н	L	L-H	Q
READ Cycle, Continue Burst	Next	X	Н	H	L	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	н	X	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	н	X	Н	L	н	Н	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Н	H	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	X	н	L	L	X	L-H	D
READ Cycle, Suspend Burst	Current	X	н	Н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	X	н	Н	н	н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	X	н	н	н	L	L-H	Q
READ Cycle, Suspend Burst	Current	н	X	н	Н	н	н	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	X	H H	н	н	L	х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	X	Н	Н	L	Х	L-H	D

- NOTE: 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (BW0, BW1, BW2, etc.) are LOW. WRITE=H means all byte write enable signals are HIGH.
 - 2. BW0 enables writes to Byte 1 (DQ0-DQ7, DQP0). BW1 enables writes to Byte 2 (DQ8-DQ15, DQP1). BW2 enables writes to Byte 3 (DQ16-DQ23, DQP2). BW3 enables writes to Byte 4 (DQ24-DQ31, DQP3) and so forth.
 - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
 - 4. Wait states are inserted by suspending burst.
 - 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
 - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
 - 7. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

PRESENCE-DETECT TABLE

DENSITY	PDO
256KB	NC
512KB	Vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to	Vss0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +125°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Vcc = $3.3V \pm 5\%$ unless otherwise noted)

DESCRIPTION	COND	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		Vін	2.0	5.5	V	1, 2	
Input Low (Logic 0) Voltage		Vi∟	-0.3	0.8	v	1, 2	
Input Leakage Current $0V \le V_{IN} \le V_{CC}$		BW0-7	ILI1	-1	1	μΑ	ni Altan Altan at
		A4-A15	IL12	-4	4	μΑ	
		All other inputs	ILıз	-2	2	μA	
Output Leakage Current		Disabled, buт ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон = -	4.0mA	Vон	2.4		v	1, 11
Output Low Voltage	Iol = I	8.0mA	Vol		0.4	v	1, 11
Supply Voltage			Vcc	3.1	3.5	V	1

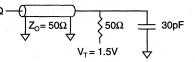
							M					
DESCRIPTION	CONDITIONS	SYM	VER	SIZE	ТҮР	-5	-6	-7	-8	UNITS	NOTES	
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ VIL or ≥ VIH;	Icc1	ALL	256KB	400	800	700	600	500	mA	3, 12,	
	cycle time ≥ ^t KC MIN; outputs open			512KB	720	1,340	1,200	1,000	840	 mA 	13	
Power Supply Current: Idle	Surrent: Idle \overline{ADSC} , \overline{ADSP} , $\overline{ADV} \ge V_{IH}$;	ICC2	AL 1	256KB	60	120	110	100	90	mA	12, 13	
	all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	1002	2 ALL	512KB	120	240	220	200	180	mA	12, 13	
CMOS Standby	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; all inputs static; CLK frequency = 0	ISB1	STD	256KB	1.0	10	10	10	10	mA		
			ISB1		512KB	2.0	20	20	20	20		12, 13
				Р	256KB 512KB	0.4	4	4	4	<u>4</u> 8	- mA	
TTL Standby	Device deselected; Vcc = MAX;			256KB	30	50	50	50	50			
	all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB2	STD	512KB	60	100	100	100	100	mA	12, 13	
an an an tha tha an tha an ann an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an Tha an tha an	all inputs static;		Р	256KB	16	36	36	36	36			
	CLK frequency = 0		Г	512KB	32	72	72	72	72	I IIIA		
Clock Running	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or	ISB3	ALL	256KB	60	120	110	100	90	mA	12, 13	
	≥ Vcc -0.2; CLK cycle time ≥ ^t KC MIN			512KB	120	240	220	200	180	mA		

SYNCHRONOUS SRAM MODULE

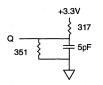
BRAV

MT2LSYT3272T4/T6, MT4LSY6472T4/T6 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

CAPACITANCE


······································	and the second second second second second second second second second second second second second second second		IVI/	1.1		
DESCRIPTION	CONDITIONS	SYMBOL	256KB	512KB	UNITS	NOTES
Input Capacitance: A4-A15	T _A = 25°C; f = 1 MHz	CI1	10	18	рF	4
Input Capacitance: ADSP0-1, ADV0-1, CLK0-1, OE0-1, CE0-1, ADSC0-1, A0A-A3A, A0B-A3B	Vcc = 3.3V	Ci2	5	10	pF	4
Input Capacitance: BW0-7		Сіз	5	5	pF	4
Input/Output Capacitance: DQ0-63, PDQ0-7		Со	8	8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


DESCRIPTION		-5		-6		-7		-8			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTE
Clock											
Clock cycle time	^t KC	10		12		15		20		ns	
Clock HIGH time	^t KH	4		4.5		5		6		ns	
Clock LOW time	^t KL	4		4.5		5		6		ns	
Output Times											
Clock to output valid	^t KQ		5		6		7		8	ns	
Clock to output invalid	^t KQX	2		2		2		2		ns	
Clock to output in Low-Z	^t KQLZ	4		5		5		5		ns	6, 7
Clock to output in High-Z	^t KQHZ		5		5		6		6	ns	6,
OE to output valid	^t OEQ		5		5		5		6	ns	9
OE to output in Low-Z	^t OELZ	0		0		0		0		ns	6, '
OE to output in High-Z	^t OEHZ		4		5		6		6	ns	6, 1
Setup Times											
Address	^t AS	2.5		2.5		2.5	-	3		ns	8, 1
Address Status (ADSC0-1, ADSP0-1)	^t ADSS	2.5		2.5		2.5		3		ns	8, 1
Address Advance (ADV0-1)	^t AAS	2.5		2.5		2.5		3		ns	8, 1
Byte Write Enables (BW0-7)	tWS	2.5		2.5		2.5		3		ns	8, 1
Data-in	^t DS	2.5		2.5		2.5		3		ns	8, 1
Chip Enable (CE0-1)	^t CES	2.5		2.5		2.5		3		ns	8, 1
Hold Times											
Address	tAH	0.5		0.5		0.5		0.5		ns	8, 1
Address Status (ADSC0-1, ADSP0-1)	^t ADSH	0.5		0.5	4	0.5		0.5		ns	8, 1
Address Advance (ADV0-1)	^t AAH	0.5		0.5		0.5		0.5		ns	8, 1
Byte Write Enables (BW0-7)	tWH	0.5		0.5		0.5		0.5		ns	8, 1
Data-in	^t DH	0.5		0.5		0.5		0.5		ns	8, 1
Chip Enable (CE0-1)	^t CEH	0.5		0.5		0.5		0.5		ns	8, 1

AC TEST CONDITIONS

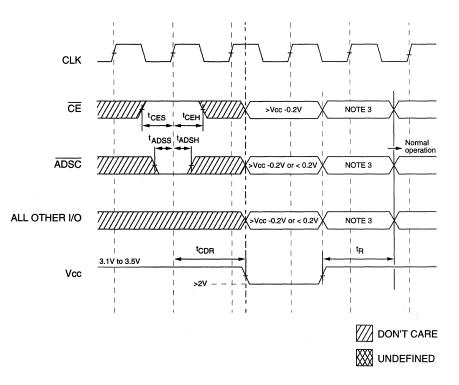
Input pulse levels	Vss to 3.0V
Input rise and fall times	1.5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP or ADSC is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled.
- 11. The load used for VOH, VOL testing is shown in Fig. 2. AC load current is higher than the shown DC values.
- 12. "Device deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device selected" means device is active (not in POWER-DOWN mode).
- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. Typical values are measured at 25°C.
- 15. The device must have a deselect cycle applied at least two clock cycles before data retention mode is entered.

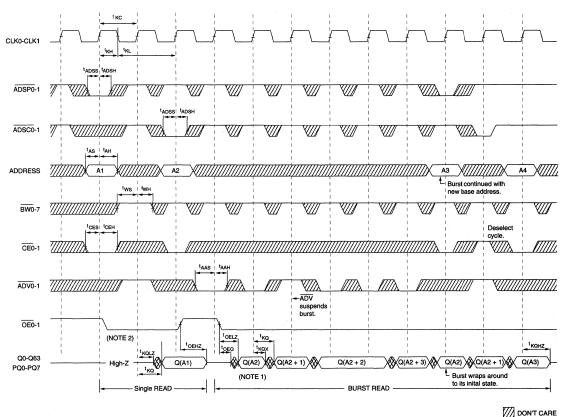
NOTES


- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $\forall H \le +6.0V \text{ for } t \le {}^{t}KC / 2$. Undershoot: $\forall IL \ge -2.0V \text{ for } t \le {}^{t}KC / 2$. Power-up: $\forall IL \ge -2.0V \text{ and } Vcc \le 3.1V$ for $t \le 200$ msec.
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.
- 8. A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times.
- 9. OE is a "don't care" when a byte write enable is sampled LOW.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2			V
Data Retention Current	$\label{eq:cellson} \begin{array}{l} \overline{\text{CE}}, \ \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \text{Vin} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \text{Vcc} = 2\text{V} \end{array}$	ICCDR		TBD	μA	14
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 15
Operation Recovery Time		^t R	^t KC		ns	4

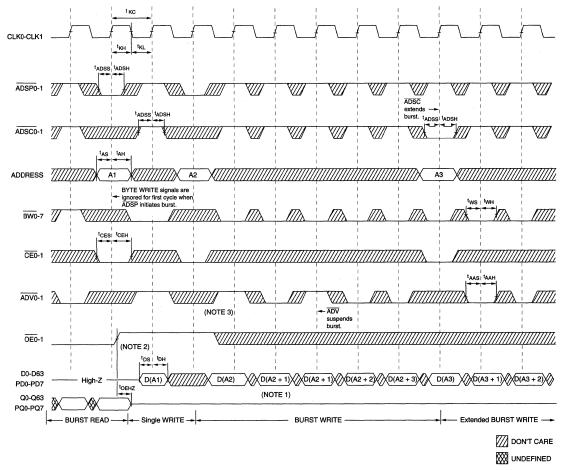
LOW Vcc DATA RETENTION WAVEFORM


- NOTE: 1. All inputs must be ≥ Vcc 0.2V or ≤ 0.2V to guarantee IccDR in data retention mode. If inputs are between these levels or left floating, IccDR may be exceeded.
 - 2. Only one of the available deselect cycle sequences is shown above (CE = HIGH, ADSC = LOW). Any of the other deselect cycle sequences may also be used.
 - 3. The device control signals should be in a deselect state between the rising edge of Vcc and until ^tR is met.

PRELIMINARY

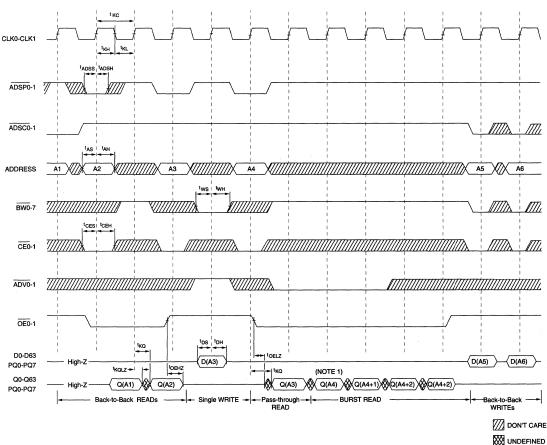
MT2LSYT3272T4/T6, MT4LSY6472T4/T6 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

READ TIMING


- **NOTE:** 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. Timing is shown assuming that the device was not enabled before entering into this sequence. OE does not cause Q to be driven until after the following clock rising edge.

PRELIMINARY

MT2LSYT3272T4/T6, MT4LSY6472T4/T6 32K, 64K x 72 SYNCHRONOUS SRAM MODULE


WRITE TIMING

NOTE:

- Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
 - 2. OE must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
 - 3. ADV must be HIGH to permit a WRITE to the loaded address.

READ/WRITE TIMING

SYNCHRONOUS SRAM MODULE

NOTE:

- 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
 - 2. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP, ADSC or ADV cycle is performed.
 - 3. Back-to-back READs may be controlled by either ADSP or ADSC.

Micron Semiconductor, Inc., re

SYNCHRONOUS SRAM MODULE

FEATURES

- 80 position dual-read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 9, 10, 11 and 12ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- · Clock controlled, registered, address data and control
- Internally self-timed WRITE cycle
- · Burst control pins (interleaved or linear burst)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time

OPTIONS	MARKING
Timing	
9ns access/15ns cycle	-9
10ns access/15ns cycle	-10
11ns access/15ns cycle	-11
12ns access/20ns cycle	-12
 Packages 160-lead DIMM (gold) 	G
Low power (optional)	Р
• 2V data retention, low power (option	al) L
	and the second second second second second second second second second second second second second second second

Part Number Examples: MT2LSYT3272B2G-10 L MT4LSYT6472B2G-10 L

GENERAL DESCRIPTION

The Micron Synchronous SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT2LSYT3272B2 module integrates two 32K x 36 synchronous SRAMs and the MT4LSYT6472B2 integrates four 64K x 18 synchronous SRAMs. All synchronous inputs pass through registers controlled by positive-edge-triggered clock inputs (CLK0 and CLK1). The synchronous inputs include all addresses, data inputs, active LOW chip enable (\overline{CE}), two additional chip enables for easy depth expansion (CE2, $\overline{CE2}$), burst control inputs (ADSC, \overline{ADSP} , \overline{ADV}) and byte write enables ($\overline{BW0}$ - $\overline{BW7}$, \overline{BWE}) and global write (\overline{GW}).

Asynchronous inputs include the output enable (\overline{OE}) and the clocks (CLK0 and CLK1) and burst mode (MODE). The

32K, 64K x 72 SRAM

+3.3V SUPPLY WITH CLOCKED, REGISTERED INPUTS AND BURST COUNTER

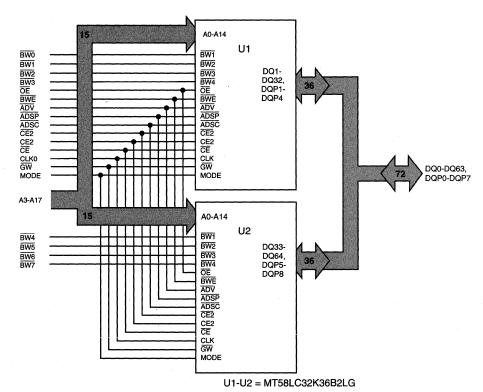
PIN ASSIGNMENT (Top View)

160-Lead, Dual Read-out DIMM

(SF-1) 32K x 72 (SF-2) 64K x 72

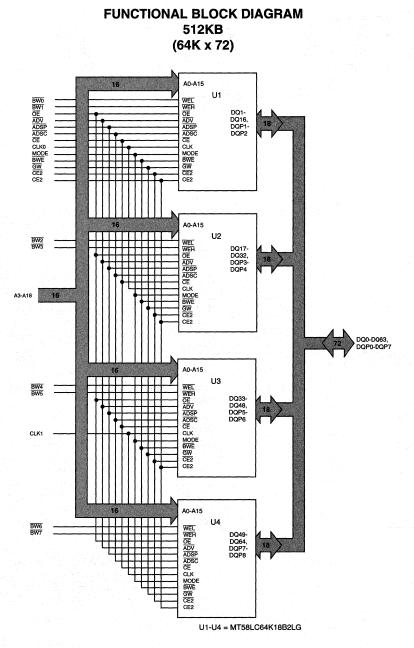
PIN #	SYMBOL PIN # SYMBOL			PIN #	SYMBOL	PIN #	SYMBO	
1	Vss	41	GW	81	Vss	121	CE2	
2	DQO	42	Vcc2	82	DQ1	122	RSVD	
3	Vcc2	43	RSVD	83	RSVD	123	RSVD	
4	DQ2	44	A13	84	DQ3	124	A14	
5	DQ4	45	MODE	85	DQ5	125	ADV	
6	DQ6	46	A15	86	DQ7	126	A16	
7	DQPO	47	A17	87	DQ8	127	A18*	
8	Vss	48	NC	88	Vss	128	NC	
9	DQ9	49	DQ32	89	DQ10	129	DQ33	
10	DQ11	50	NC	90	DQ12	130	NC	
11	DQ13	51	Vss	91	DQ14	131	Vss	
12	Vcc2	52	DQ34	92	RSVD	132	DQ35	
13	DQ15	53	DQ36	93	DQP1	133	DQ37	
14	DQ16	54	DQ38	94	Vss	134	DQ39	
15	Vss	55	DQ40	95	DQ17	135	DQP4	
16	DQ18	56	BW4	96	DQ19	136	BW5	
17	DQ20	57	Vss	97	DQ21	137	Vss	
18	ŌE	58	BW6	98	DQ22	138	BW7	
19	Vss	59	DQ41	99	Vss	139	DQ42	
20	BWO	60	DQ43	100	BW1	140	DQ44	
21	DQ23	61	DQ45	101	DQP2	141	DQ46	
22	DQ24	62	Vcc2	102	DQ25	142	RSVD	
23	Vcc2	63	DQ47	103	RSVD	143	DQ48	
24	DQ26	64	DQP5	104	DQ27	144	DQ49	
25	DQ28	65	DQ50	105	DQ29	145	DQ51	
26	DQ30	66	DQ52	106	DQ31	146	DQ53	
27	DQP3	67	DQ54	107	A6	147	DQ55	
28	A5	68	Vss	108	A8	148	Vss	
29	A7	69	PRD0	109	A10	149	PRD1	
30	A9	70	Vcc2	110	A12	150	RSVD	
31	BW2	71	DQ56	111	BW3	151	DQP6	
32	Vss	72	DQ57	112	Vss	152	DQ58	
33	BWE	73	Vss	113	CLK0	153	Vss	
34	A11	74	DQ59	114	A3	154	DQ60	
35	A4	75	DQ61	115	CE2	155	DQ62	
36	RSVD	76	DQ63	116	RSVD	156	DQP7	
37	ADSC	77	PRD2	117	ADSP	157	PRD3	
38	RSVD	78	Vcc2	118	RSVD	158	RSVD	
39	CE	79	NC	119	CLK1*	15	NC	
40	Vss	80	Vss	120	Vss	160	Vss	

GENERAL DESCRIPTION (continued)


Data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

Burst operation can be initiated with either address status processor (ADSP) or address status controller (ADSC) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW0 controls DQ0-DQ7 and DQP0, BW1 controls DQ8-DQ15 and DQP1, BW2 controls DQ16-DQ23 and DQP2, BW3 controls DQ24-DQ31 and DQP4 and so forth. The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.


The module operates from a +3.3V power supply and all inputs and outputs are TTL compatible and 5V tolerant. This module is ideally suited to PentiumTM, 680X0 and Power PCTM systems and systems that benefit from a very wide data bus. The module is also ideal in generic 32- and 64-bit-wide applications. For additional functional and timing information consult the MT58LC32K36B2 and MT58LC64K18B2 synchronous SRAM data sheets.

FUNCTIONAL BLOCK DIAGRAM 256KB (32K x 72)

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC32K36B2 synchronous SRAM data sheet for more detailed functional information.

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC64K18B2 synchronous SRAM data sheet for more detailed functional information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
28-30, 34-35, 44, 46-47, 107-110, 114, 124, 126-127	A3-A18	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
20, 31, 56, 58, 100, 111, 136, 138	BW0-7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7 and DQP0. BW1 controls DQ8-DQ15 and DQP1. BW2 controls DQ16- DQ23 and DQP2. BW3 controls DQ24-DQ31 and DQP3, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
113, 119	CLK0-CLK1	Input	Clock: This signal latches the address, data, chip enables, bytewrite enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. (CLK1 used on 64K x 72 only).
39	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
121	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
115	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
18	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
125	ADV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
117	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and \overrightarrow{ADSC} but dependent upon CE2 and $\overrightarrow{CE2}$. \overrightarrow{ADSP} is ignored if \overrightarrow{CE} is HIGH. Power-down state is entered if CE2 is LOW or $\overrightarrow{CE2}$ is HIGH.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
37	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external addressto be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.
36, 38, 43, 83, 92, 103, 116, 118, 122, 123, 142, 150, 158	RSVD	-	No Connect: These pins are reserved.
33	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
41	GW	Input	Global Write: This active low input allows a full 36-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
45	MODE	Input	Mode: This input selects the burst sequence. A low on this pin selects LINEAR BURST. A NC on this pin selects INTER- LEAVED BURST. Do not alter input state while device is operating.
2, 4-6, 9-11, 13-14, 16-17, 21-22, 24- 26, 49, 52-55, 59-61, 63, 65-67, 71-72, 74-76, 82, 84-87, 89-91, 95-98, 102, 104-106, 129, 132-134, 139-141, 143-147, 152, 154-155	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK
7, 27, 64, 93, 101, 135, 151, 156	DQP0-DQP7	Input/ Output	Parity Data I/O: Byte 1 Parity is DQP0; Byte 2 Parity is DQP1 and so forth.
3, 12, 23, 42, 62, 70, 78	Vcc2	Supply	Power Supply: +3.3V ±5%
1, 8, 15, 19, 32, 40, 51, 57, 68, 73, 80, 81, 88, 94, 99, 112, 120, 131, 137, 148, 153, 160	Vss	Supply	Ground: GND

PRESENCE-DETECT TABLE

Description	Size	PRD3	PRD2	PRD1	PRDO
None		NC	NC	NC	NC
Synchronous Pipelined	256KB	NC	Vss	NC	NC
Synchronous Pipelined	512KB	NC	Vss	NC	Vss
Synchronous	256KB	NC	Vss	Vss	NC
Synchronous	512KB	NC	Vss	Vss	Vss
Asynchronous	256KB	NC	NC	NC	Vss
Asynchronous	512KB	NC	NC	Vss	NC
Reserved		NC	NC	Vss	Vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss .	0.5V to +4.6V
VIN	0.5V to +6V
Storage Temperature (plastic)	55°C to +125°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	COND	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		Vін	2.0	5.5	V		1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V		1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	BW0-7	IL:1	-1	1	μA	7
1		A3-A18	IL12	-4	4	μΑ	7
		All other inputs	ILıз	-2	2	μΑ	7
Output Leakage Current		Disabled, out ≤ Vcc	ILo	-1	1	μA	
Output High Voltage	Іон =	-4.0mA	Vон	2.4		V	1
Output Low Voltage	Iol =	Vol		0.4	V	1	
Supply Voltage			Vcc	3.1	3.5	V	1

(Vcc = 3.3V ±5% unless otherwise noted)

							M	4X]								
DESCRIPTION	CONDITIONS	SYM	VER	SIZE	ТҮР	-9	-10	-11	-12	UNITS	NOTES							
Power Supply Current: Operating	Device selected; Vcc = MAX; all inputs ≤ Vi∟ or ≥ Viн;	Icc1	ALL	256KB	400	600	600	550	500	mA	3, 5, 6							
	cycle time ≥ ^t KC MIN; outputs open			512KB	700	1,000	1,000	900	800	mA								
Power Supply Current: Idle	y Device selected; Vcc = MAX; GW, BW, ADSC, ADSP, ADV ≥ V⊮; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN; outputs open		ALL	256KB	56	90	90	90	80	mA	5,6							
				512KB	112	180	180	180	160	mA	3, 0							
CMOS Standby	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; all inputs static; CLK frequency = 0		STD	256KB	1.0	10	10	10	10	mA								
									ISB1	L	512KB	2.0	20	20	20	20		5,6
			Р	256KB 512KB	0.4	4	4 8	4 8	4 8	mA								
TTL Standby	Device deselected; Vcc = MAX;		OTD	256KB	30	50	50	50	50									
	all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB2	STD	512KB	60	100	100	100	100	mA	5,6							
1 - P	all inputs static;		Р	256KB	16	36	36	36	36	mA]							
	CLK frequency = 0			512KB	40	72	72	72	72									
Clock Running	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or		ALL	256KB	60	100	100	100	90	mA	5,6							
	≥ Vcc -0.2; CLK cycle time ≥ ^t KC MIN			512KB	120	200	200	200	180	mA								

MT2LSYT3272B2, MT4LSYT6472B2 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

CAPACITANCE

CAPACITANCE			M	AX		
DESCRIPTION	CONDITIONS	SYMBOL	256KB	512KB	UNITS	NOTES
Input Capacitance: A3-A18, ADSC, GW, MODE	T _A = 25°C; f = 1 MHz	Ci1	10	20	pF	4
Input Capacitance: ADSP, ADV, CLK, OE, CE, BWE	Vcc = 3.3V	CI2	10	20	рF	4
Input Capacitance: BW0-7		Сіз	5	5	pF	4
Input/Output Capacitance: DQ0-63,PDQ0-7		Со	8	8	pF	4

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		Vdr	2		ji ji	V
Data Retention Current	$\label{eq:cell} \begin{array}{l} \overline{\text{CE2}} \geq (\text{Vcc -0.2V}), \ \text{CE2} \leq 0.2\text{V} \\ \overline{\text{Vin}} \geq (\text{Vcc -0.2V}) \ \text{or} \leq 0.2\text{V} \\ \overline{\text{Vcc}} = 2\text{V} \end{array}$	ICCDR		TBD	μΑ	8
Chip Deselect to Data Retention Time		^t CDR	^t KC		ns	4, 9
Operation Recovery Time		^t R	^t KC		ns	4

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{H} \leq +6.0V$ for $t \leq {}^{t}KC / 2$. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC / 2$. Power-up: $V_{H} \le +6.0V$ and $V_{CC} \le 3.1V$ for $t \le 200 \text{ms}$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. "Device deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device

selected" means device is active (not in POWER-DOWN mode).

- 6. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 7. MODE pin has an internal pull-up and exhibits an input leakage current of ±10µA.
- 8. Typical values are measured at 25°C.
- 9. The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

SYNCHRONOUS SRAM MODULE

32K, 64K x 72 SRAM

+3.3V SUPPLY, FULLY REGISTERED INPUTS, OUTPUTS AND BURST COUNTER

PIN ASSIGNMENT (Top View)

160-Lead, Dual Read-out DIMM

(SF-1) 32K x 72

(SF-2) 64K x 72

FEATURES

- 80 position dual read-out dual in-line memory module (DIMM) with 160 leads
- Fast access times: 5, 6, 7 and 8ns
- Fast OE: 5 and 6ns
- Single +3.3V ±5% power supply
- 5V-tolerant common data I/O
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pins (interleaved or linear burst)
- Low capacitive bus loading
- High 30pF output drive capability at rated access time
- **OPTIONS**

MARKING

• Timing	
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	-7
8ns access/20ns cycle	-8
Packages	
160-lead DIMM (gold)	G
Low power (optional)	Р
• 2V data retention, low power (optional)	L

 Part Number Examples: MT2LSYT3272C4G-5 L MT4LSYT6472C4G-5 L

GENERAL DESCRIPTION

The Micron Synchronous SRAM module family employs high-speed, low-power CMOS designs using a fourtransistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

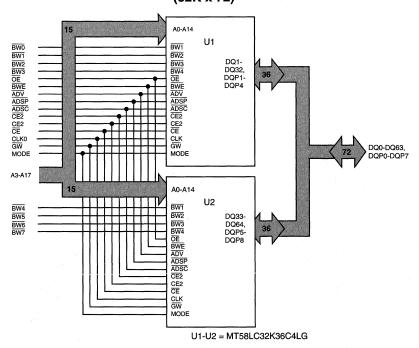
The MT2LSYT3272C4 module integrates two 32K x 36 synchronous SRAMs and the MT4LSYT6472C4 integrates four 64K x 18 synchronous SRAMs. All synchronous inputs pass through registers controlled by positive-edge-triggered clock inputs (CLK0 and CLK1). The synchronous inputs include all addresses, data inputs, active LOW chip enable (\overline{CE}), two additional chip enables for easy depth expansion (CE2, $\overline{CE2}$), burst control inputs (ADSC, ADSP, ADV) and byte write enables ($\overline{BW0}$ - $\overline{BW7}$, \overline{BWE}) and global write (\overline{GW}).

·		mmm					
PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBOL	PIN #	SYMBO
1	Vss	41	GW	81	Vss	121	CE2
2	DQO	42	Vcc2	82	DQ1	122	RSVD
3	Vcc2	43	RSVD	83	RSVD	123	RSVD
4	DQ2	44	A13	84	DQ3	124	A14
5	DQ4	45	MODE	85	DQ5	125	ADV
6	DQ6	46	A15	86	DQ7	126	A16
7	DQPO	47	A17	87	DQ8	127	A18*
8	Vss	48	NC	88	Vss	128	NC
9	DQ9	49	DQ32	89	DQ10	129	DQ33
10	DQ11	50	NC	90	DQ12	130	NC
<u>11</u>	DQ13	51	Vss	91	DQ14	131	Vss
12	Vcc2	52	DQ34	92	RSVD	132	DQ35
13	DQ15	53	DQ36	93	DQP1	133	DQ37
14	DQ16	54	DQ38	94	Vss	134	DQ39
15	Vss	55	DQ40	95	DQ17	135	DQP4
16	DQ18	56	BW4	96	DQ19	136	BW5
17	DQ20	57	Vss	97	DQ21	137	Vss
18	ŌE	58	BW6	98	DQ22	138	BW7
19	Vss	59	DQ41	99	Vss	139	DQ42
20	BWO	60	DQ43	100	BW1	140	DQ44
21	DQ23	61	DQ45	101	DQP2	141	DQ46
22	DQ24	62	Vcc2	102	DQ25	142	RSVD
23	Vcc2	63	DQ47	103	RSVD	143	DQ48
24	DQ26	64	DQP5	104	DQ27	144	DQ49
25	DQ28	65	DQ50	105	DQ29	145	DQ51
26	DQ30	66	DQ52	106	DQ31	146	DQ53
27	DQP3	67	DQ54	107	A6	147	DQ55
28	A5	68	Vss	108	A8	148	Vss
29	A7	69	PRD0	109	A10	149	PRD1
30	A9	70	Vcc2	110	A12	150	RSVD
31	BW2	71	DQ56	111	BW3	151	DQP6
32	Vss	72	DQ57	112	Vss	152	DQ58
33	BWE	73	Vss	113	CLK0	153	Vss
34	A11	74	DQ59	114	A3	154	DQ60
35	A4	75	DQ61	115	CE2	155	DQ62
36	RSVD	76	DQ63	116	RSVD	156	DQP7
37	ADSC	77	PRD2	117	ADSP	157	PRD3
38	RSVD	78	Vcc2	118	RSVD	158	RSVD
39	CE	79	NC	119	CLK1*	15	NC
40	Vss	80	Vss	120	Vss	160	Vss

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice ©1994, Micron Semiconductor, Inc. Pentium is a trademark of Intel Corporation PowerPC is a trademark of BM Corporation PowerPC is a trademark of BM Corporation

GENERAL DESCRIPTION (continued)

Asynchronous inputs include the output enable $\overline{(OE)}$ and the clocks (CLK0 and CLK1) and burst mode (MODE). The Data-out (Q), enabled by \overline{OE} , is also asynchronous. WRITE cycles can be from one to eight bytes wide as controlled by the byte write enables.

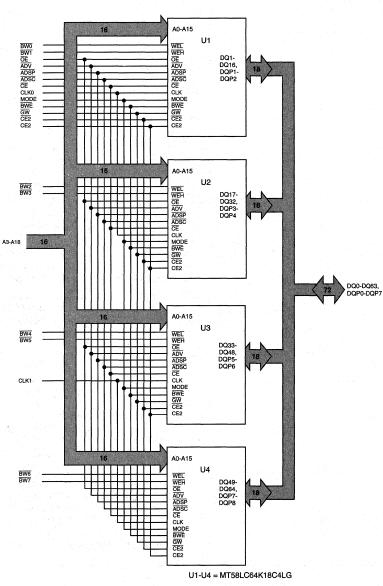

Burst operation can be initiated with either address status processor (ADSP) or address status controller (ADSC) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV).

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. <u>BW0</u> controls DQ0-DQ7 and DQP0, <u>BW1</u> controls DQ8-DQ15 and DQP1, <u>BW2</u> controls DQ16-DQ23 and DQP2, <u>BW3</u> controls DQ24-DQ31 and DQP4 and so forth, conditioned by <u>BWE</u> being LOW. <u>GW</u> LOW causes all bytes to be written. WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by \overline{OE} to improve cache system response. The module incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance.

The "L" version of this module has a data retention option which is useful for battery backup mode of operation. Although the part is not guaranteed to operate functionally below Vcc MIN (3.1V), it will retain data with a minimum of power dissipation.

The module operates from a +3.3V power supply and all inputs and outputs are TTL compatible and 5V tolerant. This module is ideally suited to Pentium[™], and Power PC[™] systems and systems that benefit from a very wide data bus. The module is also ideal in generic 32- and 64-bit-wide applications. For additional functional and timing information consult the MT58LC32K36C4 and MT58LC64K18C4 synchronous SRAM data sheets.

FUNCTIONAL BLOCK DIAGRAM 256KB (32K x 72)



NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC32K36C4 synchronous SRAM data sheet for more detailed functional information.

ADVANCE

MT2LSYT3272C4, MT4LSYT6472C4 32K, 64K x 72 SYNCHRONOUS SRAM MODULE

FUNCTIONAL BLOCK DIAGRAM 512KB (64K x 72)

NOTE: 1. The Functional Block Diagram illustrates simplified module operation. See MT58LC64K18C4 synchronous SRAM data sheet for more detailed functional information.

PIN DESCRIPTIONS

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
28-30, 34-35, 44, 46-47, 107-110, 114, 124, 126-127	A3-A18	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
20, 31, 56, 58, 100, 111, 136, 138	<u>BW0</u> -7	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE is LOW and must meet the setup and hold times around the rising edge of CLK. A BYTE WRITE enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW0 controls DQ0-DQ7 and DQP0. BW1 controls DQ8-DQ15 and DQP1. BW2 controls DQ16- DQ23 and DQP2 BW3 controls DQ24-DQ31 and DQP3, and so forth. Data I/O are tristated if any of these eight inputs are LOW.
113, 119	CLK0-CLK1	Input	Clock: This signal latches the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. (CLK1 used on 64K x 72 only).
39	CE	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions internal use of ADSP. This input is sampled only when a new external address is loaded.
121	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
115	CE2	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
18	ŌĒ	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
125	ĀDV	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
117	ADSP	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC, but dependent upon CE2 and CE2. ADSP is ignored if CE is HIGH. Power-down state is entered if CE2 is LOW or CE2 is HIGH.

PIN DESCRIPTIONS (continued)

MODULE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
37	ADSC	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Power- down state is entered if one or more chip enables are inactive.
36, 38, 43, 83, 92, 103, 116, 118, 122, 123, 142, 150, 158	RSVD	-	No Connect: These pins are reserved.
33	BWE	Input	Byte Write Enable: This active low input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
41	GW	Input	Global Write: This active low input allows a full 36-bit WRITE to occur independent of the BWE and BWn lines and must meet the setup and hold times around the rising edge of CLK.
45	MODE	Input	Mode: This input selects the burst sequence. A low on this pin selects LINEAR BURST. A NC on this pin selects INTER- LEAVED BURST. Do not alter input state while device is operating.
2, 4-6, 9-11, 13-14, 16-17, 21-22, 24-26, 49, 52-55, 59-61, 63, 65-67, 71-72, 74-76, 82, 84-87, 89-91, 95-98, 102, 104-106, 129, 132-134, 139-141, 143-147, 152, 154-155	DQ0-DQ63	Input/ Output	SRAM Data I/O: Byte 1 is DQ0-DQ7; Byte 2 is DQ8-DQ15; Byte 3 is DQ16-DQ23; Byte 4 is DQ24-DQ31 and so forth. Input data must meet setup and hold times around the rising edge of CLK
7, 27, 64, 93, 101, 135, 151, 156	DQP0-DQP7	Input/ Output	Parity Data I/O: Byte 1 Parity is DQP0; Byte 2 Parity is DQP1 and so forth.
3, 12, 23, 42, 62, 70, 78	Vcc2	Supply	Power Supply: +3.3V ±5%
1, 8, 15, 19, 32, 40, 51, 57, 68, 73, 80, 81, 88, 94, 99, 112, 120, 131, 137, 148, 153, 160	Vss	Supply	Ground: GND

PRESENCE-DETECT TABLE

Description	Size	PRD3	PRD2	PRD1	PRDO
None		NC	NC	NC	NC
Synchronous Pipelined	256KB	NC	Vss	NC	NC
Synchronous Pipelined	512KB	NC	Vss	NC	Vss
Synchronous	256KB	NC	Vss	Vss	NC
Synchronous	512KB	NC	Vss	Vss	Vss
Asynchronous	256KB	NC	NC	NC	Vss
Asynchronous	512KB	NC	NC	Vss	NC
Reserved		NC	NC	Vss	Vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	0.5V to +4.6V
VIN	
Storage Temperature (plastic)	55°C to +125°C
Short Circuit Output Current	100mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

DESCRIPTION	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Viн	2.0	5.5	V	1, 2
Input Low (Logic 0) Voltage			VIL	-0.3	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	BW0-7	IL ₁₁	-1	1	μA	7
		A3-A18	IL12	-4	4	μΑ	7
		All other inputs	ILıз	-2	2	μΑ	7
Output Leakage Current		Output(s) Disabled, 0V ≤ Vou⊤ ≤ Vcc		-1	1	μA	
Output High Voltage	Іон = -	-4.0mA	Vон	2.4	·.	V	1
Output Low Voltage	Iol =	IoL = 8.0mA			0.4	V	1
Supply Voltage			Vcc	3.1	3.5	V	1

								AX]		
DESCRIPTION	CONDITIONS	SYM	VER	SIZE	ТҮР	-5	-6	-7	-8	UNITS	NOTES	
Power Supply Current: Operating		Icc1	ALL	256KB	400	800	700	600	500	mA	3, 5, 6	
	cycle time ≥ ^t KC MIN; outputs open			512KB	720	1,340	1,200	1,000	840	mA		
Power Supply Current: Idle	Device selected; Vcc = MAX; GW, BW, ADSC, ADSP,	Icc2		256KB	60	120	110	100	90	mA		
	$\overline{ADV} \ge V_{IH}$; all inputs $\le Vss + 0.2$ or $\ge Vcc - 0.2$; cycle time $\ge {}^{t}KC MIN$		ALL	512KB	120	240	220	200	180	mA	5,6	
CMOS Standby	Device deselected; Vcc = MAX; all inputs \leq Vss +0.2 or \geq Vcc -0.2; all inputs static; CLK frequency = 0	e provincio de la composición de la composición de la composición de la composición de la composición de la com La composición de la c	STD	256KB	1.0	10	10	10	10	mA		
		ISB1		512KB	2.0	20	20	20	20	L	5,6	
			P	256KB 512KB	0.4	4	4 8	4	4	mA		
TTL Standby	Device deselected; Vcc = MAX;				256KB	30	50	50	50	50		
	all inputs $\leq V_{IL}$ or $\geq V_{IH}$;	ISB2	STD	512KB	60	100	100	100	100	mA	5,6	
	all inputs static;		Р	256KB	16	36	36	36	36	mA		
	CLK frequency = 0	6	.	512KB	32	72	72	72	72	mA		
Clock Running	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or	ISB3	ALL	256KB	60	120	110	100	90	mA	5,6	
	≥ Vcc -0.2; CLK cycle time ≥ ^t KC MIN			512KB	120	240	220	200	180	mA		

(Vcc = $3.3V \pm 5\%$ unless otherwise noted)

SYNCHRONOUS SRAM MODULE

.....

CAPACITANCE

			M	AX		
DESCRIPTION	CONDITIONS	SYMBOL	256KB	512KB	UNITS	NOTES
Input Capacitance: A3-A18, ADSC, GW, MODE	T _A = 25°C; f = 1 MHz	CI1	10	20	рF	4
Input Capacitance: ADSP, ADV, CLK, OE, CE, BWE	Vcc = 3.3V	Cı2	10	20	pF	4
Input Capacitance: BW0-7		Сіз	5	5	pF	4
Input/Output Capacitance: DQ0-63, PDQ0-7		Co	8	8	pF	4

DATA RETENTION ELECTRICAL CHARACTERISTICS (L version only)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Vcc for Retention Data		VDR	2	· · · ·		V
Data Retention Current	$ \overrightarrow{CE}, \ \overline{CE2} \ge (V_{CC} - 0.2V), \ CE2 \le 0.2V \\ V_{IN} \ge (V_{CC} - 0.2V) \ or \le 0.2V \\ V_{CC} = 2V $	ICCDR		TBD	μA	8
Chip Deselect to Data Retention Time		^t CDR	^t KC	-	ns	4, 9
Operation Recovery Time		^t R	^t KC		ns	4

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC$ /2. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC$ /2. Power-up: $V_{IH} \le +6.0V$ and $Vcc \le 3.1V$ for $t \le 200ms$
- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. "Device deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device

selected" means device is active (not in POWER-DOWN mode).

- 6. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 7. MODE pin has an internal pull-up and exhibits an input leakage current of $\pm 10\mu A$.
- 8. Typical values are measured at 25°C.
- The device must have a deselect cycle applied at least one clock cycle before data retention mode is entered.

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

TECHNICAL NOTE SELECTION GUIDE

Technical Note	Title	Page
TN-00-01	Moisture Absorption in Plastic Packages	5-1
TN-00-02	Tape-and-Reel Procedures	5-3
TN-05-02	SRAM Bus Contention Design Considerations	5-9
TN-05-03	5V SRAM Capacitive Loading	5-13
TN-05-06	1 Meg Evolutionary Pinout SRAM Typical (5V) Operating Curves	5-15
TN-05-07	256K SRAM Typical (5V) Operating Curves	5-17
TN-05-13	1 Meg Low-Power SRAMs	5-19
TN-05-14	SRAM Thermal Design Considerations	5-23
TN-05-16	A Designer's Guide to 3.3V SRAMs	5-29
TN-05-17	Low-Power Memory Design Using Data Retention	5-35
TN-05-19	SRAMs and Low-Voltage Data Retention	5-39
TN-05-20	3.3V SRAM Capacitive Loading	5-41
TN-05-21	High-Speed Memory Design Techniques	5-43
TN-05-22	1 Meg Revolutionary Pinout SRAM Typical (5V) Operating Curves	5-49
TN-05-23	256K SRAM Typical (3.3V) Operating Curves	5-53
TN-58-01	SyncBurst [™] SRAM Design for Compatibility	5-55
TN-58-02	Design Tips: 32K x 36 Synchronous SRAM	5-63
TN-58-03	SyncBurst™ SRAMs in Asynchronous Designs	5-69

TN-00-01 MOISTURE ABSORPTION

TECHNICAL NOTE

MOISTURE ABSORPTION IN PLASTIC PACKAGES

INTRODUCTION

All plastic integrated-circuit packages have a tendency to absorb moisture. During surface-mount assembly, this moisture can vaporize when subjected to the heat associated with solder reflow operations. Vaporization creates internal stresses that can cause the plastic molding compound to crack. Cracks in the package allow contamination to penetrate to the die and potentially reduce the reliability of the semiconductor device. The cracking process associated with surface-mountable devices is commonly referred to as the "popcorn effect."

Cracks in the plastic pose several reliability concerns. The moisture path to the die is shortened, allowing ion migration or corrosion to occur more readily. Minor cracks which might not be harmful initially could propagate with time, resulting in a longer-term functional failure.

Since plastic packages absorb moisture, care must be taken to prevent exposure for any long period prior to surface-mounting the devices on the printed circuit board. If exposed to excessive moisture, the devices should be baked to remove moisture prior to solder reflow operations.

This technical note describes the shipping procedures that ensure Micron's customers will receive memory devices that do not exhibit the popcorn effect. It also discusses Micron's recommendations for baking the devices if they are exposed to excessive moisture.

ABSORPTION CHARACTERISTICS

Micron's extensive testing empirically characterizes the moisture absorption characteristics of plastic packages. As the plastic takes on moisture, the weight of the device increases. Micron employs a standard procedure for weighing the device before and after it is exposed to moisture. We calculate the percentage of weight gain to determine the relative efficiency of different packaging techniques used for shipping devices.

MICRON PROCEDURES

Micron has eliminated any chance of having popcorn failures with surface-mount packages by shipping all surface-mount devices in sealed bags containing a desiccant. Devices stored in these bags show no measurable weight gain when subjected to a high-humidity environment for long time periods.

DEVICE STORAGE

To prevent device failure due to the popcorn effect, store plastic surface-mount packages carefully before PCB assembly. Micron has run tests on devices that have been exposed to 50 percent humidity outside of their shipping containers for time intervals from six months to one year, and no failures have been recorded.

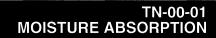
Any concerns about the moisture absorption can be eliminated by storing the devices in Micron's shipping bags. We designed these containers to prevent the passage of water vapor for long periods of time.

DEVICE BAKING

If devices have been removed from their shipping containers and exposed to high levels of moisture, Micron recommends a device bake-out procedure before surface mounting. This bake-out may be accomplished by placing the parts in a tray and baking them in an oven for 160 hours at 40° C. Any moisture is driven out of the devices during the exposure to the heat.

Moisture may be removed faster by baking at 100° C for 24 hours.

SUMMARY


- All plastic packages absorb moisture when exposed to high levels of humidity for long time intervals.
- 2. Micron devices have not exhibited any popcorn effect when exposed to 50 percent humidity for long time periods.
- 3. Micron ships all surface-mount packages in containers that prevent absorption of moisture.
- 4. If devices have been removed from their shipping containers and exposed to excessive moisture, they should be baked before being surface-mounted.

REFERENCES

"Moisture Absorption and Mechanical Performance of Surface Mountable Plastic Packages": Bhattacharyya, B. K., et al. : 1988 Proceedings of the 38th Electronics Components Conference.

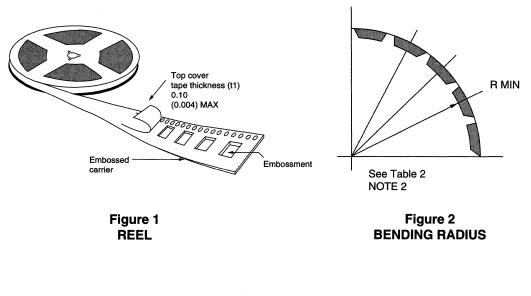
"Analysis of Package Cracking During Reflow Soldering Process": Kitano, M., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

"Moisture Induced Package Cracking in Plastic Encapsulated Surface Mounted Components During Solder Reflow Process": Lin, R., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

TECHNICAL NOTE

TAPE-AND-REEL PROCEDURES

GENERAL DESCRIPTION


Tape-and-reel is becoming the packaging and shipment method of choice for Micron's surface-mounted memory devices. Tape-and-reel minimizes the handling of components by directly interfacing with automatic pick-and-place machines. Micron supports the Electronic Industries Association's (EIA) standardization of tape-and-reel specifications number 481A. The intent of this technical note is to describe Micron's status in support of the EIA standard.

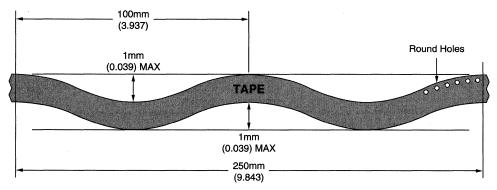

COMPONENT	TAPE WIDTH (W) mm	PITCH (P) mm	DEVICES PER 13-INCH REEL
PLCC		and the second	
18 Pin	24	12	1,000
32 Pin	24	16	500
52 Pin	32	24	500
SOJ (300 mil)			
20/26 Pin	24	12	1,000
24 Pin	24	12	1,000
28 Pin	24	12	1,000
32 Pin	32	12	1,000
SOJ (400 mil)			
28 Pin	32	16	500
32 Pin	44	16	500
40 Pin	44	16	500
TSOP (300 mil)			
20/26 Pin	24	12	1,000
TSOP (400 mil)			
40/44 Pin	32	16	1,000

Table 1* MICRON TAPE SIZES AND DEVICES PER REEL

*These are examples of tape-and-reel sizes available. Please contact Micron for all available options.

Allowable camber to be 1mm/100mm nonaccumulative over 250mm.

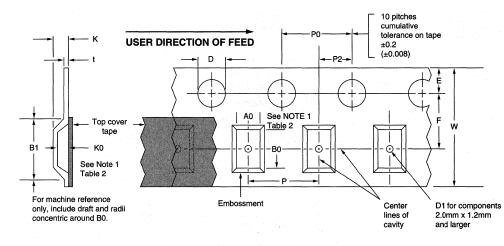
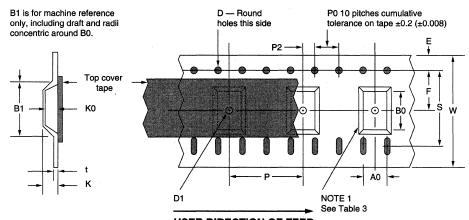


Figure 4 EMBOSSED CARRIER DIMENSIONS (24mm tape only)

 Table 2

 24mm EMBOSSED TAPE DIMENSIONS³

TAPE SIZE	D	E	PO	t (MAX)	A0, B0, K0
24mm	$\begin{array}{c} 1.5 \begin{array}{c} ^{+0.10}_{-0.00} \\ (0.59) \begin{array}{c} ^{+0.004}_{-0.000} \end{array}$	1.75 (0.069 ±0.004)	4 (0.157 ±0.004)	0.400 (0.16)	Note 1


TAPE SIZE	B1 (MAX)	D1 (MIN)	F	K (MAX)	P2	R (MIN)	W
24mm	20.1	1.5	11.5 ±0.10	6.5	2 ±0.10	50	24 ±0.30
	(0.791)	(0.059)	(0.453 ±0.004)	(0.256)	(0.079 ±0.004)	(1.969)	(0.945 ±0.012)

			P			
TAPE SIZE	4 ±0.10 (0.157 ±0.004)	8 ±0.10 (0.315 ±0.004)	12 ±0.10 (0.472 ±0.004)	16 ±0.10 (0.630 ±0.004)	20 ±0.10 (0.787 ±0.004)	24 ±0.10 (0.945 ±0.004)
24mm			x	x	x	x

NOTE: 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.

- 2. Tape and components shall pass around radius "R" without damage.
- 3. All dimensions in millimeters, (inches).

USER DIRECTION OF FEED

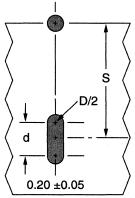


Figure 6 DETAIL ELONGATED HOLE

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. @1994, Micron Semiconductor, Inc.

Table 332 AND 44mm EMBOSSED TAPE 3

TAPE SIZE	D	D1 (MIN)	E	K (MAX)	PO	t (MAX)	AO, BO, KO
32 and 44mm	$\begin{array}{c} 1.5 \begin{array}{c} {}^{+0.10}_{+0.00} \\ (0.059) \begin{array}{c} {}^{+0.004}_{+0.000} \end{array}$	2 (0.079)	1.75 ±0.10 (0.069 ±0.004)	10 (0.394)	4 ±0.10 (0.156 ±0.004)	0.500 (0.20)	NOTE 1

TAPE SIZE	B1 (MAX)	F	P2	S	W	R (MIN)
32mm	23	14.2 ±0.10	2 ±0.10	28.4 ±0.10	32 ±0.30	50
	(0.906)	(0.559 ±0.004)	(0.079 ±0.004)	(1.118 ±0.004)	(1.26 ±0.012)	(1.973)
44mm	35	20.2 ±0.15	2 ±0.15	40.4 ±0.10	44.8 ±0.30	50
	(1.378)	(0.795 ±0.006)	(0.079 ±0.006)	(1.591 ±0.004)	(1.732 ±0.12)	(1.973)

		P						
TAPE SIZE	16 ±0.10	20 ±0.10	24 ±0.10	28 ±0.10	32 ±0.10	36 ±0.10	40 ±0.10	44 ±0.10 (1.732 ±0.004)
· · · · · · · · · · · · · · · · · · ·	(0.030 ±0.004)	(0.787	(0.945 ±0.004)	(1.102 10.004)	(1.20 ±0.004)	(1.417 ±0.004)	(1.575 ±0.004)	(1.732 ±0.004)
32mm	x	x	X	X	x			
44mm			x	x	x	x	×	x

NOTE: 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.

2. Tape and components shall pass around radius "R" without damage.

3. All dimensions in millimeters (inches).

TN-05-02 SRAM BUS CONTENTION

TECHNICAL NOTE

SRAM BUS CONTENTION DESIGN CONSIDERATIONS

INTRODUCTION

High-speed SRAM memory systems normally share a common data bus with other memory devices, processors and memory management or caching devices. All of these devices are required to control the data bus at one time or another. Turning off a device that is driving the bus before a new device takes control of the bus can be a difficult design problem when these systems are operating at minimum cycle times.

When two or more devices are driving the bus at the same time, a conflict known as "bus contention" occurs. This technical note discusses bus contention design issues and points out design features of Micron's fast SRAMs that help minimize bus contention problems.

BUS CONTENTION EFFECTS

System-design problems caused by bus contention are difficult to analyze. The effects are transient, normally not longer than 5ns. The most visible result of bus contention is observed as noise on power-supply lines and data lines connecting the contending devices. While these conflicts are not destructive, they potentially reduce long-term system reliability. However, in most cases, they do not affect system performance when all the active components are MOS.

MOS devices are inherently self-current limiting. As the current through a MOS transistor increases, the transistor heats up and its gain decreases. Bipolar transistors have the opposite behavior. When a bipolar transistor's temperature

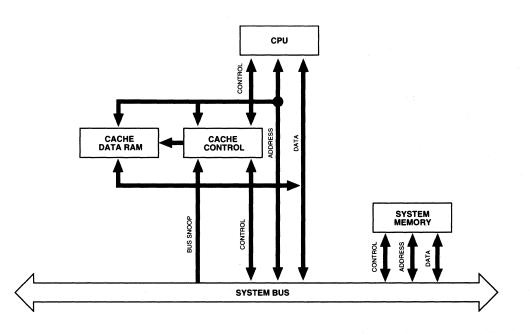
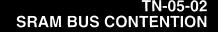
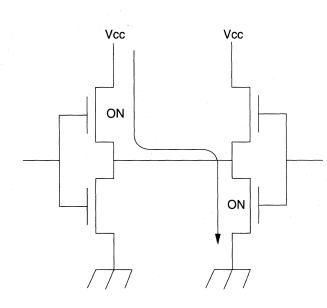




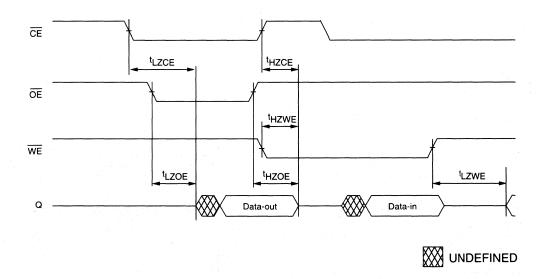
Figure 1 BLOCK DIAGRAM OF A CACHE MEMORY SYSTEM

Figure 2 BUS CONTENTION CURRENT PATH

is elevated, the gain of the device increases, making it possible for the current through the transistor to increase to a destructive level. This phenomenon is known as "thermal runaway." If CMOS SRAMs share any data lines with bipolar or BiCMOS output devices, the system should be designed to eliminate any possibility of bus contention.

Figure 2 is a schematic diagram of two contending SRAM output buffers. A high current path has been created by two SRAM output buffers. The current is flowing between the "on" transistor connected to Vcc in the buffer on the left and the transistor connected to ground in the buffer on the right.

SRAM SPECIFICATIONS


The critical parameter for calculating the amount of bus contention for a high-speed SRAM system design is the time it takes for a device to go to low impedance (logic 1 or 0) on its output versus the time required for a contending output to go to high impedance. A typical SRAM has three control signals: chip enable (\overline{CE}), write enable (\overline{WE}) and output enable (\overline{OE}). ^tLZCE, ^tLZWE and ^tLZOE are the times it takes for the outputs to become active or low impedance upon the assertion of \overline{CE} , \overline{WE} and \overline{OE} . ^tHZCE, ^tHZWE and ^tHZOE are the times required for the outputs to become inactive or high impedance after \overline{CE} , \overline{WE} and \overline{OE} are removed. These times are shown in the READ and WRITE cycle timing diagram (Figure 3). A preliminary review of a fast SRAM data sheet would imply that the worst case for bus contention could be calculated from the equation:

$${}^{t}C = {}^{t}HZ (MAX) - {}^{t}LZ (MIN)$$

where ^tC is equal to the bus-contention overlap time. For an output enable change in an SRAM rated at 20ns access time, ^tHZWE = 7ns and ^tLZWE = 2ns; therefore ^tC = 5ns. If this calculation is correct, there would be a serious bus contention problem. Thus, for a system running with a 20ns cycle, almost 25 percent of the total cycle would be lost to bus contention and there would be a large increase in power dissipation in the output buffers.

Fortunately, the previous analysis is not valid because ^tHZWE is a MAX parameter and ^tLZWE is a MIN parameter. ^tHZWE maximum occurs under completely different test conditions than ^tLZWE minimum. ^tHZWE maximum is worst-case at the highest operating temperature and the lowest power-supply voltage. On a commercial data sheet,

TN-05-02 SRAM BUS CONTENTION

Figure 3 READ AND WRITE CYCLE TIMING

this would be at 70°C and 4.5V. ^tLZWE minimum is specified at the lowest operating temperature and the highest voltage. Again, on the commercial data sheet, this would be 0°C and 5.5V. It is not possible for two SRAMs on the same board to be at such diverse temperatures and voltages. Micron devices are designed to turn-off faster than they turn-on under the same voltage/temperature conditions.

This means Micron fast SRAMs have been designed so that at any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE. Since the devices will normally be mounted on the same board, the bus contention associated with the SRAM control signals has been eliminated. Care must be taken when multiple vendors' SRAMs share the bus. An analysis of the output turn-off time must be done under the same operating and temperature conditions to insure that bus contention between the devices is minimized.

EXAMPLE DATA

As an example, Figures 4 to 9 shows actual ^tHZCE and ^tLZCE data taken from an 8ns and 10ns 64K SRAM. Note that the SRAM always turns off much faster than it turns on.

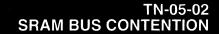
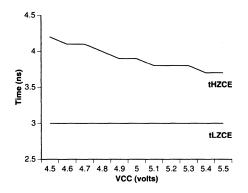



Figure 4 - 8ns 64K SRAM (0°C)

Figure 5 - 8ns 64K SRAM (25°C)

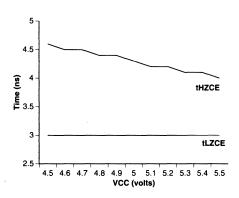


Figure 6 - 8ns 64K SRAM (70°C)

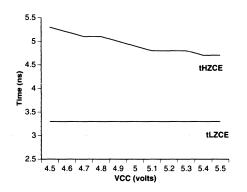


Figure 7 - 10ns 64K SRAM (0°C)

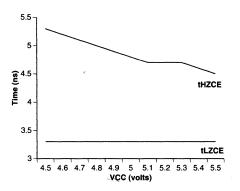


Figure 8 - 10ns 64K SRAM (25°C)

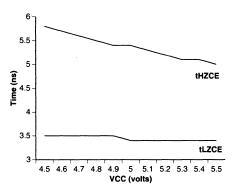
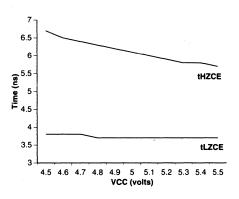



Figure 9 - 10ns 64K SRAM (70°C)

TN-05-03 5V SRAM CAPACITIVE LOADING

TECHNICAL NOTE

INTRODUCTION

Many high-speed 16-bit and 32-bit microprocessor systems require fast SRAMs. SRAMs are used either in main memory or caching subsystems. In either case, the SRAMs are typically required to interface with a system bus that is shared by one or more microprocessors, several I/O devices and other types of memory (ROM, EPROM, etc.).

Even though transceivers and/or buffers interface with the actual bus, SRAMs are typically required to drive loads larger than what is specified in the data sheet timing parameters. Hence, the access time must be derated to reflect the actual performance of the SRAM under these circumstances.

SIMILARITY BETWEEN SRAM FAMILIES

Micron's 16K, 64K, 256K and 1 Meg 5.0V SRAM families all have the same size output transistors and output architecture. Hence, all devices will have the same drive characteristics. The actual data presented in this technical note are derived from the 256K SRAM family.

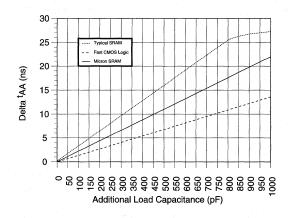


Figure 1 INCREASED ACCESS TIME vs. ADDITIONAL OUTPUT LOADING

5V SRAM CAPACITIVE LOADING

COMPARISON OF DEVICES

Figure 1 compares the effects of capacitive loading on the Micron SRAM family with SRAMs from a typical memory supplier and discrete CMOS logic, designed to drive heavy loads. The graph illustrates the additional access time required to drive various capacitive loads.

As expected, the Micron SRAM family does not drive heavy loads as well as the discrete CMOS logic, but does drive faster than the typical SRAM from other suppliers.

The graph line representing the Micron SRAM family is based on data gathered on the Micron 256K SRAM. Access time measurements were taken with the SRAM subjected to various capacitive loads. In the range covered, the change in access time was seen to be a linear function of the capacitive load. The following equation may be used to determine the access time required for a specific load.

 $T_{AA}(actual) = T_{AA}(data sheet) + T_{AA}(additional)$

 T_{AA} (additional) (ns) = .022 (ns/pF) C_a

This applies where C_a is the additional capacitive load expressed in picofarads (pF). For example, the access time needed for a 100pF total capacitive load is:

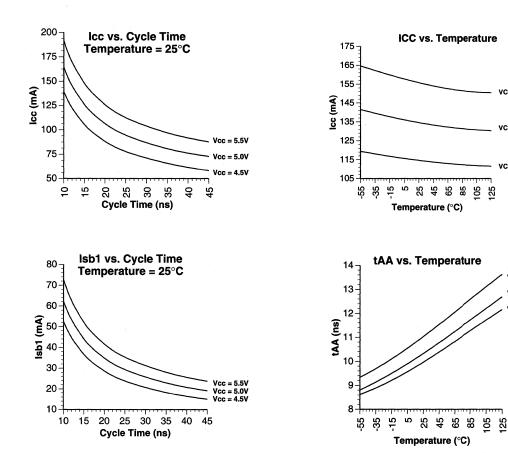
 $T_{AA}(actual) = 20ns + T_{AA}(additional) = 20ns + .022 * (total load - rated load) = 20ns + .022ns/pF* (100pF - 30pF) = 20ns + 1.5ns = 21.5ns$

SUMMARY

The SRAM timing specifications of all major vendors are based upon an industry standard capacitive load of 30pF. In many applications, the SRAMs are required to drive much larger capacitive loads. In addition, today's designs are implemented around higher frequencies. This requires the system timing to be more precise; hence, loading becomes a more important issue. Understanding how the SRAM will perform under specific loading conditions may result in a more reliable design.

TN-05-03 5V SRAM CAPACITIVE LOADING

TN-05-06 1 MEG EVOLUTIONARY PINOUT SRAM


TECHNICAL NOTE

1 MEG EVOLUTIONARY PINOUT SRAM TYPICAL (5V) OPERATING CURVES

INTRODUCTION

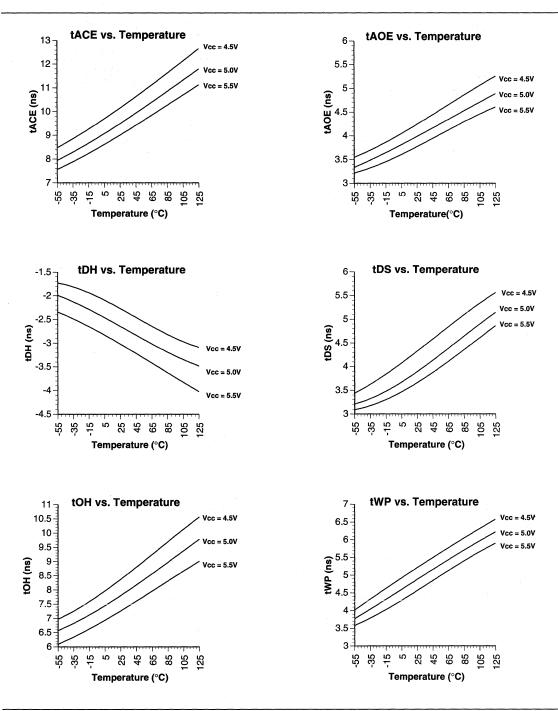
These curves represent the typical operating characteristics of Micron's 1 Meg, 15ns SRAM. They may be used to calculate the typical operating parameters of a memory

system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of this data book.

VCC = 5.5V

VCC = 5 0V

VCC = 4.5V

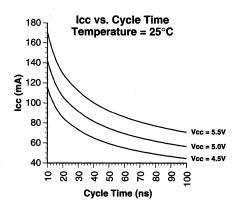

Vcc = 4.5V

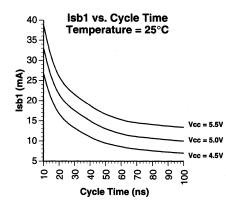
Vcc = 5.0V

Vcc = 5.5V

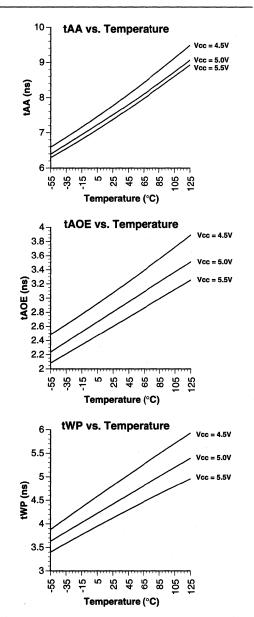
TN-05-06 1 MEG EVOLUTIONARY PINOUT SRAM

TN-05-06 Rev. 11/94

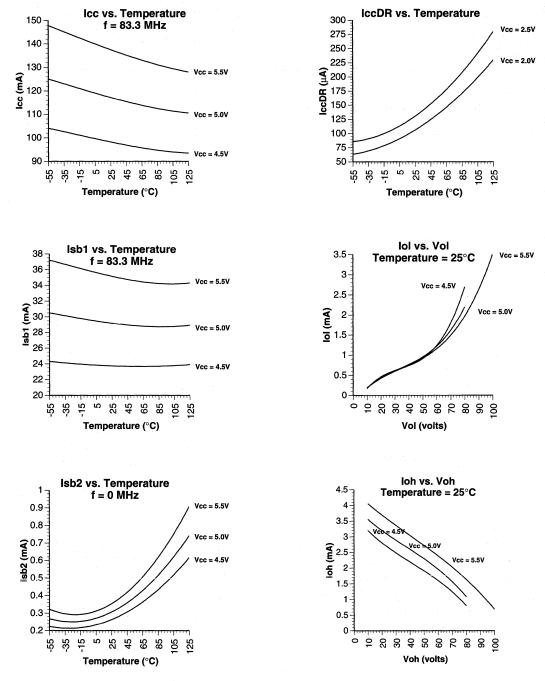



TN-05-07 256K (5V) SRAM

TECHNICAL NOTE


INTRODUCTION

These curves represent the typical operating characteristics of Micron's 256K, 12ns SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of this data book.

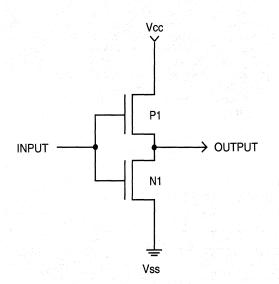


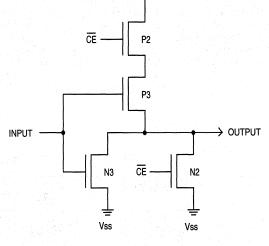
256K SRAM TYPICAL (5V) OPERATING CURVES

TECHNICAL NOTE

TN-05-13 1 MEG LOW-POWER SRAMs

TECHNICAL NOTE


1 MEG LOW-POWER SRAMs


INTRODUCTION

By using the low-power versions of the Micron 1 Meg SRAM family (MT5C100X LP), designers can reduce both operating power consumption and battery back-up power consumption in their systems. This technical note describes the physical differences between the low-power versions and the standard versions of the 1 Meg SRAM and how these differences affect the various current consumption specifications for the devices. The note then discusses the system-level benefits of low-power parts.

LOW-POWER vs. STANDARD VERSIONS

The primary difference between the low-power versions and the standard versions of the 1 Meg SRAM is that the low-power versions contain gated inputs on the write enable (\overline{WE}), output enable (\overline{OE}) and address inputs. The difference between gated and non-gated inputs is shown in Figure 1. In the non-gated input buffer, current will flow from Vcc to Vss when both transistors are conducting (i.e. when the input is switching or is sitting at a level between Vcc and Vss). Current flow is at a minimum when the input is held at either the Vcc or Vss level. In the gated input buffer, \overline{CE} is an internal chip enable signal derived from the chip enable pin(s) of the device. When the chip is selected, \overline{CE} is LOW, P2 is ON and N2 is OFF. Operation in this mode is similar to the non-gated input buffer. When the chip is deselected, \overline{CE} is HIGH, N2 is ON and P2 is OFF. In this case, both the logical operation of the buffer and the flow-through current are independent of the voltage level at the

Vcc

NON-GATED INPUT BUFFER

GATED INPUT BUFFER

Figure 1 NON-GATED vs. GATED INPUT BUFFERS

	Table	1	
OPERATING	AND STANDBY	CURRENT	DEFINITIONS

PARAMETER	MODE	CHIP ENABLE CONDITIONS	INPUT CONDITIONS
lcc	Chip Selected	$\overline{CE} \leq V_{\text{IL}}$	switching at MAX frequency
IsB1 (Standard)	Chip Deselected	CE ≥ Viн	switching at MAX frequency
Isв1 (Low-Power)	Chip Deselected	<u>CE</u> ≥ Viн	static or switching
IsB2 (Standard)	Chip Deselected	<u>CE</u> ≥ (Vcc -0.2V)	static
Isв2 (Low-Power)	Chip Deselected	<u>C</u> E ≥ (Vcc -0.2V)	static or switching

input node. The output of the buffer is LOW because N2 is ON, and virtually no current flows from Vcc to Vss, because the gate of P2 is held at the Vcc level.

Another difference from the standard versions found in the low-power versions is a process enhancement designed to reduce the current consumed by the memory cells under quiescent conditions. This means that the standby current attributed to the memory array is reduced.

Specifications are summarized in Table 1 to help illustrate the effects of these differences on the various current consumption specifications of the parts. The values for these parameters are shown in Table 2. Note that ISB1 and ISB2 are substantially reduced in the low-power version while ICC remains the same. The ISB1 (MAX) limit is reduced by 90 percent, primarily through the use of gated inputs, and the ISB2 (MAX) limit is reduced by 70 percent due to the process enhancements. Icc is not affected by these changes because it is measured when the chip is selected and the memory array is being accessed.

Another way of looking at the effects of these changes on ISB1 and ISB2 for the low-power version is to note that the specified values for ISB1 approach the values for ISB2. The remaining difference between the ISB1 and ISB2 values represents the amount of current consumed by the chip enable input buffers themselves. By definition, ISB1 is measured with the chip enable inputs at VIH (MIN) or VIL (MAX) levels. This causes more current to flow than if the inputs were within 0.2 volts of VCC or VSS levels, as is the case when measuring ISB2.

Table 2						
OPERATING AND	STANDBY CURRENT	SPECIFICATIONS				

DEVICE VERSION	lcc*		ISB1		ISB2	
	MAX	TYP	MAX	TYP	MAX	ТҮР
Standard	130 mA	107 mA	45 mA*	37 mA	5 mA	400 uA
Low-Power	130 mA	107 mA	3 mA	1.3 mA	1.5 mA	300 uA

* Specified at 40 MHz

Typical values are measured at Vcc = 5.0V and $T_A = 25^{\circ}C$

SYSTEM-LEVEL BENEFITS

The system-level benefits can be seen by examining two different modes of system operation. First, consider a system containing several banks of SRAMs where, in an effort to minimize operating current, only one bank will be selected at any given time during normal operation. While the active bank is being accessed, the address and control signals being switched appear on the inputs of SRAMs in all banks. This causes current consumption by input buffers in standard parts. When using low-power parts, the power consumption in the deselected banks will be reduced to one-tenth of the value for standard parts. This reduces the overall operating power consumption of the system. Next, consider a system with a battery back-up mode requiring data retention in the SRAMs while the devices that interface with the SRAMs are completely powered down. In addition to a 70 percent reduction in battery back-up power consumption, the low-power SRAMs facilitate the system design. When using standard devices, designers must take

precautions to ensure that all the address and control inputs are taken to within 0.2 volts of Vcc or Vss , while taking care to avoid powering-up other devices in the system. With the low-power devices, only the chip enable inputs need to be taken to these levels—the \overline{WE} , \overline{OE} and address inputs may then be driven to, or allowed to assume, any value between Vcc and Vss.

SUMMARY

The low-power versions of the Micron 1 Meg SRAMs offer a 90 percent reduction in TTL standby current and a 70 percent reduction in CMOS standby current. These reductions in component standby current lead to reductions in both operating power and battery back-up power consumption at the system level, while at the same time facilitating system design.

TN-05-13 1 MEG LOW-POWER SRAMs

TN-05-14 SRAM THERMAL DESIGN CONSIDERATIONS

TECHNICAL NOTE

SRAM THERMAL DESIGN CONSIDERATIONS

INTRODUCTION

As operating frequencies increase, memory components must dissipate more power to satisfy the needed reduction in permissible access time. SRAM thermal design considerations become increasingly important as power consumption approaches the package power dissipation limit. This technical note separately addresses thermal performance of Micron packaged SRAMs and SRAM die. Contact the factory for thermal information on any package not listed in this note.

DEFINITIONS

- $T_A =$ ambient air temperature (°C) at which the device is operated. The ambient temperature range of a device is listed under the "Electrical Characteristics and Recommended DC Operating Conditions" section of each SRAM data sheet. Commercial temperature range is 0°C to 70°C, industrial temperature range is -40°C to 85°C, automotive temperature range is -40°C to 125°C and extended and military temperature range is -55°C to 125°C.
- T_C = case temperature of the device (°C). In a packaged part this is the surface temperature at a point on the device package.
- T_J = junction temperature of the active portion of the silicon die (°C). The maximum recommended junction temperature of Micron SRAMs is 150°C to achieve good long-term reliability. All Micron SRAMs are tested for high temperature operating life (HTOL) at 125°C ambient and 6V. Under HTOL conditions, the failure rate of a 1 Meg SRAM is 484 FITs compared with 5 FITs at 50°C ambient and 5V. The device will operate with junction temperatures in excess of 150°C but much higher failure rates should be expected. Since the limiting factor in plastic components is the plastic mold compound, 155°C should never be exceeded anywhere in the plastic body.
- P = average device power dissipation. Device power is dependent upon the operating conditions. SRAM data sheets indicate maximum Icc values that incorporate significant guardband (margin to guard against process changes, tester skew, etc.). Device power should be calculated to reflect the actual junction temperature, supply voltage, operating frequency and output loading conditions.

$\begin{array}{l} \theta_{JC} = & \text{junction to case thermal resistance (°C/W). In a dielevel product, the case is considered to be the surface of the die which is bonded to the hybrid substrate. \\ \theta_{JC} & \text{is a function of the die thickness, area, and number of bonds. In a packaged component, } \\ \theta_{JC} & \text{is larger due to the extra thermal resistance of the package material thickness.} \end{array}$

- θ_{CA} = case to ambient thermal resistance (°C/W). In a dielevel product, this is comprised of the θ_{CA} of the hybrid substrate plus packaging around the substrate if applicable. In a packaged component, this is a function of the surface area of the component (for convection and radiation) and the amount of heat conduction through the device leads. In applications where a heat sink is attached to the device, θ_{CA} is expressed as $\theta_{CS} + \theta_{SA}$ where θ_{CS} is the case to heat sink thermal resistance and θ_{SA} is the heat sink to ambient thermal resistance. θ_{CS} is normally very small, typically 0.3° C/W. θ_{SA} is mostly dependent upon the surface area of the heat sink. Under most circumstances, Micron SRAMs do not require heat sinks for reliable long-term operation.
- θ_{JA} = junction to ambient thermal resistance. This is the sum of θ_{JC} + $\theta_{CA}.$

Given the above parameters, T_J may be calculated using the following equation:

$$T_{J} = T_{A} + P(\theta_{JC} + \theta_{CA})$$
$$= T_{A} + P\theta_{IA}.$$

DETERMINING THERMAL RESISTANCES

The reliability monitors published for each component family details the procedure used to determine thermal impedances. The procedure is summarized as follows: θ_{JC} is determined by inserting the IC package into a socket assembly with a thermocouple glued to the top side of the package to measure the case temperature. The contact area is minimized so that the thermocouple does not act as a significant additional heat sink. θ_{JA} is measured with the IC package inserted into the same socket assembly but suspended inside a one-cubic-foot closed container that provides a still-air environment. The junction temperature

is measured by characterizing the IC's input pin to substrate diode at various temperatures. θ_{JA} and θ_{JC} are determined using linear regression analysis on the data gathered. Characterization data generally indicates a 99.0% correlation to a linear curve fit.

The above discussion accounts for the determination of packaged component thermal properties. In actual applications, θ_{JA} is lower because printed circuit board traces conduct heat away from the package more efficiently than the test socket. θ_{JC} is essentially a constant, therefore the user may determine the actual θ_{JA} by calculating θ_{CA} . This can be done by measuring the average device power, ambient air temperature and package surface temperature of the SRAM soldered in circuit and calculating as follows:

$$\theta_{CA} = (T_C - T_A)/P.$$

 θ_{JA} is simply the sum of the calculated θ_{CA} and the supplied θ_{JC} . Table 1 summarizes the thermal resistances of Micron

Table 1 summarizes the thermal resistances of Micron plastic package SRAMs rounded to two significant figures.

Table 1 PLASTIC SRAM THERMAL RESISTANCE

				1.1		
Device	Pins	Packag Width	e Type	. ^θ JC °C/W	θ _{ca} °C/W	θ _{ja} °C/W
		(mils)				
256K x 1	24	300	PDIP	18	55	73
64K x 4	24	300	PDIP	18	53	71
32K x 8	28	300	PDIP	10	56	66
256K x 1	24	300	PSOJ	19	71	90
64K x 4	24	300	PSOJ	14	72	86
32K x 8	28	300	PSOJ	11	71	82
1 Meg x 1	28	400	PDIP	5.9	50	56
128K x 8	32	400	PDIP	5.3	50	56
1 Meg x 1	28	400	PSOJ	4.4	62	66
128K x 8	32	400	PSOJ	3.0	55	58
128K x 9	32	400	PSOJ	3.5	56	59
128K x 8	32	400	PSOJ	2	48	50
Revolutionary						
64K x 16	44	400	PSOJ	2	48	50
Revolutionary					1.17 65	
64K x 18	52		PLCC	15	30	45
Synchronous						
32K x 36	100		TQFP	6	59	65
Synchronous						

TRUE SRAM POWER

SRAM power is determined by accounting for three components: power dissipation of internal operations, power dissipation due to transient output current (AC load current) and power dissipation due to steady state output current (DC load current). Data sheets generally contain worst-case numbers which, for Icc, occur at the fastest cycle time, coldest ambient temperature and highest voltage. Device data for specific operating voltages, temperatures and frequencies can be obtained from Micron, generally in the Reliability Monitors.

The following is a derivation from first principles, hopefully putting the issue to rest concerning how to calculate the extra power due to AC output load current:

$$P_{L} = \frac{1}{T} \int_{0}^{I} v i dt.$$

$$P_{L} = \frac{1}{T} \int_{0}^{T} (Vcc - V_{L}) I_{L} dt \text{ for LOW to HIGH case.}$$

$$T$$

 $P_L = \frac{1}{T} \int_{0}^{1} (V_L) I_L dt$ for HIGH to LOW case.

Solving for the LOW to HIGH case (substituting $I_L = C \frac{dV_L}{dt}$):

$$P_{L} = \frac{1}{T} \frac{\int_{VOL}^{VOH} (Vcc - V_{L}) C_{L} dV_{L}}{VoL}$$
$$= \frac{C_{L}}{T} (Vcc V_{L} - 0.5 V_{L}^{2}) \begin{vmatrix} VOH \\ VOH \end{vmatrix}$$
$$= \frac{C_{L}}{T} (Vcc [VOH - VOL] - 0.5 [VOH^{2} - VOL^{2}])$$

Solving for the HIGH to LOW case:

$$P_{L} = \frac{1}{T} \frac{V_{OH}}{V_{OL}} U_{L} dV_{L}$$
$$= \frac{C_{L}}{T} (0.5 V_{L}^{2}) \bigg|_{V_{OL}}^{V_{OH}}$$
$$= \frac{C_{L}}{T} (0.5 [V_{OH}^{2} - V_{OL}^{2}])$$

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

1

where: C_L is the load capacitance.

 V_{OH} is the highest load voltage during the cycle. Vol is the lowest load voltage during the cycle. I₁ is the load current resulting from C₁.

T is the device cycle time.

 P_L is the power dissipation in the SRAM due to the output current on one DQ line.

These solutions make one important assumption: the output voltage waveform has no overshoot/undershoot. The presence of either overshoot or undershoot increases the SRAM power dissipation. True SRAM power for Micron synchronous devices is therefore:

 $P = Vcc Icc + \sum P_{L \text{ (for all output changes).}}$

The marginal power due to steady-state current flow into or out of the DQ pins (due to I/O leakage of connected devices) is ignored in the above equation because it is insignificant in most new design work. That extra power would be:

(Vcc - Voh)
$$I_O N_H + Vol I_I N_L$$

where Voh is the logic HIGH output voltage, I_O is output current on those DQ lines and N_H is the number of DQ lines that are HIGH; Vol is the actual logic LOW voltage, I_I is the resulting input current into the DQ line and N_L is the number of DQ lines that are LOW. Almost all CMOS devices have I_I or I_O less than 10uA (often 1 or 2uA), hence this calculation is inconsequential. If devices with high input currents are connected to the DQ lines, do not ignore this additional power component. For example, take the case where eight outputs are connected to loads having 10uA of leakage. The contribution to device power is (given that VoH is 3.8V during the average cycle):

(5V - 3.8V) 10uA(8) = 96uW,

which can indeed be ignored. With higher leakage, VOH drops and power increases as a result of both increased current and greater voltage drop in the SRAM output driver.

DESIGN EXAMPLE

Use of thermal resistance information can be seen in the following example: An MT5C128K8A1-20 SRAM operates at an ambient temperature of 70°C with a 5.5V supply, READ and WRITE cycle times of 25ns (40 MHz), continuous operation in still-air and an output loading of 50pF. The following discussion demonstrates how this thermal resistance information is utilized.

In the 1 Meg Evolutionary Pinout SRAM Internal Qualification document, the typical device current at 25ns cycle time, 5.5V and 100°C is 145mA. The power is calculated as follows (assuming the worst case, all outputs switch from LOW to HIGH):

$$P = Icc Vcc + C_{L} (Vcc [VoH - VoL] - 0.5 [VoH^{2} - VoL^{2}]) \times 8$$

= 0.145(5.5) + 50E-12 (5.5[4.3-0.1] - 0.5 [4.3² - 0.1²]) 8
= 0.798 + 0.222
= 1.02 watts.

The VoH used (4.3V) is typical for operation at 5.5V. At 5V and full speed operation, VoH is approximately 3.8V. VoL is typically between 0.1 and 0V.

Given the true operating power of 0.803W, the case and junction temperatures can be predicted as follows:

$$\begin{split} T_{C} &= T_{A} + P\theta_{CA} \\ &= 70 + 1.02 \times 34 \\ &= 104.7^{\circ}C. \\ T_{J} &= T_{A} + P\theta_{JA} \\ &= 70 + 1.02 \times 40 \\ &= 110.8^{\circ}C. \end{split}$$

The calculated junction temperature is below the 150°C recommended limit demonstrating that the operating conditions are acceptable. As previously mentioned, the actual θ_{CA} is lower when the SRAM is soldered in circuit. One can therefore expect lower case temperatures than calculated in this example.

To illustrate this point, the MT58LC32K36LG synchronous SRAM was characterized in both still air and circuit. In still air, θ_{JA} was determined to be 39°C/W maximum. θ_{JC} was determined to be 5°C/W maximum. In circuit (4.340 x 1.150 in² circuit board with 1 power and 1 ground plane), θ_{JA} was found to drop to 20°C/W and θ_{JC} to1°C/W. This implies that θ_{CA} dropped from 34 to 19°C/W (since $\theta_{CA} = \theta_{JA} - \theta_{JC}$) as a result of the additional conduction through the device leads and the circuit board traces.

IMPROVING THERMAL PERFORMANCE

The motivation for achieving the lowest possible junction temperatures is twofold: most AC timing parameters change adversely as junction temperature increases. This can be seen in any of the SRAM reliability monitors where AC timing specifications versus temperature are plotted. Another consideration is that component life decreases exponentially as temperature increases. Component life shows a strong correlation to the following equation:

 $t_{O} = t_{N} \exp([Ea/k][1/T_{O} - 1/T_{N}]),$

where: t_O is the mean time to failure under the stress operating condition.

t_N is the mean time to failure under normal operating conditions.

Ea is the activation energy of failure modes, the most common one being dielectric defects, 0.3eV. k is Boltzmann's constant, $8.617 \times 10^{-5} eV/K$.

 T_N is the normal operating temperature (Kelvin). T_O is the stress operating temperature (Kelvin).

Several considerations can improve thermal performance. Ground and power planes on a PCB can have a significant effect on conduction and therefore on power dissipation and safe operating temperatures. More power and ground leads on the device package produce greater relief. The addition of a thermal pad under the device with appropriate thermal bonding will also help conduct heat away from the device.

Air flow has a significant effect in reducing component temperatures. Table 3 shows test results for industry standard packages, demonstrating the effective reduction in θ_{CA} as airflow increases (these results have *not* been verified by Micron). For example, a 1 Meg SRAM in plastic SOJ having θ_{CA} of 48°C/W in still air would have a θ_{CA} of approximately 48°C/W x 0.75 or 36°C/W at 200fpm of air flow. The new θ_{IA} is approximately 36 + 2.0 = 38°C/W.

DIE THERMAL CONSIDERATIONS

Die level thermal considerations are more complex for the user to handle because more factors are involved than with factory packaged components. Figure 1 illustrates the thermal interfaces involved in a die application with ceramic substrate. Typical thermal resistances which need to be quantified are: die to adhesive, adhesive to substrate, substrate to lid, lid and/or substrate to ambient. The path is highly dependent upon the multichip module (MCM) construction. Heat radiation from die to lid could be an

		able 3			
EFFECTS	OF /	AIRFL	OW	ON	θca

Package	Air Flow	θ_{CA} Multiplier
PDIP	200 fpm	0.7 - 0.75
PSOJ	200 fpm	0.7 - 0.75
PDIP	500 fpm	0.55 - 0.65
PSOJ	500 fpm	0.55 - 0.65

applicable factor. Thermal vias below the die would significantly reduce the total package thermal resistance and should be modeled appropriately.

An application which uses a ceramic substrate can use the

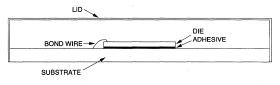


Figure 1 DIE APPLICATION

 θ_{JC} values provided for ceramic SRAMs as a conservative value. This accounts for thermal resistances from die to adhesive (assuming gold eutectic in ceramic packaged parts), adhesive to substrate, and also accounts for the effects of the bond wires. The value is conservative because the thermal resistance through the substrate material of Figure 1 is included, whereas this portion is actually unique to the substrate of each user. Without adjustment, this would be double-counting a portion of the thermal resistance.

Figure 2 illustrates the thermal resistances in a typical die application on silicon substrate. The following discussion uses a silicon substrate die application with four Micron 1 Meg SRAM die mounted on the substrate. The die areas for various Micron SRAM die products are listed in Table 4. Thermal resistance from junction to die backside for the 1 Meg SRAM (S18A) is calculated as follows:

 $\theta = (0.0185 \text{ inch die thickness})/(2.23W/^{\circ}C/\text{inch})$ / (0.107 sq. inches die area) = 0.08^{\circ}C/W.

The remaining thermal resistance values are userdependent and also dependent upon contact area. Some typical values are: 0.06° C cm²/W for the die to silicon substrate interface, 0.2° C cm²/W through the silicon substrate, 0.7° C cm²/W silicon substrate to module carrier, 0.6° C cm²/W through the aluminum module carrier, 0.7° C cm²/W from module carrier to heat sink and 30° C cm²/W

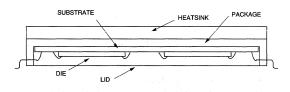


Figure 2 SILICON SUBSTRATE DIE APPLICATION

SRAM THERMAL DESIGN CONSIDERATION

from heat sink to ambient. For an MCM with 4 SRAMs dissipating the 1.02W of the previous example with 3cm x 3cm dimensions, the calculations would be as follows (assuming 70°C ambient is in still air):

T _{heat sink}	$= 70^{\circ}\text{C} + (30^{\circ}\text{C}/\text{W}/9\text{cm}^2) \times 1.02\text{W} \times 4$
incut binin	= 83.6°C.
T _{module carrier}	$= 83.6^{\circ}C + (0.6 + 0.7^{\circ}C \text{ cm}^2/\text{W})/9\text{cm}^2$ x 1.02W x 4
	= 84.19°C.
T _{silicon substrate}	$= 84.19^{\circ}C + (0.2+0.7^{\circ}C \text{ cm}^2/\text{W})/9\text{cm}^2$ x 1.02W x 4
	= 84.60°C.
T _{junction}	$= 84.60^{\circ}\text{C} + (0.06^{\circ}\text{C} \text{ cm}^2/\text{W}/0.691\text{cm}^2 + 0.08^{\circ}\text{C}/\text{W}) \times 1.02\text{W}$
	= 84.77°C.

This MCM type, as seen from the example, is very well suited for much higher power dissipation devices than the four SRAMs used in this example. Eliminating the heat sink would alter the analysis (using 170°C cm²/W for the module carrier package to air thermal resistance):

T _{module carri}	$er = 70^{\circ}C + (0.6 + 170^{\circ})$ x 1.02W x 4	$C \text{ cm}^2/\text{W})/9\text{cm}^2$
	= 147.34°C.	
T _{junction}	= 147.51°C.	

The junction temperature is calculated using the same methodology as before. This indicates that a heat sink would not be necessary using the stated assumptions.

Table 4 MICRON DIE INFORMATION

Configuration	Data Base	Dimensions (mils)	Area cm ²	θ ¹ ℃/W
32K x 8	S06	167 x 346	0.373	0.144
128K x 8	S01	241 x 544	0.846	0.063
128K x 8	S18A	210 x 510	0.691	0.078

NOTE: 1. This is the thermal resistance from junction to die backside (calculated value).

SUMMARY

Thermal analysis and design have become an important consideration in SRAM applications. The benefit to the end user when these considerations are properly accounted for is higher system reliability due to longer component life. For the designer, thermal design techniques result in knowledge of device junction temperatures over the operating temperature range, which directly leads to an understanding of device characteristics under the varying operating conditions. In die applications, thermal considerations are an essential part of the design task. Analysis tools based on finite element and finite difference techniques are frequently used to predict temperatures throughout MCM assemblies. Tables included in this note provide thermal resistance values which are useful in analyzing both die and packaged component applications.

TN-05-14 SRAM THERMAL DESIGN CONSIDERATIONS

ŝ

A DESIGNER'S GUIDE TO 3.3V SRAMs

INTRODUCTION

The challenge of reducing power consumption is critical in laptop, notebook and palmtop computers, and is a growing factor in desktop and workstation applications. A key solution to reducing power is the use of 3.3 volt components in system designs. Although battery life is the dominant issue in most portable designs, other issues such as the migration of high-performance microprocessors to 3.3V and technology requirements to produce memory components, especially in DRAMs, are forcing the transition to 3.3V. Even the Environmental Protection Agency (EPA) is getting into the act by mandating power reduction for all computers purchased by the federal government.

This paper discusses the main reasons propelling system designers to use 3.3V logic, how Micron SRAMs are constructed for 3.3V operation, and issues specific to designing mixed 3.3V and 5V systems. Because not all components are currently available at 3.3V, it is especially important for designers to understand how to incorporate these lower voltage parts in robust, reliable system designs.

REASONS FOR 3.3V LOGIC

Several issues are accelerating the use of 3.3V components in computer systems. Although reduction of system

power is the primary reason, other considerations form a powerful argument for converting new designs to 3.3V. This section details the main reasons and advantages.

REDUCING SYSTEM POWER AND EXTENDING BATTERY LIFE

Extending battery life and reducing the size and weight of the battery pack are two key design concerns. Many current laptop and notebook designs run out of power in one to two hours, forcing the user to recharge batteries frequently or carry spare battery packs. The long-term goal of portable computers is to provide desktop-equivalent performance, extended battery life (8 to 10 hours or more) and drastically reduced battery weight (perhaps as few as two AA cells).

Current techniques to reduce power rely on enhanced power-management modes implemented in memory controllers, or in the processor itself. Other savings in power have come about through the use of low-power components such as Extended Refresh or SELF REFRESH DRAMs. These methods have decreased power, but fail to achieve desired performance and battery life levels. These goals

Manufacturer	Part Type	Power Mode	5V Power (MAX mW)	3.3V Power (MAX mW)	% Savings 3.3V vs. 5V
SRAMs					
Micron	256K, x8, 20ns	Operating	715	324	54
		CMOS Standby	28	10	64
IDT	256K, x8, 20ns	Operating	798	378	52
	CMOS Standby	83	1.8	97	
DRAMs					
Micron	4 Meg, x4, 80ns	Operating	495	180	44
	$= - \frac{1}{2} \sum_{i=1}^{n} $	BBU*	1.65	.324	80
NEC	4 Meg, x4, 80ns	Operating	495	216	56
		SELF REFRESH	0.72	0.36	50
MICROPROCESSORS					
TI	DSP TMS320C5x	Typical Operating	13.8mW per MIPS	5.4mW per MIPS	61
Motorola	DSP56L002	Operating 40 MHz	500	165	67

 Table 1

 A COMPARISON OF 3.3V AND 5V MEMORY POWER DISSIPATION

* BATTERY BACKUP current. This represents the DRAM operating at a CAS-BEFORE-RAS refresh at the slowest possible cycle time.

can be realized only through the use of lower voltage components.

To show the benefits of 3.3V over 5V components, Table 1 gives a comparison of power for several products available at both voltages. Memory components (DRAMs and SRAMs) and DSP microprocessors are shown. As shown, the amount of power saved in converting to 3.3V is significant. Power savings average 63 percent, allowing the system battery life to more than double.

SUPPORTING 3.3V PROCESSORS

A number of 3.3V microprocessors and microcontrollers have appeared in the marketplace and are leading the industry into low-voltage system design. For optimal performance, minimized power and chipcount, and simplified design, these chips require lower voltage support chips and peripherals.

High-speed and high-performance designs are adopting 3.3V products as demonstrated by Intel's Pentium[™], IBM and Motorola's PowerPC™, Digital's Alpha AXP chip and Silicon Graphics' MIPS R4400. One of the main reasons these products have moved to 3.3V is to reduce the power dissipated by the high-frequency processor chips. At 5V, Intel's Pentium chip draws some 17 watts at 66 MHz. The problems of dissipating this power should force Intel to move quickly to a reduced-voltage part. Even though Digital's 21064 Alpha chip already operates at 3.3V, it still dissipates a whopping 23 watts at 150 MHz. Digital recently announced new versions running up to 200 MHz with plans to move to 300 MHz in the next several years. These processors must move to 3.3V (or lower) due to high transistor count and high-frequency operation. The lower voltage helps reduce or eliminate external cooling components such as heatsinks or fans.

At the lower end of the scale, portable applications are using 3.3V microprocessors to reduce system power and extend battery life. A number of 3.3V microprocessors have appeared for use in portable applications such as personal digital assistants (PDAs) and notebook computers. Digital signal processors such as TI's TMS320C5x and Motorola's DSP56L002 have appeared with options to run at either 3.3V or 5V. As shown in Table 1, the TMS320C5x runs with a 62 percent reduction in power at 3.3V, while the DSP56L002 saves 67 percent.

EPA ENERGY STAR PROGRAM

According to the EPA, computer systems account for five percent of commercial electricity consumption in the United States. Left unchecked, this could grow to 10 percent by the year 2000. A large percentage of this power is consumed by unused computers left on after hours or through the weekend. During these time periods, as many as 30 to 40 percent of all computers are left on and inactive.

The goal of the Energy Star Program is to reverse the trend of increased power usage of computers, thus reducing the need to build more power plants. The primary strategy is to reduce power requirements of desktop computers that can use as much as 300 watts of power in active mode to below 150W with a standby mode power of less than 30W (not including the monitor). PCs meeting these specifications are commonly referred to as "green machines" or "green PCs."

Another incentive has been given to the computer industry by the federal government through its purchase of computer products. All computers purchased after October 1993 by the federal government must meet these new Energy Star standards. This motivator has led to development of a number of "green PCs," with an increasing number running at 3.3V.

RELIABILITY

Because 3.3V logic reduces power consumption, devices run cooler than their higher voltage counterparts, and junction temperatures are reduced. Reliability is exponentially related to junction temperature, and a reduction in junction temperature increases the long-term reliability of the component. Reduced voltage levels mean less stress is placed on the dielectrics. Because Micron's SRAM inputs are tolerant to 5V inputs (+6V MAX), potential problems with damaging input voltage levels in mixed-voltage systems are considerably reduced.

Reliability improvements also extend to the system level since 3.3V components generate less noise due to their reduced power levels. This reduced power leads to a minimization in the number of components for cooling, thus reducing system size.

TECHNOLOGY ISSUES

As DRAM technology moves to 0.55µm and smaller, the voltage level has to be reduced. Current 16 Meg DRAMs are manufactured with 5V periphery logic and I/O using an internally generated 3.3V power supply for the memory array. These parts interface with the external world using industry-standard 5V I/O levels while maintaining the benefits of lower voltage for the internal array. Next generation 16 Meg DRAMs will have versions operating externally at 3.3V, while all 64 Meg DRAMs will operate exclusively at the 3.3V level.

The main motivation for DRAM conversion to 3.3V has been to reduce power in the DRAM device. However, at the transistor level, several technical factors are also making 3.3V a desired standard. As DRAM technology moves toward thinner oxides, and 0.55μ m (and finer) design rules are used to shrink transistor dimensions, applying 5V across the transistor degrades both performance and reliability. The move to 3.3V allows reliable transistor performance down to channel lengths of 0.4 μ m before requiring further voltage reduction.

3.3V SRAM MEMORIES

In the past year, several 3.3V SRAM memory components have been introduced. Initially these 3.3V SRAMs were recharacterized 5V products that usually suffered a significant speed loss and sometimes reduced noise margins when operating at 3.3V. Some estimates have shown that recharacterization slows parts by at least 50 percent. Users are unwilling to pay a performance penalty in order to extend battery life, and desire the same type of performance in a portable machine as in a desktop. This is attainable only if the lower power components can also operate at high-performance levels.

The second generation of 3.3V SRAMs takes advantage of new design techniques that optimize speed at the reduced voltage level. These speed improvements are made possible by the lower voltage, which, due to lower breakdown levels, reduces critical transistor dimensions. As lithographic techniques improve and dimensions get smaller, only lowervoltage parts can take advantage of smaller transistor dimensions. For this reason, they will eventually exceed the speed of 5V parts. The other advantage new 3.3V designs have over screened parts is that they optimize transistor threshold voltages, increasing noise margin on inputs and outputs.

The input protection circuits on Micron's 3.3V SRAMs have been designed to provide excellent immunity to elec-

Part Number Configuration Access Time **Packages** 12, 15, 20, 25 MT5LC2561 256K x 1 DIP, SOJ MT5LC1001 DIP, SOJ 20, 25, 35, 45 1 Meg x 1 MT5LC2564 12, 15, 20, 25 DIP, SOJ 64K x 4 MT5LC2565 0E 12, 15, 20, 25 DIP, SOJ 64K x 4 MT5LC1005 256K x 4 20, 25, 35, 45 DIP, SOJ MT5LC256K4D4 256K x 4 20, 25 SOJ MT5LC1M4D4 20, 25, 35 SOJ 1 Meg x 4 MT5LC2568 32K x 8 12, 15, 20, 25 DIP, SOJ 128K x 8 MT5LC1008 20, 25, 35, 45 DIP, SOJ MT5LC128K8D4 128K x 8 20, 25 SOJ MT5LC512K8D4 512K x 8 20, 25, 35 SOJ MT5LC64K16D4 64K x 16 20, 25 SOJ MT5LC256K16D4 256K x 16 20, 25, 35 SOJ

Table 2 MICRON'S 3.3V ASYNCHRONOUS FAMILY

trostatic discharge (ESD). Micron's new 3.3V 256K SRAM exhibited greater than 2000V of ESD tolerance on all pins with the average pin typically having more than 6000V of tolerance. These tests were performed using the Human Body Model ESD test. Even though Micron SRAMs have excellent tolerance to ESD, it is still recommended that while handling, shipping or storing devices, appropriate ESD measures be used.

Micron 3.3V SRAMs have been designed to work in cache memory applications for high-performance systems ranging from workstations to notebooks. Micron's 3.3V SRAM product line features a wide variety of SRAMs including 256K, 1 Meg (evolutionary and revolutionary pinout) and 4 Meg versions (Table 2). These SRAMs have been designed using Micron's advanced 3.3V process technology and optimized 3.3V circuits.

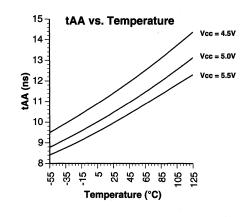
One of the major advantages of these SRAMs is their ability to work in high-performance systems. Micron's 3.3V 256K SRAMs presently run as fast as 12ns and are excellent choices for cached memory systems in 3.3V desktop green machine or notebook design. While these 3.3V SRAMs provide the power savings that portable applications require, they do not have the speed penalty associated with screened 5V SRAMs.

Π

Т

3.3V JEDEC STANDARDS

In order to ensure conformity of 3.3V interfaces among manufacturers, the computer industry has adopted JEDEC protocol 8-1, "Interface Standard for 3.3V ±0.3V Supply Digital Integrated Circuits." The voltage requirements for this specification are shown in Table 3. All Micron 3.3V SRAMs meet or exceed this standard.


Some confusion may exist because a number of ICs operate with a wide voltage supply range of 2.7 to 5.5V. This voltage range has been used in some battery-powered applications where speed is not as important as battery life. These systems pay a significant penalty in speed and will

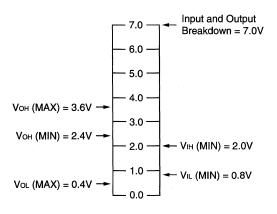

DC Operating C	onditions		
Parameter	Condition	MIN	MAX
Vcc	ere en en en en en en en en en en en en en	3.0V	3.6V
Vон	-2mA	2.4V	¹⁶
Vol	2mA	n la la senara	0.4V
Vih	1999 - 189 <mark>9</mark> - 1997 -	2.0V	Vcc + 0.3V
VIL	- 1911 - 191 - 1916 - 1916	-0.3V	0.8V
Absolute Maxin	num Conditions		
Vcc		0.5V	4.6V
Vin		0.5V	Vcc + 0.5V (4.6V MAX)

Table 3 JEDEC STANDARD 8-1 FOR 3.3V LOGIC

TN-05-16 Rev. 11/94

TN-05-16 A DESIGNER'S GUIDE TO 3.3V SRAMs

Figure 1 ACCESS TIME vs. TEMPERATURE AND VOLTAGE

not be used when performance is an issue. Designers refer to these systems as unregulated because the wide voltage range means they can be designed without voltage regulators.

High-speed systems use microprocessors running with a much tighter tolerance with Vcc of $5V \pm 5\%$ or $3.3V \pm 0.15V$ to provide higher performance. The voltage supply of the microprocessor is usually shared with the cache memory and hence the SRAM speed can also benefit from the increased timing margins due to only a five percent variance.

Figure 1 shows how access time varies versus temperature and voltages for the 5V 256K SRAM. A 3.3V part will exhibit similar performance characteristics. At 5V, a 10 percent tolerance on Vcc means a low Vcc of 4.5V and a five percent tolerance means a low Vcc of 4.75V. For the parts shown here, the increase in low end Vcc increases the speed of the part. This gain becomes even more important as clock speeds approach or exceed 60 MHz.

3.3V SRAMS DRIVING 5V COMPONENTS

Figure 2 shows how 3.3V output logic levels can be used to drive 5V TTL levels. These logic levels guarantee a minimum noise margin to 400mV when driving HIGH or LOW output levels and typical values provide even more margin. 5V device inputs require a minimum VIL of 0.8V and 3.3V devices supply less than 0.4V. Similarly, inputs require a minimum VIH of 2.0V and are supplied with 2.4V or greater.

There has been some concern that 3.3V parts driving 5V inputs will cause a slightly higher power dissipation be-

Figure 2 3.3V DEVICES DRIVING 5V LOGIC

cause the inputs are not driven to a full voltage rail. But because not all 5V TTL memories drive to CMOS rails, they will have similar power dissipation on inputs.

There are no difficulties using 3.3V outputs to drive 5V TTL circuits, but they should not be used to directly drive 5V CMOS level inputs on true CMOS devices. To reach VIH (MIN), 5V CMOS devices with CMOS thresholds require a greater logic-HIGH input voltage than can be supplied by 3.3V devices. Designs requiring 5V CMOS levels need a voltage translation or buffer circuit. This restriction is also present on 5V TTL outputs, but can be more easily alleviated by means of a pull-up device.

Some manufacturers specify that logic HIGH on their 3.3V High-Z outputs or bi-directional buses not exceed Vcc+0.5V. This limitation is especially critical when the outputs are connected to a bus with 5V drivers. Even a 3.3V notebook might be connected to a 5V printer or peripheral. Although the 3.3V devices can drive 5V inputs, the 5V bus may overdrive the maximum allowable voltage during High-Z. Devices with restrictive maximum voltages require some type of buffering to prevent damage to the I/O pins. This buffering may be the addition of a current limiting resistor for 3.3V components that would have excessive current through a clamping diode or a register latch buffer for those devices that suffer from latchup problem when overdriven.

An advantage of Micron 3.3V SRAMs is that these extra circuits are not required when connecting to a 5V bus. Micron SRAMs are designed to tolerate 5V signals driven directly into bi-directional or High-Z outputs. This also means our 3.3V circuits can be connected to buses using

MICHON

pull-up resistors to 5V or drivers using 5V TTL or CMOS levels. If a pull-up transistor is required on a bus, we recommend a pull-up connected to 3.3V instead of 5V. While saving power, this pull-up to 3.3V will still allow a logic HIGH on the bus when driving TTL components. This SRAM tolerance to 5V signals saves space by eliminating buffer circuits, saves power by reducing components, and prevents headaches. Figure 3 shows the various bus options that must be considered by a designer. In the figure, 3.3V circuit A requires a current limiting register to prevent destructive currents when being driven by a 5V output. 3.3V circuit B requires a buffer to prevent latchup, and Micron's 3.3V SRAM, interfaces directly to the bus.

5V COMPONENTS DRIVING 3.3V SRAMS

The JEDEC 8-1 standard specifies that 3.3V input voltages can range from -0.5V to Vcc+0.5V (4.6V [MAX]). This range was reduced by JEDEC from their original 1984 standard, which specified a maximum input voltage of 5.5V, therefore allowing 5V devices to directly drive 3.3V inputs. JEDEC modified the older standard because the transition period to 3.3V is turning out to be much shorter than originally envisioned.

Micron SRAMs are designed to surpass the 8-1 JEDEC standard by allowing an absolute maximum voltage of +6.0V on the inputs, with 5.5V as the recommended maximum DC operating condition. This allows any 5V device with either a TTL or CMOS output to directly drive the 3.3V inputs. These 5V-tolerant inputs supplant buffer logic between components with different supply voltages, thus saving power and board space and reducing complexity.

Designers need to be careful when considering 3.3V components because some do not exceed the JEDEC +4.6V MAX (VIN) specification. Directly driving these 3.3V components with 5V parts will exceed this value and could cause a latchup failure. Mismatched impedances worsen the problem since ringing will occur and drive the voltages higher than their steady-state values. A number of companies including IDT, National Semiconductor, Texas Instruments and Toshiba offer buffering components specifically designed to address the buffering issues encountered in mixed-voltage systems. As 3.3V components proliferate, designers may be forced to use these buffer circuits if the 3.3V component does not offer direct 5V compatibility. Figures 4 and 5 show how to connect circuits and how the voltage levels interact when 5V components drive 3.3V circuits.

Although the minimum JEDEC standard for VOH and VOL specifies a current of +2mA and -2mA, Micron exceeds these standards and offers output currents identical to the

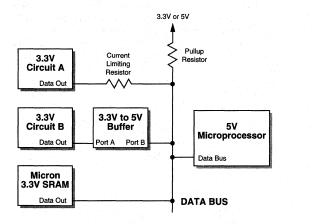


Figure 3 CONNECTING 3.3V OUTPUTS TO 5V CIRCUITS

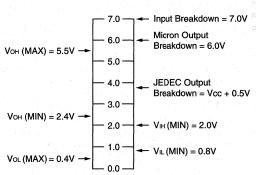
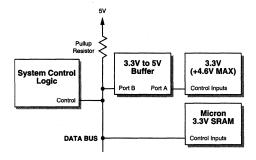



Figure 4 5V DEVICES DRIVING 3.3V LOGIC

Figure 5 5V DEVICES DRIVING 3V LOGIC

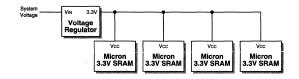
5V TTL standards of +8 and -4mA. These high currents allow Micron SRAMs to attain high-speed operation.

POWER-UP DESIGN CONSIDERATIONS

Mixed-voltage designers need to be especially careful during the power-up and power-down sequence to ensure that 5V parts do not violate the input specifications of 3.3V parts. For instance, even though the 3.3V Alpha microprocessor can tolerate direct 5V inputs, according to the Hardware Reference Manual no input or bi-directional pin can rise above 4V until the 3.3V supply is stable. Failure to meet this rule can cause damage to the Alpha. This is because a 5V part could drive an input to a 3.3V part with a Vcc of 0V, exceeding breakdown voltages and permanently damaging the device.

Three solutions are available to minimize problems during power-up and power-down in mixed voltage systems. The first is to use power supply sequencing to ensure that the 3.3V power supply is stable before any 5V signals are applied. The second is to use tristate outputs to drive 3.3V logic, and ensure that all inputs remain in tristate until the 3.3V supply is stable. Power supply designs that sample the 3.3V power supply and generate a tristate signal based on it offer the safest design approach because the tristate will be removed only when power is stable.

The third solution is to use a 3.3V product without a power-up problem. Micron SRAMs have been constructed to completely eliminate such problems. They are designed so that a 5V signal can be applied to the inputs even if the 3.3V Vcc pin is between 0 and 3V. These SRAMs provide ample time for both power supplies to reach a stable state regardless of which is turned on first. A typical power supply voltage ramp-up time is between 10ms and 20ms. For long term reliability, we recommend that the input voltage does not exceed 3.3V for greater than 200ms while Vcc < 3.0V. To support a wide variety of 3.3V parts, power supplies of mixed-voltage systems should ensure a minimum delay between power-up of the 5V supply and the 3.3V supply.


POWER SUPPLY CONSIDERATIONS

Power supply manufacturers are developing a wide array of products simplifying mixed-voltage designs and power-up considerations. Power supply chips that supply multiple output voltages are now available, such as Maxim's MAX782 supply. These chips can be used to generate the voltage supplies of mixed voltage systems, and support power supply sequencing per the designer's specifications.

Some designers have not considered using a lower voltage part because a 3.3V supply is unavailable. Many expansion slots in computers only have a 5V supply available and 3.3V has to be generated on the card. A 3.3V supply can easily be generated with a voltage regulator as shown in Figure 6. Regulators are inexpensive and take up minimal area (typically < 0.4 in2). The additional power drawn by the regulator is insignificant given the power savings of the 3.3V components. Micron SRAMs require only a 3.3V supply and no additional buffer circuitry when interfacing to other 5V components.

CONCLUSION

Although the transition to 3.3V was envisioned to take a number of years, 3.3V microprocessors and low-power portable designs may force a majority of systems to transition in the next 18 months. This transition will be marked by a number of mixed-voltage systems until all computer components are available in 3.3V versions. Designers of the mixed-voltage systems must look carefully at manufacturers' specifications to determine if external buffering is required, and how to gain maximum power savings from the devices. Micron 3.3V SRAMs are an excellent choice for 3.3V systems because they have been designed to minimize design headaches and eliminate buffers when interfacing with 5V TTL components. As Micron is continually improving and expanding our 3.3V line, designers should consult the factory for the latest information on new products.

Figure 6 GENERATING 3.3V IN A 5V SYSTEM OR PERIPHERAL

TECHNICAL NOTE

LOW-POWER MEMORY DESIGN USING DATA RETENTION

INTRODUCTION

Increasingly, designers are looking for ways to minimize power consumption. Although battery-powered portable systems have always been optimized for low power, it is becoming increasingly important to minimize power and heat in other nonportable applications. Many users are replacing their desktop computers with portables or notebooks and do not want to sacrifice performance. To support these users, high-speed, low-power SRAM cache memory will increasingly be used, but with the addition of power management circuitry optimized for low-power operation.

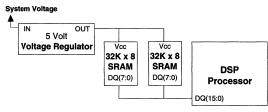
Data retention mode is a standby mode of SRAM operation, which helps engineers to improve battery lifetime. Many applications are already designed to take advantage of this data retention capability to reduce power. This technical note describes this mode of operation and shows how to take advantage of this feature.

DATA RETENTION APPLICATIONS

Applications which require the low power of data retention have typically been portable designs using SRAM memory either as a secondary cache for a computer or as primary memory for a DSP or embedded processor. These applications require the lowest power possible and can take 🛛 🗖 advantage of data retention mode when in standby operation. To demonstrate the power savings of data retention over other operational modes, Tables 1 and 2 show power consumption for several versions of Micron SRAMs. The power savings of data retention can be quite dramatic, with over a 90 percent savings attained by using 2V data retention over normal 5V CMOS standby mode and over 75 percent for 3.3V SRAMs. Although not as dramatic, data retention for 3.3V SRAMs still offers significant power savings. Any convienient voltage down to 2V may be chosen for the data retention mode.

	1	
-	-	
Π	L	
C)	
Ì		
_		
-		
4	1	
-		
•	,	
	-	
-		
-	-	
2		
C)	
-	5	
-		

POWER MODE	256K SRAM	1 MEG SRAM		
Operating (50 MHz)	715	800		


Table 1 POWER DISSIPATION FOR 5 VOLT SRAMs (mW)

POWER MODE	256K SRAM	1 MEG SRAM
Operating (50 MHz)	715	800
Standby (TTL)	248	250
Standby (CMOS)	27	27
3V Data Retention	1.8	0.98
2V Data Retention	0.8	0.35

Table 2 POWER DISSIPATION FOR 3.3 VOLT SRAMs (mW)

POWER MODE	256K SRAM	1 MEG SRAM
Operating	198	198
Standby (TTL)	54	43
Standby (CMOS)	2.7	1
2V Data Retention	0.7	0.3

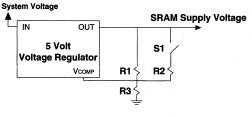

Data retention can be incorporated into a design in a myriad of ways. One specific implementation has been chosen to demonstrate how this mode can easily be incorporated. Figure 1 shows a schematic of an SRAM memory array consisting of two 32K x 8 SRAMs connected to a DSP processor and powered by a voltage regulator circuit. Voltage regulators and/or power management circuitry is already included in designs, and frequently only minor modifications are required to add the data retention capability.

Figure 1 A DATA RETENTION DESIGN

The voltage regulator used in the circuit has an adjustable output voltage. The output voltage of many off-the-shelf regulators are controlled by a voltage divider circuit. Typically, these divider circuits are set to generate a single output voltage of 5 or 3.3 Volts. By including a switch into the network (Figure 2), it is possible to have two different programmable voltages to the SRAM array. During normal operation, resistor R1 generates a compensation voltage which gives an output of 5 volts. When the system goes into standby mode, switch S1 closes, pulling resistor R2 into the circuit and changing the compensation voltage to provide an output of 3 volts.

Several companies such as Maxim, National Semiconductor and Silicon General offer voltage regulators with an

Figure 2 GENERATING DATA RETENTION STANDBY VOLTAGE

adjustable output as described above. These circuits make the incorporation of data retention mode straightforward. SRAM power dissipation for the memory array shown in Figure 1 decreases to 2mW in 3V data retention mode from the 54mW when in 5V standby. Future power controller products have been announced with circuitry to automatically switch to a battery voltage when Vcc drops below a threshold voltage, eliminating the external resistors.

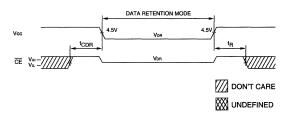
DATA RETENTION MODE

In order to ensure that the memory array operates with the lowest possible power, the conditions in Table 3 must be met. Vcc for data retention must not fall below 2 Volts to ensure that the the memory cell retains stored data.

If the input voltage restrictions are violated, such as setting the control lines in a High-Z state, the CMOS input buffer transistors can enter a linear or saturation region of operation with an increase in standby current. To prevent this, the input voltage specification must be observed. TTL input levels can be applied to the device inputs without loss of functionality or data, but with an increase in power dissipation. Devices with gated inputs do not have this restriction for input voltages. These versions of Micron's SRAMs have gated inputs which are controlled by the \overline{CE} inputs. \overline{CE} on the gated input parts ensure that the input buffers remain fully turned off. Consult data sheets for information on specific versions.

The time to enter data retention mode is nearly instantaneous. Chip deselect to data retention occurs as soon as the power supply is reduced. Exiting data retention and entering operational mode takes a maximum of one SRAM cycle time (^tR), between 8ns and 35ns, depending upon the SRAM used.

Table 3 DATA RETENTION OPERATING CONDITIONS


Parameter	Symbol	Conditions		
Data Retention Vcc	VDR	≥ 2 Volts		
Input Voltage*	Vin	ViN ≥ (Vcc-0.2V) or ≤ 0.2V		
Chip Enable	CE	CE ≥ (Vcc-0.2V)		
Chip Deselect to Data Retention Time	^t CDR	Ons		
Operation Recovery Time	^t R	^t RC (MIN)		

*Not required for gated input parts

TEMPERATURE CHARACTERISTICS

Applications that run cooler than the maximum operating temperature of the SRAM will benefit by having reduced power in data retention mode. Figure 4 shows how data retention current (IccDR) varies over temperature and voltage for a 256K SRAM. Typically, current is reduced as temperature decreases and a "cooler" application can extend battery life further.

As an example, a 256K SRAM circuit used in an ambient temperature not exceeding 30°C will typically see a power reduction of 50 percent over parts exposed to 70°C. The curve in Figure 4 can be used to estimate the increase in battery lifetime. IccDR curves are available for specific SRAM families.

Figure 3 LOW Vcc DATA RETENTION WAVEFORM

CONCLUSION

Data retention mode offers a method to drastically decrease the power of SRAMs. As described in this technical note, this feature is a method to reduce current during standby mode, especially for portable and notebook applications where battery power is used and standby mode is entered often. The ease and negligible cost of adding this feature makes data retention a preferred method of extending battery life.

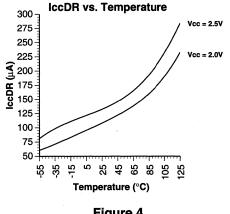


Figure 4 IccDR vs. TEMPERATURE FOR A 256K SRAM

TN-05-17 LOW-POWER, DATA RETENTION DESIGN

ICAL NOTE

TN-05-17 Rev. 11/94

TN-05-19 SRAMs AND LOW-VOLTAGE DATA RETENTION

TECHNICAL NOTE

SRAMS AND LOW-VOLTAGE DATA RETENTION

INTRODUCTION

Data retention is a mode of operation on Micron SRAMs that allows data to be maintained while Vcc is allowed to be as low as 2.0V. Because of the desire for low-power in portable and handheld systems, this mode is a popular option for extending battery lifetime. This technical note describes how low-voltage, data retention is used in systems to save power and why Micron SRAMs can store data in this mode. It also describes what tests Micron performs on SRAMs to assure this mode of operation.

DATA RETENTION - HOW IS IT USED?

Many battery-powered microprocessor and DSP applications use SRAM. These applications typically access the SRAM memory infrequently. This makes the dominant component of power dissipation the standby mode of operation. One standby mode consists of disabling the device by setting \overline{CE} inactive (HIGH), but keeping Vcc between 4.5V and 5.5V. This places the SRAM in standby mode and reduces power dissipation from operating levels. However, this does not reduce power to the lowest possible level. The other standby mode, low-voltage data retention, is entered by deselecting the device (setting \overline{CE} to a logic HIGH) and reducing the supply voltage to a value greater than 2V but less than the Vcc operating voltage. The device can be accessed again by returning $V_{C\!C}$ to normal operating levels without loss of data.

As an example, consider a 1 Meg SRAM organized as a 128K \times 8 (part number MT5C1008). Power dissipation in standby mode will be 27.5mW, but can be reduced to 0.85mW in data retention mode at 2V which gives a power savings of 97 percent.

HOW DOES DATA RETENTION WORK?

Micron manufactures data retention SRAMs that are guaranteed to retain data under low-voltage data retention conditions. These SRAMs are designed with a four-transistor SRAM cell that is inherently designed to prevent data loss in the low-voltage mode. Figure 1 shows a schematic of this cell structure. Unlike a DRAM that uses a capacitor to store information, the SRAM cell uses two cross-coupled inverters to retain data which is shown logically in Figure 2.

To ensure that the cell retains data when Vcc is reduced, the current supplied to nodes A and B from the pull-up resistors must exceed any leakage current present on the node. The pull-up transistor is designed to exceed leakage under all conditions.

If the leakage current at nodes A or B were greater than the pull-up resistor current, the voltage on the node would

Π

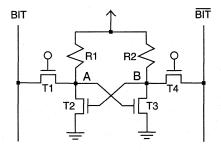


Figure 1 THE SRAM CELL

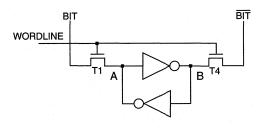


Figure 2 THE SRAM CELL

decay during data retention mode. After returning to a normal operating condition, this could cause the bistable cell to power-up with invalid data. Because Micron SRAMs are designed to prevent this condition, the cell will not "flip" logic levels when returning to an operating mode from data retention mode.

ENSURING DATA INTEGRITY

In addition to the cell design for data retention operations, Micron tests all data retention parts to guarantee data retention operation. All SRAM parts tested for data retention are marked with an "L" in the part number (i.e. MT5C1008 L).

Leakage currents are quite small and the time to fail can be fairly long. Because of these long test times, automated test equipment (ATE) cannot effectively screen these parts. To effectively guarantee memory retention, the test procedure must be conducted in the data retention mode at temperature extremes for a prolonged period of time. These parts are tested using the Micron AMBYX® burn-in system which dynamically tests memory devices at various temperatures. Micron has established a test sequence for low Vcc data retention. Every device is tested in our AMBYX burn-in system using the following sequence:

- 1. Ambient (25°C) preretention test confirms device contact continuity.
- 2. Ramp temperature up to 125° C and write a checkerboard pattern with V_{CC} = 4.5V.
- 3. Reduce Vcc to 1.9V and hold data for one hour.
- 4. Raise Vcc to 4.5V and read pattern.
- 5. Write a checkerboard complement pattern at $V_{CC} = 4.5V$.
- 6. Lower Vcc to 1.9V for one hour.
- 7. Raise voltage to 4.5V and read the pattern.
- 8. Ramp temperature down to -45° and write a checkerboard pattern at Vcc = 4.5V.
- 9. Reduce Vcc to 1.6V and hold data for one hour.
- 10. Raise Vcc to 4.5V and read the pattern.
- 11. Write a checkerboard complement pattern with $V_{CC} = 4.5V$.
- 12. Lower Vcc to 1.6V for one hour.
- 13. Raise voltage to 4.5V and read the pattern.

CONCLUSION

Micron is able to reduce system power in critical applications such as portable and handheld equipment through the use of low voltage, data retention. By proper design and testing, Micron parts with the "L" designator are guaranteed to operate down to a 2V VCC which can reduce power dramatically.

TN-05-20 3.3V SRAM CAPACITIVE LOADING

TECHNICAL NOTE

INTRODUCTION

High-speed SRAMs are used in many applications which require external memory. Microprocessors such as PentiumTM, PowerPCTM and 680X0 use caching subsystems to minimize external data access times and reduce or eliminate wait states. DSP designs for telecommunications, disk drives and video compression also use SRAMs, but as main memory. All these applications place the SRAMs on a system bus that is shared by one or more microprocessors, several I/O devices and other types of memory (ROM, EPROM, etc.).

Even though transceivers and/or buffers interface with the actual bus, SRAMs are typically required to drive loads larger than the maximum loading specification given in data sheets. Hence, the access time must be derated to reflect the actual performance of the SRAM under these circumstances.

3.3V SRAM CAPACITIVE LOADING

SIMILARITY BETWEEN SRAM FAMILIES

Micron's 256K and 1 Meg SRAM families all have similar size output transistors and identical architectures. Hence, all devices will have the same drive characteristics. The actual data presented in this technical note are derived from the 256K SRAM family.

DERATING THE OUTPUT DELAY

Figure 1 shows the typical output load as specified in Micron SRAM data sheets. This load tests the capability of the output to drive a capacitive load. Italso ensures that the output drive current is met (IoH = -4mA and IoL = +8mA). Products such as Micron's 32K x 36 and 64K x 18SyncBurstTM SRAMs use an output load as given in Figure 2 to more accurately reflect the transmission line characteristics that the device will encounter. In both cases 30pF is the maximum output capacitance tested.

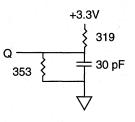


Figure 1 Typical Output Load

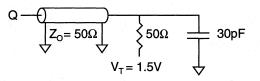


Figure 2 A Transmission Line Load

High bus frequencies (>50 MHz) cannot tolerate the delay associated with high capacitive loads and typically remain under 30pF. Other applications occur that have heavily loaded outputs and require proper derating of the output delay. This derating is shown in Figure 3.

The graph representing access time (^tAA) delay is based on data gathered on Micron's 256K SRAM. Access time measurements were taken with the SRAM subjected to various capacitive loads. In the range covered, the change in access time was seen to be a third order polynomial function of the capacitive load. Figure 3 can be used to properly derate the output timing.

For example, imagine an output load of 330pF. This load is 300pF above the 30pF maximum. Using the chart we can translate this additional 300pF into approximately 4.2ns of additional delay. If the part used was a 20ns SRAM ($^{t}AA = 20ns$), the derated ^{t}AA is 24.2ns. A more detailed description of output delay using transmission line analysis is given in the technical note, "High-Speed Memory Design Techniques," TN-05-21.

SUMMARY

The SRAM timing specifications of all major vendors are based upon an industry standard capacitive load of 30pF. In some applications, the SRAMs are required to drive much larger capacitive loads. In addition, today's designs are implemented around higher frequencies. This requires the system timing to be more precise; hence, loading becomes a more important issue. Understanding how the SRAM will perform under specific loading conditions may result in a more reliable design.

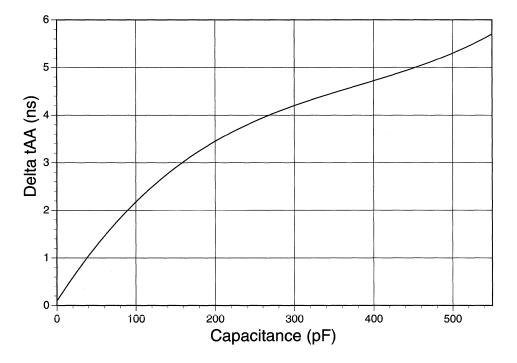


Figure 3 INCREASED ACCESS TIME vs. ADDITIONAL OUTPUT LOADING

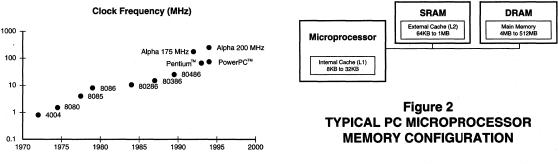
TN-05-21 **HIGH-SPEED MEMORY DESIGN TECHNIQUES**

TECHNICAL NOTE

HIGH-SPEED MEMORY DESIGN TECHNIQUES

INTRODUCTION

Over the last 20 years microprocessor clock speeds have increased at an exponential rate. As we can see from Figure 1 below, clock speeds have migrated from 1 MHz with the Intel 4004 to 200 MHz with the latest version of the Alpha processor. A parallel increase in bus speeds has occurred with current systems having cycle rates of 50 MHz and 60 MHz and moving toward 75 MHz and 100 MHz.


Design techniques which were used at slower frequencies (20 MHz and lower) are no longer appropriate for these higher bus frequencies. Much more attention must be paid to board layout, bus loading and termination to ensure that short clock cycle times can be met without noise, ringing, crosstalk or ground bounce. This article discusses these issues and the choices a designer faces in high-speed memory system design.

THE MEMORY HIERARCHY

Figure 2 shows the memory hierarchy conventionally used in a computer system. High-speed cache memory integrated with the microprocessor is used to store frequently accessed instructions and data and to avoid the time penalties associated with off-chip accesses. However, only a limited

Figure 1 MICROPROCESSOR CLOCK SPEEDS amount of cache can be included directly on the chip in the level one (L1) cache (sizes vary from 8KB to 32KB). Secondary or level two (L2) cache is included in systems to increase system performance when the processor requires information that is not stored in the L1 cache. Sizes for the L2 cache vary greatly depending on system requirements. The largest portion of data, stored in the DRAM bulk memory array, is significantly slower and has a large access time penalty. If a cache miss occurs, retrieving data from the DRAM array could take up to six or more processor clock cycles, drastically reducing system performance. DRAM sizes in PCs vary from 4MB to 512MB.

High-speed techniques must be used in evaluating data transfers between the cache SRAM and microprocessor. Timing between the cache and the microprocessor is especially critical because of the short cycle and access time required. Bus frequencies are already at 50 and 60 MHz and require careful design to attain zero wait-state performance. At these frequencies designers are increasingly using synchronous SRAMs to help alleviate timing problems, but even synchronous SRAMs require a thorough timing analysis.

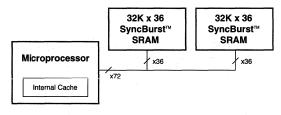
A CACHE TIMING EXAMPLE

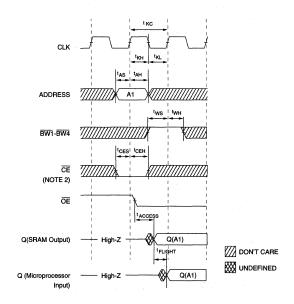
The following example demonstrates how little timing margin is available for bus speeds exceeding 50 MHz and why it is important to carefully analyze bus timing when designing memory subsystems at these frequencies. For this example, we assume that the microprocessor operates at 60MHz and is using a synchronous cache array organized as 32K x 72, with two 32K x 36 SyncBurst[™] SRAMs (MT58LC32K36B2) as shown in Figure 3.

The timing of a READ cycle for this system is shown in Figure 4. The equation below shows how to calculate the amount of timing margin available in any design. The variable ^tCLK represents the clock cycle time of the external bus. For a 60 MHz system this represents a 16.7ns cycle time.

t _{margin}	$= t_{clk} - t_{flight} - t_{setup} - t_{access}$
	= 16.7 - 1.4 - 4 - 10
	= 1.3ns

In this example a READ cycle is being performed which sends data from the SRAM cache memory to the microprocessor. This example assumes that the address and control signals are valid during the positive edge of the clock pulse and exceed the setup time of the SRAM. In a synchronous system the memory clock cycle begins with the rising edge of the clock which signals the SRAM to use the address on the bus, find the data stored at this address and send it to the outputs. The data appears at the output taccessns later (10ns for this example). Once data appears at the output it must travel from the SRAM to the microprocessor through signal traces on the circuit board. This transfer time is called tflight and can vary greatly. tflight will be discussed in more detail in the next section. Lastly, the microprocessor must latch the data and it must be available to meet the processor setup time (tsetup). The hold time must also be met, but it occurs as part of the next clock cycle and does not have to be subtracted as part of the timing calculation.




Figure 3 SYNCHRONOUS CACHE MEMORY DESIGN USING TWO MICRON 32K x 36 SRAMs Altogether the total time is 15.4ns and the requirement for 60 MHz operation is anything less than 16.7ns. The margin for error is 1.3ns and board layout or other factors can easily cause the cycle time to be exceeded. In the next section we will discuss how t_{flight} can vary. Even with careful design, a t_{flight} of less than 2ns may be very difficult to obtain. Typical times in some designs could be 5ns or more. It is no longer sufficient just to connect components without considering the timing impact to the system.

CALCULATING tflight

 $t_{\mbox{flight}}$ consists of the components shown in the equation below:

 $t_{flight} = t_{clock skew} + t_{propagation delay} + t_{rise time}$

The first component, $t_{clock skew}$, can be defined as the skew between rising and falling edges of the clock signal for different components on the board. If a clock rises at time t = 0 on the microprocessor clock input, the clock input to the first SRAM might rise at time t = 0.25ns and t = 0.45ns on the second. This skew in timing can be due to uneven line lengths or varying load capacitances on the different lines. If a series of buffers are used to distribute the clock signal,

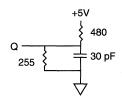


Figure 4 READ CYCLE TO CACHE MEMORY TIMING DIAGRAM

delay times through these buffers will also vary and add to the skew. These types of skew are frequently ignored for slower systems but must be accounted for in highperformance ones.

The second component, t_{propagation delay}, is determined through the characteristics of the transmission line and line load. The propagation delay now consumes a considerable portion of the cycle time of a high-speed system and can no longer be ignored. Designers cannot assume that outputs drive purely capacitive loads and must determine if interconnects should be treated as transmission lines. A purely capacitive load assumes an RC time constant delay consisting of trace resistance, output driver resistance and total lumped capacitance. Transmission line analysis, although more difficult, more accurately reflects actual conditions. Determining propagation delay is discussed in more detail in the next section.

The next component, $t_{rise time}$, is determined by the speed of the component driving the line. A faster rise time can help speed the cycle time of a system but may require a huge output driver with a large current dissipation. Rise times can also vary from component to component and worstcase times should be used for design analysis.

Figure 5 OUTPUT LOAD EQUIVALENT

A component that should not be ignored is circuit loading. The external capacitive loading is usually accounted for in the access time of the device (t_{access}). A device will have an access time rating that is valid up to a given loading. For example, high-speed asynchronous SRAMs are usually rated with an AC loading as shown in Figure 5 with a capacitive rating of 30 pF. Designers can modify their timing margin if the capacitive loading is less than or greater than the specified rating. The equation below shows how timing varies with capacitive loading above or below the rated specification for Micron's SyncBurst family of SRAMs. The difference between the rated capacitive load and the actual capacitive load is represented by the variable DCL(DCL = $C_{actual} - C_{rated}$).

$$\Delta$$
TKQ = 0.016 $\frac{\text{ns}}{\text{pF}}$ X Δ CL pF

CIRCUIT TERMINATION

Unterminated Lines

Because electrical signals travel at a finite velocity through a circuit board, it is necessary to determine how long they take to propagate from driver to receiver. This length of time determines if the output circuit requires termination. As an example, assume that a circuit board uses a polyimide dielectric with a relative dielectric constant (ε_r) of 3.5. Common dielectric constants are shown in Table 1. If the circuit board has a strip conductor and a ground plane separated by a dielectric medium as shown in Figure 6a (microstrip line), we could use the following equation to calculate the signal speed:

$$T_d = 0.004 \sqrt{0.45 \varepsilon_r + 0.67}$$
 ns per mm

For this circuit board the equation gives us a signal velocity of 6 ps/mm. If the signal conductor were instead sandwiched between two power planes (Figure 6b) we can use a stripline equation to calculate the signal velocity.

$$T_d = 0.004 \sqrt{\epsilon_r}$$
 ns per mm

For the same circuit board we now have a signal velocity of 7.5 ps/mm. The equations above give valid results for reasonable values of trace widths, dielectric constants and dielectric thicknesses. Books are available on transmission line theory for a detailed analysis of propagation delay for various structures.

The purpose of calculating a delay time for signals is to determine if the circuit delay can be treated as an RC time constant. This can be done if the maximum trace length meets the following inequality:

$$L_{max} < \frac{t_r}{2T_d}$$

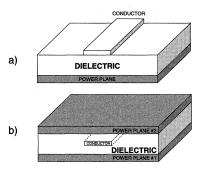

 t_r = Rise time or fall time of the output driver

Table 1 VARIOUS DIELECTRIC CONSTANTS

Material	Relative Dielectric Constant (ϵ_r)		
Ceramic - Alumina	9.4		
FR-4	4.7		
Glass epoxy	4.0		
Polyimide	3.5		
Silicon	11.8		

TN-05-21 HIGH-SPEED MEMORY DESIGN TECHNIQUES

Figure 6 a) MICROSTRIP LINE, b) STRIPLINE

For our example we assume a rise or fall time of 2ns. This means that as long as the maximum line length is less than 133mm or 5.2 inches (for stripline), the circuit delay can be treated as an RC time constant. For a given capacitive load we can calculate the actual signal propagation time using the equation:

$$T_{Id} = T_d \sqrt{1 + \frac{C_L}{C_o}}$$
 ns per mm

C_L = Load Capacitance C_O= Transmission Line Capacitance where:

$$C_0 < \frac{T_d}{Z_0}$$

Z_O = Characteristic impedance of the signal trace

For our stripline example, $C_O = 1.5 \text{ pf/cm}$ and the load is $C_L = 50\text{pf}$ with a 5cm transmission trace length. The actual signal velocity is 22 ps/mm or 1.1ns for 5cm of line length. For this example we assumed a value of Z_O of 50Ω . This value can be calculated using the equations below, or supplied from a board vendor. It is recommended that a designer use computer software to determine Z_O instead of these equations which are only approximate.

For stripline:

$$Z_{o} = \frac{30\pi (1-t/b)}{\sqrt{\epsilon_{r}} (W_{e} / b + C_{f} / \pi)}$$

where:

$$C_{f} = 2\ln(\frac{1}{1-t/b} + 1) - \frac{t}{b} \ln \left\{ \frac{1}{(1-t/b)^{2}} - 1 \right\}$$

$$W_{e} = b \quad \frac{W}{b} - \left\{ \frac{(0.35 - W/b)^{2}}{1 + 12t/b} \right\}$$

W = width of strip conductor t = thickness of strip conductor b = dielectric thickness

These stripline equations are relatively accurate if the following limitations are met:

$$\begin{array}{l} 0.05 \leq W/(b\text{-}t) \leq 0.35 \\ t/b \leq 25 \end{array}$$

Terminated Lines

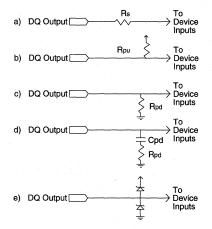
If line lengths are greater than L_{max} , the above equations can no longer be used and terminations should be considered. For these situations the user should use simulation tools to accurately define and analyze their distributed element circuit. Several considerations for terminated lines are discussed in this section.

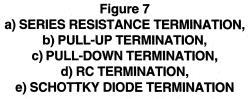
When transmission line analysis is used, the designer must determine if the design will use incidence-wave or reflected-wave switching. Incidence-wave switching is potentially the quickest way to drive external devices because it does not depend upon the reflected signal to exceed VIH or VIL.

Incidence-wave switching has the drawback that large amounts of power can be generated in the output driver of a chip. Let's calculate what the power of one I/O signal can be using this method. First, the effective characteristic impedance must be calculated using the equation below:

$$ZL = \frac{Z_0}{\sqrt{1 + \frac{C_L}{C_0}}}$$

For our example in the previous section, using a value of Z_o of 50Ω and a transmission line of 10cm, Z_L is equal to 24Ω . We can use this number and the output impedance of the driver to determine the instantaneous switching current of the outputs. If the output driver is 25Ω , we will see an instantaneous current of 100mA. A circuit implementation using wide devices could generate a large noise spike that would be very difficult to decouple. The reflection at the end of the line must also be accounted for.

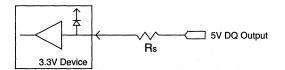

Reflected-wave switching can cut power and noise dramatically because the driving circuit needs to generate only half the output voltage upon switching as the incidencewave solution. The signal initially propagates at half the required voltage level until it hits the end of the transmission line. Then the reflection causes the voltage level to double. Because the reflected-wave is used, time must be allotted for the reflected-wave propagation. This method was adopted for use in the Peripheral Component Interconnect (PCI) bus.


TYPES OF TERMINATION

Several types of termination are commonly used in designs. The first (shown in Figure 7a) is series-resistance termination. A resistor is connected between the output of a driver and the driven elements. A reflected wave from the load which reaches the output can again be reflected generating noise in the output signal. The series-termination is used to prevent this type of reflection. This is done by making the output resistance (R_{device}) of the driver plus the series resistor (R_s) equal to the line impedance or: $R_s = Z_0 - R_{device}$

There is a potential disadvantage to the series termination resistor because of the associated voltage drop. This voltage drop could cause problems with noise margin to VOH and VOL and in a bi-directional signal with VIH and VIL. CMOS device inputs have a high-impedance and only initial AC power is needed to charge/discharge capacitance. Once the output reaches the final level, current dissipation (and voltage drop) across $R_{\rm s}$ is minimal in CMOS circuits.

In addition to preventing reflection problems, series termination is commonly used in mixed-voltage systems to prevent high currents. In Figure 8, a 5V device is driving a 3.3V input. Many 3.3V devices contain a protection diode


which is connected to 3.3V. If the input was driven to 5V, the diode would become forward-biased and would generate a low resistance path to VCC which could result in potentially damaging currents. In this case, the series termination resistor has the added advantage of limiting the current in these mixed-voltage systems.

Figures 7b and 7c show pull-up and pull-down termination. A pull-up and pull-down resistor could be also used simultaneously. The main disadvantage of this type of design is that there is a DC power dissipation associated with the devices. For instance, for the pull-up case, there is a DC current path when the output driver is low. This extra current is unacceptable in portable or notebook applications. Mixed 5V and 3.3V designs are recommended to use a pullup to a 3.3V supply versus a 5V one wherever possible to reduce power consumption.

Another advantage of pull-ups are in connecting TTLlevel outputs to CMOS-level inputs. TTL outputs have a VOH specification of 2.4V versus a CMOS VIH of 3.15V. CMOS input levels occur in low-power microprocessors and microcontrollers used in portable and hand-held applications. The pull-up to 5V will allow fast SRAMs with TTL-I/O to drive these CMOS circuits.

RC termination (Figure 7d) allows for proper termination without an associated DC current component. The disadvantage of this approach is that it requires an extra component, the capacitor. An advantage is that this circuit acts as a low-pass filter and can absorb unwanted glitches. Care must be taken in the choice of a capacitor since it must be large enough to absorb glitches that may occur in the system but small enough so it does not slow down the system.

Lastly, Schottky diode termination (Figure 7e) can be used to save power over resistance termination techniques. The advantage of this method is that it prevents overshoot and undershoot problems. The diode turns on if the voltage goes above Vcc + V_{diode} or below Vss - V_{diode}. The main advantage of this technique is in prototypes constructed with wire wrap or breadboards where line impedance may not be constant. These diodes provide termination without requiring detailed impedance matching calculations.

Figure 8 DIODE PROTECTION IN 3.3V CIRCUITS CAN CAUSE PROBLEMS IN MIXED 5V-3.3V SYSTEMS

TN-05-21 HIGH-SPEED MEMORY DESIGN TECHNIQUES

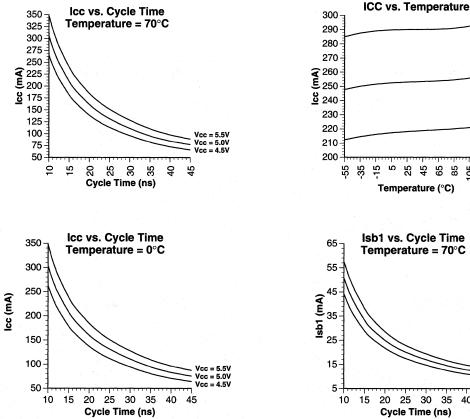
FUTURE TRENDS

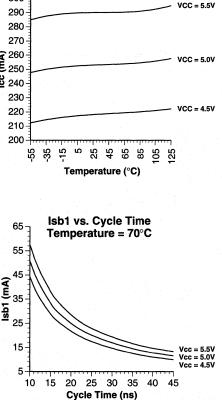
The computer industry always moves toward faster architectures. To meet the bus speeds of the future with 10ns bus cycle times (or faster), new output structures such as Gunning Transmission Logic (GTL) developed by Xerox or HSTL (High-Speed Transmission Logic) under discussion by JEDEC need to be incorporated into designs to minimize output voltage swings and drive transmission lines. Until these new standards are finalized and adopted, designers need to thoroughly analyze their circuit to ensure that cycle times are met.

CONCLUSION

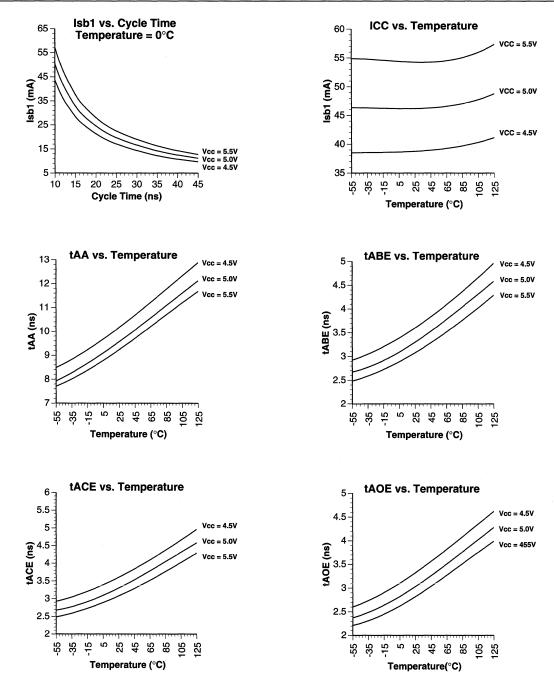
As we have seen in this article, high-speed bus design requires detailed analysis to ensure that the system will work properly. A proper analysis of clock skew and propagation delay is essential to ensure that the system will work properly and with the required performance. This detailed analysis is essential for bus speeds over 50 MHz.

TN-05-22 **1 MEG REVOLUTIONARY PINOUT SRAM**

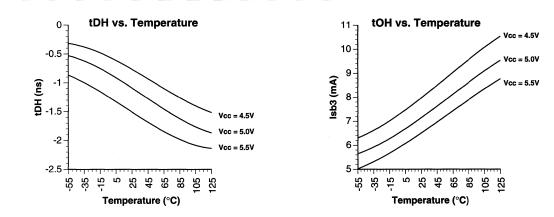

TECHNICAL NOTE

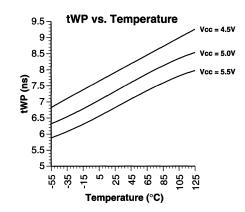

1 MEG REVOLUTIONARY PINOUT SRAM TYPICAL (5V) OPERATING CURVES

INTRODUCTION


These curves represent the typical operating characteristics of Micron's 1 Meg, 12ns SRAM. They may be used to calculate the typical operating parameters of a memory

system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of this data book.

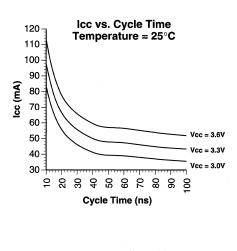


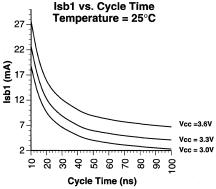


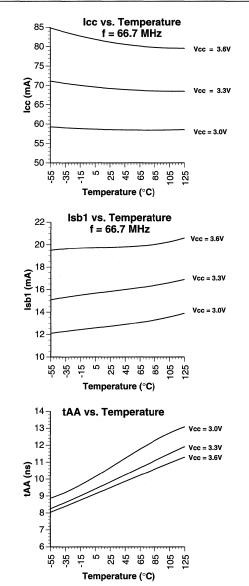
TN-05-22 1 MEG REVOLUTIONARY PINOUT SRAM

TN-05-22 1 MEG REVOLUTIONARY PINOUT SRAM

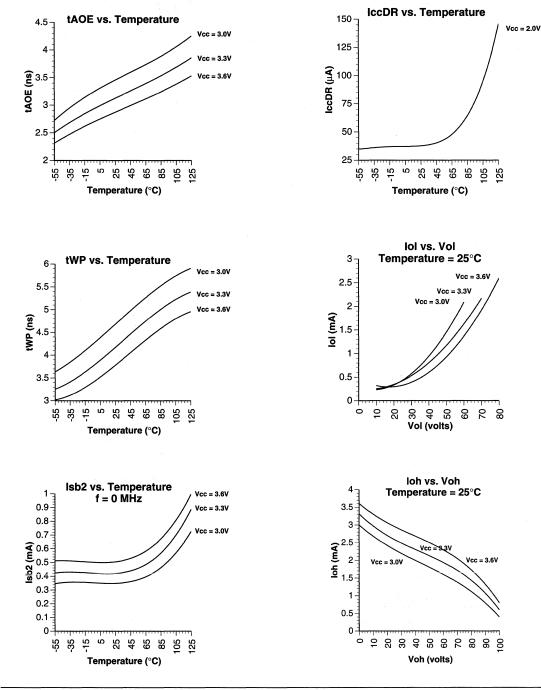
TN-05-22 1 MEG REVOLUTIONARY PINOUT SRAM


TN-05-23 256K (3.3V) SRAM


TECHNICAL NOTE


256K SRAM TYPICAL (3.3V) OPERATING CURVES

INTRODUCTION


These curves represent the typical operating characteristics of Micron's 256K, 15ns low power (LP) SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of this data book.

TN-05-23 256K (3.3V) SRAM

BON

TN-05-23 Rev. 11/94

5-54

Micron Semiconductor, Inc., reserves the right to change products or specifications without notice. ©1994, Micron Semiconductor, Inc.

TN-58-01 SYNCBURST[™] SRAM DESIGN FOR COMPATIBILITY

TECHNICAL NOTE

SYNCBURST SRAM DESIGN FOR COMPATIBILITY

INTRODUCTION

Since introducing the industry's first four-byte-wide synchronous burst SRAM, Micron has worked with its customers to maximize the performance of the SyncBurstTM architecture. Micron has facilitated standardization of the new features and attempted to maintain compatibility in the SRAM industry. This article discusses the new features, how they can be used to improve system performance and design convenience, and how compatibility can be maintained throughout the introduction of these and future enhancements. It should be noted that as of this writing, we believe that virtually all synchronous burst SRAM vendors support or plan to support the enhanced functionality discussed herein. However, we suggest that you contact each potential supplier for verification.

PARITY ISSUES

One extra bit per byte has long been used as an easy method of detecting memory/data transmission errors. The main drawback to this method is a lack of choices in error response. If the error occurred in the L2 cache SRAM and the cache line has not been modified, a possible response is to flush the cache line and refill from main memory. Most systems do not bother and just shut down instead. More sophisticated systems use error correction circuitry to detect and correct all single-bit errors and some double-bit errors. This sounds obviously better than just using parity but causes extra delays in data delivery because of the error checking logic. This compromise is essential in systems with high data-integrity requirements such as file servers, transaction processors, some data communications equipment and workstations.

Many systems have been and are being designed without parity or error correcting requirements. The rationale is fourfold. Error rates are low if the circuit design and printed circuit board layout is done expertly (i.e. low transmission error rate, however, transmission errors can be significant and will be left for future discussion). With cache systems, DRAM runs for a small percentage of the time, reducing its average cycle time and hence decreasing the DRAM soft error rate (SER, see Micron Design Line Vol. 3, Issue 1 for a detailed discussion of DRAM SER). SRAM soft error rate is very low (less than one failure per 50 years of continuous operation for a 256KB cache composed of two 3.3V 1 Meg synchronous SRAMs). Ignoring transmission errors and adding the SRAM and 16 Meg DRAM failure rates (using 4 Meg x 4 DRAMs) results in a combined system memory error rate of one per 25 years of continuous full-speed operation. The fourth rationale is cost. It is difficult for a system with parity and no innovative error handling to compete against one without parity.

In response to the low system error rates and customer demand for cost-effective solutions, Micron has added a separate 32K x 32 organization to the SyncBurst SRAM family. The 32K x 32 is pin- and function-compatible with the 32K x 36 SyncBurst SRAM devices. The four DQPn lines (data parity bits) are no-connects on the 32K x 32 device. As a result of the introduction of the non-parity devices, the PDIS pin (parity disable) is no longer needed. The signal was located on pin 87 on the original device. That pin has been freed for a new function which is described in Table 1.

TABLE 1 NEW FUNCTIONS

NEW FUNCTION	TQFP PIN	DESCRIPTION
MODE	31	Burst Mode Input. This pin is also known as LBO# among some vendors. When this input is LOW, linear burst sequence is selected. When this input is HIGH or left UNCONNECTED, interleaved burst sequence is selected. This signal is not intended to be altered dynamically. Adding this pin allows suppliers to reduce the number of device versions and provide optimum lead times for customers. (Competitors' devices may not implement the internal pull-up resistor therefore it is recommended that a HIGH or LOW state be assigned to this input. Micron has added the pull-up resistor to ease design compatibility with the original SyncBurst SRAM release.)
GW#	88	Global Write Input. This input allows a full bus-width device write. This function is valuable to cache controllers which, during cache fill operations, must modify the SRAM contents independent of the state of the BWn# or WEn# signals. This pin, in concert with BWE#, permits direct connection of the BWn# lines to the microprocessor BEn# signals. Two system benefits result: one clock cycle can be eliminated from write cycles because BEn# lines do not have to be conditioned in the ASIC and rebroadcast as BWn# signals, and the pin count of the controller ASIC can be reduced. If this function is not required, this pin should be tied HIGH (to 3.3V). See Figures 1 and 2 for connection examples.
BWE#	87	Byte Write Enable Input. Formerly, PDIS occupied this pin position but was made obsolete by the addition of 32K x 32 devices. This input, when LOW, allows the byte write signals to control write operations (BW1# through BW4# or WEH# and WEL# on 64K x 18 in TQFP). This permits partial bus write operations to the SyncBurst SRAM. If this function and the GW# function is not required, this pin should be tied LOW (to GND). This will permit writes to be controlled solely by the BWn# signals as is the case with original 32K x 36 and 64K x 18 devices. See Figures 1 and 2 for connection examples.

TABLE 2 FUTURE FUNCTIONS

FUNCTION	TQFP PIN	DESCRIPTION
FT#	14	Flow-Through Input. Some vendors will implement this input to allow user selection of pipelined (FT# = HIGH) or non-pipelined, i.e. flow-through operation (FT# = LOW). This function is not implemented in Micron devices. It is recommended that the user select the appropriate input level, neither of which will interfere with reliable operation in the Micron device.
ZZ	64	Snooze Input. This input may be implemented in future Micron devices. When HIGH, this input will cause the device to enter into the lowest-power standby mode within two clock cycles in the non-pipelined device and three clock cycles in the pipelined device (the industry standard will require this to occur within four clock cycles). The device will take an equal number of clock cycles to return to active operation when ZZ is LOW. Prior to implementation, lowest power standby current can be achieved if the clock is blocked from the SRAM and all control and data inputs are static and held near a rail voltage. The ZZ function is most useful to designers of mobile computer systems but it does require that the cache controller create this extra signal. Where pin-count is limited and does not permit, external clock blocking is an alternative and equally effective choice to reduce power consumption. It is recommended that this input be tied LOW for future compatibility.

NEW SIGNALS ADDED TO THE SYNCBURST SRAM ARCHITECTURE

Three new signals have been added to the SyncBurst SRAMs in the Thin Quad Flat Pack (TQFP) package. New signal additions are not possible with the pin-limited 52-PLCC therefore it is not affected by this discussion. Provisions for two future functions have been made which will also be described. Table 1 describes the signal additions and outlines their benefits. Table 2 describes possible future additions to the architecture.

BENEFITS OF THE NEW WRITE INPUTS: PENTIUM EXAMPLE

The descriptions in Tables 1 and 2 outline some benefits obtained by supporting the new functions. More detail regarding WRITE functionality is necessary. Figure 1 shows the connection of two Micron 32K x 32 SyncBurst SRAMs with a Pentium processor without taking advantage of the GW# and BWE# signals. In this case, chipset logic must input the processor's eight Byte Enable (BE#) inputs and separately output eight Byte Write (BW#) signals, four to

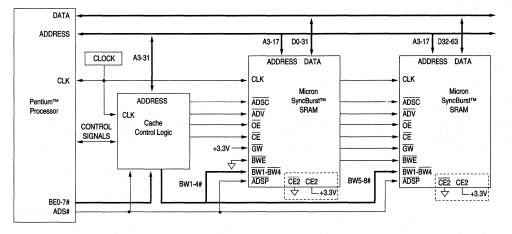
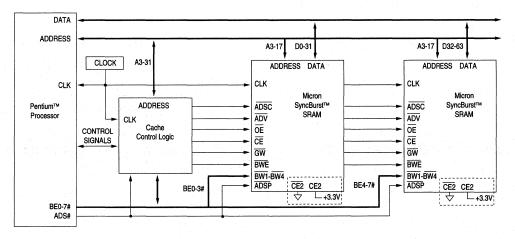



Figure 1
PENTIUM CONNECTION WITHOUT GW# AND BWE#

	Figure 2			
PENTIUM	CONNECTION WITH	GW#	AND B	WE#

TN-58-01 SYNCBURST™ SRAM DESIGN FOR COMPATIBILITY

each SRAM. It is necessary in this case to separate the BEn# lines from BWn# lines because the byte enables from the processor will not be in the correct state during some operations such as external cache snoop cycles. The BEn# lines are not tri-stated when the Pentium AHOLD input is asserted, hence the cache controller cannot simply re-drive those signals to the desired states to cover those cases where the BEn# lines are in unacceptable states. The only way to overcome these constraints is for the cache controller to use eight inputs and eight outputs as described above.

Figure 2 shows the connection of two Micron 32K x 32 SyncBurst SRAMs with a Pentium processor while taking advantage of the GW# and BWE# signals. The cache controller pin count has been reduced from 16 in the previous example to only 10 pins in Figure 2. GW# forces all bytes to be written into the SRAM independent of the state of the BWn# inputs. This is the normal mode of operation during cache line fills. The BWE# signal permits the direct connection of the processor's BEn# signals to the SRAMs for individual processor-derived byte write operations. Regardless of pipelined or non-pipelined (flow-through) operation, all BWn#, BWE# and GW# signals are required to be valid at the same clock rising edge that the data is valid. Another important benefit of the direct-connection of the processor's BEn# signals to SRAM BWn# signals is the ability to reduce wait states during write operations. The extra time for a BEn# to travel from the processor into the ASIC, propagate through the ASIC logic, drive through the output buffers and to the SRAM as in Figure 1 can induce an extra wait state during write cycles if the tag SRAM is no longer the most speed critical element. Figure 2 shows the direct path. Now, only the BWE# signal is on that critical timing path. Any ASIC designer will testify that a single critical signal can be speed optimized far more easily than 16 signals.

Figure 3 illustrates how depth expansion from 32K x 64 to 64K x 64 is accomplished by adding two more 32K x 32 devices. This method has not been altered by the addition of any new signals. Figure 4 shows how this may be done using two devices on a motherboard and adding a DIMM (dual in-line memory module) to expand memory size. Note that no jumpers are required because the DIMM provides the additional necessary connection of A18 to the chip enables of the "HIGH SRAMs." The HIGH SRAMs normally function during all cache cycles but serve as the upper half of the cache when cache is depth-expanded.

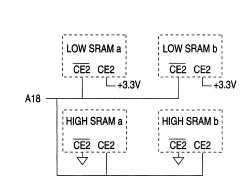


Figure 3 32K TO 64K DEPTH EXPANSION

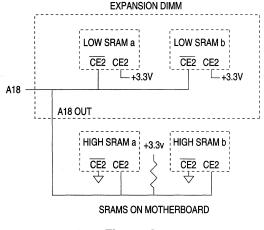
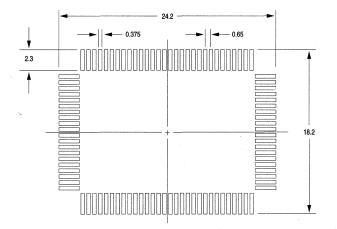



Figure 4
DEPTH EXPANSION USING DIMM

PACKAGE AND PIN COMPATIBILITY

While most vendors are joining in the use of the industrystandard Thin Quad Flat Pack (100-Pin TQFP), some have elected to use the thicker Plastic Quad Flat Pack. Either may be accommodated in a single design by making the pads long enough to accept either package. The thicker PQFP has a slightly broader footprint. This is due to the device lead vertical runs not being shaped perpendicularly to the package underside, hence the taller the package, the wider the lead excursion. It is not desirable to use 90° lead bends due to reduced reliability. See Figure 5 for a recommended PCB land pattern which will accommodate either package thickness. The TQFP offers several advantages over the PQFP. The TQFP can be mounted in systems where height is restricted (JEDEC specification MO-136 lists TQFP overall height as 1.60 mm maximum whereas the PQFP is 2.2 or 3.0 mm depending upon package option). The TQFP is also more speed capable because the thermal resistance is smaller for the thinner package.

Tables 3 and 4 summarize the signals designers need to be aware of when designing for multiple vendors. Figures 6 through 8 provide pictorial pin assignments for the 1 Meg and 1.125 Meg SyncBurst SRAMs in PLCC and TQFP packages accounting for industry compatibility requirements.

NOTE: ALL DIMENSIONS ARE NOMINAL AND IN MM

Figure 5
PCB LAND PATTERN FOR 100-TQFP AND 100-PQFP DEVICES

TABLE 3CONNECTION FOR COMPATIBILITY: 32K x 36 AND 32K x 32

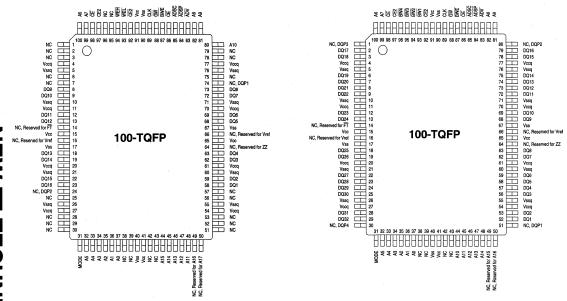
1

TOFP PIN	CONNECTION	PURPOSE
1	NC or DQP3	Accommodates parity version if desired
14	LOW HIGH	Flow-through or non-pipelined operation Pipelined operation Note that Micron devices "do not care"
16	NC	Reserved for a reference voltage input in future devices
30	NC or DQP4	Accommodates parity version if desired
31	LOW HIGH	MODE (LBO#) input. LOW sets linear burst sequence. Interleaved burst sequence for generic devices. Micron devices also allow NC for interleaved burst.
38, 39, 42, 43	NC	These pins are currently reserved for JTAG or future functions. Leaving these pins unconnected allows for compatibility with future device enhancements.
49	NC or A15	Reserved for A15 on future devices
50	NC or A16	Reserved for A16 on future devices
51	NC or DQP1	Accommodates parity version if desired
64	low High	Future location for ZZ pin. LOW allows future generic devices to operate. Micron devices also allow NC. HIGH will cause future devices to enter low-power mode.
66	NC	Reserved for a reference voltage input in future devices
80	NC or DQP2	Accommodates parity version if desired
87	LOW or BWE#	BWE# input. If this function is not required, tie LOW.
88	HIGH or GW#	GW# input. If this function is not required, tie HIGH.

TABLE 4CONNECTION FOR COMPATIBILITY: 64K x 18 AND FUTURE 64K x 16

TQFP PIN	CONNECTION	PURPOSE
1-7, 25-30, 51-57, 75-80	NC or Vss	Not reserved for any established functions May be tied LOW to assist in thermal conduction
14	LOW HIGH	Flow-through or non-pipelined operation Pipelined operation Note that Micron devices do not care
16	NC	Reserved for a reference voltage input in future devices
24	NC or DQP2	Accommodates parity version if desired
31	LOW HIGH	MODE (LBO#) input. LOW sets linear burst sequence. Interleaved burst sequence for generic devices. Micron devices also allow NC for interleaved burst.
38, 39, 42, 43	NC	These pins are currently reserved for JTAG or future functions. Leaving these pins unconnected allows for compatibility with future device enhancements.
49	NC or A16	Reserved for A16 on future devices
50	NC or A17	Reserved for A17 on future devices
64	low High	Future location for ZZ pin. LOW allows future generic devices to operate. Micron devices also allow NC. HIGH will cause future devices to enter low-power mode.
66	NC	Reserved for a reference voltage input in future devices
74	NC or DQP1	Accommodates parity version if desired
87	LOW or BWE#	BWE# input. If this function is not required, tie LOW.
88	HIGH or GW#	GW# input. If this function is not required, tie HIGH.
92	NC	This pin is reserved for currently undefined future use.

NEW TECHNICAL NOTE


EXISTING DESIGNS

Existing designs which use the original SyncBurst SRAM and do not need the new functionality must make a few modifications to accommodate the enhanced devices. Pin 88 must be tied HIGH (formerly NC), pin 87 must be tied LOW (formerly PDIS) and mode tied LOW if linear burst is desired or tied HIGH or left unconnected for interleaved burst. In this configuration (x32 operation) the parity bits will not be disabled when using the original device functionality, therefore the parity lines (DQP1-4) should be left unconnected or supplied with weak pull-up or pull-down termination in non-parity designs.

SUMMARY

This article provides information which enables engineers to design with the synchronous burst SRAM architecture and avoid compatibility problems in the future. Recommended PCB pad dimensions are supplied to ensure package compatibility. Parity issues are discussed as are the benefits of some new signals. The greatest performance and ease-of-use benefits are derived from the addition of global write and byte write enable inputs to the SRAM family and are described in detail.

TN-58-01 SYNCBURST™ SRAM DESIGN FOR COMPATIBILITY

Figure 6 64K x 16/18 COMPATIBLE PIN ASSIGNMENT

Figure 8 32K x 32/36 COMPATIBLE PIN ASSIGNMENT

	A10 A10 A10 A10 A10 A10 A10 A10 A10 A10	
_	7 6 5 4 3 2 52 51 50 49 48 47	
DQ9 🗆 8		46 DQP1
DQ10 🗆 9		45 🗆 DQ8
VccQ 🛙 10		44 🗅 DQ7
VssQ 🛛 11		43 🗘 VccQ
DQ11 🗆 12		42 🗆 VssQ
DQ12 🛛 13	52-PLCC	41 🗆 DQ6
DQ13 🗆 14		40 🗆 DQ5
DQ14 🛛 15		39 🗆 DQ4
VssQ 🛛 16		38 🏳 DQ3
VccQ [17		37 🗆 VssQ
DQ15 🗌 18		36 🛛 VccQ
DQ16 🛛 19		35 🗋 DQ2
DQP2 🗆 20		34 🗆 DQ1
	21 22 23 24 25 26 27 28 29 30 31 32 33	
	A5 A3 A3 A12 A12 A12 A13 A12 A12 A12 A12 A12 A12 A12 A13	

Figure 7 64K x 18 52-PLCC PIN ASSIGNMENT

TN-58-02 DESIGN TIPS: 32K x 36 SRAM

TECHNICAL NOTE

DESIGN TIPS: 32K x 36 SYNCHRONOUS SRAM

INTRODUCTION

New medium- and high-end personal computers all need cache to reach a reasonable point on the price-performance curve. The most desirable cache is one that eliminates the most wait states. In workstation design, cache is compulsory. In personal computer design, cache is becoming essential, even in portable computer designs. The new Micron family of synchronous SRAMs provides the means to achieve the desired price-performance target. This technical note discusses the benefits of these new parts and compares them to alternatives currently available. The discussion will focus primarily on the $32K \times 36$ SyncBurstTM family members. Since this technical note was written, new functionality has been added along with the $32K \times 32$ organization. See technical note TN-58-01.

NEW MICRON SYNCHRONOUS SRAMs

The new Micron synchronous SRAMs comprise two configurations, each having four versions. The configurations are 32K x 36 and 64K x 18. The versions are summarized in Table 1. Interleaved burst sequence parts (B2 and C4 versions) are ideal for 486 and PentiumTM non-pipelined and pipelined applications. Linear burst sequence parts (M1 and A6 versions) are ideal for PowerPCTM and 680X0 non-pipelined and pipelined applications. These four versions all use BYTE WRITE inputs rather than byte enable inputs. This enables them to functionally replace 32K x 9 synchronous burst SRAMs. Hence, any cache controllers or chipsets that can use the 32K x 9 devices will function with these four 32K x 36 devices from Micron.

32K DEEP CACHE SYSTEMS WITH BURST

Zero wait state performance can be achieved in fast systems (bus speeds of 50 MHz and above) only by using synchronous burst SRAMs or multiple banks of fast SRAMs with extremely fast control logic. The latter solution will at least double the minimum cache size because a minimum of two banks is required. Also, buffers are generally added in the dual bank solution because bus loading is doubled, hence more timing pressure falls upon the SRAMs and control logic which inevitably makes both more costly.

Synchronous burst SRAMs available at a 32K depth provide the easiest solution to the zero wait state dilemma. If a larger cache size is needed, they provide the option of

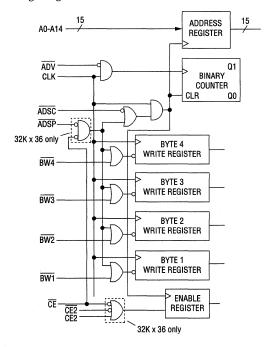
Table 1 MICRON SYNCHRONOUS SRAM VERSIONS

Features
Byte Writes, Interleaved Burst
Byte Writes, Interleaved Burst Output Registers, Write-Through
Byte Writes, Linear Burst
Byte Writes, Linear Burst Output Registers, Write-Through

depth expansion or using the additional parts as a second set of associativity. Studies have shown that many new software applications benefit as much or more from partitioning the cache into the two-way set associative architecture as compared to doubling the direct-mapped cache size. In other words, a 64K x 72 two-way set associative cache will perform as well or better than a 128K x 72 directmapped cache. Although the two-way cache is more complex to control, only half the memory is needed for a given performance target. The multiple bank SRAM solution for a two-way set design results in too much bus loading and is therefore not a practical option. In contrast, two 32K x 72 sets of synchronous burst SRAMs with each set comprised of two 32K x 36 devices can be implemented with minimal bus loading and board space.

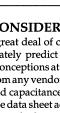
The available 32K deep synchronous burst SRAM solutions in the industry are (or will be) $32K \times 9$, $32K \times 18$ and $32K \times 36$. Table 2 compares several key considerations. Since no $3.3V \times 9$ and $\times 18$ devices have been announced, the 5V versions are used for comparison. The $32K \times 36$ 3.3V SRAM is the clear winner in every category. The power dissipation in a 5V system using $32K \times 36$ devices includes the power dissipated by the 5V to 3.3V linear regulator which is needed if 3.3V is not available anywhere. The regulator adds less than 0.4 square inches more board area than listed in Table 2. This still results in the least area used. None of the cases include I/O power.

	32K x 9	32K x 18	32K x 36
Quantity for 32K x 72	8	4	2
SRAM Voltage (V)	5	5	3.3
Board area (sq. in.)	3.86	2.53	1.10
Address loading (pF)	24	16	8
Data loading (pF)	8	6	6
Power in 5V System 66 MHz (W)	7.0	5.3	2.5
Power in 3.3V System 66 MHz (W)	n/a	n/a	1.65
Power in 5V System 50 MHz (W)	5.8 (est)	4.3	2.2
Maximum height (mils)	180	180	63


Table 2 32K x 72 DIRECT-MAPPED CACHE COMPARISON

FUNCTIONAL DIFFERENCES

There are almost no differences in functionality between the various 32K deep devices listed in Table 2. The 32K x 18 and 32K x 36 devices both use BYTE WRITE signals. This means that four 32K x 9 devices may be replaced by two 32K x 18 devices or one 32K x 36 device. Any of these alternatives appear the same to cache control logic. The only functional difference lies within the $\overline{\text{ADSP}}$ / $\overline{\text{CE}}$ logic within the device. The 32K x 18 and 32K x 36, because they are newer devices, benefit from lessons learned in systems employing 32K x 9 parts. The $\overline{\text{ADSP}}$ signal (which is typically fed directly from the microprocessor address/data strobe) is gated by $\overline{\text{CE}}$ in the new wider devices. This permits address pipelining to function correctly, whereas in systems built using 32K x 9 devices, this becomes awkward.


For example, assume that the cache controller discovers an L2 cache READ miss. The controller initiates a cache line fill from main memory. ADSC is used to latch in the address to the SRAM. While this fill is in progress, there is no reason to tie up the address bus since the main memory controller knows where data is needed from and the SRAM knows where it is going. The cache controller can issue a "next address" command to the microprocessor and begin the tag hit/miss comparison of the new address while the fill is still in progress. This potentially eliminates wait states when the system is ready to proceed with the next bus operation. A problem can arise using $32K \times 9$ SRAMs when the next address is requested because the microprocessor will issue a new $\overline{\text{ADSP}}$ and address simultaneously. Since there is no way to block this command from that SRAM, the cache fill in progress would be terminated by the new $\overline{\text{ADSP}}$ command.

The newer SRAMs (32K x 18 and 32K x 36) address this problem by the extra gate shown in Figure 1. This extra gate intercepts \overrightarrow{ADSP} before propagating inside the chip and conditions it with \overrightarrow{CE} . Figure 1 actually shows the 32K x 36 although the logic is independent of the device width. Also shown in Figure 1 are the additional chip enables in the 32K x 36, which will be addressed later. The cache controller can simply take \overrightarrow{CE} HIGH during the fill, which will block \overrightarrow{ADSP} from terminating the fill in progress. In systems not utilizing this extra functionality, the extra gate does no harm and introduces no functional incompatibilities with existing designs.

Figure 1 DIFFERENCE BETWEEN 32K x 9 AND 32K x 36

TN-58-02 Rev. 11/94

VOLTAGE CONSIDERATIONS

The electronics industry is well into the transition from 5V to 3.3V devices. High-speed (hence, high-power) requirements in microprocessors have made them very difficult to design at 5V. This is the main reason for the new 3.3V microprocessors such as Pentium, Alpha, PowerPC, 680X0, 486, etc. With the steady increase in system speed, there has also been a steady increase in SRAM power dissipation. The transition to 3.3V provides welcome reliefpower dissipation is less than half in 3.3V devices compared to 5V devices with identical speed. This enables devices such as the 32K x 36 to be placed into the space-efficient TQFP without requiring expensive thermal management.

The new Micron devices obviously function in systems which are 3.3V only. However, they also function correctly in mixed voltage systems (5V and 3.3V both present). A single 3.3V supply is needed for all Vcc and VccQ pins. All other I/O pins are 5V tolerant. Hence, 5V CMOS logic may drive inputs to the 32K x 36 and 5V devices may reside on the same data bus with these devices. The data sheets guarantee that no special precautions are required during power-up. For example, if the main power supply is 5V and a secondary 3.3V linear regulator operates from the 5V supply to provide 3.3V to the SRAMs and elsewhere, the 5V logic could present signals to the SRAM before 3.3V is present at its supply pins. Since the 32K x 36 will not be damaged in this condition, costly power supply sequencing is not required in mixed voltage systems.

Another consideration is systems that do not have any 3.3V supplies available. Although at first glance it may seem that only 5V SRAMs should be considered, this may be a hasty judgment. Referring to Table 2, to implement a 32K x 72 cache, two 32K x 36 devices using 1.10 sq. in. of board area are required. If a 3.3V regulator is added, less than 0.4 additional square inches is needed resulting in 1.50 square inches of board area. This is still less board area than four 32K x 18 devices (2.53 sq. in.) and results in less power dissipation than the 32K x 18 devices even with the inherent inefficiency of linear regulation. Since 3.3V regulators are inexpensive, this solution is very cost competitive as well. Once again, the argument about mixed voltage systems apply—the Micron device will accept the 5V I/O levels of the rest of the system. All outputs are 5V TTL-compatible; therefore, two-way data transfer occurs with no translation circuitry required.

The Micron parts can be used in 3.6V systems as well. It is best to set the power supply voltage on the low side of 3.6V. With a reasonable tolerance, both microprocessor and SRAM will operate nominally. For example, at 3.5±0.1V both SRAM and microprocessor will operate within design specifications. In fact, the SRAM will operate slightly faster than data sheet specifications (which are listed for the low voltage and high temperature case).

POWER CONSIDERATIONS

There is a great deal of confusion in the industry about how to accurately predict power and we have all fallen victim to misconceptions at one time or another. The SRAM data sheets from any vendor excludes the current needed to switch the load capacitance from one state to another. The Icc given in the data sheet accounts for everything else. The Icc used in the calculation should be appropriate for the operating conditions; e.g., Icc max is specified for the lowest operating temperature, the highest recommended Vcc and has guardband added to it. For actual power, Icc should be looked up from published current versus voltage, temperature and cycle times. See the Micron Technical Note "SRAM Thermal Design Considerations" (TN-05-14) for a derivation of true SRAM power. True SRAM power for Micron synchronous devices is:

 $P = VCC ICC + \sum P_{LAC \text{ (for all outputs that toggle)}} + P_{LDC.}$

The incremental power due to steady-state current flow into or out of the DQ pins (PLDC due to I/O leakage of connected devices) is generally ignored because it is small in systems employing CMOS devices. That extra power would be:

$$P_{LDC} = (VCC - VOH) I_O N_H + VOL I_I N_L$$

where VOH is the actual logic HIGH output voltage, IO is output current on those DQ lines and N_H is the number of DQ lines that are HIGH; Vol is the actual logic LOW voltage, I_t is the resulting input current into the DQ line and N_I is the number of DQ lines that are LOW. Since almost all CMOS devices have I₁ or I₀ less than 10uA (often 1 or 2uA), this calculation is inconsequential. For example, take the case where 36 outputs are connected to loads having 10uA of leakage. The contribution to device power is :

(3.3V - 3.0V) 10uA (36) = 108uW.

With higher leakage, VOH drops and power increases as a result of both increased current and greater voltage drop in the SRAM output driver.

The AC load component is a different matter. For outputs which swing from logic LOW to logic HIGH, each output contributes the following to device power:

$$P_{LAC} = \frac{C_L}{T} (V_{CC} [V_{OH} - V_{OL}] - 0.5 [V_{OH}^2 - V_{OL}^2]).$$

Assuming a load capacitance (C_L) of 30pF, Vcc = +3.3V, clock period (T) of 20ns, dynamic VOH of 3.0V, dynamic VOL of 0.1V, the incremental power for each output that swings

from LOW to HIGH is 7.6mW. If 36 outputs did this, the output power component of the SRAM would be 274mW. The total power would be:

 $210mA \times 3.3V + 274mW = 0.967W.$

The HIGH to LOW transition case is less severe:

$$P_{LAC} = \frac{C_L}{T} (0.5 [V_{OH}^2 - V_{OL}^2]).$$

Using the same load conditions as the logic LOW to logic HIGH example, the resulting AC power for each output that changes from logic HIGH to logic LOW is 6.7mW.

Using the logic LOW to logic HIGH calculated power, the device case temperature is:

$$T_{C} = T_{A} + P \times \theta_{CA} = 70^{\circ}C + 0.967W \times 19^{\circ}C/W = 88^{\circ}C.$$

Extra thermal conduction through the 100 leads of the device lowers the θ_{CA} to approximately 19°C/W (this is dependent upon each circuit board design) assuming a small PCB with a ground plane. θ_{CA} is greater when the device is tested in still air with minimal conduction through the device leads but this is not a practical operating mode. $T_{I} = T_{A} + P \times \theta_{JA}$

 $= 70^{\circ}C + 0.967W \times 20^{\circ}C/W$

= 89°C junction temperature

is less than the 150°C specification limit.

At 66 MHz, the device power with all outputs switching from LOW to HIGH is 1.19W (0.365W I/O power) resulting in a T_C for a device soldered in circuit of 93°C and a T_I of 94°C, assuming 70°C ambient temperature. No specified limits are violated.

DEPTH EXPANSION

Another major advantage of the 32K x 36 synchronous burst SRAMs is the two extra chip enables. The extra active LOW and HIGH chip enables (CE2, CE2) facilitate expansion from 32K to 64K memory depth without any additional logic. This is illustrated in Figure 2. None of the other 32K deep devices offer this flexibility.

This expandability translates into greater flexibility in PC designs. For example, a 72-bit system which requires either a 256KB or a 512KB cache can be laid out for four 32K x 36 devices and then populated with either two or four devices, depending on the desired cache size-with no board changes and no sockets. The only other upgrade which is that simple is the change from 32K x 18 to 64K x 18. This has several disadvantages by comparison: four devices are needed in either case, the total board area needed is greater than the



Figure 2 DEPTH EXPANSION FROM 32K x 36 TO 64K x 72

Micron

Synchronous

SRAM

ADSP

Table 3 64K x 72 DIRECT-MAPPED CACHE COMPARISON

	64K x 18	TQFP Micron 32K x 36	PLCC Micron 64K x 18**
Quantity for 64K x 72	4	4	4
SRAM Voltage (V)	5	3.3	3.3
Board area (sq. in.)	5.06	4.40	5.06
Address loading (pF)	20	16	16
Data loading (pF)	8	12	6
Power in 5V System 66 MHz (W)	7.2	3.4*	4.1*
Power in 3.3V System 66 MHz (W)	n/a	2.2	2.6
Power in 3.3V System 50 MHz (W)	n/a	1.8	2.2
Maximum height (mils)	180	63	180

 Micron device power at 5V includes power dissipated by 3.3V regulator

** Also available in a 100-pin TQFP

 $32K \times 36$ devices (and greater still if sockets are required), power dissipation is higher and two separate part types must be stocked by the manufacturer instead of just one. Table 2 compares the $32K \times 18$ solution to the $32K \times 36$ assuming that sockets are not required. Table 3 compares the 64K x 72 cache configuration using four 32K x 36 devices versus four 64K x 18 devices. The Micron 64K x 18 solution is also shown for completeness. The one advantage that the 64K x 18 solution does offer is lower data bus loading, although the difference is small. In all other criteria, the 32K x 36 is a superior solution. Although it is clear why the 3.3V 32K x 36 results in lower power than the 5V 64K x 18, it may not be clear why the 32K x 36 system has lower power than the 3.3V 64K x 18. The reason is that only two of the four 32K x 36 devices are active at one time. At 66 MHz, the active current is 250mA but the standby current is only 85mA with clock running and all inputs toggling. By contrast, the four 64K x 18 devices from Micron would each require 200mA. The 5V competing parts require 360mA at the higher voltage.

SUMMARY

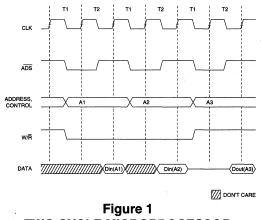
The new family of Micron Synchronous SRAMs provides the optimal solution for high-performance cache systems. 3.3V operation with 5V-tolerant I/O affords these devices flexibility to operate in any system with either 3.3V or 5V (or function with both types of devices) while dissipating less power than other alternatives. Caches of 32K depth can be created using the 32K x 36 devices and result in the lowest board space, loading and power requirements of any alternative. Systems requiring the flexibility of cache depth doubling can also be satisfied with the 32K x 36 devices using the extra available chip enables incorporated into the device. The resulting 64K deep cache is still more efficient than designs using the 5V 64K x 18 devices.

TN-58-02 DESIGN TIPS: 32K x 36 SRAM

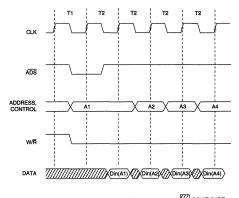
TN-58-03 SYNCBURST™ SRAMs IN ASYNCHRONOUS DESIGNS

TECHNICAL NOTE

SYNCBURST SRAMs IN ASYNCHRONOUS DESIGNS


INTRODUCTION

The 32K x 36 SyncBurst SRAM is taking the world by storm. It is emerging as the synchronous SRAM of choice in secondary cache designs, offering a small footprint, lowloading, high-performance cache data SRAM solution. A number of questions have recently been asked by individuals who need the wide architecture yet use the device more like a conventional asynchronous SRAM in noncache applications. This article addresses the latter desire, with a discussion of basic device operation in synchronous systems provided as background information.


SYNCHRONOUS BURST SRAM SYSTEM OPERATION

Although designed specifically for use in microprocessor secondary cache, the Micron SyncBurst SRAM is by no means restricted to that function. Microprocessors such as the Pentium[™] and PowerPC[™] have two distinct modes of external bus operation: normal and burst. Normal bus operation consists of a two-clock-cycle external bus access. In the first cycle (labeled as T1), address and control signals are set up. By the end of the next cycle (T2), the bus operation completes and a new external bus cycle may begin (Figure 1). The microprocessor bus is synchronous. During a READ cycle (at the end of T2), data is registered into the microprocessor at the rising edge of the system clock. During a WRITE cycle, data is made available to the memory device such that it can be registered at the end of T2. One of the many synchronous SRAM advantages is that WRITE pulses need not be generated. This advantage increases as bus frequency increases. Control signals are supplied at one clock's rising edge; data is supplied at the next rising edge.

Burst bus operation takes a shortcut by executing four consecutive external bus cycles. The first cycle requires the same setup and completion (T1 and T2). The next three cycles operate without the setup cycle (Figure 2). This is done by defining the sequence of addresses that follow the first issued address. PowerPC and Pentium differ in address sequence (PowerPC uses a linear burst sequence whereas Pentium uses an interleaved sequence) but do not differ in the total burst length of four bus accesses. The Micron SyncBurst SRAM supports both linear and interleaved burst sequences by incorporating a two-bit burst counter that tracks the internal-address generation of the target microprocessor. Note in Figure 2 that some microprocessors, such as Intel's 486, attempt to alter the address to reflect the burst sequence (only the two least significant external address lines change) but they don't do this fast enough to be useful. An SRAM without the burst counter

DON'T CARE

m

Figure 2 BURST CYCLE OPERATION

TN-58-03 SYNCBURSTTM SRAMs IN ASYNCHRONOUS DESIGNS

must receive the lower two address bits long before the microprocessor can supply them. This requires logic external to the microprocessor and SRAM, resulting in additional system delays. The SyncBurst SRAM adds no such delay.

The foregoing described just one of several SyncBurst SRAM advantages. Cache controller ASICs (applicationspecific integrated circuits) do not operate efficiently if they use the bus during WRITE cycles in the same manner as microprocessors. If address and data are both known, sending them simultaneously to the SRAM (this is called an EARLY WRITE) is better than having data follow the address by one clock cycle as the microprocessor does (this is called a LATE WRITE). The SyncBurst SRAM supports both EARLY WRITE (using $\overline{\text{ADSC}}$ as the address control signal) and LATE WRITE (using $\overline{\text{ADSP}}$ as the address control signal) so that both microprocessor and cache controller cycles are optimized. Figure 3 shows the difference between LATE WRITE ($\overline{\text{ADSP}}$ -controlled) and EARLY WRITE ($\overline{\text{ADSC}}$ -controlled). Note that EARLY WRITE cycles permit a new address to be used once every clock whereas LATE WRITE cycles only permit WRITEs to new addresses every second clock. READ cycles can actually be performed at the rate of one new access per clock regardless of being $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$ initiated, although when using microprocessor such as PowerPC and Pentium the microprocessor is the limiting factor (recall the two-cycle normal bus operation).

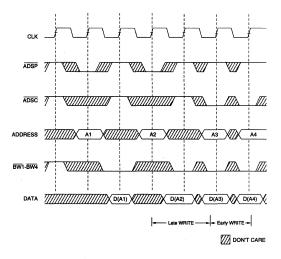
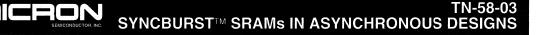



Figure 3 LATE WRITE AND EARLY WRITE IN THE SYNCBURST SRAM

SYSTEMS WITHOUT MICROPROCESSORS

ASICs "want" to run synchronously. If their internal design is very small, synchronicity is less critical. But if the ASIC design is large enough to need an external SRAM, synchronicity becomes important to the system design. The first step in the design process is to "synchronize" the ASIC to the "outside world." This involves the use of registers or latches to make the interface signals appear to be synchronous whether or not they are. If the SRAM that interfaces with the ASIC is synchronous, then the task is already done. The OE signal is the only one in Micron's 32K x 36/64K x 18 family that is asynchronous, but it can easily be treated as synchronous. Figure 4 illustrates a low-pin-count circuit

while Figure 5 shows the timing relationships between the ASIC and SyncBurst SRAM during READ and WRITE cycles. Minimal control signals are used in this application. \overline{OE} is toggled on CLK rising edges whereas the synchronous signals are toggled on CLK falling edges. The latter ensures that very generous setup and hold times are provided to the SyncBurst SRAM. In this example, the transition from READ cycles to WRITE cycles requires a dummy READ with \overline{OE} HIGH to allow the bus to make room for input data. The gap is apparent on the data bus at the transition from WRITE cycles to READ cycles.

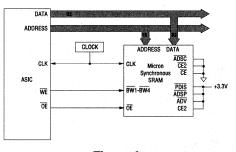
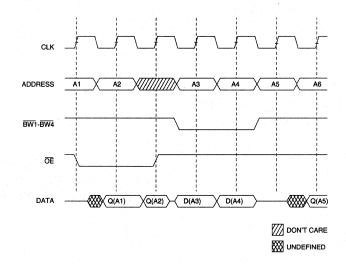
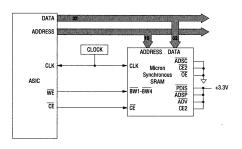
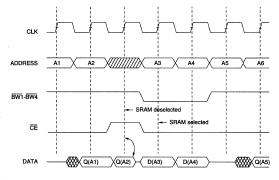


Figure 4 MINIMUM ASIC SYNCHRONOUS INTERFACE, OE-CONTROLLED




Figure 5 SYNCBURST SRAM TIMING IN ASIC APPLICATION

NEW


USING SYNCBURST SRAMS IN PLACE OF ASYNCHRONOUS SRAMS

Whenever a clock signal is available, SyncBurst SRAMs can be used in place of asynchronous SRAMs through two distinct approaches. The first involves a design similar to the one illustrated in Figure 4. In this case, synchronous SRAMs are desired but without additional ASIC control pins that aren't needed for an asynchronous SRAM solution. Often, solutions are I/O-bound and not gate-bound; therefore, extra pins can add cost to a product. The second approach involves the creation of a signal internal to the ASIC that helps speed up the bus frequency when READ and WRITE cycles are intermixed frequently.

The only requirement for this first method to work is that a clock signal (CLK) must be available. The logic connections of control signals that are static are shown in Figure 6. PDIS (parity disable) is shown HIGH for a 32-bit design but could have been LOW for a 36-bit design. Addresses are generated by the ASIC at the falling edges of CLK. The only signals that must be controlled are: <u>BW1</u> through <u>BW4</u> and \overline{CE} . \overline{OE} can always be LOW if bus contention with other devices is not a concern. The BW signals can all be driven from a single ASIC pin if only full bus width operations will be performed. A minor performance reduction will be experienced using this control structure. One idle cycle will appear on the data bus (Figure 7) every time a transition from WRITE to READ (and not vice-versa) occurs. If many WRITE cycles occur consecutively followed by many consecutive READ cycles, the performance change will be barely noticeable. If the system constantly changes between READ and WRITE cycles, the bus speed will appear to be two thirds of the clock frequency. The actual number of control signals from the ASIC is the same as in the Figure 4 design solution. The difference lies only in which signals are selected. The Figure 6 solution is easier to implement because all ASIC outputs are produced at the falling edge of CLOCK whereas the Figure 4 solution mixes edges (due to OE control).

Figure 6 MINIMUM ASIC SYNCHRONOUS INTERFACE, CE-CONTROLLED

Figure 7 SYNCBURST SRAM TIMING, CE-CONTROLLED ASIC APPLICATION

TREATING SYNCBURST SRAMS LIKE ASYNCHRONOUS SRAMS

Some designs can't tolerate any idle cycles on the bus. This can still be accommodated using the SyncBurst SRAM. There are two keys to making this work. The first is to ensure that the SyncBurst SRAM access time is sufficient. It will not have a full clock cycle to output data to the ASIC. The second is to design the ASIC such that it can register the input data before the rising edge of CLK. The bus must be clear before the next CLK rising edge so that either a READ or a WRITE may occur once per clock. This can be done by using extraneous gate delays with inversion from the falling edge of CLK in order to create an internal reference for registering input data inside the ASIC (see ICLK, Figure 8). OE transitions must occur such that the SRAM tristates its data outputs before the ASIC drives the data bus to allow contention-free read-write transitions.

Figure 8 shows the relationship between signals. The critical path is the transition from READ to WRITE cycles: data must be registered into the ASIC before it can output data; \overrightarrow{OE} must be timed to tristate the data bus in time but not so soon that the data has insufficient time to be registered. This is clearly a more difficult internal ASIC design

because the timing for the ASIC output signals is much more critical than in the previous examples. Care must be taken to account for maximum and minimum propagation delays inside the ASIC and also in the SRAM, particularly in the High-Z and Low-Z parameters. However, if idle cycles are to be avoided in the system, this does provide a means for accomplishing that goal with no more control pins than required by asynchronous SRAMs.

SUMMARY

The robustness of control inputs in the SyncBurst SRAM make it versatile enough for use in almost any application. This article demonstrates how it may be applied in pincount sensitive applications and applications which are pin-count sensitive but cannot tolerate data-bus idle cycles. The ASIC design using SyncBurst SRAMs is simplified by having a primarily synchronous external interface and a self-timed write: no timing-critical write pulses need to be generated.

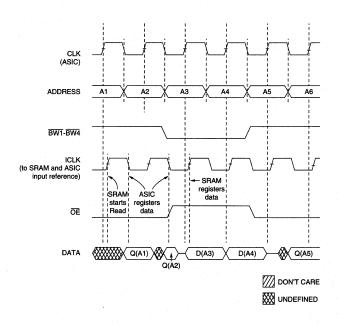
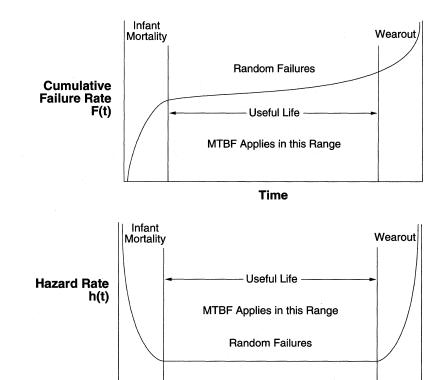


Figure 8 SYNCBURST SRAM TIMING, CE-CONTROLLED ASIC APPLICATION

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

Harris Barris

OVERVIEW


Product reliability is a product's ability to function within given performance limits, under specified operating conditions over time. This section contains a brief overview of some of the issues that affect the reliability of IC devices and briefly describes Micron's reliability program.

For a more in-depth discussion of reliability, please refer to Micron's Quality/Reliability literature.

RELIABILITY GOALS

When we discuss reliability goals of semiconductor ICs, we typically refer to the traditional reliability curve of component life. The reliability curve, or "bathtub curve," appears below, where h(t) is the hazard rate or the probability of a component failing at t_0+1 in time if it has survived at time t_0 .

The reliability curve in Figure 1 is divided into three segments: infant mortality, random failures and wearout. The term "infant mortality" refers to those ICs that would fail early in their lives due to manufacturing defects. To screen out such failures, Micron evaluates all our products using intelligent burn-in. This unique AMBYX* intelligent burn-in/test system developed by Micron is described in the following section.

Time

Figure 1 RELIABILITY CURVE

Burn-in refers to the process of accelerating failures that occur during the infant mortality phase of component life to remove the inherently weaker devices. The process has been regarded as critical for ensuring product reliability since the beginning of the semiconductor industry. To effectively screen out infant mortalities, Micron believes it is critical to functionally test devices several times during the burn-in cycle without removing them from the burnin oven. In 1986, when we were unable to find a system that met our requirements, we introduced the concept of "intelligent" burn-in and developed the AMBYX[®] intelligent burn-in and test system. Today, we use AMBYX to test every component product we make.

With AMBYX, we can determine if the failure rate curves of individual product lots reach the random failure region of the bathtub curve by the end of the burn-in cycle. We subject product lots that do not exhibit a stable failure rate to additional burn-in. This burn-in flow also brings to our attention the slightest variation in a product's failure rate.

Since AMBYX allows us to test devices for functionality without removing them from the burn-in oven, we effectively eliminate failures resulting from handling, thereby minimizing "noise" from the test results. During the test phase, output produced by the devices under test is compared to the pattern expected. If a discrepancy occurs, AMBYX records the failure and provides the bit address, device address, board address, temperature, Vcc voltage, test pattern and time set.

During the burn-in cycle itself, devices are functionally tested in four intervals. The first test begins at room temperature. Then we ramp up the oven to 85°C for more functional testing. This enables us to detect thermal intermittent failures, another unique feature of intelligent burn-in. We conduct the next test at 125°C — any device that does not pass this sequence is eliminated. As the burn-in process continues, the devices are dynamically stressed at high temperature and voltage for a given number of hours. At the end of this period, we functionally test all devices again, followed by another burn-in cycle and further tests. This sequence is repeated four times on every device in every production lot.

These test results allow us to identify individual failures after each burn-in cycle. Figure 2 illustrates how the four burn-in and test cycles flow. The typical test results shown make up the first portion of the bathtub curve of component reliability.

There are two important reasons why Micron conducts the last two burn-in and test periods (or "quarters") at lower Vcc than the first two portions. First, we want the several million device hours that we accumulate weekly on production lots to be conducted at stress conditions identical to the conditions for the extended hightemperature-operating-life (HTOL) test used by IC manufacturers to compute random field failure rates. Second, we want to be sure we are not introducing new failure modes unrelated to normal wearout, such as VOS, by testing them at extremely elevated conditions.

Control charts, such as the one shown in Figure 3, alert us to trends in lot failure rates. When we detect an upward trend in a failure rate, we correlate the lots that need additional burn-in with all the variables that might be influencing the increased rate.

The overall benefits of intelligent burn-in are wide ranging. Intelligent burn-in allows us to identify early-life failures and failure mechanisms as they would actually occur in customer applications. It also allows us to identify problem lots that, if undetected, could contribute substantially to infant mortalities.

PRODUCT RELIABILITY OVERVIEW

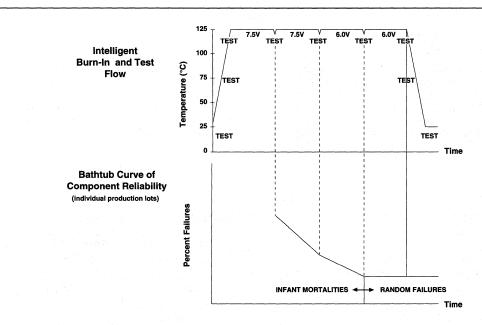


Figure 2 AMBYX BURN-IN/TEST FLOW AND TEST RESULTS



Figure 3 AMBYX FOURTH QUARTER FAILURES

MICHON Semiconductor.inc.

ENVIRONMENTAL PROCESS MONITOR PROGRAM

Micron's environmental process monitor (EPM) program is designed to ensure the reliability of our standard products. Under this program, we subject weekly samples of our various product and package types to a battery of stress tests.

During these tests, we stress the devices for many hours under conditions designed to simulate years of normal field use. We then apply equations derived from intricate engineering models to the data collected from the accelerated tests. From these calculations, we are able to predict failure rates under normal use. Table 1 shows the conditions for these tests, known as environmental stress tests. The EPM program described in Table 1 is for Micron's 1 Meg SRAM.

	Table 1				
SAMPLE ENVIRONMENTAL	PROCESS	MONITOR	- 1	MEG	SRAM

TEST NAME AND DESCRIPTION	TEST DURATION	BIWEEKLY SAMPLE SIZE
HIGH TEMPERATURE OPERATING LIFE (125°C, 6V, Checkerboard and Checkerboard-Complement Pattern)	1,008 Hours	100 Devices
LOW TEMPERATURE LIFE (-25°C, 7V, Dynamic Bias)	1,008 Hours	5 Devices
TEMPERATURE AND HUMIDITY (85°C, 85% RH, 5.5V, Alternating Bias)	1,008 Hours	50 Devices
AUTOCLAVE (121°C, 100% RH, 15 PSI, No Bias)	288 Hours	25 Devices
TEMPERATURE CYCLE (-40°C for 15 minutes, +85°C for 15 min, air to air)	1,000 Cycles	50 Devices
THERMAL SHOCK (-55°C for 5 minutes, +125°C for 5 minutes, liquid to liquid)	700 Cycles	10 Devices
HIGH TEMPERATURE STORAGE (150°C, No Bias)	1,008 Hours	50 Devices
HIGH TEMPERATURE STEADY STATE (150°C, 6.5V)	1,008 Hours	5 Devices
ELECTROSTATIC DISCHARGE (+ and -)	MIL-STD-3015	40 Devices
Vcc LATCH-UP (Minimum Voltage, 25°C)		10 Devices
SYSTEM SOFT ERROR (5V, 30ns)	168 Hours	190 Devices

NOTE: Samples used in the EPM program are taken from five different lots at finished goods. Before being subjected to environmental testing, all surface-mount products are run twice through an infrared (IR) reflow furnace, reaching a peak temperature of 240°C.

FAILURE RATE CALCULATION

The failure rate during the useful life of a device is expressed as either the percentage of failures per thousand device hours or as failures in time, per billion device hours (FITs), and is calculated as follows:

Failure Rate =

ranure Nate -	Pn	
Device hours at	×	AF relative to typical
accelerated environments	5	operating environment

- where: Pn = Poisson Statistic (at a given confidence level). For the data above, one device failure, Pn at at 60 percent confidence level = 2.022.
 - Device hours = sample size multiplied by test time (in hours) From Table 2, device hours = (2,294 x 168) + (2,294 x 168) + (2,292 x 168) + $(2,292 \times 168) + (2,292 \times 168) + (2,290 \times 168) =$ 2,310,672 or 2.311 × 10⁶.
 - AF = acceleration factor between the stress environment and typical operating conditions. For the 1 Meg SRAM, the acceleration factor between 125°C, 6V (HTOL stress conditions) and 50°C, 5V (typical operating conditions) equals 93. (Calculation of this acceleration factor is described in the following section.)

Thus, the failure rate of the Micron 1 Meg SRAM family is computed as follows:

Failure Rate =
$$\frac{2.022}{(2.311 \times 10^6) 93} = 9.408 \times 10^{-9}$$

where: total device hours at test conditions = 2.311×10^6 . Equivalent device hours at typical use conditions (50°C, 5V Vcc) using an acceleration factor of 93 equals 93 (2.311 × 10⁶) = 215 × 10⁶.

To translate this failure rate for the 1 Meg SRAM family into percentage failures per thousand device hours, we multiply the failure rate obtained from the equation above by 10⁵:

Failure Rate = $(9.408 \times 10^{-9}) \times 10^{-5} = 0.0009408\%$ or 0.0009%per 1K device hours

To state the failure rate in FITs, we multiply the failure rate obtained from the equation above by 109:

Failure Rate = $(9.408 \times 10^{-9}) \times 10^{9} = 9.408$ or 9 FITs.

Table 2 HIGH TEMPERATURE OPERATING LIFE (HTOL)

Sample No.	168 Hours	336 Hours	504 Hours	672 Hours	840 Hours	1,008 Hours
1	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
2	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
3	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
4	0/0200	0/0200	0/0200	0/0200	0/0200	0/0199
5	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
6	0/0195	0/0195	0/0195	0/0195	0/0195	0/0195
7	0/0200	1/0200	0/0198	0/0198	0/0198	0/0198
8	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
9	0/0300	0/0300	0/0300	0/0300	0/0300	0/0299
10	0/0200	0/0200	0/0200	0/0200	0/0200	0/0200
11	0/0199	0/0199	0/0199	0/0199	0/0199	0/0199
Total	0/2294	1/2294	0/2292	0/2292	0/2292	0/2290

Note:

1. Preconditioning: All surface-mount packages are run twice through an infrared (IR) reflow oven, reaching a peak temperature of 240°C.

2. Test conditions: 125°C, 6V Vcc, checkerboards and checkerboard complement pattern for up to 1,008 hours in 168-hour intervals. Devices are tested for functionality after each interval.

3. Failure rate at 60 percent confidence level: Typical operating conditions (5V, 50°C) = 0.0009% per 1K device hours or 9 FITs (failures in time per billion device hours).

RELIABILITY

ACCELERATION FACTOR CALCULATION

Again, using the 1 Meg SRAM as our example, the acceleration factor between high temperature operating life stressconditions ($125^{\circ}C, 6V$) and typical operating conditions ($50^{\circ}C, 5V$) is computed using the following models:

ACCELERATION FACTOR DUE TO TEMPERATURE STRESS

The acceleration factor due to temperature stress is computed using the Arrhenius equation, which is stated as follows:

$$AF_{T} = e^{\frac{E_{a}}{k} \left[\frac{1}{T_{O}} - \frac{1}{T_{S}} \right]}$$

where: k = Boltzmann's constant, which is equal to 8.617 x 10⁻⁵ eV/K.

T_O and T_S = typical operating and stress temperatures, respectively, in kelvins.

 E_a = activation energy in eV. (For oxide defects, which is the most common failure mechanism for the 1 Meg SRAM used in our example. The activation energy is determined to be 0.3eV.)

Using these values, the temperature acceleration factor between 125° C and 50° C is computed to be 7.622.

ACCELERATION FACTOR DUE TO VOLTAGE STRESS

The acceleration factor due to voltage stress is computed using the following model:

$$AF_{v} = e^{\beta (V_{s} - V_{o})}$$

where:

 v_S and v_O = stress voltage and typical operating voltage, respectively, in volts

 β = constant, the value of which was derived experimentally by running several sessions of Micron's intelligent burn-in test sequence at different voltages on large numbers of the device. (For the 1 Meg SRAM used in our example, β equals 2.5).

Thus, the voltage acceleration factor for the 1 Meg SRAM between 6V (stress condition) and 5V (typical operating condition) is computed to be 12.182.

Finally, the overall acceleration factor due to temperature and voltage stress is calculated as the product of the two respective acceleration factors or:

$$AF_{overall} = AF_{temperature} \times AF_{voltage}$$
$$= 7.622 \times 12.182$$
$$= 93$$

RELIABILITY Rev. 11/94

OUTGOING PRODUCT QUALITY

Before being sent to our finished goods area, where products are prepared for shipping, a special unit within the quality assurance department takes a sample from each production lot. These samples are subjected to visual and electrical testing to measure the acceptable quality level (AQL) of all outgoing product. Test flows for new products that have not met required production volume and ppm levels are more comprehensive than for mature products. Over a period of time, as a product matures, the objective is to eliminate those tests which devices never fail. AQL testing, although it is performed on only a small percentage of each product, is much more exhaustive. Conducted at spec conditions without guardband for every known timing, pattern and background, it is a sanity check on the production test flow. Its purpose is to detect subtle shifts in defect mechanisms which the production test flow may not catch. Visual testing for mechanical defects consists of visual inspection of the sample devices for any physical irregularities that could negatively affect device performance. If a sample device is found to have, for example, a bent lead, a package irregularity or excess solder, the entire lot is returned to our test area for a 100 percent visual inspection.

Electrical testing of the sample devices is performed using automatic test equipment (ATE) systems. Testing is conducted at 0°C, or room temperature (~25°C) and at 70°C. Should an electrical failure occur, a quality assurance engineer further evaluates the failing device. After completing this analysis, the quality assurance engineer determines which production monitor/test should have caught the failure, and the devices are retested beginning at that point in the test flow. These are important steps to preserve the integrity of our test process.

AUTOMATED DATA CAPTURE AND ANALYSIS

Micron has developed a sophisticated data capture and analysis system with a computer network tailored to the needs of quality IC manufacturing. Figure 4 shows the various functional areas that provide the input to our VAX data bases.

Figure 4 STATISTICAL CORRELATION

DATA CAPTURE

Automated, real-time data capture makes real-time charting $(\overline{X} \text{ and } R \text{ charts}, \text{ etc.})$ of all critical operations and processes possible and ensures that appropriate personnel know of any unexpected variation on a timely basis. As production lots move through each manufacturing step, detailed information (including step number, lot number, machine number, date/time, and operator number) is entered into the production data base. Automated, highly-programmable measurement systems capture a host of parameters associated with equipment, on-line process material and environmental variables.

STATISTICAL TECHNIQUES AND TOOLS

By using highly flexible, on-line data extraction programs, system users can tap this vast data base and design their own correlation and trend analyses. Because we can correlate process variables to product performance, we can make online projections of the quality of our finished product for a given lot or process run. In addition, we can estimate the impact of process improvements on quality well in advance and can make the impact of process deviations more visible to our engineers. This approach allows us to model yield and quality parameters based on on-line parameters. We then use this model to predict the final product results through the following means:

GROUP SUMMARIES

Summaries, which provide the means and standard deviations of user-defined parametrics, enable system users to compare the parametric values of production lots as well as special engineering lots.

TREND ANALYSIS

Trend charts are routinely generated for critical parameters. System users can plot the means and ranges of any probe or parametric data captured throughout the manufacturing process.

CORRELATION ANALYSIS

Correlation analysis can be performed on any combination of factors, such as equipment, masks or electrical parameters. One report, regularly produced and disseminated to key personnel, takes two groups of lots (one with a high failure rate, the other with a low failure rate) and identifies all the pieces of equipment that are common to one or the other group. The report quickly alerts us to any correlation between a lot with a high failure rate and particular piece(s) of equipment in the wafer fabrication or assembly areas. Another regularly produced report analyzes a userselected set of database parametrics against an index, such as manufacturing yield. Lots are divided into three subgroups (upper yielding, middle yielding and lower yielding). The report then correlates the yields with all electrical parametric values taken on individual lots at wafer sort. It helps us determine which processing step may have caused the yields to vary among the three subgroups.

STATISTICAL PROCESS CONTROL (SPC) CHARTS

Micron employs SPC control charts throughout the company tomonitor and evaluate critical process parameters, such as critical dimensions (CDs), oxide thickness, chemical vapor depositions (CVDs), particle counts, temperature and humidity, and many other critical process and product quality parameters.

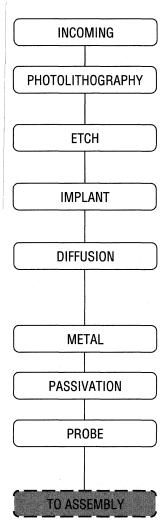
OVERLAYS OR WAFER MAPS

Maps, which are produced for all wafers during probe, show various parameters as a function of position on the wafer and are very useful for problem isolation. Maps may be analyzed individually or in groups. For example, wafers from an entire lot may be analyzed in relation to one particular parameter.

RS/1 DISCOVER/EXPLORE/MULREG

This analysis software is used for experimental design and evaluation of results. The statistical approach supported by this software (*t* tests, ANOVA tables, multiregression analysis, etc.) has proven invaluable in reducing time expended for product development and trouble-shooting. It is also used to determine the relationships between process output, probe and parametric data. Using multiregression analysis, for example, we are able to determine the relationship between L effective and CD dimensions to the speed of a device.

The use of automation in data capture, analysis and feedback greatly enhances the flexibility and speed with which we can view all aspects of the manufacturing process. This effective data analysis and feedback system helps to reduce parametric deviations, improve margin to specifications, increase manufacturing yields and provide more accurate fabrication output planning.


GAUGE CAPABILITY STUDIES

These studies are performed on both new and existing equipment. Gauge studies help us understand the cause of variation in a measurement process and determine the amount of variation in the system.

PRODUCT RELIABILITY PROCESS FLOW CHART

FABRICATION*

Incoming

Verification that the starting material is clean, uniform and compliant with all requirements. Each wafer receives an individual laser scribe for total product traceability.

Photolithography

Wafers are coated with a layer of light-sensitive photoresist. Specified sections of the wafer are exposed by projecting ultraviolet light onto the wafer through a mask. The exposed photoresist hardens and becomes impervious to etchants.

Etch

The areas of the wafer not protected by the exposed photoresist are removed by either plasma (dry etch) or acid (wet etch). The photoresist is then cleaned ("stripped") off of the wafer, leaving a pattern in the exact design of the mask.

Implant

Wafers are bombarded with positively or negatively charged dopant ions, which are implanted into the silicon. This process changes electrical characteristics in selective areas of the silicon. This is called "doping" and forms conductive regions on the wafer.

Diffusion

Silicon dioxide, nitrite and polysilicon layers are formed on the wafer during a number of high-temperature furnace processes. The wafers are exposed to various gases which either react with the silicon, causing it to oxidize and form an SiO₂ layer or react with each other, forming poly and nitrite deposits. These layers are patterned using photolithography and form the layers of the diodes, transistors and capacitors of the circuit. High temperature furnaces are also used to introduce and diffuse dopants into the wafers.

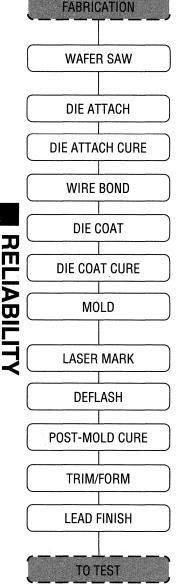
Metal

A thin layer of aluminum or other metal is deposited and patterned, forming interconnections between various regions of the die.

Passivation

The fabrication process is completed by forming a final glass layer on the wafer. This layer protects the circuits from contamination or damage through the testing and packaging process flows.

Probe


When the fabrication process is complete, each wafer consists of many die. Each individual die on the wafer is taken through a series of tests. A computer attached to a probe card tests the die and produces a "wafer map," storing data on each functioning (good) die . All data is collected and stored for each die. Wafer maps are used in assembly to ensure that only good die are packaged.

Assembly (see next page)

*This flow is general and relates to all Micron products.

ASSEMBLY*

Fabrication

Before assembly, incoming raw silicon wafers are processed through a myriad of fabrication steps. This fabrication process yields fully-fabricated wafers containing complete, functioning circuitry in die form. These wafers go to assembly so each individual die may be separated and packaged prior to final testing.

Wafer Saw

Wafers that have finished fab processing and probe are automatically mounted on a carrying film. The wafer is then sawed using an automated, high-speed diamond blade and high-pressure water. This separates each individual die from the others on the wafer without disturbing the carrying film.

Die Attach

With automated pick-and-place equipment, the good die as specified by the probe "wafer map" are removed from the carrier film. Each die is attached to a leadframe with a layer of adhesive.

Die Attach Cure

The die-attached leadframes are cured in an oven for two and one-half hours to fully polymerize the die attach adhesive.

Wire Bond

With high-speed automated equipment, interconnections are made with gold wire the diameter of a human hair. These interconnections are between the aluminum circuit on the die and the lead fingers of the leadframe.

Die Coat

Polyimide die coat is drop-dispensed onto the wirebonded die. The die coat protects the surface of the die during the subsequent encapsulation step.

Die Coat Cure

To fully polymerize the die coat, the die-coated lead frames are cured for six hours in an oven that reaches 265°C.

Mold

A heated mold with a hydraulic press is used to transfer hot thermosetting plastic into mold cavities where the leadframe is placed. This encapsulation protects the die and the interconnections throughout the useful life of the product.

Laser Mark

A laser mark is scribed on the bottom side of the package. This mark is a code used to identify the assembly manufacturing lot.

Deflash

Prior to lead-finish processing, the leadframes are run through chemical baths to remove contaminants. This process is known as deflash.

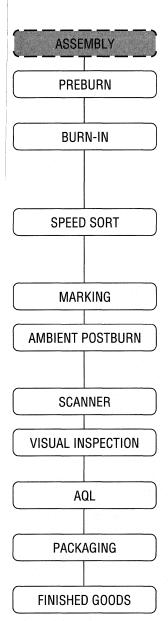
Post-Mold Cure

Molded leadframes are placed in an oven for four and one-half hours at 175°C to complete the polymerization of the epoxy encapsulant.

Trim/Form

A press with a tool set is used to cut the leadframes, separating the encapsulated die into discrete devices and forming the leads into specified shapes for surface-mount or through-hole applications.

Lead Finish


The leads of each device receive a lead finish of tin/lead solder or tin/lead electroplating to ensure reliable application by the customer. If the leads receive an electroplated rather than solder finish, the lead-finish step is performed prior to trim and form.

Test (see next page)

*This flow is general and relates to all Micron products.

PRODUCT RELIABILITY PROCESS FLOW CHART

TEST*

Assembly

Fully fabricated silicon wafers reach assembly after each die has been probed to screen out failures. Passing chips are then carried through a number of steps to become individual units in leaded packages.

Preburn

All testing is conducted at 125°C. Parametric tests are performed to detect opens, shorts, and input/output leakage, and to determine whether standby/operating currents are within specified limits. Functional tests include low/ high Vcc margin and Vcc bump.

Burn-in*

Micron uses its exclusive AMBYX* intelligent burn-in and test system to screen out infant mortalities. Devices are dynamically burned-in, using checkerboard/checkerboard complement patterns in four intervals under the following conditions: 125°C, 6.5V Vcc for the first three intervals and 125°C, 6V Vcc for the final interval. During temperature ramping from 25° to 85°C and from 85° to 25°C, AMBYX tests for thermal intermittent opens. Devices are also functionally tested at burn-in conditions (125°C, 6.5V) at the beginning of the burn-in cycle to verify that the devices under test are being properly exercised.

Speed Sort

Parametric and functional testing is conducted at 86°C. Parametric tests are performed to detect opens, shorts, and input/output leakage and to determine whether voltage input/output high and low levels and standby/operating currents are within specified limits. Functional tests include low/high Vcc margin, Vcc bump and access tests. Patterns performed include march, scan and address complement. A wide range of test algorithms and data backgrounds are used to verify AC parameters.

Marking

Devices are marked with ink with the following information: year, special process designator, part type, package type and speed grade.

Ambient Postburn

Parametric and functional tests are conducted at 25°C. Parametric tests are performed to detect opens, shorts, and input/output leakage, and to determine whether voltage input/output high and low levels and standby and operating currents are within specified limits. Functional tests include low/high Vcc margin and Vcc bump. A wide range of test algorithms and data backgrounds are used to verify AC parameters.

Scanner

Devices are optically scanned by an automated scanning machine for bent leads, incorrect splay and coplanarity failures. Passing and failing parts are then sorted into appropriate bins.

Visual Inspection

All devices determined functional are visually inspected for cosmetic defects such as bent leads, poor marks, broken packages and poor solder. Defective products are removed and if possible, repaired. Data on the type of defects found is recorded and used for improving the manufacturing processes in both assembly and test.

AQL

A quality assurance monitoring program oversees the electrical and environmental performance of all production lots. New products that have not met required production volume and ppm levels are held at this stage until it is confirmed that electrical and environmental test results meet Micron's requirements.

Packaging

In preparation for shipping, devices may remain in tubes or they may be mechanically placed in tape-and-reel packages for use in automated pick-and-place machines. Moisture-sensitive products (including all tape-and-reel) are dry-packaged in vacuum-sealed bags with a desiccant. Through-hole devices are placed in static-shielded bags.

Finished Goods

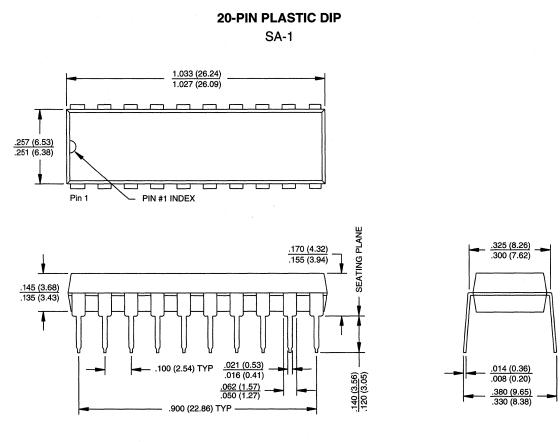
Devices are shipped through a system that maintains lot identity.

PRODUCT RELIABILITY PROCESS FLOW CHART

5V ASYNCHRONOUS SRAMs	1
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

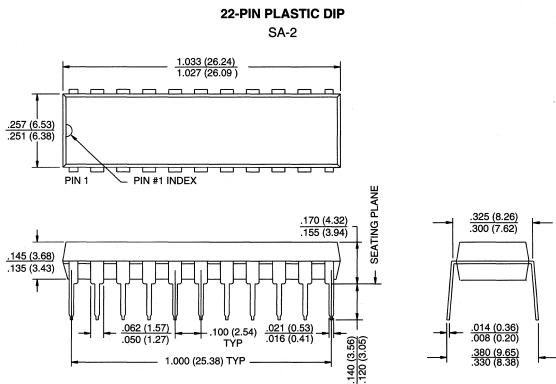
PACKAGING INDEX

PACKAGE TYPE	PIN COUNT		PAGE
PLASTIC DIP			
	24		7-4
PLCC			7-8
TQFP	100		7-9


MICF

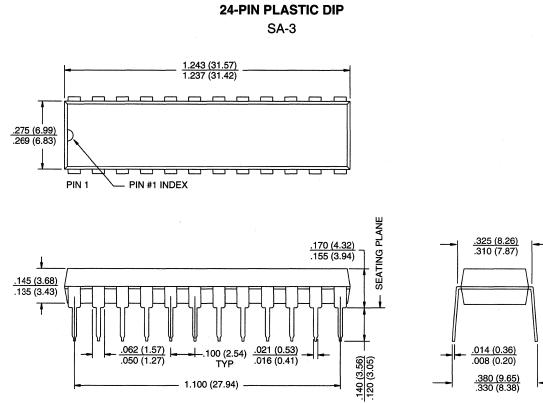
RON

PACKAGE TYPE	PIN COUNT		PAGE
PLASTIC SOJ	24		7-10
	28		7-11
	32		7-13
	36		7-15
	44		7-16
	54	•••••	7-17
MODULE SIMM	64		7-18
	72	•••••	7-19
MODULE DIMM		•••••	7-20
MODULE ZIP			7-22
	72	•••••	7-23



NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

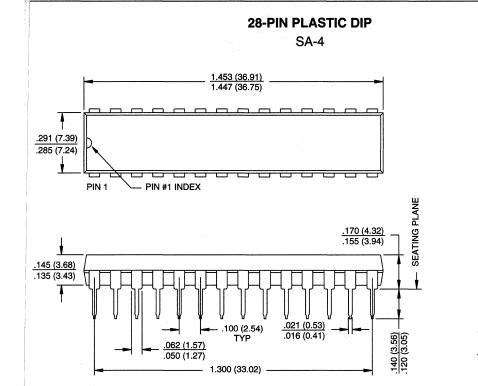
2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

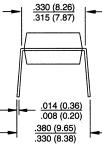

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

PACKAGING PLASTIC DIP

.380 (9.65)



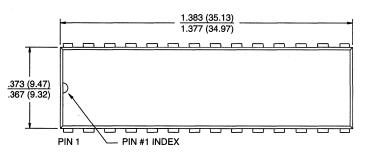

PACKAGE INFORMATION

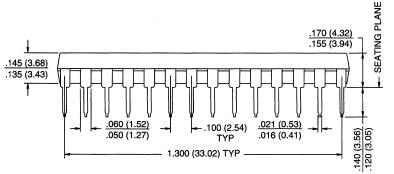
1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted. NOTE:

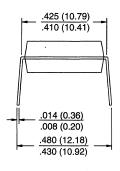
1.100 (27.94)

ICRON

PACKAGE INFORMATION

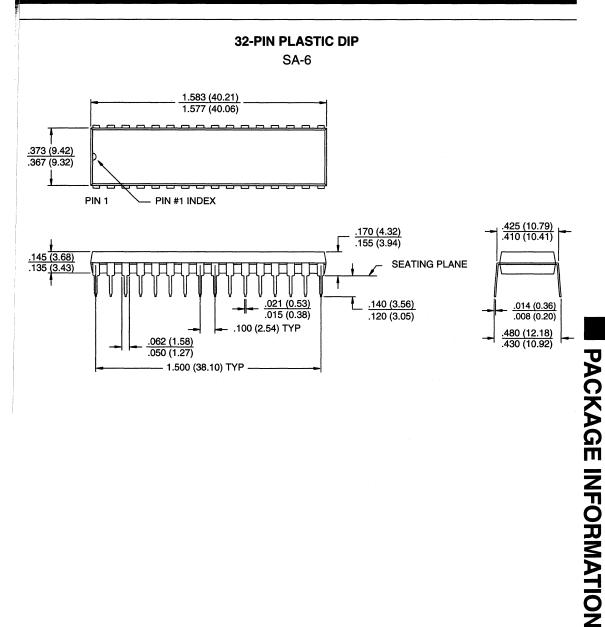

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.




PACKAGING PLASTIC DIP

28-PIN PLASTIC DIP

SA-5



NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

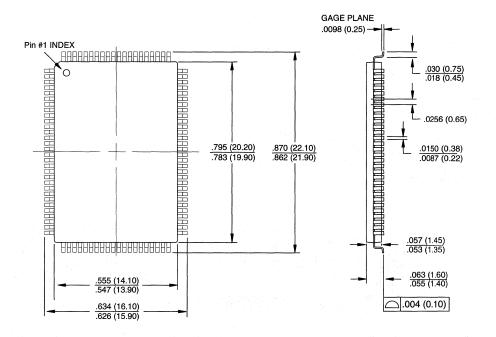
RON

PACKAGING PLASTIC DIP

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

SB-1 .795 (20.19) .785 (19.94) <u>.756 (19.20)</u> .750 (19.05) .045 (1.14) X 45° TYP £ T .795 (20.19) .785 (19.94) 750 (19.05) 050 (1.27) TYP .600 (15.24) ΤÝΡ þ d **PIN #1 INDEX** .037 (0.94) MAX DAMBAR PROTRUSION .032 (0.81) .026 (0.66) <u>.180 (4.57)</u> .165 (4.19) .120 (3.05) .090 (2.29) .021 (0.53) .013 (0.33) <u>.730 (18.54)</u> .690 (17.53) .020 (0.51) MIN

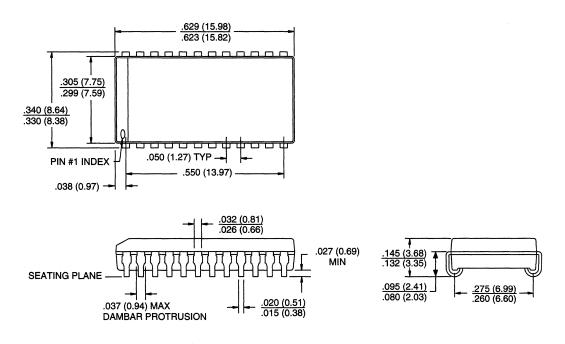
52-PIN PLCC


- NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.
 - 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

PACKAGE INFORMATION

MCRON

100-PIN TQFP SC-1



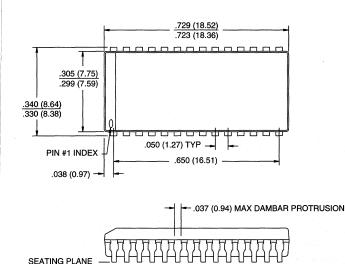
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

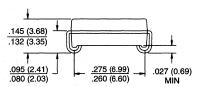
24-PIN PLASTIC SOJ

SD-1

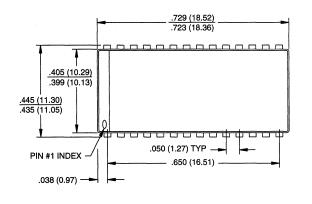
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

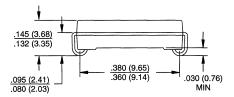

PACKAGE INFORMATION


MICRON SEMICONDUCTOR, INC.

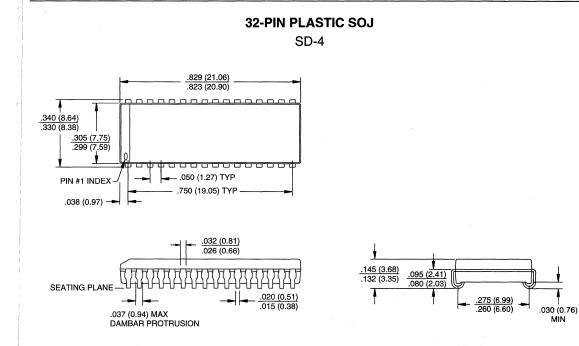
.020 (0.51)

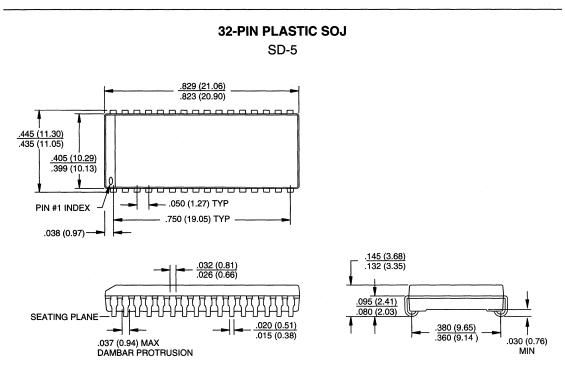


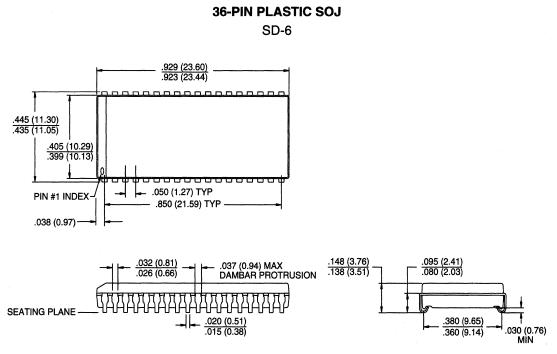

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

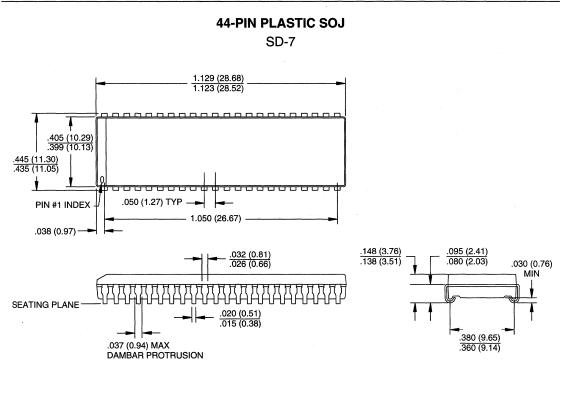


SD-3

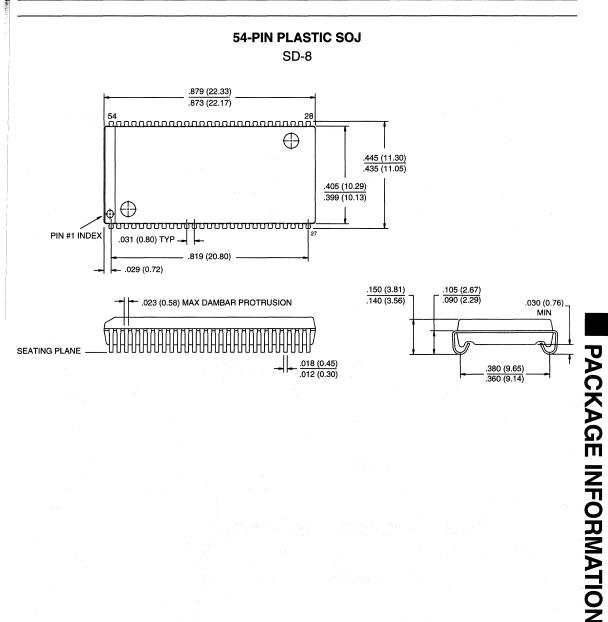



NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

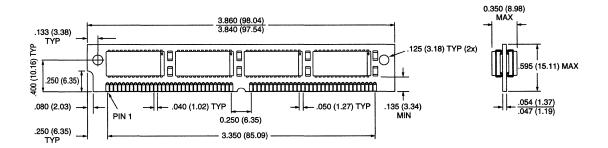

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.


NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

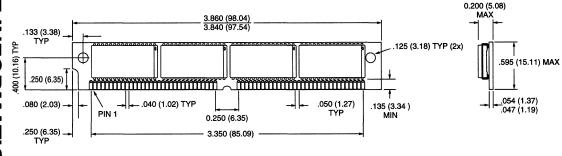
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

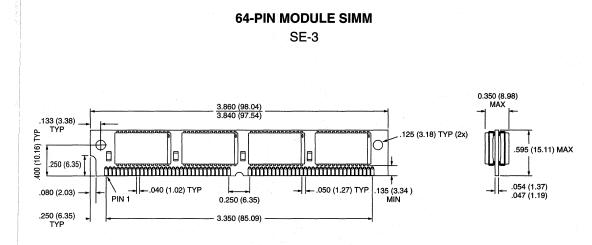


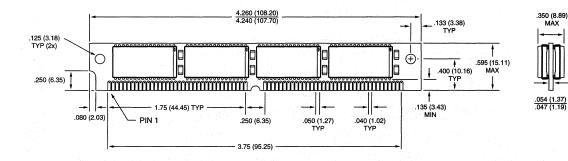
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

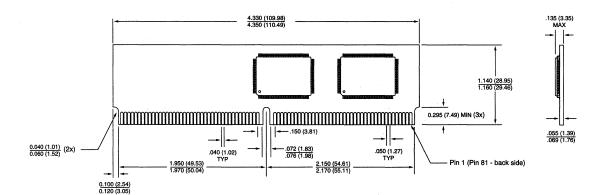


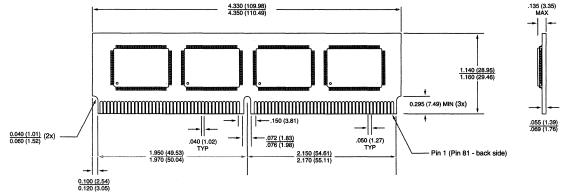
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

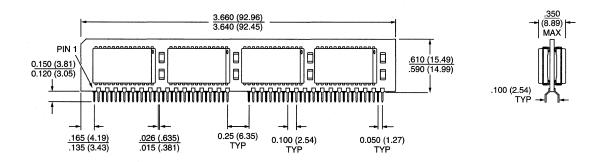


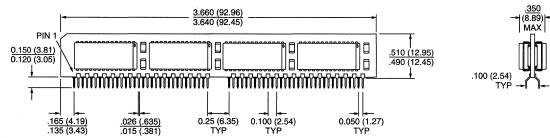


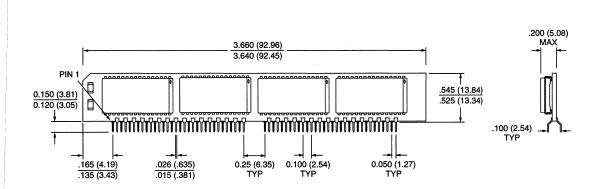


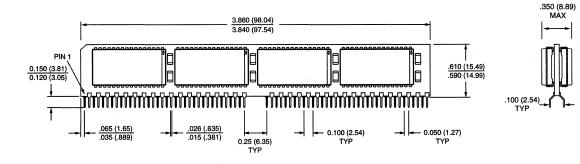

72-PIN MODULE SIMM SE-4



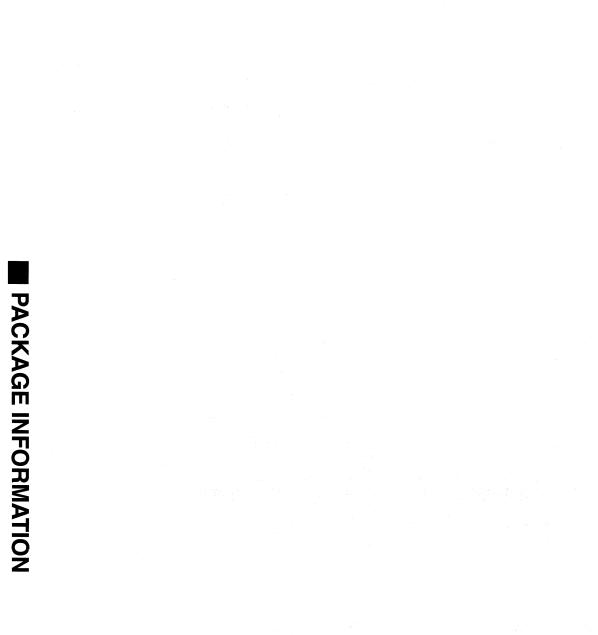

160-PIN MODULE DIMM SF-3


PACKAGE INFORMATION


64-PIN MODULE ZIP SG-1



SEMICONDUCTOR. INC.



64-PIN MODULE ZIP SG-3

72-PIN MODULE ZIP SG-4

SALES INFORMATION	8
PACKAGE INFORMATION	7
PRODUCT RELIABILITY	6
TECHNICAL NOTES	5
SRAM MODULES	4
SYNCHRONOUS SRAMs	3
3.3V ASYNCHRONOUS SRAMs	2
5V ASYNCHRONOUS SRAMs	1

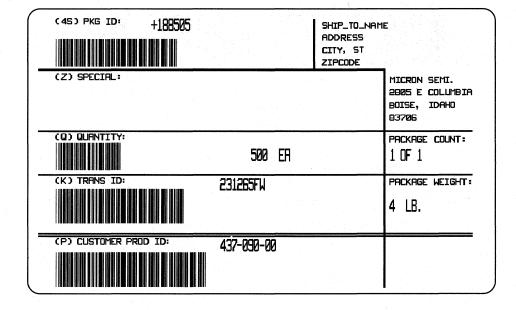
CUSTOMER SERVICE NOTE

STANDARD SHIPPING BAR CODE LABELS

INTRODUCTION

Micron Semiconductor, Inc., has implemented standard bar code labels which accompany all shipments. These labels conform to EIA Standard 556.

The bar code labels allow customers to scan individual Micron containers for quick order verification. Figure 1 shows an example of the standard bar code label for master containers. Each individual box and/or container also has its own individual bar code label (see CSN-02).


BAR CODE INFORMATION

The information provided on the label is: (4S) — Invoice/Packing Slip Number (Q) — Quantity in master container

- (Z) Special: Reserved for individual customer requirements
- (K) Trans ID: Customer purchase order number
- (P) Customer Product ID: Customer part number. If a customer part number is not designated, the Micron part number will be printed.

ADDITIONAL SALES INFORMATION

Ship-to-Name: Customer's name and ship-to address Ship-From-Name: Micron name and address Master container package count Package weight

Figure 1 STANDARD BAR-CODE LABEL

CSN-01 Rev. 11/94

SALES INFORMATION

CUSTOMER SERVICE NOTE

INDIVIDUAL BOX AND Container bar code Labels

INTRODUCTION

Micron Semiconductor, Inc., provides a standard bar code label on each individual box or container. The standard bar code label allows scanning of Micron shipping containers at a receiving dock for quick order verification.

Figure 1 shows an example of the standard bar code label used on individual boxes.

BAR CODE INFORMATION

The information provided on the label is:

Label 1: Individual box number (in a multibox shipment) Actual box number printed Micron part number/speed/customer code Part type/rev/quantity/date code of oldest lot*

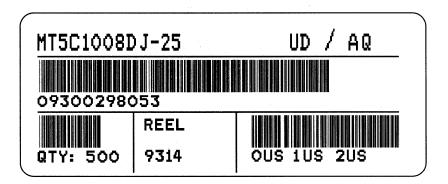


Figure 1 LABEL 1

*Indicates that more than one date code is contained on the reel.

CUSTOMER SERVICE NOTE

INTRODUCTION

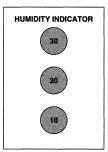

Micron Semiconductor, Inc., provides a Humidity Indicator Card (HIC) with all surface-mount products.

Figure 1 shows an example of the standard HIC. Figure 2 shows approximate labeling of tape-and-reel packaged products.

SURFACE-MOUNT Product Labeling

HUMIDITY INDICATOR CARD (HIC)

The Humidity Indicator Card is hermetically sealed in drypack and provides an indication of the RH level of the contents.

Figure 1 SURFACE-MOUNT PRODUCT HUMIDITY INDICATOR CARD

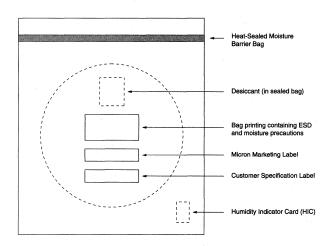


Figure 2 TAPE-AND-REEL PACKAGED PRODUCT LABEL

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron encourages customers to place orders in increments of standard box, tray and reel quantities whenever possible. The chart below will help determine order quantities.

ADDITIONAL SALES INFORMATION

Benefits to Micron's customers by ordering in standard quantities:

1. Cost Savings—it is less expensive to send a shipment containing full boxes.

SALES INFORMATION CSN-04

BOX AND TAPE-AND-REEL QUANTITY AND WEIGHT CHART

- 2. Process Control—Micron's production tracking system automatically checks speeds, revs, customer codes and quantities. When standard box quantities are ordered, manual errors are eliminated, thus ensuring error-free shipments.
- 3. Lot Integrity—lot integrity is kept in tact when box quantities are not broken up.
- 4. Fewer returns—fewer errors equal fewer complaints and returns.

SRAM STANDARD BOX AND TAPE-AND-REEL CHART

PART TYPE	QUANTITY PER TRAY	QUANTITY PER BOX	LBS PER BOX	QUANTITY PER TUBE	TAPE-AND-REEL QUANTITY	LBS PER REEL	TAPE SIZE
SRAM 256K				·			
MT5(L)C2561-2564	· · · · · · · · · · · · · · · · · · ·	1500	9.9	15	—		-
MT5(L)C2565-2568		1000	9.9	10			·
MT5(L)C2561DJ-2568DJ		4000	12.5	25	1000	3.9	24mm x 12mm
SRAM 1 MEG							
MT5(L)C1001-1005		500	6.5	10		·	
MT5(L)C1008		500	7.8	10			—
MT5(L)C1001DJ-1005DJ		2000	11.5	25	500	3.5	32mm x 16mm
MT5(L)C1008DJ		2000	11.5	20	500	3.5	44mm x 16mm
MT5(L)C128K8A1DJ		2000	11.5	20	500	3.5	44mm x 16mm
MT5(L)C256K4A1DJ		2000	11.5	20	500	3.5	44mm x 16mm
MT5(L)C64K16A1DJ		1500	19.9	15	500	3.5	
SYNCHRONOUS SRAMs							
MT58LC64K18B2EJ		1500	15.7	25	500	5.6	32mm x 24mm
MT58LC64K18C4EJ		1500	15.7	25	500	5.6	32mm x 24mm
MT58LC64K18M1EJ		1500	15.7	25	500	5.6	32mm x 24mm
MT58LC64K18A6EJ		1500	15.7	25	500	5.6	32mm x 24mm
MT58LC64K18B2LG	72	1000					· _
MT58LC64K18C4LG	72	1000			_		
MT58LC32K32B2LG	72	1000	·		- 1		_
MT58LC32K32C4LG	72	1000			—		
MT58LC32K36B2LG	72	1000		—			
MT58LC32K36C4LG	72	1000	—				·

SALES INFORMATION

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron Semiconductor, Inc., takes a proactive approach to environmental protection and worker safety. We believe that this is not only environmentally responsible, but gives the company a long-term competitive advantage. Environmental protection programs include educating the workforce about chemical hazards, reduction in toxic chemical usage and air pollutants, recycling, and treating waste water.

CHEMICAL AWARENESS AND MONITORING

Micron educates and involves its workforce in eliminating hazardous and polluting chemicals and conditions. Micron currently has several programs in place which enable the company to minimize hazardous chemical use while maintaining flexibility in processes and operations. Examples of these programs include:

ENVIRONMENTAL TASK FORCE

This internal task force meets weekly to review the effects of process changes, new construction, and new equipment on the environment and on worker safety. The group also reviews regulations and compliance issues, and anticipates possible impacts of potential regulation changes from legislation.

CHEMICAL APPROVAL SYSTEM

This approval and monitoring system insures that Micron remains in compliance with OSHA and EPA reporting requirements and tracks chemicals in use. Acting as a guidance and training resource, the Chemical Approval Team gives direction and alternatives, rather than policing, chemical use. This cooperative method of identifying hazardous chemicals, waste treatment needs and costs, and safety procedures has proven very effective.

ENVIRONMENTAL PROGRAMS

TOXIC CHEMICAL REDUCTION PROGRAM

This is an active program for continuous reduction of EPA toxic chemicals and other chemicals determined to be of some risk to employees or the environment. Through this program, in 1992 Micron eliminated the use of hazardous ethylene-based glycol ethers in manufacturing and replaced anhydrous ammonia in storage tanks with a process that uses aqueous calcium hydroxide. Micron also eliminated ozone-depleting chemicals from the manufacturing process in 1992.

REDUCTION OF AIR POLLUTANTS

Micron has an ongoing program to reduce toxic air pollutant emissions and is evaluating several different types of pollution abatement methods for air emissions. Micron has successfully reduced toxic air pollutant emissions and fugitive volatile organic compound (VOC) emmisions by 90 percent. Reductions were made in the use of acetone, toluene, methanol, and isopropyl alcohol. Use of methyl ethyl ketone was completely eliminated.

The company successfully replaced its solvent-based cleanroom cleaner with a water-based solution. Because cleaning procedures were changed and existing wipes were replaced with more absorbent ones, the water-based cleaner proved to be more effective than the solvent-based cleaner and has greatly reduced fugitive VOC emissions.

In converting from "puddle primers" to vapor primer ovens in our photo process, Micron has reduced HMDS usage by 90 percent. Micron has also installed high-efficiency purge pumps which exceed EPA specifications on refrigeration units in order to eliminate the discharge of refrigerants into the atmosphere. In addition, portable refrigerant reclaim units are used to recover and recycle refrigerants during maintenance or when equipment is retired. Micron has completed the first phase of a three-phase industrial waste water treatment facility. The system was designed to remove fluoride from used process water and allow the water to be reclaimed. By 1997 Micron will reclaim all of its waste water and reduce ground water use by 80 percent. Micron recently won a Water Conservation Award from the Pacific Northwest Section of the American Water Works Association for this project.

RECYCLING AND ENERGY CONSERVATION

Several Micron teams have developed systems to recycle items for sale to outside customers or reuse within the manufacturing process. These items include sulfuric acid, gold, various solvents and alcohols, scrap metal, wire, aluminum and steel cans, buckets and barrels, pallets, plastic, and cardboard and paper products.

In 1987 Micron engineers developed an alternate cooling system, the Wet Side Economizer, which saves the company approximately \$150,000 annually. The Wet Side Economizer uses cold air rather than refrigeration to cool the manufacturing complex. The system reduces kwh consumption by 15.1 million, which translates into a 11,174-ton reduction in CO₂ emissions, a 121-ton reduction in SO₂

emissions, and a 53-ton cut in NOx emissions. The system earned Micron a Certificate of Recognition for Energy Consciousness from the state of Idaho and an award for Energy Innovation from the U. S. Department of Energy in 1991.

Micron is continually working toward reducing emissions through recycling of solvents. We work with suppliers and internally to incorporate chemical recycling systems into processes. Micron is currently redistilling acetone and isopropyl alcohol on-site to repurify for reuse in the fab. We are also reviewing methods to recycle resist edge remover and organic strip.

COMMUNITY ASSISTANCE

Micron volunteers lab resources and provides consultation to local companies and community organizations, such as the Peregrine Fund, to help resolve industrial hygiene and environmental issues. Micron team members are active in local environmental and safety organizations and in the Community Emergency Planning Committee. Team members periodically host training classes (such as Hazardous Gas Bottle Handling and Disposal) for local professional organizations. Micron is also a member of the Idaho Association of Commerce and Industry (IACI) and is very active in the environmental committee.

CUSTOMER SERVICE NOTE

INTRODUCTION

Electronic Data Interchange (EDI) has become an important data transmission element in today's marketplace. Micron is ready to serve your EDI needs and encourages customer participation.

STANDARDS SUPPORTED X 12

Micron supports versions 002000 through 003040 for all implemented transaction sets. The addition of new versions is an automated process which drives off of the standard diskettes available through Data Interchange Standards Association.

EDIFACT

Micron supports EDIFACT under the 90.1 EDIFICE guidelines for the Purchase Order (PO), PO Acknowledgment, PO Change and PO Change Acknowledgment messages.

TRANSACTION SETS

Inbound	Outbound
850 - PO	855 - PO Acknowledgment
860 - PO Change	865 - PO Change Acknowledgment
840 - Request For Quote (RFQ)	843 - Response to RFQ
830 - Forecast	856 - Advanced Ship Notice
846 - Inventory Inquiry/ Advice	810 - Invoice
867 - Product Transfer & Resale	
844 - Product Transfer Account Adjustment (PTAA)	849 - Response to PTAA

997 - Functional Acknowledgment

ELECTRONIC DATA INTERCHANGE

VALUE ADDED NETWORKS

AT&T

A T & T allows our partners to transmit EDI documents via standard protocol or X.400 (e-mail protocol).

Advantis

Advantis is the result of a merger between the Sears and IBM networks.

TRANSMISSION TIMES

Transmission times are 2 a.m., 10 a.m., 1 p.m., 3 p.m. and 8 p.m. MST weekdays and 1 p.m. MST on weekends. Additional transmission times can be added easily as circumstances warrant.

MICRON EDI CONTACTS

EDI Project Leader	EDI Software Development
Becka Shirrod	Tony Holden
208-368-3338	208-368-3855

STEPS TO IMPLEMENTATION

The following are typical steps taken as Micron begins exchanging EDI data with a new trading partner:

- Micron receives an implementation guide from a trading partner
- Micron's EDI team contacts the trading partner's EDI coordinator to set up a trading partnership and coordinate the transmission and receipt of test documents
- Micron receives a test EDI document from the partner's VAN and responds with the necessary acknowledgments
- Once both parties agree everything is working properly, parallel testing with EDI and paper documents begins
- · Micron insures an EDI agreement has been signed and returned to the trading partner
- · Paper documents are replaced with EDI documents (full production).

CUSTOMER SERVICE NOTE

HOW TO RETURN PRODUCT TO MICRON

- Obtain an RMA number (see "How to Obtain an RMA" below).
- Package product taking all antistatic precautions.
- Write RMA number on outside of box for proper routing.
- Ship package prepaid to:

Micron Semiconductor, Inc. Attn.: RMA Area 2805 East Columbia Road Boise, ID 83706

• If RMA is being shipped from outside of the United States, please note that Boise, Idaho, is a customs port city; reference Port City Code 2907.

HOW TO OBTAIN AN RMA

NONFAILURE-RELATED RETURNS:

- If you buy direct, contact your Micron sales rep at 1-208-368-3900.
- If you buy through a Micron rep, contact that rep.
- If you buy through Distribution, contact the distributor.

Provide the Following Information:

- Micron part number, including speed and package
- Reason for return

P

INFORMATIO

- One of the following: PO number, invoice number, or sales order number
 - One of the following: replacement parts, credit only, or refund

FAILURE-RELATED RETURNS AND/OR APPLICA-TION PROBLEMS:

 Contact Micron Application Engineering Department at 1-208-368-3900

RETURN MATERIAL AUTHORIZATION (RMA) PROCEDURES

Provide the Following Information:

- Micron part number, including speed and package
- Type of failure
- Name of engineer who witnessed failure or requested failure analysis report
- One of the following: PO number, invoice number, or sales order number
- One of the following: replacement parts, credit only, or refund

FAILURE ANALYSIS STANDARDS FOR RETURN MATERIAL AUTHORIZATIONS:

- Upon receipt of an RMA for failure analysis, Micron's Quality Assurance Department will provide an initial response within 48 hours.
- Micron's Quality Assurance Department will issue a completed failure analysis report within three weeks of receiving an RMA.

MICRON ACCOUNTING PROCEDURES FOR RETURN MATERIAL AUTHORIZATIONS

- Replacements: Replacement parts are shipped after receipt of the RMA parts. The credit memo will be applied directly to the replacement invoice. A new invoice will be sent when the replacement amount is greater than the returned amount. If this is not compatible with your accounts payable procedures, please advise your sales rep upon RMA request.
- Credit: A credit memo is sent out for the amount of the return upon arrival of the RMA parts. This credit memo number should be referenced when sending in payment information if intended to be used.
- Refund: A check request is submitted to Micron Accounts Payable upon receipt of RMA parts. A refund check is sent upon completion of the check request approval process.

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron Semiconductor, Inc., was certified to ISO 9001 in the United States and Europe on February 1, 1994, by KEMA Registered Quality, Inc. The certification is also recognized by EQNET, the European Network for Quality System Assessment and Certification. Through this network, our KEMA certification is recognized by: AENOR Spain, AFAQ France, AIB-Vincotte Belgium, BSI QA United Kingdom, CISQ Italy, DS Denmark, ELOT Greece, IPQ Portugal, NCS Norway, NSAI Ireland, OQS Austria, SFS Finland, SIS Sweden and SQS Switzerland.

ISO 9001 CERTIFICATION DEFINED

ISO 9001 is one of a series of three international standards dealing with quality systems that can be used for external quality assurance purposes. It is a model for quality assurance in design/development, manufacturing, testing, installation and servicing. It is the most comprehensive level of certification in the internationally recognized ISO 9000 family for quality assurance management systems.

ISO 9000 gives customers and suppliers a single set of guidelines that are accepted worldwide and that can be followed to achieve a definable level of quality. The certification implies that a company's systems for accepting

ISO 9001 Certification

orders, reviewing customers' specifications, manufacturing and testing products, and delivering those products to its customers are quality controlled and should produce consistent results. A company seeking ISO certification must be certified as ISO 9001 if it has complete control over the design of its product with that control being a major factor in ensuring delivered quality.

A supplier's ability to conform to the ISO 9001 standard is assessed via the standard's Quality System Requirements—a set of twenty paragraphs each designed to address a specific portion of a quality system: management responsibility; quality system; contract review; design control; document control; purchasing; purchaser supplied product; product identification and traceability; process control; inspection and testing; inspection measuring and test equipment; inspection and test status; control of nonconforming product; corrective action; handling, storage, packaging and delivery; quality records; internal quality audits; training; servicing; and statistical techniques.

Micron's ISO 9001 certificate, number 93119, is valid until February 1, 1997, at which time Micron must again complete the audit cycle.

SALES INFORMATION CSN-08

KEMA

e1

MEMBER OF THE EUROPEAN NETWORK FOR QUALITY SYSTEM ASSESSMENT AND CERTIFICATION "EQNET"

CERTIFICATE

Number: 93119

The quality system of:

MICRON SEMICONDUCTOR, INC. BOISE, IDAHO

including the implementation meets the requirements of the standard:

ISO 900

Scope Micron's semiconductor business, including the design, manufacturing, electrical and environmental testing and the marketing of semiconductor memory components.

Reports that form the basis of this certifi 93119-KRQ-1 up to and including 93113 cluding 93119-KRO-3

This certificate is valid until: February 1, 1997

Issued for the first time: February 1, 1994

dr.ir. J.H. Blom managing director

The method of operation for quality certification is defined in the KEMA Regulations for Quality System Certification. Integral publication of this certificate and adjoining reports is allowed.

N.V. KEMA

Utrechtseweg 310, Amhem, Postbus 9035, 6800 ET ARNHEM Telephone +31 85 56 34 98 Telefax +31 85 45 88 25

ACCEPTED BY THE DUTCH COUNCIL FOR CERTIFICATION

CUSTOMER SERVICE NOTE

MICRON DATAFAX

INTRODUCTION

Micron Semiconductor, Inc., gives customers and potential customers instant access to technical and sales information via Micron DataFaxSM, a user-friendly, fax-on-demand system.

Micron DataFax allows callers to make automated requests for data sheets, product literature and other product information during and after regular business hours. Micron DataFax improves customer support by offering product information 24-hours-a-day, and shortens the sales and design-in cycle by offering engineers the most up-todate product information.

HOW IT WORKS

Micron DataFax makes ordering product information quick and easy using the touchtone keypad on your fax machine. Here's how it works:

- 1. From your fax machine, call 208-368-5800.
- 2. Press 1 to order. When requested, enter document number(s).*
- 3. The documents you ordered will be sent to the fax machine you called from.

*When you call, Micron DataFax will offer you a document index, which lists all documents currently in the system. Order the index to use as a reference for your subsequent document orders.

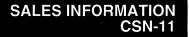
CUSTOMER SERVICE NOTE

CUSTOMER COMMENT LINE

INTRODUCTION

Micron Semiconductor, Inc., is committed to achieving the highest standard in customer satisfaction, and we believe that giving our customers the opportunity to voice comments and complaints will help us discover ways to better serve them. To achieve continuous improvement, we need ongoing constructive customer feedback so we know exactly what our customers expect and need.

COMMENT LINE INFORMATION


Micron's Comment Line is answered by Customer Service personnel from 8:00 a.m. to 5:00 p.m. MST weekdays and is transferred to voice mail during off hours, weekends, and holidays. You may also fax your comments to us at any time. Whether you have experienced a recent transaction with Micron that requires immediate assistance, you want to provide feedback, or need information on local representatives in your area, please call or fax. Direct your inquiry to a customer satisfaction representative. We value your input!

STANDARDS

At Micron, we are dedicated to serving our customers and have set a 24-hour standard of returning all calls received on the Customer Comment Line. If we can't solve the matter at the time of your call, we will respond with an update to your question or concern within 24 hours.

Customer Comment Line:

U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 01-208-368-3342

CUSTOMER SERVICE NOTE

INTRODUCTION

Micron Semiconductor, Inc., utilizes a standard part marking on each product as shown in Figure 1 below. The only exceptions to this marking are for 32-lead and 52-lead EJ products on which the pin one designator is assigned a different location (see Figure 2).

PART MARKING INFORMATION

The part marking is right and left justified, and the character size is a minimum of .035/maximum of .045 inches high. Each part marking contains the following information: date code, revision letter (if relevant), country

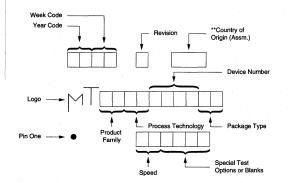
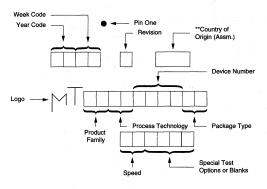



Figure 1 STANDARD PART MARKING of origin (assembly), Micron logo, product family, process technology, device number, package type, pin one designator, speed and special test option (if relevant).

LASER SCRIBE IDENTIFICATION

PART MARKING

Each part is also laser-scribed with a unique identification number. This identification number was previously located on the bottom side of the part only. We are currently adding the laser inscription to the top side as well.* The top-side inscription will allow for complete traceability of a component even after soldered onto a printed circuit board.

Figure 2 32-LEAD AND 52-LEAD EJ PRODUCTS PART MARKING

- * Exceptions: A top-side laser inscription will not be added to the ZIP package. Off-shore assembled products will not be laser-scribed on the top side.
- ** May be blank if country of origin is printed on bottom of device.

CUSTOMER SERVICE NOTE

MICRON'S PCN SYSTEM

Micron's automated Product Change Notification (PCN) System provides notification to customers, per mutually agreed upon requirements, of Micron product or production changes affecting form, fit or function.

CHANGES REQUIRING NOTIFICATION

Product and production changes requiring customer notification include:

- bonding wire
- metalization •
- data sheet die coat
- die redesign
- die shrink
- geographic location
- internal connections
- lead frame
- mark ink

- mold compound
- package dimensions
- packaging
- passivation
- •

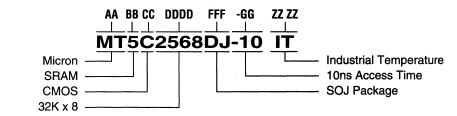
PRODUCT CHANGE NOTIFICATION (PCN) SYSTEM

PCN LETTER DOCUMENTATION

PCN letters include the following information:

- PCN number
- · a detailed description of the change
- a statement of the reason for the change
- supporting qualification data if appropriate
- a description of Micron product(s) affected by the change

SALES INFORMATION


CSN-12

a list of each Micron part number (along with the corresponding customer number if available) purchased during the past 12 months or for which there is current backlog.

- plating material plating process product obsolescence
- shipping tube
- wafer material
- mark change

EXPANDED COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Product	N	Λ	1	
----------------	---	---	---	--

BB – PRODUCT FAMILY

Flash	
DRAM	
SGRAM	
SRAM	5
Synchronous SRAM	58

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	
Flash CMOS	
Low Voltage Flash CMOS	LF

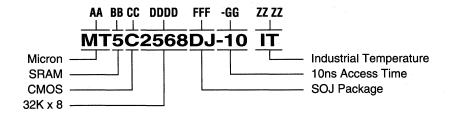
DDDD – DEVICE NUMBER

(Can be modified to indicate variations)

Flash	Density, Configuration
DRAM	Width, Density
TPDRAM	Width, Density
SRAM	Total Bits, Width
Synchronous SRAM	Density, Width

E – DEVICE VERSIONS

(Alphabetic characters only; located between D and F when required.)


JEDEC Test Mode (4 Meg DRAM)	J
Errata on Base Part	Q

FFF – PACKAGE CODES PLASTIC

PLASTIC	
DIP	Blank
DIP (Wide Body)	
ZIP	
LCC	EJ
SOP/SOIC	SG
QFP	LG
TSOP (Type I)	
TSOP (Type I, Reversed)	
TSOP (Type II)	TG
TSOP (Reversed)	
TSOP (Longer)	
SOJ	
SOJ (Reversed)	
SOJ (Longer)	DL
(0)	

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

GG – ACCESS TIME

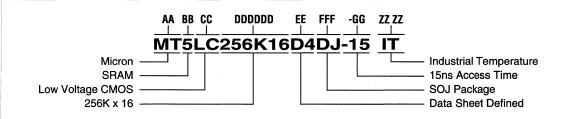
-5	5ns or 50ns
-6	6ns or 60ns
-7	7ns or 70ns
-8	8ns or 80ns
-10	10ns or 100ns
-12	12ns or 120ns
-15	
-17	17ns
-20	
-25	
-35	
-45	
-53	
-55	

ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as V L IT.


Interim	I
Low Voltage	I

ZZ ZZ – PROCESSING CODES (continued)

DRAMs	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh)	
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Power, Low Volt Data Retention	LP
Flash	
Bottom Boot	
Top Boot	T
EPI Wafer	E
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	
-55°C to +125°C	XT
Special Processing	
Engineering Sample	ES
Mechanical Sample	
Sample Kit*	SK
Tape-and-Reel*	
Bar Code*	BC

* Used in device order codes; this code is not marked on device.

NEW COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Product MT

BB – PRODUCT FAMILY

DRAM	
SGRAM	
TPDRAM	
Synchronous DRAM	
SRAM	
Synchronous SRAM	

CC – PROCESS TECHNOLOGY

CMOS	C
Low Voltage CMOS	LC
BICMOS	В
Low Voltage BiCMOS	LB

DDDDDD – DEVICE NUMBER

Depth, Width

Example:

1M16 = 1 megabit deep by 16 memory.	bits wide = 16 megabits of total
No Letter	Bits
К	Kilobits
М	Megabits
G	Gigabits

EE – DEVICE VERSIONS

(The first character is an alphabetic character only; the second character is a numeric character only.) Specified by individual data sheet.

FFF – PACKAGE CODES

Plastic	
DIP	Blank
DIP (Wide Body)	W
ZIP	
LCC	EJ
SOP/SOIC	SG
QFP	LG
TSOP (Type II)	TG
TSOP (Reversed)	RG
TSOP (Longer)	TL
S0J	DJ
SOJ (Wide)	DW
SOJ (Reversed)	DR
SOJ (Longer)	DL

NEW COMPONENT NUMBERING SYSTEM (continued)

GG – ACCESS TIME

╏┉╽╽

-5	5ns or 50ns
	6ns or 60ns
-7	
-8	8ns or 80ns
-9	9ns or 90ns
-10	10ns or 100ns
-12	
-15	15ns or 150ns
-17	
-20	
-25	
-35	
-45	
-53	
-55	••••
••	

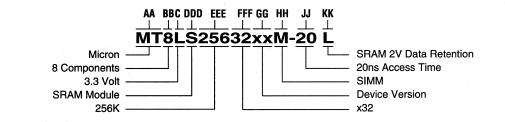
ZZ ZZ – PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

Example:

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as V $\,$ L $\,$ IT.

Interim I	
Low VoltageV	


ZZ ZZ - PROCESSING CODES (continued)

DRAMs	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh)	S
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Volt Data Retention, Low Power	LP
EPI Wafer	
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	XT
Special Processing	
Engineering Sample	ES
Mechanical Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	BC

* Used in device order codes; this code is not marked on device.

MODULE NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Micron Semiconductor Product MT

BB – NUMBER OF MEMORY COMPONENTS

C – PROCESS TECHNOLOGY

LOW VOLTAGE (2.21/)	L	
LOW VOLTAGE (3.3V)	········	

DDD - RAM FAMILY

DRAM	D
DRAM TSOP	
SRAM	S
SRAM TSOP	ST
SYNCHRONOUS SRAM	SY
SYNCHRONOUS SRAM TQFP	SYT

EEE – DEPTH

FFF - WIDTH

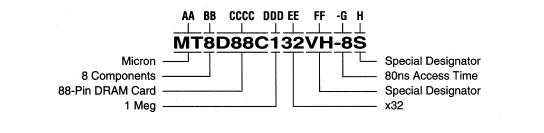
GG – DEVICE VERSIONS

Specified by individual data sheet (Synchronous SRAM only)

HH – PACKAGE CODE

Gold Plated SIMM/DIMM	G
ZIP	Z
SIP	N
SIMM/DIMM	M
Small Outline DIMM	H
Small Outline Gold DIMM	HG
Double-Sided SIMM (1 or 4 Meg x 36 Only)	DM
Double-Sided SIMM (Gold 1 or 4 Meg x 36 Only)	

JJ – ACCESS TIME


-10	10ns
-12	12ns
-15	15ns
-17	 17ns
-20	20ns
-25	 25ns
-35	 35ns
-6	 60ns
-7	 70ns
-8	 80ns

KK – MODULE SPECIAL DESIGNATOR

SRAM	
2V data retention	L
Low Power	P
Low Power, 2V data retention	LP
DRAM	
Low Power (Extended Refresh)	L
ECC	C
Extended Data Out	X
Self Refresh	S
16 Meg DRAM 4,096 Refresh	В

DRAM CARD NUMBERING SYSTEM

AA – Product Line Identifier

Micron Product MT

BB – NUMBER OF MEMORY COMPONENTS

RON

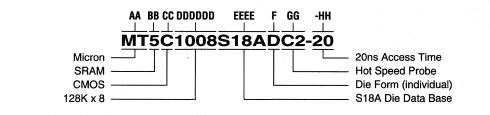
DDD – DEPTH

EE – WIDTH

FF - SPECIAL DESIGNATOR

3.3 Volts	V
Reduced length (2")	

G – ACCESS TIME


-5	50ns
-6	
-7	
-8	

H-SPECIAL DESIGNATOR

Self Refresh	3
--------------	---

DIE PRODUCT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER

Component Product		. MT
-------------------	--	------

BB – PRODUCT FAMILY

SRAM	
DRAM	
Synchronous SRAM	

CC – PROCESS TECHNOLOGY

CMOS	 	C
Low Voltage CMOS		
g		

DDDDDD – DEVICE NUMBER

When no alpha character appears as par	t of this section, the
section is defined as:	
DRAM	Width, Density
SRAM	Total Bits, Width
Synchronous SRAM	

When an alpha character occurs as part of this section, the section is defined as: Depth, Width

Example:

К	Kilobits
М	Megabits
G	Gigabits

EEEE – DIE DATA BASE REVISION

F – FORM

Die Form	 	D
Wafer Form (6" Wafer)		\ M /

GG – TESTING LEVELS

Standard Probe (0° to 70°C)	C1
Hot Speed Probe (0° to 70°C)	
Known Good Die (0° to 70°C)	C3

HH – ACCESS TIME

(Applicable for C2 and C3 only)	
-5	5ns or 50ns
-6	6ns or 60ns
-7	
-8	
-9	
-10	10ns or 100ns
-12	
-15	
-17	
-20	
-25	
-35	
-45	
-50 (SRAM only)	
-SS (C2 only)	speed sorted

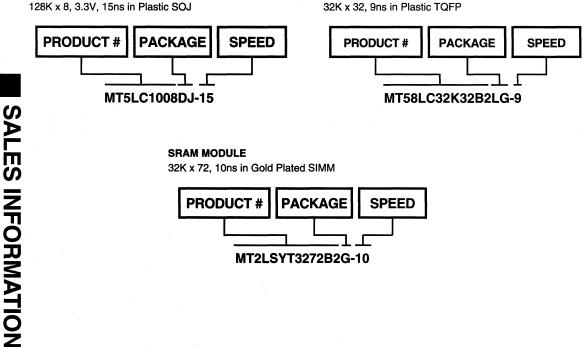
SALES INFORMATION

SALES INFORMATION ORDERING INFORMATION

ORDER INFORMATION*

Each Micron component family is manufactured and quality controlled in the U.S.A. at our modern Boise, Idaho, facility employing Micron's low-power, highperformance CMOS silicon-gate process. Micron products are functionally equivalent to other manufacturers' products that meet JEDEC standards. Device functionality is consistently assured over a wider power supply, temperature range and refresh range than specified. Each unit receives continuous system-level testing during many hours of accelerated burn-in prior to final test and shipment. This testing is performed with Micron's exclusive AMBYX intelligent burn-in and test system.

Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributor nearest you. Micron's policy is to offer prompt, accurate and courteous service while assuring reliability and quality.


> Telephone: 208-368-3900 Fax: 208-368-4431 Micron DataFax: 208-368-5800 Customer Comment Line: 800-932-4992 (U.S.A.) 01-208-368-3410 (Intl.) Customer Comment Fax Line: 208-368-3342

SYNCHRONOUS SRAM

ORDER EXAMPLES

SRAM

128K x 8, 3.3V, 15ns in Plastic SOJ

*For more detailed information, refer to the product numbering charts on pages 8-15 through 8-21.

ALABAMA Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Anthem Electronics Incorporated 4920 H, Corporate Drive Huntsville, AL 35805 Phone - 205-890-0302 Phone - 800-359-3531 Fax - 205-890-0130

Hamilton Hallmark 4890 University Square, Suite 1 Huntsville, AL 35816 Phone - 205-837-8700 Phone - 800-572-7236 Fax - 205-830-2565

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-1119 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ARIZONA

Representative Quatra Associates 4645 South Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 1555 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Hamilton Hallmark 4637 South 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 Phone - 800-352-8489 Fax - 602-437-2348 Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088 Fax - 602-437-2124

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ARKANSAS

Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600 Fax - 214-265-4668

Distributors

Anthem Electronics Incorporated 651 N. Plano Road, Suite 401 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-4414

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214- 235-9953 Fax - 214-644-5064

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CALIFORNIA

Representatives (Northern California)

Bay Area Electronic Sales, Inc. 2001 Gateway Place, Suite 315 W San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

SALES INFORMATION NORTH AMERICA

Bay Area Electronic Sales, Inc. 9119 Eden Oak Circle Loomis, CA 95650 Phone - 916-652-6777 Fax - 916-652-5678

Representatives (Southern California)

Micron Sales Southwest, Inc. 5060 Shoreham Place, Suite 200 San Diego, CA 92122 Phone - 619-458-5859 Fax - 619-453-0034

Micron Sales Southwest, Inc. 5100 Campus Drive, Suite 200 Newport Beach, CA 92660 Phone - 714-724-8085 Fax - 714-724-0560

Distributors

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-441-4500

Anthem Electronics Incorporated 9131 Oakdale Avenue Chatsworth, CA 91311 Phone - 818-700-1000 Fax - 818-775-1302

Anthem Electronics Incorporated 1 Old Field Drive East Irvine, CA 92718-2809 Phone - 714-768-4444 Fax - 714-768-6456

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Anthem Electronics Incorporated 9369 Carroll Park Drive San Diego, CA 92121 Phone - 619-453-9005 Fax - 619-546-7893

Hamilton Hallmark 3170 Pullman Street Costa Mesa, CA 92626 Phone - 714-641-4100 Fax - 714-641-4122

Hamilton Hallmark 580 Menlo Drive, Suite 2 Rocklin, CA 95765 Phone - 916-624-9781 Fax - 916-961-0922

SALES INFORMATION NORTH AMERICA

Hamilton Hallmark 4545 Viewridge Avenue San Diego, CA 92123 Phone - 619-571-7540 Fax - 619-277-6136

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Hamilton Hallmark 21150 Califa Street Woodland Hills, CA 91367 Phone - 818-594-0404 Fax - 818-594-8234

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-988-3479

Wyle Laboratories 17872 Cowan Avenue Irvine, CA 92714 Phone - 714-863-9953 Fax - 714-863-0473

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

Wyle Laboratories 9525 Chesapeake Drive San Diego, CA 92123 Phone - 619-565-9171 Fax - 619-565-0512

Wyle Laboratories 26010 Mureau Road, Suite 150 Calabasas, CA 91302 Phone - 818-880-9000 Fax - 818-880-5510

Die Distributor

INFORMATION

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CANADA

Representatives

Clark-Hurman Associates 20 Regan Road, Unit 14 Brampton, Ontario L7A 1C3 Phone - 905-840-6066 Fax - 905-840-6091

Clark-Hurman Associates 308 Palladium Drive, Suite 200 Kanata, Ontario K2B 1A1 Phone - 613-599-5626 Fax - 613-599-5707

Clark-Hurman Associates 78 Donegani, Suite 200 Pointe Claire, Quebec H9R 2V4 Phone - 514-426-0453 Fax - 514-426-0455

Distributors

Hamilton Hallmark 8610 Commerce Court Burnaby, BC V5A 4N6 Phone - 604-420-4101 Fax - 604-420-5376

Hamilton Hallmark 151 Superior Blvd., Unit 1-6 Mississauga, Ontario L5T 2L1 Phone - 905-564-6060 Fax - 905-564-6033

Hamilton Hallmark 190 Colonnade Road Nepean, Ontario K2E 7J5 Phone - 613-226-1700 Fax - 613-226-1184

Hamilton Hallmark Suite 600 7575 Transcanada Hwy. Ville St. Laurent, Quebec H4T 1V6 Phone - 514-335-1000 Fax - 514-335-2481

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

COLORADO

Representative Wescom Marketing 4860 Ward Road Wheatridge, CO 80033 Phone - 303-422-8957 Fax - 303-422-9892

Distributors

Anthem Electronics Incorporated 373 Inverness Drive Englewood, CO 80112 Phone - 303-790-4500 Fax - 303-790-4532

Hamilton Hallmark 12503 E. Euclid Drive, Suite 20 Englewood, CO 80111 Phone - 303-790-1662 Fax - 303-790-4991

Wyle Laboratories 451 E. 124th Street Thornton, CO 80241 Phone - 303-457-9953 Fax - 303-457-4831

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CONNECTICUT

Representative

Advanced Tech Sales Incorporated Westview Office Park Building 2, Suite 1C 850 N. Main Street Extension Wallingford, CT 06492 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hamilton Hallmark 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

DELAWARE

Representative

Omega Electronic Sales Inc. Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Distributor

Wyle Laboratories 815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

DISTRICT OF COLUMBIA

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046 Phone - 410-988-9800 Fax - 410-381-2036

Wyle Laboratories 9101 Guilford Road, Suite 120 Columbia, MD 21046 Phone - 301-490-2170 Fax - 301-490-2190

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FLORIDA

Representatives

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Photon Sales, Inc. 715 Florida Street Orlando, FL 32806 Phone - 407-841-7423 Fax - 407-896-6197

Distributors

Anthem Electronics Incorporated 598 S. Northlake Blvd., Suite 1024 Altamonte Springs, FL 32701 Phone - 407-831-0007 Fax - 407-831-6990

Anthem Electronics Incorporated 5200 N.W. 33rd Avenue, Suite 206 Ft. Lauderdale, FL 33309 Phone - 305-484-0990 Fax - 305-484-0951

Hamilton Hallmark 3350 NW 53rd Street, Suite 105-107 Ft. Lauderdale, FL 33309 Phone - 305-484-5482 Fax - 305-484-2995

Hamilton Hallmark 10491 72nd Street North Largo, FL 34647 Phone - 813-541-7440 Phone - 800-282-9350 Fax - 813-544-4394

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-4414

Wyle Laboratories 1000 112th Circle North, Suite 800 St. Petersburg, FL 33716 Phone - 813-576-3004 Fax - 813-579-1518

SALES INFORMATION NORTH AMERICA

Wyle Laboratories 600 W. Hillsboro Blvd., Suite 300 Deerfield Beach. FL 33441 Phone - 305-420-0500 Fax - 305-428-2134

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

GEORGIA

Representative

Southeast Technical Group 3500 Parkway Lane, Suite 420 Norcross, GA 30092 Phone - 404-416-6336 Fax - 404-416-6433

Distributors

Anthem Electronics Incorporated 3305 Breckenridge, Suite 108 Duluth, GA 30136 Phone - 404-931-3900 Fax - 404-931-3902

Hamilton Hallmark 3425 Corporate Way, Suite A and G Duluth, GA 30136-2552 Phone - 404-623-4400 Fax - 404-476-8806

Wyle Laboratories 6025 The Corners Pkwy, Suite 111 Norcross, GA 30092 Phone - 404-441-9045 Fax - 404-441-9086

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

HAWAII

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Bay Area Electronics Sales, Inc. 5711 Reinhold Street Fair Oaks, CA 95628 Phone - 916-863-0563 Fax - 916-863-0615

Distributors

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-441-4500

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-988-3479

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IDAHO Representative

Contact Micron Semiconductor, Inc. Component Sales Phone - 208-368-3900 Fax - 208-368-3488 Micron DataFax - 208-368-5800

Distributors

INFORMATIO

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 Fax - 801-973-8909

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Die Distributor

Chip Supply

7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ILLINOIS

Representatives

Advanced Technical Sales (S. IL) 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Industrial Representatives, Inc. (N. IL) 8430 Gross Point Road Skokie, IL 60077 Phone - 708-967-8430 Fax - 708-967-5903

Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 Fax - 708-884-0480

Hamilton Hallmark 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

Wyle Laboratories 2055 Army Trail Road, Suite 140 Addison, IL 60101 Phone - 708-620-0969 Fax - 708-620-1610

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

INDIANA

Representatives

Scott Electronics, Inc. (S. IN) 7321 Shadeland Station, Suite 256 Indianapolis, IN 46256 Phone - 317-841-0010 Fax - 317-841-0107

SALES INFORMATION NORTH AMERICA

Scott Electronics, Inc. (N. IN) Lima Valley Office Village 8109 Lima Road Fort Wayne, IN 46818 Phone - 219-489-5690 Fax - 219-489-1842

Distributor

Hamilton Hallmark 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 Phone - 800-829-0146 Fax - 317-876-7165

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IOWA

Representative

Advanced Technical Sales 375 Collins Road N.E. Cedar Rapids, IA 52402 Phone - 319-393-8280 Fax - 319-393-7258

Distributors

Anthem Electronics Incorporated 7690 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 1130 Thorndale Avenue Bensonville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Wyle Laboratories 1821 Walden Office Square, Suite 332 Schaumburg, IL 60173 Phone - 708-303-1040 Fax - 708-303-1055

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KANSAS

Representative

Advanced Technical Sales 601 N. Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Anthem Electronics Incorporated 8780 Mastin Overland Park, KS 66212 Phone - 913-599-1528 Fax - 913-599-1326

Hamilton Hallmark 10809 Lakeview Avenue Lenexa, KS 66215 Phone - 913-888-4747 Phone - 800-332-4375 Fax - 913-888-0523 Fax - 800-255-6946

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KENTUCKY

Representative

Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821 Phone - 513-791-2513 Fax - 513-791-8059

Distributor

Hamilton Hallmark 1847 Mercer Road, Suite G Lexington, KY 40511 Phone - 800-327-4426 (IBM) Phone - 800-525-0068 (DEC)

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

LOUISIANA Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600 Fax - 214-265-4668

Distributors

Anthem Electronics 651 N. Plano Road, Suite 401 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Hamilton Hallmark 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-553-4395

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MAINE

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10P Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9713

SALES INFORMATION NORTH AMERICA

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 Fax - 617-272-6809

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MARYLAND

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 410-995-6640 Fax - 410-290-9862

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046 Phone - 410-988-9800 Fax - 410-381-2036

Wyle Laboratories 7180 Columbia Gateway Drive, Suite 100 Columbia, MD 21046 Phone - 410-312-4844 Fax - 410-312-4953

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MASSACHUSETTS

Representative Advanced Tech Sales, Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

MICRON

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10P Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9713

Wyle Laboratories 5 Oak Park Drive Bedford, MA 01730 Phone - 617-271-9953 Fax - 617-275-3687

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 Fax - 617-272-6809

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MICHIGAN Representative Rathsburg Associates Incorporated 41100 Bridge Street

41100 Bridge Street Novi, MI 48375 Phone - 810-615-4000 Fax - 810-615-4001

Distributors

T

Hamilton Hallmark 41650 Gardenbrook Road, Suite 100 Novi, MI 49418 Phone - 313-347-4271 Fax - 313-347-4021

Hamilton Hallmark 44191 Plymouth Oaks Blvd. #1300 Plymouth, MI 48170 Phone - 313-416-5800 Phone - 800-767-9654 Fax - 313-416-5811

Wyle Laboratories 150 N. Patrick Blvd., Suite 150 Brookfield, WI 53045 Phone - 414-879-0434 Phone - 800-867-9953 Fax - 414-879-0474

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MINNESOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Wyle Laboratories 1325 East 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MISSISSIPPI

Representative

Southeast Technical Group 4315 Hwy., 39 North Northwood Place, Suite 3L Meridian, MS 39305 Phone - 601-485-7055 Fax - 601-485-7063

Distributors

Anthem Electronics 4920-H Corporate Drive Huntsville, AL 35805 Phone - 205-890-0302 Fax - 205-890-0130

SALES INFORMATION NORTH AMERICA

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-4414

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-1119 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MISSOURI

Representative Advanced Technical Sales 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Distributors

Hamilton Hallmark 3783 Rider Trail South Earth City, MO 63045 Phone - 314-291-5350 Fax - 314-291-0362

Wyle Laboratories 1821 Walden Office Square, Suite 332 Schaumburg, IL 60173 Phone - 708-303-1040 Fax - 708-303-1055

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MONTANA

Representative

Contact Micron Semiconductor, Inc. Component Sales Phone - 208-368-3900 Fax - 208-368-3488 Micron DataFax - 208-368-5800

SALES INFORMATION NORTH AMERICA

Distributor

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEBRASKA

Representative

Advanced Technical Sales 601 North Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Hamilton Hallmark 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

Wyle Laboratories 451 E. 124th Street Thornton, CO 80241 Phone - 303-457-9953 Fax - 303-457-4831

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEVADA

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 W. San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Quatra Associates (Clark County) 4645 S. Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW HAMPSHIRE

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10P Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9713

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW JERSEY

Representatives

Omega Electronic Sales Inc. Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Parallax, Inc. (N. NJ) 734 Walt Whitman Road Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics Incorporated 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

Anthem Electronics Incorporated 26 Chapin Road, Unit K Pine Brook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hamilton Hallmark 1 Keystone Avenue, Bldg. #36 Cherry Hill, NJ 08003 Phone - 609-424-0110 Fax - 609-751-2552

Hamilton Hallmark 10 Lanidex Plaza West Parsippany, NJ 07054 Phone - 201-515-5300 Fax - 201-515-1601

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109

Wyle Laboratories 815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

NEW MEXICO

Representative

Quatra Associates Incorporated 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics Incorporated 1555 W. 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Hamilton Hallmark 4637 South 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 Phone - 800-528-8471 Fax - 602-437-2348

Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088 Fax - 602-437-2124

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW YORK Representatives

Electra Sales Corporation 333 Metro Park, Suite M103 Rochester, NY 14623 Phone - 716-427-7860 Fax - 716-427-0614

Electra Sales Corporation 6700 Old Collamer Road East Syracuse, NY 13057 Phone - 315-463-1248 Fax - 315-463-1717

Parallax, Inc. 734 Walt Whitman Road Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics-Military 47 Mall Drive Commack, NY 11725-5703 Phone - 516-864-6600 Fax - 516-493-2244

Anthem Electronics Incorporated 26 Chapin Road, Unit K Pinebrook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hamilton Hallmark 3075 Veterans Memorial Hwy. Ronkonkoma, NY 11779 Phone - 516-737-0600 Fax - 516-737-0838

Hamilton Hallmark 933A Motor Parkway Hauppauge, NY 11788 Phone - 516-434-7470 Fax - 516-434-7491

Hamilton Hallmark 1057 East Henrietta Road Rochester, NY 14623 Phone - 716-475-9130 Phone - 800-462-6440 Fax - 716-475-9119

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORTH CAROLINA

Representatives Southeast Technical Group

4408 Ennismore Circle Raliegh, NC 27613 Phone - 919-781-9857 Fax - 919-420-0274

Southeast Technical Group 1401 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

SALES INFORMATION NORTH AMERICA

Distributor

Hamilton Hallmark 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Wyle Laboratories 1325 E 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OHIO

Representatives

Scott Electronics, Inc. 30 Alpha Park Cleveland, OH 44143-2240 Phone - 216-473-5050 Fax - 216-473-5055

SALES INFORMATIO

Scott Electronics, Inc. 6728 Loop Road, Suite 202 Centerville, OH 45459 Phone - 513-291-9910 Fax - 513-291-9022

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821 Phone - 513-791-2513 Fax - 513-791-8059

Distributors

Anthem Electronics Incorporated 110 North High Street Gahanna, OH 43230 Phone - 800-359-3517 Fax - 614-471-2879

Hamilton Hallmark 5821 Harper Road Solon, OH 44139 Phone - 216-498-1100 Fax - 216-248-4803

Hamilton Hallmark 777 Dearborn Park Lane, Suite L Worthington, OH 43085 Phone - 614-888-3313 Fax - 614-888-0767

Hamilton Hallmark 7760 Washington Village Drive Dayton, OH 45459 Phone - 513-439-6735 Phone - 800-423-4688 Fax - 513-439-6711

Wyle Laboratories 1821 Walden Office Square, Suite 332 Schaumburg, IL 60173 Phone - 708-303-1040 Fax - 708-303-1055

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OKLAHOMA

Representative

Nova Marketing Incorporated 8125D E. 51st Street, Suite 1339 Tulsa, OK 74145 Phone - 918-660-5105 Fax - 918-357-3450

Distributor

Hamilton Hallmark 12206 E. 51st Street, Suite 103 Tulsa, OK 74146 Phone - 918-254-6110 Fax - 918-254-6207

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OREGON

Representative

Micron Sales Northwest, Inc. AmberGlen Business Center 1600 N.W. Compton Drive, Suite 206 Beaverton, OR 97006 Phone - 503-531-2010 Fax - 503-531-2011

Distributors

Anthem Electronics Incorporated 9090 S.W. Gemini Drive Beaverton, OR 97005 Phone - 503-643-1114 Fax - 503-626-7928

Hamilton Hallmark 9750 S.W. Nimbus Avenue Beaverton, OR 97005 Phone - 503-526-6200 Fax - 503-641-5939

Wyle Laboratories 9640 Sunshine Court, Suite 200, Bldg. G Beaverton, OR 97005 Phone - 503-643-7900 Fax - 503-646-5466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SALES INFORMATION NORTH AMERICA

PENNSYLVANIA

Representatives

Omega Electronic Sales Incorporated (E. PA) Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Scott Electronics, Inc. (W. PA) 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Distributors

Anthem Electronics Incorporated 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

Hamilton Hallmark (W. PA) 5821 Harper Road Solon, OH 44139 Phone - 216-498-1100 Fax - 216-248-4803

Wyle Laboratories 815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PUERTO RICO

Representative

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Distributors

Anthem Electronics 5200 N.W. 33rd Avenue, Suite 206 Ft. Lauderdale, FL 33309 Phone - 305-484-0900 Fax - 305-484-0951

Wyle Laboratories

600 West Hillsboro, Suite 300 Deerfield Beach, FL 33441 Phone - 305-420-0500 Fax - 305-428-2134

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

RHODE ISLAND

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hamilton Hallmark 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SOUTH CAROLINA Representative

Southeast Technical Group 1401 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

Distributor

Hamilton Hallmark 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SOUTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Wyle Laboratories 1325 East 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TENNESSEE

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Hamilton Hallmark 3425 Corporate Way, Suite A and G Duluth, GA 30136-2552 Phone - 404-623-4400 Fax - 404-476-8806

SALES INFORMATION NORTH AMERICA

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-119 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TEXAS

Representatives Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600 Fax - 214-265-4668

Nova Marketing Incorporated 10701 Corporate Drive, Suite 140 Stafford, TX 77477 Phone - 713-240-6082 Fax - 713-240-6094

Nova Marketing Incorporated 8310 Capitol of Texas Hwy. North, Suite 180 Austin, TX 78731 Phone - 512-343-2321 Fax - 512-343-2487

Quatra Associates, Inc. (El Paso, TX) 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics Incorporated 651 N. Plano Road, Suite 401 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Anthem Electronics Incorporated 14050 Summit Drive, Suite 119 Austin, TX 78728 Phone - 512-388-0049 Fax - 512-388-0271

Hamilton Hallmark 12211 Technology Blvd. Austin, TX 78727 Phone - 512-258-8848 Fax - 512-258-3777

SALES INFORMATIO

Hamilton Hallmark 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-553-4395

Hamilton Hallmark 8000 Westglen Houston, TX 77063 Phone - 713-781-6100 Fax - 713-953-8420

Wyle Laboratories 4030 W. Braker Lane, Suite 420 Austin, TX 78759 Phone - 512-345-8853 Fax - 512-834-0981

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064

Wyle Laboratories 11001 S. Wilcrest, Suite 100 Houston, TX 77099 Phone - 713-879-9953 Fax - 713-879-6540

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

UTAH

Representative

Wescom Marketing 3500 S. Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 Fax - 801-269-0665

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 Fax - 801-973-8909

Hamilton Hallmark 1100 East 6600 South, Suite 120 Salt Lake City, UT 84121 Phone - 801-266-2022 Fax - 801-263-0104 Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

VERMONT

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10P Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9713

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

VIRGINIA

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

SALES INFORMATION NORTH AMERICA

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046 Phone - 410-988-9800 Fax - 410-381-2036

Wyle Laboratories 7180 Columbia Gateway Drive, Suite 100 Columbia, MD 21046 Phone - 410-312-4844 Fax - 410-312-4953

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

WASHINGTON

Representative Micron Sales Northwest, Inc. 14901 N.E. 147th Place Woodinville, WA 98072 Phone - 206-486-2775 Fax - 206-486-3960

Distributors

Anthem Electronics Incorporated 19017-120th Avenue N.E., Suite 102 Bothell, WA 98011 Phone - 206-483-1700 Fax - 206-486-0571

Hamilton Hallmark 8216 154th Avenue N.E. Redmond, WA 98052 Phone - 206-882-7000 Fax - 206-882-7070

Wyle Laboratories 15385 N.E. 90th Street Redmond, WA 98052-3522 Phone - 206-881-1150 Phone - 800-248-9953 Fax - 206-881-1567

Die Distributor

WEST VIRGINIA

Representative

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

WISCONSIN

Representatives

High Technology Sales Associates (W. WI) 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Industrial Representatives, Inc. (E. WI) 2831 N. Grandview, Suite 215 Pewaukee, WI 53072 Phone - 414-574-9393 Fax - 414-574-9394

Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 Fax - 708-884-0480

Hamilton Hallmark 2440 S. 179th Street New Berlin, WI 53146-2152 Phone - 414-797-7844 Fax - 414-797-9259

Wyle Laboratories 150 N. Patrick Blvd., Suite 150 Brookfield, WI 53045 Phone - 414-879-0434 Phone - 800-867-9953 Fax - 414-879-0474

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

WYOMING

Representative

Contact Micron Semiconductor, Inc. Component Sales Phone - 208-368-3900 Fax - 208-368-3488 Micron DataFax - 208-368-5800

Distributors

Anthem Electronics Incorporated 373 Inverness Drive Englewood, CO 80112 Phone - 303-790-4500 Fax - 303-790-4532

Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Die Distributor

MICRON

AUSTRALIA Representative

Reptechnic Pty. Ltd. 3/36 Bydown Street Neutral Bay, NSW 2089 Phone - 612-953-9844 Fax - 612-953-9683

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

AUSTRIA

Distributor

EBV Elektronik GmbH Diefenbachgasse 35/6 A-1150 Wien Phone - 43-222-8-94-17-74 Fax - 43-222-8-94-17-75

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

BELGIUM

Representative

Microtron Generaal De Wittelaan 7 B-2800 Mechelen Phone - 32-15-212223 Fax - 32-15-210069

Distributor

EBV Elektronik GmbH Excelsiorlaan 35 B-1930 Zaventem Phone - 32-2 7209936 Fax - 32-2-7208152

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

DENMARK

Representative & Distributor

E.V. Johanssen Elektronik A/S Titangade 15 DK-2200 Copenhagen N Phone - 45-31-83-90-22 Fax - 45-31-83-92-22

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FINLAND

Representative & Distributor

Integrated Electronics Oy Ab Turkhaudantie 1 P.O. Box 160 SF-00700 Helsinki Phone - 358-0-351-3133 Fax - 358-0-351-3134

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FRANCE

Representative Rep'Tronic S.A.

Kep Ironic S.A. 1 bis, rue Marcel Paul Bâtiment A, Z.I. de la Bonde F-91300 Massy Phone - 33-1-60-13-93-00 Fax - 33-1-60-13-91-98

Distributors

Avnet EMG SA 79, rue Pierre Semard B.P. 90 F-92322 Chatillon, Cedex Phone - 33-1-49-65-2600 Fax - 33-1-49-65-2769

EBV Elektronik Parc Club de la Haute Maison 16, rue Galilée, Cité Descartes 77420 Champs-sur-Marne Phone - 33-1-64-68-8609 Fax - 33-1-64-68-2767

SALES INFORMATION INTERNATIONAL

Société Paris Sud Electronique 12, rue René-Cassin Z.I. de la Bonde F-91300 Massy Phone - 33-1-69-20-6699 Fax - 33-1-69-20-7532

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

GERMANY

Sales & Customer Service Office Micron Semiconductor (Deutschland) GmbH Sternstrasse 20 D-85609 Aschheim Phone - 49-89-9030021 Fax - 49-89-9043114

Distributors

EBV Elektronik GmbH Hans-Pinsel-Str. 4 D-85540 Haar b. München Phone - 49-89-45610-0 Fax - 49-89-464488

MSC-Vertriebs GmbH Industriestraße 16 D-76297 Stutensee Phone - 49-72-49910-0 Fax - 49-72-497993

Metronik GmbH Leonhardsweg 2 D-82008 Unterhaching b. München Phone - 49-89-61108-0 Fax - 49-89-6116468

Neumüller-Fenner Elektronik GmbH Mehlbeerenstr. 2 D-82024 Taufkirchen Phone - 49-89-6144990 Fax - 49-89-61449980

Die Distributor

HONG KONG

Sales & Customer Service Office

Micron Semiconductor Asia Pacific Pte Ltd 629 Aljunied Road #07-21 Cititech Industrial Bldg. Singapore 1438 Phone - 65-841-4066 Fax - 65-841-4166

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

INDIA

Distributor

Pandori Electronics Pvt Ltd 306, Guru Ram Das Bhawan Ranjit Nagar, Commercial Complex New Delhi 110008 Phone - 91-11-5703615 Fax - 91-11-5700478

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

INDONESIA

Π

S INFORMAT

Representative Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IRELAND

Representative

New England Technical Sales The Diamond, Malahide, Co. Dublin Phone - 353-18-450635 Fax - 353-18-453625

Distributor

Macro Group Merrion Business Corp. 20 Upper Merrion Street Dublin 2 Phone - 1-67-66-904 Fax - 1-76-0-713

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ISRAEL

Representative & Distributor

C.R.G. Electronics Ltd. Industrial Park P.O.B. 590 Carmiel 20101 Phone - 972-4-887-877 Fax - 972-4-887-588

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ITALY

Representative Acsis srl via Alberto Mario, 26 Milano 20149 Phone - 39-2-4802-2522 Fax - 39-2-4801-2289

Distributors

Claitron SPA Via le Fulvio Testi 280/B 20126 Milano Phone - 39-2-66-14-91 Fax - 39-2-66-10-56-66

SALES INFORMATION INTERNATIONAL

EBV Elektronik Sede di Milano Via C. Frova, 34 I-20092 Cinisello Balsamo (MI) Phone - 39-2-66-01-71-11 Fax - 39-2-66-01-7020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

JAPAN

Distributors Internix Inc. Shinjuku Hamada Bldg. 7-4-7 Nishi-Shinjuku, Shinjuku-ku Tokyo 160 Phone - 81-3-3369-1105 Fax - 81-3-3363-8486

Macnica, Inc. Hakusan High-Tech Park 1-22-2 Hakusan Midori-ku, Yokohama City 226 Phone - 81-45-939-6140 Fax - 81-45-939-6141

Sanyo Electric Co. Ltd. Import Promotion Division 1-1-10 Ueno Taito-ku, Tokyo 110 Phone - 81-3-3837-6345 Fax - 81-3-3837-6379

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KOREA

Representative

I & C Microsystems Co. Ltd. 3rd Floor, Jung-Nam Bldg. 191-3 Poi-Dong Kangnam-Ku Seoul Phone - 822-577-9131 Fax - 822-577-9130

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

LUXEMBOURG

Representative

Microtron Beneluxweg 37 Postbus 4336 NL-4904 SJ Oosterhout Phone - 31-162-060-308 Fax - 31-162-060-633

Distributor

EBV Elektronik GmbH Excelsiorlaan 35 B-1930 Zaventem Belgium Phone - 32-2 7209936 Fax - 32-2-7208152

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MALAYSIA

Representatives Desner (Malaysia) Sdn. Bhd. 23 Jalan Sarikei 53000 Kuala Lumpur Phone - 60-3-4211123 Fax - 60-3-4219923

Desner (Malaysia) Sdn. Bhd. 39 Persiaran Bukit Kecil 5 Taman Sri Nibong 11900 Bayan Lepas Penang Phone - 60-4-838352 Fax - 60-4-849370

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

THE NETHERLANDS

Representative

Microtron Beneluxweg 37 Postbus 4336 NL-4904 SJ Oosterhout Phone - 31-162-060-308 Fax - 31-162-060-633

Distributor

EBV Elektronik GmbH Planetenbaan 2 NL-3606 AK Maarssenbroek Phone - 31 34 65-62353 Fax - 31 34 65-64277

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW ZEALAND

Representative

Reptechnic Pty. Ltd. 3/36 Bydown Street Neutral Bay, NSW 2089 Australia Phone - 612-953-9844 Fax - 612-953-9683

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORWAY

Representative & Distributor

BIT Elektronikk A/S Smedsvingen 4 Postboks 194 1360 Nesbru Phone - 47-66-981370 Fax - 47-66-981371

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SALES INFORMATION INTERNATIONAL

PHILLIPINES

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PORTUGAL

Distributor EBV Elektronik Calle Maria Tubau, 5 28050 Madrid Phone - 34-1-358-8608 Fax - 34-1-358-8560

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SINGAPORE

Sales & Customer Service Office

Micron Semiconductor Asia Pacific Pte Ltd 629 Aljunied Road #07-21 Cititech Industrial Bldg. Singapore 1438 Phone - 65-841-4066 Fax - 65-841-4166

Representative

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

SOUTH AFRICA

Distributor Computer Parts cc CNR Athol and Louis Botha Avenue Highlands North Johannesburg 2192 Phone - 27-11-887-2438 Fax - 27-11-887-2514

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SPAIN

Distributor

EBV Elektronik Calle Maria Tubau, 5 28050 Madrid Phone - 34-1-358-8608 Fax - 34-1-358-8560

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

Sweden

Π

C.

RMAT

Representative & Distributor IE Komponenter AB Ulvsundavägen 106 C Box 11 113 S-161 11 Bromma Phone - 46-8-804685 Fax - 46-8-262286

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SWITZERLAND

Distributors

EBV Elektronik GmbH Vorstadtstrasse 37 CH-8953 Dietikon Phone - 41 1-7 40 10 90 Fax - 41 1-7 41 51 10

Fenner Elektronik AG Gewerbestraße 10 CH-4450 Sissach Phone - 41 6-1 97 50 00 0 Fax - 41 6-1 97 17 42 1

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TAIWAN, R.O.C.

Sales & Customer Service Office

Micron Semiconductor Asia Pacific, Inc. Suite 1010, 10th Floor, 333 Keelung Road, Sec 1 Taipei, 110 Phone - 886-2-757-6622 Fax - 886-2-757-6656

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

THAILAND

Representative

Desner Electronics (Thailand) Co. Ltd. ITF Silom Palace Building 11th Floor, Room 160/128-129 Silom Road, Bangkok 10500 Phone - 662-2356492-5 Extension - 128-129 Fax - 662-2668040

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

UNITED KINGDOM

Sales & Customer Service Office

Micron Europe Limited Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA Phone - 44-344-360055 Fax - 44-344-869504

Representative

Cedar Technologies U.K. Ltd. Unit One Old Barns Rycote Lane Farm Milton Common Oxfordshire OX9 2NZ Phone - 44-844-278278 Fax - 44-844-278378

Distributors

Macro Group Burnham Lane Slough Berkshire SL1 6LN Phone - 44-628-604383 Fax - 44-628-666873

Thame Components Ltd. Thame Park Road Thame Oxfordshire OX9 3UQ Phone - 44-84-426-1188 Fax - 44-84-426-1681

Die Distributor

NOTES

NOTES

「「「「「「「「」」

5V ASYNCHRONOUS SRAMs	
3.3V ASYNCHRONOUS SRAMs	2
SYNCHRONOUS SRAMs	3
SRAM MODULES	4
TECHNICAL NOTES	5
PRODUCT RELIABILITY	6
PACKAGE INFORMATION	7
SALES INFORMATION	8

3.3V ASYNCHRONOUS SRAMs
SYNCHRONOUS SRAMs
SRAM MODULES
TECHNICAL NOTES
PRODUCT RELIABILITY
PACKAGE INFORMATION
SALES INFORMATION

Micron Semiconductor, Inc. 2805 East Columbia Road Boise, Idaho 83706 Tel: 208-368-3900 Fax: 208-368-4431 Customer Comment Line: 800-932-4992 (U.S.A.) 01-208-368-3410 (Intl.)

MSI Asia Pacific Pte. Ltd. #04-03 Leonie View 1 Leonie Hill Singapore 0923 Tel: 65-735-9846 Fax: 65-735-9847 Micron Europe Limited Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA United Kingdom Tel: 44-344-360055 Fax: 44-344-869504

Micron Semiconductor (Deutschland) GmbH Sternstrasse 20 D-85609 Aschheim Germany Tel: 49-89-903-0021 Fax: 49-89-904-3114

