
MCS-S1TM MACRO ASSEMBLE"R
USER'S GUIDE

Manual Order Number 9800937-01

.....

L-------,DDlJ~~®

MCS-S1TM MACRO ASSEMBLE"R
USER'S GUIDE

Manual Order Number 9800937-01

Copyright © 1979 Intel Corporation
'--_____ ---'1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 1""'--_____ --'

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
[nsite Megachassis RMX
Intel Micromap UPI
lntelevision Multibus ~Scope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

[A150/1279/10K FL

PREFA~~

This manual describes bow to program the MCS-51 single-chip microcomputers in
assembly language. It also describes the operating instructions for tbe MCS-51
Macro Assembler.

The term "MCS-51" refers to an entire family of single-chip microcomputers, all of
which have the same basic processor design. They include:

8051-the 8x51 processor with no ROM on-chip.

8351-tbe 8x51 processor with 4K bytes ROM. It is manufactured by Intel with
ROM memory pre-programmed.

875I-the 8x51 processor with 4K bytes EPROM. The 8751 can be progmmmed
and erased many times by the nser.

Throughout this manual when we wish to refer to a specific chip, but also point out
something that is true for the entire family, we speak of ~he 8051.

This book is intended as a reference, but it contains some instruc:tionlil mliterial as
well. It is organized liS follows:

"Chapter I-Introduction," whkh describes assembly language programming and
provides an overview of 8051 hardware.

"Chapter 2-0perands and Assembly-Time Expressions," whic:h describes each
operand class and discusses assembly-time expressions.

"Chapter 3-Instruction Set," completely describes the operation of each
instruction in alphabetical order.

"Chapter 4-Directives, " which describes how to define symbols and describes use
of all directives.

"Chapter 5-Macros," which describes the definition and use of the Macro
Processing Language.

"Chapter 6-Assembler Operation a.nd Controls," which describes how to invoke
the assembler and how to control assembler operation.

"Chapter 7-Assembler Output: Error Messages and Listing File Format," which
describes how to interpret error messages and the listing file.

Before you program one of the MCS-51 microcomputers, you should read the
MCS-5J User's Manual, Order Number 121517.

iii

CHAPTER 1
INTRODUCTION

PAGE

What is an Assembler? " 1-1
What the Assembler Does. .. I-I

Object File. .. 1-2
Listing File. .. 1-2

Writing, Assembling, and Debugging an
MCS-51 Program 1-2

Hardware Overview 1-8
Memory Segments. .. 1-8
Data Units I-II
Arithmetic and Logic Functions 1-12
General-Purpose Registers 1-12
The Stack. .. 1-13
Symbolically Addressable Hardware Registers. . .. 1-13
Bit Addressing. 1-14
The Program Status Word. 1-15
Timer and Counter 1-15
110 Ports 1-16
Serial I/O Port. .. 1-17
Interrupt Control 1-17
Reset. 1-19

CHAPTER 2
OPERANDS AND ASSEMBLY-TIME
EXPRESSIONS
Operands .. 2-1

Special Assembler Symbols. 2-2
Indirect Addressing. .. 2-2
Immediate Data 2-3
Data Addressing. .. 2-3
Bit Addressing. .. 2-5
Code Addressing. .. 2-8

Relative Jump (SJMP and Conditional Jumps) ... 2-8
2K Page Jumps and Calls (AJMP and ACALL) .. 2-8
Long Jumps and Calls (LJMP and LCALL) 2-8
Generic Jump and Call (JMP or CALL) 2-9

Assembly-Time Expression Evaluation 2-9
Specifying Numbers 2-9
ASM51 Number Representation 2-10
Character Strings in Expressions. 2-10
Use of Symbols .. 2-11
Using Operators in Expressions 2-12

Arithmetic Operators 2-13
Logical Operators.. 2-13
Special Assembler Operators. 2-14
Relational Operators. .. 2-14

Operator Precedence. .. 2-15
Segment Typing in Expressions 2-15

CHAPTER 3
INSTRUCTION SET
Introduction. .. 3-1
Notes. .. 3-143/3-144

CONTENTS I

CHAPTER 4
ASSEMBLER DIRECTIVES
Introduction ' 4-1

The Location Counter 4-1
Symbol Names 4-2
Statement Labels. .. 4-3

Symbol Definition Directives. .. 4-4
EQU Directive. .. 4-4
SET Directive. .. 4-5
DATA Directive 4-5
XDAT A Directive. .. 4-6
BIT Directive. .. 4-6

Memory Segment Controls 4-6
BSEG Directive. .. 4-7
CSEG Directive.. 4-7
DSEG Directive. .. 4-7
XSEG Directive. 4-7

Location Counter Controls 4-7
ORG Directive. .. 4-8
DS Directive. .. 4-8
DBIT Directive .. 4-8

Memory Initialization 4-8
DB Directive 4-9
DW Directive 4-10

The END Directive 4-10

CHAPTERS
MACRO PROCESSING
LANGUAGE (MPL)
Conceptual Overview of Macro Processing. 5-1

MPL Identifiers. .. 5-2
What Is Macro Processing? .. 5-2
What Is a Macro? 5-3

Macro Expansions and Side Effects 5-3
What Is Macro-Time? .. 5-4
Why Use Macros? : . .. 5-4

Parameters and Arguments. .. 5·5
Evaluation of the Macro Call. .. 5-6

A Comment-Generation Macro 5-7
A Macro to Add 16-Bit Values at Run-Time 5-8
Calling ADD16 with Actual Arguments 5-9
The LEN Built-in Function. 5-10

The EVAL Built-in Function. 5-10
Arithmetic Expressions. .. 5-11

String Comparator (Lexical-Relational) Function&. 5-11
Control Functions (IF , REPEAT, WHILE) 5-12

The IF Function. .. 5-12
The REPEAT Function 5·14
The WHILE Function 5-14
MATCH Function 5-15
Console I/O Functions 5-16
The SET Function. 5-16
The SUBSTR Function 5-17

v

I
CHAPTER 6
ASSEMBLER OPERATION
AND CONTROLS
How to Invoke the MCS-Sl Macro Assembler 6-1
Assembler Controls. 6-2

CHAPTER 7
ASSEMBLER OUTPUT: ERROR
MESSAGES AND LISTING FILE FORMAT
Error Messages and Recovery 7-1

Console Error Messages. .. 7-1
110 Errors 7-1
ASMS1 Internal Errors 7-2
ASMS1 Fatal Errors 7-2

Listing File Error Messages. 7-3
Source File Error Messages. 7-4
Macro Error Messages 7-8
Control Error Messages. 7-11
Special Assembler Error Messages. 7-13
Fatal Error Messages 7-13

Assembler Listing File Format. 7~14

vi

List File Heading. 7-17
Source Listing .. 7-17
Format for Macros and INCLUDE Files 7-18
Symbol Table 7-19

CONTENTS (Cont'dj

APPENDIX A
ASSEMBLY LANGUAGE
BNFGRAMMAR

APPENDIXB
INSTRUCTION SET SUMMARY

APPENDIXC
ASSEMBLER DIRECTIVE SUMMARY

APPENDIXD
ASSEMBLER CONTROL SUMMARY

APPENDIXE
MACRO PROCESSOR LANGUAGE

APPENDIXF
RESERVED SYMBOLS

APPENDIXG
SAMPLE PROGRAM

APPENDIXH
REFERENCE TABLES

APPENDIXJ
ERROR MESSAGES

TABLE TITLE PAGE

1-1 Register Bank Selection 1-12
1-2 Symbolically Addressable Hardware

RegIsters 1-14
1-3 State of the 8051 after Power-up 1-19
2-1 Special Assembler Symbols 2-2
2-2 Predefined Bit Addresses 2-7
2-3 Assembly Language Number

Representation 2-9
2-4 Examples of Number Representation 2-9
2-S Interpretations of Number

Represemation 2-10
2-6 Predefined Data Addresses 2-12

FIGURE TITLE PAGE

I-I Assembler Outputs 1-2
1-2 MCS-Sl Software Development

Flow Chart 1-3
1-3 MCS-Sl Example Program Listing 1-4
1-4 MCS-Sl Block Diagram 1-9
I-S MCS-Sl Code Address Space and External

Data Address Space 1-10
1-6 MCS-Sl Data Address Space and Bit

Address Space , 1-11
1-7 MCS-Sl Data Units 1-11
1-8 Bit Descriptions of Program Status Word .. I-IS
1-9 Bit Descriptions of TCON I-IS
1-10 Bit Descriptions for Port 3 1-16

TABLE

2-7
2-8
2-9
2-10
2-11
3-1
6-1
B-1
B-2
U-l
G-l

TABLES

TITLE PAGE

Arithmetic Assembly-Time Operators 2-13
Logical Assembly-Time Operators 2-13
Special Assembly-Time Operators 2-14
Relational Assembiy-Time Operators 2-14
Segment Typing in Operations. 2-16
Aboreviations and Notations Used. 3-3
Assembler Controls. .. 6-2
InstructIOn Set Summary. B-2
InstructIon Opcodes in Hexadecimal. B-9
Assembler Controls D-I
Sample Program G-I

ILLUSTRATIONS I

FIGURE TITLE PAGE

I-II Bit Descriptions for Serial Port Control 1-17
1-12 Bit Descriptions for Interrupt Enable and

Interrupt Priority 1-18
2-1 Hardware Register Address Area 2-4
2-2a Bit Addressable Bytes in RAM 2-6
2-2b Bit Addressable Bytes in Hardware

Register Address Area 2-6
3-1 Format For Instruction Definitions 3-2
7-1 Example Listing File Format 7-14
7-2 Example Heading 7-17
7-3 Example Source Listing 7-17
7-4 Examples of Macro Listing Modes 7-18
7-S Example Symbol Table Listing 7-19

vii

CHAPTER 1
INTRODUCTION

Most lines of source code in an assembly language source program translate into
machine instructions. Therefore, the assembly language programmer must be
familiar with both the assembly language and the microcomputer for which his
program is intended.

The first part of this chapter describes the assembler. The second part describes the
features of the MCS-51 single-chip processor from a programmer's point of view
the symbols and instructions that give programmers access to the hardware features.

What is an Assembler?

An assembler is a software tool-a program-designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed into
one of the MCS-51 processors and executed. If you have ever written a computer
program directly in machine-recognizable form, such as binary or hexadecimal
code, you will appreciate the advantages of programming in a symbolic assembly
language.

Assembly language operation codes (mnemonics) are easily remembered (MOV for
move instructions, ADD for addition). You can also symbolically express addresses
and values referenced in the operand field of instructions. Since you assign these
names, you can make them as meaningful as the mnemonics for the instructions.
For example, if your program must manipulate a date as data, you can assign it the
symbolic name DATE. If your program contains a set of instructions used as a
timing loop (a set of instructions executed repeatedly until a specific amount of time
has passed), you can name the instruction group TIMER.

For your convenience, the assembler has a set of predefined symbols that you may
use in your program. They correspond to addressable hardware features described

, later in this chapter.

What the Assembler Does

To use the assembler, create a source program with a text file editor. (The text editor
is described in the ISIS-II System User's Guide, Order Number 9800306.) The
source program consists of comments, assembler controls and directives, and
assembly language instructions. These instructions are written using mnemonic
opcodes and labels as described above.

When you invoke the assembler, specify the ISIS-II filename of your program. The
assembler can only be executed under ISIS-II running on an MDS-800 or SERIES-II
Model 220, 230 or 240 with 64K of memory and at least one disk or diskette drive.

1-1

Introduction

1-2

The assembler's output usually consists of two files:

the object file -containing the translated executable source code,
the listing file -containing a copy of the source and object code in human

readable format.

Object File

The object file is the executable form of the assembler's output. It is recorded in
absolute format hex code. This file may then be programmed into an 8751, or it may
be executed by an ICE-51 (the In-Circuit Emulator for the MCS-51 microcomputer).
The format of this file is described in Absolute Object File }<ormats, Order Number
9800183.

Listing File

The listing file provides a permanent record of both. the source program and the
object code. The assembler also provides diagnostic messages in the listing file for
syntax and other coding errors. For example, if you specify a 16-bitvalue for an
instruction that can use only an 8-bit value, the assembler tells you that the value
exceeds the permissible range. Chapter 7 describes the format of the listing file.

Figure 1-1. Assembler Outputs 937·'

Writing, Assembling, and Debugging an MCS-51 Program

There are several steps necessary to incorporate an MCS-51 microcomputer in your
application. The flow chart in figure 1-2 shows the steps involved in preparing the
code. If yOU are developing hardware for your application in addition to the
software, consultMCS-51 User'sManual.

MeS-51

CORRECT SOURCE CREATE
AND
EDIT

SOURCE FILE

~
ASSEMBLY

ERRORS
ASSEMBLE

SOURCE

I
MAJOR t I
BUGS IN MINOR TEST CODE TEST BUGS DEBUG AND WITH MODIFY ICE·51'· IN

CODE HEX CODE

!
PROGRAM EPROM

8751 WITH
Upp™'UPMTM

~" SPEC
!

'Y;' CHANGES ORDER

I I ETC. VERIFY ERASE PROTOTYPE 8051.
EPROM I 8751 CONTAINING

YOUR PROGRAM

Figure 1-2. MCS-51™Software Development Flow Chart 937·2

To illustrate the necessary steps let us show how one program was assembled and
programmed into an 8751. The program in figure 1-3 was created for use on any
member of the MCS-51 family. It is a good starting point to get acquainted with
program development in the MCS-51 family. It includes 110 and uses several unique
hardware features.

The invocation line and the console output generated by the assembler is shown
below. This example assumes two drives in the system. The assembler program is on
drive 0 and the source program is on drive I. The output files will be :FI :TEST .LST
(the listing file), and :Fl :TEST .HEX (the object file).

-ASM51 :F1 :TEST.SRC
ISIS-II MCS-51 MACRO ASSEMBLER, V1.0
ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 1-3 shows the resulting listing file, :Fl:TEST.LST. A complete listing is
shown in Appendix G.

The next step in debugging your code is to program it into an EPROM 8751 and test
it in a prototype environment. (Further testing could be done via ICE-51.) To pro
gram your code into an 8751 you must have a UPP connected to your Intellec
system. For a complete description of how to use UPP and UPM see Universal
PROM Programmer Reference Manual, Order number 9800133 and Universal
PROM Programmer User's Manual ,Order number 9800819.

Iniroduction

1-3

Introduction

1-4

M~S-51 MACRO ASS8MBLER PAGE

ISIS-II MCS-51 MACRO ASSEMBLER Vl.0
OBJECT MODULE PLACED IN :Fl:TEST.8EX
ASSEMBLER INVOKED BY: ASM51 :Fl:TEST.SRC

LOC OBJ

0032
003C

OBB8

OBB8 5_5950_5
OBBC 205E5820
OBCO 544F2052
OBC_ 45545950
OBC8 45204120
OBCC 4E554D42
OBDO 4552
OBD2 00
OBI>3 54595045
OBD7 20_94820
OBDB 46495253
OBDF 54204855
OBE3 _D424552
OBE7 3A20
OBE9 00
OBBA 54595045
OBEE 20494820
OBF2 5345434F
OBF6 4E4_204E
OBH 554D4245
OBFE 523A20
OCOl 00
Oe02 54484520
OC06 53554D20
OCOA 495120
OCOD 00
0000

0000 758920
0003 758D03

0006 7598DA
0009 D28E

LINE

10

11
12
13
14
15
16
17
18
19
20
21
22
23 2_
25
26
27
28

SOURCE

FIRSTJlUMBER DATA 50 ; STORAGE LOCATION FOR FIRST NUMBER
SECOND_NUMBER DATA 60 ; STORAGE FOR SECOND NUMBER

ORG 3000
; These strings will be plaoed 1n high memory
; They will be used to output messages to the termlnal
; The 009 byte at the end or eaoh string identities the end. character
TYPO: DB 'TYPE ·x TO RETYPE A NUMBER',OOH

FJlUMS: DB 'TYPE IN FIRST NUMBER: ',OOH

DB 'TYPE IN SECOND NUMBER: ',OOH

SUM: DB 'THE SUM IS • ,OOH

ORG 0
The following instruotlons prepare the serial port to reoleve and

send data at 110 baud
Hardware assumptions:

,
MOV TMOD,'00100000B
MOV TH1, Ie -253)

MOV SCON,Ill0ll0l0B
SEn TRl
STAftT:

Proper power supply
Logic to mod1fy TTL signal to current loop
.eoessary cabellng to connect tar.lnal

SET TIMER MODE TO AUTO_RELOAD
SET TIMER FOR 110 BAUD
110 = 10.7M80/12"16"2"253
110 = d~Blred baud rate
10.7KHz = external clock rate
-253 = tl_er preset value
12'16'2 = conversion constant
P.REPARB SBRIAL PORT FOR OPBRATIOR
START CLOCK

Figure 1-3. MCS-SI™Example Program Listing
937-3

MeS-51

MCS-51 MACRO ASSEMB~ER

~OC OBJ

OOOB 900BB8
OOOE 12006C
0011 120061
0014 900BD3
0017 12006C
0011 120061
0010 7832
001F 120017
0022 120061

0025 900BEA
0028 12006C
002B 120061
0021 783C
0030 120077
0033 120061

0036 7932
0038 1200BF
003B 793C
0030 1200BF
0040 E532

0042 253C
0044 F532
0046 7932
0048 120099
004B 9'00C02

004E 12006C
0051 AA04
0053 7932
0055 B7
0056 120091
0059 09
005A DAF9
005C 120061
005F SOlA

0000
OOOA

REG
0030
0020
002B

~INE

29
30
31
32
33
34
35
36
37
3S
39
40
41
42
43
44
45
46
47
4S
49
50
51
52
53
54
55
56
57
56
59
60
61
62
63
64
65
66
67
66
69
70
71
72
73 +1

121
122
123
124
125 +1

PAGE

SOURCE

; This part or program starts coa.unioation and gets first nUlDbar
MOV DPTR,fTYPO
CA~L PUT_STRING
CALL PUT_CRLF

MOV DPTR,IFJUMB
CAL~ PUT_STRING
CALL PUT_CRLF
MOV RO,IFIRST_NUMBER
CA~L GET_NUMB
CALL PUT_CRLF

OUTPUT HOW TO RECOVER FROM TIPO

GET ADDRESS OF DB STRING
OUTPUT STRING FOR PIRST NUMBER
OUTPUT CARRIAGE RETURN LINE FEED

GET FIRST NUMBER

THIS SECTION GETS SECOND NUMBER FROM CONSOLE
MOV DPTR,ISJUMB ; OUTPUT STRING FOR SECOND NUMBER
CALL PUT_STRING
CALL PUT_CRLF
HOV RO,ISECOND_NUMBER
CALL GET_NUMB
CALL PUT_CR~F

; GBT SECOND NUMBER

THIS SECTION OP CODE CONVERTS ASCII NUMBERS TO BINARY

Introduction

MOV Rl,IFIRST_NUMBER
CALL ASCBIN TRANSLATE ASCII STRING TO BINARY NUMBER

CR
LF

MOV Rl,'SECOND_NUMBER
CALL ASCBIN
MOV A,FIRSTJUMBER

ADD NUMBERS AND CHANGE BINARY SUM TO
ADD A,SECORD_NUMBER
MOV FIRST_NUHBER,A
MOV R l,IFIRST_NUMBER
CALL BINASC
HOV DPTR,ISUM

TRANSLATE SECOND ASCII STRING
; GET RESULT OF FIRST TRANSLATION

ASCII STRING
; ADD BOTH NUMBERS

, PREPARE FOR RETRANSLATION
; TRANSLATE HINARY NUMBER TO ASCII

OUTPUT SUM STRING AND COHVERTED ASCII SUM
CALL PUT_STRING ; OUTPUT SUM STRING
MOV R2,4
MOV Rl,'FIRST_NUMBER
MOV A,@Rl
CALL PUT_CHAR
INC Rl
DJNZ R2,PUT_SUM
CALL PUT_CRLF
JMP START

BEGIN SERVICE ROUTINES
THIS ~ISTING DOES NOT DISPLAY I/O SERVICE
SEE APPENDIX paR COMP~ETE LISTING

EQU ODH
EQU OAH

• NO~IST
NUMB_PTR
ZERO
MINUS
P~US

EQU
EQU
SQU
EQU

Rl
('0')
(I_I)

('+')

• EJECT

Figure 1-3. MCS-51 ™Example Program Listing (Cont'd.) 937-4

1-5

Introduction

1-6

M(5-51 MACRO ASSEMBLER

LOC OBJ

00E7
0099 E7
009A 772B
009C 30E704
009F 772D

OOAl 14
00A2 F4

00A3 09

00A4 75F064
00A7 84
00A8 2430
OOAA F7
OOAH 09

OOAC E5FO
001E 75FOOA
OOBl 84
00B2 2430
00B4 F7
00B5 09

00B6 E5FO
00B8 H30
OOBA F7

OOBB 19
OOBC 19
OOBD 19
OOBE 22

LINE

126
127
128
129
130
131
132
133
13_
135
136
137
138
139
140
141
142
143
H4
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176 +1

PAGE

SOURCE

••
Thi·s routine oonverts a binary 2'9 complement number to a 4 character
ASCII string.
INPUT:

The binary 'value must be located in memory at the address oontained
1n register 1 ..

OUTPUT:
The 4 oharater result "1.s placed in memory with the first charaoter
at the address' contained in register 1.

NOTES:
The contents of register A and B will be destroyed.
The contents of the memory location inittally addressed by
register 1 will be replaced with the first charater in the
resulting oharacter string •

BIHASC:
SiGH BIT

MOV
MOV
JNB

AGC.7
A,8HUMB_PTR
@NUMB_PTR,IPLUS
SIGN,VAL

MOV @HUMB_PTR,IMINUS
Change negative number to positive ..

DEC A
CPL A

; Now work on first digit
VAL:

INC HUMB_PTR
; Factor out first digit

MOV B,'100
DIY AB
ADD A,IZERO
MOV @HUMB~PTR,A'
INC NUMB_PTR

Factor out second digit Crom remainder
MOV A,B
MOV B,Il0
DIV AB
ADD A,IZERO
MOV @HUMB_PTR,A
INC NUMB_PTR

Get third and final digit
HOV A,B
ADD A,tZERO
MOV UUMB_PTR,A

restore NUHB_PTR

EJECT

DEC NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
RET

Get number

Test bit' 7 for] sign
Insert negative sign

Figure 1-3. MCS-5FMExample Program Listing (Cont'd.)

MCS-Sl

937-5

MCS-51

MeS-51 MACRO ASSEMBLER

LOC OBJ LINE

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

RKG 196
197
198

OOBF 09 199
OOCO E7 200
OOCI 9430 201
00C3 75F064 202
00C6 14 203

204
00C7 FF 205
00C8 09 206
00C9 B7 207
OOC' 9430 208
OOCC 75FOOA 209
OOCF A4 210

211
OODO 2F 212
OODI FF 213
0002 09 2"
00D3 87 215
00~4 9430 216

217
00D6 2F 218
00117 FF 219
00n8 19 220
00D9 19 221
OODA 19 222
OODB 87 223

224
OODC B_2D04 225
OODF SF 226
OO·EO F4 227
OOEI

0_
228

00E2 FF 229
00£3 IF 230

231

MCS-51 MACRO ASSRMBLER

LOC ORJ LUE

0084 F7 232
00R5 22 233

234

ASSEMBLY COMPI.ETE J NO ERRORS

PAGE

SOUBCE

.M •••• ~ ••• ••••••••••••••••••

This routine takes a 4 character string located in memory and converts
it to a binary 2's compLeMent number.
The numbar .uat begin with a sign character ('+' or '-')t and be
between -128 and +127.
INPUT:

Four ASCII characters a sign character followed a '0' or a ",
and the last 2 oharacters can be any digit ..
The contents of register 1 mnst pOint to the sign character ..

OUTPUT:
A binary 2'8 complftment representation of the value of the
character string ..

NOTES:
Register 1 oonteins the address of the binary value~

The contents of tne memory location initially
addreB~ed by register 1 1s destroyed~
The contents of re~lsters 1 and B and the accumulator
are dest.royed.

, •• A" •• r~'."ae~~ ... *~.ft.e.M.A •••• ".8ft ••••• ~ft •••••••• e ••••• e •••••••••••••
TEMP EQU R7
ASCRIN:
; Go right to nu~ber compute sl~n at end

INC NUMB_PTR
MOV A, UUMB_PTR
SUBB A,IZERO
MOV B,I100
MUL AB

Store first digit's value and go to next digit
MOY TEMP,A
INC NUMB_PTR
MOY A, nUMB_PTR
SUBB A,IZERO
MOV B,I10
MIJL AB

Add first digit value to secon store and go to third digit
ADD A,TEMP
HOY TEMP,A
INC RUMB_PTR
MOV A,nUMB_PTR
SUBB A,IZERO

Add third digit value to total ~ Store and go back for slgn
ADD A,TEMP
HOV' TEHP,A
DEC HUMB_PTR
DEC HUMB_PTR
DEC HOMBJTR
MOV A,@MlIMB_PTR

Test for sign value
CJIE A,IMIRUS,POS
MOV A,TEMP
CPL A
INCA
MOV TEMP,.

POS: MOY A,TEMP
; store result and return

SOURCE

HOV @NUMB_PTR,A
RET

END

FOliNO

PAGE

Figure 1-3. MCS-5FMExample Program Listing (Cont'd.)

Introduction

937-1;

1-7

Introduction

1-8

Hardware Overview

The 8051 is a high density microcomputer on a chip that is upwardly compatible
with the 8048. Its major features are:

• resident 4K bytes of ROM or EPROM program memory (no program memory
resident on 8051), expandable to 64K bytes

• resident 128 bytes of RAM memory, which includes 4 banks of 8 general-
purpose registers and a stack for subroutine and interrupt routine calls

• 64K bytes of external RAM address space

• 16-bit Program Counter giving direct access to 64K bytes of program memory

• 8-bit stack pointer that can be set to any address in on-chip RAM

• two programmable 16-bit timers/counters

• programmable full duplex serial I/O port

• four 8-bit bidirectional parallel I/O ports

• timer and 1/0 interrupts with 2 levels of priority

• 111 instructions with 51 basic functions (including memory to memory move)

• Boolean functions with 128 software flags and 12-bit address instructions

• one microsecond instruction cycle time

• Arithmetic and Logic Unit that includes add, subtract, multiply, and divide
arithmetic functions, as well as and, or, exlusive or, and complement logical
functions

Figure 1-4 is a block diagram of the MCS-51 processor. It shows the data paths and
principal functional units accessible to the programmer.

Memory Segments

The MCS-51 processors have four separate address segments or spaces:

• Code address space-4K on-chip, and up to 60K may be added off-chip by user.

• Internal Data address space-128 bytes RAM and 128 byte hardware register
address space (only 20 addresses used).

• External data address space-up to 64K of off-chip memory added by user.

• Bit address space-shares locations accessible in the data address space.

The code address space, internal data address space, and external data address space
correspond to three physically distinct memories, and are addressed by different
machine instructions. This is an important distinction that is a key to understanding
how to program the 8051.

MeS-51

MeS-51

ALU

PAB1
TMOD IP

TLO INTERRUPT

SERIAL THO CONTROL

PORT TL1

TH1

TIMER
CONTROL

Figure 1-4. MCS-51™Block Diagram

Introduction

D I

P ; ~~ ~~
C D

IR

P R
L

937-7

1-9

Introduction

1-10

To help you keep these segments and their addresses separate, ASM51 assigns a seg
ment typ.e attribute to symbols containing addresses in the various address spaces.

CSEG-Code address space
OSEG-Oata address space (on-chip)
XSEG-External data address space (off-chip)
BSEG-Bit address space

When you specify in an operand to an instruction a symbol with the wrong attribute,
ASM51 generates an error message to warn you of the inconsistency. Chapters 2 and
3 show what segment type attribute is expected in each instruction, and Chapter 4
describes how to define a symbol with any of the segment type attributes.

Figure 1-5 shows the code address space (usually ROM), and external data address
space (usually RAM). Off-chip ROM and RAM can be tailored to use all or part of
the address space to better reflect the needs of your application. You can access
ROM and off-chip RAM with the MOVC and MOVX instructions respectively.

To the programmer, there is no distinction between on-chip and off-chip code. The
16-bit program counter freely addresses on- and off-chip code memory with no
change in instruction fetch time .

...-----..,65,535

OFF-CHIP
ROM

~-----I4095

ON-CHIP
ROM

..... ____ ... 0

CODE
ADDRESS

SPACE

...-----.., 65,535

OFF-CHIP
RAM

..... ____ ... 0

EXTERNAL DATA
ADDRESS SPACE

937-8

Figure 1-5. MCS-51 ™Code Address Space and External Data Address Space

Figure 1-6 shows the data address space containing the bit address space. The data
address space contains 4 banks of general-purpose registers in the low 32 bytes
(0 - IFH). In addition to the 128 bytes of RAM, the 8051 's hardware registers are
mapped to data addresses. The addresses from 128 to 255 are reserved for these
registers, but not all of those addresses have hardware registers mapped to them.
These reserved addresses are unusable.

The data segment contains two areas that are bit addressable. One is located in RAM
in the 16 bytes above the register banks (20H - 2FH). The other bit address area is in
the address space reserved for hardware registers. The contents of both bit address
areas can be accessed as part of a byte with a data address or as a single bit with a bit
address.

A complete description of how to specify all of the addresses and how to access the
various address spaces in your program is given in Chapter 2-Operands and
Assembly-Time Expressions, and Chapter 3-The Instruction Set.

MeS-51

MeS-51

DIRECTLY
ADDRESSABLE

ON-CHIP
RAM

HARDWARE
REGISTER
MAPPING

ON-CHIP
RAM

RAM
BIT ADDRESS

SPACE

4 REGISTER
BANKS

255

127

47

31

08 STACK DEFAULT

Figure 1-6_ MCS-51™Data Address Space and Bit Address Space

Data Units

937-9

The 8051 manipulates data in four basic units-bits, nibbles (4 bits), bytes, and
addresses (16 bits)_

The most common data unit used is a byte; all of the internal data paths are 8 bits
wide, and the code memory, the data memory, and the external data memory store
and return data in byte units. However, there are many instructions that test and
manipulate single bits. Bits can be set, cleared, complemented, logically combined
with the carry flag, and tested for jumps. The nibble (BCD packed digit) is less
commonly used in the 8051, but BCD arithmetic can be performed without con
version to binary representation.

Instructions that use 16-bit addresses deal with the Data Pointer (DPTR a 16-bit
register) and the Program C0unter (jumps and subroutine calls). However, with the
add with carry (ADDC) and subtract with borrow (SUBB) instructions, software
implementation of 16-bit arithmetic is relatively easy.

BIT

D
4-BIT NIBBLE

o
8-BIT BYTE

16-BIT ADDRESS

15 8 7

Figure 1-7. MCS-51™Data Units 937-10

Introduction

1-11

Introduction

1-12

Arithmetic and Logic Functions

The arithmetic functions include:

• ADD-signed 2's complement addition

• ADDC-signed 2's complement addition

• SUBB-signed 2's complement subtraction with borrow

• DA-adjust 2 packed BCD digits after addition

• MUL-unsigned integer multiplication

• DIV-unsigned integer division

• INC-signed 2's complement increment

• DEC-signed 2's complement decrement

The accumulator receives the result of ADD, ADDC, SUBB, and DA functions. The
accumulator receives partial result from MUL and DIV. DEC and INC can be
applied to all byte operands, including the accumulator.

The logical functions include:

• ANL-Iogical and on each bit between 2 bytes or 2 bits

• CPL-Iogical complement of each bit within a byte or a single bit

• ORL-Iogicalor on each bit between 2 bytes or 2 bits

• XRL-Iogical exclusive or on each bit between 2 bytes

The accumulator usually receives the result of the byte functions, and the carry flag
usually receives the result of the bit functions, but some instructions place the result
in a specified byte or bit in the data address space.

The instructions shown above are described in Chapter 3.

General-Purpose Registers

The 8051 has four banks of 8 general-purpose registers. They are located in the first
32 bytes of on-chip RAM (OOH - IFH). You can access the registers of the currently
active bank through their special assembler symbols (RO, Rl, R2, R3, R4, R5, R6,
and R7). To change the active bank you modify the register bank select bits (RSO
and RSl) contained in the program status word (PSW, described in table 1-3). Table
1-1 below shows the bank selected for all values of RSO and RS 1.

Table 1-1. Register Bank Selection

RS1 RSO Bank Memory Locations

0 0 0 OOH-07H
0 1 1 OBH-OFH
1 0 2 10H-17H
1 1 3 1BH-1FH

MCS~51

MeS-51

The Stack

The stack is located in on-chip RAM. It is a last-in-first-out storage mechanism used
to hold the Program Counter during interrupts and subroutine calls. You can also
use it to store and return data with the POP and PUSH instructions. The Stack
Pointer contains the address of the top of the stack.

The Stack Pointer (SP) is an 8-bit register that may contain any address in on-chip
RAM memory. However, on the 8051 it should never exceed 127. If it does, all data
pushed is lost. A pop, when the SP is greater than 127, returns invalid data.

The SP always contains the address of the last byte pushed on the stack. On power
up (Reset) it is set to 07H, so the first byte pushed on the stack after reset will be at
location 08H. This location is compatible with the 8048's stack. Most programs
developed for the 8051 will reset the bottom of the stack by changing the contents of
the SP before using the stack, because 08H-IFH is the area reserved for several of
the 8051 's general-purpose-register banks. The following instruction causes the next
byte pushed on the stack to be placed at location 100.

MOVSP,#99 ; Initialize stack to start at location 100
; The hardware increments the SP
; BEFORE a push

Symbolically Addressable Hardware Registers

Each programmable register is accessible through a numeric data address, but the
assembler supplies a predefined symbol that should be used instead of the register's
numeric address. Table 1-2 identifies each hardware register, its numeric address,
and its predefined symbol.

The predefined symbols given in table 1-2 stand for the on-chip data addresses of the
hardware registers. In many cases the only access to these registers is through these
data addresses. However, some of the registers have an identity both as a special
assembler symbol and as a data address symbol (e.g., both "ACC" and "A" stand
for the accumulator), but even though these symbols may be semantically the same,
they are syntactically different. For example,

ADDA,#27

is a valid instruction to add 27 to the contents of the accumulator, but

ADD ACC,#27

is invalid and will cause an error, because there is no form of ADD taking a data
address as the destination (ACC specifies a data address). The differences become
even more subtle in some assembly instructions where both symbols are valid but
assemble into different machine instructions:

MOVA,#27
MOVACC,#27

; assembles into a 2 byte instruction
; assembles into a 3 byte instruction

Chapter 2 describes the syntax for all instruction operands, and Chapter 3 describes
the operands expected in each instruction.

Introduction

1-13

Introduction

1-14

Because the hardware registers are mapped to data addresses, there is no need for
special 1/0 or control instructions. For example,

MOV A,P2

moves a copy of the input data at Port 2 to the accumulator. To output a character
on the Serial 110 port (after preparing SCON), simply move the character into the
Serial port buffer (SBUF):

MOV SBUF,H'?'

Table 1-2. Symbolically Addressable Hardware Registers

Predefined Data
Symbol Address Meaning

ACC EOH ACCUMULATOR (Data address of A)

B FOH MULTIPLICATION REGISTER

DPH 83H DATA POINTER (high byte)

DPL 82H DATA POINTER (low byte)

IE A8H INTERRUPT ENABLE

IP B8H INTERRUPT PRIORITY

PO 80H PORTO

P1 90H PORT 1

P2 AOH PORT 2

P3 BOH PORT 3

PSW DOH PROGRAM STATUS WORD

SBUF 99H SERIAL PORT BUFFER

SCON 98H SERIAL PORT CONTROLLER

SP 81H STACK POINTER

TCON 88H TIMER CONTROL

THO 8CH TIMER 0 (high byte)

TH1 8DH TIMER 1 (high byte)

TLO 8AH TIMER 0 (low byte)

TL1 8BH TIMER 1 (low byte)

TMOD 89H TIMER MODE

Bit Addressing

Many of the hardware control registers are also bit addressable. The flags contained
in them can be accessed with a bit address as well as through the byte address shown
above. One way to do this is through the bit selector (.). For example to access the 0
bit in the accumulator, you might specify ACC.O.

Bit addressing allows the same simplicity in testing and modifying control and status
flags as was shown above with addressable registers. For example to start Timer 0
running, set the run flag to 1 via its bit address (SETB TCON.4).

Throughout the remainder of this chapter, several programmable features including
predefined bit addresses of status and control flags, discussed. To use these features,
you simply modify the corresponding address as if it were a RAM location.

MCS~51

MCS-51

The Program Status Word

The Program Status Word (PSW) contains several status bits that reflect the state of
the 8051. Figure 1-8 shows the predefined bit address symbol, the bit position, and
meaning of each bit in the PSW.

CARRY FLAG RECEIVES CARRY OUT PARITY OF ACCUMULATOR SET
FROM BIT7 OF ALU OPERANDS

PSW'7~ LPSW.o

BY HARDWARE TO llF IT CONTAINS
AN ODD NUMBER OF l's; OTHERWISE
IT IS RESETTO 0

PSW.6
AUXILIARY CARRY FLAG RECEIVES

CARRY OUT FROM BIT 3 OF
ADDITION OPERANDS

PSW.s----..J
GENERAL PURPOSE STATUS FLAG

PSW.4 --------'
REGISTER BANK SELECT BIT 1

PSW.l
USER DEFINABLE FLAG

L..-____ PSW.2
OVERFLOW FLAG SET BY
ARITHMETIC OPERATIONS

L-_____ PSW.3

REGISTER BANK SELECT BIT 0

Figure 1-8. Bit Descriptions of Program Status Word

Timer and Counter

937-11

The 8051 has two independently programmable timers. They feature a 16-bit
counter and are controlled by 2 registers, timer mode (TMOD) and timer control
(TCON). Figure 1-9 shows the predefined bit address symbols, the positions and
meanings of the bits in TCON. (For a complete description of the timer see the
MCS-5J User's Manual.)

TCON.7 ~~ITFl I TRllTFO ITRO IIEl IIT~l IIE~O II~ TCON.O

TIMER 1 OVERFLOW FLAG INTERRUPT 0 TYPE CONTROL BIT

TCON.6 TCON.l
TIMER 1 RUN CONTROL BIT INTERRUPT 0 EDGE FLAG

TCON.S TCON.2
TIMER 0 OVERFLOW FLAG INTERRUPT 1 TY.PE CONTROL BIT

TCON.4 _____ ---...1

TIMER 0 RUN CONTROL BIT L-_____ J~T~~~UPT 1 EDGE FLAG

Figure 1-9. Bit Descriptions of TCON
937-12

Introduction

I-IS

Introduction

1-16

I/O Ports

The 8051 has 4 8-bit 1/0 ports; each bit in the ports corresponds to a specific pin on
the chip. All four ports are buffered by a port latch, and they are addressable
through a data address (as a byte) or 8 bit addresses (as a set of bits). As noted
earlier, this removes the need for special 110 instructions. The numeric data address
and the predefined symbol for each port is shown below:

Port
Predefined Data

Symbol Address

0 PO 80H

1 P1 90H

2 P2 AOH

3 P3 BOH

Port 0 and Port 2 are used for external program and external data addressing. Port 0
also receives the input data from off-chip addressing. If off-chip memory is not
implemented, then ports 0 and 2 are bidirectional 110 ports. Port 1 is a general pur
pose bidirectional 1/0 port.

Port 3 contains the external interrupt pins, the external timer, the external data
memory read and write enables, and the serial 110 port transmit and receive pins.
The bits that correspond to these pins are individually addressable via predefined bit
address symbols. Figure 1-10 shows the meaning of each bit, its position in Port 3,
and its predefined bit address symbol.

If the external interrupts, external data addressing, and serial 110 features of the
8051 are not used Port 3 can function as a bidirectional 110 port.

P3.7 ~~ I tR
I T1 I TO IINT1IIN~+i"'~ n.

READ DATA FDR EXTERNAL MEMORY ~ L SERIAL PORT RECEIVE PIN

P3.6 P3.1
WRITE DATA FOR EXTERNAL MEMORY SERIAL PORT TRANSMIT PIN

P3.S P3.2
TIMER/COUNTER 1 EXTERNAL FLAG INTERRUPT 0 INPUT PIN

P3.4-----...J
TIMER/COUNTER 0 EXTERNAL FLAG

'------- P3.3
INTERRUPT 1 INPUT PIN

Figure I-tO. Bit Descriptions for Port 3 937-13

MCS-51

MeS-51

Serial 1/0 Port

The serial I/O port permits I/O expansion using UART protocols. The serial I/O
port is controlled by Serial Port Controller (SCON), a register that is both bit
addressable and byte addressable. Figure 1-11 shows the predefined bit address
symbols, positions and meanings of the bits in SCON. For complete details of Serial
I/O port control see the MCS-5J User's Manual.

~o., ~~lrr""I'YT)1 ~ ~" ..
SERIAL MODE CONTROL BIT 0 RECEIVE INTERRUPT FLAG

SCON.6 SCON.1
SERIAL MODE CONTROL BIT 1 TRANSMIT INTERRUPT FLAG

SCON.5 SCON.2
SERIAL MODE CONTROL BIT 2 RECEIVE BIT 8

SCON.4 _____1
RECEIVER ENABLE

'------- SCON.3
TRANSMIT BIT 8

Figure 1-11. Bit Descriptions for Serial Port Control

Interrupt Control

937-14

There are two registers that control timer and I/O interrupts and priorities. They are
IE (Interrupt Enable) and IP (Interrupt Priority). When the interrupt enable bit for
a device is 1, it can interrupt the processor. The 8051 does not respond to an
interrupt until the instruction being executed has been completed (this can be as long
as 4 cycles).

When it does respond, the 8051 's hardware disables interrupts of the same or lesser
priority and makes a subroutine call to the code location designated for the inter
rupting device. Typically, that location contains a jump to a longer service routine.
The instruction RETI must be used to return from a service routine, in order to
reenable interrupts. The reserved locations, the predefined labels, and the associated
interrupt devices are listed below. These labels may be used to aid the placement of
I/O routines in code memory.

Predefined
Label

RESET
EXTIO
TIMERO
EXTI1
TIMER1
SINT

Location

OOH
03H
OBH
13H
1BH
23H

Interrupting Device

Power on Reset (First instruction executed on power up.)
External interrupt 0
TimerO
External interrupt 1
Timer1
Serial 1/0 port

Introduction

1-17

Introduction

1-18

The 8051 has two levels of interrupt priority (0 and 1). Figure 1-12 shows the
predefined bit address symbol, the position and the device associated with each bit
contained in IE and IP. A level 1 priority device can interrupt a level 0 service
routine, but a level 0 interrupt will not affect a level 1 service routine. Interrupts on
the same level are disabled.

~\!:~li!;;llI11mil PS I PT1 I PX1 I PTO I PXO I
IP.7~ ~LIP.O RESERVED ~ L PRIORITY OF EXTERNAL INTERRUPT 0

IP.6 IP.1
RESERVED PRIORITY OF TIMER 0 INTERRUPT

IP.5 IP.2
RESERVED PRIORITY OF EXTERNAL INTERRUPT 1

IP.4 _____ --.J
'------- IP.3

PRIORITY OF SERIAL PORT INTERRUPT PRIORITY OF TIMER 1 INTERRUPT

Interrupt Priority

IE.7
ENABLE ALL INTERRUPTS

IE.6 __ --.J

RESERVED

IE.5 ------'
RESERVED

IE.4 _____ --.J

ENABLE SERIAL PORT INTERRUPT

IE.O
ENABLE EXTERNAL INTERRUPT 0

'----IE.1
ENABLE TIMER 0 INTERRUPT

'------IE.2
ENABLE EXTERNAL INTERRUPT 1

'-------IE.3
ENABLE TIMER 1 INTERRUPT

Interrupt Enable

937-15

Figure 1-12. Bit Descriptions for Interrupt Enable and Interrupt Priority

MeS-51

MCS-51

Reset

On reset all of the registers in the 8051 assume an initial value. Table 1-3 shows these
initial values. This will always be the state of the chip when your code begins
execution. You can use these initial values or reinitialize them as necessary in your
program.

Table 1-3. State of the 8051 after Power-up

Register Value

Accumulator OOH
Multiplication Register OOH
Data POinter OOOOH
Interrupt Enable OOH
Interrupt Priority OOH
PortO OFFH
Port 1 OFFH
Port 2 OFFH
Port 3 OFFH
Program Counter OOOOH
Program Status Word OOH
Serial Port Control OOH
Serial 1/0 Buffer undefined
Stack Pointer 07H
Timer Control OOH
Timer Mode OOH
Timer 0 Counter OOOOH
Timer 1 Counter OOOOH

NOTE

The PC is always set to 0 on reset, thus the first instruction executed in a
program is at ROM location o. The contents of RAM memory is unpre
dictable at reset.

Introduction

1-19

CHAPTER 2
OPERANDS AND ASSEMBLY-TIME

EXPRESSIONS

This chapter discusses the operand types used by ASM51. It describes their use and
some of the ways you can specify them in your program. The latter part of the
chapter deals with expressing numbers and using assembly-time expressions.

Operands
The general form of all instruction lines is as follows:

[Label:] Mnemonic [Operand] [,Operand] [,Operand] [;Comment]

The number of operands and the type of operands expected depend entirely on the
mnemonic. Operands serve to further define the operation implied by a mnemonic,
and they identify the parts of the machine affected by the instruction.

All operands fall into one of six classes:

• Special Assembler symbols

• Indirect Addresses

• Immediate Data

• Data Addresses (on-chip)

• Bit Addresses

• Code Addresses

A special assembler symbol is a specific reserved word required as the operand in an
instruction. Indirect addresses use the contents of a register to specify a data
address.

The remaining operand types (immediate data, data addresses, bit addresses, and
code addresses) are numeric operands. They may be specified symbolically, but they
must evaluate to a number. The range permitted for a numeric operand depends on
the instruction with which it is used. The operand can be made up of predefined or
user defined symbols, numbers, and Assembly-Time operators.

As described in Chapter 1, the data address space, the bit address space, the external
data address space, and the code address space are separate and distinct address
areas on the 8051. In many cases the same numeric value is a valid address for all
four address spaces (segments). To help avoid logic errors in your program, ASM51
performs type checking in instruction operands (and arguments to assembler
directives), that address these segments. The segment type expected in each of these
operands is described below. Chapter 4 describes how to define symbols with
different segment types.

2-1

Operands and Assembly-Time Expressions

2-2

Special Assembler Symbols

The assembler reserves several symbols to designate specific registers as operands. A
special assembler symbol is encoded in the opcode byte, as opposed to a data address
which is encoded in an operand byte. Table 2-1 lists these symbols and describes the
hardware register each represents.

Table 2-1. Special Assembler Symbols

Special
Symbol Meaning

A Accumulator

RO,R1,R2 Stands for the 8 general registers
R3,R4,R5, in the currently active bank
RS,R7 (4 register banks available)

DPTR Data pointer: a 1S-bit register
used for indexing tables in
code address space and external
address space

PC Program Counter: a 1S-bit register that
contains the address of the next
instruction to be executed.

C Carry flag receives ALU carry out
and borrow from bit 7 of the operands

AB Accumulator/B Register pair used in
MUL and DIV instructions

If the definition of an instruction requires one of these symbols, only that special
symbol can be used. However, you can, with the SET and EQU directives, define
other symbols to stand for the accumulator (A) or the working registers (RO,
RI, ... R7). Symbols so defined may not be forward referenced in an instruction
operand. You cannot use a special assembler symbol for any other purpose in an
instruction operand or directive argument. Several examples of instructions that use
these symbols are shown below.

INC DPTR

SETBC

MOV RS,A

JMP@A+PC

MULAB

Indirect Addressing

; Increment the entire 1S-bit contents of the Data POinter by 1

; Set the Carry flag to 1

; Move the contents of the accumulator to working register S

; Add the contents of the accumulator to the contents of the
;program counter and jump to that address

; Multiply accumulator by register B and place result in A and B

An indirect address operand identifies a register that contains the address of a
memory location to be used in the operation. The actual location affected will
depend on the contents of the register when the instruction is executed. In most
instructions indirect addresses affect on-chip memory. However, the MOVe and
MOVX instructions use an indirect address operand to address code memory and
external data memory respectively.

MeS-51

MCS-51 Operands and Assembly-Time Expressions

In on-chip indirect addressing either register 0 or register 1 of the active register bank
can be specified as an indirect address operand. The commercial at sign (@) fol
lowed by the register's special symbol (RO or Rl), or a symbol defined to stand for
the register's special symbol, indicates indirect addressing. On the 8051 the address
contained in the specified indirect address registers must be between 0 and 127. So,
you cannot access hardware registers through indirect addressing. If an indirect
address register contains a value greater than 127 when it is used for on-chip address
ing, the program continues with no indication of the error. If it is a source operand,
a byte containing undefined data is returned. If it is a destination operand, the data
is lost.

The following examples show several uses of indirect addressing.

ADDA,@R1

INC@RO

MOVX@DPTR,A

Immediate Data

; Add the contents of the on-chip RAM location addressed by
; register 1 to the accumulator

; Increment the contents of the on-chip RAM location
; addressed by register 0

; Move the contents of the accumulator to the off-chip memory
; location addressed by the data pointer

An immediate data operand is a numeric expression that, when assembled, is
encoded as part of the machine instruction. The pound sign (#) immediately before
the expression indicates that is is an immediate data operand. The numeric expres
sion must be a valid assembly-time expression.

The assembler represents all numeric expressions in 16 bits, and converts to the
appropriate form for instruction encoding. (Appendix H shows how ASM51
represents positive numbers internally. The 2's complement notation used for
negative numbers is shown below.) Most instructions require the value of the
immediate data to fit into a byte. The low order byte of the assembler's 16-bit inter
nal representation is used. This permits a numeric expression range of values from
-256 to +255. These values all have a homogeneous high order byte (i.e., all ones or
all zeros) when represented in 16 bits. The immediate data operands that accept a
16-bit value can use any value representable by the assembler. Immediate data
operands do not require any specific segment type.

The following examples show several ways of specifying the immediate data
operand.

MOVA,#OEOH

MOV DPTR,#OA14FH

ANLA,#128

Data Addressing

; Place the hex constant EO in the accumulator

; This is the only instruction that uses a 16-bit immediate data
; operand

; Mask all but the high order bit of the accumulator
; 128(base 10) = 1000 OOOO(base 2)

The memory address operand is a numeric expression that evaluates to one of the
128 on-chip memory addresses or one of the hardware register addresses. The low
order byte of the assembler's 16-bit internal representation is used. This permits a
range from -256 to +255, but since the 8-bit value encoded in the instruction has no

2-3

Operands and Assembly-Time Expressions

2-4

sign to the 8051, it is easier to think of its value as only positive (0 to 255). (Appendix
H shows how ASM51 represents positive numbers internally. The 2's complement
notation used for negative numbers is shown below.) Instructions that use the data
address operand require that the symbol or expression specified be of segment type
DSEG or have no segment type at all. (Symbols are discussed below under
Assembly-Time Expression Evaluation.)

The data addresses from 0 to 127 access the 8051's on-chip RAM space, while the
addresses from 128 to 255 access the hardware registers. Not all of the addresses in
the hardware register space are defined. The illustration below (figure 2-1) shows the
meaningful addresses and their predefined data address names.

If you read from a reserved address, undefined data will be returned. If you write to
a reserved address, the data will be lost. U sing these peculiarities in your program
may result in incompatability with future versions of the chip.

The following examples show several ways of specifying data addresses.

MOV P1,A

ORLA,20*5

INC 32

F

HIGH
ORDER
DIGIT

C OF
ADDRESS

B

A

8

; Move the contents of the accumulator to the predefined data
; address 90(base 16) Port 1

; Logical OR of accumulator with location 100(base 10) uses an
; assembly-time operator multiply

; Increment location 32 (base 10) in memory

4 6 ABC D E F

LOW ORDER DIGIT OF ADDRESS

Figure 2-1. Hardware Register Address Area 937-16

MCS-Sl

MeS-51 Operands and Assembly-Time Expressions

Bit Addressing

A bit address is a numeric value encoded in the instruction by the assembler. There
are two ways to represent a bit address in an operand.

1. You can specify the byte that contains the bit with a data address, and single out
the particular bit in that byte with the bit selector ("." period) followed by a bit
identifier (0-7). For example, 40.5, 21H.0 and ACC.7 are valid uses of the bit
selector. You can use an assembly-time expression to express the byte address or
the bit identifier. The assembler will translate this to the correct numeric value.
However, only certain bytes in the on-chip address space are bit addressable.
(See figure 2-2.)

2. You can do the translation youself, by using a numeric expression that evaluates
to a bit address. Like memory addresses, the low order byte of the assembler's
16-bit internal representation is used. This permits a numeric expression range
from -256 to +255, but since the 8-bit value encoded in the instruction has no
sign, it is easier to think of its value as only positive (0 to 255). (Appendix H
shows how ASM51 represents positive numbers internally. The 2's complement
notation used for negative numbers is shown below.)

Instructions that use the bit address operand require that symbols or expressions
used be of segment type BSEG, or have no segment type at all. (Symbols are dis
cussed below under Assembly-Time Expression Evaluation.) Figures 2-2a and 2-2b
show the bits assigned to each numeric bit address.

The following examples show several ways of specifying the same bit.

SETBTR1 ; Set the predefined bit address TR1 (Timer 1 Run Flag)

SETB88H.6 ; Set bit 6 of location 88H (Timer 1 Run Flag)

SETB8EH ; Set the bit address 8E(base 16) (Timer 1 run flag)

As with data addresses there are several bit addresses that are predefined as symbols
that you can use in an operand. Table 2-2 shows these predefined bit addresses. You
can also define your own bit address symbols with the BIT directive described in
Chapter 4 Assembler Directives.

2-5

Operands and Assembly-Time Expressions

2-6

B FOH

ACC

psw
COH

P3 BOH

P2 AOH

P1 SOH

PO 90H

BIT POSITION I-'--r--'::r--'::L':r'-r'-r-r'-Y
7F 7E 7D 7C 78 7A 79 78

NOT
BITADDRESSABLE

BIT
ADDRESS

RAM
BIT
ADDRESS
SPACE

Figure 2-2a. Bit Addressable Bytes in RAM

111]11 ••
7 6 5 4 3 2 1

B7 B6 B5 B4 B3 B2 B1 BO

A7 A6 AS A4 A3 A2 A1 AO

97 96 9594 9392 91 90

8786 8584 83 82 81 80

0

F8H

E8H

D8H

C8H

B8H IP

ASH IE

98H SCON

asH TCON

937-17

Figure 2-2b. Bit Addressable Bytes in Hardware Register Address Area

MeS-51

MeS-51 Operands and Assembly-Time Expressions

Table 2-2. Predefined Bit Addresses

Symbol
Bit Bit

Meaning
Position Address

CY PSW.7 D7H Carry Flag
AC PSW.6 D6H Auxiliary Carry Flag
FO PSW.5 D5H Flag 0
RS1 PSW.4 D4H Register Bank Select Bit 1
RSO PSW.3 D3H Register Bank Select Bit 0
OV PSW.2 D2H Overflow Flag
P PSW.O DOH Parity Flag

TF1 TCON.7 8FH Timer 1 Overflow Flag
TR1 TCON.6 8EH Timer 1 Run Control Bit
TFO TCON.5 8DH Timer 0 Overflow Flag
TRO TCON.4 8CH Timer 0 Run Control Bit
IE1 TCON.3 8BH Interrupt 1 Edge Flag
IT1 TCON.2 8AH Interrupt 1 Type Control Bit
lEO TCON.1 89H Interrupt 0 Edge Flag
ITO TCON.O 88H Interrupt 0 Type Control Bit

SMO SCON.7 9FH Serial Mode Control Bit 0
SM1 SCON.6 9EH Serial Mode Control Bit 1
SM2 SCON.5 9DH Serial Mode Control Bit 2
REN SCON.4 9CH Receiver Enable
TB8 SCON.3 9BH Transmit Bit 8
RB8 SCON.2 9AH Receive Bit 8
TI SCON.1 99H Transmit Interrupt Flag
RI SCON.O 98H Receive Interrupt Flag

EA IE.7 AFH Enable All Interrupts
ES IE.4 ACH Enable Serial Port Interrupt
ET1 IE.3 ABH Enable Timer 1 Interrupt
EX1 IE.2 AAH Enable External Interrupt 1
ETO IE.1 A9H Enable Timer 0 Interrupt
EXO IE.O A8H Enable External Interrupt 0

RD P3.7 B7H Read Data for External Memory
WR P3.6 B6H Write Data for External Memory
T1 P3.5 B5H Timer/Counter 1 External Flag
TO P3.4 B4H Timer/Counter 0 External Flag
INT1 P3.3 B3H Interrupt 1 Input Pin
INTO P3.2 B2H Interrupt 0 Input Pin
TXD P3.1 B1H Serial Port Transmit Pin
RXD P3.0 BOH Serial Port Receive Pin

PS IP.4 BCH Priority of Serial Port Interrupt
PT1 IP.3 BBH Priority of Timer 1 Interrupt
PX1 IP.2 BAH Priority of External Interrupt 1
PTO IP.1 B9H Priority of Timer 0
PXO IP.O B8H Priority of External Interrupt 0

2-7

Operands and Assembly-Time Expressions

2-8

Code Addressing

There are three types of instructions that require a code address in their operands.
They are relative jumps, absolute 2K page jumps or calls, and long jumps or calls.
The difference between each type is the range of values that the code address
operand may assume. All three expect an expression which evaluates to a code
address (a numeric expression between 0 and 65535) but if you specify a relative
jump or a 2K page jump, only a small subset of all possible code addresses is valid.
Instructions that use the code address operand require that the symbol or expression
specified be of segment type CSEG or have no segment type at all. (Symbols and
labels are discussed below under Assembly-Time Expression Evaluation.)

Relative Jump (SJMP and Conditional Jumps)

The code address to a relative jump must be close to the relative jump instruction
itself. The range is from -128 to +127 bytes from the first byte of the instruction
that follows the relative jump.

The assembler takes the specified code address and computes a relative offset that is
encoded as an 8-bit 2's complement number. That offset is added to the contents of
the program counter (PC) when the jump is made, but, since the PC is always
incremented to the next instruction before the jump is executed, the range is com
puted from the succeeding instruction.

When you use a relative jump in your code, you must use a numeric expression that
evaluates to the absolute code address of the jump destination. The assembler does
all the offset computation. If the address is out of range, the assembler will issue an
error message.

2K Page Jumps and Calls (AJMP and ACALL)

The code address operand to a 2K page jump or call is a numeric expression that is
evaluated and then encoded in the instruction by the assembler. The low order 11
bits of the destination address are placed in the opcode byte and one operand byte.
When the jump or call is executed, the II-bit page address replaces the low order 11
bits of the program counter. This permits a range of 2048 bytes, or anywhere within
the current 2K byte page.

If the page jump or call is the last instruction on a 2K page, the high order bits of the
PC change when incremented to address the next instruction; thus, the jump will be
made within that new 2K page.

Long Jumps and Calls (LJMP and LCALL)

The code address operand to a long jump or call is a numeric expression that will be
evaluated and then encoded as a 16-bit value in the instruction by the assembler. All
16 bits of the program counter are replaced by this new value when the jump or call
is executed. Since 16 bits are used, any value representable by the assembler will be
acceptable (0-65535).

The following examples show each type of instruction that calls for a code address.

SJMP LABEL

ACALLSORT

LJMPEXIT

; Jump to LABEL (relative offset LABEL must be within -128
; and + 127 of instruction that follows SJMP)

; Call subroutine labeled SORT (SORT must be an address to
; within the current 2K page)

; Long jump; the label or symbol EXIT must be defined
; somewhere in the program

MeS-51

MCS-Sl Operands and Assembly-Time Expressions

Generic Jump and Call (JMP or CALL)

The assembler provides two instruction mnemonics that do not represent a specific
opcode. They are JMP and CALL. JMP may assemble to any of the unconditional
jump instructions (SJMP, AJMP, or LJMP). CALL may assemble to ACALL or
LCALL. These generic mnemonics will always evaluate to an instruction that will
reach the specified code address operand.

This is an effective tool to use during program development, since sections of code
change drastically in size with each development cycle. (See Chapter 3 for a complete
description of both generic jumps.)

Assembly-Time Expression Evaluation

An expression is a combination of numbers, character strings, symbols, and
operators that evaluate to a single 16-digit binary number. Except for some direc
tives all expressions can use forward references (symbols that have not been defined
at that point in the program) and any of the assembly-time operators.

Specifying Numbers

You can specify numbers in hexadecimal (base 16), decimal (base 10), octal (base 8),
and binary (base 2). The default representation, used when no base designation is
given, is decimal. Table 2-3 below shows the digits of each numbering system and
the base designation character for each system.

Table 2-3. Assembly Language Number Representation

Number System Base Designator Digits in Order of Value

Binary B 0, 1

Octal OorQ 0, 1, 2, 3, 4, 5, 6, 7

Decimal o or (nothing) 0, 1, 2, 3, 4, 5, 6, 7, 8, g

Hexadecimal H 0, 1, 2, 3, 4, 5, 6, 7,
8, 9,A, B,C, 0, E, F

The only limitation to the range of numbers is that they must be representable within
16 binary digits.

Table 2-4 gives several examples of number representation in each of the number
systems.

Table 2-4. Examples of Number Representation

base 16 base 10 base 8 base 2

50H 80 1200 01 01 OOOOB

OACH· 1720 254Q 10101100B

01H 1 1Q 1B

10H 160 20Q 10000B

• A hexadecimal number must start with a decimal digit;
o is used here.

2-9

Operands and Assembly~Time Expressions

2-10

ASM51 Number Representation

Internally, ASM51 represents all numeric values with 16 bits. When ASM51
encounters a number in an expression, it immediately converts it to 16-bit binary
representation. Numbers cannot be greater than 65,535. Appendix H describes con
version of positive num.bers to binary representation.

Negative numbers (specified by the unary operator "-") are represented in 2's
complement notation. There are two steps to converting a positive binary number to
a negative (2's complement) number.

0000 0000 0010 OOOOB = 20H

1111 1111 1101 1111 = Not20H 1. Complement each bit in the number.

1111 1111 1110 0000 = (Not 20H) +1

1111 1111 1110 OOOOB = -20H

2. Add 1 to the complement.

To convert back simply perform the same two steps again.

Although 2's complement notation is used, ASM51 does not convert these numbers
for comparisons. Therefore, large positive numbers have the same representation as
small negative numbers (e.g., -1 = 65535). Table 2-5 shows number interpretation at
assembly-time and at program execution-time.

Table 2-5. Interpretations of Number Representation

Number Characteristic
Assembly-Time Program Execution

Expression Evaluation Arithmetic

Base Representation Binary, Octal, Decimal, Binary, Octal, Decimal,
or Hexadecimal or Hexadecimal

Range 0-65,535 User Controlled

Evaluates To: 16 Bits User Interpretation

Internal Notation Two's Complement Two's Complement

Signed/Unsigned Unsigned User Interpretation
Arithmetic

Character Strings in Expressions

The MCS-51 assembler allows you to use ASCII characters in expressions. Each
character stands for a byte containing that character's ASCII code. (Appendix H
contains a table of the ASCII character codes.) That byte can then be treated as a
numeric value in an expression. In general two characters or less are permitted in a
string (only the DB directive accepts character strings longer than two characters). In
a one character string the high byte is filled with O's. With a two character string, the
first character's ASCII value is placed in the high order byte, and the second
character's value is placed in the low order byte.

All character strings must be surrounded by the single quote character ('). To
incorporate the single quote character into the string, place two single quote
characters side-by-side in a string. For example, 'z'" is a string of two characters: a
lower case "z" and the single quote character.

MeS-51

MCS-Sl Operands and Assembly-Time Expressions

The ability to use character strings in an expression offers many possibilities to
enhance the readability of your code. Below, there are two examples of how
character strings can be used in expressions.

TEST: CJNE A,I'X' ,SKIP ; It A contains 'X' then tall through
JMP FOUND ; Otherwise, jump to skip and
SKIP: MOV A,@R1
DECR1
DJNZ R2,TEST

MOV A,SBUF

SUBB A,I'O'

; Move next character into accumulator
; Change R1 to point to next character
; JUMP to TEST it there are still more
; characters to test

; Move character in serial port buffer
; to accumulator
; Subtract '0' from character just read
; this returns binary value of the digit

NOTE

A corollary of this notation for character strings is the null string-two
single quotes surrounding no characters (side-by-side). When the null
character string is used in an expression it evaluates to 0, but when used as
an item in the expression list of a DB directive it will evaluate to nothing and
will not initiate memory. (See Chapter 4 for an example.)

Use of Symbols

The assembler has several kinds of symbols available to the programmer. They may
stand for code addresses, bit addresses, data addresses, constants, or registers. They
allow a programmer to enhance the readability of his code. All symbols are assigned
two attributes when they are defined in the program: a numeric value, and a
segment type.

Once you have defined a symbol anywhere in your program (some expressions
require that no forward references be used), you can use it in any numeric operand
in the same way that you would use a constant, providing you respect segment type
conventions. The segment type required for each numeric operand is described
above. The creation of user-defined symbols is completely described in Chapter 4
"Assembler Directives."

Besides the user-defined symbols there are several predefined bit addresses and data
addresses available for commonly used hardware registers and flags. Table 2-6
shows all of the predefined memory address symbols and the values they represent.
The bit address symbols have been listed earlier in this chapter. (See Table 2-2.)

2-11

Operands and Assembly-Time Expressions

2-12

Table 2-6. Predefined Data Addresses

Hexadecimal
Symbol Address Meaning

ACC EO Accumulator
8 FO Multiplication Register
DPH 83 Data POinter (high byte)
DPL 82 Data Pointer (low byte)
IE A8 Interrupt Enable
IP 88 Interrupt Priority
PO 80 PortO
P1 90 Port 1
P2 AO Port 2
P3 80 Port 3
PSW DO Program Status Word
S8UF 99 Serial Port 8uffer
SCON 98 Serial Port Controller
SP 81 Stack Pointer
TCON 88 Timer Control
THO 8C Timer 0 (high byte)
TH1 80 Timer 1 (high byte)
TLO 8A Timer 0 (low byte)
TL1 88 Timer 1 (low byte)
TMOD 89 Timer Mode

Remember that these symbols evaluate to a data address and cannot be used in
instructions that call for a special assembler symbol.

ADDA,#5

ADD ACC,#5

; This is a valid instruction A is the special
; assembler symbol required for this operand
; This is an invalid instruction and will generate
; an error message. ACC is an address and not
; the special symbol required for the instruction

There is an additional symbol that may be used in any numeric operand, the location
counter ($). When you are using the location counter in an instruction's operand, it
will stand for the address of the first byte of the instruction currently being encoded.
You can find a complete description of how to use and manipulate the location
counter in Chapter 4, "Assembler Directives."

Using Operators in Expressions

There are four classes of assembly-time operators: arithmetic, logical, special, and
relational. All of them return a 16-bit value. Instruction operands that require only 8
bits will receive the low order byte of the expression (unless the operator HIGH is
used). The distinction between each class of operators is loosely defined. Since they
may be used in the same expression, they work on the same type of data, and they
return the same type of data.

MeS-51

MeS-51 Operands and Assembly-Time Expressions

Arithmetic Operators

Table 2-7 contains a list of all the arithmetic operators:

Table 2-7. Arithmetic Assembly-Time Operators

Operator Meaning

+ Unary plus or add

- Unary minus or subtract

* Multiplication

1 Integer division (discard remainder)

MOD Modular division (discard quotient)

The following examples all produce the same bit pattern in the low order byte
(0011 OlOlB):

+53
27+26
-203
65-12
2*25+3 multiplication is always executed before the addition
160/3
153 MOD100

Note that the MOD operator must be separated from its operands by at least one
space or tab.

Logical Operators

Table 2-8 contains a list of all logical operators. The logical operators perform their
operation on each bit of their operands.

Table 2-8. Logical Assembly-Time Operators

Operator Meaning

OR Full 16-bit OR

AND Full 16-bit AND

XOR Full 16-bit exclusive OR

NOT Full 16-bit complement

The following examples all produce the same 8-bit pattern in the low order byte
(0011 OlOlB):

000100018 OR 001101008
011101018 AND 101101118
110000118 XOR 111101108

NOT 110010108

Note that all logical operators must be separated from their operand by at least one
space or tab.

2-13

Operands and Assembly-Time Expressions

2-14

Special Assembler Operators

Table 2-9 contains a list of all special operators:

Table 2-9. Special Assembly-Time Operators

Operator Meaning

SHR 16-bit shift right

SHL 16-bit shift left

HIGH Select the high order byte of operand

LOW Select the low order byte of operand

() Evaluate the contents of the parenthesis first

The following examples all produce the same 8-bit pattern in the low order byte
(0011 0IOlB):

01AFH SHR3

HIGH (1135H SHL 8)

LOW 1135H

Bits are shifted out the right end
and 0 is shifted into the left

Parenthesis is required since HIGH
has a greater precedence than SHL
Bits are shiftedout the left and
o is shifted in the right

Without using the LOW operator
the high order byte would have
caused an error in an a-bit
operand.

Note SHR, SHL, HIGH and LOW must be separated from their operands by at
least one space or tab.

Relational Operators

The relational operators differ from all of the other operators in that the result of a
relational operation will always be either 0 (False) or OFFFFH(True). Table 2-10
contains a list of all the relational operators:

Table 2-10. Relational Assembly-Time Operators

Operator Meaning

EQ = Equal

NE <> Not equal

LT < Less than

LE <= Less than or equal to

GT > Greater than

GE >= Greater than or equal to

Mes-sl

MeS-51 Operands and Assembly-Time Expressions

The following examples all will return TRUE (OFFFFH):

27H EQ39D
27H<>27D
33LT34
7>5
16GE 10H

Note that the two-letter (mnemonic) form of the relational operator must be
separated from their operands by at least one space or tab; the symbolic form does
not.

Operator Precedence

Every operator is given a precedence in order to define which operator is evaluated
first in an expression. For example the expression 3*5+1 could be interpreted as 16
or 18 depending on whether the + or the * is evaluated first. The following list shows
the precedence of the operators in descending order.

• Parenthesized expression ()

• HIGH, LOW
• *, I, MOD, SHL, SHR
• +, - unary and binary forms

• EQ,NE,LT,LE,GT,GE,=,<>,<,<=,>,>=

• NOT

• AND
• OR,XOR

All operators on the same precedence level are evaluated from left to right in the
expression.

Segment Typing in Expressions

Most expressions formed with assembly-time operators do not have a segment type,
but some operations allow the expression to assume the segment type of a symbol
used in the expression. The rules for expressions having a segment type are listed
below.

1. Expressions that contain only constants or symbols without a segment type have
no segment type.

2. The result of operations performed by the following operators will have no
segment type.

HIGH
EQ

LOW
NE
I

NOT
GT
MOD

OR
GE
SHR

XOR
LE
SHL

AND
LT

2-15

Operands and Assembly-Time Expressions

2-16

• Operations performed with +, - and () can have a segment type. Table 2-11
shows what conditions are necessary for the result to have a segment type.

Table 2-11. Segment Typing in Operations

Operand Operator Operand Segment Type

- () Value (S) Segment type maintained

- + Value (S) Segment type maintained

- - Value (S) Segment type maintained

Value (N) + Value(S) Segment type maintained

Value (S) + Value(N) Segment type maintained

Value(S) + Value (S) Segment type lost

Value(N) - Value (S) Segment type maintained

Value(S) - Value (N) Segment type maintained

Value (S) - Value(S) Segment type lost

(S) is a numeric value (symbol or the result of an operation) with a segment type
attribute

(N) is a numeric value with no segment type attribute

NOTE
The table above shows the result of simple binary and unary operations. These
results are also valid for more complex expressions. Each operation is evaluated
according to precedence and the intermediate result will have a numeric value
and sometimes a segment type.

MeS-51

CHAPTER 3
INSTRUCTION SET

This chapter contains complete documentation for all of the 8051 instructions. The
instructions are listed in alphabetical order by mnemonic and operands.

Introduction

This chapter is designed to be used as a reference. Each instruction is documented
using the same basic format. The action performed by an instruction is defined in
three ways. First, the operation is given in a short notation; the symbols used and
their meanings are listed in the table below. The operation is then defined in ~ few
sentences in the description section. Finally, an example is given showing all of the
registers affected and their contents before and after the instruction.

NOTE
The only exception is that the program counter (PC) is not always shown.
All instructions increment the PC by the number of bytes in the instruction.
The "Example:" entry for most instructions do not show this increment by
the PC. Only those instructions that directly affect the PC (e.g., JMP,
ACALL, or RET) show the contents of the PC before and after execution.

The list of notes that appears at the bottom of some instructions refer to side-effects
(flags set and cleared and limitations of operands). The numbers refer to the notes
tabulated on page 3-143/3-144. You can unfold that page for easier reference while
you are studying the instruction set.

The "Operands:" entry for each instruction briefly indicates the range of values and
segment type permitted in each operand. For a complete description of the limits of
any operand see Chapter 2. In general, the operand's name will identify what section
to consult.

With one exception, the operands to 3 byte instructions are encoded in the same
order as they appear in the source. Only the "Move Memory to Memory" instruc
tion is encoded with the second operand preceding the first.

3-1

Instruction Set

J-2

The illustration below (figure 3-1) describes the meaning of each section of the
instruction documentation.

ADD
Add Immediate Data

Mnemonic: ADD

Operands:

Format:

A
data

ADD A,fdata

Accumulator
-256 <= data <= + 255

BltPaUern:
I 001 00100 Ilmmedlate Datal

7 0 7 0

Operatlon~

Bytes: 2
Cycles: 1

(A) - (A) + data

Flags: C AC FO RS1 ASO OV

'-I-I I I I-I I-I
PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

example: ADD A,I32H ; Add 32H to accumulator

Encoded Instruction:

100100100 I 001t0010 I

707 0

Before

Accumulator

1001001101

o
Notes: 4, 5, 6, 7

After

Accumula\or

101011000 I
7 0

Figure 3-1. Format For Instruction Definitions

Mnemonic: shows opcode mnemonic. It is shown in upper case, but upper or
lower case characters are permitted.

Operands: indicates range and type of operands permitted.

Format: shows the format of the instruction, including the order of operands
on the source line.

Bit Pattern: indicates bit pattern in opcode and position of operands when
encoded. Letters in the opcode's bit pattern vary with operand specified.

Operation: symbolically defines the operation performed by the instruction.
The symbols used in this entry are defined in table 3-1.

Bytes and Cycles: shows the number of bytes of code and the number of
machine cycles used by the instruction.

Flags: indicates any status flag that may be changed during the execution of
the instruction.

Description: is a brief prose description of the operation performed by the
instruction.

Example: shows an example instruction as it would appear in the source. It
also shows the bit pattern of the encoded instruction, and the contents of all
registers affected by the instruction, immediately before and after the instruc
tion is executed.

The PC is incremented by all instructions, but only instructions that affect the
PC as part of their operation show its contents in the example.

Notes: indicates the notes on page 3-143/3-144 that pertain to the instruction.

937-18

MeS-51

MeS-51

Table 3-1. Abbreviations and Notations Used

A
AB
B
bit address
page address
relative offset
C
code address
data
data address
DPTR
PC
Rr
SP
high
low
i-j
.n

AND
NOT
OR
XOR

+

(X)

«X))

<>
<
>

Accumulator
Register Pair
Multiplication Register
8051 bit arldress
II-bit corle address within 2K page
8-bit 2's complement offset
Carry Flag
Absolute code address
Imm.ediate data
On-chip 8-bit RAM address
Data pointer
Program Counter
Register(r=O-7)
Stack pointer
High order byte
Low order byte
Bits i through j
Bitn

Logical AND
Logical complement
Logical OR
Logical exclusive OR
Plus
Minus
Divide
Multiply
The contents of X
The memory location addressed by (X)

(The contents of X)
Is equal to
Is not equal to
Is less than
Is greater than
Is repl~ced by

Instruction Set

3-3

ACALL

3-4

Absolute Call Within 2K Byte Page

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

ACALL

code address

ACALL code address

I aaa1 0001 I aaaaaaaa I
7 0 7 0

(PC) +- (PC) + 2
(SP) +- (SP) + 1
((SP)) +- (PC low)
(SP) +- (SP) + 1
((SP)) +- (PC high)
(PC) 0-10 +- page address

C AC FO RS1 RSO OV p

PSW

Description: This instruction stores the incremented contents of the program
counter (the return address) on the stack. The low-order byte of the
program counter (PC) is always placed on the stack first. It replaces
the low-order 11 bits of the PC with the encoded ll-bit page
address. The destination address specified in the source must be
within the 2K byte page of the instruction following the ACALL.

The 3 high-order bits of the ll-bit page address form the 3 high
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

MCS-Sl

MeS-51

Example: ORG35H
ACALL SORT ; Call SORT (evaluates to page

; address 233H)

ORG233H
SORT: PUSH ACC ; Store Accumulator

RET ; Return from call

Encoded Instruction:

101010001 100110011

7 o 7 o
Before

Program Counter

I 00000000 I 00110101

15 8 7

Stack Pointer

100100110 I
7 0

(27H)

I 00000000 I
7 0

(28H)

I 00000000 I
7 0

Notes: 2,3

0

After

Program Counter

I 00000010 I 00110011

15 8 7 0

Stack Pointer

100101000 I
7 0

(27H)

100110111

7 0

(28H)

I 00000000 I
7 0

3-5

ADD

3.Ji

Add Immediate Data

Mnemonic: ADD

Operands:

Format:

A
data

ADD A,#data

Accumulator
-256 <= data <= + 255

Bit Pattern:
I 001 001 00 Ilmmediate Datal

7 0 7 0

Operation: (A) +- (A) + data

Bytes: 2
Cycles: 1

Flags: C AC FO RS1 RSO OV P

1-1-1 1-' I-I
PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

Example: ADD A,#32H

Encoded Instruction:

I 00100100

7 0

Before

Accumulator

100100110 I
7 0

Notes: 4,5,6,7

00110010

7 0

; Add 32H to accumulator

After

Accumulator

01011000

7 0

MCS-Sl

(

MeS-51

Add Indirect Address

Mnemonic: ADD

Operands:

Format:

A
Rr

ADD A,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
1 0010011r 1

7 0

Operation: (A) +- (A) + ((Rr))

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the data memory location
addressed by register r to the contents of the accumulator. It places
the result in the accumulator.

Example: ADDA,@R1

Encoded Instruction:

1001001111

7 o

Before

Accumulator

1 10000110 1

7 0

Register1

00011100

7 o
(1CH)

101100010

7 0

Notes: 5,6, 7, 15

; Add indirect address to accumulator

After

Accumulator

111101000 1

7 0

Register 1

1000111001

7 o
(1CH)

101100010

7 0

ADD

3-7

ADD

3-8

Add Register

Mnemonic: ADD

Operands:

Format:

A
Rr

ADD A,Rr

Accumulator
Register 0 <= r <= 7

Bit Pattern:
1 00101 rrr

7 0

Operation: (A) - (A) + (Rr)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of register r to the contents of
the accumulator. It places the result in the accumulator.

Example: ADD A,R6

Encoded Instruction:

100101110 I
7 0

Before

Accumulator

01110110

7 0

Register 6

10000101

7 0

Notes: 5,6,7

; Add R6 to accumulator

After

Accumulator

111111011

7 0

Register 6

10000101

7 0

MCS-Sl

MCS-51

Add Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ADD

A Accumulator
data address 0 <= data address <= 255

ADD A,data address

I 00100101 I Data Address I
7 o 7 o

(A) +- (A) + (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the specified data address to
the contents of the accumulator. It places the result in the
accum ulator.

Example: ADD A,32H

Encoded Instruction:

I 00100101

7 0

Before

Accumulator

100100110 I
7 o

(32H)

101010011

7 0

Notes: 5,6,7,8

00110010

7 0

After

; Add the contents of
; 32H to accumulator

Accumulator

101111001

7 o
(32H)

101010011

7 0

ADD

3-9

AODC

3-10

Add Carry Plus Immediate Data to Accumulator

Mnemonic: ADDC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= + 255

ADDC A,#data

00110100 Ilmmediate Datal
7 0 7 0

(A) 4- (A) + (C) + data

C AC FO RS1 RSO OV p

PSW

Description: This instruction adds ttIecontents oUhe carry flag (0 or 1) to the
contents of the accumulator. The8-bit immediate data value is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflectthe sum of all three values.

Example: ADDC A,#OAFH ; Add Carry and OAFH to accumulator

Encoded Instruction:

00110100

7 0

Before

Accumulator

0111 0001

7 0

Carry

OJ
Notes: 4, 5,6, 7

10101111

7 0

After

Accumulator

00100001

7 0

Carry

OJ

MCS-51

MCS-Sl ADDC
Add Carry Plus Indirect Address to Accumulator

Mnemonic: ADDC

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Register

Accumulator
O<=r<= 1

ADDC A,@Rr

0011011r

7 0

(A) +- (A) + (C) + ((Rr))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of data memory at the
location addressed by register r is added to that intermediate result,
and the carry flag is updated. The accumulator and carry flag
reflect the sum of all three values.

3-11

3-12

Example: ADDC A,@R1

Encoded Instruction:

100110111 I
7 0

Before

Accumulator

111101000 I
7 o

Register 1

1011010011

7 o

(69H)

1000110001

7 o
Carry

[JJ
Notes: 5,6,7, 15

After

; Add carry and indirect address to
; accumulator

Accumulator

1 00000000 I
7 o

Register 1

1011010011

7 o
(69H)

100011000 1

7 o
Carry

IT]

MCS~51

MeS-51 ADDC
Add Carry Plus Register to Accumulator

Mnemonic: ADDC

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Register

ADDC A,Rr

00111rrr

7 0

Accumulator
o <=r<= 7

(A) +- (A) + (C) + (Rr)

C AC FO RS1 RSO OV p

PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator at bit o. The contents of register r is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

Example: ADDC A,R1

Encoded Instruction:

00111111

7 0

Before

Accumulator

00110000

7 0

Register 7

I 00001010

7 0

Carry

IT]
Notes: 5, 6, 7

After

; Add carry and register 7
; to accumulator

Accumulator

00111011

7 0

Register 7

00001010

7 0

Carry

[JJ

3-13

ADDC

3-14

Add Carry Plus Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ADDC

A Accumulator
data address 0 <= data address <= 255

ADDC A,data address

0011 01 01 I Data Address I
7 0 7 0

(A) +- (A) + (C) + (data address)

C AC FO RS1 RSO ov p

PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of the specified data
address is added to that intermediate result, and the carry flag is
updated. The accumulator and carry flag reflect the sum of all
three values.

Example: ADDC A,25H

Encoded Instruction:

00110101

7 0

Before

Accumulator

10101110

7 0

(25H)

I 00000111

7 o

Carry

[JJ
Notes: 5,6,7,8

00100101

7 0

After

; Add carry and contents of 25H to
; accumulator

Accumulator

10110101

7 0

(25H)

I 00000111

7 o
Carry

[JJ

MCS-Sl

MeS-51 AJMP
Absolute Jump within 2K Byte Page

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

AJMP

code address

AJ M P code address

I aaa00001 I aaaaaaaa 1

7 0 7 0

(PC) +- (PC) + 2
(PC) 0-10 +- page address

C AC FO RS1 RSO OV p

PSW

Description: This instruction replaces the low-order 11 bits of the program
counter with the encoded ll-bit address. The destination address
specified in the source must be within the 2K byte page of the
instruction following the AJMP .

Example:

The 3 high-order bits of the II-bit page address form the 3 high
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

ORG OE80FH
TOPP: MOV A,R1

ORGOEADCH
AJMP TOPP ; Jump backwards to TOPP

; at location OE80FH

Encoded Instruction:

00000001 00001111

7 0 7 0

Before

Program Counter

11101010 111011100

15 8 7 0

Notes: None

After

Program Counter

1 111101000 00001111

15 8 7 0

3-15

ANL

3-16

Logical AND Immediate Data to Accumulator

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= + 255

ANL A,#data

I 01010100 Ilmmediate Datal

7 0 7 0

(A) - (A) AND data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the accumulator. Bit n of the result is 1 if bit n of each
operand is 1; otherwise bit n is O. It places the result in the
accumulator.

Example: ANL A,#00001000B ; Mask out all but bit 3

Encoded Instruction:

I 01010100 I 00001000 I

707 0

Before

Accumulator

101110111

7 0

Notes: 4,5

After

Accumulator

00000000

7 0

MCS-51

MCS-Sl

Logical AND Indirect Address to Accumulator

Mnemonic: ANL

Operands:

Format:

A
Rr

ANL A,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
I 0101011r I

7 0

Operation: (A) +- (A) AND «Rr))

Bytes:
Cycles:

Flags:
C AC FO RS1 RSO OV P

I-I
PSW

Description: This instruction ANDs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bitn is O. It places the result in the accumulator.

Example: ANL A,@RO

Encoded Instruction:

101010110 I
7 o

Before

Accumulator

100111111

7 o
Register 0

101010010 I
7 o

(52H)

100001111

7 0

Notes: 5,15

After

; AND indirect address with
; accumulator

Accumulator

100001111

7 o
Register 0

101010010 I
7 o

(52H)

100001111

7 0

ANL

3-17

ANL

3-18

Logical AN D Register to Accumulator

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Rr

Accumulator
0<= Rr<= 7

ANL A,Rr

101011rrr

7 0

(A) +- (A) AND (Rr)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the contents of register r to the contents of
the accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bit n is O. It places the result in the accumulator.

Example: MOV R4,#10000000B ; Move mask to R4
ANL A,R4 ; AND register 4 with accumulator

Encoded Instruction:

101011100 1

7 0

Before

Accumulator

10011001

7 0

Register 4

110000000

7 0

Note: 5

After

Accumulator

110000000 1

7 0

Register 4

10000000

7 0

MCS-Sl

MeS-51

Logical AN D Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ANL

A Accumulator
data address 0 <= data address <= 255

ANL A,data address

01010101 I Data Address I
7 0 7 0

(A) - (A) AND (data address)

C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction ANDs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
each operand is also 1; otherwise bit n is o. It places the result in the
accumulator.

Example: ANL A,37H

Encoded Instruction:

01010101

7 0

Before

Accumulator

01110111

7 0

(37H)

111110000

7 0

Notes: 5,8

00110111

7 0

After

; AND contents of 37H with
; accumulator

Accumulator

01110000

7 0

(37H)

111110000

7 0

ANL

3-19

ANL

3-20

Logical AN D Bit to Carry Flag

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

ANL C,bit address

1 1 0000010 1 Bit Address 1

7 o 7 o

(C) +- (C) AND (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the contents of the specified bit address to
the contents of the carry flag. If both btts are 1, then the result is 1;
otherwise, the result is O. It places the result in the carry flag.

Example: ANL C,37.3

Encoded Instruction:

110000010

7 0

Before

Carry Flag

QJ
(37)

100101110

730

Notes: None

00101011

7 0

; AND bit 3 of byte 37 with Carry

After

Carry Flag

QJ
(37)

100101110

730

MeS-51

MCS-Sl

Logical AN 0 Complement of Bit to Carry Flag

Mnemonic: ANL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

AN L C, I bit address

10110000 Bit Address

7 0 7 0

(C) ... (C) AND NOT (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the complemented contents of the specified
bit address to the contents of the carry flag. The result is 1 when the
carry flag is 1 and the contents of the specified bit address is O. It
places the result in the carry flag. The contents of the specified bit
address does not change.

Example: ANL C,I40.5

Encoded Instruction:

10110000

7 0

Before

Carry Flag

QJ
(40)

101011000

750

Notes: None

01000101

7 0

After

; Complement contents of 40.5
; then AND with Carry

Carry Flag

QJ
(40)

101011000

750

ANL

3-21

ANL

3-22

Logical AN D Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

ANL

data address 0 <=data address <= 255
data -256 <= data <= + 255

AN L data address ,#data

I 01 010011 I Data Address Ilmmediate Datal

7 07 07 0

(data address) - (data address) AND data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is O. It places the result in
data memory at the specified address.

Example: MOV 57H,PSW
ANL 57H,#01H

Encoded Instruction:

101010011 01010111

7 0 7 0

Before

(57H)

101110111

7 o
Notes: 4,9

; Move PSW to 57H
; Mask out all but parity bit
; to check accumulator parity

00000001

7 0

After

(57H)

I 00000001

7 o

MeS-51

MCS-Sl

Logical AND Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ANL

data address 0 <= data address <= 255
A Accumulator

ANL dataaddress,A

01 01 001 0 I Data Address I
7 0 7 0

(data address) - (data address) AND A

C AC FO RS1 RSO OV p

PSW

Description: This instruction ANDs the contents of the accumulator to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is O. It places the result
in data memory at the specified address.

Example: MOV A,#10000001 B ; Load mask into accumulator
ANL 10H,A ; Mask out all but bits 0 and 7

Encoded Instruction:

01010010

7 0

Before

Accumulator

10000001

7 o
(10H)

I 00110001

7 o

Note: 9

00010000

7 0

After

Accumulator

10000001

7 o
(10H)

I 00000001

7 o

ANL

3-23

CALL

3-24

Generic Call

Mnemonic: CALL

Operands: code address

Format: CALL code address

Bit Pattern: Translated to ACALL or LCALL as needed

Operation: Either ACALL or LCALL

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction is translated to ACALL when the specified code
address contains no forward references and that address falls
within the current 2K byte page; otherwise; it is translated to
LCALL. This will not necessarily be the most efficient representa
tion when a forward reference is used. See the description for
ACALL and LCALL for more detail.

Example: ORG 80DCH
CALL SUB3 ; Call SUB3 (SUB3 is a forward

; reference so LCALL is encoded
; even though ACALL would work in
; this case.)

SUB3: POP 55H ; Address 8233H
Encoded Instruction:

00010010 10000010

7 0 7 0

Before

Program Counter

10000000 11011100

707 0

Stack Pointer

01100100

7 0

(65H)

100000000

7 0

(66H)

1 00000000

7 ~. 0

Notes: 1, 2, 3

00110011

7 0

After

Program Counter

1 110000010 100110011

15 8 7 0

Stack Pointer

01100110

7 0

(65H)

111011111

7 0

(66H)

110000000

7 0

MeS-51

MeS-51 CJNE
Compare Indirect Address to Immediate Data,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags: .

CJNE

Rr Register 0 <= r <= 1
data -256 <= data <= + 255
code address

CJNE @Rr,#data,codeaddress

1 0 11 0 1 1 r Ilmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) +- (PC) + 3
IF ((Rr» < > data
THEN

(PC) +- (PC) + relative offset
IF ((Rr» < data
THEN

ELSE
(C) +-1

(C) +- 0

C AC FO AS1 ASO OV

PSW

p

Description: This instruction compares the immediate data value with the
memory location addressed by register r. If they are not equal, con
trol passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the immediate data value is greater than the contents of the
specified data address, then the carry flag is set to 1; otherwise, it is
reset to O.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-25

3-26

Example: CJNE @R1,#01,SCAB ; Jump if indirect address
; does not equal 1

SCAB: MOV C,FO ; 54H bytes from CJNE

Encoded Instruction:

110110111100000001101010111

7 0 7 0 7 0

Before After

Register 1 Register1

101010011 101010011

7 0 7 0

(53H) (53H)

1111000011 1111000011

7 0 7 0

Carry Flag Carry Flag

OJ IT]
Program Counter Program Counter

1000000001110111001 1000000011001101101

15 8 7 0 15 8 7 0

Notes: 4, 10, 11, 12, 15

MeS-51

MeS-51 CJNE
Compare Immediate Data to Accumulator,
Jump if Not Equal

Mnemonic:

Operands:

Fwmat:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

CJNE

A Accumulator
data -256 <= data <= + 255
code address

CJNE A,#data,codeaddress

1 01101 00 Ilmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
IF (A) < > data
THEN

(PC) - (PC) + relative offset
IF (A) <data
THEN

ELSE
(C) -1

(C) -0

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the immediate data value with the
contents of the accumulator. If they are not equal, control passes to
the specified code address. If they are equal, then control passes to
the next sequential instruction.

If the immediate data value is greater than the contents of the
accumulator, then the carry flag is set to 1; otherwise, it is reset
toO.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-27

3-28

Example: ORG 10DCH
CJNE A,#10H,NEXT ; Jump if accumulator does not equal

; 10H

NEXT: INCA ; Location 1136H

Encoded Instruction:

110110100100010000101010111

7 0 7 0 7 0

Before After

Accumulator Accumulator

101010000 I 1010100001

7 0 7 0

Carry Flag Carry Flag

QJ IT]
Program Counter Program Counter

1000100001110111001 100010001 00110110

15 8 7 0 15 8 7 0

Notes: 4, 10, 11, 12

MeS-51

MCS-51

Compare Memory to Accumulator,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

CJNE

A Accumulator
data address 0 <= data address <= 255
code address

CJNE A,dataaddress,codeaddress

1 011 01 01 I Data Address I ReI. Offset

7 0 7 0 7 0

(PC) +- (PC) + 3
IF (A) < > (data address)
THEN

(PC) - (PC) + relative offset
IF (A) < (data address)
THEN

ELSE
(C) -1

(C) -0

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the contents of the specified memory
location to the contents of the accumulator. If they are not equal,
control passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the contents of the specified memory location is greater than the
contents of the accumulator, then the carry flag is set to 1; other
wise, it is reset to o.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

CJNE

3-29

3-30

Example: CJNE A,37H, TEST; Jump if 37H and accumulator
; are not equal·

TEST: INCA ; 4FH bytes from CJNE

Encoded Instruction:

110110101 100110111 101001100 1

7 0 7 0 7 0

Before After

(37H) (37H)

101111110 1 1011111101

7 0 7 0

Accumulator Accumulator

1001001101 1001001101

7 0 7 0

Carry Flag Carry Flag

IT] QJ
Program Counter Program Counter

1000000001110111001 1000000011001101101

15 8 7 0 15 8 7 0

Notes: 8, 10, 11, 12

MeS-51

MeS-51

Compare Immediate Data to Register,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

CJNE

Rr Register 0 <= r <= 7
data -256 <= data <= + 255
code address

CJNE Rr,#data,codeaddress

1 0111 r r r Ilmmediate Data I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
IF (Rr) < > data
THEN

(PC) - (PC) + relative offset
IF (Rr) < data
THEN

ELSE
(C) -1

(C)-O

C AC FO RS1 RSO OV

PSW

p

Description: This instruction compares the immediate data value with the
contents of register r. If they are not equal, control passes to the
specified code address. If they are equal, then control passes to the
next sequential instruction.

If the immediate data value is greater than the contents of the
specified register, then the carry flag is set to 1; otherwise, it is reset
toO.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

CJNE

3-31

3-32

Example: CJNE R5,#32H,SKIP10 ; Jump if register 5 does not
; equal32H

SKIP10: MOV R5,PO ;13 bytes from CJNE

Encoded Instruction:

1101111011100000001000010101

7 0 7 0 7 0

Before After

Register 5 Register 5

I 00000001 I 00000001

7 0 7 0

Carry Flag Carry Flag

OJ OJ
Program Counter Program Counter

I 00000000 111011100 1 1 00000000 111101001

15 8 7 o 15 8 7 o

Notes: 4,10, 11, 12

MeS-51

MeS-51

Clear Accumulator

Mnemonic: CLR

Operands: A Accumulator

Format: CLR A

Bit Pattern:
111100100 1

7 0

Operation: (A) -0

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction resets the accumulator to O.

Example: CLR A

Encoded Instruction:

111100100 1

7 o

Before

Accumulator

00111111

7 0

Note: 5

; Set accumulator to 0

After

Accumulator

00000000

7 0

CLR

3-33

CLR

3-34

Clear Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

CLR

C Carry Flag

CLR C

111000011

7 0

(C) +- 0

C AC FO RS1 RSO OV

I-I
PSW

p

Description: This instruction resets the carry flag to o.

Example: CLR C ; Set carry flag to 0

Encoded Instruction:

111000011 I
7 o

Before After

Carry Flag Carry Flag

QJ m
Notes: None

MCS-51

MCS-Sl

Clear Bit

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

CLR

bit address 0 <= bit address <= 255

CLR bit address

1 11 00001 0 1 Bit Address

707 0

(bit address) +- 0

C AC FO RS1 RSO OV p

PSW

Description: This instruction resets the specified bit address to O.

Example: CLR40.5

Encoded Instruction:

111000010

7 0

Before

(40)

100100110 1

750

Notes: None

01000101

7 0

; Set bit 5 of byte 40 to 0

After

(40)

I 00000110

750

CLR

3-35

CPL

3-36

Complement Accumulator

Mnemonic: CPL

Operands: A Accumulator

Format: CPL A

Bit Pattern:
111110100 1

7 0

Operation: (A) +- NOT (A)

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction resets each 1 in the accumulator to 0, and sets each ° in the accumulator to 1.

Example: CPL A

Encoded Instruction:

1111100111

7 o

Before

Accumulator

00110101

7 0

Notes: None

; Complement accumulator

After

Accumulator

11001010

7 0

MCS-51

MCS-Sl

Complement Carry Flag

Mnemonic: CPL

Operands: C Carry flag

Format: CPL C

Bit Pattern:
110110011

7 0

Operation: (C) +- NOT (C)

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction sets the carry flag to 1 if it was 0, and resets the
carry flag to 0 if it was 1.

Example: CPL C ; Complement Carry flag

Encoded Instruction:

1101100111

7 o
Before After

Carry Flag Carry Flag

ITJ IT]
Notes: None

CPL

3-37

CPL

3-38

Complement Bit

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

CPL

bit address 0 <= bit address <= 255

CPL bit address

[1 0110010 I Bit AddresiJ

707 0

(bit address) 4- NOT (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction sets the contents of the specified bit address to 1 if
it was 0, and resets the contents of the bit address to 0 if it was 1.

Example: CPL33.7 ; Set bit 7 of byte 33 to 0

Encoded Instruction:

110110010 00001111

7 o 7 o
Before After

(33) (33)

110100110 100100110

7 0 7 0

Notes: None

MCS-51

MeS-51

Decimal Adjust Accumulator

Mnemonic: DA

Operands:

Format:

Bit Pattern:

A

DA A

11010100

7 0

Accumulator

Operation: (See description below.)

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction adjusts the contents of the accumulator to
correspond to packed binary coded decimal (BCD) representation,
after an add of two BCD numbers. If the auxiliary carry flag is 1,
or the contents of the low order nibble (bits 0-3) of the
accumulator is greater than 9, then 6 is added to the accumulator.
If the carry flag is set before or after the add or the contents of the
high order nibble (bits 4-7) is greater than 9, then 60H is added to
the accumulator. The accumulator and the carry flag contain the
final adjusted value.

Example: ADD A,R1
DA A

Encoded Instruction:

11010100

7 0

Before

Accumulator

10011011

7 0

Carry Flag

IT]
Auxiliary Carry Flag

IT]
Notes: 5,6

; Adjust the Accumulator after add

After

Accumulator

00000001

7 0

Carry Flag

OJ
Auxiliary Carry Flag

IT]

DA

3-39

DEC

3-40

Decrement Indirect Address

Mnemonic: DEC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Rr Register 0 <= r <= 1

DEC@Rr

I 0001011r I
7 0

((Rr)) +- ((Rr)) -1

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

Example: DEC@RO

Encoded Instruction:

100010110 I
7 o

Before

Register 0

00110111

7 0

(37H)

111011101

7 0

Note: 15

; Decrement counter

After

Register 0

100110111

7 0

(37H)

111011100

7 0

MCS-Sl

MCS-Sl

Decrement Accumulator

Mnemonic: DEC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A

DEC A

00010100

7 0

(A) +- (A)-1

Accumulator

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the accumulator by 1.
It places the result in the accumulator.

Example: DEC A ; Decrement accumulator

Encoded Instruction:

00010100

7 o

Before

Accumulator

11010000

7 0

Note: 5

After

Accumulator

11001111

7 0

DEC

3-41

DEC
Decrement Register

Mnemonic: DEC

Operands: Rr Register 0 <= r <= 7

Format: DEC Rr

Bit Pattern:
100011rrr

7 0

Operation: (Rr) +- (Rr) -1

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

I x I
PSW

Description: This instruction decrements the contents of register r by 1. It places
the result in the specified register.

Example: DEC R7

Encoded Instruction:

100011111

7 o
Before

Register 7

10101011

7 0

Notes: None

; Decrement register 7

After

Register 7

10101010

7 0

MeS-51

MeS-51

Decrement Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

DEC

data address 0 <= data address <= 255

DEC data address

1 0001 01 01 1 Data Address 1

7 o 7 o
(data address) +- (data address)-1

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the specified data
address by 1. It places the result in the addressed location.

Example: DEC 37H ; Decrement counter

Encoded Instruction:

1 00010101 00110111

7 0 7 0

Before After

(37H) (37H)

111011110 111011101

7 0 7 0

Note: 9

DEC

3-43

DIV

3-44

Divide Accumulator by B

Mnemonic: DIV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 4

AS

DIV AS

10000100

7 0

(AS) +- (A) I (B)

Register Pair

Flags: C AC FO AS1 ASO OV p

PSW

Description: This instruction divides the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned integers. The accumulator contains the quo
tient; the multiplication register contains the remainder.

The carry flag is always cleared. Division by 0 sets the overflow
flag; otherwise, it is cleared.

Example: MOV B,#5
DIV AB

Encoded Instruction:

10000100

7 o

Before

Accumulator

01110110

7 0

Multiplication Register (B)

I 00000101 I
7 0

Note: 5

; Divide accumulator by 5

After

Accumulator

00010111

7 0

Multiplication Register (B)

00000011

7 0

MCS-51

MeS-51

Decrement Register and Jump if Not Zero

Mnemonic:
Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

DJNZ

Rr Register 0 <= r <= 7
code address

DJ NZ Rr ,code address

1 1 1 0 1 1 r r r 1 Rei. Offset

7 0 7 0

(PC) .- (PC) + 2
(Rr) .- (Rr) -1
IF (Rr) < > 0
THEN

,PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of register r by 1, and
places the result in the specified register. If the result of the decre
ment is 0, then control passes to the next sequential instruction;
otherwise, control passes to the specified code address.

Example:

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

LOOP1: ADD A,R7

DJNZ R7,LOOP1
INCA

; ADD index to accumulator

; Decrement register 7 and
; jump to LOOP1 (15 bytes
; backward from INC
; instruction)

Encoded Instruction:

111011111 11110001

7 0 7 0
Before

Register 7

1 00000010 1

7 0
Program Counter

1000001001110111001

15 8 7 0

Notes: 10, 11, 12

After

Register 7

00000001

7 0

Program Counter

00000100 11001111

15 8 7 0

DJNZ

3-45

DJNZ

3-46

Decrement Memory and Jump if Not Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

DJNZ

data address 0 <= data address <= 255
code address

DJNZ data address ,code address

11 01 01 01 I Data Address I ReI. Offset

7 0 7 0 7 0

(PC) - (PC) + 3
(data address) - (data address)-1
IF (data address) < > 0
THEN

(PC) - (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction decrements the contents of the specified data
address by 1, and places the result in the addressed location. If the
result of the decrement is 0, then control passes to the next sequen
tial instruction; otherwise, control passes to the specified code
address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

MeS-51

MeS-51

Example: LOOP 3: MOV R7,57H ; Store loop index in register 7

DJNZ 57H,LOOP3 ; Decrement 57H and jump
INC A ; backward to LOOP3 (51 bytes

; backwards from the INC A
; instruction)

Encoded Instruction:

1 11010101 1 01010111 11001010

707 0 7 0

Before After

(57H) (57H)

101110111 101110110 1

7 o 7 o
Program Counter Program Counter

100000000111011100 I 1 00000000 10101001

15 8 7 0 15 8 7 0

Notes: 9, 10, 11, 12

3-47

INC

3-48

Increment Indirect Address

Mnemonic: INC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Rr Register 0 <= r <= 1

INC@Rr

1 0000011 r

7 0

((Rr)) - ((Rr)) + 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

Example: INC@RO

Encoded Instruction:

1000001101

7 o
Before

Register 0

00110010

7 0

(32H)

111011101

7 0

Note: 15

; Increment counter

After

Register 0

1001100101

7 0

(32H)

111011110

7 0

MeS-51

MeS-51

Increment Accumulator

Mnemonic: INC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

A

INC A

00000100

7 0

(A) +- (A) + 1

Accumulator

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of the accumulator by 1. It
places the result in the accumulator.

Example: INC A

Encoded Instruction:

00000100

7 o
Before

Accumulator

11010000

7 0

Note: 5

; Increment accumulator

After

Accumulator

11010001

7 0

INC

3-49

INC

3-50

Increment Data Pointer

Mnemonic: INC

Operands: DPTR Data Pointer

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

INC DPTR

110100011

7 °
(DPTR) - (DPTR) + 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the 16-bit contents of the data pointer
by 1. It places the result in the data pointer.

Example: INC DPTR ; Increment data pOinter

Encoded Instruction:

1101000111

7 °
Before After

Data Pointer Data Pointer

L..I _0 _0 0_0_1_0_0_1-L.._1 _1 _1 1_1_1_1_1-11 1 _0 _0 0_0_1_0_1_0--,-_0 _0 _0 0_0_0_0_0--,

15 8 7 ° 15 8 7 °
Notes: None

MCS-51

MCS-Sl

Increment Register

Mnemonic: INC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Rr

INC Rr

100001rrr

7 0

(Rr) - (Rr) + 1

Register 0 <= r <= 7

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the contents of register r by 1. It places
the result in the specified register.

Example: INC R7

Encoded Instruction:

1000011111

7 0

Before

Register 7

110101011

7 0

Notes: None

; Increment register 7

After

Register 7

10101100

7 0

INC

3-51

INC

3-52

Increment Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

INC

data address 0 <= data address <= 255

INC data address

1 00000101 1 Data Address 1

7 0 7 0

(data address) +- (data address) + 1

C AC FO RS1 RSO ov p

PSW

Description: This instruction increments the contents of the specified data
address by 1. It places the result in the addressed location.

Example: INC 37H ; Increment 37H

Encoded Instruction:

1 00000101 00110111

7 0 7 0

Before After

(37H) (37H)

111011110 111011111

7 0 7 0

Note: 9

MCS-Sl

MeS-51

Jump if Bit Is Set

Mnemonic: JB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

bit address 0 <= bit address <= 255
code address

J B bit address ,code address

00100000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 1
THEN

Rei. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO ov p

PSW

Description: This instruction tests the specified bit address. If it is 1, control
passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JB

3-53

3-54

Example: JB 39.6, EXIT ; Jump if bit 6 of byte 39 is 1

SJMPTOP
EXIT: MOV A,39 ; Move 39 to accumulator (EXIT label

; is 5 bytes from jump statement)

Encoded Instruction:

100100000100111110 100000010 I
7 o 7 o 7 o

Before After

(39) (39)

101110111 101110111

76 o 76 o
Program Counter Program Counter

1 00000000 111011100 I I 00000000 111100001

15 8 7 o 15 8 7 o

Notes: 10, 11, 12

MeS-51

MCS-51

Jump and Clear if Bit Is Set

Mnemonic: JBC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

bit address 0 <= bit address <= 255
code address

J BC bit address ,code address

00010000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 1
THEN

(bit address) +- 0

ReI. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the specified bit address. If it is 1, the bit is
cleared, and control passes to the specified code address. Other
wise, control passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JBC

3-55

3-56

Example: ORGODCH
JBG 46.1,OUT3 ; Test bit 1 of byte 46

; jump and clear if 1

ORG136H
OUT3: INC R7

Encoded Instruction:

100010000101110001101010111

7 o 7 o 7 o
Before After

(46) (46)

101110111 101110101

7 10 7 1 0

Program Counter Program Counter

100000000111011100 I 100000001100110110 I
15 8 7 o 15 8 7 o

Notes: 10,11, 12

MeS-51

MeS-51

Jump if Carry Is Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JC

code address

JC code address

01000000 ReI. Offset

7 0 7 0

(PC) +- (PC) + 2
IF (C) = 1
THEN

(PC) +- (PC) + relative code

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the contents of the carry flag. If it is 1, then
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JC

3-57

3-58

Example: FIXUP: CLR C ; Clear carry

JCFIXUP ; If carry is 1 go to FIXUP

Encoded Instruction:

01000000 11001101

7 0 7 0

Before

Carry Flag

QJ
Program Counter,,;

00000101 11011100

15 8 7 0

Notes: 10, 11, 12

After

; 49 bytes backwards from the JC
; instruction

Carry Flag

QJ
Program Counter

I 100000101 10101011

15 8 7 0

MCS-Sl

MCS-Sl

Generic Jump

Mnemonic: JMP

Operands: code address 0 <= code address <= 65,535

Format: JMP code address

Bit Pattern: Translated to AJMP, LJMP, or SJMP, as needed

Operation: Either AJMP, SJMP or LJMP

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction will be translated to SJMP if the specified code
address contains no forward references and that address falls
within -128 and +127 of the address of the next instruction. It will
be translated to AJMP if the code address contains no forward
references and the specified code address falls within the current 2K
byte page. Otherwise, the JMP instruction is translated to LJMP.
If forward references are used to specify the jump destination, then
it will not necessarily be the most efficient representation. See the
descriptions for SJMP, AJMP, and LJMP for more detail.

Example: JMPSKIP ; Jump to SKIP
; Increment A FF: INCA

SKIP: INC R5 ; Increment register 5

Encoded Instruction:

00000010 00000100 10101011

7 0 7 0 7 0

Before After

Program Counter Program Counter

00000100 10100111 I 100000100 10101011

15 8 7 o 15 8 7 0

Notes: None

JMP

3-59

JMP

3-60

Jump to Sum of Accumulator and Data Pointer

Mnemonic: JMP

Operands: A Accumulator
DPTR Data Pointer

Format: JMP@A+DPTR

Bit Pattern:
101110011 I

7. 0

Operation: (PC) +- (A) + (DPTR)

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction adds the contents of the accumulator with the
contents of the data pointer. It transfers control to the code address
formed by that sum.

Example: JMP@A+DPTR ; Jump relative to the accumulator

Encoded Instruction:

101110011 I
7 o

Before

Accumulator

01110110

7 0

After

Accumulator

01110110

7 0

Data Pointer Data Pointer

L-.-0 0_0_0_0_0_1 _0 ...&.-1_0_1_0 1_0_0_0~1 I 0 0 0 000 1 0 I 10101000

7 0 15 8 7 0 15 8

Program Counter Program Counter

11001101 00001101 I 100000011 00011110

15 8 7 0 15 8 7 0

Notes: None

MeS-51

MeS-51

Jump if Bit Is Not Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

JNB

bit address
code address

J N B bit address ,code address

00110000 Bit Address

7 0 7 0

(PC) +- (PC) + 3
IF (bit address) = 0
THEN

Rei. Offset

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the specified bit address. If it is 0, control
passes to specified code address. Otherwise, control passes to the
next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNB

3-61

MCS-51

Example: ORGODCH
JNB 41.6,£XIT ; If bit 6 of byte 41 is 0 go to EXIT

EXIT: ADD A,41 ; At location 136H

Encoded Instruction:

100110000 101001110 101010111

7 o 7 o 7 o

Before After

(41) (41)

100110111 100110111

76 o 76 o

Program Counter Program Counter

100000000111011100 I 100000001 100110110 I
15 8 7 0 .,. 15 8 7 0

Notes: 10, 11, 12

3-62

MeS-51

Jump if Carry Is Not Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JNC

code address

JNC codeaddress

01010000 ReI. Offset

7 0 7 0

(PC) +- (PC) + 2
IF (C) = 0
THEN

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the contents of the carry flag. If it is 0, control
passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNC

3-63

3-64

Example: FIXUP: MOV A,R5

JNC FIXUP ; Jump to FIXUP if carry is 0
; (51 bytes backwards)

Encoded Instruction:

101010000111001101

7 o 7 o
Before

Carry Flag

IT]
Program Counter

100011100 11011100

15 8 7 0

Notes: 10, 11, 12

After

Carry Flag

IT]
Program Counter

100011100 110101011

15 8 7 o

MeS-51

MeS-51

Jump if Accumulator Is Not Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JNZ

code address

JNZ code address

01110000 ReI. Offset

7 0 7 0

(PC) +- (PC) + 2
IF (A) < > 0
THEN

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the accumulator. If it is not equal to 0,
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is not 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNZ

3-65

3-66

Example: JNZTEST ; Jump if accumulator is not 0
; 77 bytes forward

TEST: MOV R3,A

Encoded Instruction:

1 01010000

7 0

Before

Accumulator

101110111

7 8

01001101

7 0

After

Accumulator

101110111

7 o

Program Counter Program Counter

1 00000000 111011100 1 1 00000001 1 00101011

15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MCS-Sl

MCS-Sl

Jump if Accumulator Is Zero

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

JZ

code address

JZ code address

01100000 Rei. Offset

7 0

(PC) +- (PC) + 2
IF (A) = 0
THEN

7 0

(PC) +- (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction tests the accumulator. If it is 0, control passes to
the specified code address. Otherwise, control passes to the next
sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JZ

3-67

3-68

Example: JZ EMPTY ; Jump to EMPTY if accumulator is 0

EMPTY: INCA

Encoded Instruction:

101100000100010111

7 o 7

Before

Accumulator

101110110 1

7 o
Program Counter

o

100001111 11011100

15 8 7 0

Notes: 10, 11, 12

; 25 bytes from JZ instruction

After

Accumulator

101110110 1

7 o
Program Counter

100001111 111011110 1

15 8 7 o

MeS-51

MeS-51 LCALL
Long Call

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

LCALL

code address 0 <= code address <= 65,535

LCALL code address

I 0001 001 0 ~ode Addr. highl Code Addr. low I
7 o 7 o 7 o

(PC) .- (PC) + 3
(SP) .- (SP) + 1
((SP)) .- (PC low)
(SP) .- (SP) + 1
((SP)) .- (PC high)
(PC) .- code address

C AC FO RS1 RSO OV P

PSW

Description: This instruction stores the contents of the program counter (the
return address) on the stack, then transfers control to the 16-bit
code address specified as the operand.

3-69

Example: SERVICE: INC A ; Resides at location 233H

RETI

ORG 80 DCH
LCALL SERVICE ; Call SERVICE

Encoded Instruction:

1 00010010 1 00000010 1 00110011

7 o 7 o 7 o
Before After

Program Counter Program Counter

1100000001110111001 100000010 100110011

15 8 7

Stack Pointer

100101000 I
7 0

(29H)

1011101111

7 0

(2AH)

1 00000000 I
7 0

Notes: I, 2, 3

0 15 8 7 0

Stack Pointer

1001010101

7 0

(29H)

111011111 I
7 0

(2AH)

110000000 1

7 0

MCS-Sl

MeS-51

Long Jump

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

LJMP

code address 0 <= code address <= 65,535

LJMP code address

1 00000010 Fode Addr. highlCode Addr.low 1

7 o 7 o 7 o

(PC) +- code address

C AC FO RS1 RSO OV p

PSW

Description: This instruction transfers control to the 16-bit code address
specified as the operand.

Example: ORG 800H
LJMPFAR

FAR: INCA

Encoded Instruction:

100000010 10000010

7 0 7 0

Before

Program Counter

; Jumpto FAR

; Current code location (8233H)

00110011

7 0

After

Program Counter

00001000 00000000 I 110000010 00110011

15 8 7 0 15 8 7 0

Notes: None

LJMP

3-71

MOV

3-72

Move Immediate Data to Indirect Address

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Rr
data

Register 0 <= r <= 1
-256 <= data <= + 255

MOV @Rr,#data

0111 011 r Ilmmediate Datal

7 0 7 0

«Rr)) +- data

C AC FO RS1 RSO ov p

PSW

Description: This instruction moves the 8-bit immediate data value to the
memory location addressed by the contents of register r.

Example: MOV @R1,#01H ; Move 1 to indirect address

Encoded Instruction:

101110111

7 0

Before

Register 1

00010011

7 0

(13H)

101110111

7 0

Notes: 4. 15

00000001

7 0

After

Register 1

I 00010011

7 0

(13H)

I 00000001

7 0

MeS-51

MeS-51

Move Accumulator to Indirect Address

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

Rr
A

MOV@Rr,A

11111011r

7 0

((Rr)) +-- (A)

Register 0 <= r <= 1
Accumulator

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the
memory location addressed by the contents of register r.

Example: MOV@RO,A

Encoded Instruction:

111110110 1

7 o
Before

Register 0

00111000

7 0

(38H)

110011001

7 0

Accumulator

01001100

7 0

Note: 15

After

; Move accumulator to indirect
; address

Register 0

1001110001

7 0

(38H)

1010011001

7 0

Accumulator

01001100

7 0

MOV

3-73

MOV

3-74

Move Memory to Indirect Address

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

MOV

Rr Register 0 <= r<= 1
data address 0 <= data address <= 255

MOV @Rr,dataaddress

\ 1 01 0011 r \ Data Address \

7 o 7 o

((Rr)) - (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified data address to
the memory location addressed by the contents of register r.

Example: MOV@R1,77H

Encoded Instruction:

\10100111

7 0

Before

Register 1

00001000

7 0

(08H)

\ 00110011

7 0

(77H)

\11111110

7 0

Notes: 8, 15

01110111

7 0

After

; Move the contents of 77H to indirect
; address

Register 1

\ 00001000 \

7 0

(08H)

\11111110

7 0

(77H)

\11111110

7 0

MCS-Sl

MeS-51

Move Immediate Data to Accumulator

Mnemonic: MOY

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

MOYA,#data

Accumulator
-256 <= data <= + 255

I 0111 01 00 Ilmmediate Datal

7 0 7 0

(A) -data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 8-bit immediate data value to the
accumulator.

Example: MOVA,#01H

Encoded Instruction:

I 01110100 00000001

7 o 7

Before

Accumulator

100100110 I
7 0

Notes: 4,5

o

; Initialize the accumulator to 1

After

Accumulator

00000001

7 0

MOV

3-75

MOV

3-76

Move Indirect Address to Accumulator

Mnemonic: MOV

Operands:

Format:

A
Rr

MOVA,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
11110011r 1

7 0

Operation: (A) - ((Rr))

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the data memory location
addressed by register r to the accumulator.

Example: MOVA,@R1

Encoded Instruction:

1111001111

7 o
Before

Accumulator

1100001101

7 o
Register 1

100011100

7 0

(1CH)

111101000

7 0

Notes: 5,15

After

; Move indirect address to
; accumulator

Accumulator

111101000 1

7 o

Register 1

1000111001

7 0

(1CH)

111101000

7 0

MeS-51

MeS-51

Move Register to Accumulator

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

A
Rr

MOV A,Rr

111101rrr

7 0

(A)'- (Rr)

Accumulator
Register 0 <= r <= 7

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of register r to the
accumulator.

Example: MOV A,R6

Encoded Instruction:

111101110 1

7 o

Before

Accumulator

00101110

7 0

RegisterS

10000101

7 0

Note: 5

; Move R6 to accumulator

After

Accumulator

110000101

7 0

Register6

10000101

7 0

MOV

3-77

MOV

3-78

Move Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

MOV

A Accumulator
data address 0 <= data address <= 255

MOV A,data address

\ 111 001 01 \ Data Address \

7 o 7 o
(A) «- (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of data memory at the specified
address to the accumulator.

Example: MOVA,P1

Encoded Instruction:

\11100101

7 0

Before

Accumulator

00100110

7 0

Port I (90H)

\ 01111001

7 0

Notes: 5,8

10010000

7 0

After

; Move the contents of Port 1 to
; accumulator

Accumulator

\ 01111001

7 0

Port I (90H)

01111001\

7 0

MCS-Sl

MCS-Sl

Move Bit to Carry Flag

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

MOV C,bit address

110100010 1 Bit Address 1

7 o 7 o
(C) ~ (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified bit address to
the carry flag.

Example: MOVC,TXD

Encoded Instruction:

110100010 10110110

7 0 7 0

Before

Port 3 (BOH)

1 00100010

76 0

Carry Flag

OJ
Notes: None

After

; Move the contents of TXD to Carry
; flag

Port 3 (BOH)

100100010 I
76 0

Carry Flag

IT]

MOV

3-79

MOV

3-80

Move Immediate Data to Data Pointer

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Data Pointer
data 0 <= data <= 65,535

MOV DPTR,#data

1 1 001 0000 Ilmm. Data high 1 Imm; Data low 1

7 0 7 0 7 0

(DPTR) +- data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 16-bit immediate data value to the data
pointer.

Example: MOV DPTR,#OF4FH ; Initialize the data pOinter to OF4FH

Encoded Instruction:

110010000 00001111 01001111

7 0 7 0 7 0

Before After

Data Pointer Data Pointer

~1_0_OO_0_O_0_O_O~_1_1_01_1_1_0_0~1 ~I _0_00_0_1_1_1_1~_0_10_0_1_1_1_1~
15 8 7 0 15 8 7 0

Notes: None

MCS-Sl

MCS-Sl

Move Immediate Data to Register

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Rr
data

MOV Rr,#data

Register 0 <= r <= 7
-256 <= data <= + 255

I 01111 r r r Ilmmediate Datal

7 0 7 0

(Rr) -data

C AC FO RS1 RSO OV p

I
PSW

Description: This instruction moves the 8-bit immediate data value to register T.

Example: MOVR5,#01H

Encoded Instruction:

I 01111101 00000001

7 o 7

Before

Register 5

00010011

7 0

Note: 4

o

; Initialize register 1

After

Register 5

00000001

7 0

MOV

3-81

MOV

3-82

Move Accumulator to Register

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Rr
A

MOV Rr,A

111111rrr

7 0

(Rr) +- (A)

Register 0 <= r <= 7
Accumulator

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to register r.

Example: MOVR7,A

Encoded Instruction:

1111111111

7 0

Before

Register 7

11011100

7 0

Accumulator

00111000

7 0

Notes: None

; Move accumulator to register 7

After

Register 7

00111000

7 0

Accumulator

00111000

7 0

MCS-Sl

MeS-51

Move Memory to Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

MOV

Rr Register 0 <= r <= 7
data address 0 <= data address <= 255

MOV Rr ,data address

1 1 01 01 r r r 1 Data Address 1

7 o 7 o

(Rr) +- (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the specified data address to
register r.

Example: MOVR4,69H

Encoded Instruction:

110101100 01101001

7 o 7

Before

Register 4

00001010

7 0

(69H)

111011000

7 0

Note: 8

o

; Move contents of 69H to register 4

After

Register 4

111011000 1

7 0

(69H)

111011000

7 0

MOV

3-83

MOV

3-84

Move Carry Flag to Bit

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

bit address 0 <= bit address <= 255
C Carry Flag

MOV bit address ,C

1 1001 0010 1 Bit Address 1

7 o 7 o

(bit address) +- (C)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the carry flag to the
specified bit address.

Example: MOV2FH.7,C ; Move C to bit address 7FH

Encoded Instruction:

110010010 01111111

7 o 7 o

Before After

(2FH) (2FH)

100100110 110100110 1

7 0 7 0

Carry Flag Carry Flag

[JJ [JJ
Notes: None

MeS-51

MCS-51

Move Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

MOV

data address 0 <= data address <= 255
data -256 <= data <= + 255

MOV data address ,#data

I 0111 0101 I Data Address Ilmmediate Datal

7 07 07 0

(data address) +- data

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the 8-bit immediate data value to the
specified data address.

Example: MOV TMOD,#01H ; Initialize Timer Mode to 1

Encoded Instruction:

I 01110101 10001001 00000001

7 o 7

Before

TMOD (89H)

101110111

7 0

Notes: 4,9

o 7 o

After

TMOD (89H)

I 00000001

7 0

MOV

3-85

MOV

3-86

Move Indirect Address to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

MOV

data address 0 <= data address <= 255
Rr Register 0 <= r <= 1

MOVdata address,@Rr

1 1000011 r I Data Address 1

7 o 7 o
(data address) .- ((Rr))

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of memory at the location
addressed by register r to the specified data address.

Example: MOV11H,@R1

Encoded Instruction:

110000111 1 00010001

7 o 7

Before

(11 H)

110100101

7 0

Register 1

01011000

7 0

(58H)

110010110

7 0

Notes: 9,15

o

; Move indirect address to 11 H

After

(11 H)

110010110

7 0

Register 1

101011000 1

7 0

(58H)

110010110

7 0

MCS-Sl

MCS-51

Move Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

MOV

data address 0 <= data address <= 255
A Accumulator

MOV data address ,A

1 1 11 1 0 1 0 1 1 Data Add ress 1

7 0 7 0

(data address) +- (A)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the
specified data address.

Example: MOV45H,A

Encoded Instruction:

111110101 01000101

7 o 7

Before

(45H)

110111101

7 o
Accumulator

10011001

7 o

Note: 9

o

; Move accumulator to 45H

After

(45H)

110011001

7 o

Accumulator

10011001

7 o

MOV

3-87

MOV

3-88

Move Register to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

MOV

data address 0 <= data address <= 255
Rr Register 0 <= r <= 7

MOV data address, Rr

110001 rrr 1 OataAddress 1

707 0

(data address) +- (Rr)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of register r to the specified
data address.

Example: MOV7EH,R3

Encoded Instruction:

110001011

7 0

Before

(7EH)

111110111

7 0

Register 3

10010110

7 0

Note: 9

01111110

7 0

; Move R3 to location 7EH

After

(7EH)

110010110

7 0

Register 3

10010110

7 0

MCS-51

MCS-51

Move Memory to Memory

Mnemonic: MOV

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

data address 1
data address2

0<= data address1 <= 255
0<= data address2 <= 255

MOV data address 1 ,data address2

1 10000101 IData Address21Data Address11

7 o 7 o 7 o
(data address1) +- (data address2)

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the source data address
(data address2) to the destination data address (data address]).

Example: MOVB,12H ; Move the contents of 12H to B (FOH)

Encoded Instruction:

110000101 00010010 11110000

7 0 7 0 7 0

Before After

(12H) (12H)

111100101 111100101

7 0 7 0

(FOH) (FOH)

101011101 111100101

7 0 7 0

Note: 16

MOV

3-89

Move

3-90

Move Code Memory Offset from Data Pointer
to Accumulator

Mnemonic: MOVC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

A
DPTR

Accumulator
Data Pointer

MOVCA,@A+DPTR

10010011

7 0

(A) ~ ((A) + (DPTR))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction adds the contents of the data pointer with the
contents of the accumulator. It uses that sum as an address into
code memory and places the contents of that address in the
accumulator.

Example:

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port O.

MOVe A,@A+DPTR ; Look up value in table

Encoded Instruction:

10000011

7 0

Before

Accumulator

00010001

7 0

After

Accumulator

00011110

7 0

Data Pointer Data Pointer

~00_0_0_0_0_1_0~_1_11_1_0_0_0_1~1 100000010 111110001

15 8 7 0 15 8 7 0

(0302H) (0302H)

100011110 I 100011110

7 0 7 0

Notes: 5

MCS-51

MCS-51 Move
Move Code Memory Offset from Program
Counter to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

MOVC

A
PC

Accumulator
Program Counter

MOVC A,@A+PC

10000011

7 0

(PC) ~ (PC) + 1
(A) ~ ((A) + (PC))

C AC FO RS1 RSO ov

PSW

p

Description: This instruction adds the contents of the incremented program
counter with the contents of the accumulator. It uses that sum as an
address into code memory and places the contents of that address
in the accumulator.

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port O.

3-91

3-92

Example: MOVGA,@A+PG ; Look up value in table

Encoded Instruction:

1100000111

7 0

Before

Accumulator

101110110 1

7 o
Program Counter

1 00000010 1 00110001

15 8 7 o

(02A8H)

1010110001

7 o
Notes: 5,12

After

Accumulator

101011000 1

7 o

Program Counter

1 00000010 1 00110010 1

15 8 7 o

(02A8H)

1010110001

7 o

MCS-Sl

MCS-51 MOVX
Move Accumulator to External Memory
Addressed by Data Pointer

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

DPTR
A

Data Pointer
Accumulator

MOVX@DPTR,A

11110000

7 0

((DPTR)) ~ (A)

C AC FO RS1 RSO OV

PSW

p

Description: This instruction moves the contents of the accumulator to the
off-chip data memory location addressed by the contents of the
data pointer.

Example:

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port o.
MOVX @DPTR,A ; Move accumulator at data pointer

Encoded Instruction:

11110000

7 0

Before After

Data Pointer Data Pointer

,"--0 _0 _1 _1 0_0_0_0~_0_0_1_1_0_0_1_1--,1 1,"--0 _0 _1 _1 0_0_0_0~_O_0_1_1_0_0_1_1.....J
15 8 7 0 15 8 7 0

(3033H) (3033H)

111111001 101001100

7 0 7 0

Accumulator

01001100

7 0

Notes: None

Accumulator

01001100

7 0

3-93

MOVX

3-94

Move Accumulator to External Memory
Addressed by Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

MOVX

Rr
A

MOVX@Rr,A

1111001r

7 0

((Rr)) ~ (A)

Register 0 <= r <= 1
Accumulator

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the accumulator to the off
chip data memory location addressed by the contents of register r.

The contents of the specified register moves to Port O. The contents
of Port 2 is unaffected, but its previous value will be used in the
address to off-chip data memory.

MCS-Sl

MCS-51

Example: MOV P2#0
MOVX@RO,A

Encoded Instruction:

1111000101

7 o
Before

Register 0

10111000

7 0

(00B8H)

110011001

7 o

Accumulator

01001100

7 0

Notes: None

After

; Move accumulator to indirect
; address

Register 0

110111000

7 0

(00B8H)

101001100 1

7 o

Accumulator

01001100

7 0

3-95

MOVX

3-96

Move External Memory Addressed by
Data Pointer to Accumulator

Mnemonic: MOVX

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

A
DPTR

Accumulator
Data Pointer

MOVX A,@DPTR

1111000001

7 °
(A) +- ((DPTR))

C AC FO RS1 RSO OV p

PSW

Description: This instruction moves the contents of the off-chip data memory
location addressed by the data pointer to the accumulator.

Example:

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port O.

MOVX A,@DPTR ; Move memory at DPTR to
; accumulator

Encoded Instruction:

1111000001

7 °
Before

Accumulator

10000110

7 °

After

Accumulator

11101000

7 °
Data Pointer Data Pointer

,--0 _1 1_1_0_0_1_1--,-_1 _1 0_1_1_1_0_0--,1 1-1 _0 _1 1_1_0_0_1_1--L-_1 _1 0_1_1_1_0_0-J

15 8 7 ° 15 8 7 °
(73DCH) (73DCH)

111101000 111101000

7 ° 7 °
Notes: 5

MeS-51

MCS-51 MOVX
Move External Memory Addressed by
Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1

Cycles: 2

Flags:

MOVX

A
Rr

MOVXA,@Rr

1110001r

7 0

(A) +- ((Rr))

Accumulator
Register 0 <= r <= 1

C AC FO RS1 RSO ov p

PSW

Description: This instruction moves the contents of the off chip data memory
location addressed by register r to the accumulator.

The contents of the specified register moves to Port O. The contents
of Port 2 is unaffected, but its previous value will be used in the
address to off-chip data memory.

3-97

3-98

Example: MOV P2, #55H
MOVXA,@R1

Encoded Instruction:

1111000111

7 o
Before

Accumulator

1010101001

7 o
Register 1

1000111001

7 o
(551CH)

100001000 1

7 o

Notes: 5

; Move memory at R1 toaccumulator

After

Accumulator

100001000 1

7 o

Register 1

1 0 0 0.1 1 1 0 0 1

7 o

(551CH)

100001000 1

7 o

MCS-51

MCS-51

Multiply Accumulator by B

Mnemonic: MUL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 4

Flags:

AB MultiplylDivide operand

MULAB

10100100

7 0

(AB) +- (A) * (B)

C AC FO RS1 RSO OV

PSW

p

Description: This instruction multiplies the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned values. It places the low-order byte of the result
in the accumulator, and places the high-order byte of the result in
the multiplication register.

The carry flag is always cleared. If the high-order byte of the prod
uct is not 0, then the overflow flag is set; otherwise, it is cleared.

MUL

3-99

3-100

Example: MOV B,#10
MULAB

Encoded Instruction:

1101001001

7 0

Before

Accumulator

00011111

7 0

Multiplication Register (B)

100001010

7 0

Overflow Flag

CD
Notes: 5

After

; Move 10 to multiplication register
; Multiply accumulator by 10

Accumulator

100110110 1

7 0

Multiplication Register (B)

1 00000001 1

7 0

Overflow Flag

OJ

MeS-51

MCS-51

No Operation

Mnemonic: NOP

Operands: None

Format: NOP

Bit Pattern:
00000000

7 0

Operation: No operation

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction does absolutely nothing for one cycle. Control
passes to the next sequential instruction.

Example: NOP

Encoded Instruction:

00000000

7 0

Notes: None

; Pause one cycle

NOP

3-101

ORL

3-102

Logical OR Immediate Data to Accumulator

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

Accumulator
-256 <= data <= + 255

ORL A,#data

01000100 Ilmmediate Datal

7 0 7 0

(A) ~ (A) OR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the 8-bit immediate data value to the contents
of the accumulator. Bit n of the result is 1 if bit n of either operand
is 1; otherwise bit n is O. It places the result in the accumulator.

Example: ORL A,#00001000B ; Set bit 3 to 1

Encoded Instruction:

01000100

7 0

Before

Accumulator

01110111

7 0

Notes: 4,5

00001000

7 0

After

Accumulator

01111111

7 0

MCS-Sl

MeS-51

Logical OR Indirect Address to Accumulator

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

Accumulator
Register 0 <= r <= 1

ORL A,@Rr

0100011r

7 0

(A) +- (A) OR ((Rr))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bitn is O. It places the result in the accumulator.

Example: ORL A,@RO

Encoded Instruction:

01000110

7 0

Before

Accumulator

00101000

7 0

Register 0

101010010

7 0

(52H)

00000001

7 0

Notes: 5, 15

; Set bit 0 to 1

After

Accumulator

00101001

7 0

Register 0

01010010

7 0

(52H)

00000001

7 0

ORL

3-103

ORL

3-104

Logical OR Register to Accumulator

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

Accumulator
Register 0 <= r <= 7

ORL A,Rr

01001rrr

7 0

(A) - (A) OR (Rr)

C AC FO RS1 RSO OV

PSW

p

Description: This instruction ORs the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is O. It places the result in the accumulator.

Example: ORL A,R4

Encoded Instruction:

01001100

7 0

Before

Accumulator

10010001

7 0

Register 4

10001000

7 0

Note: 5

; Set bits 7 and 3 to 1

After

Accumulator

10011001

7 0

Register 4

10001000

7 0

MCS-51

MCS-51

Logical OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ORL

A Accumulator
data address 0 <= data address <= 255

ORL A,data address

01 0001 01 1 Data Address 1

7 o 7 o
(A) +- (A) OR (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
either operand is 1; otherwise bit n is O. It places the result in the
accumulator.

Example: ORL A,37H

Encoded Instruction:

01000101

7 0

Before

Accumulator

01110111

7 0

(37H)

1 1 0000000

7 0

Notes: 5,8

00110111

7 0

; OR 37H with accumulator

After

Accumulator

11110111

7 0

(37H)

110000000

7 0

ORL

3-105

ORL

3-106

Logical OR Bit to Carry Flag

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

ORL C,bit address

0111 001 0 Bit Address

7 o 7 o

(C) ~ (C) OR (bit address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the specified bit address with
the contents of the carry flag. The carry flag becomes 1 when either
the carry flag or the specified bit address is 1; otherwise, it is o. It
places the result in the carry flag.

Example: ORLC,46.2

Encoded Instruction:

01110010

7 0

Before

Carry Flag

[JJ
(46)

100100110

720

Notes: None

01110010

7 0

; OR bit 2 of byte 46 with Carry

After

Carry Flag

IT]
(46)

100100110

720

MCS-Sl

MCS-51

Logical OR Complement of Bit to Cany Flag

Mnemonic: ORL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

C Carry Flag
bit address 0 <= bit address <= 255

ORL CI bit address

10100000 Bit Address

7 0 7 0

(C) ..- (C) OR NOT bit address

C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction ORs the complemented contents of the specified
bit address to the contents of the carry flag. The carry flag is 1
when either the carry flag is already 1 or the specified bit address is
O. It places the result in the carry flag. The contents of the specified
bit address is unchanged.

Example: ORLCI25H.5

Encoded Instruction:

10100000

7 0

Before

Carry Flag

IT]
(25H)

I 00000110

750

Notes: None

00101101

7 0

After

; Complement contents of 5 in byte
; 25H then OR with Carry

Carry Flag

[i]
(25H)

100000110

7 5 0

ORL

3-107

ORL

3-108

Logical OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

ORL

data address 0 <= data address <= 255
data -256 <= data <= + 255

ORL data address ,#data

01 000011 I Data Address Ilmmediate Datal

7 07 07 0

(data address) +- (data address) OR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the 8-bit immediate data value to the contents
of the specified data address. Bit n of the result is 1 if bit n of either
operand is 1; otherwise bit n is O. It places the result in memory at
the specified address.

Example: ORL 57H,#01H ; Set bit 0 to 1

Encoded Instruction:

01000011 01010111 00000001

7 0 7 0 7 0

Before After

(57H) (57H)

101110110 101110111

7 0 7 0

Notes: 4,9

MeS-51

MCS-51

Logical OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

ORL

data address 0 <= data address <= 255
A Accumulator

ORL data address ,A

0100001 0 I Data Address I
7 0 7 0

(data address) ~ (data address) OR A

C AC FO RS1 RSO OV p

PSW

Description: This instruction ORs the contents of the accumulator to the
contents of the specified data address. Bit n of the result is 1 if bit n
of either operand is 1; otherwise bit n is O. It places the result in
memory at the specified address.

Example: ORL 10H,A

Encoded Instruction:

01000010

7 0

Before

Accumulator

11110000

7 0

(10H)

I 00110001

7 0

Note: 9

00010000

7 0

After

; OR accumulator with the contents
; of 10H

Accumulator

11110000

7 0

(10H)

I 11110001

7 0

ORL

3-109

POP

3-110

Pop Stack to Memory

Mnemonic: POP

Operands: data address 0 <= data address <= 255

" Format: POP data address

Bit Pattern:
1 11010000 1 Data Address 1

7 0 7 0

Operation: (data address) ~ ((SP))

Bytes: 2
Cycles: 2

(SP) ~ (SP) -1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction places the byte addressed by the stack pointer
at the specified data address. It then decrements the stack pointer
by 1.

Example: POPPSW

Encoded Instruction:

1110100001110100001

707 0

Before

Accumulator

111010101

7 0

PSW (ODOH)

1101010111

7 0

Stack POinter

1 00010000 1

7 0

(10H)

111110010 1

7 0

Notes: 2, 8, 17

; Pop PSW parity is not affected.

After

Accumulator

111010101

7 0

PSW (ODOH)

111110011 I
7 0

Stack Pointer

100001111

7 0

(10H)

[11110010 1

7 0

MeS-51

MCS-Sl PUSH
Push Memory onto Stack

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

PUSH

data address 0 <= data address <= 255

PUSH data address

1 11 000000 1 Data Address 1

7 0 7 0

(SP) +- (SP) + 1
((SP)) +- (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction increments the stack pointer, then stores the
contents of the specified data address at the location addressed by
the stack pointer.

Example: PUSH4DH

Encoded Instruction:

111000000

7 0

Before

(4DH)

110101010

7 0

Stack Pointer

00010000

7 o
(11 H)

1 00000000

7 0

Notes: 2, 3, 8

01001101

7 0

; Push one byte to the stack

After

(4DH)

110101010 1

7 0

Stack Pointer

1000100011

7 o

(11 H)

110101010

7 0

3-111

RET

3-112

Return from Subroutine (Non-interrupt)

Mnemonic: RET

Operands: None

Format: RET

Bit Pattern:
00100010

7 0

Operation: (PC high) +- «SP))
(SP) +- (SP) -1
(PC low) +- «SP))
(SP) +- (SP) -1

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction returns from a subroutine. Control passes to the
location addressed by the top two bytes on the stack. The high
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MeS-51

MCS-Sl

Example: RET ; Return from subroutine

Encoded Instruction:

100100010 I
7 o

Before After

Program Counter Program Counter

I 00000010 I 01010101 I I 00000000 I 01110011

15 8 7 0 15 8 7 0

Stack Pointer

100001010 I
7 0

(OAH)

100000000 I
7 0

(09H)

101110011 I
7 0

Notes: 2,17

Stack Pointer

100001000 I
7 0

(OAH)

I 00000000 I
7 0

(09H)

10 1110 011 I
7 0

3-113

RETI

3-114

Return from Interrupt Routine

Mnemonic: RETI

Operands: None

Format: RETI

Bit Pattern:
00110010

7 0

Operation: (PC high) +- ((SP))
(SP) +- (SP) -1
(PC low) +- ((SP))
(SP) +- (SP) -1

Bytes: 1
Cycles: 2

Flags: C AC FO RS1 RSO OV P

PSW

Description: This instruction returns from an interrupt service routine, and
reenables interrupts of equal or lower priority. Control passes to
the location addressed by the top two bytes on the stack. The high
order byte of the return address is always the first to come off the
stack. It is immediately followed by the low-order byte.

MCS-51

MCS-51

Example: RET! ; Return from interrupt routine

Encoded Instruction:

100110010 I
7 o

Before After

Program Counter Program Counter

1 00 0010 10 1101010101 100000 0 0 0 111110001

15 8 7

Stack Pointer

1000010101

7 o
(OAH)

100000000 I
7 o

(09H)

1111100011

7 o
Notes: 2,17

o 15 8 7

Stack Pointer

100001000 1

7 o
(OAH)

100000000 1

7 o
(09H)

11111000 1 1

7 o

o

3-115

RL

3-116

Rotate Accumulator Left

Mnemonic: RL

Operands: A

Format: RL A

Bit Pattern:

Operation:

Bytes:
Cycles:

00100011

7 0

C

o

Accumulator

ACCUMULATOR

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the least signifi
cant bit position (bit 0).

Example: RLA

Encoded Instruction:

00100011

7 0

Before

Accumulator

11010000

7 0

Notes: None

; Rotate accumulator left one positon.

After

Accumulator

10100001

7 0

MCS-Sl

MeS-51

Rotate Accumulator and Carry Flag Left

Mnemonic: RLC

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

A

RLCA

00110011

7 0

C

9"

Accumulator

ACCUMULATOR

Flags: C AC FO RS1 RSO ov p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the left. The most significant bit (bit 7) moves into the Carry flag,
while the previous contents of Carry moves into the least significant
bit (bit 0).

Example: RLGA

Encoded Instruction:

00110011

7 0

Before

Accumulator

00011001

7 0

Carry Flag

OJ
Note: 5

After

; Rotate accumulator and carry left
; one positon.

Accumulator

00110011

7 0

Carry Flag

OJ

RLC

3-117

RR

3-118

Rotate Accumulator Right

Mnemonic: RR

Operands: A

Format: RR A

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

00000011

7 0

C

D

Accumulator

ACCUMULATOR

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the most
significant bit position (bit 7).

Example: RRA

Encoded Instruction:

00000011

7 o

Before

Accumulator

11010001

7 0

Notes: None

After

; Rotate accumulator right one
; positon.

Accumulator

11101000

7 0

MCS-51

MCS-51

Rotate Accumulator and Carry Flag Right

Mnemonic: RRC

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A

RRCA

00010011

7 0

C

~

Accumulator

ACCUMULATOR

C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction rotates each bit in the accumulator one position to
the right. The least significant bit (bit 0) moves into the Carry flag,
while the previous contents of Carry moves into the most signifi
cant bit (bit 7).

Example: RRCA

Encoded Instruction:

00010011

7 0

Before

Accumulator

10011000

7 0

Carry Flag

IT]
Note: 5

After

; Rotate accumulator and carry right
; one positon.

Accumulator

11001100

7 0

Carry Flag

[JJ

RRC

3-119

S'ETB MCS-51

Set Carry Flag

Mnemonic: SETB

Operands: C Carry Flag

Format: SETBC

Bit Pattern:
111010011

7 0

Operation: (C) +-1

Bytes:
Cycles:

Flags: C AC FO RS1 RSO OV p

I-I
PSW

Description: This instruction sets the carry flag to 1.

Example: SETBe ; Set Carry to 1

Encoded Instruction:

111010011 I
7 o

Before After

Carry Flag Carry Flag

IT] OJ
Notes: None

3-120

MeS-51

Set Bit

Mnemonic: SETB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

bit address 0 <= bit address <= 255

SETB bit address

111010010 1 Bit Address 1

707 0

(bit address) ~ 1

C AC FO RS1 RSO OV p

PSW

Description: This instruction sets the contents of the specified bit address to 1.

Example: SET841.5

Encoded Instruction:

111010010 01001101

7 o 7 o

Before

(41)

101000110

7 5 0

Notes: None

After

(41)

; Set the contents of bit 5 in byte 41
; to 1

101100110

750

SETB

3-121

SJMP

3-122

Short Jump

Mnemonic: SJMP

Operands: code address

Format: SJMP code address

Bit Pattern:
10000000 Rei. Offset

Operation:

Bytes: 2
Cycles: 2

Flags:

7 0 7 0

(PC) +- (PC) + 2
(PC) ~ (PC) + relative offset

C AC FO RS1 RSO OV p

PSW

Description: This instruction transfers control to the specified code address. The
Program Counter is incremented to the next instruction, then the
relative offset is added to the incremented program counter, and
the instruction at that address is executed.

Example: SJMP BOTTOM ; Jump to BOTTOM
FF:INCA

BOTTOM: RRA

Encoded Instruction:

10000000 00001111

7 0 7 0

Before After

; (15 bytes ahead from the INC
; instruction)

Program Counter Program Counter

11101000 11011100 1 111101000 11101101

15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MCS-Sl SUBB
Subtract Immediate Data from
Accumulator with Borrow

Mnemonic: SUBB

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

SUBB A,#data

Accumulator
-256 <= data <= +255

1001 0100 Ilmmediate Datal

7 0 7 0

(A) +- (A) - (C) - data

C AC FO RS1 RSO OV p

PSW

Description: This instruction subtracts the contents of the Carry flag and the
immediate data value from the contents of the accumulator. It
places the result in the accumulator.

Example: SUBBA,#OC1H ; Subtract OC1 H from accumulator

Encoded Instruction:

10010100

7 0

Before

Accumulator

00100110

7 0

Carry Flag

[IJ

01100100

7 0

Auxiliary Carry Flag

IT]
Overflow Flag

[IJ
Notes: 4, 5, 6, 13, 14

After

Accumulator

01100100

7 0

Carry Flag

[IJ
Auxiliary Carry Flag

[IJ
Overflow Flag

IT]

3-123

T

SllBB
Subtract Indirect Address from
Accumulator with Borrow

Mnemonic: SUBB

Operands: A
Rr

Accumulator
Register 0 <= r <= 1

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

SUBBA,@Rr

1001011r

7 0

(A) +- (A) - (C) - ((Rr))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction subtracts the Carry flag and the memory location
addressed by the contents of register r from the contents of the
accumulator. It places the result in the accumulator.

MeS-51

MCS-Sl

Example: SUBBA,@R1

Encoded Instruction:

1100101111

7 0

Before

Accumulator

110000110 1

7 o
Register 1

1000111001

7 0

(1CH)

101100010 1

7 0

Carry Flag

IT]
Auxiliary Carry Flag

IT]
Overflow Flag

IT]
Notes: 5,6, 13, 14, 15

After

; Subtract the indirect address from
; accumulator

Accumulator

1001001001

7 o
Register 1

100011100 1

7 0

(1CH)

1011000101

7 0

Carry Flag

IT]
Auxiliary Carry Flag

OJ
Overflow Flag

OJ

3-125

SUBB

3-126

Subtract Register from Accumulator with Borrow

Mnemonic: SUBB

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

Accumulator
Register 0 <= r <= 7

SUBBA,Rr

10011rrr

7 0

(A) ~ (A) - (C) - (Rr)

C AC FO RS1 RSO OV

PSW

p

Description: This instruction subtracts the contents of the Carry flag and the
contents of register r from the contents of the accumulator. It
places the result in the accumulator.

MeS-51

MCS-Sl

Example: SUBBA,R6

Encoded Instruction:

110011110 1

7 0

Before

Accumulator

101110110 1

7 0

R6

10000101

7 0

Carry Flag

[i]
Auxiliary Carry Flag

IT]
Overflow Flag

IT]
Notes: 5, 6, 13, 14

; Subtract R6 from accumulator

After

Accumulator

111 11 0000 1

7 0

R6

110000101

7 0

Carry Flag

[i]
Auxiliary Carry Flag

[i]
Overflow Flag

[i]

3-127

SUBB

3-128

Subtract· Memory from Accumulator with Borrow

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

SUBB

A Accumulator
data address 0 <= data address <= 255

SUBB A,data address

1 001 01 01 I Data Address I
7 0 7 0

(A) +- (A) - (C) - (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction subtracts the contents of the Carry flag and the
contents of the specified address from the contents of the
accumulator. It places the result in the accumulator.

MeS-51

MeS-51

Example: SUBBA,32H

Encoded Instruction:

110010101 00110010

7 o 7

Before

Accumulator

1001001101

7 o
(32H)

1010100111

7 o
Carry Flag

QJ
Auxiliary Carry Flag

o
Overflow Flag

o
Notes: 5, 6, 8, 13, 14

o

After

; Subtract 32H in memory from
; accumulator

Accu(Tlulator

111010010 1

7

(32H)

o

101010011

7 o

Carry Flag

QJ
Auxiliary Carry Flag

QJ
Overflow Flag

o

3-129

SWAP

3-130

Exchange Nibbles in Accumulator

Mnemonic: SWAP

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

A

SWAP A

11000100

7 0

Accumulator

Flags: C AC FO RSO RS1 OV p

PSW

Description: This instruction exchanges the contents of the low order nibble
(0-3) with the contents of the high order nibble (4-7).

Example: SWAPA

Encoded Instruction:

1110001001

7 o
Before

Accumulator

11010000

7 0

Notes: None

After

; Swap high and low nibbles in the
; accumulator.

Accumulator

00001101

7 0

MeS-51

MCS-Sl

Exchange Indirect Address with Accumulator

Mnemonic: XCH

Operands:

Format:

A
Rr

XCHA,@Rr

Accumulator
Register 0 <= r <= 1

Bit Pattern:
11100011r 1

7 0

Operation: temp ~ ((Rr»
((Rr)) ~ (A)
(A) ~temp

Bytes: 1
Cycles: 1

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction exchanges the contents of the memory location
addressed by the contents of register r with the contents of the
accumulator.

Example: XGHA,@RO

Encoded Instruction:

111000110 1

7 0

Before

Accumulator

00111111

7 ~ 0

Register 0

01010010

7 0

(52H)

100011101

7 0

Notes: 5,15

After

; Exchange the accumulator with
; memory

Accumulator

100011101

7 0

Register 0

[ijj1 001 0 1

7 0

(52H)

100111111

7 0

XCH

3-131

XCH

3-132

Exchange Register with Accumulator

Mnemonic: XCH

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

A
Rr

XCH A,Rr

111001rrr

7 0

temp +- (Rr)
(Rr) +- (A)
(A) +- temp

Accumulator
Register 0 <= r <= 7

Flags: C AC FO RS1 RSO OV p

PSW

Description: This instruction exchanges the contents of register r with the
contents of the accumulator.

Example: XGHA,R6

Encoded Instruction:

111001100 I
7 o

Before

Accumulator

10011001

7 o

Register 6

110000000 I
7 o

Note: 5

After

; Exchange register 6 with the
; accumulator

Accumulator

110000000 1

7 o

Register 6

110011001

7 o

MCS-Sl

MCS-Sl

Exchange Memory with Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XCH

A Accumulator
data address 0 <= data address <= 255

XCH A,data address

1 11 0001 01 1 Data Address 1

7 0 7 0

temp +- (data address)
(data address) +- (A)
(A) +- temp

C AC FO RS1 RSO OV

PSW

p

Description: This instruction exchanges the contents of the specified data
address with the contents of the accumulator.

Example: XGHA,37H

Encoded Instruction:

111000101

7 0

Before

Accumulator

01110111

7 0

(37H)

111110000

7 0

Notes: 5,9

00110111

7 0

After

; Exchange accumulator with the
; contents of location 37H

Accumulator

111110000 1

7 0

(37H)

1011101-11

7 0

XCH

3-133

XCHD

3-134

Exchange Low Nibbles (Digits) of Indirect
Address with Accumulator

Mnemonic: XCHD

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Rr

Accumulator
Register 0 <= r <= 1

XCHDA,@Rr

1101011r

7 0

temp +- «Rr)) 0-3
«Rr)) 0-3 +- (A) 0-3
(A) 0-3 +- temp

C AC FO AS1 ASO OV

PSW

p

Description: This instruction exchanges the contents of the low order nibble (bits
0-3) of the memory location addressed by the contents of register r
with the contents of the low order nibble (bits 0-3) of the
accumulator.

MeS-51

MeS-51

Example: XGHDA,@RO

Encoded Instruction:

111010110 1

7 o
Before

Accumulator

100111111

7 o
Register 0

1010100101

7 0

(52H)

1000111011

7 o
Notes: 5,15

After

; Exchange the accumulator with
; memory

Accumulator

100111101

7 o
Register 0

1010100101

7 0

(52H)

100011111

7 o

3-135

X'RL

3-136

Logical Exclusive OR Immediate Data
to Accumulator

Mnemonic: XRL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

A
data

XRLA,#data

Accumulator
-256 <= data <= + 255

011 001 00 Ilmmediate Datal
7 0 7 0

(A) +- (A) XOR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the immediate data value to the
contents of the accumulator. Bit n of the result is 0 if bit n of the
accumulator equals bit n of the data value; otherwise bit n is 1. It
places the result in the accumulator.

Example: XRLA,#OFH

Encoded Instruction:

01100100

7 0

Before

Accumulator

01110111

7 0

Notes: 4,5

00001111

7 0

; Complement the low order nibble

After

Accumulator

01111000

7 0

MeS-51

MeS-51

Logical Exclusive OR Indirect Address
to Accumulator

Mnemonic: XRL

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

A
Rr

XRLA,@Rr

0110011r

7 0

Accumulator
0<= Rr <= 1

(A) +- (A) XOR ((Rr))

C AC FO RS1 RSO OV

PSW

p

Description: This instruction exclusive ORs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 0 if bit n of the accumulator
equals bit n of the addressed location; otherwise bit n is 1. It places
the result in the accumulator.

Example: XRLA,@RO

Encoded Instruction:

01100110

7 0

Before

Accumulator

00101000

7 0

Register 0

01010010

7 0

(52H)

I 00000001

7 0

Notes: 5,15

After

; XOR indirect address with
; accumulator

Accumulator

00101001

7 0

Register 0

01010010

7 0

(52H)

100000001

7 0

XRL

3-137

XRL

3-138

Logical Exclusive OR Register to Accumulator

Mnemonic: XRL

Operands:

Format:

Bit Pattern:

Operation:

Bytes:
Cycles:

Flags:

A
Rr

XRLA,Rr

01101rrr

7 0

Accumulator
Register 0 <= r <= 7

(A) - (A) XOR (Rr)

C AC FO RS1 RSO OV p

I I-I
PSW

Description: This instruction exclusive ORs the contents of register r to the
contents of the accumulator. Bit n of the result is 0 if bit n of the
accumulator equals bit n of the specified register; otherwise bit n is
1. It places the result in the accumulator.

Example: XRLA,R4

Encoded Instruction:

01101100

7 0

Before

Accumulator

10010001

7 0

Register 4

11100011

7 0

Note: 5

; XOR R4 with accumulator

After

Accumulator

01110010

7 0

Register 4

11100011

7 0

MeS-51

MeS-51

Logical Exclusive OR Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XRL

A Accumulator
data address 0 <= data address <= 255

XRL A,data address

011 001 01 1 Data Address 1

7 0 7 0

(A) -- (A) XOR (data address)

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the contents of the specified data
address to the contents of the accumulator. Bit n of the result is 0 if
bit n of the accumulator equals bit n of the addressed location;
otherwise bit n is 1. It places the result in the accumulator.

Example: XRLA,37H

Encoded Instruction:

01100101

7 0

Before

Accumulator

01111111

7 0

(37H)

110001000

7 o
Notes: 4,8

00110111

7 0

After

; XOR the contents of location 37H
; with accumulator

Accumulator

11110111

7 0

(37H)

110001000

7 o

XRL

3-139

XRL

3-140

Logical Exclusive OR Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

XRL

data address 0 <= data address <= 255
data -256 <= data <= + 255

XRL data address ,#data

I 011 00011 I Data Address Ilmmediate Datal

7 07 07 0

(data address) +- (data address) XOR data

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the immediate data value to the
contents of the specified data address. Bit n of the result is 0 if bit n
of the specified address equals bit n of the data value; otherwise,
bit n is 1. It places the result in data memory at the specified
address. .

Example: XRL P1,#51H

Encoded Instruction:

01100011

7 0

Before

Port 1 (90H)

101110110

7 0

Notes: 4,9

10010000

7 0

; XOR 51 H with the contents of Port 1

01010001

7 0

After

Port 1 (90H)

11100110

7 0

MeS-51

MCS-Sl

Logical Exclusive OR Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

XRL

data address 0 <= data address <= 255
A Accumulator

XRL data address ,A

01100010 1 Data Address 1

7 0 7 0

(data address) +- (data address) XOR A

C AC FO RS1 RSO OV p

PSW

Description: This instruction exclusive ORs the contents of the accumulator to
the contents of the specified data address. Bit n of the result is 0 if
bit n of the accumulator equals bit n of the specified address;
otherwise bit n is 1. It places the result in data memory at the
specified address.

Example: XRL 10H,A

Encoded Instruction:

01100010

7 0

Before

Accumulator

11110000

7 0

(10H)

1 00110001

7 0

Note: 9

00010000

7 0

After

; XOR the contents of 10H with the
; accumulator

Accumulator

11110000

7 0

(10H)

111000001

7 0

XRL

3-141/3-142

MCS-S1

Notes
1. The low-order byte of the Program Counter is always placed on the stack first,

followed by the high order byte.

2. The Stack Pointer always points to the byte most recently placed on the stack.

3. On the 8051 the contents of the Stack Pointer should never exceed 127. If the
stack pointer exceeds 127, data pushed on the stack will be lost, and undefined
data will be returned. The Stack Pointer will be incremented normally even
though data is not recoverable.

4. The expression used as the data operand must evaluate to an eight-bit number.
This limits the range of possible values in assembly time-expressions to between
-256 and +255 inclusive.

5. The Parity Flag, PSW.O, always shows the parity of the accumulator. If the
number of 1 's in the accumulator is odd, the parity flag is 1; otherwise, the
parity flag will be o.

6. All addition operations affect the Carry Flag, PSW. 7, and the Auxiliary Carry
flag, PSW.6. The Carry flag receives the carry out from the bit 7 position (Most
Significant Bit) in the accumulator. The Auxiliary Carry flag receives the carry
out from the bit 3 position. Each is either set or cleared with each ADD
operation.

7. The overflow flag (OV) is set when an operation produces an erroneous result
(i.e. the sum of two negative numbers is positive, or the sum of two positive
numbers is negative). OV is updated with each operation.

8. If one of the 110 ports is specified by the data address, then data will be taken
from the port input pins.

9. If one of the I/O ports is specified by the data address, then data will be taken
from, and returned to, the port latch.

10. The code address operand must be within the range of -128 and + 127 inclusive
of the incremented program counter's value.

11. The last byte of the encoded instruction is treated as a two's complement
number, when it is added to the program counter.

12. The Program Counter is always incremented before the add.

13. The auxiliary carry flag is set if there is a borrow from bit 3 of the accumulator;
otherwise, it is cleared.

14. The overflow flag (OV) is set when an operation produces an erroneous result
(i.e. a positive number is subtracted from a negative number to produce a
positive result, or a negative number is subtracted from a positive number to
produce a negative result). OV is cleared with each correct operation.

15. On the 8051 the contents of the register used in the indirect address should not
exceed 127. When the contents of the register is 128 or greater, source operands
will return undefined data, and destination operands will cause data to be lost.
In either case, the program will continue with no change in execution time or
control flow.

16. If an I/O port is specified as the source operand, then the the port pins will be
read. If an 110 port is the destination operand, then the port latch will receive
the data.

17. If the stack pointer is 128 or greater, then invlalid data will be returned on a
POP or return.

Instruction Set

3-143/3-144

CHAPTER 41
ASSEMBLER DIRECTIVE~

This chapter describes all of the assembler directives. It shows how to define
symbols and how to control the placement of code and data in program memory.

Introduction

The MCS-51 assembler has several directives that permit you to set symbol values,
reserve and initialize storage space, and control the placement of your code.

The directives should not be confused with instructions. They do not produce
executable code, and with the exception of the DB and DW directives, they have no
effect on the contents of code memory. Their sole purpose is to change the state of
the assembler.

The directives can be broken down into the following categories:

Symbol Definition
EQU
SET
DATA
XDATA
BIT

Segment Controls
BSEG
CSEG
OSEG
XSEG

Location Counter Controls
ORG
OS
DBIT

Memory Initialization
DB
DW

End of Program
END

The Location Counter

The location counter in ASM51 is an index to the address space of the active
segment. When a segment is first activated the location counter is o. You can change
its value with the location counter control directives (ORG, DS, or DBIT). In the
code address segment the memory initialization directives (DB and DW) and each
instruction assembled change the location counter's value. If you change segment
modes and later return to the segment, the location counter is restored to its previous
value. Whenever the assembler encounters a label, it assigns the current value of the
location counter to that symbol, and the segment type of the current segment mode.

4-1

Assembler Directives

4-2

You can use the value of the active segment's location counter with the symbol
dollar sign ($). This can be especially useful when expressing code address operands
for jump instructions. When you use the location counter symbol, keep in mind that
its value changes with. each instruction, but only after that instruction has been
completely evaluated. If you use $ in an operand to an instruction or a directive, it
represents the code address of the first byte of that instruction.

MOV R6,#10
DJNZ R6,$

DIVAB
JZ$+3
RET

CLRC
RLCA
JC$-1

; Load register 6 with the value 10
; Loop at current location
; until R6 is 0 (20 instruction cycles)

; Divide accumulator by multiplication register
; Jump over next instruction if accumulator is 0
; Return if accumulator is not 0

; Set carry to 0 for loop termination
; Find left most 0 bit in accumulator
; Jump to previous instruction if Carry is high

Symbol Names

A symbol name may be composed of any of the following characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
o 1 234 5 6 789

?-

A symbol cannot begin with a digit (0, 1,2, 3,4, 5, 6, 7, 8, or 9). The remainder of
the name can contain any of the legal characters.

You can use up to 255 characters in a symbol name, but only the first 31 characters
are significant. A symbol name may contain upper case or lower case characters, but
the assembler converts to upper case characters for internal representation. So to
ASM51, 'buffer' is the same as 'BUFFER' and

'_A_THIRTY _ONE_CHARACTER_STRING_'

is the same as

'_A_ THIRTY _ONE_CHARACTER~STRING_PLUS_ THIS'.

The following list of instruction mnemonics, assembly-time operators, reserved
words, predefined bit and data addresses, and assembler directives may not be used
as user defined symbol names.

Instruction Mnemonics

ACALL DA JMP MOV PUSH SETB
ADD DEC JNB MOVC RET SJMP
ADDC DIV JNC MOVX RETI SUBB
AJMP DJNZ JNZ MUL RL SWAP
ANL INC JZ NOP RLC XCH
CJNE JB LCALL ORL RR XCHD
CLR JBC LJMP POP RRC XRL
CPL JC

MeS-51

MeS-51 Assembler Directives

AND
EO
GE

A
AB
C

ACC
B
DPH
P1

AC
CY
EA
ES
ETO
En
EXO

RESET

BIT
BSEG
CSEG

GT
HIGH
LE

DPTR
PC

IE
IP
PO
PSW

EX1
FO
lEO
IE1
INTO
INT1
ITO

TIMERO

DATA
DSEG
DBIT

Statement Labels

LOW
LT
MOD

Operators

NE
NOT

Reserved Words

RO
R1

R2
R3

OR
SHL

R4
R5

Predefined Data (byte) Addresses

P2
P3
SP

SBUF
SCON
TH1

Predefined Bit Addresses

IT1 PX1
OV RBS
P RD
PS REN
PTO RI
pn RSO
PXO RS1

Predefined Code Addresses

TlMER1 EXTIO

Directives

DB
DW
DS

EOU
END

TCON
THO
TMOD

RXD
SMO
SM1
SM2
TO
T1
TBS

EXTI1

ORG
SET

SHR
XOR

R6
R7

TLO
TL1
DPL

TFO
TF1
TI
TRO
TR1
TXD
WR

SINT

XDATA
XSEG

A label is a symbol. All of the rules for forming symbol names apply to labels. A
statement label is the first field in a line, but it may be preceded by any number of
tabs or spaces. You must place.a colon (:) after the label to identify it as a label. Only
one label is permitted per line. If you use the label later in an expression, do not in
clude the colon, since the colon is used only to define the label.

4-3

Assembler Directives

Any line in your program can have a label, except control lines and some directives.
The following directives may not have a label.

BIT
DATA
END
EQU
ORG
SET
XDATA

When a label is defined, it receives a numeric value and a segment type. The numeric
value will always be the current value of the location counter. If a label appears on
an instruction line, its numeric value will be the code address of the first byte of the
instruction. The segment type will depend on which segment is active when the label
is defined. Segment typing of labels and symbols helps to prevent confusing the
different address spaces on the 8051. Several examples of lines containing labels are
shown below.

LABEL1:
LABEL2: ; This line contains no instruction
LABEL3: DB 27,33, 'FIVE'
LABEL4: MOV DPTR,#LABEL3

You can use labels like any other symbol, as a code address or a numeric value in an
ass~mbly-time expression (described in Chapter 2 Operands). A label, once defined,
may not be redefined.

Symbol Definition Directives

The symbol definition directives allow you to create symbols that can be used to
enhance the readability of your code. With these directives you can define symbols
to represent data addresses, bit addresses, external data addresses, numeric values to
be used in assembly-time expressions, and even special assembler symbols.

Eau Directive

The format for the EQU directive is shown below. Note that a label is not permitted.

symbol name EQU expression or special assembler symbol

The EQU directive assigns a numeric value or special assembler symbol to a
specified symbol name. The symbol name must be a valid ASM5I symbol as
described above. If you assign a constant or address expression to the symbol, the
expression must be a valid assembly-time expression with no forward references.
The special assembler symbols A, RO, RI, R2, R3, R4, R5, R6, and R7 can be
represented by user symbols defined with the EQU dir~ctive.

If you use EQU to define a symbol, that symbol will have no segment type
associated with it. You can use it as a data address, code address, bit address, or
external dataaddress,without error. If you define a symbol to a register value, it
will have a type, 'REG'. It can only be used in the place of that register in instruction
operands. A symbol defined by the EQU directive cannot be defined anywhere else.

MCS-51

MCS-51 Assembler Directives

The following examples show several uses of EQU:

ACCUM EQU A
N27 EQU 27
PI EQU 3

HERE EQU $

SET Directive

Define ACCUM to stand for A (accumulator)
Set N27 to equal 27
This program was written in Louisiana
where PI equals 3 by law
Set HERE to current location counter value

The format for the SET directive is shown below. Note that a label is not permitted.

symbol name SET expression or special assembler symbol

The SET directive assigns a numeric value or special assembler symbol to a specified
symbol name. The symbol name must be a valid ASM51 symbol as described above.
If you assign a constant or address expression to the symbol, the expression must be
a valid assembly-time expression with no forward references. The special assembler
symbols A, RO, Rl, R2, R3, R4, R5, R6, and R7 can be represented by user symbols
defined with the SET directive.

If you use SET to define a symbol, that symbol will have no segment type associated
with it. You can use it as a data address, code address, bit address, or external data
address, without error. If you define a symbol to a register value, it will have a type,
'REG'. It can only be used in the place of that register in instruction operands. A
symbol defined by the SET directive may be redefined by another SET directive.

The following examples show several uses of SET:

COUNT SET 0 Initialize Assembly-time counter
COUNT SET COUNT +1 Increment assembly time counter
HALF SET WHOLEI2 Give half of WHOLE to HALF (the

remainder is discarded)
H2O SET 32 Set H20 to 32
INDIRECT SET R1 Set INDIRECT to R1

DATA Directive

The format for the DATA directive is shown below. Note that a label is not
permitted.

symbol name DATA expression

The DATA directive assigns an on-chip data address to the specified symbol name.
The symbol name must be a valid ASM51 symbol as described above. The expres
sion must be a valid assembly-time expression with no forward references, and it
must compute to a data address (0-255).

When you define a symbol with DATA, it will be of segment type DSEG. A symbol
defined by the DATA directive may not be redefined anywhere else in the program.

The following examples show several uses of DATA:

CONIN DATA SBUF
TABLE_BASE DATA 70H
TABLE_END DATA 7FH

Define CONIN to address the serial port buffer
Define TABLE_BASE to be at location 70H
Define TABLE_END to be at top of RAM (7FH)

4-5

Assembler Directives

4-6

XDAT A Directive

The format for the XDA T A directive is shown below. Note that a label is not
permitted.

symbol name XDATA expression

The XDA T A directive assigns an off-chip data address to the specified symbol
name. The symbol name must be a valid ASM51 symbol as described above. The
expression must be a valid assembly-time expression with no forward references.

When you define a symbol with XDA T A, it will be of segment type XSEG. A
symbol defined by the XDA T A directive may not be redefined anywhere else in the
program.

The following examples show several uses of XDAT A:

DATE XDAT A 999H
TIME XDATA DATE+5
PLACE XDATA TIME+3

BIT Directive

Define DATE to be 999H
Define TIME to be 5 bytes after DATE
Define PLACE to be 3 bytes after TIME

The format for the BIT directive is shown below. Note that a label is not permitted.

symbol name BIT bit address

The BIT directive assigns a bit address to the specified symbol name. The symbol
name must be a valid ASM51 symbol as described above. The bit address must be a
valid bit address (described in Chapter 2) with no forward references.

When you define a symbol with BIT, it will be of segment type BSEG. A symbol
defined by the BIT directive may not be defined anywhere else in the program.

The following examples show several uses of BIT:

ERROR_FLAG BIT 25H.3

BITOV

Define ERROR_FLAG in RAM
bit address space
(bit 3 of byte 25H)
Define ARITH_ERR to the same
address as the predefined bit
address OV (OD2H)

Memory Segment Controls

There are four address spaces or segments in the 8051 's architecture: code address
space, data address space, external data address space, and bit address space
(overlayed on the data address space). Each has its own characteristics and limits.
When a segment is first activated its location counter is O. The code address space is
the ROM memory both on- and off-chip. The other areas cannot be initialized, but
your program's use of these areas can be controlled with the location counter con
trol directives.

Each address space has its own location counter; it is active only when the
corresponding segment is also active. If you change segments and return to a
previously used segment, the value of the location counter will be restored to the
value it had when you left it.

MeS-51

MCS-Sl Assembler Directives

BSEG Directive

The format for the BSEG directive is as follows:

[label:] BSEG

The BSEG directive selects the 8051 's bit address segment. Each BSEG will restore
the location counter to the value it had when the bit segment was last active. The bit
address segment's location counter can be altered with the ORG and DBIT direc
tives. Each unit of the location counter stands for a bit in the bit address space. The
location counter may assume values in the range of 0 to 255.

CSEG Directive

The format for the CSEG directive is as follows:

[label:] CSEG

The CSEG directive selects the 8051 's code address segment. This is the default
segment when the assembler is invoked. Each CSEG will restore the location counter
to the value it had when the code segment was last active. The code address
segment's location counter can be altered with- the ORG, DS, DB, and DW direc
tives, and with each instruction encoded. Each unit in the location counter stands
for one byte in the code address space. The location counter may assume values in
the range of 0 to 65,535.

DSEG Directive

The format for the DSEG directive is as follows:

[label:] DSEG

The DSEG directive selects the 8051 's on-chip data address segment. Each DSEG
will restore the location counter to the value it had when the data segment was last
active. The data address segment's location counter can be altered with the ORO
and DS directives. Each unit in the location counter stands for one byte in the
on-chip data address space. The location counter may assume values in the range of
o to 255.

XSEG Directive

The format for the XSEG directive is as follows:

[label:] XSEG

The XSEG directive selects the 8051' s external data address segment. Each XSEG
will restore the location counter to the value it had when the external data segment
was last acitve. The external data address segment's location counter can be altered
with the ORG and DS directives. Each unit in the location counter stands for one
byte in the off-chip data address space. The location counter may assume values in
the range of 0 to 65,535.

Location Counter Controls

There are three directives that alter the location counter of the current address space
segment: ORG, DS, and DBIT. The DBIT directive can be used only when the bit
address segment is active. The DS directive can be used in any address segment
except the bit address segment. The ORG directive can be used in any segment.

4-7

Assembler Directives

4-8

ORG Directive

The format of the ORO directive is as follows:

GRG expression

The ORO directive may be used in any segment, but the value and segment type of
its expression must conform to the limitations of that segment. The expression must
be a valid assembly-time expression with no forward references.

When the ORO expression is encountered in a program, the value in the expression
is computed and assigned to the location counter of the current segment. There can
be several ORO directives in each segment, and they do not have to be in ascending
order. But, if you use non-sequential ORO statements, overlap problems may result.
It is the programmer's responsibility to guard against this occurrence. The ORO
statement may not have a label.

OS Directive

The format of the OS directive is as follows:

[label:] OS expression

The OS directive reserves space in byte units. It can be used in any segment except
the bit address segment. The expression must be a valid assembly-time expression
with no forward references. When a OS statement is encountered in a program, the
location counter of the current segment is incremented by the value of the
expression. The sum of the location counter and the specified expression should not
exceed the limitations of the current address space.

OBIT Directive

The format of the OBIT directive is as follows:

[label:] OBIT expression

The OBIT directive reserves bit address space. It can be used only in the bit address
segment. The expression must be a valid assembly-time expression with no forward
references. When a OBIT statement is encountered in a program, the location
counter of the bit address segment is incremented by the value of the expression.

Memory Initialization

Beside normal instruction encoding there are two directives that initialize the
contents of code memory. The instruction encoding proceeds as described in
Chapter 3, with each instruction and its operands being evaluated and encoded
sequentially. The directives OB and OW allow a programmer to specify a set of data
values to be encoded.

MCS-51

MCS-51 Assembler Directives

DB Directive

The format for a DB directive is shown below:

[label:] DB expression list

The DB directive initializes code memory with byte values (-256 to +255).
Therefore, the code segment must be active. The expression list is a series of one or
more byte values or strings separated by commas (,). A byte value can be represented
as an assembly-time expression or as a character string. Each item in the list
(expression or character in a string) is placed in memory in the same order <,.s it
appeared in the list.

The DB directive permits character strings longer than 2 characters, but they must
not be part of an expression (i.e., you cannot use long character strings with an
operator, induding parentheses). If you specify the null character string as an item
in the list (not as part of an expression) it evaluates to null and does not initialize
memory. If you use the location counter ($) in the list, it evaluates to the code
address of the byte being initialized. If the directive has a label, the value of the label
will be the address of the first byte in the list.

The following example shows several ways you can specify the byte value list in a DB
directive.

AGE: DB 'MARY' ,27, 'BILL' ,25,'JOE' ,21 ,'SUE' ,18
This DB statement lists
the names (character strings)
and ages (numbers) have been
placed in a list
(the label AGE will
address the 'M' in 'MARY')

PRIMES: DB 1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
This DB lists the first 17 prime

; numbers. (PRIMES is the address of 1)

QUOTE: DB 'THIS IS A QUOTE'" This is an example of how to
put the quote character in a
character string.

DB $, $-1, $-2, $-3

DB 'MAY'

DB ('MAY')

DB "

DB (")

This DB statement initializes
four bytes of memory with the
same value (the location counter
is incremented for each item in
the list)

This is a valid DB statement

This is an invalid DB statement since ('MAY') is an expression, not
a string, and it will generate an error

This expression list contains only the
null charact3r string ancj will not produce
a value to be initialized (1\10 space allocated)

This is an expression that will produce a
byte containing 0 (See Chapter 2
for expressions)

4-9

Assembler Directives

4-10

OW Directive

The format for a DW statement is shown below:

[label:) OW expression list

The DW directive initializes code memory with a list of word (16-bit) values.
Therefore, the code segment must be active. The expression list can be a series of one
or more word values separated by commas (,). A word value is an assembly-time
expression. If you use the location counter ($) in the list, it evaluates to the code
address of the high order byte in the word being initialized. As in all assembly-time
expressions (but unlike the DB directive), no more than two characters are permitted
in a character string, and the null character string evaluates to O.

Each item in the list is placed in memory in the same order as it appears in the list,
with the high order byte first followed by the low order byte. If the statement has a
label, the value of the label will address the high order byte of the first value in the
list.

The following examples shows several ways you can specify the word value list in a
DW directive.

ARRIVALS: OW 710, 'AM', 943,'AM', 1153,'AM', 315,'PM', 941,'PM'
This OW lists several flight arrivals
the numbers and characters are encoded
consecutively

INVENTORY: OW 'F' ,27869, 'G' ,34524, 'X' ,27834

OW $, $-2, $-4, $-6

This list of character and numeric values
will be encoded with the high order byte of each
character string filled with zeros
INVENTORY will address a byte containing all zeros

This list of expressions evaluates to the same
numeric value (the location counter is incremented
fbr each item in the list)

The EN D Directive
Every program must have an END statement. Its format is shown below.

ENO

The END statement may not have a label, and only a comment may appear on the
line with it. The END statement should be the last line in the program; otherwise, it
will produce an error.

MCS-51

CHAPTE.R 5
MACRO PROCESSING LANGUAGE (MPL)

This chapter describes MPL, the MCS-Sl Macro Processing Language. Appendix E
presents a more rigorous treatment of MPL.

MPL extends the MCS-Sl Assembly Language to include these capabilities:

• Macro definition and invocation

• Macro-time string manipulation

• Macro-time expression evaluation

• Conditional assembly

• Macro-time console I/O

Conceptual Overview of Macro Processing

Understanding macro processing requires a different perspective from the way
assembly languages and high-level procedural languages are understood as treating
source files. When you invoke ASMSI to assemble your source file, all MPL
statements in your source file are evaluated before the actual assembly process
starts. Your MPL statements are either function definitions or function calls. The
functions can be MPL's built-in functions or your own user-defined functions. You
use the MPL built-in function DEFINE to create your own functions.

MPL deals in strings. If you think of your source file as one long string, then its
MPL statements (function definitions and function calls) are substrings of that one
long string. MPL replaces function definitions with a null string (nothing), and each
function call with its value, which is always a string and may be a null string.
Similarly, any arguments present in function calls are given as strings, and may be
interpreted by the function (depending on its definition) as integer values. Thus,
depending on its context, the expression "86H" could represent the 3-character
string '86H' or the 16-bit value 0000 0000 1000 OllOH.

The following scheme illustrates these concepts:

1. Your source file as seen by the Macro Processor:

(-----plaintext----(macro-def)---------(macro-call)------plaintext--------)

2. An internal, intermediate form after the macro-definition is stored:

(----------plai ntext-----------o--------(macro-call)-------plai ntext---------------)

Where '0' represents a null string and 'macro call' contains '86H'.

3. The macro called may then consider '86H' as a string or an integer value:

(---------------p lai ntext--------------(86H)------------plai ntext --------------)

(------------plai ntext----------{OOOO 0000 1000 01108)------------plai ntext---------)

4. The resulting macro expansion then becomes input to the assembler-proper:

(------------------------------- plaintext --------------------------------------)

The value (a string) of a function may be the null (empty) string, which has length
zero. Every string (even the null string) has as a substring the null string. The null
string should not be confused with zero, which has as one of its representations OOH.
The string OOH is not zero, it is a 3-byte character string which, in assembly
language, we use to represent zero.

5-1

Macro Processing Language

5-2

The MPL built-in functions DEFINE and MATCH both always evaluate to (are
replaced by) the null string. This is where side-effects come into play; you call
DEFINE and MATCH (and others) not to obtain a value (string), but to perform
side effects inherent to the functions. Thus, DEFINE enters a definition into the
macro symbol table so that a later call of the defined function can be evaluated,
and/or side-effects can be performed. Similarly, MATCH leaves nothing inits wake
(Le., has the null string as its value), but is used to split a string argument in two, and
assign the two substrings as values of identifiers.

MPL Identifiers
MPL identifiers, used for function and parameter names, must follow the same
rules as assembly-language symbol names. An MPL identifier has the following
characteristics:

1. The first character must be an alphabetic character A through Z, a question
mark (?), or an underscore (_) sometimes called the break character. Upper
and lower-case alphabetic characters are not distinguished.

2. Successive characters may be alphabetic, numeric (0 through 9), the underscore
character, or the question mark.

3. As with the assembly-language proper, identifiers may be any length but are
considered unique only up to 31 characters.

What Is Macro Processing?
The macro processor, which is part of the MCS-51 Macro Assembler, copies your
source file to an intermediate file to be assembled. During the copying process, the
macro processor examines each character of your source file for a distinguished
character called the metacharacter, which can be any ASCII character, but by
default is the percent-sign (0/0). When the metacharacter is detected, the macro pro
cessor knows that what follows is intended for macro processing.

The metacharacter signals the macro processor that what follows is:

• A user macro definition, such as:

%*OEFINE (AR(NAME, TYPE, VALUE)) (%NAME: O%TYPE %VALUE
)

This defines a macro AR with three parameters (NAME, TYPE, VALUE),
which, when called with actual arguments (strings or function calls which
evaluate to strings), expands to an assembly-language DBIT, or DS directive
defining an area of address space of % V ALUE units in length (bytes, or bits)
the beginning of the area is addressed by OJoNAME. Notice that parameters are
listed in the macro-name part of the definition without metacharacters, but in
the replacement-pattern part of the definition each parameter is prefixed by the
metacharacter %. Notice also that the carriage-return (following % VALUE is
meant to be part of the macro definition, since we want the data definition
directive to be on line by itself.

• A user macro invocation (call), such as:

%AR(LASZLO,S, 500)

This call is replaced by its value, which according to the preceding definition is
the following string, including the terminating carriage-return (and line-feed):

LASZLO: OS 500

Similarly, the call:

%AR(GONZO,BIT,100)

expands to:

GONZO: OBIT 100

including the final carriage-return-line-feed.

MCS-51

MCS-51 Macro Processing Language

• A user call to an MPL built-in function, such as:

%IF (%EQS(%ANSWER,YES)) THEN (%AR(LASZLO, W, 500))

This call to the MPL built-in function IF evaluates to the first array definition
above if the value of ANSWER (a user-defined function, presumably
incorporating the MPL built-in functions IN and OUT) is exactly equal to the
string 'YES', and evaluates to the null (empty) string otherwise.

If a macro definition follows the meta character , the macro processor saves the
definition.

If a macro call follows the metacharacter, the macro processor retrieves the defini
tion of the called macro, computes the value (an ASCII string) of the macro based
on the call and its arguments, and places it in the intermediate file at the point of
call. This is called expanding the macro.

If a call to an MPL built-in function follows the metacharacter, the macro processor
replaces the call with the value of the built-in function, much the same as in the
previous case. Calls to MPL built-in functions will be discussed later; however, this
section describes one such MPL built-in function-DEFINE, which you call to
define your macros. Strictly speaking, then, the first item on the above list is really a
special case of the third.

Aside from macro definitions and calls, the text of your source file has no meaning
to the macro processor. The macro processor forms the "front-end" of the
assembler, and as such, it cannot detect errors in your MCS-Sl assembly language
directives or instructions.

What Is a Macro?

A macro is a shorthand notation for a source text string. The shorthand notation is
the macro name; the string it represents is the macro value. You define your own
macros using the MPL function DEFINE, which has the format:

% *DEFIN E (macro-name [(parameter-list))) (replacement-pattern)

Macro Expansions and Side Effects
A careful distinction must be made between the value of a macro or built-in function
and its side-effects. At call-time, when the macro or built-in function is called, the
macro processor replaces the call with the value (an ASCII string) of the macro or
built-in function, as well as performing the operations inherent in the macro or
built-in function.

The value of the DEFINE built-in function is the null (empty) string; therefore,
when the call to DEFINE is made to define your user macro, the call is replaced by
the null string. That is, the call is not copied from your source file to the
intermediate file. The significance of the call to DEFINE is not its value, but its side
effect; that is, defining your user macro (entering it in the macro symbol table).

5-3

Macro Processing Language

5-4

If, for example, you are coding a program which contains several calls to a
subroutine that requires you to save this accumulator (ACC), the multiplication
register (B), the program status word (PSW), and the data pointer (DPH, DPL)
before the call, and restore them after the call. You could first define the macro
CALLSUBROUTINE as follows:

% -DEFINE (CALLSUBROUTINE) (
PUSH ACC
PUSH B
PUSH PSW
PUSH DPH
PUSH DPL
CALL ROUTINE
POP DPL
POP DPH
POP PSW
POP B
POP ACC

Now wherever the macro call OJoCALLSUBROUTINE appears in your source file,
the macro processor replaces it with the defined character string, including all
carriage-returns, line-feeds, tabs, and blanks.

Two remarks are in order:

• The definition of the macro begins with "%*DEFINE". (The asterisk (*) is
termed the call-literally character, and means that no macro expansion is
requested at this time.)

• The macro definition has the form:
% - DEFIN E (macro-name) (replacement-pattern)

What Is Macro-Time?

Macro-time is the term given to the time-frame within which the macro processor
acts on your source file, copying it to an intermediate form for assembly, and pro
cessing your macro definitions and macro calls. No object code is created during
macro-time. Macro-time is followed by Assembly-time, when absolute hex format
code is created.

Since MPL allows you to generate virtually any character string, which will then be
assembled, it influences the entire development cycle of your program. However,
since the macro processor itself produces no object code, it cannot interrogate the
assembly-time status of your program (such as referencing the assembler-proper's
symbol table).

Why Use Macros?

Since a macro defines a string of text (called the macro expansion value) that will
replace a macro call, the usefulness of a macro depends on two characteristics:

• Its ability to represent a string of text using a shorter string

• Its ability to be used in different contexts; in a word, its flexibility

The example CALLSUBROUTINE above has the first characteristic, but not .the
second; CALLSUBROUTINE is a constant macro-its value never changes, unless
you redefine it. You can redefine your macros (but not MPL's built-in functions)
any time you want (with the exception that a macro definition may not modify itself)
at call-time, the macro processor refers to the most recent definition of each user
macro. In order to introduce more flexibility into MPL, we need to discuss
parameters and arguments.

MCS-51

MeS-51 Macro Processing Language

Parameters and Arguments
A macro can also be defined so that part of it varies, depending on the information
supplied to the macro in the form of arguments.

Returning to the previous example of the procedure call to SUBROUTINE, pre
ceded by multiple PUSHes and followed by multiple POPs, we see that the macro
CALLSUBROUTINE as defined has limited usefulness-we cannot use it for calls
to other procedures besides ROUTINE.

We can code a macro to specify the same sequence of PUSHes, a call to any pro
cedure (not just ROUTINE), and the same sequence of POPs, as follows:

%'DEFINE (CALLSUB(ROUTINE)) (
PUSH ACC
PUSH B
PUSH PSW
PUSH DPH
PUSH DPL
CALL %ROUTINE
POPDPL
POPDPH
POPPSW
POPB
POPACC

Now to generate a call to procedure AXOLOTL, for example (together with the
preceding PUSHes and following POPs, as well as carriage-returns, line-feeds, tabs,
and blanks), all you need to code is:

%CALLSUB(AXOLOTL)

In this example, ROUTINE is called a formal parameter, or simply a parameter. (It
is also known as a dummy parameter, since its name in the definition of CALLSUB
is irrelevant.)

When CALLSUB is called with a value for the formal parameter (ROUTINE), the
actual value (AXOLOTL) is referred to as an argument.

In short, the parameter ROUTINE acts as a place-holder for the argument
AXOLOTL.

In using macro definitions that have parameter lists, and corresponding macro calls
that have argument lists:

• The parameter list of a macro definition is enclosed in parentheses following the
macro name; parameters are separated by commas, as in:

% 'DEFINE (HAMBURGER(P1 ,P2,P3,P4,P5)) (text-string using
%P1, %P2, %P3, %P4, %P5)

When a parameter (to be replaced by an argument at call-time) appears in the
replacement-string of the definition, be sure to prefix the metacharacter ("10) to
it.

• The argument list of a macro call is enclosed in parentheses following the macro
name; arguments are separated by commas, as in:

%HAMBURGER(CATSUP,MUSTARD,ONION,PICKLE,LETTUCE)

5-5

Macro Processing Language

5-6

The only occurrence of the metacharacter in the macro call is that prefixed to
the macro-name, unless one or more arguments are macros. If you use a macro
as an argument, then you prefix the metacharacter to the argument as well. For
instance, if the macro YELLOWSTUFF is defined:

%*DEFINE (YELLOWSTUFF) (MUSTARD)

Then you could call HAMBURGER as follows:

%HAMBURGER(CATSUP,%YELLOWSTUFF,ONION,PICKLE,LETTUCE)

and obtain the same macro expansion.

• You can use any number of parameters/arguments.

• This chapter describes a subset of MPL in which commas delimit
parameters/arguments. More general constructs, including the use of LOCAL
macros and symbols, are possible, as described in Appendix E, Macro Processor
Language: Full Capabilities.

Evaluation of the Macro Call

The macro processor evaluates the call OJoCALLSUB(AXOLOTL) as follows:

1. The macro processor recognizes the metacharacter (OJo), and momentarily
suspends copying your source file while it looks up the definition of CALLSUB
;n its macro symbol table.

2. Finding CALLSUB in the symbol table, the macro processor sees that
CALLSUB is defined using one parameter, and hence needs one user-supplied
argument in order to be expanded.

3. Upon finding the string 'AXOLOTL' in parentheses immediately following the
OJoCALLSUB macro call, the macro processor picks up 'AXOLOTL' as the
argument to the macro call.

4. Then, using the definition of CALLSUB as the string of PUSHes, POPs, the
CALL, and all carriage-returns, line-feeds, tabs, and blanks in the definition,
the macro processor computes the value of the call OJoCALLSUB(AXOLOTL)
to be the ASCII string:

PUSH ACC
PUSH B
PUSH PSW
PUSH DPH
PUSH DPL
CALL AXOLOTL
POPDPL
POPDPH
POPPSW
POPB
POPACC

5. The macro processor. replaces the macro call with the value of the macro,
exactly at the point of call.

MeS-51

MCS-Sl Macro Processing Language

A Comment-Generation Macro

Macro definitions and calls can be placed anywhere in your source file:

• as constant character strings (the first example)

• as operands to instructions (the second example)

• as in-line routines (the example following the next)

• as arguments to function calls

• as character strings that are more easily defined as macro functions and called as
needed than rekeyed each time.

Consider this comment-generating macro, HEADER, which accepts S arguments.
and is defined as follows:

%'DEFINE (HEADER(ROUTINE,DATE,NAME,PURPOSE,REGCLOB)) (
.*.***._**_.* ••• _._.*-.* .• _-_ .. *_._--**--**-*-*-**-*-******************************** ,
; ROUTINE NAME: %ROUTINE
; DATE: %DATE
; PROGRAMMER'S NAME: %NAME
; PURPOSE OF ROUTINE: %PURPOSE
; REGISTERS CLOBBERED: %REGCLOB
.W.* __ ****_* __ ***._* ••• *** __ ***.**** __ .*.*.*.*_*_**_*.******************************* ,

Note that in the macro definition of HEADER above:

• The definition begins with OJo*DEFINE. This informs the macro processor that
no expansion is to take place. (That is, this is a definition.)

• In the DEFINE function's pattern for parameterized macro definitions:

% 'DEFINE (macro-name(parameter-list)) (replacement-pattern)

• The metacharacter (%) does not appear in the macro-name or parameter-list
fields.

• The metacharacter (%) does appear as a prefix to parameter names in the
replacement-pattern, since the macro processor needs to know that the first
'ROUTINE' in 'ROUTINE NAME: %ROUTINE' is not expanded when the
macro is called, but the second is.

• The "hanging" left parenthesis at the right in the first line denotes that the
macro body begins with a carriage-return. (Otherwise, the expanded macro
might start in the middle of a line.) Similarly, the lone right-parenthesis which
terminates the replacement-pattern denotes that the macro body ends with a
carriage-return.

The macro call:

%HEADER(LASlLO,5/15/79,G. BOOLE,UPDATE NETWORK STRUCTURES,A/B/RO/DPTR)

results in the expansion:

.*-*-----*---*.**-***-*-*--*--***--*------*----*-*---******************************** ,
; ROUTINE NAME: LASZLO
; DATE: 5/15/79
; PROGRAMMER'S NAME: G. BOOLE
; PURPOSE OF ROUTINE: UPDATE NETWORK STRUCTURES
; REGISTERS CLOBBERED: A/B/RO/DPTR
.*---**-*-**._._*-*-**------***---*--**---**._._**-********************************** ,

5-7

Macro Processing Language

5-8

A Macro to Add 16-Bit Values at Run-Time

You can use macros for routines. For instance, your source file might require fre
quent use of 16-bit addition:

1. Add 16-bit immediate data to a two byte numeric value in memory

MOV A,#(LOW 60134)
ADDA,55H
MOV40H,A
MOV A,#(HIGH 60134)
ADDCA,56H
MOV 41H,A

; Move low order byte of data into accumulator
; Add low order bytes
; Store low order sum
; Move high order byte of data into accumulator
; Add high order byte with carry
; Store high order byte of sum

2. Add 2 byte value in register 6 and 7 to data pointer

MOV A,DPL
ADDA,R6
MOV R4,A
MOVA,DPH
ADDCA,R7
MOV R5,A

; Move low order byte of data pOinter
; Add low order bytes
; Store low order sum
; Move high order byte of data into accumulator
; Add high order byte with carry
; Store high order byte of sum

3. Add 2 byte value in memory to 2 byte value in memory. Store in memory

MOV A,TLO
ADD A,TL1
MOVTLO,A
MOV A,THO
ADDCA,TH1
MOVTHO,A

; Move low order byte of data into accumulator
; Add low order bytes
; Store low order sum
; Move high order byte of data into accumulator
; Add high order byte with carry
; Store high order byte of sum

By parameterizing the operand fields that differ in these text-strings, we obtain the
body of the macro we need to generate all 3 instances:

MOVA,XLOW
ADDA,YLOW
MOVSUMLOW,A
MOVA,XHIGH
ADDC A,YHIGH
MOV SUMHIGH,A

MCS-51

MCS-Sl Macro Processing Language

Using the MPL built-in function DEFINE, we can name a macro representing the
common form of the 3 separate instances:

%'DEFINE (ADD16(XHIGH, XLOW, YHIGH, YLOW, SUMHIGH, SUMLOW)) (

MOVA,%XLOW
ADDA,%YLOW
MOV %SUMLOW,A
MOV A, %XHIGH
ADDCA,%YHIGH
MOV %SUMHIGH,A
)

Note that in this macro definition:

• The metacharacter (070) and the call-literally character (*) are prefixed to
DEFINE.

Note that in the pattern:

%'DEFINE (macro-name) (replacement-pattern)

neither the metacharacter (%) nor the call-literally character (*) occurs in the
macro-name field, but that the metacharacter (%) is prefixed to each.
parameter-name in the replacement-pattern. The call-literally character does
not appear in the replacement-pattern .

• Thereplacement-pattern is defined by its appearance between the second pair of
parentheses in the pattern:

%' DEFIN E (macro-name) (replacement-pattern)

This means that ADD16 consists of the opening and closing carriage-returns
given in its body, as well as the text between them. Without these opening and
closing carriage-returns, the first and last lines of the expanded macro would be
run together with the last line before, and the first line after, the macro call.

Calling ADD16 with Actual Arguments

Now with the ADD16 macro defined for this assembly, it is unnecessary to code the
sequence of instructions over again every time we wish to perform a 16-bit add. Our
user macro ADD16 can be invoked (called) using actual arguments in place of the
formal parameters XHIGH, XLOW, YHIGH, YLOW, SUMHIGH, SUMLOW.
The formal parameters are simply place-holders until you supply actual values as
arguments in m:acro calls.

For example, the macro calls:

%ADD16(#(H IGH 60134),#(LOW 60134),56H ,55H ,41 H ,40)
%ADD16(DPH,DPL,R7,R6,R5,R4)
%ADD16(THO,TLO,TH1 ,TL 1 ,THO,TLO)

expand to (1), (2), and (3) above, respectively.

5-9

Macro Processing Language

5-10

The LEN Built-in Function

The MPL built-in function LEN accepts a string argument (or a macro whose value
is a string), and returns a valid hexadecimal number.

Thus, the value of O7oLEN(ABC) is the ASCII string 03H. Similarly, the value of
OJoLEN(ABCDEFGHIJ) is the ASCII string OAH.

Furthermore, like other MPL built-in functions and user macros, LEN can accept a
macro as an argument. In this case, the value of LEN is an ASCII string representing
the length of the macro value string.

If, for example, ALPHA and DECIMAL are defined as follows:

%*DEFINE (ALPHA) (ABCDEFGHIJKLMNOPQRSTUVWXYZ)
%*DEFINE (DECIMAL) (0123456789)

then it follows that O7oLEN(07oALPHA) has the value lAH, and
O7oLEN(07oDECIMAL) has the value OAH. Note that O7oLEN(ALPHA)
and O7oLEN(DECIMAL) are still meaningful, and have the values 05H and 07H,
respectively.

The EVAL Built-in Function

Since MPL deals in strings, the macro processor does not normally attempt to
evaluate strings expressing numeric quantities. (Exceptions to this general rule are
the built-in functions REPEAT, IF, WHILE, and SUBSTR, described below).

Thus, if you code:

%LEN(%ALPHA) + %LEN(%DIGIT)

the macro processor will treat the expression as a string, and will replace it with:

1AH + OAH

without processing it any further.

If you want an expression to be evaluated, you can use the MPL built-in function
EV AL function, which takes the form:

%EVAL(expression)

In this case, the desired evaluation is performed, and an ASCII string of hexa
decimal digits is returned as the value of EV AL. For the example, we have:

%EVAL(%LEN(%ALPHA) + %LEN(%DIGIT))

which first reduces to:

%EVAL(1AH + OAH)

and is then evaluated as an arithmetic expression to obtain the string:

24H

as the value of the calL

MCS-51

MCS-51 Macro Processing Language

Arithmetic Expressions

Arithmetic operations are 16-bit, as used by the assembler proper. Note that dyadic
(two-argument) operators are infix (as assembler-proper operators), unlike MPL's
outfix operators, and that infix operators do not require the metacharacter
preceding a call, when used in an IF, WHILE, or REPEAT.

Infix: %VALUE1 EO 3 (compare numbers)
Outfix: %EOS(%VALUE1, 3) (compare strings)

Arithmetic expressions allow the following operators, in high-to-Iow order of
precedence:

Parenthesized Expressions
HIGH LOW
Multiplication and Division: ., I, MOD, SHL, SHR
Addition and Subtraction: +, - (both unary and binary)
Relational: EO L T LE GT GE NE
Logical NOT
Logical AND
Logical OR XOR

Expressions are evaluated left-to-right, with operations of higher precedence per
formed first, unless precedence is overridden using parentheses.

It is essential to remember that these arithmetic, relational, and Boolean operators
are identical to the assembly-language operators of the same names. The difference
between using these operators in the MPL context as opposed to the usual assembly
language context is that:

1. For the operations to be performed, MPL expressions must be enclosed within
one of the built-in functions.

2. Although the value returned by EV AL is always an ASCII string of hexadecimal
digits, and not a "pure number", the hexadecimal string itself can be used as a
number with arithmetic operators.

String Comparator (Lexical-Relational) Functions

The string comparator functions are:

MPL Function Answers the Question With OneOf

EOS Are the strings lexically equal? OFFFFH (Yes), OOH (No)

NES Are the strings lexically unequal? OFFFFH (Yes), OOH (No)

LTS Does the first precede the second in their OFFFFH (Yes), OOH (No)
dictionary ordering?

LES Does the first precede or equal the second OFFFFH (Yes), OOH (No)
in their dictionary ordering?

GES Does the first follow or equal the second in OFFFFH (Yes), OOH (No)
their dictionary ordering?

GTS Does the first follow the second in their OFFFFH (Yes), OOH (No)
dictionary ordering?

5-11

Macro Processing Language

5-12

The value returned (OFFFFH or OOH) is a character string, and not a "pure
number".

Thus, the function call:

%LTS(101,101B)

returns the string 'OFFFFH', or "True", because the string' 101' precedes the string
'lOIB' in the lexical sense.

And the function call:

%EQS(OAH,10)

returns the string 'OOH', or "False", because the two strings are not equal in the lex
ical sense (even though, if interpreted, they represent the same number).

Control Functions (IF, REPEAT, WHILE)

The functions IF , REPEAT, and WHILE are useful for controlling the expansion of
macros depending on whether an expression evaluates to True (OFFFFH, or any odd
number) or False (OOH, or any even number).

Unlike most instances of expressions in MPL (except for SUBSTR, described
below), expressions in the first clause of IF, REPEAT, and WHILE are
automatically interpreted as numbers, not strings. As a result, you do not need to
code OJoEVAL(expr) as the first clause to the functions; the expression itself suffices.

The syntax for these expressions is as follows:

%IF (expr) THEN (replacement-value) [ELSE (replacement-value) 1 FI
%REPEAT (expr) (replacement-value)
%WHILE (expr) (replacement-value)

where:

• expr must evaluate to an integer. (Note that it is not necessary to code
%EV AL(expr) for these three functions; the expression is automatically
evaluated without your specifying EV AL.)

• replacement-value is an arbitrary string with balanced parentheses.

The IF Function

If expr evaluates to an ODD integer, it is considered "True" and the value of the
THEN-clause replaces the IF call. If macro calls appear in the THEN clause, the
calls are made and replaced by their (string) values. Any side-effects inherent in the
definition of the macro(s) called are performed.

If expr evaluates to an EVEN integer, it is considered "False" and the THEN-clause
is ignored. The ELSE clause, if present, is then treated as if it were the THEN-clause
in the "True" case.

MCS-Sl

MCS-Sl Macro Processing Language

For example, the call:

%IF (%LEN(ABC) EO 3) THEN (%PROCESS) FI

Says, in effect:

1. Treat the expression %LEN(ABC) EQ 3 as a number, and evaluate it. (The IF
built-in function, like several others, accepts an expression and treats it as a
number, so you do not have to use EVAL here.)

2. If %LEN(ABC) EQ 3 evaluates False (OOH), end processing of this call. (There
is no ELSE clause in this particular instance.)

3. If %LEN(ABC)EQ 3 evaluates True (OFFFFH), evaluate the call %PROCESS
(a user-defined function). This means:

• Replace the entire %IF call with the value of %PROCESS (possibly null).

• Perform any side-effects indicated in the definition of %PROCESS.

Since the value of %LEN(ABC)EQ 3 is True (OFFFFH), the call to PROCESS is
made, %PROCESS is evaluated, and its value (a string) replaces the %IF call. Any
side-effect processing inherent in the definition of process is also performed. (For
instance, PROCESS may define a new user macro.)

If, on the other hand, the following IF call is made: .

%IF (%EOS(%LEN(ABC), 3)) THEN (%PROCESS) FI

The IF-clause first reduces to:

%EOS(03H, 3)

And since the string comparator function EQS does not regard '03H' as equal to '3',
the expression evaluates to False, or OOH. Hence, PROCESS it not called.

As another example, the call:

%IF (%LEN(%STRING) GT 255) THEN (% TRUNC) ELSE (%CONCAT) FI

results in the following:

1. The user macro-call %STRING is evaluated and replaced by its expanded value
(possibly nUll).

2. The length of the string is computed by LEN.

3. The relational expression:

xH GT255

is evaluated, where "xH" represents the value of %LEN(%STRING).

4. If the hexadecimal value xH returned by LEN is greater than 255, the
user-macro TRUNC is evaluated, and any side-effects inherent in its definition
are performed. The value of TRUNC replaces the IF call (in this case the line).
The ELSE-clause is ignored.

5. If,the hexadecimal value returned by LEN is less than or equal to 255, the
expression %TRUNC is ignored, but the user macro CON CAT is called,
expanded, and any side-effects are performed.

Since the value of %LEN(ABC) EQ 3 is True (OFFFFH), the call to PROCESS is
made, %PROCESS is evaluated, and its value (a string) replaces the %IF call. Any
side-effect processing inherent in the definition of process is also performed. (For
instance, PROCESS may define a new user macro.)

5-13

Macro Processing Language

5-14

If, on the other hand, the following IF call is made:

%IF (%EOS(%LEN(ABC),3) THEN (%PROCESS) FI

then PROCESS is not called. Since the string comparator function EQS does not
regard '03H' as equal to '3', the expression evaluates to False, or OOH.

The REPEAT Function

The expression expr is evaluated only once; the replacement-value is then evaluated
expr times, and becomes the value of the REPEAT function.

The format of the REPEAT function call is:

%REPEAT (expr) (string)

where expr is evaluated exactly once, and string is expanded expr times.

For example,

%REPEAT (10) (%REPEAT (4)(.)+)

generates the string:

.... + + + + + + + + + +

The WHILE Function

The WHILE function call has the format:

%WHILE (expr) (replacement-value)

where expr is evaluated until it is False (Even) as follows:

1. The expression expr is first evaluated to determine whether the second
(replacement-value) need be evaluated:

• If expr evaluates to an odd ("True") number, then replacement-value is
evaluated, including all macro calls and side effects.

• If expr evaluates to an even number ("False"), then no further processing is
performed for the macro call.

• If the side-effects of the replacement-value do not modify the conditions
tested in the expression, then the loop will not terminate.

2. At this point, if expr evaluated True, expr is reevaluated (replacement-value
may have called a macro to change a value in the expression), and the two listed
conditions again apply. This "looping" is continued until expr evaluates
"False" .

For example, the macro call:

%WHILE(%EOS(%ANSWER,YES)) (%CONTINUE)

Evaluates as follows:

1. OJoANSWER (a user function) is evaluated, and lexically compared to the string
'YES'.

2. If the strings compare equal, %CONTINUE (a user function) is evaluated,
including side-effects. The value (a string) of %CONTINUE replaces the
% WHILE call. Note that side-effects should include redefining ANSWER. Step
1 above is then repeated.

3. If the strings compare unequal, processing of this WHILE call stops. Any
% CONTINUE values placed in the intermediate file remain.

MCS-51

MCS-51 Macro Processing Language

MATCH Function

The MATCH function allows you to manipulate lists. The syntax is:

%MATCH (name1 , name2) (list)

where list is a list of strings (none of which contains a comma) separated by com
mas. The value of the MATCH function is always null. MATCH is used for its side
effects, which are as follows:

• name1 is assigned the substring of list preceding the first occurrence of a comma

• name2 is assigned the substring of list following the first occurrence of a comma

Its primary use is to isolate and name substrings of a given string, as shown in the
following example, and also in the example under "Console I/O"

For example, the following call to WHILE:

%WHILE (%LEN(%LlST) NE 0) (%MATCH (ITEM, LIST) (%LlST) %PROCESS(%ITEM))

results in the following macro processing:

1. First the length of the list defined by the user-macro LIST is evaluated. If it is
nonzero, the second clause of WHILE is evaluated.

2. MATCH in the second clause of WHILE looks for a comma in the string
defined by LIST. If a comma is found, the substring of LIST preceding the
comma is assigned as the value of ITEM, and LIST takes on as a new value its
substring following the occurrence of the comma.

3. Processing at this point is still in the second clause of WHILE. Next, ITEM
is evaluated (the substring just found preceding the comma) and is fed to
PROCESS (a user-defined macro) as an argument. If PROCESS has a value, it
is inserted in the intermediate file, replacing the WHILE call.

4. Now the second clause of WHILE has been processed, so the macro processor
returns to the first clause to evaluate the condition. Here, this is the same as say
ing, "GO to Step 1 above."

As you can see, this represents a different perspective on algorithms from that
usually encountered in assembly-languages and garden-variety procedural
languages. The net effect of the preceding example is to filter through the list, stop
ping at each comma, and assigning each substring between commas (and the sub
string preceding the first comma, and the substring following the last comma) to
ITEM, and then processing item with the macro call to PROCESS. Finally, when
you consider that MPL permits virtually any character combination to be used as a
delimiter-specifier (not just commas), you can appreciate the assembly-time process
ing power here.

NOTE

This is actually a simplified form of MATCH, using a comma as a delimiter
to match against in a list. The MPL language and implementation permit
delimiters of very nearly any character combination. An example below
(under "Console I/O") sQows a different use of MATCH, matching
against the carriage-return and line-feed characters considered jointly as a
single delimiter. Refer to Appendix E for the full definition of MATCH.

5-15

Macro Processing Language

5-16

Console I/O Functions

The MPL built-in functions IN and OUT perform macro-time console I/O.

IN reads one line (including line-feed and carriage-return) from the console input
device. The value of IN is the string typed, including the terminating carriage-return
and line-feed bytes (ODOAH). The syntax is:

NI%

OUT writes a string to the console output device. (The value of OUT is NULL.)
OUT has one parameter, the string to be written. The syntax of OUT is:

%OUT(string)

where string must have the same number of left- and right-parentheses.

The following example, when included in your source file and submitted for
assembly, will prompt you for information to define a record array in which each
record contains three fields. The prompt character is > .

• 1.

%*DEFINE (REC(F)) LOCAL RECORDNAME (
%RECORDNAME RECORD %ITEM %REPEAT (%F-1) (, %IT'EM)
%ARRAYNAME %RECORDNAME %EVAL(%NUMREC) DUP « »
)

%'DEFINE (ITEM) (%FLDNAME: %FLDWIDTH = %FLDVAL)
%*DEFINE (FLDNAME) (%OUT(NAME OF FIELD?) %GET)
%*DEFINE (FLDWIDTH) (%OUT(WIDTH OF FIELD?) %GET)
%'DEFINE (FLDVAL) (%OUT(INITIAL VALUE OF FIELD?) %GET)
% 'DEFINE (ARRA YNAME) (%OUT(NAME OF RECORD ARRAY?) %GET)
%'DEFINE (NUMREC) (%OUT(NUMBER OF RECORDS IN ARRAY?) %GET)
%'DEFINE (GET) (%MATCH (LINE %(
) NULL) (%IN) %LlNE)
%REC(3)

If you want five fields instead, for example, change the call from "loREC(3) to
%REC(5). Or, you can define a function prompting you (or a user) for the number
of record fields. Once you have some facility with MPL, you'll see vast possibilities.
For instance, by inserting calls to EV AL in the definitions, you can increase the
capability of the program to include expression (rather than constant) input.

The SET Function

The SET function allows you to assign a macro-time value to a macro-time variable.
The format is:

%SET(name, value)

where:

nameis an MPL identifier
value is an expression acceptable to EV AL

For instance

%SET(LlNES,10)
%SET(MAX,80-%LEN(%STRING))
%SET(CHARS,%MAX'%LlNES)

MCS-Sl

MCS-51 Macro Processing Language

You can use SET to redefine the same macro-time variable. For example,

%SET(LlNES,10)
o
o
o

%SET(LlN ES, 15)
o
o
o

%SET(LlNES,%LlNES+1)

the last statement increments the macro-time variable LINES by 1.

Unlike the other MPL built-in functions, the SET function can be redefined (but this
is not recommended).

For example:

% * DEFIN E(SET(X))(% DEFIN E(%X)(-H))

The SU BSTR Function

You can isolate a substring of a string or string expression using the SUBSTR built
in function. The format is:

%SU BSTR(string-expr, expr1, expr2)

where:

string-expr is a string or an MPL expression which evaluates to a string.

expr 1 evaluates to a string constant representing a number. This number is taken to
be the character number of the beginning of the selected substring of the value of
string-expr. The first character of the argument string is character 1.

expr2 evaluates to a string representing a number. This number is taken to be the
length of the selected substring.

SUBSTR evaluates to a null string if:

• expr 1 = 0 or expr 1 > % LEN (string-expr)

• string-expr evaluates to a null string

• expr2 = 0

If expr2 > %LEN(string-expr) - exprl + 1, then the selected substring begins at
character number exprl and ends at the character number %LEN(string-expr).

SUBSTR examples:

%SUBSTR(ABC,1 ,2) = AB
%SUBSTR(A B C,1,3) = A B
%SUBSTR(ABC,O,1) = (null)
%SUBSTR(ABC,4,1) = (null)
%SUBSTR(ABC,2,2) = BC
%SUBSTR(ABC,2,3) = BC
%SUBSTR(ABC,3,1) = C
%SUBSTR(%(A,B,C),1 ,2) = A,

5-17

CHAPTER 6
ASSEMBLER OPERATION

AND CONTROLS

This chapter describes how to invoke the MCS-51 Macro Assembler from your
Intellec System running under the ISIS operating system. The assembler controls are
also fully described.

How to Invoke the MeS-51 Macro Assembler

The command to invoke the assembler is shown below:

[: Fn:]ASM51 [:Fn:]sourcefile [.extension] [controls]

You must specify the filename of the assembler ([:Fn: jASM51) and the filename of
your source code ([:Fn: jsourcefile[. extension]. The controls are optional.

ASM51 normally produces two output files. One contains a formatted listing of
your source code. Unless you specify a particular filename with the PRINT control,
it will have the same name as your source file, but with the extension 'LST'. The
format for the listing file and how to change that format will be described later in
this chapter. The other file produced by the assembler is the object file. The format
for the object file is described in Absolute Object File Formats (Order Number
9800183). Unless you specify a particular filename with the OBJECT control, it will
also have the same name as your source file, but its extension will be 'HEX'.

For example note the assembler invocation below.

-ASM51 PROG.SRC

If there were no controls in PROG.SRC that changed the default output files,
ASM51 would produce two files. The listing file will be :FO:PROG.LST, and the
object file will be :FO:PROG.HEX.

In addition to the output files, ASM51 uses six intermediate files (ASM51S.TMP,
ASM51X.TMP, ASM51M.TMP, ASM51T.TMP, ASM51N.TMP, and
ASM51I.TMP). They will be deleted before the assembler completes execution.
Normally these files will be created on the same drive as your source program;
however, you can specify the drives to be used with the WORKFILES control.

Any control (except INCLUDE) can be used in the invocation line.

You can continue the invocation line on one or more additional lines by typing an
ampersand (&) before you type a carriage return. ASM51 prompts for the remainder
of the invocation line by issuing a double asterisk followed by a blank (**). Since
everything following an ampersand on a line is echoed, but ignored, you can com
ment you invocation line; these comments are echoed in the listing salutation. (See
Chapter 7 for an example.) Note the example below:

-ASM51 PROG.SRC DATE(9-12-79) & Comment
•• TITLE(COM PLETE PROJ ECT REV. 3.0) & Comment
•• GEN

6-1

Assembler Operation and Controls

6-2

Assembler Controls
Assemble controls may be entered in the invocation line as described above or on a
control line in your source code. The general format for control lines is shown
below:

$ Control List [; Comment]

The dollar sign ($) must be the first character on the line. The control list is zero or
more controls separated by one or more spaces or tabs. The comment is optional.

ASM51 has two classes of controls: primary and general. The primary controls are
set in the invocation line or the primary control lines and remain in effect
throughout the assembly. For this reason, primary controls may only be used in the
invocation line or in a control line at the beginning of the program. Only other
control lines (that do not contain the INCLUDE control) may precede a line con
taining a primary control. The INCLUDE control terminates processing of primary
controls.

The general controls are used to control the immediate action of the assembler.
Typically their status is set and modified during an assembly. Control lines contain
ing only general controls may be placed anywhere in your source code.

Table 6-1 lists all of the controls, their abbreviations, their default values, and a
brief description of each.

Table 6-1. Assembler Controls

Primaryl
Name General Default Abbrev. Meaning

DATE(date) P DATE() DA Places string in header (max
9 characters)

DEBUG P NODE BUG DB Outputs debug symbol
information to object file

NODE BUG P NODB Symbol information not
placed in object file

EJECT G Not Applicable EJ Continue listing on next
page

ERRORPRINT[(FILE)] P NOERRORPRINT EP DeSignates a file to receive
error messages in addition
to the listing file

NOERRORPRINT P NOEP DeSignates that error mes-
sages will be printed in
listing file only

GEN G GENONLY GE Generates a full listing of the
macro expansion process
including macro calls in the
listing file

GENONLY G GO List only the fully expanded
source as if all lines gen-
erated by a macro call were
already in source file

NOGEN G NOGE List only the original source
text in listing file

MCS-51

MCS-51 Assembler Operation and Controls

Table 6-1. Assembler Controls (Cont'd.)

Name
Primary/

Default Abbrev. Meaning General

INCLUDE(FILE) G Not Applicable IC Designates a file to be
included as part of the
program

LIST G LIST LI Print subsequent lines of
source in listing file

NOLIST G NOLI Do not print subsequent
lines of source in listing file

MACRO P MACRO MR Evaluate and expand all
macro calls

NOMACRO P NOMR Do not evaluate macro calls

OBJECT[(FILE)] P OBJECT(source .HEX) OJ Designate file to receive
object code

NOOBJECT P NOOJ Designates that no object
file will be created

PAGING P PAGING PI Designates that listing will
be broken into pages and
each will have a header

NOPAGING P NOPI Designates that listing will
contain no page breaks

PAGELENGTH(n) P PAGELENGTH(60) PL Sets maximum number of
lines in each page of listing
file (maximum = 65,535)
(minimum = 10)

PAGEWIDTH(n) P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of
listing file (maximum = 132;
minimum = 72)

PRINT[(FILE)] P PRINT(source. LST) PR Designates file to receive
source listing

NOPRINT P NOPR Designates that no listing
file will be created

SAVE G Not Applicable SA Stores current control set-
ting for LIST and GEN

RESTORE G RS Restores control setting
from SAVE stack

SYMBOLS P NOSYMBOLS SB Creates a formatted table of
all symbols used in program

NOSYMBOLS P NOSB No symbol table created

TITLE(string) G TITLE() TT Places a string in all sub-
sequent page headers
(maximum 60 characters)

WORKFILES(:Fn:[,:F m:]) P same drive as WF Designates alternate drives
source file for temporary workfiles

XREF P NOXREF XR Creates a cross reference
listing of all symbols used in
program

NOXREF P NOXR No cross reference list
created

6-3

Assembler Operation and Controls

6-4

Control Definitions

Control Switch Name: DATE

Abbreviation: DA

Arguments: (string) (Nine characters maximum)

Control Class: Primary

Default:

Definition:

Example:

(Spaces inserted)

The assembler takes the character string specified as the argument
and inserts it in the header. If you specify less than 9 characters,
then it will be padded with blanks. If more than 9 characters are
specified, then the character string will be truncated to the first
nine characters. DATE is overridden by NOPRINT.

NOTE

Any parentheses in the DATE string must be balanced.

$TITLE(PROJECT F.A.N. REV. 27) DATE(1-1-80)

(Header will look like this)
MCS-51 MACRO ASSEMBLER PROJECT F.A.N. REV. 27 1-1-80 PAGE 1

Control Switch Name: DEBUG/NODEBUG

Abbreviation: DB/NODB

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

NODEBUG

Indicates whether debug symbol information shall be output to
object file. If DEBUG is in effect the debug information will be
output. This control must be used if you wish to run the program
with an ICE-51.

DEBUG is overridden by NOOBJECT.

$DEBUG

MCS-Sl

MCS-51 Assembler Operation and Controls

Control Switch Name: EJECT

Abbreviation: EJ

Arguments: None

Control Class: General

Default:

Definition:

Example:

(New page started when PAGELENGTH reached)

Inserts form feed into listing file, after the control line containing
the EJECT, and generates a header at top of the next page. The
control is ignored if NOPAGING, NO PRINT, or NOLIST is in
effect.

$EJECT

Control Switch Name: ERRORPRINT I NOERRORPRINT

Abbreviation: EP I NOEP

Arguments: (Filename) (Indicates file to receive error messages-argument
optional.)

Control Class: Primary

Default:

Definition:

Example:

NOERRORPRINT

When ERRORPRINT is in effect, indicates that all erroneous
lines of source and the corresponding error message shall be out
put to the specified file. This will not inhibit errors from being
placed in listing file. If no argument is specified to
ERRORPRINT, then erroneous lines and error messages will be
displayed at the console.

$ERRORPRINT

6-5

Assembler Operation and Controls

6-6

Control Switch Name: GEN/GENONLY/NOGEN

Abbreviation: GE/GO/NOGE

Arguments: None

Control Class: General

Default:

Definition:

Example:

GENONLY

NOGEN indicates that only the contents of the source file shall be
output to the listing file with macro call expansion not shown.
Expansion will take place, but source lines generated will not be
displayed in listing file, only the macro call.

GENONL Y indicates that only the fully expanded macro calls will
appear in the listing. The listing file appears as if the expanded
text was originally in the source file with no macro calls. The
macro calls will not be displayed, but the source lines generated by
the calls will be in the listing file.

GEN indicates that each macro call shall be expanded showing
nesting of macro calls. The macro call and the source lines
generated by the macro call will be displayed in the listing file.

These controls are overridden by NOPRINT and NOLIST. (See
Chapter 7 for examples of it macro calls listed with GEN,
GENONLY and NOGEN in effect.)

$NOGEN

Control Switch Name: INCLUDE

Abbreviation: IC

Arguments: (Filename) (Identifies file to be included into program)

Control Class: General

Default:

Definition:

Example:

Not applicable.

Inserts the contents of the file specified in the argument into the
program immediately following the control line. INCLUDE files
may be nested.

The INCLUDE control may not appear in the invocation line,
and it terminates processing of primary controls in the source.

$INCLUDE(:F1 :IOPACK.SRC)

MCS-51

MCS-51 Assembler Operation and Controls

Control Switch Name: LlSTlNOLIST

Abbreviation: Ll/NOLI

Arguments: None

Control Class: General

Default:

Definition:

Example:

LIST

Indicates whether subsequent lines of source text shall be
displayed in listing file. A LIST control following a NOLIST will
not be displayed, but listing will continue with the next sequential
line. NOPRINT overrides LIST.

NOTE

Lines causing errors will be listed when NOLIST is in
effect.

$NOLIST

Control Switch Name: MACRO/NOMACRO

Abbreviation: MR/NOMR

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

MACRO

Indicates whether macro calls shall be expanded. If NOMACRO
is specified all macro calls will not be processed as macros. The
NO MACRO control will free additional symbol table space for
user-defined symbols (labels and symbols defined by SET, EQU,
DATA, XDATA, and BIT).

$NOMACRO

6-7

Assembler Operation and Controls

6-8

Control Switch Name: OBJECT/ NOOBJECT

Abbreviation: OJ/NOOJ

Arguments: (Filename) (Indicates file to receive hex code-argument
optional.)

Control Class: Primary

Default:

Definition:

Example:

o BJ ECT (sourcefi/e. HEX)

Indicates whether absolute hex code shall be generated, and if so,
the file that will receive it. If you do not specify the argument, the
object file will be sourcefile.HEX. The format of the file is
described in Absolute Object File Formats (Order number
9800183).

$OBJECT(:F1 :FINAL.REV)

Control Switch Name: PAGING/NOPAGING

Abbreviation: PI/NOPI

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

PAGING

Indicates whether page breaks shall be included in listing file. If
NOPAGING, then there will be no page breaks in the file, and
lines will appear listed consecutively. A single header will be
included at the top of the file. EJECT and PAGELENGTH
controls will be ignored.

If PAGING, a formfeed and a page header will be inserted into
the listing file whenever the number of lines since the last page
break equals the P AGELENGTH value, or an EJECT control is
encountered. The header includes the assembler designation, the
name of the source file, the TITLE and DATE strings (if
specified), and the page number.

$ NOPAGING

MCS-51

MCS-51 Assembler Operation and Controls

Control Switch Name: PAGELENGTH

Abbreviation: PL

Arguments: (n) (Decimal number greater than 9.)

Control Class: Primary

Default:

Definition:

Example:

PAGELENGTH(60)

Indicates the maximum number of printed lines on each page of
the listing file. This number includes the page heading. The
minimum value for PAGELENGTH is 10. Values less than 10 will
be treated as 10. The maximum value permitted in the argument is
65,535.

$ PAGELENGTH(132)

Control Switch Name: PAGEWIDTH

Abbreviation: PW

Arguments: (n) (Number indicates maximum characters per line.)

Control Class: Primary

Default:

Definition:

Example:

PAG EWIDTH(120)

Indicates the maximum number of characters printed on a line in
the listing file. The range of values permitted is from 72 to 132;
argument values that are outside of this range will be rounded up
or down accordingly.

Listing lines that exceed the P AGEWIDTH value will be wrapped
around on the next lines in the listing, starting at column 30.

$ PAG EWIDTH (72)

6-9

Assembler Operation and Controls

6-10

Control Switch Name: PRINT I NOPRINT

Abbreviation: PR/NOPR

Arguments: (Filename) (Indicates file to receive assembler Jisting-
argument optional.)

Control Class: Primary

Default:

Definition:

Example:

PRINT(sourcefile. LST)

Indicates whether formatted source listing shall be generated,
and, if so, what file will receive it. If you do not specify the argu
ment, the listing file will be sourcefile.LST. NOPRINT indicates
no listing file will be made.

-ASM51 PROG.SRC PRINT(:LP:) & print listing at line printer
**

Control Switch Name: SAVEl RESTORE

Abbreviation: SAl RS

Arguments: None

Control Class: General

Default:

Definition:

Example:

Not applicable

Permits you to save and restore the state of the LIST and GEN
controls. SAVE stores the setting of these controls on the SAVE
stack, which is internal to the assembler. RESTORE restores the
setting of the controls to the values most recently saved, but not
yet restored. SAVEs can be nested to a depth of 8.

NOTE

SAVE uses the values that were in effect on the line prior
to the SAVE control line. Therefore, if the LIST control
is in effect and the assembler encounters a control line
containing NOLIST and SAVE (in any order on the line),
the status LIST is saved on the stack. (The lines following
the control line are not listed until a LIST or RESTORE
is encountered.)

$save

MCS-Sl

MCS-51 Assembler Operation and Controls

Control Switch Name: SYMBOLS/NOSYMBOLS

Abbreviation: SB/NOSB

Argument: None

Control Class: Primary

Default:

Definition:

Example:

NOSYMBOLS

Indicates whether a symbol table shall be listed. NOSYMBOLS
indicates no symbol table. SYMBOLS causes the table to be
listed. NOSYMBOLS is overridden by XREF. SYMBOLS is over
ridden by NO PRINT. (See Chapter 7 for an example symbol table
listing.)

$NOSYMBOLS

Control Switch Name: TITLE

Abbreviation: TT

Arguments: (string) (Up to 60 characters.)

Control Class: General

Default:

Definition:

Example:

(Spaces Inserted)

Permits you to include a title for the program. It will be printed in
the header of every subsequent page. Titles longer than 60
characters will be truncated to the first 60 characters. (See
Chapter 7 for an example of the title in the header.)

NOTE
Any parentheses in the TITLE string must be balanced.

$TITLE(Final Production Run)

6-11

Assembler Operation and Controls

6-12

Control Switch Name: WORKFILES

Abbreviation: WF

Arguments: (:Fm:[,:Fn:]) (Drives to use for temporary work files-second
argument optional.)

Control Class: Primary

Default:

Definition:

Example:

Drive that contains source file.

Indicates drives to be used to contain temporary workfiles. First
drive listed will be used for files ASM5IS.TMP, ASMFIX.TMP,
and ASM51M.TMP. Second drive listed will be used for file
ASM5IT.TMP, ASM51N.TMP, and ASM51I.TMP. If only one
drive is specified, then all workfiles will be placed on that drive.
All workfiles are deleted before normal termination.

-ASM51 :F1 :BIGPR.SRC WORKFILES(:F4:,:F5:)

Control Switch Name: XREF/NOXREF

Abbreviation: XR/NOXR

Arguments: None

Control Class: Primary

Default:

Definition:

Example:

NOXREF

Indicates that a cross reference table of the use of symbols shall be
added to the symbol table. Each cross reference table will list the
line numbers of the lines that define the value of a symbol, and all
of the lines that reference the symbol. A hash mark (#) follows the
numbers of the lines that define the symbols value. XREF is over
ridden by NOPRINT. (See Chapter 7 for an example of a symbol
table listing with XREF.)

$XREF

MCS-51

CHAPTER 7
ASSEMBLER OUTPUT: ERROR

MESSAGES AND LISTING FILE FORMAT

This chapter discusses the meaning of error messages issued by ASM51. The format
of the listing file is also described.

Error Messages and Recovery

All error messages issued by ASM51 are either displayed on the console or listed in
the source file. Error messages listed at the console are fatal, causing ASM51 to
abnormally terminate. Other than the error message printed at the console, ASM51
produces no other useful output. Error messages listed in the source file are non
fatal and usually allow at least the listing to continue.

Console Error Messages

Upon detecting certain catastrophic conditions with the system hardware, or in the
invocation line or one of the primary control lines, ASM51 will print an informative
message at the console and abort processing.

These errors fall ASM51 into three broad classes: 1/0 errors, internal errors and
ASM51 fatal errors.

A list of these fatal control error messages and a description of the cause of each is
shown below.

1/0 Errors
110 error messages print with the following format:

ASM51 I/O ERROR
FILE: file type
NAME: file name
ERROR: ISIS error number and brief description

ASM51 TERMINATED

The list of possible file types is:

SOURCE
PRINT
OBJECT
INCLUDE
ERRORPRINT
ASM51 WORKFILE
ASM51 OVERLAY number

The list of possible error numbers is:

4-ILLEGAL PATH NAME
5-ILLEGAL OR UNRECOGNIZED DEVICE IN PATH
9-DIRECTORY FULL

12-ATIEMPTTO OPEN ALREADY OPEN FILE
13-NO SUCH FILE
14-WRITE PROTECTED FILE
22-0UTPUT MODE IMPOSSIBLE FOR SPECIFIED FILE
23-NO FILENAME SPECIFIED FOR A DISK FILE
28-NULL FILE EXTENSION

7-1

Assembler Output: Error Messages and Listing File Format

7-2

ASM51 Internal Errors

The ASM51 internal errors indicate that an internal consistency check failed. A
likely cause is that one of the files containing the assembler's overlays was corrupted
or that a hardware failure occurred. If the problem persists, contact Intel Corpora
tion via the Software Problem report.

These messages print in the following format:

**** ASM51 INTERNAL ERROR: message

Be sure to include the exact text of the message on the problem report.

ASM51 Fatal Errors

The fatal error messages print in the following format:

ASM51 FATAL ERROR
error message

The possible error messages are:

NO SOURCE FILE FOUND IN INVOCATION

If ASM51 scans the invocation line and cannot find the source file name, then this
error will be issued and assembly aborted.

UNRECOGNIZABLE SOURCE FILE NAME

If the first character after "ASM51" on the invocation line is not an "&" or a file
character (i.e., ":", letter, digit, ". "), then ASM51 issues this error and aborts.

ILLEGAL SOURCE FILE SPECIFICATION

If the source file is not a legal file name (does not conform to the ISIS-II rules for a
path name), then this error is issued.

SOURCE TEXT MUST COME FROM A FILE

The source text must always come from a file, not devices like :TI: or :LP:.

NOT ENOUGH MEMORY

If there is not enough memory in your SERIES-II or MDS 800, then this error
message will print out and ASM51 will abort.

If identical files are specified:

_ AND _ FILES ARE THE SAME

where the "_" can be any of SOURCE, PRINT, OBJECT, and ERRORPRINT. It
doesn't make sense for any of these files to be the same.

BAD WORKFILES COMMAND

If a WORKFILES control has no parameters (i.e., devices) or a device specification
is incorrect, this error message is issued.

BAD WORKFILES SYNTAX

MCS-Sl

MCS-51 Assembler Output: Error Messages and Listing File Format

If ASM51 encounters anything other than a "," or a ")" when it is looking for the
next workfile, then this error is issued.

BAD PAGELENGTH
BAD PAGEWIDTH

The parameter to pagelength and pagewidth must be a decimal number. The number
may have leading and trailing blanks, but if there are any other extra characters in
the parameter, then this error will be issued.

PAGELENGTH MISSING A PARAMETER
PAGEWIDTH MISSING A PARAMETER
DATE MISSING A PARAMETER

These commands require parameters. If there is no parameter, then assembly is
aborted.

CANNOT HAVE INCLUDE IN INVOCATION

The INCLUDE command may appear only in the source text. Don't forget that
command lines in the source file can contain primary commands, but only if they are
the very first lines in the file. Also, if one of these lines has an INCLUDE on it, then
that ends the primary command lines.

EOLENCOUNTEREDINPARAMETER

A parameter in the invocation line is missing a right parenthesis.

COMMAND TOO LONG

A command word longer than 128 characters-very unlikely.

ILLEGAL CHARACTER IN INVOCATION

There was an illegal character in the invocation line-usually a typing error. (See
error 403.)

UNRECOGNIZED CONTROL: <control-name>

This message is issued if a problem occurs in the invocation or in one of the primary
control lines. (See error 407.)

Listing File Error Messages

ASM51 features an advanced error-reporting mechanism. Some messages pinpoint
the symbol, or character at which the error was detected. Error messages printed in
the source file are inserted into the listing after the lines on which the errors were
detected.

They are of the following format:

••• ERROR Ieee, LINE #111 (Ppp) , message

where:

eee is the error number
III is the number of the line on which the error occurred
ppp is the line containing the last previous error
message is the English message corresponding to the error number

7-3

Assembler Output: Error Messages and Listing File Format

7-4

If the error is detected in pass 2, the clause "(PASS 2)" precedes the message.
"(MACRO)" precedes the message for macro errors; "(CONTROL)" precedes the
message for control errors.

Errors which refer to character or symbol in a particular line of the source file do so
by printing a pointer to the first item in the line that is not valid; e.g.:

" ------

The up arrow or vertical bar points to the first incorrect character in the line.

Error messages that appear in the listing file are given numbers. The numbers corres
pond to classes of errors. The classes of errors and the numbers reserved for these
classes is shown in the list below:

o - 99 Source File Errors
300 - 399 Macro Errors
400 - 499 Control Errors
800 - 899 Special Assembler Errors
900 - 999 Fatal Errors

Errors numbered less than 800 are ordinary, non-fatal errors. Assembly of the error
line can usually be regarded as suspect, but lines subsequent lines will be assembled .

. If an error occurs within a macro definition, the definition does not take place.

Source File Error Messages
There follows a list of .the error messages generated by ASM51, ordered by error
number .

••• ERROR #1 SYNTAX ERROR

This message is preceded by a pointer to the character at which the syntax error
was detected.

ASM51 contains an internally-encoded grammar of the MCS-51 assembly
language and requires your program to conform to that grammar. The syntax
error is recognized at the item indicated in the error message; e.g.,

... TEMPSER10

gives a syntax error at the S. "SER" is unrecognized. However, sometimes the
error is not detected until one or more characters later; e.g.,

... SETBEQU1

gives a syntax error at "EQU". The error is that SETB is already defined as an
instruction. The assembler interprets the line as a SETB instruction with
"EQU 1" as the operand field. Since the keyword "EQU" is not a legal
operand the "EQU" is flagged, even though the "SETB" is the user's
mistake.

ASM51 discards the rest of the line when it finds a syntax error. If the error
occurs within a macro definition, the assembler exits the definition mode.

MeS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

*** ERROR ##2 SOURCE LINE LISTING TERMINATED AT 255 CHARACTERS

Listing of the source line was stopped at 255 characters. The entire line was
interpreted, only the listing is incomplete.

*** ERROR ##3 ARITHMETIC OVERFLOW IN NUMERIC CONSTANT

This error is reported whenever the value expressed by a constant exceeds the
internal representation of the assembler (65,535).

*** ERROR ##4 ATTEMPT TO DIVIDE BY ZERO

This error occurs when the right hand side of a division or MOD operator
evaluates to zero.

* * * ERROR ##5 EXPRESSION WITH FORWARD REFERENCE NOT ALLOWED

Forward references are not permitted in the expression argument to ORO, DS,
EQU, SET, BIT, DATA, XDATA, and DBIT directives. Change the
expression to remove the forward reference, or define the symbols earlier in
the program.

*** ERROR #6 TYPE OF SET SYMBOL DOES NOT ALLOW REDEFINITION

This error occurs when the symbol being defined in a SET directive is a
predefined assembler symbol or has been previously defined as a label or with
EQU, DATA, BIT, or XDATA. For example, the following lines would cause
this error on the second line.

SKIP _1: ADD A,R1
SKIP _1 SET 22D

*** ERROR #7 EQU SYMBOL ALREADY DEFINED

This message is given when the symbol has already been defined as a label or
with the SET, DATA, BIT, or XDATA directive. To correct this error, use a
different symbol name .

• *. ERROR #8 ATTEMPT TO ADDRESS NON-BIT -ADDRESSABLE BIT

This error is caused when the left hand side of the bit selector (.) is not one of
the bit addressable bytes. (See errors 40 and 9.) Figure 2-2 shows all bit
addressable bytes. Several examples of lines that would cause this type of error
are shown below.

JB 10H.5,LOOP
CLR7FH.O
MOV C,OAFH.3

*** ERROR #9 BAD BIT OFFSET IN BIT ADDRESS EXPRESSION

This error is caused when the right hand side of the bit selector (.) is out of
range (0-7). The assembler uses 0 in its place. The byte address, if correct,
remains the same. (See errors 8, and 40.) Several examples of lines that would
generate this error are shown below.

CLR25H.l0
SETB26H.5+4
CPLPSW.-1

7-5

Assembler Output: Error Messages and Listing File Format

7-6

••• ERROR #10 TEXT FOUND BEYOND END STATEMENT -IGNORED

This is a warning-there are no ill effects. The extra text appears in the listing
file, but it is not assembled .

••• ERROR #11 PREMATURE END OF FILE (NO END STATEMENT)

There are no ill effects from omitting the END statement, other than this
message .

••• ERROR #12 ILLEGAL CHARACTER IN NUMERIC CONSTANT

Numeric constants begin with decimal digits, and are delimited by the first
non-numeric character. The set of legal characters for a constant is determined
by the base:

1. Base 2: 0,1, and the concluding B.
2. Base 8: 0-7, and the concluding Q or O.
3. Base 10: 0-9, and the concluding D or null.
4. Base 16: 0-9, A-F, and the concluding H .

••• ERROR #13 ILLEGAL USE OF REGISTER NAME IN EXPRESSION

This error is caused by placing a register name (RO-R7 or A) or a symbol
defined as a register in a numeric expression. It can be generated by any line
that calls for a numeric expression. Several examples of this type of error are
shown below:

POPA
DBRO
JZA

••• ERROR #14 SYMBOL IN LABEL FIELD ALREADY DEFINED

You can define a label only once in your program. If the symbol name has
been defined anywhere else in the program this error will be generated .

••• ERROR #15 ILLEGAL CHARACTER

This message is preceded by a pointer to the illegal character.

A character that is not accepted by ASM51 was found in the input file. Either
it is an unprintable ASCII character, in which case it is printed as an up arrow
(""), or it is printable but has no function in the assembly language. Edit the
file to remove the illegal character .

••• ERROR #16 MORE ERRORS DETECTED, NOT REPORTED

After the ninth source file Error on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. (See errors 300 and 400.)

••• ERROR #17 ARITHMETIC OVERFLOW IN LOCATION COUNTER

This error is reported whenever the DS, DBIT, or ORO directive attempts to
increase the location counter beyond the limits. of the current segment. This
may also occur in CSEO when instructions cause the location counter to incre
ment above 65,535.

MeS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

••• ERROR #18 UNDEFINED SYMBOL

This error is reported when an undefined symbol occurs in an expression. Zero
is used in its place-this may cause subsequent errors .

••• ERROR #19 VALUE WILL NOT FIT INTO A BYTE

This error is issued whenever the expression used for a numeric operand that is
encoded as a single byte is not in the range -256 to +255 .

••• ERROR #20 OPERATION INVALID IN THIS SEGMENT

This error will occur if you use the DB IT or DS directive in the incorrect seg
ment mode, or if you attempt to initialize memory (use DB, DW, or assemble)
an instruction in any mode but CSEG .

••• ERROR #21 STRING TERMINATED BY END-OF-L1NE

All strings must be completely contained on one line .

••• ERROR #22 STRING LONGER THAN 2 CHARACTERS NOT ALLOWED IN THIS CONTEXT

Outside of the DB directive all strings are treated as absolute numbers; hence,
strings of 3 or more characters are overflow quantities. If this error occurs in a
DW directive, you probably should be using DB .

••• ERROR #23 STRING, NUMBER, OR IDENTIFIER CANNOT EXCEED 255 CHARACTERS

The maximum length of a character string (including surrounding quotes), a
number, or an identifier is 255 characters .

••• ERROR #24 DESTINATION ADDRESS OUT OF RANGE FOR AJMP
••• ERROR #26 DESTINATION ADDRESS OUT OF RANGE FOR ACALL

These errors are caused by specifying an address that is outside the 2K byte
page boundary of the instruction. When the ACALL or AJMP is located near
a 2K page boundary, only a few bytes may separate it from its destination
address. An LJMP or LCALL will always correct the problem. It is often
easier to use the generic forms of the jump and call instructions (CALL or
JMP) and let the assembler select the correct translation .

••• ERROR #25 DESTINATION ADDRESS OUT OF RANGE FOR SJMP
••• ERROR #27 DESTINATION ADDRESS OUT OF RANGE FOR JC
••• ERROR #28 DESTINATION ADDRESS OUT OF RANGE FOR JNC
••• ERROR #29 DESTINATION ADDRESS OUT OF RANGE FOR JZ
••• ERROR #30 DESTINATION ADDRESS OUT OF RANGE FOR JNZ
••• ERROR #31 DESTINATION ADDRESS OUT OF RANGE FOR DJNZ
••• ERROR #32 DESTINATION ADDRESS OUT OF RANGE FOR CJNE
••• ERROR #33 DESTINATION ADDRESS OUT OF RANGE FOR JB
••• ERROR #34 DESTINATION ADDRESS OUT OF RANGE FOR JBC
••• ERROR #35 DESTINATION ADDRESS OUT OF RANGE FOR JNB

A relative jump has a 255 byte range (-128 to +127) from the instruction that
follows the jump instruction. Any address outside of this range will generate
one of these errors. You can correct this error in one of two ways. If the jump
has a logical complement (e.g., JC and JNC) the following change could be
made:

JCTOP to

SKIP:

JNCSKIP
JMPTOP

7-7

Assembler Output: Error Messages and Listing File Format

7-8

If the instruction has no logical complement, then the following change could
be made:

DJNZRO,TOP to DJNZ RO,SKIP_1
JMPSKIP_2

SKIP_1: JMPTOP
SKIP_2:

*** ERROR #36 CODE SEGMENT ADDRESS EXPECTED
*** ERROR #37 DATA SEGMENT ADDRESS EXPECTED
*** ERROR #38XDATA SEGMENT ADDRESS EXPECTED
*** ERROR #39 BIT SEGMENT ADDRESS EXPECTED

These errors are caused by specifying a symbol with the wrong segment type in
an operand to an instruction. The numeric value of that symbol is used, but it
may cause subsequent errors (e.g., error 17).

*** ERROR #40 BYTE OF BIT ADDRESS NOT IN DATA SEGMENT

The symbol specified on the left hand side of the bit selector (.) is not segment
type DSEG. The numeric value is used if possible, but may cause other errors.
(See errors 37 and 8.)

Macro Error Messages

Error messages with numbers in the 300's indicate macro call/expansion errors.
Macro errors are followed by a trace of the macro call/expansion stack-a series of
lines which print out the nesting of macro calls, expansions, INCLUDE files, etc.

Processing resumes in the original source file, with all INCLUDE files closed and
macro calls terminated.

*** ERROR #300 MORE ERRORS DETECTED, NOT REPORTED

After 100 Macro or Control Errors on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. If the last error reported is a Macro Error, then this message
will be issued. (See errors 16 and 400.)

**. ERROR #301 UNDEFINED MACRO NAME

The text following a metacharacter (0J0) is not a recognized user function name
or built-in function. The reference is ignored and processing continues with the
character following the name.

**. ERROR #302 ILLEGAL EXIT MACRO

The built-in macro "EXIT" is not valid in this context. The call is ignored. A
call to "EXIT" must allow an exit through a user function, or the WHILE or
REPEAT built-in functions.

**. ERROR #303 FATAL SYSTEM ERROR

Loss of hardware and/or software integrity was discovered by the macro
processor. Contact Intel Corporation.

MCS-51

MCS-Sl Assembler Output: Error Messages and Listing File Format

••• ERROR #304 ILLEGAL EXPRESSION

A numeric expression was required as a parameter to one of the built-in
macros EVAL, IF, WHILE, REPEAT, and SUBSTR. The built-in function
call is aborted, and processing continues with the character following the
illegal expression .

••• ERROR #305 MISSING "FI" IN "IF"

The IF built-in function did not have a FI terminator. The macro is processed,
but may not be interpreted as you intended .

••• ERROR #306 MISSING "THEN" IN "IF"

The IF built-in macro did not have a THEN clause following the conditional
expression clause. The call to IF is aborted an processing continues at the point
in the string at which the error was discovered .

••• ERROR #307 ILLEGAL A TIEMPT TO REDEFINE MACRO

It is illegal for a built-in function name or a parameter name to be redefined
(with the DEFINE or MATCH built-ins). Also, a user function cannot be
redefined inside an expansion of itself .

••• ERROR #308 MISSING IDENTIFIER IN DEFINE PATIERN

In DEFINE, the occurrence of "@" indicated that an identifier type delimiter
followed. It did not. The DEFINE is aborted and scanning continues from the
point at which the error was detected .

••• ERROR #309 MISSING BALANCED STRING

A balanced string "(...)" in a call to a built-in function is not present. The
macro function call is aborted and scanning continues from the point at which
the error was detected .

••• ERROR #310 MISSING LIST ITEM

In a built-in function, an item in its argument list is missing. The macro func
tion call is aborted and scanning continues from the point at which the error
was detected .

••• ERROR #311 MISSING DELIMITER

A delimiter required by the scanning of a user-defined function is not present.
The macro function call is aborted and scanning continues from the point at
which the error was detected.

This error can occur only if a user function is defined with a call pattern con
taining two adjacent delimiters. If the first delimiter is scanned, but is not
immediately followed by the second, this error is reported.

7-9

Assembler Output: Error Messages and Listing File Format

7-10

••• ERROR #312 PREMATURE EOF

The end of the input file occurred while the call to the macro was being
scanned. This usually occurs when a delimiter to a macro call is omitted, caus
ing the macro processor to scan to the end of the file searching for the missing
delimiter.

Note that even if the closing delimiter of a macro call is given, if any preceding
delimiters are not given, this error may occur, since the macro processor
searches for delimiters one at a time .

••• ERROR #313 DYNAMIC STORAGE (MACROS OR ARGUMENTS) OVERFLOW

Either a macro argument is too long (possibly because of a missing delimiter),
or not enough space is available because of the number and size of macro
definitions. All pending and active macros and INCLUDE's are popped and
scanning continues in the primary source file .

••• ERROR #314 MACRO STACK OVERFLOW

The macro context stack has overflowed. This stack is 64 deep and contains an
entry for each of the following:

1. Every currently active input file (primary source plus currently nested
INCLUDE's).

2. Every pending macro call, that is, all calls to macros whose arguments are
still being scanned.

3. Every active macro call, that is, all macros whose values or bodies are
currently being read. Included in this category are various temporary
str-ings used during the expansion of some built-in macro functions.

The cause of this error is excessive recursion in macro calls, expansions, or
INCLUDE's. All pending and active macros and INCLUDE's are popped and
scanning continues in the primary source file .

••• ERROR #315INPUT STACK OVERFLOW

The input stack is used in conjunction with the macro stack to save pointers to
strings under analysis. The cause and recovery is the same as for the macro
stack overflow .

••• ERROR #317 PATTERN TOO LONG

An element of a pattern, an identifier or delimiter, is longer than 31
characters, or the total pattern is longer than 255 characters. The DEFINE is
aborted and scanning continues from the point at which the error was
detected .

••• ERROR #318 ILLEGAL METACHARACTER: "char"

The METACHAR built-in function has specified a character that cannot
legally be used as a metacharacter: a blank, letter, digit, left or right paren
thesis, or asterisk. The current metacharacter remains unchanged .

••• ERROR #319 UNBALANCED ")" IN ARGUMENT TO USER DEFINED MACRO

During the scan of a user-defined macro, the parenthesis count went negative,
indicating an unmatched right parenthesis. The macro function call is aborted
and scanning continues from the point at which the error was detected.

MCS-51

MeS-51 Assembler Output: Error Messages and Listing File Format

••• ERROR #320 ILLEGAL ASCENDING CALL

Ascending calls are not permitted in the macro language. If a call is not com
plete when the end of a macro expansion is encountered, this message is issued
and the call is aborted. A macro call beginning inside the body of a user
defined or built-in macro was incompletely contained inside that body,
possibly because of a missing delimiter for the macro call.

Control Error Messages

Control error messages are issued when something is wrong with a control line in the
source file. Command language errors, when they occur in the invocation line or in a
primary control line, are fatal. However, the errors listed below are not considered
fatal. (See ASM51 FATAL ERRORS, described above.)

••• ERROR #400 MORE ERRORS DETECTED, NOT REPORTED

After 100 Macro or Control Errors on a given source line, this message is given
and no more errors are reported for that line. Normal reporting resumes on the
next source line. If the last error reported is a Control Error, then this message
will be issued. (See errors 16 and 300.)

••• ERROR #401 BAD PARAMETER TO CONTROL

What appears to be the parameter to a control is not correctly formed. This
may be caused by the parameter missing a right parenthesis or if the paren
theses are not correctly nested .

••• ERROR #402 MORE THAN ONE INCLUDE CONTROL ON A SINGLE LINE

ASM51 allows a maximum of one INCLUDE control on a single line. If more
than one appears on a line, only the first (leftmost) is included, the rest are
ignored .

••• ERROR #403 ILLEGAL CHARACTER IN COMMAND

When scanning a command line, ASM51 encountered an invalid character.

This error can be caused for a variety of reasons. The obvious one is that a
command line was simply mistyped. The following example is somewhat less
obvious:

$TITLE('1)-GO')

The title parameter ends with the first right parenthesis, the one after the digit
1. The title string is '" 1 ". The next character "-" is illegal and will get error
403. The next two characters, "GO", form a valid command (the abbreviation
for GENONL Y) which will cause the listing mode to be set. The final two
characters "')" will each receive error 403 .

••• ERROR #406 TOO MANY WORKFILES - ONLY FIRST TWO USED

This error occurs when you specify more than two devices in the parameters to
the WORKFILES control. Only the first two are used and the remaining list of
devices is ignored until the next right parenthesis.

7-1 i

Assembler Output: Error Messages and Listing File Format

7-12

••• ERROR #407 UNRECOGNIZED CONTROL OR MISPLACED PRIMARY CONTROL: <control-name>

The indicated control is not recognized as an ASM51 control in this context. It
may be misspelled, mistyped, or incorrectly abbreviated.

A misplaced primary control is a likely cause of this error. Primary control
lines must be at the start of the source file, preceding all non-control lines
(even comments and blank lines) .

••• ERROR #408 NO TITLE FOR TITLE CONTROL

This error is issued if the title control has no parameter. The new title will be a
string of blanks .

••• ERROR #409 NO PARAMETER ALLOWED WITH ABOVE CONTROL

The following controls do not have parameters:

EJECT
SAVE
RESTORE
LIST
NOLIST
GENONLY
GEN

NOOBJECT
NOPRINT
NOPAGING
DEBUG
NODE BUG
NOERRORPRINT
NOGEN

MACRO
NOMACRO
PAGING
SYMBOLS
NOSYMBOLS
XREF
NOXREF

If one is included, then this error will be issued, and the parameter will be
ignored .

••• ERROR #410 SAVE STACK OVERFLOW

The SAVE stack has a depth of eight. If the program tries to save more than
eight levels, then this message will be printed .

••• ERROR #411 SAVE STACK UNDERFLOW

If a RESTORE command is executed and there has been no correspOnding
SAVE command, then this error will be printed .

••• ERROR #413 PAGEWIDTH BELOW MINIMUM, SET TO 72

The minimum pagewidth value is 72. If a pagewidth value less than 72 is given,
72 becomes the new pagewidth .

••• ERROR 1414 PAGELENGTH BELOW MINIMUM, SET TO 10

The minimum number of printed lines per page is 10. If a value less than 10 is
requested, 10 becomes the new pagelength .

... ERROR #415 PAGEWIDTH ABOVE MAXIMUM, SET TO 132

The maximum pagewidth value is 132. If a value greater than 132 is requested
then, 132 becomes the new pagewidth.

MCS-Sl

MCS-51 Assembler Output: Error Messages and Listing File Format

Special Assembler Error Messages

Error messages in the 800's should never occur. If you get one of these error
messages, please notify Intel Corporation via the Software Problem Report included
with this manual. All of these errors are listed below:

••• ERROR #800 UNRECOGNIZED ERROR MESSAGE NUMBER
••• ERROR #801 SOURCE FILE READING UNSYNCHRONIZED
••• ERROR #802 INTERMEDIATE FILE READING UNSYNCHRONIZED
••• ERROR #803 BAD OPERAND STACK POP REQUEST
••• ERROR #804 PARSE STACK UNDERFLOW
••• ERROR #805 INVALID EXPRESSION STACK CONFIGURATION

Fatal Error Messages

Errors numbered in the 900's are fatal errors. They are marked by the line

" ••• FATAL ERROR

preceding the message line. Assembly of the source code is halted. The remainder of
the program is scanned and listed, but not assembled .

••• ERROR #900 USER SYMBOL TABLE SPACE EXHAUSTED

You must either eliminate some symbols from your program, or if you don't
use macros, the NOMACRO control will free additional symbol table space .

••• ERROR #901 PARSE STACK OVERFLOW
••• ERROR #902 EXPRESSION STACK OVERFLOW

This error will be given only for grammatical entities far beyond the complica
tion seen in normal programs .

••• ERROR #903 INTERMEDIATE FILE BUFFER OVERFLOW

This error indicates that a single source line has generated an excessive amount
of information for pass 2 processing. In practical programs, the limit should
be reached only for lines with a gigantic number of errors - correcting other
errors should make this one go away .

••• ERROR #904 USER NAME TABLE SPACE EXHAUSTED

This error indicates that the sum of the number of characters used to define the
symbols contained in a source file exceeds the macro processor's capacity. Use
shorter symbol names, or reduce the number of symbols in the program.

7-13

Assembler Output: Error Messages and Listing File Format

7-14

Assembler Listing File Format

The MCS-51 assembler, unless overridden by controls, outputs two files: an object
file and a listing file. The object file contains the machine code in Absolute Hex
Format. It is suitable for programming either an 8751 (EPROM version of 8051) or
an Intel EPROM memory component.

H('S-51 MACRO ASSEMBLER THIS IS AN EXAMPLE OF THE LISTING FILE FORMAT DEC.(18) PAGE

I IS-II MeS-51 MACRO ASSEMBLER Vl.D
NO OBJECT MODULE REQUESTED
ASSEMBLER INVOKED BY: ASK51 :Fl:EXAMP7~SRC XREF' SYMBOLS &: this is the exampLe for ohapter 7

TITLE(THIS IS AN EXAMPLE Of' THE LISTING FILE FORMAT) &:
DATE(DEC.(18») NOOBJECT 3. I don't nettd the object file
ERRORPRINT &: show th<!l errors at the oonsole

LOC OSJ LINE SOURCE

1
03E8 2 ORG 1000

, .1 tGEM

• %add 16(DPH, DPL, I(HIGH $),#(1...0W $),DPH,DPLl
5 .1
6 ., MOV A ,ULOili

036:8 E582 1 .2 DPL
8 ., ADD A,ULOW

O,!A 214EA 9 .2 I(LOW $)
10 +1 MOV ~SUMLOW

03EC F582 11 .2 DPL,A
12 +1 MOV A, UHIGH

03EE E583 13 +2 DPH
14 +1 AODe A,snUGH

OjFO ,40j 15 +2 '(HIGH $)
16 +1 MOV ~SUMHtGH

OjF2 FS8j 17 +2 OPH,!
18 .1
19
20
21
22 +1 $GENONLY
2, +1

OjF4 8582 24 +2 MOV A,On
OjF6 24F6 25 +2 ADO A,I(LOW $)
o,F8 F582 25 +2 MOV DPL,A
03FA E583 27 +2 MOV' A,DPH
03FC 3403 28 +2 AOOC A, I(HIGH $)
03FE F583 29 +2 MOV OPH,!

30 +1
31
12

" 34 +1 $NOGEN
l5 JaQd 16 (OPH, OPL. #(HIGH $)"e LaW $), DPH, DPL 1 .,
4\
45
46 $ EJECT

Figure 7-1. Example Listing File Format

..

937-19

MCS-Sl

MeS-51 Assembler Output: Error Messages and Listing File ~ormat

MeS-51 MACRO ASSEMBLER THIS IS AN EXAHPJ..I!: OF THE I..ISTING rtLE FORMAT

1..0C OBJ LINE SOURCE

47
118 The Il"!xt two lines will ganerat"!: errors
119 ERRONEOUS ~Q(JALS 55

ERROR '1, loINE '49 (0),
50

SYNTAX ERROR

••• ERROR #18, LINE '50 (49).
0802 51
0803 52

00111'

53
54
55

SECOND_ERROR SET ERRONEOUS
(PASS 2) UNDEFINED SYMBOL

STORE SET 6*'5+$) -100 AND DFOP'H
JOHN EQU S-TORE + 1
BSEG

JOHN_JOHN: ; USE LABEL rN BSEG TO DEPUE BU
DSEG
ORa 127

ADDRESS

MEMTOP: ; USE LABEl. IN DSEG TO DEFIN& DATA ADDR&SS

O.l!Oc C200
allO! F57f'

eSEG
eLR JOHN_JOHN
HOV MEMTOP, A

; USE OF LABEL IN' BSEG AS BIT ADDRESS
i USE OF LABEL IN DSEG AS DATA ADDRESS

DEC.(18) PAGE

041 Q 54434953
o4H 20535452
0418 4911E4120
041C 57494CIlC
0420 201!C1I91l5
0424 20494820
0428 43411'411115
042C 204Dli5U
0430 1111'5259
0433 00

56
57
58
59
60
61 TYPE_STRING: DB 'THIS STRING WILL LU IN CODE MEMORY' ,OOH,OAH,OOH

0434 01
0435 00

0100
0100 B7
0101 1I00F

62
63
64
65
66
67
68
69
70
71
72
n
7'
75
76
77
78
79
80
81
82
83 8.
85
86
87

..
This routinp. convp.l'ts BCD to binary and binary ':.0 BCD.
It usp.s l'otat!! to simulatOl!l multiplication.
ASSUME:

Resister 1 contains addrp.ss of value to be converted
If BCD to binary convP-l'sion,

Carry = 0
high ol"dp-I" nibbl"!! (bits 1i-'7) of
iDl!mol"y contains high ol"d"!!l" digit
and, low order" nibble (bits 0-3)
of memory contains low order
digit.

If binar'Y to BCD convel'sion,
Carry = 1
valup. in U'lqIDOI"Y is bp.twelHl 0 and 99

OUTPUT:
Register 1 will DI!! unchanged and addrp.ss thl! convp.l"tl!d value
Carry = 0

SIDE EFFECTS:
The contp-nts of Accumulator and Registp-l' 2 and 3 w'l.ll bp.
changl!:d

;
ORG

CONVRT: MOV
JC

100H
A,@R1
BUBCD

Figure 7-1. Example Listing File Format (Cont'd.) 937-20

Assembler Output: Error Messages and Listing File Format

7-16

MeS-51 MACRO ASSEMBLER THIS IS AN EXAMPLE OF THE LISTING FILE FORMAT DEC.(18) PAGE

LOC OBJ I..INE

0103 54FO 88
0105 C4 89

0106 FA 90
91

0107 23 92
0108 23 93
0109 23 94
010A 2A 95
0108 2A 96
alOe C7 97

0100 540F 98
010F 21 99
0110 F1 100
0111 22 101

102
0112 7800 103
01111 7AF6 104
0116 F1 105
0117 DB 106
0118 2A 10,
0119 liars 108
0118 1B 109
011C EB 110
011D ell 111
011E 111 112
011F F1 113
0120 22 ,"
0000 115
ooao 2100 116

117

SOURCE

SeDSIN : ANL A I #OFOH
SWAP A

tor
HO. H2,A

Multiply diSH. by 10
RL •
RL A
RL
ADO A, H2
ADD A, H2
XCK A,@R1

that low ordl\ll" digit oan be
ANL A,IOFB
ADD 1,@R1
HO. @ftl,A
RET

; Begin binary to BCD conversion
BINSGD: HO' R3,'O

HO. H2,'(_10)
DIV_: HOY @R1,A

INC R3
ADO A, H2
JC DIV_
DEC R3
HO. A, R3
SWAP •
ORL A,@R1

"0' @ftl,A
R.T
ORG 0
AJMP COtfVRT
.ND

Mask out low ordl\lr digit
Move nign digit into low ot"dl\lr nibble of accumula

Store X in R2

x • 2
2X • 2
4X • 2
8X + X
9X + X

; Store convertl!d high order digit and get BCD valu
aonverted

i Mask ou':. high order digit
; Add high ,digit and low digit
i Place t"eeult at Rl

aaaumulator contains binary valu'!

Load -10 to simulate division by -10
Store intermediate remainder
Count each subtraction
Subtract 10
If no carry A was less than 10
Last subtraction do"!sn't count
Get quotient
Plaoe in high order nibble
Place r",maindl'u' in low order nibbL"
Plac" ,.",sult at Rl

MeS-51 MACRO ASSEMBLER THIS IS AN EXAMPLE OF THE LISTING FILe FORMAT DEC.(18) PAGE

XREF SYMBOL TABLE LISTING

NAME TYPE VAL.UE 'ND REFERENCES

BeDBIN. L CSEG 0103H 88.
SINBeD. L CSEG 0112H 87 lOll
COHVRT. L CSEG 0100H 86. 116
DIV_~ L CSS:G 0116H 1051 108
DPH N DSEG 008,H 13 17 27 29 39 41
DPL N DSEG 0082H , 11 24 26 36 38
EQUALS. --UNDEFUEO-- 49
ERRONEOUS --UNDEFINED-- 49 50
JOHN. • OB018 52#
JOHN_JOHN L BSEG OOOOH 5111 59
MEMTOP. L DSEG 007FH 511 60
SECOND_BRROR. --UNDEFINED-- 50
STORE N 0802H 51# 52
TlPE_STRING L CSEG 0410H 61#

ASSEMBLY COMPLETE. 2 ERRORS FOUND (50)

Figure 7-1. Example Listing File Format (Cont'd.)

MeS-51

937-21

MCS-51 Assembler Output: Error Messages and Listing File Format

The list file contains a formatted copy of your source code with page headers, and, if
requested through controls (SYMBOLS or XREF), a symbol table.

List File Heading

Every page has a header on the first line. It contains the words "MCS-51 MACRO
ASSEMBLER" followed by the title, if specified. On the extreme right hand side of
the header, the date (if specified) and the page number is printed.

In addition to the normal header, the first page of listing includes a salutation shown
in figure 7-2. In it the assembler's version number is shown, the file name of the
object file, if any, and the invocation line. The entire invocation line is displayed
even if it extends over several lines.

MeS-51 HACRO ASSEMBL.ER THIS IS AM EXAMPLE OF THE LIStING FILE FORMAT DEC~(18) PAGE

I IS ... II KCS-51 HACRO ASSEMBLER V1 ~O
NO OBJECT MODULE REQUESTED
ASSEMBLI!:H INVOKED BY: A51"t51 :Fl:EXAMP7.SRC XRU 51MBOLS & tobts is tbe exalllple fol" ohapter 7

TITLE(THIS IS AN EXAMPLE OF THE LISTING FILE FORMAT) &
DATE(DEC.(18)) NOOBJECT & I don't need tbe objeot file
ERRORPRIRT & show tbe errors at tbe oonsole

Figure 7-2. Example Heading

Source Listing

937-22

The main body of the listing file is the formatted source listing. A section of for
matted source is shown in figure 7-3.

LOC OBJ '-'IRE SOURCE:

47
.8 The next two 11ne8 will sanerat", errors
49 ERRONEOUS ~QUALS 55

... ERROR ", LINE '119 (0). SYNTAX ERROR
50 SECOND_ERROR SET ERRONEOUS

... ERROR 118, LINE ISO (119), (PASS 2) UNDEFUED SYMBOL
0802 51 STORE SET 6*(5+$) -100 AND OFOrH
0803 52 JOHN EQU STORK + 1

007F

040C C200
040E F57F
0410 5448.1j953
01114 20535452
0418 1I94E4720
OlltC 514911C4C
0420 20llCII945
Oll24 20494120
01128 4311FH45
01l2C 204045110
0430 .F5259
01133 00
01134 OA
01135 00

53 BSEG
54 JOHN_JOHN:; USE LABEL IN BSEG TO DUIIlE BIT ADDRESS
55 DSSG
56 ORG 127
57 MEMTOP: ; USE LABEL IN DSEG TO DEnNE DATA ADDRESS
58 CSEG
59 CLR JOHN_JOHN ; USE OF LABEL IN BSEG AS BIT ADDRESS
60 MOV MEMTOP, A ; USE OF LABEL IN DSEG AS DATA ADDRESS
61 TYPE_STRING: DE 'THIS STRING WILL LIB IN CODg MEMORY',ODH,OAH,OOH

Figure 7-3. 'Example Source Listing 937-23

7-17

Assembler Output: Error Messages and Listing File Format

7-18

The format for each line in the listing file depends on the source line that appears on
it. Instruction lines contain 4 fields. The name of each field and its meaning is shown
in the list below:

• LOC shows the location (code address) of the first byte of the instruction. The
value is displayed in hexadecimal.

• OBJ shows the actual machine code produced by the instruction, also displayed
in hexadecimal.

• LINE shows the INCLUDE nesting level, if any, the number of source lines
from the top of the program, and the macro nesting level, if any. All values in
this field are displayed in decimal numbers.

• SOURCE shows the source line as it appears in the file. This line may be
extended onto the subsequent lines in the listing file.

DB or DW directives are formatted similarly to instruction lines, except the OBJ
field shows the data values placed in memory. All data values are shown. If the
expression list is long, then it may take several lines in the listing file to display all of
the values placed in memory. The extra lines will only contain the LOC and OBJ
fields.

The directives that affect the location counter without initializing memory (e.g.,
ORG, DBIT, or DS) do not use the OBJ field, but the new value of the location
counter is shown in the LOC field.

The SET and EQU directives do not have a LOC or OBJ field. In their place the
assembler lists the value that the symbol is set to. If the symbol is defined to equal
one of the registers, then 'REG' is placed in this field. The remainder of the directive
line is formatted in the same way as the other directives.

Format for Macros and INCLUDE Files

The format for lines generated by a macro call varies with the macro listing mode
(GEN, GENONLY, or NOGEN). Figure 7-4 shows the format of the call macro
calls listed with each of these modes in effect. In all three calls the same instructions
are encoded, the only difference is in the listing of the macro call. Note the macro
nesting level is shown immediately to the right of the line number.

0]88 E582

0381 2UA

03EC F582

0388 Es83

03'0 31103

03'2 F583

03F. 8582
03F6 24F6
03F8 F582
03FA E583
03FC 31103
03FE F583

'3 +1 .GER
11 hdd16(DPH,DPL,ICHIGH $) ,'(LOW $) ,DPH,DPL.)
5 .1
6.1 HOV A, SXLOW
1 +2 DPL
8 +1 ADD A,.YLOW
9 +2 '(LOW $)

10 + 1 MOY JSUMLOW
11 +2 DPL,A
12 +1 HOV A,UHIGH
, '3 +2 DfR

H +1 AD DC A,UKIOH
15 +2 I{HIGH $)
16 +1 HOY SSUMHIGB
17 +2 DPR,A
18 +1
19
20
21
22 +1 $GEHOIILI
23 +1
24 +2 MOV A, DPL
25 +2 ADD !,'(LOW .)
26 +2 HOV DPL I A
27 +2 HOY A, DfH
28 +2 AODC A,I{HIGH $)
29 +2 MOV OPR I A
30 +1
31
32
33
3" +1 $NOGEN
35 hdd16COPH,DPL,'(HIGH .) .'CLOW .) ,DPH, DPL}
43

Figure 7-4. Examples of Macro Listing Modes 937-24

MCS-51

MCS-51 Assembler Output: Error Messages and Listing File Format

General control lines that appear in the source are interpreted by ASM51 's macro
processor and, as such, they are given a macro nesting level value. It is displayed
immediately to the right of the line number. Lines added to the program as a result
of the INCLUDE control are formatted just as if they appeared in the original
source file, except the INCLUDE nesting level is displayed immediately to the left of
the line number.

The control line shown below has both an INCLUDE nesting level and a macro
nesting level. The INCLUDE nesting level is preceded by a equal sign '=', and the
macro nesting level is preceded by a plus sign '+' .

LOC OBJ LINE SOURCE

=1 101 +1 $ SAVE NOLIST

Symbol Table

The symbol table is a list of all symbols defined in the program along with status
information about the symbol. Any predefined symbols used will also be listed in the
symbol table. If the XREF control is used the symbol table will contain information
about where the symbol was used in the program.

xaEF SYMBOL TABLE LISTING

BAME TYPE VALUE AND REFERENCES

BeDBlN L CSEG
BINseD L CSEG
CONVn L CSEG
DIV_ L eSEG
OPH N DSEG
DPt. N DSEG
EQUALS - ____ _

ERRONEOUS ------
JOHN.. N
JOHN_JOHN L BSEG
MEMTOP L DSEG
S EeOND_ERROR.. -----
STORE N
TIPI!:_STRING .. L CSEG

0103H 8S'
0112H 87 103#
0100R 861 116
01168 105# 108
00838 13 17 27 29 39 41
0082H l' l' 24 26 36 38
--UNDBFINED-- ~9

--UNDEFINED-- 49 50
08038 521
OOOOH 54' 59
aOHR 51# 60
--UNDEF'INED-- 50
0802H 511 52
0410R 611

ASSEMBLY COMPLETE, 2 ERRORS FOUND (50)

Figure 7-5. Example Symbol Table Listing 937-25

The status information includes a NAME field, a TYPE field (Label 'L' or Name
'N' defined by SET, EQU, BIT, etc.) and a VALUE field. If it is a label, then the
segment mode will also be shown. If it is a name, it will show if the symbol was set to
a register value at the end of the program. The VALUE field will show the value of
the symbol when assembly was completed.

If the XREF control is used, then the symbol table listing will also contain all of the
line numbers of each line of code that the symbol was used. If the value of the sym
bol was changed or defined on a line, then that line will have a hash mark (#) follow
ing it. The line numbers are displayed in decimal.

If an inordinate number of symbol references are generated by your program, it may
be impossible for the assembler to produce a complete XREF table for your entire
program. In that event, the following warning message is issued at the head of the
symbol table:

*** WARNING, XREFS ABANDONED AT LINE #Iine

The XREF listing will be valid up to the specified line.

7-19

APPENDIX A
ASSEMBLY LANGUAGE BNF GRAMMAR

This appendix contains a Backus-Naur Form (BNF) grammar for all of the MCS-Sl
Assembly Language Constructions. It does not include the grammar for the macro
facility. (See Chapter S and Appendix F.) Although BNF grammar is designed to
define only syntax, the metasymbols and language breakdown have been selected to
show the semantics of the language.

To simplify the grammar presented here, we have not defined all of the nuances of
the language as rigorously as a complete BNF grammar would require. These excep
tions are listed below.

• There are two types of controls, primary and general. A control line containing
a primary control must be the first line in a program, or only preceded by other
control lines.

• Some assembler directives may be used only while certain segment modes are in
effect (e.g., the bit segment must be active when a DBIT directive is used).

• Operator precedence in expressions has not been defined.

• Symbol typing conventions are not identified.

• In some of the definitions we have used a few words of description, contained in
double quotes.

• The ASCII string argument to the TITLE and DATE controls must either
contain balanced parentheses or no parentheses at all.

• There has been no attempt to show the logical blanks (spaces or tabs) that
separate the fields on a line.

• The symbol NULL is used to show that a meta-symbol may evaluate to nothing.

• Except within character strings, ASMSI makes no distinction between upper
and lower case characters. All terminal symbols have been shown in upper case,
but you can use upper or lower case in your source code (including within hex
constants).

A-I

Assembly Language BNF Grammar MCS-51

A-2

<Assembly Language Program> ::= <Statement List> <End Statement>

<Statement List> ::= <Statement> <Statement List> I NULL

<End Statement> ::= END <Comment> <CRLF>

<Statement> ::= <Control Line> I <Instruction Line> I

<Control Line>

<Control List>

<Control>

<Instruction Line>

<Label>

<Comment>

<Instruction>

<Arithmetic Instruction>

<Arithmetic Mnemonic>

<Directive Line>

::= $ <Control List> <CRLF>

::= <Control> <Control List> I NULL

::= DATE(<ASCIIString» I DA(<ASCIIString» I
DEBUG I DE I
NODEBUG I NODE I
EJECT I EJ I
ERRORPRINT«Filename» I EP(<Filename» I ERRORPRINT I EP I
NOERRORPRINT I NOEP I
GENONLY I GO I
NOGEN I NOGE I
GEN I GE I
INCLUDE«Filename» IIC(<Filename» I
LIST I LI I
NOLIST I NOLI I
MACRO I MR I
NOMACRO I NOMR I
OBJECT«Filename» I OJ(<Filename» I OBJECT I OJ I
NOOBJECT I NOOJ I
PAGING I PI I
NOPAGING I NOPI I
PAGELENGTH«Constant» I PL«Constant» I
PAGEWIDTH«Constant» I PW«Constant» I
PRINT«Filename» I PR(<Filename» I PRINT I PR I
NOPRINT I NOPR I
SAVE I SA I
RESTORE I RS I
SYMBOLS I SB I
NOSYMBOLS I NOSB I
TITLE(<ASCIIString» I TT(<ASCIIString» I
WORKFILES(<Drive name>,<Drive name» I WORKFILES«Orive name» I
WF«Orivename>,<Drivename» I WF«Orivename» I
XREF I XR I
NOXREF I NOXR

::= <Label> <Instruction> <Comment> <CRLF>

::= <Symbol Name>: I
NULL

::= ;<ASCIIString> I NULL

::= <Arithmetic Instruction> I
<.Multiplication Instruction> I
<Logic Instruction> I
<Data Move Instruction> I
<Jump Instruction> I
<Subroutine Instruction> I
<Special Instruction > I
NULL

::= <Arithmetic Mnemonic> <Accumulator>,<Byte Source>

::= ADD I
ADDC I
SUBB

MCS-51 Assembly Language BNF Grammar

<Multiplication Instruction>

<Logic Instruction>

::= DIVAB I
MULAB

::= <Accumulator Logic Instruction> I
<Data Address Logic Instruction> I
<Bit Logic Instruction>

<Accumulator Logic Instruction> ::= <Logic Mnemonic> <Accumulator>, <Byte Source>

<Data Address Logic Instruction> ::= <Logic Mnemonic> <Data Address>,<Accumulator> I
<Logic Mnemonic> <Data Address>, <Immediate Data>

<Logic Mnemonic>

<Bit Logic Instruction>

<Data Move Instruction>

<Bit Move Instruction>

<Byte Move Instruction>

<Indirect Address Move>

<Data Address Move>

<Register Move>

<External Move Instruction>

<Code Move Instruction>

<Exchange Instruction>

<Data Pointer Load>

<.Jump Instruction>

<Decrement Jump>

::= ANL I
ORL I
XRL

::= ANLC,<BitAddress> I
ANLC,I<BitAddress> I
ORLC,<BitAddress> I
ORL C,I<Bit Address>

::= <Bit Move Instruction> I
<Byte Move Instruction> I
<External Move Instruction> I
<Code Move Instruction> I
<Exchange Instruction> I
<Data Pointer Load>

::= MOVC,<BitAddress> I
MOV <Bit Address>,C

::= MOV <Accumulator>,<ByteSource> I
<Indirect Address Move> I
<Data Address Move> I
<Register Move>

::= MOV <Indirect Address>, <Accumulator> I
MOV <Indirect Address>,<lmmediate Data> I
MOV <Indirect Address>,<Data Address>

::= MOV <Data Address>,<Accumulator> I
MOV <Data Address > ,<Byte Source>

::= MOV <Register>,<Accumulator> I
MOV <Register>,<lmmediate Data> I
MOV <Register>, <Data Address> I

::= MOVX <Accumulator>, <Indirect Address> I
MOVX <Indirect Address>,<Accumulator> I
MOVX <Accumulator>,@DPTR I
MOVX@DPTR,<Accumulator>

::= MOVC <Accumulator>,@A+PC I
MOVC <Accumulator>,@A+ DPTR

::= XCHD <Accumulator>,<lndirect Address> I
XCH <Accumulator>,<Byte Destination>

::= MOV DPTR,<lmmediateData>

::= <Decrement Jump > I
<Compare Jump> I
<TestJump> I
<Always Jump>

::= DJNZ<Register>,<CodeAddress> I
DJNZ <Data Address>,<Code Address>

A-3

Assembly Language BNF Grammar

A-4

<Compare Jump>

<Test Jump >

<Always Jump>

<Subroutine Instruction>

<Call Instruction>

<Return Instruction>

<Special Instruction>

<Increment Instruction>

<Decrement Instruction>

::= CJN E <Accumulator>. <immediate Data, <Code Address> f
CJN E <Accumulator>. <Data Address>. <Code Address> I
CJN E <indirect Address>. <immediate Data>. <Code Address> I
CJ N E <Register>. <Immediate Data>. <Code Address>

::= JC <Code Address> I
JNC <Code Address> I
JZ<CodeAddress> f

JNZ <Code Address> I
JB<BitAddress>.<CodeAddress> I
J BC <Bit Address>. <Code Address> I
JNB <Bit Address>.<CodeAddress>

::= SJ M P <Code Address> I
AJMP<CodeAddress> I
LJMP <Code Address> I
JMP <Code Address> I
JMP@A+DPTR

::= <Call Instruction> I
<Return Instruction>

::= ACALL<CodeAddress> I
LCALL <Code Address> I
CALL <Code Address>

::= RET I
RET!

::= <incrementlnstruction> I
<Decrement Instruction> I
<Accumulator Modify Instruction> I
<Bit Modify Instruction> I
<Stack Instruction> I
NOP

::= INC <Accumulator> I
INC DPTR I
INC <Byte Destination>

::= DEC <Accumulator> I
DEC <Byte Destination>

<Accumulator Modify Instruction> ::= <Accumulator Modify Mnemonic> <Accumulator>

<Accumulator Modify Mnemonic> ::= CLR ,

CPL,

DA'
SWAP,

RL'
RR,

RLC I
RRC

<Bit Modify Instruction> ::= <Bit Modify Mnemonic> <Bit Destination>

<Bit Modify Mnemonic> ::= SETB I

<Stack Instruction>

<Directive Line>

CLR I
CPL

::= POP <Data Address> ,

PUSH <Data Address>

::= <Directive Statement><Comment><CRLF>

MCS-51

MeS-51

<Directive Statement>

<Org Statement>

<Symbol Definition Statement>

<Segment Select Statement>

<Space Allocation Statement>

Assembly Language BNF Grammar

::= <Org Statement> 1

<Symbol Definition Statement> 1

<Segment Select Statement> 1

<Label><Space Allocation Statement> 1
<Label><Memory Initialization Statement>

::= ORG <Expression>

::= <Symbol> EOU <Expression> 1

<Symbol> EOU <Symbol Register> 1

<Symbol> SET <Expression> 1

<Symbol> SET <Symbol Register> 1

<Symbol> DATA <Expression> 1

<Symbol> XDATA <Expression> 1

<Symbol> BIT <Bit Address> 1

::= BSEG 1

CSEG 1

DSEG 1

XSEG

::= DS <Expression> 1

DBIT <Expression>

<Memory Initialization Statement> ::= DB <Expression List>

<Filename>

<Drive name>

<ASCII String>

<Constant>

<Decimal Digit>

<CRLF>

<Byte Source>

<Indirect Address>

<Data Address>

<Immediate Data>

<Register>

<Byte Destination>

<Accumulator>

<Symbol Register>

<Symbol>

<Alphabet>

"ASCII character strings, as items in a DB expression list,

may be arbitrarily long."

DW <Expression List>
"ASCII character strings, as items in a DW expression list,

must be no more than two characters long."

::= "ISIS-II Filename"

::= "ISIS-II Drive Identifier"

::= "Any Printable ASCII Character"

::= <Decimal Digit> 1
<Decimal Digit><Constant>

:~OI1 1213141516171819

::= "ASCII Carriage Return Line Feed Pair"

::= <Indirect Address> 1

<Data Address> 1
<Immediate Data> 1
<Register>

::= @RO 1 @R1 1

@<Symbol>

::= <Expression>

::= .<Expression>

::= RO 1 R1 1 R2 1 R3 1 R4 1 R5 1 R6 1 R7 1

<Symbol>

::= <Indirect Address> I
<Data Address> 1

<Register>

::= A 1 <Symbol>

::= <Accumulator> 1 <Register>

::= <Alphabet><Alphanumeric List> 1 <Special Char> <Alphanumeric List>

::= AlB 1 C 1 DIE 1 FIG 1 H 1 I 1

JIKILIMINIOIPIOIRI

SITIUIV IWIXIYIZ

A-5

Assembly Language BNF Grammar

A-6

<Special Char>

<Alphanumeric List>

<Alphanumeric>

<Bit Destination>

<Bit Address>

<Code Address>

<Expression List>

<Expression>

<Operator>

<Number>

<Hex Number>

<Hex Digit String>

<Hex Digit>

<Decimal Number>

<Decimal Digit String>

<Octal Number>

<Octal Digit String>

<Octal Digit>

<Binary Number>

<Binary Digit String>

<Binary Digit>

::= _ "Underscore" 1
?

::= <Alphanumeric><Alphanumeric List> 1

NULL

::= <Alphabet> 1
<Decimal Digit> 1

<Special Char>

::=C 1

<Bit Address>

::= <Expression> 1

<Expression>. <Expression>

::= <Expression>

::= <Expression> 1

<Expression>, <Expression List>

::= <Symbol> 1

<Number> 1

<Expression ><Operator><Expression > 1

«Expression» 1

+ <Expression> 1

-<Expression> 1

HIGH <Expression> 1

LOW <Expression>

::= + 1 - 1 I 1 MOD 1 SHL 1 SHR 1

EQ 1 = 1 NE 1 <> 1 LT 1 < 1 LE 1
<= 1 GT 1 > 1 GE 1 >= 1 AND 1 OR 1 XOR

::= <Hex Number> 1
<Decimal Number> 1

<Octal Number> 1

<Binary Number>

::= <Decimal Digit><Hex Digit String> H

::= <Hex Digit><Hex Digit String> 1
NULL

::= 0 11 1 2 1 3 1 4 1 5 1 6 1 7 1
8191AIBICIDIEIF

::= <Decimal Digit String> D 1
<Decimal Digit String>

::= <Decimal Digit> 1

<Decimal Digit><Decimal Digit String>

::= <Octal Digit String> 0 1
<Octal Digit String> 0

::= <Octal Digit> 1

<Octal Digit><Octal Digit String>

::= 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

::= <Binary Digit String> B

:;= <Binary Digit> 1
<Binary Digit><Binary Digit String>

::= 0 11

MCS-51

APPENDIX B
INSTRUCTION SET SUMMARY

This appendix contains two tables: the first identifies all of the 8051 's instructions in
alphabetical order; the second table lists the instructions according to their hexa
decimal opcodes and lists the assembly language instructions that produced that
opcode.

The alphabetical listing also includes documentation of the bit pattern, flags
affected, number of machine cycles per execution and a description of the instruc
tions operation and function. The list below defines the conventions used to identify
operation and bit patterns.

A
AB
B
bit address
page address
relative offset
C
code address
data
data address
DPTR
PC
Rr
SP
high
low
i-j
.n
aaa aaaaaaaa
bbbbbbbb
dddddddd
1/1/1/1/
mmmmmmmm
00000000

r or rrr
AND
NOT
OR
XOR

+

(X)
((X))

<>
<
>

Abbreviations and Notations Used

Accumulator
Register Pair
Multiplication Register
8051 bit address
11-bit code address within 2K page
8-bit 2's complement offset
Carry Flag
Absolute code address
Immediate data
On-chip 8-bit RAM address
Data pointer
Program Counter
Register (r=0-7)
Stack pointer
High order byte
Low order byte
Bits i through j
Bit n
Absolute page address encoded in instruction and operand byte
Bit address encoded in operand byte
Immediate data encoded in operand byte
One byte of a 16-bit address encoded in operand byte
Data address encoded in operand byte
Relative offset encoded in operand byte
Register identifier encoded in operand byte
Logical AND
Logical complement
Logical OR
Logical exclusive OR
Plus
Minus
Divide
Multiply
The contents of X
The memory location addressed by (X) (The contents of X)
Is equal to
Is not equal to
Is less than
Is greater than
Is replaced by

B-1

Instruction Set Summary MeS-51

Table B-1. In$truction Set Summary

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

ACALL code addr 2 aaa10001 Push PC on stack,
(PC) +- (PC) + 2 aaaaaaaa and replace low
(SP) +- (SP) + 1 order 11 bits with
«SP)) +- (PC) low low order 11 bits of
(SP) +- (SP) + 1 code address.
«SP)) - (PC) high
(PC) 0-10 - page address

ADD A,ltdata 1 00100100 P OV AC C Add immediate
(A)- (A) + data dddddddd data to A

ADD A,@Rr 1 0010011r P OV AC C Add contents of
(A) - (A) + «Rr)) indirect address' to

A

ADD A,Rr 1 00101rrr P OV AC C Add register to A
(A) - (A) + (Rr)

ADD A ,data addr 1 00100101 P OV AC C Add contents of
(A) - (A) + (data address) mmmmmmmm data add ress to A

ADDC A,ltdata 1 00110100 P OV AC C AddCand
(A) ... (A) + (C) + data dddddddd immediate data to

A

ADDC A,@Rr 1 0011011r P OV AC C Add C and contents
(A) - (A) + (C) + «Rr» of indirect address

toA

AD DC A,Rr 1 00111rrr P OV AC C Add C and register
(A) ... (A) + (C) + (Rr) toA

ADDC A,data addr 1 00110101 P OV AC C Add C and contents
(A) - (A) + (C) + (data address) mmmmmmmm of data address to

A

AJMP codeaddr 2 aaaOOO01 Replace low order
(PC) 0-10 "'codeaddress aaaaaaaa 11 bits of PC with

low order 11 bits
code address

ANL A,ltdata 1 01010100 P Logical AND
(A) ... (A) AND data dddddddd immediate data to

A

ANL A,@Rr 1 0101011r P Logical AND
(A) ... (A) AND «Rr)) contents of indirect

address to A

ANL A,Rr 1 01011rrr P Logical AND
(A) ... (A) AND (Rr) reg ister to A

ANL A,data addr 1 01010101 P Logical AND
(A)'" (A) AND (data address) mmmmmmmm contents of data

address to A

ANL C,bit addr 2 10000010 C Logical AND bitto
(C) ... (C) AND (bit address) bl:!bbbbbb C

ANL C,lbitaddr 2 10110000 C Logical AND
(C) ... (C) AND NOT (bit address) bbbbbbbb complement of bit

toC

ANL dataaddr,ltdata 2 01010011 Logical AND
(data address) ... mmmmmmmm immediate data to

(data address) AND data dddddddd contents of data
address

ANL dataaddr,A 1 01010010 Logical AND A to
(data address) - mmmmmmmm contents of data

(data address) AND fII. address

B-2

MCS-51 Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

CJNE @Rr,lIdata,codeaddr 2 1011011r C If immediate data
(PC) <-- (PC) + 3 dddddddd and contents of
IF «Rr» < > data 00000000 indirect address
THEN are not equal, jump
(PC) <-- (PC) + relative offset to code address

IF ((Rr» < data
THEN (e) <--1
ELSE(C)-O

CJNE A,lIdata,codeaddr 2 10110100 C If immediate data
(PC) - (PC) + 3 dddddddd and Aare not
IF (A) < > data 00000000 equal, jump to code
THEN address
(PC) - (PC) + relative offset

IF (A) <data
THEN(C)-l
ELSE(C)-O

CJNE A,dataaddr,codeaddr 2 10110101 C If contents of data
(PC) <-- (PC) + 3 mmmmmmmm address and A are
IF (A) < > (data address) 00000000 not equal, jump to
THEN code address
(PC) - (PC) + relative offset

IF (A) < (data address)
THEN (C) +-1
ELSE(C)-O

CJNE Rr,lIdata ,codeaddr 2 10111rrr C If immediate data
(PC) - (PC) + 3 dddddddd and register are not
IF (Rr) < > data 00000000 equal, jump to code
THEN address
(PC) - (PC) + relative offset

IF (Rr) < data
THEN (C)-l
ELSE (C)-O

CLR A 1 11100100 P Set A to zero (0)
(A)-O

CLR C 1 11000011 C Set C to zero (0)
(C)-O

CLR bitaddr 1 11000010 Set bit to zero (0)
(bit address) - 0 bbbbbbbb

CPL A 1 11110100 P Complements each
(A)-NOT(A) bit in A

CPL C 1 10110011 C Complement C
(e) +- NOT (e)

CPL bitaddr 1 10110011 Complement bit
(bit address) - bbbbbbbb

NOT (bit address)

DA A 1 11010100 P C Adjust A after a
(See description in Chapter 3) BeD add

DEC @Rr 1 0001011r Decrement
((Rr» - ((Rr» -1 contents of indirect

address

DEC A 1 00010100 P Decrement A
(A)-(A)-l

DEC Rr 1 00011rrr Decrement register
(Rr) +- (Rr) -1

DEC data addr 1 00010101 Decrement
(dataac!dress) - mmmmmmmm contents of data

(data address) - 1 address

DIV AB 4 10000100 P OV C Divide A by B
(A B) - (A) I (B) (multiplication

register)

B-3

Instruction Set Summary MCS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

DJNZ Rr,codeaddr 2 11011rrr Decrement
(PC) - (PC) + 2 00000000 register, if not zero
(Rr) - (Rr)-1 (0), then jump to
IF(Rr)<>O code add ress
THEN
(PC) - (PC) + relative offset

DJNZ data addr ,code addr 2 11010101 Decrement data
(PC) - (PC) + 3 mmmmmmmm address, if zero (0),
(data address) - 00000000 then jump to code

(data address) -1 address
IF (data address) = 0
THEN
(PC) - (PC) + relative offset

INC @Rr 1 0000011r Increment contents
«Rr)) - «Rr)) + 1 of indirect address

INC A 1 00000100 P Increment A
(A)-(A) + 1

INC DPTR 1 10100011 Increment 16-bit
(DPTR) - (DPTR) + 1 data pointer

INC Rr 1 00001rrr Increment register
«R) -(Rr) + 1

INC data addr 2 00000101 Increment contents
(data address) - mmmmmmmm of data address

(data address) + 1

J B bit addr ,code addr 2 00100000 If bit is one, n jump
(PC) - (PC) + 3 bbbbbbbb to code address
IF (bit address) = 1 00000000
THEN
(PC) - (PC) + relative offset

JBC bit addr ,code addr 2 00010000 If bit is one, n clear
(PC) - (PC) + 3 bbbbbbbb bit and jump to
I F (bit address) = 1 00000000 code address
THEN
(PC) - (PC) + relative offset
(bit address) - 0

JC codeaddr 2 01000000 If C is one, then
(PC) - (PC) + 2 00000000 jump to code
IF (C)=1 address
THEN
(PC) - (PC) + relative offset

JMP @A+DPTR 2 01110011 Add A to data
(PC) - (A) + (DPTR) pOinter and jump to

that code address

J N B bit addr ,code addr 2 00110000 If bit is zero, n jump
(PC) - (PC) + 3 bbbbbbbb to code address
IF (bit address) = 0 00000000
THEN
(PC) - (PC) + relative offset

JNC codeaddr 2 01010000 If C is zero (0), n
(PC) + (PC) + 2 00000000 jump to code
IF(C)=O address
THEN
(PC) - (PC) + relative offset

JNZ code addr 2 01110000 If A is not zero (0), n
(PC) - (PC) + 2 00000000 jump to code
IF (A) < > 0 address
THEN
(PC) - (PC) + relative offset

B-4

MeS-51 Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

JZ codeaddr 2 01100000 If A is zero (0), then
(PC) - (PC) + 2 00000000 jump to code
IF(A)~O address
THEN
(PC) - (PC) + relative offset

LCALL code addr 2 00010010 Push PC on stack
(PC) - (PC) + 3 I I I I I I I It and replace entire
(SP) ... (SP) + 1 I I I I I I I It PC value with code
«SP» - «PC» low address
(SP) - (SP) + 1
«SP» - (PC) high
(PC) -code address

LJMP codeaddr 2 00000010 Jump to code
(PC) - code address I I I I I I I It address

I I I I I I I It

MOV @Rr,#data 1 0111011r Move immediate
«Rr» -data d d'd d d d d d data to indirect

address

MOV @Rr,A 1 1 1 1 1 0 1 1 r Move A to indirect
«Rr»-(A) address

MOV @Rr,dataaddr 2 1010011r Move contents of
«Rr» ... (data address) mmmmmmmm data address to

indirect address

MOV A,#data 1 01 1 1 01 00 P Move immediate
(A) -data dddddddd data to A

MOV A,@Rr 1 1 1 1 0 0 1 1 r P Move contents of
(A)-«Rr» indirect address to

A

MOV A,Rr 1 11101rrr P Move register to A
(A)-(Rr)

MOV A,data addr 1 11100101 P Move contents of
(A) - (data address) mmmmmmmm data address to A

MOV C,bit addr 1 10100010 C Move bittoC
(C) - (bit address) bbbbbbbb

MOV DPTR,#data 2 10010000 Move two bytes of
(DPTR) - data d d d d d d d dt immediate data

d d d d d d d dt pointer

MOV Rr ,#data 1 01111rrr Move immediate
(Rr) -data dddddddd data to register

MOV Rr,A 1 1 1 1 1 1 r r r Move A to register
(Rr)-(A)

MOV Rr,dataaddr 2 1 0 1 0 1 r r r Move contents of
(Rr) - (data address) mmmmmmmm data address to

register

MOV bitaddr,C 2 10010010 MoveCto bit
(bit address) ... (C) bbbbbbbb

MOV data addr ,#data 2 01110101 Move immediate
(data address) - data mmmmmmmm data to data

dddddddd address

MOV dataaddr,@Rr 2 1000011r Move contents of
(data address) - «Rr» mmmmmmmm indirect address to

data address

MOV dataaddr,A 1 1 1 1 1 0 1 0 1 Move A to data
(data address) - (A) mmmmmmmm address

t The high order byte of the 16-bit operand is in the first byte following the opcode. The low order byte is
in the second byte following the opcode.

B-5

Instruction Set Summary MeS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

MOV dataaddr,Rr 2 10001rrr Move register to
(data address) - (Ar) mmmmmmmm data address

MOV data addrt ,data addr2 2 10000101 Move contents of
(data address1) - mmmmmmmm* second data

(data address2) mmmmmmmm* address to first
data address

MOVC A,@A+OPTA 2 10010011 P Add A to OPTA and
(A) - «A) + (OPTA» move contents of

that code address
with A

MOVC A,@A+PC 2 10000011 P Add A to PC and
(A) - «A) + (PC» move contents of

that code address
with A

MOVX @OPTA,A 2 11110000 Move A to external
«OPTA» - (A) data location

addressed by
OPTA

MOVX @Rr,A 2 1111001r Move A to external
«Rr» - (A) data location

addressed by
register

MOVX A,@OPTA 2 11100000 P Move contents of
(A) - «OPTA)) external data loca-

tion addressed by
OPTAtoA

MOVX A,@Rr 2 1110001r P Move contents of
(A) - «Rr)) external data loca-

tion addressed by
register to A

MUL AB 4 10100100 P OV C Multiply A by B
(AB) - (A) * (B) (multiplication

register)

NOP 1 00000000 00 nothing

OAL A,lIdata 1 01000100 P LogicalOA
(A) - (A) OA data dddddddd immediate data to

A

OAL A,@Rr 1 0100011r P LogicalOA
(A) - (A) OA «Rr)) contents of indirect

address to A

OAL A,Rr 1 01001rrr P Logical OA register
(A) - (A) OA (Rr) toA

OAL A,data addr 1 01000101 P LogicalOA
(A) - (A) OA (data address) mmmmmmmm contents of data

address to A

OAL C,bit addr 2 01110010 C Logical OA bit to C
(C) - (C) OA (bit address) bbbbbbbb

OAL C,lbitaddr 2 10100000 C LogicalOA
(C) - (C) OA NOT (bit address) bbbbbbbb complement of bit

toC

OAL data addr ,lIdata 2 01000011 LogicalOA
(data address) - mmmmmmmm immediate data to

(data address) OA data dddddddd data address

OAL data addr ,A 1 01000010 Logical OA A to
(data address) - mmmmmmmm data address

(data address) OA A

* The source data address (second data address) is encoded in the first byte following the opcode. The
destination data address is encoded in the second byte following the opcode.

B-6

MeS-51 Instruction Set Summary

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

POP data addr 2 11010000 Place top of stack
(data address) <- ((SP» mmmmmmmm at data address and
(SP) <- (SP) -1 decrement SP

PUSH data addr 2 11000000 Increment SP and
(SP) - (SP) + 1 mmmmmmmm place contents of
«SP» - (data address) data address at top

of stack

RET 2 00100010 Return from
(PC) high - ((SP» subroutine call
(SP) .- (SP) -1
(PC) low - «SP»
(SP) - (SP) - 1

RETI 2 00110010 Return from
(PC) high - «SP» interrupt routine
(SP) - (SP) - 1
(PC) low <- ((SP»
(SP) <- (SP) -1

RL A 1 00100011 Rotate A teft one
(See description in Chapter 3) position

RLC A 1 00110011 P C Rotate A through C
(See description in Chapter 3) left one position

RR A 1 00000011 Rotate A right one
(See description in Chapter 3) position

RRC A 1 00010011 P C Rotate A through C
(See description in Chapter 3) right one position

SETB C 1 11010011 C SetCto one (1)
(C)-l

SETB bitaddr 1 11010010 Set bit to one (1)
(bit address) - 1 bbbbbbbb

SJMP codeaddr 2 10000000 Jump to code
(PC) <- (PC) + relative offset 00000000 address

SUBB A,Mala 1 10010100 P OV AC C Subtract immediate
(A) <- (A) - (C) - data dddddddd data from A

SUBB A,@Rr 1 1001011r P OV AC C Subtract contents
(A) - (A) - (C) - «Rr)) of indirect address

from A

SUBB A,Rr 1 10011rrr P OV AC C Subtract register
(A) - (A) - (C) - (Rr) from A

SUBB A,dataaddr 1 10010101 P OV AC C Subtract contents
(A) - (A) - (C) - (data address) mmmmmmmm of data address

from A

SWAP A 1 11000100 Exchange tow
(See description in Chapter 3) order nibble with

high order nibble in
A

XCH A,@Rr 1 1100011r P Move A to indirect
temp <- «Rr)) address and vice
«Rr)) -(A) versa
(A)-temp

XCH A,Rr 1 11001rrr P Move A to register
temp -(Rr) and vice versa
(Rr) <-(A)
(A)-temp

XCH A,data addr 1 11000101 P Move A to data
temp - (data address) mmmmmmmm address and vice
(data address) - (A) versa
(A)-temp

B-7

Instruction Set Summary MCS-51

Table B-1. Instruction Set Summary (Cont'd.)

Mnemonic
Cycles

Binary Flags
Function

Operation Code P OV AC C

XCHD A,@Rr 1 1101011r P Move low order of
temp <- ((Rr)) 0-3 A to low order
«Rr)) 0-3 <- (A) 0-3 nibble of indirect
(A) 0-3 <- temp address and vice

versa

XRL A,#data "1 01100100 P Logical exclusive
(A) <- (A) XOR data dddddddd OR immediate data

toA

XRL A,@Rr 1 0110011r P Logical exclusive
(A) <- (A) XOR ((Rr)) OR contents of

indirect address to
A

XRL A,Rr 1 01101rrr P Logical exclusive
(A) <- (A) XOR (Rr) OR register to A

XRL A,data addr 1 01100101 P Logical exclusive
(A) <- (A) XOR (data address) mmmmmmmm OR contents of data

address to A

XRL dataaddr,#data 2 01100011 Logical exclusive
(data address) <- mmmmmmmm OR immediate data

(data address) XOR data dddddddd to data address

XRL dataaddr,A 1 01100010 Logical exclusive
(data address) <- mmmmmmmm ORA to data

(data address) XOR A address

B-8

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal

Hex Number
Mnemonic Operands Code of Bytes

00 1 NOP
01 2 AJMP codeaddr
02 3 LJMP codeaddr
03 1 RR A
04 1 INC A
05 2 INC dataaddr
06 1 INC @RO
07 1 INC @R1
08 1 INC RO
09 1 INC R1
OA 1 INC R2
OB 1 INC R3
OC 1 INC R4
00 1 INC R5
OE 1 INC R6
OF 1 INC R7
10 3 JBC bit addr ,code addr
11 2 ACALL codeaddr
12 3 LCALL codeaddr
13 1 RRC A
14 1 DEC A
15 2 DEC dataaddr
16 1 DEC @RO
17 1 DEC @R1
18 1 DEC RO
19 1 DEC R1
1A 1 DEC R2
18 1 DEC R3
1C 1 DEC R4
10 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
20 3 JB bit addr ,code addr
21 2 AJMP codeaddr
22 1 RET
23 1 RL A
24 2 ADD A,#data
25 2 ADD A,dataaddr
26 1 ADD A,@RO
27 1 ADD A,@R1
28 1 ADD A,RO
29 1 ADD A,R1
2A 1 ADD A,R2
2B 1 ADD A,R3
2C 1 ADD A,R4
20 1 ADD A,R5
2E 1 ADD A,R6
2F 1 ADD A,R7
30 3 JNB bit addr ,code addr
31 2 ACALL codeaddr
32 1 RETI
33 1 RLC A
34 2 ADDC A,#data
35 2 ADDC A,dataaddr
36 1 ADDC A,@RO
37 1 ADDC A,@R1
38 1 ADDC A,RO
39 1 ADDC A,R1
3A 1 ADDC A,R2
3B 1 ADDC A,R3

B-9

Instruction Set Summary MCS-Sl

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number Mnemonic Operands Code of Bytes

3C 1 AOOC A,R4
3D 1 AOOC A,R5
3E 1 AOOC A,A7
3F 1 AOOC A,R7
40 2 JC codeaddr
41 2 AJMP codeaddr
42 2 ORL data addr, A
43 3 ORL data addr,ildata
44 2 ORL A,lkiata
45 2 ORL A,dataaddr
46 1 ORL A,@RO
47 1 ORL A,@R1
48 1 ORL A,RO
49 1 ORL A,R1
4A 1 ORL A,R2
4B 1 ORL A,R3
4C 1 ORL A,R4
40 1 ORL A,A5
4E 1 ORL A,A6
4F 1 ORL A,R7
50 2 JNC codeaddr
51 2 ACALL codeaddr
52 2 ANL data addr, A
53 3 ANL data addr,lkiata
54 2 ANL A,ildata
55 2 ANL A,dataaddr
56 1 ANL A,@RO
57 1 ANL A,@A1
58 1 ANL A,RO
59 1 ANL A,R1
5A 1 ANL A,R2
5B 1 ANL A,R3
5C 1 ANL A,R4
50 1 ANL A,R5
5E 1 ANL A,R6
5F 1 ANL A,A7
60 2 JZ codeaddr
61 2 AJMP codeaddr
62 2 XRL data addr, A
63 3 XAL data addr, lkiata
64 2 XAL A,lkiata
65 2 XRL A,dataaddr
66 1 XAL A,@AO
67 1 XRL A,@R1
68 1 XAL A,RO
69 1 XAL A,R1
6A 1 XRL A,R2
6B 1 XRL A,R3
6C 1 XAL A,A4
60 1 XRL A,R5
6E 1 XRL A,R6
6F 1 XAL A,R7
70 2 JNZ codeaddr
71 2 ACALL codeaddr
72 2 ORL C,bitaddr
73 1 JMP @A+OPTR
74 2 MOV A,lkiata
75 3 MOV data addr,lkiata
76 2 MOV @AO,ildata
n 2 MOV @R1,ldata

B-IO

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

78 2 MOV RO,#data
79 2 MOV R1,#data
7A 2 MOV R2,#data
78 2 MOV R3,#data
7C 2 MOV R4,#data
70 2 MOV R5,#data
7E 2 MOV R6,#data
7F 2 MOV R7,#data
80 2 SJMP codeaddr
81 2 AJMP codeaddr
82 2 ANL C,bitaddr
83 1 MOVC A,@A+PC
84 1 OIV A8
85 3 MOV data addr ,data addr
86 2 MOV dataaddr,@RO
87 2 MOV dataaddr,@R1
88 2 MOV dataaddr,AO
89 2 MOV dataaddr,A1
8A 2 MOV data addr, A2
88 2 MOV dataaddr,A3
8C 2 MOV dataaddr,A4
80 2 MOV data addr, A5
8E 2 MOV dataaddr,A6
8F 2 MOV dataaddr,A7
90 3 MOV OPTR,#data
91 2 ACALL codeaddr
92 2 MOV bitaddr,C
93 1 MOVC A,@A+OPTR
94 2 SUBB A,#data
95 2 SUBB A,dataaddr
96 1 SUBB A,@RO
97 1 SUBB A,@R1
98 1 SUBB A,AO
99 1 SUBB A,A1
9A 1 SUBB A,A2
9B 1 SUBB A,A3
9C 1 SUBB A,A4
90 1 SUBB A,A5
9E 1 SUBB A,A6
9F 1 SUB8 A,A7
AO 2 OAL C,lbitaddr
A1 2 AJMP codeaddr
A2 2 MOV C,bitaddr
A3 1 INC OPTA
A4 1 MUL AB
A5 reserved
A6 2 MOV @AO,dataaddr
A7 2 MOV @A1,dataaddr
A8 2 MOV AO,data addr
A9 2 MOV R1 ,data addr
AA 2 MOV A2,data addr " AB 2 MOV A3,data addr
AC 2 MOV A4,data addr
AD 2 MOV RS,data addr
AE 2 MOV R6,data addr
AF 2 MOV R7,data addr
BO 2 ANL C,lbitaddr
B1 2 ACALL codeaddr
B2 2 CPL bitaddr
B3 1 CPL C

B-11

Instruction Set Summary MeS-51

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

B4 3 CJNE A,Hdata ,code addr
B5 3 CJNE A ,data addr,code addr
B6 3 CJNE @RO,Hdata,codeaddr
B7 3 CJNE @R1 ,Hdata ,code addr
B8 3 CJNE RO,Hdata ,code addr
B9 3 CJNE R1 ,Hdata ,code addr
BA 3 CJNE R2,Hdata ,code addr
BB 3 CJNE R3,Hdata ,code addr
BC 3 CJNE R4,Hdata ,code addr
BO 3 CJNE R5,Hdata ,code addr
BE 3 CJNE R6,Hdata ,code addr
BF 3 CJNE R7,Hdata ,code addr
CO 2 PUSH dataaddr
C1 2 AJMP codeaddr
C2 2 CLR bitaddr
C3 1 CLR C
C4 1 SWAP A
C5 2 XCH A,dataaddr
C6 1 XCH A,@RO
C7 1 XCH A,@R1
C8 1 XCH A,RO
C9 1 XCH A,R1
CA 1 XCH A,R2
CB 1 XCH A,R3
CC 1 XCH A,R4
CO 1 XCH A,R5
CE 1 XCH A,R6
CF 1 XCH A,R7
00 2 POP dataaddr
01 2 ACALL codeaddr
02 2 SETB bitaddr
03 1 SETB C
04 1 OA A
05 3 OJNZ data addr,code addr
06 1 XCHO A,@RO
07 1 XCHO A,@R1
08 2 OJNZ RO,code addr
09 2 OJNZ R1 ,code addr
OA 2 OJNZ R2,code addr
DB 2 DJNZ R3,code addr
DC 2 OJNZ R4,code addr
DO 2 OJNZ R5,code addr
DE 2 OJNZ R6,code addr
OF 2 OJNZ R7 ,code addr
EO 1 MOVX A,@OPTR
E1 2 AJMP codeaddr
E2 1 MOVX A,@RO
E3 1 MOVX A,@R1
E4 1 CLR A
E5 2 MOV A,dataaddr
E6 1 MOV A,@RO
E7 1 MOV A,@R1
E8 1 MOV A,RO
E9 1 MOV A,R1
EA 1 MOV A,R2
EB 1 MOV A,R3
EC 1 MOV A,R4
ED 1 MOV A,R5
EE 1 MOV A,R6
EF 1 MOV A,R7

B-12

MeS-51 Instruction Set Summary

Table B-2. Instruction Opcodes in Hexadecimal (Cont'd.)

Hex Number
Mnemonic Operands

Code of Bytes

FO 1 MOVX @DPTR,A
F1 2 ACALL codeaddr
F2 1 MOVX @RO,A
F3 1 MOVX @R1,A
F4 1 CPL A
F5 2 MOV dataaddr,A
F6 1 MOV @RO,A
F7 1 MOV @R1,A
F8 1 MOV RO,A
F9 1 MOV R1,A
FA 1 MOV R2,A
FB 1 MOV R3,A
Fe 1 MOV R4,A
FD 1 MOV R5,A
FE 1 MOV R6,A
FF 1 MOV R7,A

B-13

APPENDIX C
ASSEMBLER DIRECTIVE SUMMARY

The following is a list of al MCS-51 Macro Assembly Language directives. The for
mat for each directive is shown along with a brief description of its operation.
Chapter 4 contains a complete description of all directives.

Assembler Directives

symbol BIT bit address Define a bit address symbol

BSEG Select bit address segment

CSEG Select Code segment

symbol OAT A expression Define a data address symbol

[label:] 0 B expression list Insert a list of byte values

[label:] OBIT expression Advance bit location counter

[label:] OS expression Advance active location counter

DSEG Select internal Data Segment

[label:] OW expression list Insert a list of word values

END End of program

symbol EQU expression or register Set symbol value permanently

ORG expression Set location counter value

symbol SET expression or register Set symbol value temporarily

symbol XDAT A expression Define an off chip data address symbol

XSEG Select external Data Segment

C-l

APPENDIX D
ASSEMBLER CONTROL SUMMARY

The table below contains all of the MCS-Sl Macro assembler controls, their mean
ing, their defaults and their abbreviations. The table also defines whether the control
is primary or general. (Primary controls must only appear at the head of the
program or in the invocation lines; general controls may appear anywhere in the
program.)

Table D-l. Assembler Controls

Name
Primaryl
General Default Abbrev. Meaning

DATE(date) P DATE() DA Places string in header (max
9 characters)

DEBUG P NODEBUG DB Outputs debug symbol
information to object file

NODE BUG P NODB Symbol information not
placed in object file

EJECT G Not Applicable EJ Continue listing on next
page

ERRORPRINT[(FILE)] P NOERRORPRINT EP Designates a file to receive
error messages in addition
to the listing file

NOERRORPRINT P NOEP Designates that error mes-
sages will be printed in
listing file

GEN G GENONLY GE Generates a full listing of the
macro expansion process
including macro calls in the
listing file

GENONLY G GO List only the fully expanded
source as if all lines ~en-
erated by a macro ca I were
already in source file

NOGEN G NOGE List only the original source
text in listing file

INCLUDE(FILE) G Not Applicable IC Designates a file to be
included as part of the
program

LIST G LIST LI Print subsequent lines of
source in listing file

NOLIST G NOLI Do notfrint subsequent
lines 0 source in listing file

MACRO P MACRO MR Evaluate and expand all
macro calls

NOMACRO P NOMR Do not evaluate macro calls

OBJECT[(FILE)] P OBJECT(source.HEX) OJ Designate file to receive
object code

NOOBJECT P NOOJ DesiQnates that no object
file Will be created

PAGING P PAGING PI Designates that listing will
be broken into pages and
each will have a header

NOPAGING P NOPI Designates that listing will
contain no~e breaks

PAGELENGTH(n) P PAGELENGTH(60) PL Sets maximum number of
lines in each page of listing
file (maximum = 65,535)
(minimum = 10)

PAGEWIDTH(n) P PAGEWIDTH(120) PW Sets maximum number of
characters in each line of
listing file (maximum = 132;
minimum = 72)

PRINT[(FILE)] P PRINT(source. LST) PR Designates file to receive
source listing

NOPRINT P NOPR Designates that no listing
file will be created

D-l

Assembler Control Summary MCS-51

Table D-l. Assembler Controls (Cont'd.)

Name
Primary/
General Default Abbrev. Meaning

SAVE G Not Applicable SA Stores current control set-
ting for LIST and GEN

RESTORE G RS Restores control setti ng
from SAVE stack

SYMBOLS P NOSYMBOLS SB Creates a formatted table of
all symbols used in program

NOSYMBOLS P NOSB No symbol table created

TITLE(string) G TITLE() TT Places a string in all sub-
sequent page headers
(maximum 60 characters)

WORKFILES(:Fn:[,:F m:)) P same drive as WF DeSignates alternate drives
source file for temporary workfiles

XREF P NOXREF XR Creates a cross reference
listing of all symbols used in
program

NOXREF P NOXR No cross reference list
created

D-2

APPENDIX E
MACRO PROCESSOR LANGUAGE

Introduction

This appendix is intended as a reference document for the macro language and as a
guide to more advanced use of the macro processor. It is assumed that the reader is
already familiar with the material on macros presented in Chapter 5, and he can use
the macro processing language.

Terminology and Conventions

A percent sign will be used as the Metacharacter throughout this appendix although
the user may temporarily change the metacharacter by using the MET ACHAR
function.

The term "logical blank" refers to a blank, horizontal tab, carriage return, or
linefeed character.

Throughout the appendix the term "parameter" refers to what are sometimes
known as "dummy parameters" or "formal parameters" while the term "argu
ment" is reserved for what are sometimes known as "actual parameters". The terms
"Normal" and "Literal", names for the two fundamental modes used by the macro
processor in reading characters, will be capitalized in order to distinguish these
words from their ordinary usage.

In the syntax diagrams, non-terminal syntactic types are represented by lower case
words, sometimes containing the break character, "_". If a single production con
tains more than one instance of a syntactic type each instance may be followed by a
unique integer so that the prose description may unambiguously refer to each
occurrence.

Basic Elements of the Macro Language

Identifiers

With the exception of some built-in functions, all macro processor functions begin
with an identifier, which names the function. Parameters also are represented by
identifiers. A macro processor identifier has the following syntax.

id = alphabetic I id id_confinuation.

The alphabetic characters include upper and lower case letters, the break character
("_"), and the question mark ("?"). An id_continuation character is an
alphabetic character or a decimal digit.

Examples:

An identifier must not be split across the boundary of a macro and may not contain
Literal characters.

E-1

Macro Processor Language

E-2

For example,

%%(FOO)

is illegal, the first metacharacter is followed by the letters "FOO", but they do not
constitute an identifier since they are Literal characters.

%ADD%SUFFIX

where SUFFIX is defined as "UP" is a call to ADD followed by a call to SUFFIX,
rather than a call to ADDUP, because identifiers may not cross macro boundaries.

A null-string bracket or escape function ("%()" or "0100") will also end an iden
tifier, and since these functions have no textual value themselves, may be used as
separators.

Example:

% TOM%OSMITH

concatenates the value of the macro, TOM, to the string, "SMITH".

This could also be done by writing, "O/OTOMO/O(SMITH)". Upper and lower case
letters are equivalent in their use in identifiers. ("CAT", "cat", and "cAt" are
equivalent.)

Text and Delimiters

"Text" is an undistinguished string of characters. It mayor may not contain items
of significance to the macro processor. In general the MPL processor simply copies
characters from its input to its output stream. This copying process continues until
an instance of the metacharacter is encountered, whereupon the macro processor
begins analyzing the text that follows.

Each macro function has a calling pattern that must match the text in an actual
macro function call. The pattern consists of text strings, which are the arguments to
the function, and a number of delimiter strings.

For example,

JOIN (FIRST, SECOND)

might be a pattern for a macro, JOIN, which takes two arguments. The first argu
ment will correspond to the parameter, FIRST, and the second to the parameter,
SECOND. The delimiters of this pattern are "(", ",", and ")".

A text string corresponding to a parameter in the pattern must be balanced with
respect to parentheses (see below). A delimiter which follows a parameter in the pat
tern will be used to mark the end of the argument in an actual call to the macro.

An argument text string is recognized by finding the specific delimiter that the pat
tern indicates will end the string. A text string for a given argument consists of the
characters between the delimiter (or macro identifier) that precedes the text and the
delimiter which follows the text.

In the case of built-in functions, there are sometimes additional requirements on the
syntax of an argument. For example, the text of an argument might be required to
conform to the syntax for a numeric expression.

MCS-Sl

MCS-Sl Macro Processor Language

Balanced Text

Arguments must be balanced with respect to left and right parentheses in the usual
manner of requiring that the string contain the same number of left and right paren
theses and that at no point during a left to right scan may there have been more right
parentheses than left parentheses. (An "unbalanced" parenthesis may be quoted
with the escape function to make the text meet this requirement.)

Expressions

Balanced text strings appearing in certain places in built-in macro processor func
tions are interpreted as numeric expressions:

1. As arguments that control the execution of "IF", "WHILE", "REPEAT",
and "SUBSTR" functions.

2. As the argument to the evaluate function, "EY AL".

Operators (in order of precedence from high to low):

Parenthesized Expressions

HIGH LOW
• I MOD SHL SHR

+ -
EQ L T LE GT GE NE
NOT
AND
OR XOR

All arithmetic is performed in an internal format of 16-bit two's complement
integers.

The Macro Processor Scanning Algorithm
Literal or Normal Mode of Expansion

At any given time the macro processor is reading text in one of two fundamental
modes. When processing of the primary input file begins, the mode is Normal. Nor
mal mode means that macro calls will be expanded, i.e., the metacharacter in the
input will cause the following macro function to be executed.

In the simplest possible terms, Literal mode means that characters are read literally,
i.e., the text is not examined for function calls. The text read in this mode is similar
to the text inside a quoted character string familiar to most users of high level
languages; that is, the text is considered to be merely a sequence of characters having
no semantic weight. There are important exceptions to this very simple view of the
Literal mode. If the characters are being read from a user defined macro with
parameters, the parameter references will be replaced with the corresponding argu
ment values regardless of the mode. The Escape function and the Comment function
will also be recognized in either mode.

The mode can change when a macro is called. For user-defined macros, the presence
or absence of the call-literally character following the metacharacter sets the mode
for the reading of the macro's value. The arguments to a user defined macro are
evaluated in the Normal mode but when the processor begins reading the macro's
value, the mode changes to that indicated by the call. When the processor finishes
reading the macro's definition, the mode reverts to what it was before the macro's
processing began.

E-3

Macro Processor Language

E-4

To illustrate, suppose the parameterless macros, CAT and TOM are defined as
follows.

CAT is:

abed % TOM efgh

and TOM is:

xyz

Now consider the text fragment,

... %CAT, %*CAT ...

Assume the string is being read in the Normal mode. The first call to CAT is
recognized and called Normally. Since CAT is called Normally, the definition of
CAT is examined for macro calls as it is read. Thus the characters "OJoTOM" in the
definition for CAT are recognized as a macro call and so TOM is expanded Nor
mally. The definition for TOM is read, but it contains no macro calls. After the
definition for TOM is processed, the mode reverts back to its value in reading CAT
(Normal). After the definition of CAT is processed the mode reverts back to its
original value (Normal). At this point, immediately before processing the comma
following the first call to CAT, the value of the text fragment processed thus far is:

... abed xyz efgh

Now the processor continues reading Normally, finally encountering the second call
to CAT, this time a Literal call. The mode changes to Literal as the definition of
CAT is read. This time the characters from the definition are read Literally. When
the end of the definition of CAT is reached the mode reverts to its original value
(Normal) and processing continues. The value of the entire fragment is,

... abed xyz efgh, abed % TOM efgh ...

The use of the call-literally character on calls to built-in macro functions is discussed
in the description of each function. The important thing to keep in mind when
analyzing how a piece of text is going to be expanded is the Normal or Literal Mode
of the environment in which it is read.

The Call Pattern

In general, each macro function has a distinctive name which follows the
metacharacter (and possibly the call-literally character). This name is usually an
identifier, although a few built-in functions have other symbols for names. For iden
tifier named functions, the macro processor allows the identifier to be the result of
another macro call.

For example, suppose the macro, NAME, has the value "HAMBURGER" and that
the macro HAMBURGER has the calling pattern, "HAMBURGER X & Y;". Then
the call,

... %%NAME catsup & mustard; ...

is a call to the macro HAMBURGER with the first argument having the value, "cat
sup" and the second argument having the value, "mustard".

MCS-51

MeS-51 Macro Processor Language

Associated with this name is, possibly, a pattern of delimiters and parameters which
must be matched if the macro call is to be syntactically correct. The pattern for each
built-in macro function is described in the section of this appendix dealing with that
function. The pattern for a user-defined macro is defined at the time the macro is
defined.

At the time of a macro call, the matching of text to the pattern occurs by using the
delimiters one at a time, left to right. When a delimiter is located, the next delimiter
of the pattern becomes the new goal. The delimiters in the call are separated by
either argument text (if there was a corresponding parameter in the macro's defini
tion pattern), or by any number of logical blanks (in the case of adjacent delimiters
in the pattern). The argument text corresponding to a parameter in the definition
pattern becomes the value of the parameter for the duration of the macro's expan
sion. Null arguments are permitted.

See the section "Macro Definition and Invocation" for more information on
delimiters and their relationship to argument strings.

Evaluation of Arguments-Parameter Substitution

MPL uses "call-by-immediate-value" as the ordinary scheme for argument evalua
tion. This means that as the text is being scanned for the delimiter which marks the
end of an argument, any macro calls will be evaluated as they are encountered. In
order to be considered as a possible delimiter, characters must all be on the same
level of macro nesting as the metacharacter which began the call. In other words, the
arguments to a macro can be any mixture of plaintext and macro calls, but the
delimiters of a call must be plaintext.

For example, suppose STRG is defined as "dogs,cats" and MACI is a macro with
the calling pattern, "MACI (PI, P2)". Then in the call,

... %MAC1 (%STRG, mouse) ...

the first argument will be "dogs,cats" and the second argument will be "mouse".
The comma in the middle of the first argument is not taken as the delimiter because
it is on a different level than the metacharacter which began the call to MAC 1.

When all arguments of a macro have been evaluated, the expansion of the body
begins, with characters being read either Normally or Literally as discussed unqer
"Literal or Normal Mode of Expansion". One should keep in mind that parameter
substitution is a high priority function, i.e., arguments will be substituted for
parameters even if the macro has been called Literally.

The Evaluate Function
The syntax for the Evaluate function is:

evaluate_function = EVAL (expr)

The single argument is a text string which will be passed to the engineer-supplied
evaluator procedure for evaluation as an expression. The character string returned
by the evaluator procedure will be the value of the "EV AL" function.

E-5

Macro Processor Language

E-6

Examples:

%EVAL(7)

evaluates to "07H"

%EVAL((7+3)*2)

evaluates to "14H"

If NUM has the value "0101B" then

%EVAL(%NUM -5)

evaluates to "OOH" .

Numeric Functions: LEN, and
String Compare Functions

These functions take text string arguments and return some numeric information in
the form of hexadecimal integers.

length_function = LEN (balanced_text)

string_compare_function = op_code (balanced_text ,balanced_text)

op_code = EQS I GTS I LTS I NES I GES I LES

The length numeric function returns an integer equal to the number of characters in
the text string. The string comparison functions all return the character representa
tion for minus one if the relation between the strings holds, or zero otherwise. These
relations are for string compares. These functions should not be confused with the
arithmetic compare operators that might appear in expressions. The ASCII code for
each character is considered a binary number and represents the relative value of the
character. "Dictionary" ordering is used: Strings differing first in their Nth
character are ranked according to the Nth character. A string which is a prefix of
another string is ranked lower than the longer string. .

The Bracket Function

The bracket function is used to introduce literal strings into the text and to prevent
the interpretation of functions contained therein. (Except the high priority func
tions: comment, escape, and parameter substitution.) A call-literally character is not
allowed; the function is always called Literally.

brackeLfuncfion = (balanced_text)

The value of the function is the value of the text between the matching parentheses,
evaluated Literally. The text must be balanced with respect to left and right paren
theses. (An unbalanced left or right parenthesis may be quoted with the escape func
tion.) Text inside the bracket function that would ordinarily be recognized as a func
tion call is not recognized; thus, when an argument in a macro call is put inside a
bracket function, the evaluation of the argument is delayed-it will be substituted as
it appears in the call (but without the enclosing bracket function).

The null string may be represented as OJo().

MeS-51

MeS-51 Macro Processor Language

Examples:

%(This is a string.)
evaluates to:
This is a string.

%(%EVAL(%NUM))
evaluates to:
%EVAL(%NUM)

The Escape Function

The escape function provides an easy way to quote a few characters to prevent them
from having their ordinary interpretation. Typical uses are to insert an "unbal
anced" parenthesis into a balanced text string, or to quote the metacharacter. The
syntax is:

escape_function = /' A single digit, 0 through 9, followed by that many characters. '/

The call-literally character may not be present in the call. The escape function is a
high priority function, that is one of the functions (the others are the comment func
tions and parameter substitution) which are recognized in both Normal and Literal
mode.

Examples:

... %2%% ... evaluates to ... %% ...

... %(ab%1)cd) ... evaluates to ... ab)cd ...

Macro Definition and Invocation

The macro definition function associates an identifier with a functional string. The
macro mayor may not have an associated pattern consisting of parameters and/or
·delimiters. Also optionally present are local symbols. The syntax for a macro defini
tion is:

macro_deL function = DEFINE (macro_id define_pattern) [LOCAL {id} 1
(balanced_text)

The define_pattern is a balanced string which is further analyzed by the macro pro
cessor as follows:

define_pattern = { [{parm_id} 1 [{delimiteLspecifier} 1 }

delimiter_specifier = /* String not containing non-Literal id_continuation,
logical blank, or "@" characters. *1

E-7

Macro Processor Language

E-8

The syntax for a macro invocation is as follows:

ca/Lpattern = I" Pattern of text and delimiters corresponding to the definition pattern. "I

As seen above, the macro_id optionally may be defined to have a pattern, which
consists of parameters and delimiters. The presence of this define pattern specifies
how the arguments in the macro call will be recognized. Three kinds of delimiters
may be specified in a define pattern. Literal and Identifier delimiters appear explic
itly in the define pattern, while Implied Blank delimiters are implicit where a
parameter in the define pattern is not followed by an explicit delimiter. Literal
delimiters are the most common and typically include commas, parentheses, other
punctuation marks, etc. Id delimiters are delimiters that look like and are recognized
like identifiers. The presence of an Implied Blank delimiter means that the preceding
argument is terminated by the first logical blank encountered. We will examine these
various forms of delimiter in greater detail later in this description.

Recognition of a macro name (which uniquely identifies a macro) is followed by the
matching of the call pattern to the define pattern. The two patterns must match for
the call to be well formed. It must be remembered that arguments are balanced
strings, thus parentheses can be used to prevent an enclosed substring from being
matched with a delimiter. The strings in the call pattern corresponding to the
parameters in the define pattern become the values of those parameters.

Reuse of the name for another definition at a later time will replace a previous
definition. Built-in macro processor functions (as opposed to user-defined macros)
may not be redefined. A macro may not be redefined during the evaluation of its
own body. A parameter may not be redefined within the body of its macro.

Parameters appearing in the body of a macro definition (as parameter substitution
functions) are preceded by the metacharacter. When the body is being expanded
after a call, the parameter substitution function calls will be replaced by the value of
the corresponding arguments.

The evaluation of the balanceLtext that defines the body of the macro being
defined is evaluated in the mode specified by the presence or absence of the call
literally character on the call to DEFINE. If the DEFINE function is called Nor
mally, the balanced text is evaluated in the Normal mode before it is stored as the
macro's value. If the define function is called Literally, the balanced_text is
evaluated Literally before it is stored.

Literal Delimiters

A Literal delimiter which contains id_continuation characters, "@", or logical
blanks must be quoted by a bracket function, escape function, or by being produced
by a Literal call. Other literal delimiters need not be quoted in the define pattern.

Example 1:

% "DEFINE (SAY(ANIMAL,COLOR)) (THE %ANIMAL IS %COLOR.)
%SAY(HORSE,TAN)

produces,

THE HORSE IS TAN.

MCS-Sl

MCS-Sl Macro Processor Language

Example 2:

%*DEFINE (REVERSE [P1 %(.AND.) P2]) (%P2 %P1)
%REVERSE [FIRST.AND.SECOND]

produces,

SECOND FIRST

Id Delimiters

Id delimiters are specified in the define pattern by using a delimiter_specifier hav
ing the form, "@ id". The following example should make the distinction between
literal and identifier delimiters clear. Consider two delimiter_specifiers,
"%(AND)" and "@AND" (the first a Literal delimiter and the second an Id
delimiter), and the text string,

... GRAVEL, SAND AND CINDERS ...

Using the first delimiter specifier, the first "AND", following the letter "S", would
be recognized as the end of the argument. However, using the second delimiter
specifier, only the second "AND" would match, because the second delimiter is
recognized like an identifier. Another example:

Definition:

%*DEFINE (ADD P1 @TO P2@STORE P3.)
(MOV A,%P1

ADD A,%P2
MOV %P3,A

Macro call:

%ADD TOTAL1 TO TOTAL2 STORE GRAND.

Generates:

MOV A,TOTAL1
ADD A,TOTAL2
MOV GRAND,A

Implied Blank Delimiters

If a parameter" is not followed by an explicit Literal or Id delimiter then it is ter
minated by an Implied Blank delimiter. A logical blank is implied as the terminator
of the argument corresponding to the preceding parameter. In this case any logical
blank in the actual argument must be literalized to prevent its being recognized as
the end of the argument. In scanning for an argument having this kind of delimiter,
leading non-literal logical blanks will be discarded and the first following non-literal
logical blank will terminate the argument.

E-9

Macro Processor Language

E-IO

Example:

%*DEFINE (SAY ANIMAL COLOR) (THE %ANIMAL IS %COLOR.)

The call,

%SAY HORSE TAN

will evaluate to,

THE HORSE IS TAN.

In designating delimiters for a macro one should keep in mind the text strings which
are likely to appear as arguments. One might base the choice of delimiters for the
define pattern on whether the arguments will be numeric, strings of identifiers, or
may contain imbeded blanks or punctuation marks.

LOCAL Macros and Symbols

The LOCAL option, can be used to designate identifiers that will be used within the
scope of the macro for local macros. A reference to a LOCAL identifier of a macro
occurring after the expansion of the text of the macro has begun and before the
expansion of the macro is completed will be a reference to the definition of this local
macro. Every time a macro having the LOCAL option is called a new incarnation of
the listed symbols are created. The local symbols thus have dynamic, inclusive
scope.

At the time of the call to a macro having locals, the local symbols are initialized to a
string whose value is the symbol name concatenated with a unique 3 digit number.
The number is generated by incrementing a counter each time the macro is called.

Definition:

% *DEFINE (MAC 1 (FIRST,SECOND,THIRD)) LOCAL LABL
(%LABL: MOV @R1,%FIRST

MOV A,@R1

Macro call:

MOV @R1,%SECOND
MOV R7,@R1
MOV @R1,%THIRD
MOV R6,@R1

%MAC(lTEM,NEXT,ANOTHER)

Generates: (Typically, depending on value for local, "LABL")

LABL3: MOV @R1,ITEM
MOV A,@R1
MOV @R1,NEXT
MOV R7,@R1
MOV @R1,ANOTHER
MOV R6,@R1

MCS-51

MCS-Sl Macro Processor Language

The Control Functions: IF, REPEAT, and WHILE

These functions can be used to alter the flow of control in a sense analogous to that
of their similarly named counterparts in procedural languages; however, they are
different in that they may be used as value generating functions as well as control
statements.

The three functions all have a "body" which is analogous to the defined value, or
body, of a user-defined macro function. The syntax of these functions is:

iLfunction = IF (expr) THEN (body) [ELSE (body) FI

repeaLfunction = REPEAT (expr) (body)

while_function = WHILE (expr) (body)

The expressions will evaluate to binary numbers. As in PL/M 80, twos complement
representation is used so that negative expressions will map into a large positive
number. (E.g., "-I" maps into OFFFFH.) (See Part III, Engineer Supplied Func
tions.) The bodies of these functions are balanced_text strings, and although they
look exactly like arguments in the syntax diagrams, they are processed very much
like the bodies of user-defined macro functions; the bodies are "called" based upon
some aspect of the expression in the IF, REPEAT, or WHILE function. The effects
for each control function are described below.

The IF Function

The first argument is evaluated Normally and interpreted as a numeric expression.

If the value of the expression is odd (=TRUE) then the body of the THEN phrase is
evaluated and becomes the value of the function. The body of the ELSE clause is not
evaluated.

If the value of the expression is even (=FALSE) and the ELSE clause is present, then
the body of the ELSE phrase is evaluated and becomes the value of the function.
The body of the THEN clause is not evaluated.

Otherwise, the value is the null string.

In the cases in which the body is evaluated, evaluation is Normal or Literal as deter
mined by the presence or absence of the call-literally character on the IF.

Examples:

%IF (O(oVAL GT 0) THEN(%DEFINE(SIGN)(1)) ELSE(%DEFINE(SIGN)(O)) FI

If the value of the numeric symbol VAL is positive then the SIGN will be defined as
"1"; otherwise, it will be defined as "0". In either case the value of the IF function
is the null string.

%DEFINE(SIGN) (%IF (% VAL GT 0) THEN(1) ELSE(O) FI)

This example has exactly the same effect as the previous one.

E-11

Macro Processor Language

E-12

The Repeat Function
The REPEAT function causes its body to be expanded a predetermined number of
times. The first argument is evaluated Normally and interpreted as a numeric expres
sion. This expression, specifying the number of repetitions, is evaluated only once,
before the expansion of the text to be repeated begins. The body is then evaluated
the indicated number of times, Normally or Literally, and the resulting string
becomes the value of the function. A repetition number of zero yields the null string
as the value of the REPEAT function call.

Examples:

Rotate the accumulator of the 8051 right six times:

%REPEAT (6)
(RRA
)

Generate a horizontal coordinate line to be used in plotting a curve on a line printer.
The line is to be 51 characters long and is to be marked every 5 characters:

%REPEAT (10) (+%REPEAT (9)(.))+

evaluates to:

+ + + + + +

The While Function
The WHILE function tests a condition to determine whether the body is to be
evaluated. The first argument is evaluated Normally and interpreted as a numeric
expression. If the expression is TRUE (=odd) then the body is evaluated, and after
each evaluation, the condition is again tested. Reevaluation of the functional string
continues until the condition fails. The body of the WHILE function must alter the
arguments to the WHILE tall, or else, if the body is evaluated once, it will never
stop.

The body of the WHILE function is expanded Normally or Literally depending on
how the function was called.

Example:

%WHILE(%ILT10) (...

%IF (%FLAG) THEN(%DEFINE(I) (20)) FI

...)

The Exit Function
The syntax for exit function is:

exiLfunction = EXIT

This function causes termination of processing of the body of the most recently
called REPEAT, IF, WHILE, or user-defined macro. The value of the text already
evaluated becomes the value of the function. The value of the exit function, itself, is
the null string.

MCS-51

MCS-51 Macro Processor Language

Example:

%WHILE (%Cond) (...

%IF (%FLAG) THEN (%EXIT) FI

Console Input and Output

The Macro Processor Language provides functions to allow macro time interaction
with the user.

The IN function allows the user to enter a string of characters from the console. This
string becomes the value of the function. The IN function will read one line from the
console including the terminating carriage return line feed).

The OUT function allows a string to be output to the console output device. It has
the null string as a value. Before it is written out, the string will be evaluated Nor
mally or Literally as indicated by the mode of the call to OUT.

The syntax of these two functions is:

in_function = IN

ouLfunction = OUT (balanced_text)

Examples:

%OUT (Enter the date:)
%DEFINE(DATE)(%IN)

The Substring Function

The syntax of the substring function is:

substr_function = SUBSTR (balanced_text ,expr1 ,expr2)

The text string is evaluated Normally or Literally as indicated by the mode of the call
to SUBSTR. Assume the characters of the text string are consecutively numbered,
starting with one. If expression 1 is zero, or greater than the length of the text string,
then the value of this function is the null string. Otherwise, the value of this function
is the substring of the text string which begins at character number expression 1 of
the text string and continues for expression 2 number of characters or to the end of
the string (if the remaining length is less than expression 2).

Examples:

%SUBSTR (ABCDEFGH,3,4)

has the value "CDEF"

%SUBSTR (%(A,B,C,D,E,F,G),2,100)

has the value" ,B,C,D,E,F ,G"

E-13

Macro Processor Language

E-14

The Match Function

The syntax of the match function is:

match_function =

MATCH (id1 delimiter_specifier id2) (balanced_text)

The match function uses a pattern that is similar to the define pattern of the
DEFINE function. It contains two identifiers, both of which are given new values as
a result of the MATCH function, and a delimiter_specifier .. The identifiers in a
MATCH function call are not preceded by the metacharacter (070). The
delimiter_specifier has the same syntax as that of the DEFINE function. The
balanced_text is evaluated Normally or Literally, as indicated by the call of
MATCH, and then scanned for an occurrence of the delimiter. The algorithm used
to find a match is exactly the same as that used to find the delimiter of an argument
to a user-defined macro. If a match is found, then idl will be defined as the value of
the characters of the text which precede the matched string and id2 will be defined as
the value of the characters of the text which follow the matched string. If a match is
not found, then idl will be defined as the value of the text string, and the id2 will be
defined as the null string. The value of the MATCH function is always the null
string.

Examples:

Assume XYZ has the value" 100,200,300,400,500" . Then the call,

%MATCH(NEXT,XYZ) (%XYZ)

results in NEXT having the value "100" and XYZ having the value
"200,300,400,500" .

%DEFINE (LIST) (FLD1 ,20H,FLD3)

%WHILE (%LEN(%LlST) NE 0)
(%MATCH(PARM,LlST) (%LlST)

MOV A,%PARM
INC A

The above will generate the following code:

MOV A,FLD1
INC A
MOV A,20H
INC A
MOV A,FLD3
INC A

Assume that SENTENCE has the value "The Cat is Fat." and that VERB has the
~alue "is", then the call,

%MATCH(FIRST %VERB LAST) (%SENTENCE)

results in FIRST having the value "The Cat" and LAST having the value "Fat." .

MeS-51

MCS-Sl Macro Processor Language

The Comment Function

The comment function allows the programmer to comment his macro definition
and/or source text without having the comments stored into the macro definitions
or passed on to the host language processor. The call-literally character may not be
present in the call to the comment function. The syntax is:

commenLfunction = ' I text I 'finefeed)

When a comment function is recognized, text is unconditionally skipped until either
another apostrophe is recognized, or until a line feed character is encountered. All
text, including the terminating character, is discarded; i.e., the value of the function
is always the null string. The comment is always recognized except inside an escape
function. Notice that the comment function provides a way in which a programmer
can spread out a macro definition on several lines for readability, and yet not
include unwanted end of line characters in the called value of the macro.

Examples:

%' This comment fits within one line.'

%' This comment continues through the end of the line.

The Metachar Function

The metachar function allows the programmer to change the character that will be
recognized by the macro processor as the metachar. If the argument to the function
contains more than one character, only the first character becomes the
metacharacter. The use of this function requires extreme care. The value of the
metachar function is the null string. The syntax is:

metachar_function = MET ACHAR (balanced_text)

The first character of the balanceLtext is taken to be the new value of the
metachar. The following characters cannot be specified as metacharacters: a logical
blank, left or right parentheses, an identifier character, an asterisk, or control
characters (i.e., ASCII value < 20H).

E-15

APPENDIX F I
RESERVED SYMBOL~

The following is a list of all of the MCS-51 Macro Assembly Language reserved sym
bols. They can not be used as symbol names or for any other purpose in your
program.

Operators

AND GT LOW NE SHL
EO HIGH LT NOT SHR
GE LE MOD OR XOR

Opcodes

ACALL DEC JNC NOP RRC
ADD DIV JNZ ORL SETB
ADDC DJNZ JZ POP SJMP
AJMP INC LCALL PUSH SUBB
ANL JB LJMP RET SWAP
CJNE JBC MOV RETI XCH
CLR JC MOVC RL XCHD
CPL JMP MOVX RLC XRL
DA JNB MUL RR

Operands

A EXTI1 PC RD TBB
AB FO PS REN TCON
AC IE PSW RESET TFO
ACC lEO PTO RI TF1
B IE1 PT1 RSO THO
C IP PXO RS1 TH1
CY INTO PX1 RXD TI
DPH INT1 RO SBUF TIMERO
DPL ITO R1 SCON TIMER1
DPTR IT1 R2 SINT TLO
EA OV R3 SMO TL1
ES P R4 SM1 TMOD
ETO PO R5 SM2 TRO
ET1 P1 R6 SP TR1
EXO P2 R7 TO TXD
EX1 P3 RBB T1 WR
EXTIO P4

Directives

BIT DATA OS END SET
BSEG DB DSEG EOU XDATA
CSEG OBIT OW ORG XSEG

F-l

APPENDIX G
SAMPLE PROGRAM

The following is a fully expanded listing file of an MCS-Sl Macro Assembly
Language program (an abbreviated form is shown in figure 1-3). It includes two sim
ple ASCII-binary conversion routines, and a set of output routines. The program
will run on any member of the MCS-51 family of single-chip processors. It requires a
minimum of hardware support. In this assembly the program is set to control a 110
baud terminal. You can change the baud rate by changing the initial value of TH 1.
The equation shown in the comments shows how to compute the correct initial
value.

MeS-51 MACRO ASSEMBLER PAGE

ISIS-II HCS-51 HACRO ASSEMBLER V1.0
NO OBJECT MODULE REQUESTED
ASSEMBLER INVOKED BY: ASM51 :F1 :EXAMPG.SRC NOOBJECT ERRORPRINT

LOC OBJ

00,2
003C

OBB8

OBB8 54595045
aBBe 205E5820
OBCO 544F2052
OBC4 45545950
OBC8 45204120
OBce 48554D42
OBDO 4552
OBD2 00
OBD3 54595045
OBD7 20494E20
OBDB 46495253
OBDF 54204E55
OBE3 40424552
08E7 ,A20
OBE9 00
OBEA 54595045
OBEE 20494E20
OBF2 53454,4F
OBF6 4E44204E
OBFA 554D4245
OBFE 523A20
OCO 1 00
oe02 54484520
OC06 53554D20
OCOA 495320
OCOD 00
0000

0000 758920
0003 758003

0006 7598DA
0009 D28E

LINE

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SOURCE

FIRST_NUMBER DATA 50 ; STORAGE LOCATION FOR FIRST NUMBER
SECOND_NUMBER DATA 60 ; STORAGE FOR SECOND NUMBER

ORG 3000
j These strings will be placed in high memory
; They will be used to output messages to the terminal
i The DOH byte at the end of each string identifies the end character
TYPO: DB 'TYPE: "X TO RETYPE A NUMBER' ,DOH

DB 'TYPe: IN FIRST NUMBER: ',OOH

DB 'TYPE IN SECOND NUMBER: ',OOH

SUM: DB 'THE SUM IS ',DOH

ORG 0
The following instructions prepare the serial port to reeiava and

send data at 110 baud
Hardware assumptions:

MOV TMOD,I001000'OOB
MOV TH1,#(-253)

MOV SCON, '11011010B
SETB TR1
START:

Proper power supply
Logic to modify TTL signal to current loop
Necessary cabaling to connect terminal

SET TIMER MODE TO AUTO-RELOAD
SET TIMER ~OR 110 BAUD
110 = 10.7MHz/12*16*2*253
110 = desired baud rate
10.1MHz = ext~rnal clock ra~e
-253 ; timer preset value
12*16*2 = conversion constant
PREPARE SERIAL PORT FOR OPERATION
START CLOCK

Figure 0-1. Sample Program
937-26

G-l

Sample Program MCS-51

MCS-51 MACRO ASSEMBLER PAGE

LOC OBJ LINE SOURCE

29 ; This part of program starts communication and gP.ts first number
OOOB 900BB8 30 MOV DPTR, ITYPO
OOOE 12006C 31 CALL PUT_STRING OUTPUT HOW TO RECOVER FROM TYPO
0011 120061 32 CALL PUT_CRLF
0014 900BD3 33 MOV DPTR,.F_NUMB GET ADDRESS OF DB STRING
0017 12006C 34 CALL PUT_STRING OUTPUT STRING FOR FIRST NUMBER
001 A 120061 35 CALL PUT_CRLF OUTPUT CARRIAGE RETURN LINE FEED
0010 7832 36 MOV RO,'FIRST_NUMBER
001F 120077 37 CALL GET_NUMB GET FIRST NUMBER
0022 120061 38 CALL PUT_CRLF

39 THIS SECTION GETS SECOND NUMBER FROM CONSOLE
0025 900BEA 40 MOV DPTR, IS_NUMB ; OUTPUT STRING FOR SECOND NUMBER
0028 12006C 41 CALL PUT_STRING
002B 120061 42 CALL PUT_CRLF
002E 783C 43 MOV RO, #SECOND_NUMBER
0030 120077 44 CALL GET_NUMB ; GET SECOND NUMBER
0033 120061 45 CALL PUT_CRLF

46 THIS SECTION OF CODE CONVERTS ASCII NUMBERS TO BINARY
0036 7932 47 MOV Rl,'FIRST_NUMBER
0038 1200BF 48 CALL ASCBIN TRANSLATE ASCII STRING TO BINARY NUMBER
003B 793C 49 MOV R 1, #S ECOND_NUMBER
003D 1200BF 50 CALL ASCBIN TRANSLATE SECOND ASCII STRING
0040 8532 51 HOV A,FIRST_NUMBER , GET RESULT OF FIRST TRANSLATION

52 ADD NUMBERS AND CHANGE BINARY SUM TO ASCII STRING
0042 253C 53 ADD A, SECOND_NUMBER ; ADD BOTH NUMBERS
0044 F532 54 MOV FIRST_NUMBER, A
0046 7932 55 MOV Rl,HIRST_NUMBER ; PREPARE FOR RETRANSLATION
0048 120099 56 CALL BINASC ; TRANSLATE BINARY NUMBER TO ASCII
004B 900C02 57 MOV DPTR,'SUM

58 OUTPUT SUM STRING AND CONVERTED ASCII SUM
0048 12006C 59 CALL PUT_STRING ; OUTPUT SUM STRING
0051 AA04 60 MOV R2,4
0053 7932 61 MOV R " IFIRST_NUMBER
0055 E7 62 PUT_SUM: MOV A,@R1
0056 120091 63 CALL PUT_CHAR
0059 09 64 INC R 1
005A DAF9 65 DJNZ R2, PUT_SUM
005C 120061 66 CALL PUT_CRLF
005F 80AA 67 JMP START

68 +1 $eject

Figure G-l. Sample Program (Cont'd.) 937-27

0-2

MeS-51

M~S-51 MACRO ASSEMBLER

LOC OBJ LINE

69
OOOD 70
OOOA 71

n
73

0061 740D H
0063 120091 75
0066 740A 76
0068 120091 77
0068 22 78

79
80
81

O06C 84 82
0060 93 83
006E 120091 84
0011 6003 85
0013 A3 86
0014 80F6 87

88
0016 22 89

90
91
92
93
94

0071 1AQ4 95
96

0019 120089 97
001C C2E7 98
007E B41904 99
0081 1161 100
0083 80F2 101

102
0085 F6 103
0086 OAF 1 104
0088 22 105

106
107

0089 3098FO 108
008C C298 109
008E E599 110
0090 22 111

112
113

0091 3099FO 114
0094 C299 115
0096 F599 116
0098 22 117

REG 118
0030 119
002D 120
0026 121

122

SOURCE

,
CR

BEGIN SERVICE ROUT IUS
EQU

LF
PUT_CRLF:

EQU
DOH
OAH

PAGE

THIS ROUTINE OUTPUTS A CARRIAGE
MOV A,leR

RETURN AND ALINE FEED (DOH, OAH)

CALL PUT_CHAR
MOV A,ILF
CALL PUT_CHAR
RET

PUT_STRING:
THIS ROUTINE OUTPUTS A CHARACTER STRING LOCATED IN CODE

MEMORY. THE ADDRESS MUST BE CONTAINED IN CODE MEMORY

EXIT:

GET_NUMB:

Ct.R A
Move A,@A+DPTR
CALL PUT_CHAR
JZ EXIT
INC DPTR
JMP PUT_STRING

RET

THIS ROUTINE HKES A 4 CHARACTER STRING FROM THE
CONSOLE AND STORES THE STRING IN MEMORY AT THE
ADDRESS CONTAINED IN RO

IF A ·x IS RECEIVED IT STARTS OVER

SKIP :

MOV R2,I4

CALL GET_CHAR
CLR ACC.7

CJNE A,#19H,SKIP
CALt. PUT_CRLF
JMP GET_NUMB

MOV @RO,A
DJNZ R2,G_N_LOOP
RET

COMPARE TO SKIP

THIS ROUTINE GETS A SINGLE CHARACTER FROM THE CONSOLE
JNB RI,$; LOOP HERE UNTIL CHARACTER RECIEVED
CLR RI
MOV A,SBUF
RET

THIS ROUTINE OUTPUTS A SINGLE CHARACTER TO THE CONSOLE

Sample Program

jNB TI,$ LOOP HERE UNTIL CHARACTER TRANSMITTED

NUMB_PTR
ZERO
MINUS
PLUS

+1 $ EJE,.:

EQU
EQU
EQU
EQU

CLR TI
MOIf SBUF,A
RET

Rl
('0')
('- ')
('.')

Figure G-l. Sample Program (Cont'd.)
937-28

0-3

Sample Program

HCS-51 MACRO ASSEMBLER

LOC OBJ

00E7
0099 E7
009A 772B
009C 30E704
009F 772D

00A1 14
00A2 F4

00A3 09

00A4 75F064
00A7 84
00A8 2430
OOAA F7
OOAB 09

OOlC E5FO
oon 75FOOA
00B1 84
00B2 2430
00B4 F7
00B5 09

00B6 E5FO
00B6 H30
OOBA F7

OOBB 19
OOBC 19
OOBD 19
OOBE 22

LINE

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
15T
156
159
160
161
162
163
164
165
166
167
166
169
170
171
172
113 +1

PAGE

SOURCE

..................................•..........................•..........
This routine converts a binary 2'5 complement number to a 4 character
ASCII string.
INPUT:

The binary val us must be located in memory at the address contained
1n register 1.

OUTPUT:
The 4 aharate!" result is placed in memory with the first character
at the address contained in register 1.

NOTES:
The contents of register A and B will be destroyed.
The contents of the memory location initially addressed by
register 1 will be replaced with the first charater in the
resulting character string • ..•............

BINASC:
SIGN BIT

MOV
MOV
JNB

ACC.7
A,@NUMB_PTR
@NUMB_PTR,'PLUS
SIGN,VAL

MOV @NUHB_PTR,#MINUS
Change negative number to posittve.

DBC A
CPL A

i Now work on ftrst digit
VAL:

; Factor out first digit
MOV B,#100
DIV AB
ADD A,'ZERO
HOV @NUMB_PTR,A
INC NUMB_PTR

Factor out second digit from remainder
HOV A,B
MOV B,'10
DIV AB
ADD A,IZERO
MOV @NUMB_PTR,A
INC NUMB_PTR

Get third and final digit
MOV A,B
ADD A,#ZERO
MOV @NUMB_PTR,A

restore NUMB_PTR

EJECT

DEC NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
RBT

Get num.ber

Test bit 7 for] sign
Insert negative sign

Figure 0-1. Sample Program (Cont'd.)

0-4

MCS-Sl

937·29

MCS-Sl

MCS-51 MACRO ASSEMBLER

LOC OBJ LINE

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

REG 193
194
195

OOBF 09 196
OOCO E7 197
OOCl 9430 198
00C3 75F064 199
o oc6 A4 200

201
00C7 FF 202
00c8 09 203
00C9 E7 204
OOCA 9430 205
OOCC 75FOOA 206
OOCF A4 207

208
0000 2F 209
0001 FF 210
0002 09 211
0003 E7 212
0004 9430 213

214
0006 2F 215
0007 FF 216
0008 19 217
0009 19 218
OODA 19 219
OODB E7 220

221
OODC B42D04 222
OODF EF 223
OOEO F4 224
00E1 04 225
00E2 FF 226
00E3 EF 227

228

MCS-51 MACRO ASSEMBLER

LOC OBJ LINE

00E4 F7 229
00E5 22 230

231

ASSEMBLY COMPLETE, NO ERRORS

Sample Program

PAGE

SOURCE ..
This routine takes a 4 character string located in memory and converts
it to a binary 2'5 complement ~umber.
The number must begin with a sign character ('+' or '-'), and be
between -128 and +121~
INPUT:

Four ASCII characters a sign character followed a '0' or a '1'
and the last 2 charactF!rs can be any digit.
The contents of register 1 must point to the sign character.

OUTPUT:
A binary 2'9 compLement representation of the value of the
character string.

NOTES:
Register 1 contains the address of the binary value.

The contents of the memory Location initially
addressed by register 1 is destroyed.
The contents of registers 7 and B and the accumulator
are destroyed • ..

TEMP
ASCBIN:

EQU R7

; Go right to number compute sign at end
INC NUMB_PTR
MOV A,fNUMB_PTR
SUBB A,#ZERO
MOV B,'100
MUL AB

Store first digit's value and go to next digit
MOV TEMP,A
INC NUMB_PTR
HOV A,@NUMB_PTR
SUBB A,#ZERO
HOV B,'10
MUL AB

Add first digit value to secon store and go to third digit
ADD A,TEMP
MOV TEMP,A
INC NUMB_PTR
MOV A,@NUMBjTR
SUBB A,#ZERO

Add third digit value to total. Store and go back for sign
ADD A,TEMP
MOV TEMP,A
DEC NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
MOV A,@NUMB_PTR

Test for sign value
CJNE A,IMINUS,POS
MOV A, TEMP
CPL A
INC A
MOV TEMP,A

POS: MOV A, TEMP
; store result and return

SOURCE

MOV @NUHB_PTR,A
RET

END

FOUND

PAGE

Figure 0-1. Sample Program (Cont'd.) 937-30

0-5

APPENDIX H
REFERENCE TABLES

This appendix contains the following general reference tables:

• ASCII codes

• Powers of two

• Powers of 16 (in base 10)

• Powers of 10 (in base 16)

• Hexadecimal-decimal integer conversion

ASCII Codes

The 8051 uses the 7-bit ASCII code, with the high-order 8th bit (parity bit) always
reset.

GRAPHIC OR ASCII GRAPHIC OR ASCII GRAPHIC OR ASCII
CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL) CONTROL (HEXADECIMAL)

NUL 00 + 2B V 56
SOH 01 2C W 57
STX 02 2D X 58
ETX 03 2E Y 59
EOT 04 2F Z 5A
ENO 05 0 30 [5B
ACK 06 1 31 \ 5C
BEL 07 2 32 J 5D
BS 08 3 33 I\(t) 5E
HT 09 4 34 -(~ 5F
LF OA 5 35 60
VT OB 6 36 61
FF OC 7 37 b 62
CR OD 8 38 c 63
SO OE 9 39 d 64
SI OF 3A 65
DLE 10 3B 66
DCl (X-ON) 11 < 3C 9 67
DC2 (TAPE) 12 3D h 68
DC3 (X-OFF) 13 > 3E 69
DC4 (=FAfl8 14 3F -j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 0 6F
SUB lA E 45 p 70
ESC lB F 46 q 71
FS lC G 47 72
GS 10 H 48 73
RS 1 E 49 74
US IF 4A 75
SP 20 K 4B 76

21 L 4C w 77
22 M 4D x 78

23 N 4E y 79
$ 24 0 4F z 7A
% 25 P 50 { 7B
& 26 0 51 I 7C

27 R 52) (ALT MODE) 7D
28 S 53 7E
29 T 54 DEL (RUB OUT) 7F
2A U 55

H-l

Reference Tables

1
2

4
8

17
34

1
2
4
8

16
33
67

134

POWERS OF TWO

2" " 2 -"

1 o 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
'} 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

048 576 20 0000 000 953 674 316 406 25
097 152 21 0000 000 476 837 158 203 125
194 304 22 0000 000 238 418 579 101 5625
388 608 23 0.000 000 119 209 289 550 781 25

777 216 24 0.000 000 059 604 644 775 390 625
554 432 25 0.000 000 029 802 322 387 695 312
108 864 26 0.000 000 014 901 161 193 847 656
217 728 27 a 000 000 007 450 580 596 923 828

268 435 456 28 0.000 000 003 725 290 298 461 914
536 870 912 29 0.000 000 001 862 645 149 230 957
073 741 824 30 0000 000 000 931 322 574 615 478
147 483 648 31 0000 000 000 465 661 287 307 739

5
25
125

062 5
031 25
515 625
257 812

294 967 296 32 0 000 000 000 232 830 643 653 869 628 906
589 934 592 33 0000 000 000 116 415 321 826 934 814 453
179 869 184 34 0000 000 000 058 207 660 913 467 407 226
359 738 368 35 0000 000 000 029 103 830 456 733 703 613

5

25
125
562 5
281 25

68 719 476 736 36 0000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 55241 0.000 000 000 000 4~4 747 350 886 464 118 957 519 531 25
4 398 046 511 104 42 0000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 20843 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
35 184 372 088 832 45 0000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
70 368 744 177 664 46 0000 000 000 000 014 210 854/15 202 003 717 422 485 351 562 5

140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

281 474 976 710 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
562 949 953 421 312 49 0000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

1 125 899 906 842 624 50 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
2 251 799 813 685 248 51 0.000 000 000.000 000 444 089 209 850 062 616 169 452 667 236 328 125

4 503 599 627 370 496 52 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
9 007 199 254 740 992 53 0000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

18 014 398 509481 984 54 0.000000 000 000 000 055 511 151 231 257 827 021 181 583404 541 015625

MeS-51

36 028 797 018 963 968 55 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

72 057 594 037 927 936 56 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
144 115 188 075 855 872 57 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 676950 125
288 230 376 151 711 744 58 0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
576 460 752 303 423 488 59 0000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

1 152 921 504 606 846 976 60 0000 000 000 000 000 000 867 361 737988 403 547 205962 240695 953 369 140625
2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5
4 611 686 018 427 387 904 62 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
9 223 372 036 854 775 808 63 0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

H-2

MCS-Sl Reference Tables

POWERS OF 16 (IN BASE 10)

16" " 16'"

1 0 0.10000 00000 00000 00000 x 10

16 0.62500 00000 00000 00000 X 10-1

256 2 0.39062 50000 00000 00000 x 10-2

4 096 3 0.24414 06250 00000 00000 x 10-3

65 536 4 0.15258 78906 25000 00000 x 10-4

048 576 5 0.95367 43164 06250 00000 x 10-6

16 777 216 6 0.59604 64477 53906 25000 x 10-7

268 435 456 7 0.37252 90298 46191 40625 x 10-8

4 294 967 296 8 0.23283 06436 53869 62891 x 10-9

68 719 476 736 9 0.14551 91522 83668 51807 x 10- 10

099 511 627 776 10. 0.90949 47017 72928 23792 x 10-12

17 592 186 044 416 11 0.56843 41886 08080 14870 x 10-13

281 474 976 710 656 12 0.35527 13678 80050 09294 x 10-14

4 503 599 627 370 496 13 0.22204 46049 25031 30808 x 10- 15

72 057 594 037 927 936 14 0.13877 78780 78144 56755 x 10- 16

1 152 921 504 606 846 976 15 0.86736 17379 88403 54721 x 10-18

POWERS OF 10 (IN BASE 16)

10" " 10'"

0 1.0000 0000 0000 0000

A 1 0.1999 9999 9999 999A
64 2 0.28F5 C28F 5C28 F5C3 x 16- 1

3E8 3 0.4189 3748 C6A7 EF9E x 16-2

2710 4 0.6808 88AC 710C 8296 x 16-3

1 86AO 5 0,A7C5 AC47 1847 8423 x 16-4

F 4240 6 0.10C6 F7AO 85ED 8D37 x 16-4

98 9680 7 0.lAD7 F29A 8CAF 4858 x 16-5

5F5 El00 8 0.2AF3 1DC4 6118 738F x 16-6

3B9A CAOO 9 0.4488 2FAO 985A 52CC x 16-7

2 5408 E400 10 0.6DF3 7F67 SEF6 EADF x 16-8

17 4876 EBOO 11 O.AFEB FF08 C824 AAFF x 16-9

E8 D4A5 1000 12 0.1197 9981 2DEA 1119 x 16-9

918 4E72 AOOO 13 0.lC25 C268 4976 81C2 x 16-10

5AF3 107A 4000 14 0.2D09 370D 4257 3604 x 16-11

3 8D7E A4C6 BOOO 15 0.480E BE78 9D58 566D x 16- 12

23 8652 6FCl 0000 16 0.734A CA5F 6226 FOAE x 16- 13

163 4578 5D8A 0000 17 0.8877 AA32 36A4 B449 x 16-14

DEO B6B3 A764 0000 18 0.1272 5DDl D243 ABAl x 16- 14

8AC7 2304 89E8 0000 19 O.lD83 C94F B6D2 AC35 x 16- 15

H-3

Reference Tables MCS-51

HEXADECIMAL·DECIMAL INTEGER CONVERSION

The table below provides for direct conversions between hexadecimal integers in the range O-FFF and decimal integers in the
range 0-4095. For conversion of larger integers. the table values may be added to the following figures:

Hexadecimal Decimal Hexadecimal Decimal

01000 4096 20000 131 072
02000 8192 30000 196608
03000 12288 40000 262144
04000 16384 50 000 327680
05000 20480 60000 393216
06 000 24576 70000 458752
07000 28672 80000 524288
08000 32768 90000 589824
09000 36864 AOOOO 655360
OAOOO 40960 BO 000 720896
OB 000 45056 CO 000 786432
DC 000 49152 00000 851 968
00000 53248 EO 000 917504
OE 000 57344 FOOOO 983040
OF 000 61440 100000 1 048576
10000 65536 200000 2097152
11000 69632 300000 3 145 728
12000 73728 400000 4194304
13000 77 824 500000 5242880
14000 81 920 600000 6291 456
15000 86016 700 000 7340032
16000 90112 800000 8388608
17000 94208 900 000 9437 184
18000 98304 AOO 000 10485760
19000 102400 BOO 000 11 534336
lAOOO 106496 COO 000 12582912
18000 110592 000000 13631488
lC 000 114688 EOO 000 14680064
10000 118784 FOO 000 15728640
lE 000 122880 1000000 16777216
1 F 000 126976 2000000 33554432

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015
010 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
020 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
030 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

040 00s4 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
050 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
060 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
070 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

080 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
090 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
OAO 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
OBO 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

OCO 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
000 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEO 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239
OFO 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

H-4

MCS-Sl Reference Tables

HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

100 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
110 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
120 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
130 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

140 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0331 0333 0334 0335
150 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
160 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
170 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

180 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
190 0400 0401 ~02 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
lAO 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
180 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

lCO 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
100 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
lEO 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
lFO 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 050"1 0508 0509 0510 0511

200 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
220 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
230 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

240 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2AO 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
280 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
200 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2FO 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0301 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

340 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
350 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0212 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
380 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
300 0976 0977 0978 0979 0980 098·1 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3FO 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

H-S

Reference Tables MeS-51
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

400 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 .1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 1074 1075 1076 1077 1078 1079 lOBO 1081 1082 1083 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
470 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

540 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
570 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5AO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
500 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5EO 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5FO 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

600 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
660 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6AO 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
680 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
600 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6FO 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

H-6

MCS-51 Reference Tables
HEXADECiMAL-DECIMAL INTEGER CONVERSION (Cant'd)

0 1 2 3 4 5 6 7 8 9 A 8 C 0 E F

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
720 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

740 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
750 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
760 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
790 1936 1937 '938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7AO 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
780 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

7CO 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
700 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7FO 2032 2033 2034 .2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

800 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
810 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
820 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
830 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

840 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
850 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
860 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

880 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8AO 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

seo 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
800 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8EQ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8FO 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
910 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
920 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
950 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
960 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
970 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
980 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
900 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9FO 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

H-7

Reference Tables MCS-51
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cant'd)

0 1 2 3 4 5 6 7 8 9 A B C D E F

ADO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
Al0 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2.621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A80 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A90 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AAO 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 4761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl0 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B20 2848 2849 2850 3851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B30 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2376 2877 2878 2879 -
B40 2880 2881 2882 2883 2884 2885 2866 2887 2888 2889 2890 2891 2892 2893 2894 2895
B50 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 :7920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

B80 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B90 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

BCO 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BOO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BFO 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

COO 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
Cl0 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C50 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C60 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCO 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
COO 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 331·1
CFO 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

H-8

MCS-51 Reference Tables
HEXADECIMAL-DECIMAL INTEGER CONVERSION (Cont'd)

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
010 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
020 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
030 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392' 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
050 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
060 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
070 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
090 3472 3473 34'74 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
OAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
OBO 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

OCO 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DDO 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DFO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EOO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907· 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

FBO 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036' 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FOO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

H-9

APPENDIX J I
ERROR MESSAGES

When the assembler is unable to correctly assemble a source file, it generates an
error message describing the trouble. If possible, it will continue execution. In some
cases the assembler is unable to continue (e.g., too many symbols in a program), and
it must abort execution. If your program should generate an error message, make
the necessary corrections and reassemble. The object file will probably not be
executable, and, if the error caused an abort, the list file may also be unreadable.

The general format for all errors listed in your code is shown below:

••• ERROR #eee, LINE #111 (Ppp), Message

where:

eee is the error number
III is the line causing the error
ppp is the line causing the lost error

Message is the error message

(See Chapter 6 for a complete description of all error messages generated by the
assembler .)

J-l

Error Messages

J-2

Source File Error Messages

This type of error is caused by syntactic errors in your source code. They appear in
your listing file immediately following the source line that caused the error.

In attempting to further define the error, ASM51 may generate more than one
message for a single error. Since the assembler attempts to continue processing your
code a single error may have side effects that cause subsequent errors.

A list of all Assembler Error messages is shown below:

Assembler Error Messages

SYNTAX ERROR
2 SOURCE LISTING TERMINATED AT 255 CHARACTERS
3 ARITHMETIC OVERFLOW IN NUMERIC CONSTANT
4 ATTEMPT TO DIVIDE BY ZERO
5 EXPRESSION WITH FORWARD REFERENCE NOT ALLOWED
6 TYPE OF SET SYMBOL DOES NOT ALLOW REDEFINITION
7 EQU SYMBOL ALREADY DEFINED
8 ATTEMPT TO ADDRESS NON-BIT-ADDRESSABLE BIT
9 BAD BIT OFFSET IN BIT ADDRESS EXPRESSION

10 TEXT FOUND BEYOND END STATEMENT-IGNORED
11 PREMATURE END OF FILE (NO END STATEMENT)
12 ILLEGAL CHARACTER IN NUMERIC CONSTANT
13 ILLEGAL USE OF REGISTER NAME IN EXPRESSION
14 SYMBOL IN LABEL FIELD ALREADY DEFINED
15 ILLEGAL CHARACTER
16 MORE ERRORS DETECTED, NOT REPORTED
17 ARITHMETIC OVERFLOW IN LOCATION COUNTER
18 UNDEFINED SYMBOL
19 VALUE WILL NOT FIT INTO A BYTE
20 OPERATION INVALID IN THIS SEGMENT
21 STRING TERMINATED BY END-OF-L1NE
22 STRING LONGER THAN 2 CHARACTERS NOT ALLOWED IN THIS CONTEXT
23 STRING, NUMBER, OR IDENTIFIER CANNOT EXCEED 225 CHARACTERS
24 DESTINATION ADDRESS OUT OF RANGE FOR AJMP
25 DESTINATION ADDRESS OUT OF RANGE FOR SJMP
26 DESTINATION ADDRESS OUT OF RANGE FOR ACALL
27 DESTINATION ADDRESS OUT OF RANGE FOR JC
28 DESTINATION ADDRESS OUT OF RANGE FOR JNC
29 DESTINATION ADDRESS OUT OF RANGE FOR JZ
30 DESTINATION ADDRESS OUT OF RANGE FOR JNZ
31 DESTINATION ADDRESS OUT OF RANGE FOR DJNZ
32 DESTINATION ADDRESS OUT OF RANGE FOR CJNE
33 DESTINATION ADDRESS OUT OF RANGE FOR JB
34 DESTINATION ADDRESS OUT OF RANGE FOR JBC
35 DESTINATION ADDRESS OUT OF RANGE FOR JNB
36 CODESEGMENTADDRESSEXPECTED
37 DATA SEGMENT ADDRESS EXPECTED
38 XDATA SEGMENT ADDRESS EXPECTED
39 BIT SEGMENT ADDRESS EXPECTED
40 BYTE OF BIT ADDRESS NOT IN DATA SEGMENT

MCS-51

MCS-51

Macro Error Messages

Macro errors are caused by errors using the Macro Processing Language (MPL).
They are listed immediately following the line in which the error was recognized, and
is followed by a trace of the macro call/expression stack. This is not necessarily the
line that contains the error.

Since the Macro Processor attempts to define the error completely, several messages
may be generated. A macro error may be responsible for subsequent macro errors
and assembler errors.

All of the Macro Error messages are listed below:

Macro Error Messages

300 MORE ERRORS DETECTED, NOT REPORTED
301 UNDEFINED MACRO NAME
302 ILLEGAL EXIT MACRO
303 FATAL SYSTEM ERROR
304 ILLEGAL EXPRESSION
305 MISSING "FI" IN "IF"
306 MISSING "THEN" IN "IF"
307 ILLEGAL ATTEMPT TO REDEFINE MACRO
308 MISSING IDENTIFIER IN DEFINE PATTERN
309 MISSING BALANCED STRING
310 MISSING LIST ITEM
311 MISSING DELIMITER
312 PREMATURE EOF
313 DYNAMIC STORAGE (MACROS OR ARGUMENTS) OVERFLOW
314 MACRO STACK OVERFLOW
315 INPUT STACK OVERFLOW
317 PATTERN TOO LONG
318 ILLEGAL METACHARACTER: <char>
319 UNBALANCED ")" IN ARGUMENTTO USER DEFINED MACRO
320 ILLEGAL ASCENDING CALL

Error Messages

J-3

Error Messages

1-4

Control Error Messages
Control errors are announced when something is wrong with the invocation line or a
control line in the source file. In general,. command language errors are fatal, caus
ing ASM51 to abort assembly. However, the errors listed below are not considered
fatal.

Control Error Messages

400 MORE ERRORS DETECTED NOT REPORTED
401 BAD PARAMETER TO CONTROL
402 MORE THAN ONE INCLUDE CONTROL ON A SINGLE LINE
403 ILLEGAL CHARACTER IN COMMAND
406 TOO MANY WORKFILES-ONL Y FIRST TWO USED
407 UNRECOGNIZED CONTROL OR MISPLACED PRIMARY CONTROL: <control>
408 NO TITLE FOR TITLE CONTROL
409 NO PARAMETER ALLOWED WITH ABOVE CONTROL
410 SAVE STACK OVERFLOW
411 SAVE STACK UNDERFLOW
413 PAGEWIDTH BELOW MINIMUM, SET TO 72
414 PAGELENGTH BELOW MINIMUM, SET TO 10
415 PAGEWIDTH ABOVE MAXIMUM, SET TO 132

MCS-51

MCS-51

Special Assembler Error Messages

These error messages are displayed on the console. They are displayed immediately
before the assembler aborts operation. You should never receive one of these errors;
if you should encounter this type of error notify Intel Corporation via the Software
Problem Report included with this manual. The content of all output files will be
undefined. A list of all of the special assembler error messages is shown below:

Special Assembler Error Messages

800 UNRECOGNIZED ERROR MESSAGE NUMBER
801 SOURCE FILE READING UNSYNCHRONIZED
802 INTERMEDIATE FILE READING UNSYNCHRONIZED
803 BAD OPERAND STACK POP REQUEST
804 PARSE STACK UNDERFLOW
805 INVALID EXPRESSION STACK CONFIGURATION

Error Messages

J-5

Error Messages

J-6

Fatal Error Messages
This type of error causes the assembler to abort execution. All output files will be
unusable. This type of error is usually the result of exceptionally large or complex
source files.

These errors are printed at the console just before ASM51 terminates operation. To
overcome this type of error, divide your source file into smaller files and assemble
them separately. If necessary reduce the number of symbols used in your program,
or the complexity of the expressions you use. Then rejoin files for final assembly. A
list of all fatal error messages is shown below:

900 USER SYMBOL TABLE SPACE EXHAUSTED
901 PARSE STACK OVERFLOW
902 EXPRESSION STACK OVERFLOW
903 INTERMEDIATE FILE BUFFER OVERFLOW
904 USER NAME TABLE SPACE EXHAUSTED

,
• c

n

A (accumulator), 1-13,2-2
AC (auxiliary carry flag), 1-9, 1-15,2-7
ACC (accumulator), 1-14
ACALL code address, 3-4-3-5, B-2,

B-9-B-13
see also, CALL, 3-24

LCALL, 3-69, 3-70
ADD
Arithmetic Function, 1-12
A,#data, 3-6, B-2, B-9
A,@Rr, 3-7, B-2, B-9
A,Rr, 3-8, B-2, B-9
A,data address, 3-9, B-2, B-9

ADDC
Arithmetic function, 1-12
A,#data, 3-10, B-2, B-9
A,@Rr, 3-11, 3-12, B-2, B-9
A,Rr, 3-13, B-2, B-9
A,data address, 3-14, B-2, B-9, B-lO

Address, Data unit, 1-11
AJMPcodeaddress, 3-15, B-2, B-9-B-12
see also, page jump, 2K, 2-8

JMP,3-59
LJMP, 3-71, 3-72
SJMP,3-122

ANL
Logical function, 1-12
A,#data, 3-16, B-2, B-lO
A,@Rr, 3-17, B-2, B-lO
A,Rr, 3-18, B-2, B-lO
A,data address, 3-19, B-2, B-lO
C,bit address, 3-20, B-2, B-ll
C,Ibitaddress, 3-21, B-2, B-ll
data address , #da ta ,3-22, B-2, B-lO
data address ,A, 3-23, B-2, B-lO

Arithmetic and Logic Unit, 1-8, 1-9, 1-12
ASCII Characters
in strings, 2-10,4-9,4-10
Codes, H-l

B (multiplication register), 1-9, 1-14
Binary numbers, expressing, 2-9
Bit addressing, 1-14,2-5-2-7
Bit address space, 1-8, 1-11, 2-6
Bit, Data unit, 1-11
BIT directive, 4-6, C-l
Bit selector (.), 1-14,2-5
BNF, A-I
Boolean Functions, 1-8
see also, ANL, 3-20, 3-21

CLR, 3-34, 3-35
CPL, 3-37, 3-38
18,3-53,3-54
18C, 3-55, 3-56
JC, 3-57, 3-58
JNB, 3-61, 3-62

INDEX

JNC, 3-63, 3-64
MOV, 3-79, 3-84
ORL, 3-106, 3-107
SETB, 3-120, 3-121

BSEG
directive, 4-7, C-l
segment mode, 1-10
see also segment type, 2-1

Byte, Data unit, 1-11

C, 1-13,2-2
CALL code address, 3-24
see also ACALL, 3-4, 3-5

LCALL, 3-69, 3-70
Character strings in expressions, 2-10, 2-11,

4-9,4-10
see also ASCII, H-l

CJNE
@Rr,#dataaddress,3-25,3-26, B-3, B-12
A,#data,codeaddress, 3-27, 3-28, B-3,
B-12

A,data address ,code address, 3-29, 3-30,
B-3, B-12

Rr , #da ta ,code address, 3-31, 3-32, B-3,
B-12

CLR
A, 3-33~ B-3, B-12
C, 3-34, B-3, B-12
bit address, 3-35, B-3, B-12

Code Addressing, 2-8, 2-9
Code address space, 1-8
see also CSEG, 1-10

Console 110 built-in macro, 5-16, E-13
Control line, 6-2, A-2
CPL

Logical Function, 1-12
A, 3-36, B-3, B-13
C, 3-37, B-3, B-ll
bit address, 3-38, B-3, B-11

CSEG
directive, 4-7, C-I
segment mode, 1-10
see also segment type, 2-1

CY (carry flag), 1-15, 2-7

DA (control) see DATE control
DA
Arithmetic function, 1-12
A, 3-39, B-3, B-12

Data Addressing, 2-3, 2-4
Data address space, 1-8, 1-11
DATA directive, 4-5, C-I
Data Pointer (DPTR), 2-2
DATE control, 6-2, 6-4, D-I
DB (control) see DEBUG control
DB directive, 4-9, C-I

Index-l

MCS-51

Index-2

DBIT directive, 4-8, C-I
DEBUG control, 6-2, 6-4, D-I
DEC
Arithmetic function, 1-12
@Rr, 3-40, B-3, B-9
A, 3-41, B-3, B-9
Rr, 3-42, B-3, B-9
data address, 3-43, B-3, B-9

Decimal numbers, expressing, 2-9
Directives
Assembler, 4-1-4-10, C-I
end of program, 4-10
location counter control, 4-7, 4-8
memory initialization, 4-8-4-10
segment control, 4-6, 4-7
symbol definition, 4-4-4-6

DIV
Arithmetic function, 1-12
AB, 3-44, B-3, B-11

DJNZ
Rr,codeaddress, 3-45, B-4, B-12
data address ,code address, 3-46, 3-47,

B-4, B-12
DPH, 1-9, 1-14
see also Data Pointer, 2-2

DPL, 1-9, 1-14
see also Data Pointer, 2-2

DPTRsee Data Pointer, 2-2
DS directive, 4-8, C-I
DSEG
directive, 4-7, C-l
segment mode, 1-10
see also segment type, 2-1

DW directive, 4-10, C-I

EA (Enable All Interrupts), 1-18,2-7
EJ see EJECT
EJECT control, 6-2, 6-5, D-I
END directive, 4-10, C-I
EP see ERRORPRINT control
EQS built-in macro, 5-11, E-6
EQU directive, 4-4, 4-5
Error messages
Console, printed at
Fatal, 7-2, 7-3
Internal,7-2
I/O, 7-1

Listing file, printed in
control, 7-11, 7-12
Fatal,7-13
macro, 7-8-7-11
source, 7-4-7-8
Special,7-13

ERRORPRINT control, 6-2, 6-5, D-I
ES (Enable Serial port interrupt), 1-18,2-7
ESCAPE macro function, E-7
ETO (Enable Timer 0 interrupt), 1-18,2-7
ETI (Enable Timer I interrupt), 1-18,2-7
EV AL built-in macro, 5-10, E-5, E-6
EXO (Enable external interrupt 0), 1-18,2-7
EXI (Enable external interrupt I), 1-18,2-7
EXIT built-in macro, E-12, E-13

EXTIO, 1-17
EXTII,I-17
External Data address space, 1-8
see also XSEG, 1-10

FO, 1-9, 1-15,2-7

GEsee GEN
GEN
control, 6-2, 6-6, D-I
macro listing format, 7-18

Generic call, 2-9
Generic jump, 2-9

,GENONLY
control, 6-2, 6-6, D-I
macro listing format, 7-18

GES built-in macro, 5-11, E-6
grammar, language, A-I
GO see GENONL Y
GTS built-in macro, 5-11, E-6
hardware requirements to run ASM51, 1-1
heading format, 7-17 -
see also DATE, 6-4

TITLE,6-11

Hexadecimal, 2-9

IC see INCLUDE control
IE (Interrupt Enable), 1-9, 1-14, 1-17, 1-18
IEO (Interrupt 0 Edge flag), 1-15,2-7
IEI (Interrupt I Edge flag), 1-15,2-7
IF (built-in macro), 5-12, 5-13, E-l1
Immediate Data(#), 2-3
IN built-in macro, 5-16, E-13
INC
Arithmetic function, 1-12
@Rr, 3-48, B-4, B-9
A, 3-49, B-4, B-9
DPTR, 3-50, B-4, B-11
Rr, 3-51, B-4, B-9
data address, 3-52, B-4, B-9

INCLUDE control, 6-3,6-6, D-l
Indirect addressing (@), 2-2, 2-3
instruction cycle, 1-8
INTO (Interupt 0 input pin), 1-16,2-7
INTI (Interupt I input pin), 1-16,2-7
Internal data address space, 1-8
see also DSEG, 1-10

interrupt
control, 1-17-1-18, 1-19
priority, 1-8

invocation line, 6-1
I/O port, 1-8
IP (Interrupt Priority), 1-9, 1-14, 1-17, 1-18
ITO (Interrupt 0 Type control bit), 1-15,2-4
ITI (Interrupt I Type control bit), 1-15,2-4

JB bit address ,code address, 3-53, 3-54,
B-4, B-9

JBC bit address ,code address, 3-55, 3-56,
B-4, B-9

JC code address, 3-57, 3-58, B-4, B-IO

JMP code address, generic, 3-59
JMP @A+DPTR, 3-60, B-4, B-1O
JNB bit address ,code address, 3-61,3-62,

B-4, B-9
JNCcodeaddress, 3-63, 3-64, B-4, B-1O
JNZ code address, 3-65, 3-66, B-4, B-1O
JZ code address, 3-67, 3-68, B-5, B-1O

Label, 4-3, 4-4
LCALL code address, 3-69, 3-70, B-5, B-9
see also ACALL, 3-4, 3-5

CALL,3-24
LEN built-in macro, 5-10, E-6
LIsee LIST
LIST control, 6-3, 6-7, D-I
listing file, 1-2

format, 7-14-7-19
LJMP code address, 3-71, 3-72, B-5, B-9
see also AJMP, 3-15

JMP, 3-59
SJMP, 3-122

location counter ($), 2-12, 4-1, 4-2
controls, 4-7, 4-8

long jump or call, 2-8
see also LCALL, 3-69, 3-70

LJMP, 3-71, 3-72

macro
arithmetic expressions in, 5-11, E-3
Call, 5-6-5-9, E-4, E-5
comment, E-15
definition, 5-3, E-7, E-8
delimiters, E-8-E-1O
expansion, 5-3, E-3-E-5
listing format, 7-17, 7-18
parameters, 5-5, E-5
-time, 5-4

MACRO control, 6-3, 6-7, D-l
MATCH built-in macro, 5-15, E-14
METACHAR built-in macro, E-15
metacharacter (070), the, 5-2
MOV
@Rr,#data, 3-72, B-5, B-1O
@Rr,A, 3-73, B-5, B-13
@Rr,dataaddress,3-74,B-5,B-l1
A,#data, ~-75, B-5, B-1O
A,@Rr, 3-76, B-5, B-12
A,Rr, 3-77, B-5, B-12
A,dataaddress, 3-78, B-5, B-12
C,bitaddress, 3-79, B-5, B-ll
DPTR,#data, 3-80, B-5, B-ll
Rr,#data, 3-81, B-5, B-ll
Rr, A, 3-82, B-5, B-13
Rr ,data address, 3-83, B-5, B-11
bit address, C, 3-84, B-5, B-ll
data address ,#data, 3-85, B-5, B-I0
dataaddress,@Rr,3-86,B-5,B-11
data address, A, 3-87, B-5, B-13
data address, Rr, 3-88, B-6, B-11
data address ,data address, 3-89, B-6, B-Il

MOVC
A,@A+DPTR, 3-90, B-6, B-ll
A,@A+PC, 3-91,3-92, B-6, B-II

MOVX
@DPTR,A, 3-93, B-6, B-13
@Rr,A, 3-94-3-95, B-6, B-13
A,@DPTR, 3-96, B-6, B-12
A,@Rr, 3-97, 3-98, B-6, B-12

MR see MACRO control
MUL

Arithmetic function, 1-12
AB, 3-99, 3-100, B-6, B-ll

nibble, Data unit, 1-11
NODB see NODEBUG control
NODEBUG control, 6-2, 6-4, D-l
NOEP see NOERRORPRINT control
NOERRORPRINT control, 6-2, 6-5, D-I
NOGE see NOGEN control
NOGEN control, 6-2, 6-6, D-l
listing format, 7-18

NOLI see NOLIST control
NOLIST control, 6-3, 6-7, D-l
NOMACRO control, 6-3, 6-7, D-l
NOMR see NOMACRO control
NOOBJECT control, 6-3, 6-8, D-l
NOOJ see NOOBJECT control
NOP, 3-101, B-6, B-9
NOPAGING control, 6-3, 6-8, D-l
NOPI see NOPAGING control
NOPR see NOPRINT control
NOPRINT control, 6-3, 6-10, D-l
NOSBsee NOSYMBOLS control
NOSYMBOLS control, 6-3, 6-11, D-2
NOXR see NOXREF control
NOXREF control, 6-3, 6-12, D-2
null string, 2-11, 4-9
Numbers
specifying, 2-9
representation of, 2-10

OBJECT control, 6-3, 6-8, D-l
Object file, 1-2
Octal,2-9
OJ see OBJECT control
Operators, Assembly-time

Arithmetic, 2-13
Logical,2-13
Relational, 2-14, 2-15
Special,2-14
Precedence, 2-15

Operators, macro, 5-11, E-3
ORG directive, 4-8, C-l
ORL

Logical function, 1-12
A,#data, 3-102, B-6, B-1O
A,@Rr, 3-103, B-6, B-1O
A,Rr, 3-104, B-6, B-1O
A,data address, 3-105, B-6, B-1O
C,bit address, 3-106, B-6, B-1O
C,/bitaddress, 3-107, B-6, B-11
data /!-ddress ,#data, 3-108, B-6, B-I0
data address ,A, 3-109, B-6, B-1O

MeS-51

Index-3

MCS-51

Index-4

OUT built-in macro, 5-16, E-13
OV (overflow flag), 1-9, 1-15,2-7

P (parity flag), 1-9, 1-15,2-7
page jump Or call, 2K, 2-8
see also ACALL, 3-4, 3"5

AJMP, 3-15
PAGING control, 6-3, 6-8, D-2
PAGELENGTH control, 6-3, 6-9, D-2
PAGEWIDTH control, 6-3, 6-9, D-2
PC, 1-9, 1-13,2-2
see also, program counter, 2-2

PIsee PAGING control
PLsee PAGE LENGTH control
POP data address, 3-110, B-7, B-12
Port 0 (PO) see 110 Port, 1-8
Port 1 (PI) see 110 Port, 1-8
Port 2 (P2) see 110 Port, 1-8
Port 3 (P3), 1-16
see also 110 Port, 1-8

PR see PRINT control
PRINT control, 6-3, 6-10, D-2
Program counter, 1-8,2-2
Program memory, 1-8
see also CSEG, 1-10

Program Status Word (PSW), 1-15
PS (Priority of Serial Port Interrupt), 1-18,

2-7
PSW see Program Status Word, 1-15
PTO (Priority of Timer 0 Interrupt), 1-18,

2-7
PTl (Priority of Timer I Interrupt), 1-18,

2-7
PUSH data address, 3-111, B-7, B-12
PW see P AGEWIDTH control
PXO (Priority of External Interrupt 0),

1-18,2-7
PXl (Priority of External Interrupt I),

1-18,2-7

RO, Rl, R2, R3, R4, R5, R6, R7, 1-13,2-2
see also , registers, General-purpose, 1-12

RAM memory, 1-8
see also DSEG, 1-10

RD (Read Data external), 1-16,2-7
register

Banks, 1-12
General-purpose, 1-12
Program addressable, 1-13
value at reset, 1-19

Relative Jump, 2-8
Relative offset, 2-8
REN (Receive Enable), 1-17, 2-7
REPEAT built-in macro, 5-12, 5-14, E-ll,

E-12
RESET,I-17
RESTORE control, 6-3, 6-10, D-2
RET, 3-112, 3-113, B-7, B-9
RETI, 3-114, 3-115, B-7, B-9
RL A, 3-116, B-7, B-9
RLCA, 3-117, B-7, B-9
RR A, 3-118, B-7, B-9

RRC A, 3-119,B-7, B-9
RS see RESTORE control
RSO(Register Select Bit 0),1-9,1-12,1-15,

2-7
RSI (Register Select Bit 1), 1-9, 1-12, 1-15,

2-7
RXD (Serial Port Receive pin), 1-16, 2-7

SA see SAVE control
SAVE control, 6-3, 6-10
SBsee SYMBOLS control
SBUF (Serial Port Buffer), 1-9, 1-14
SCON (Serial Port Control), 1-9, 1-14, 1-17
segment type, 2-1
in expressions, 2-15, 2-16
of operands, 2-3-2-5, 2-8,2-9
of symbols, 4-4-4-6

Serial 110 Port, 1-8, 1-9, 1-17
SETB

C, 3-120, B-7, B-12
bit address, 3-121, B-7, B-12

SET built-in macro, 5-16, 5-17
SET directive, 4-5, C-l
SINT,I-17
SJMPcodeaddress, 3-122, B-7, B-ll
SMO (Serial Mode Control bit 0), 1-17, 2-7
SM 1 (Serial Mode Control bit 1), 1-17, 2-7
SM2 (Serial Mode Control bit 2), 1-17, 2-7
SP (Stack Pointer), 1-14, 1-19
see also stack, 1-13

Special Assembler symbols, 1-13,2-2
see also EQU directive, 4-4, 4-5

SET directive, 4-5
stack, 1-13
SUBB
Arithmetic function, 1-12
A,ltdata, 3-123, B-7, B-ll
A,@Rr, 3-124-3-125, B-7, B-l1
A,Rr, 3-126,127, B-7, B-ll
A,data address, 3-128, 3-129, B-7, B-ll

SUBSTR built-in macro, 5-17, E-13
SWAP A, 3-130, B-7, B-12
symbol
definition, 4-2, 4-3
see also BIT, 4-6

DATA,4-5
EQU, 4-4, 4-5
SET,4-5
XDATA,4-6

table listing format, 7-19
use of, 2-11, 2-12

SYMBOLS control, 6-3, 6-11, D-2

TITLE control, 6-3, 6-11, D-l
TO (Timer/counter 0 External flag), 1-16,

2-7
TI (Timer/counter 1 External flag), 1-16,

2-7
TCON (Timer Control), 1-9, 1-14
TFO (Timer 0 Overflow Flag), 1-15,2-7
TF 1 (Timer 1 Overflow Flag), 1-15, 2-7
THO (Timer 0 high byte), 1-9, 1-14

THI (Timer 1 high byte), 1-9, 1-14
TIMERO, 7-17
TIMERI,7-17
TLO (Timer 0 low byte), 1-9, 1-14
TLl (Timer 1 low byte), 1-9, 1-14
TMOD (Timer Mode), 1-9, 1-14, 1-15
TRO (Timer 0 Run control bit), 1-15,2-7
TRI (Timer I Run control bit), 1-15,2-7
TT see TITLE control
TXD (Serial Port Transmit bit), 1-16, 2-7

WF see WORKFILES control
WHILE built-in macro, 5-12, 5-14, E-l1,

E-12
WR (wite Data for External Memory),

1-16,2-7
WORKFILES control, 6-3, 6-12, D-2

XCH
A,@Rr, 3-131, 8-7, 8-12
A,Rr, 3-132, 8-7, 8-12
A,dataaddress, 3-133, 8-7, 8-12

XCHD A,@Rr, 3-134, 3-135, 8-8, 8-12
XDA T A directive, 4-6
XR see XREF control
XREF control, 6-3, 6-12, D-3
XRL
Logical function, 1-12
A,#data, 3-136, 8-8, 8-10
A,@Rr, 3-137, 8-8, 8-10
A,Rr, 3-138, 8-8, 8-10
A,data address, 3-139, 8-8, 8-10
data address ,#data, 3-140, 8-8, 8-10
data address ,A, 3-141/3-142, 8-8, 8-10

XSEG
directive, 4-7, C-I
segment mode, 1-10
see also, segment type, 2-1

MCS-Sl

Index-5

MCS-51TM Assembly Language User's Manual
9800937-01

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ DATE __________________ _

TITLE __ __

COMPANYNAME/DEPARTMENT __ _
ADDRESS __ _

CITY __________________________ __ STATE __________ __ ZIP CODE ____________ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS •••

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

1II111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	replyA
	replyB
	xBack

