


LITERATURE 

To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel 
Literature Sales. In Europe and other international locations, please contact your local sales office or 
distributor. 

INTEL LITERATURE SALES 
P.O. BOX 7641 
Mt. Prospect, IL 60056-7641 

CURRENT HANDBOOKS 

In the U.S. and Canada 
call toll free 
(800) 548-4725 
This 800 number is for external customers only. 

Product line handbooks contain data sheets, application notes, article reprints and other design 
information. All handbooks can be ordered individually, and most are available in a pre-packaged set in the 
U.S. and Canada. . 

TITLE INTEL ISBN ORDER NUMBER 

SET OF THIRTEEN HANDBOOKS 231003 N/A 
(Available in U.S. and Canada) 

CONTENTS LISTED BELOW FOR INDIVIDUAL ORDERING: 
COMPONENTS QUALITY/RELIABILITY 210997 1-55512-132-2 

EMBEDDED APPLICATIONS 270648 1-55512-123-3 

8-BIT EMBEDDED CONTROLLERS 270645 1-55512-121-7 

16-BIT EMBEDDED CONTROLLERS 270646 1-55512-120-9 

16/32-BIT EMBEDDED PROCESSORS 270647 1-55512-122-5 

MEMORY PRODUCTS 210830 1-55512-117-9 

-MICROCOMMUNICATIONS 231658 1-55512-119-5 

MICROCOMPUTER PRODUCTS 280407 1-55512-118-7 

MICROPROCESSORS 230843 1-55512-115-2 

PACKAGING 240800 1-55512-128-4 

PERIPHERAL COMPONENTS 296467 1-55512-127-6 

PRODUCT GUIDE 210846 1-55512-116-0 
(Overview of Intel's complete product lines) 

PROGRAMMABLE LOGIC 296083 1-55512-124-1 

ADDITIONAL LITERATURE: 
(Not included in handbook set) 

AUTOMOTIVE HANDBOOK 231792 1-55512-125-x 

INTERNATIONAL LITERATURE GUIDE EOO029 N/A 
(Available in Europe only) 

CUSTOMER LITERATURE GUIDE 210620 N/A 

MILITARY HANDBOOK 210461 1-55512-126-8 
(2 volume set) 

SYSTEMS QUALITY/RELIABILITY 231762 1-55512-046-6 

LlTINCOV/091790 



u.s. and CANADA LITERATURE ORDER FORM 
NAME: ________________________________________________ __ 
COMPANY: ____________________________________________ ___ 

ADDRESS: 
CITY: ______________ STATE: ___ ZIP: 
COUNTRY: ____________________________ _ 
PHONE NO.: ~_~ ___________________ ~ _______ _ 

ORDER NO 

Include postage: 
Must add 15% of Subtotal to cover U.S. 
and Canada postage. (20% all other.) 

TITLE QTY. PRICE TOTAL 

x = 

x = 

x = 

x = 

x = 

x = 

x = 

x = 

x = 

x = 

Subtotal 

Must Add Your 
Local Sales Tax 

) Postage 

Total 

Pay by check, money order, or include company purchase order with this form ($100 minimum). We also 
accept VISA, MasterCard or American Express. Make payment to Intel Literature Sales. Allow 2-4 weeks for 
delivery. . 

o VISA 0 MasterCard 0 American Express Expiration Date _______________________ _ 
Account No. __________________________________________________________ __ 

Signature ____________________________________________________________ _ 

Mail To: Intel Literature Sales 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

International Customers outside the U.S. and Canada 
should use the International order form on the next page or 
contact their local Sales Office or Distributor. 

For phone orders in the U.S. and Canada 
Call Toll Free: (800) 548-4725 
Prices good unlil12/31/91. 

. Source HB 
CG/LOF1/091790 



INTERNATIONAL LITERATURE ORDER FORM 
NAME: __ ~ __________ ~ ____ ~ ________________________ __ 
COMPANY: ____________________________________________ _ 

ADDRESS: ____ ----------------------------------------
CITY: __________________ ------- STATE: ~ __ ZIP: ____ __ 
COUNTRY: ____________________________________________ _ 

PHONE NO.: ....l...... __ ..--.. ______________________________ -'-____ __ 

ORDER NO TITLE QTY. PRICE TOTAL 

I x = 
I x = 
I x = 

x = 
x = 
x = 
x = ---
x = 
x = 
x = 

Subtotal 

Must Add Your 
Local Sales Tax 

Total 

PAYMENT 

Cheques should be made payable to your ioca/lntel Sales Office (see inside back, cover). 

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your 
/oca/lntel Sales Office for details. ' 

The completed form should be marked to the attention of the LITERATURE COORDINATOR and returned to 
your /oca/lntel Sales Office. 

CG/091790 



intel· 

80C186EAI 
80C188EA 

USER'S MANUAL 

1991 



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may 
appear in this document nor does it make a commitment to update the information contained herein. 

Intel retains the right to make changes to these specifications at any time. without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel products: 

376, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960, ActionMedia, BITBUS, 
Code Builder, COMMputer, CREDIT, Data Pipeline, DeskWare, DVI, ETOX, FaxBACK, 
Genius, i, t, i287, i386, i387, i486, i750, i860, i960, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 
12 1CE, iLBX, iMDDX, iMMX, Inboard, Insite, Intel, Inte1287, Inte1386, Inte1387, Inte1486, 
intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent Programming, Intellec, 
Intellink, iOSP, iPAT, iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, iWARP, Library 
Manager, MAPNET, Matched, Media Mail, MCS, Megachassis, MICROMAINFRAME, 
MULTI CHANNEL, MULTIMODULE, MultiSERVER, NetPort, ONCE, OpenNET, OTP, 
PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase, Quick-Pulse Programming, 
READY-LAN, RMX/80, RUPI, SatisFAXtion, Seamless, SLD, Snapln 386, SugarCube, 
SUPERCHARGER, The Computer Inside, ToolTalk, UNIPATH, UPI, VAPI, Visual Edge, 
VLSiCEL, WYPIWYF, and ZapCode. 

MDS is an ordering code only and is neit used as a product name or trademark. MDS is a registered trademark of Mohawk 
Data Sciences Corporation. 

CHMOS and HMOS are patented processes of Intel Corp. 

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade
mark or products. 

Additional copies of this manual or other Intel literature may be obtained from: 

I ntel Corporation 
Literature Sales 
P.O. Box 7641 
Mt. Prospect, IL 60056-7641 

©INTEl CORPORATION 1991 CG-041691 



TABLE OF CONTENTS 

CHAPTER 1 
, INTRODUCTION ............................................................................................ 1-1 

1.1 HOW TO USE THIS MANUAL ......................................................... 1-2 

CHAPTER 2 
OVERVIEW OF THE 80C186 FAMILY MODULAR 
MICROPROCESSOR CORE ARCHITECTURE ............................................ 2-1 

2.1 
2.1.1 
2.1.2 
2.1.3 
2.1.4 
2.1.5 
2.1.6 
2.1.7 
2.1.8 
2.1.9 
2.1.10 
2.1.11 
2.2 
2.2.1 
2.2.1.1 
2.2.1.2 
2.2.1.3 
2.2.1.4 
2.2.1.5 
2.2.1.6 
2.2.2 
2.2.2.1 

2.2.2.2 
2.2.2.3 
2.2.2.4 

2.3 
2.3.1 
2.3.1.1 
2.3.1.2 
2.3.1.3 
2.3.2 
2.3.3 

ARCHITECTURAL OVERViEW ....................................................... 2-1 
EXECUTION UNIT ....................................................................... 2-2 
BUS INTERFACE UNIT ............................................................... 2-3 
GENERAL REGiSTERS ............................................................... 2-4 
SEGMENT REGISTERS .............................................................. 2-5 
INSTRUCTION POINTER ............................................................ 2-6 
FLAGS ......................................... .' ................................................ 2-6 
MEMORY SEGMENTATION ........................................................ 2-7 
LOGICAL ADDRESSES ............................................................... 2-9 
DYNAMICALLY RELOCATABLE CODE ..................................... 2-12 
STACK IMPLEMENTATION ......................................................... 2-13 
RESERVED MEMORY AND I/O SPACE .................................... ; 2-14 

SOFTWARE OVERViEW ................................................................. 2-14 
INSTRUCTION SET ..................................................................... 2-15 
DATA TRANSFER ........................................................................ 2-16 
ARITHMETIC INSTRUCTIONS ................................................... 2-18 
BIT MANIPULATION INSTRUCTIONS ........................................ 2-19 
STRING INSTRUCTIONS ............................................................ 2-19 
PROGRAM TRANSFER INSTRUCTIONS .................................. 2-20 
PROCESSOR CONTROL INSTRUCTIONS ................................ 2-23 
ADDRESSING MODES ................................................................ 2-23 
REGISTER AND IMMEDIATE OPERAND 
ADDRESSING MODES ................................................................ 2-23 
MEMORY ADDRESSING MODES .............................................. 2-24 
I/O PORT ADDRESSING ............................................................. 2-31 
DATA TYPES USED IN THE 
80C186 MODULAR CORE FAMILY ............................................ 2-32 

INTERRUPTS AND EXCEPTION HANDLING ................................ 2-32 
INTERRUPT/EXCEPTION PROCESSING ................. ; ................ 2-34 
NON-MASKABLE INTERRUPTS ................................................. 2-36 
MASKABLE INTERRUPTS .......................................................... 2-37 
EXCEPTIONS ............................................................................... 2-37 
SOFTWARE INTERRUPTS ......................................................... 2-38 
INTERRUPT LATENCY ............................................................... 2-39 



in1et 

2.3.4 
2.3.5 

TABLE OF CONTENTS 

INTERRUPT RESPONSE ............................................................ 2-39 
INTERRUPT AND EXCEPTION PRIORITy ................................ 2-40 

CHAPTER 3 
BUS INTERFACE UNIT ................................................................................. 3-1 

3.1 
3.2 
3.2.1 
3.2.2 
3.3 
3.3.1 
3.3.2 
3.4 
3.4.1 
3.4.2 
3.4.3 
3.4.3.1 
3.4.3.2 
3.4.4 
3.5 
3.5.1 
3.5.1.1 
3.5.2 
3.5.3 
3.5.3.1 
3.5.4 
3.5.5 
3.5.6 
3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.4 
3.7 
3.7.1 
3.7.1.1 
3.7.1.2 
3.7.2 
3.8 

MULTIPLEXED ADDRESS AND DATA BUS .................................. 3-1 
ADDRESS AND DATA BUS CONCEPTS ....................................... 3-1 

16-BIT DATA BUS ........................................................................ 3-1 
8-BIT DATA BUS .......................................................................... 3-4 

MEMORY AND I/O INTERFACES ................................................... 3-5 
16-BIT BUS MEMORY AND I/O REQUIREMENTS .................... 3-6 
8-BIT BUS MEMORY AND I/O REQUiREMENTS ....................... 3-6 

BUS CYCLE OPERATION ............ ; .................................................. 3-6 
ADDRESS/STATUS PHASE ........................................................ 3-7 
DATA PHASE ....................................................... ' ........................ 3-11 
WAIT STATES .............................................................................. 3-12 

. ARDY INPUT ... .-............................................................................ 3-14 
SRDY INPUT ................................................................................ 3.16 
IDLE STATES ............................................................................... 3-17 

BUS CyCLES ................................................................................... 3-17 
READ BUS CyCLES .................................................................... 3-17 
REFRESH BUS CyCLES ............................................................. 3-19 
WRITE BUS CYCLES .......... ; ....................................................... 3-20 
INTERRUPT ACKNOWLEDGE BUS CYCLE .............................. 3-23 
SYSTEM DESIGN CONSIDERATIONS ...................................... 3-25 
HALT BUS CyCLE ....................................................................... 3-25 
TEMPORARILY EXITING THE HALT BUS STATE ..................... 3-28 
EXITING HALT ............................................................................. 3-28 

SYSTEM DESIGN ALTERNATiVES ................................................ 3-30 
BUFFERING THE DATA BUS ...................................................... 3-30 
SOFTWARE SYNCHRONIZATION ............................................. 3-33 
LOCKED BUS OPERATION ........................................................ 3-34 
QUEUE STATUS OPERATION ................................................... 3-35 

MULTI-MASTER BUS SYSTEM DESIGNS ..................................... 3-36 
ENTERING BUS HOLD ................................................................ 3-36 
HOLD BUS LATENCy .................................................................. 3-36 
REFRESH OPERATION DURING A BUS HOLD ........................ 3-38 
EXITING HOLD ............................................................................ 3-39 

BUS CYCLE PRIORITIES ................................................................ 3-40 

ii 



TABLE OF CONTENTS 

CHAPTER 4 
PERIPHERAL CONTROL BLOCK ................................................................ 4-1 

4.1 SETTING THE BASE LOCATION .................................................... 4-1 
4.2 PERIPHERAL CONTROL BLOCK REGiSTERS ............................. 4-4 
4.3 RESERVED LOCATIONS AND THE NUMERICS INTERFACE ..... 4-5 

CHAPTER 5 
CLOCK GENERATION AND POWER MANAGEMENT ............................... 5-1 

5.1 
5.1.1 
5.1.1.1 
5.1.1.2 
5.1.2 
5.1.3 
5.1.4 
5.2 
5.2.1 
5.2.2 
5.2.2.1 
5.2.2.2 
5.2.2.3 
5.2.2.4 
5.2.3 
5.2.3.1 
5.2.3.2 
5.2.4 
5.2.4.1 
5.2.4.2 
5.2.4.3 
5.2.5 

CLOCK GENERATION .................................................................... 5-1 
CRYSTAL OSCILLATOR ............................................................. 5-1 
OSCILLATOR OPERATION ......................................................... 5-2 
SELECTING CRYSTALS ............................................................. 5-4 
USING AN EXTERNAL OSCILLATOR ........................................ 5-5 
OUTPUT FROM THE CLOCK GENERATOR ............................. 5-6 
RESET AND CLOCK SyNCHRONiZATION ................................ 5-6 

POWER MANAGEMENT ................................................................. 5-9 
OPERATIONAL MODES .............................................................. 5-10 
IDLE MODE ................................................................................... 5-10 
ENTERING IDLE MODE .............................................................. 5-10 
BUS OPERATION DURING IDLE MODE .................................... 5-10 
LEAVING IDLE MODE ................................................................. 5-11 
EXAMPLE IDLE MODE INITIALIZATION CODE ......................... 5-13 
POWER DOWN MODE ................................................................. 5-14 
ENTERING POWER DOWN MODE ............................................. 5-14 
LEAVING POWERDOWN MODE ................................................ 5-15 
POWER-SAVE MODE ................................................................. 5-17 
ENTERING POWER-SAVE MODE .............................................. 5-18 
LEAVING POWER-SAVE MODE ................................................. 5-18 
EXAMPLE POWER-SAVE INITIALIZATION CODE .................... 5-19 
IMPLEMENTING A POWER MANAGEMENT SCHEME ............. 5-19 

CHAPTER 6 
CHIP SELECT UNIT ....................................................................................... 6-1 

6.1 FUNCTIONAL OVERViEW .............................................................. 6-2 
6.2 PROGRAMMING .............................................................................. 6-5 
6.2.1 INITIALIZATION SEQUENCE ...................................................... 6-11 
6.2.2 START ADDRESS ....................................................................... 6-11 
6.2.3 STOP ADDRESS ......................................................................... 6-12 
6.2.4 BLOCK SiZE ................................................................................. 6-13 
6.2.5 BUS WAIT STATE AND READY CONTROL ............................... 6-14 
6.2.6 OVERLAPPING CHIP-SELECTS ................................................ 6-14 
6.2.7 MEMORY OR 1/0 BUS CYCLE DECODING ............................... 6-15 

iii 



inlet TABLE OF CONTENTS 

6.3 PROGRAMMING CONSiDERATIONS ............................................ 6-15 
6.4 CHIP-SELECTS AND BUS HOLD ................................................... 6-16 
6.5 EXAMPLES ...................................................................................... 6-17 
6.5.1 EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION ................. 6-17 

CHAPTER 7 
REf:=RESH CONTROL UNIT .......................................................................... 7-1 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.7.1 
7.7.2 
7.7.2.1 
7.7.2.2 
7.7.2.3 
7.7.3 
7.8 

THE ROLE OF THE REFRESH CONTROL UNIT ........................... 7-1 
REFRESH CONTROL UNIT CAPABILITIES ................................... 7-2 
REFRESH CONTROL UNIT OPERATION ...................................... 7-2 
REFRESH ADDRESSES ................................................................. 7-4 
REFRESH BUS CyCLES ................................................................ 7-4 
GUIDELINES FOR DESIGNING DRAM CONTROLLERS .............. 7-5 
PROGRAMMING THE REFRESH CONTROL UNIT ....................... 7-5 

CALCULATING THE REFRESH INTERVAL ............................... 7-7 
REFRESH CONTROL UNIT REGISTERS .................................. 7-7 
REFRESH BASE ADDRESS REGiSTER .................................... 7-7 
REFRESH CLOCK INTERVAL REGiSTER ................................. 7-7 
REFRESH CONTROL REGISTER .............................................. 7-9 
PROGRAMMING EXAMPLE ........................................................ 7-9 

REFRESH OPERATION AND BUS HOLD ...................................... 7-11 

CHAPTER 8 
INTERRUPT CONTROL UNIT ....................................................................... 8-1 

8.1 
8.2 
8.2.1 
8.2.1.1 
8.2.1.1.1 
8.2.1.1.2 
8.2.1.2 
8.2.1.2.1 

8.2.1.2.2 
8.3 
8.3.1 
8.3.2 
8.3.2.1 
8.3.3 
8.3.3.1 
8.3.4 
8.3.5 
8.3.6 

FUNCTIONAL OVERViEW .............................................................. 8-1 
MASTER MODE ............................................................................... 8-2 

GENERIC FUNCTIONS IN MASTER MODE ............................... 8-2 
INTERRUPT MASKING ............................................................... 8-2 
GLOBAL MASKING OF INTERRUPT SOURCES ....................... 8-3 
INDIVIDUAL MASKING OF INTERRUPT SOURCES ................. 8-3 
INTERRUPT PRIORITY ............................................................... 8-3 
OPERATION WHEN INTERRUPT NESTING 
IS NOT ENABLED ........................................................................ 8-4 
OPERATION WHEN NESTING INTERRUPTS ........................... 8-4 

MASTER MODE OPERATION ........................................................ 8-5 
TYPICAL INTERRUPT SEQUENCE ............................................ 8-5 . 
PRIQRITY RESOLUTION ............................................................ 8-5 
INTERRUPTS WHICH SHARE A SINGLE SOURCE .................. 8-7 
CASCADING WITH EXTERNAL 8259As ..................................... 8-7 
SPECIAL FULLY NESTED MODE ............................................... 8-8 
INTERRUPT ACKNOWLEDGE SEQUENCE .............................. 8-8 
POLLING ...................................................................................... 8-9 
EDGE AND LEVEL TRIGGERING ............................................... 8-9 

iv 



intet 

8.3.7 

8.4 
8.4.1 
8.4.1.1 
8.4.1.2 
8.4.1.3 
8.4.1.4 
8.4.1.5 
8.4.1.6 
8.4.1.7 
8.4.1.8 
8.4.2 
8.4.3 
8.5 
8.5.2 
8.5.2.1 
8.5.2.2 
8.5.2.3 
8.5.2.4 

TABLE OF CONTENTS 

ADDITIONAL LATENCY AND RESPONSE TIME 
OF MASTER MODE ..................................................................... 8.10 

MASTER MODE INTERRUPT UNIT PROGRAMMING .................. 8.11 
INTERRUPT CONTROL UNIT REGISTER DEFINITIONS ......... 8-11 
INTERRUPT CONTROL REGISTERS ........................................ 8-12 
THE INTERRUPT REQUEST REGISTER. .................................. 8-14 
INTERRUPT MASK REGISTER .................................................. 8-15 
PRIORITY MASK REGiSTER ...................................................... 8-16 
IN-SERVICE REGiSTER .............................................................. 8-17 
POLL AND POLL STATUS REGISTERS .................................... 8-18 
END-OF-INTERRUPT REGISTER .............................................. 8-20 
INTERRUPT STATUS REGISTER .............................................. 8-21 
INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE .... 8-22 
MASTER MODE INITIALIZATION EXAMPLE ............................. 8-23 

SLAVE MODE .................................................................................. 8-23 
SLAVE MODE PROGRAMMING ................................................. 8-25 
INTERRUPT VECTOR REGISTER ............................................. 8-25 
END-OF-INTERRUPT REGISTER .............................................. 8-26 
OTHER REGISTERS IN SLAVE MODE ...................................... 8-26 
INTERRUPT VECTORING IN SLAVE MODE ............................. 8-27 

CHAPTER 9 
TIMER/COUNTER UNIT ................................................................................ 9-1 

9.1 FUNCTIONAL OVERVIEW .............................................................. 9-1 
9.2 PROGRAMMING THE TIMER/COUNTER UNIT ............................. 9-5 
9.2.1 INITIALIZATION ........................................................................... 9-7 
9.2.2 CLOCK SOURCES ...................................................................... 9-9 
9.2.3 COUNTING SEQUENCE ............................................................. 9-9 
9.2.3.1 RETRIGGERING .......................................................................... 9-10 
9.2.4 PULSED AND VARIABLE DUTY CYCLE OUTPUT .................... 9-11 
9.2.5 ENABLING/DISABLING COUNTERS .......................................... 9-12 
9.2.6 TIMER INTERRUPTS .................................................................. 9-13 
9.2.7 PROGRAMMING CONSiDERATIONS ........................................ 9-13 
9.3 TIMING ............................................................................................. 9-13 
9.3.1 INPUT SETUP AND HOLD TIMINGS .......................................... 9-13 
9.3.2 SYNCHRONIZATION AND MAXIMUM FREQUENCY~ ............... 9-13 
9.4 TIMER/COUNTER UNIT APPLICATION EXAMPLES ..................... 9-14 
9.4.1 REAL-TIME CLOCK ..................................................................... 9-14 
9.4.2 SQUARE WAVE GENERATOR ................................................... 9-17 
9.4.3 DIGITAL ONE-SHOT .................................................................... 9-19 

v 



intet TABLE OF CONTENTS 

CHAPTER 10 
DIRECT MEMORY ACCESS UNIT ................................................................ 10-1 

10.1 FUNCTIONAL OVERVIEW .............................................................. 10-1 
10.1.1 THE DMA TRANSFER ................................................................. 10-1 
10.1.1.1 DMA TRANSFER DIRECTIONS .................................................. 10-2 
10.1.1.2 BYTE AND WORD TRANSFERS ................................................ 10-2 
10.1.2 SOURCE AND DESTINATION POINTERS ................................. 10-3 
10.1.3 DMA REQUESTS ......................................................................... 10-3 
10.1.4 EXTERNAL REQUESTS .............................................................. 10-3 
10.1.4.1 SOURCE SYNCHRONIZATION .................................................. 10-4 
10.1.4.2 DESTINATION SYNCHRONIZATION ......................................... 10-5 
10.1.5 INTERNAL REQUESTS ............................................................... 10-5 
10.1.5.1 TIMER 2 INITIATEDTRANSFERS ....... ; ...................................... 10-6 
10.1.5.2 UNSYNCHRONIZED TRANSFERS ............................................. 10-6 
10.1.6 DMA TRANSFER COUNTS ......................................................... 10-6 
10.1.7 TERMINATION AND SUSPENSION OF DMA TRANSFERS ..... 10-7 
10.1.7.1 TERMINATION AT TERMINAL COUNT ...................................... 10-7 
10.1.7.2 SOFTWARE TERMINATION ........................................................ 10-7 
10.1.7.3 SUSPENSION OF DMA DURING NMI ........................................ 10-7 
10.1.7.4 SOFTWARE SUSPENSION ......................................................... 10-7 
10.1.8 DMA UNIT INTERRUPTS ............................................................ 10-7 
10.1.9 DMA CYCLES AND THE BIU ...................................................... 10-8 
10.1.10 THE 2 CHANNEL DMA UNIT ....................................................... 10-8 
10.1.10.1 DMA CHANNEL ARBITRATION .................................................. 10-9 
10.1.10.1.1 FIXED PRIORITy ................... : ..................................................... 10-9 
10.1.10.1.2 ROTATING PRIORITY ................................................................. 10-9 
10.2 PROGRAMMING THE DMAUNIT ................................................... 10-10 
10.2.1 DMA CHANNEL PARAMETERS ................................................. 10-10 
10.2.1.1 PROGRAMMING THE SOURCE AND 

10.2.1.2 
10.2.1.3 
10.2.1.4 
10.2.1.5 
10.2.1.6 
10.2.1.7 
10.2.1.8 
10.2.2 
10.2.3 
10.3 
10.3.1 
10.3.2 
10.3.3 
10.3.4 
10.4 

DESTINATION POINTERS .......................................................... 10-10 
SELECTING BYTE OR WORD SIZE TRANSFERS .................... 10-15 
SELECTING THE SOURCE OF DMA REQUESTS .................... 10-15 
ARMING THE DMA CHANNEL.. .................................................. 10-15 
SELECTING CHANNEL SYNCHRONIZATION ........................... 10-15 
PROGRAMMING THE TRANSFER COUNT OPTIONS .............. 10-15 
GENERATING INTERRUPTS ON TERMINAL COUNT .............. 10-16 
SETTING THE RELATIVE PRIORITY OF A CHANNEL ............. 10-16 
SUSPENSION OF DMA TRANSFERS ........................................ 10-17 
INITIALIZING THE DMA UNIT ..................................................... 10-17 

HARDWARE CONSIDERATIONS AND THE DMA UNIT ............... 10-17 
DRQ PIN TIMING REQUiREMENTS ........................................... 10-17 
DMA LATENCy .................. ,' .. : ...................................................... 10-17 
DMA TRANSF,ER RATES ............................................................ 10-18 
GENERATING A DMA ACKNOWLEDGE .................................... 10-18 

DMA UNIT EXAMPLES ............... ; .................................................... 10-18 

vi 



TABLE OF CONTENTS 

CHAPTER 11 
MATH COPROCESSING ............................................................................... 11-1 

11.1 
11.2 
11.3 
11.3.1 
11.3.1.1 
11.3.1.2 
11.3.1.3 
11.3.1.4 
11.3.1.5 
11.3.1.6 
11.3.2 
11.4 
11.4.1 
11.4.2 
11.4.3 
11.4.4 
11.5 

OVERVIEW OF MATH COPROCESSING ...................................... 11-1 
AVAILABILITY OF MATH COPROCESSING .................................. 11-1 
THE 80C187 MATH COPROCESSOR ............................................ 11-2 

80C187 INSTRUCTION SET ............................................... ; ....... 11-2 
DATA TRANSFER INSTRUCTIONS ........................................... 11-2 
ARITHMETIC INSTRUCTIONS ................................................... 11-3 
COMPARISON INSTRUCTIONS ................................................. 11-5 
TRANSCENDENTAL INSTRUCTIONS ....................................... 11-5 
CONSTANT INSTRUCTIONS ...................................................... 11-6 
PROCESSOR CONTROL INSTRUCTIONS ................................ 11-6 
80C187 DATA TyPES .................................................................. 11-7 

MICROPROCESSOR AND COPROCESSOR OPERATION .......... 11-7 
CLOCKING THE 80C187 ............................................................. 11-7 
PROCESSOR BtJS CYCLES ACCESSING THE 80C187 .......... 11-8 
SYSTEM DESIGN TIPS ........ , ....................................................... 11-10 
EXCEPTION TRAPPING ............................................................. 11-11 

EXAMPLE MATH COPROCESSOR ROUTINES ............................ 11-11 

CHAPTER 12: 
ONCETM MODE .............................................................................................. 12-1 

12.1 ENTERING/LEAVING ONCE MODE ............................................... 12-1 

APPENDIX A 
80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS ................... A-1 

A.1 
A.1.1 
A.1.2 
A.1.3 
A.2 
A.2.1 
A.2.2 
A.2.3 
A.2.3.1 
A.2.3.2 

80C186 INSTRUCTION SET ADDITIONS ...................................... A-1 
DATA TRANSFER INSTRUCTIONS ........................................... A-1 
STRING INSTRUCTIONS ............................................................ A-1 
HIGH LEVEL INSTRUCTIONS .................................................... A-2 

80C186 INSTRUCTION SET ENHANCEMENTS ............................ A-6 
DATA TRANSFER INSTRUCTIONS ........................................... A-7 
ARITHMETIC INSTRUCTIONS ................................................... A-8 
BIT MANIPULATION INSTRUCTIONS ........................................ A-8 
SHIFT INSTRUCTIONS ............................................................... A-8 
ROTATE INSTRUCTIONS ........................................................... A-9 

vii 



intet TABLE OF CONTENTS 

APPENDIX B 
INPUT SYNCHRONIZATION ......................................................................... B-1 

B.1 WHY SYNCHRONIZERS ARE REQUIRED .................................... B-1 
B.2 ASYNCHRONOUS PINS ................................................................. B-2 

APPENDIX C ..................................................................................................... C-1 

APPENDIX D 
UPGRADING FROM THE 80C186 TO THE 80C186EA ............................... 0-1 

0.1 PINOUT COMPATIBILITy ................................................................ 0-1 
0.1.1 68-LEAD PLCC COMPATIBILITY ................................................ 0-1 
0.1.2 80-LEAD QFP (EIAJ) COMPATIBILITy ....................................... 0-2 
0.2 OPERATING MODES ...................................................................... 0-5 
0.3 PROGRAM EXECUTION ................................................................. 0-5 
0.4 TTL VS. CMOS INPUTS .................................................................. 0-5 
0.5 TIMING SPECiFiCATIONS .............................................................. 0-6 

viii 



inlet TABLE OF CONTENTS 

Figures 

1.1 Comparison of 80C186 Modular Core Family Products .................. 1-2 
2.1 Simplified Functional Block Diagram of the 80C186 

Modular Core Family CPU ............................................................... 2-2 
2.2 Physical Address Generation ........................................................... 2-3 
2.3 General Registers ............................................................................. 2-4 
2.4 Segment Registers ........................................................................... 2-6 
2.5 Processor Status Word .................................................................... 2-8 
2.6 Segment Locations in Physical Memory .......................................... 2-9 
2.7 Currently Addressable Segments .................................................... 2-10 
2.8 Logical and Physical Address .......................................................... 2-11 
2.9 Dynamic Code Relocation ................................................................ 2-13 
2.10 Stack Operation ................................................................................ 2-15 
2.11 Flag Storage Format. ........................................................................ 2-18 
2.12 Memory Address Computation ......................................................... 2-25 
2.13 Direct Addressing ............................................................................. 2-25 
2.14 Register Indirect Addressing .................................. , ......................... 2-26 
2.15 Based Addressing ......... ; .................................................................. 2-26 
2.16 Accessing a Structure with Based Addressing ................................. 2-27 
2.17 Indexed Addressing .......................................................................... 2-28 
2.18 Accessing an Array with Indexed Addressing .................................. 2-28 
2.19 Based Index Addressing .................................................................. 2-29 
2.20 Accessing a Stacked Array with Based Index Addressing ............... 2-30 
2.21 String Operand ................................................................................. 2-31 
2.22 I/O Port Addressing .......................................................................... 2-31 
2.23 80C186 Modular Core Family Supported Data Types ..................... 2-33 
2.24 Interrupt Control Unit ........................................................................ 2-34 
2.25 Interrupt Vector Table ....................................................................... 2-35 
2.26 Interrupt Sequence ........................................................................... 2-36 
2.27 Interrupt Response Factors .............................................................. 2-40 
2.28 Simultaneous NMI and Exception .................................................... 2-41 
2.29 Simultaneous NMI and Single Step Interrupts ................................. 2-42 
2.30 Simultaneous NMI, Single Step and Maskable Interrupt ................. 2-43 
3.1 Physical Data Bus Models ................................................................. 3-2 
3.2 16-Bit Data Bus Byte Transfers ........................................................ 3-3 
3.3 16-Bit Data Bus Even Word Transfers ............................................. 3-3 
3.4 16-Bit Data Bus Odd Word Transfers .............................................. 3-4 
3.5 8-Bit Data Bus Word Transfers ........................................................ 3-5 
3.6 Typical Bus Cycle ............................................................................. 3-7 
3.7 T -State Relation to CLKOUT ............................................................ 3-7 
3.8 BIU State Diagram ............................................................................ 3-8 
3.9 T-State and Bus Phases .................................................................. 3-8 
3.10 Address/Status Signal Relationships ............................................... 3-9 
3.11 Demultiplexing Address Information ................................................ 3-10 
3.12 Data Transfer Signal Relationships .................................................. 3-11 
3.13 Typical Bus Cycle With Wait States ................................................. 3-12 
3.14 ARDY and SRDY Pin Block Diagram ............................................... 3-13 

ix 



inlet TABLE OF CONTENTS 

3.15 Generating a Normally Not-Ready Signal ........................................ 3-13 
3.16 Generating a Normally Ready SignaL .............................................. 3-14 
3.17 Normally Not-Ready System Timing ................................................ 3-15 
3.18 Normally Ready System Timing ....................................................... 3-16 
3.19 Typical Read Bus Cycle ................................................................... 3-18 
3.20 Read-Only Device Interface ............................................................. 3-20 
3.21 Typical Write Bus Cycle ................................................................... 3-21 
3.22 16-Bit Bus Read/Write Device Interface ........................................... 3-22 
3.23 Interrupt Acknowledge Bus Cycle .................................................... 3-24 
3.24 Typical 82C59A Interface .............................................................. , .. 3-25 
3.25 HALT Bus Cycle ............................................................................... 3.27 
3.26 Returning to HALT After a Refresh Bus Cycle ................................. 3-28 
3.27 Returning to HALT After a DMA Bus Cycle ...................................... 3-29 
3.28 Returning to HAL T After a HOLD/HLDA Bus Exchange .................. 3-29 
3.29 Exiting HALT (Powerdown Mode) ..................................................... 3-30 
3.30 Exiting HALT (Active/Idle Mode) ...................................................... 3-31 
3.31 DEN and DT/R Timing Relationship ................................................ 3-32 
3.32 Buffered AD Bus System .................................................................. 3-32 
3.33 Qualifying DEN with Chip-Selects .................................................... 3-33 
3.34 Queue Status Timing ........................................................................ 3-35 
3.35 Timing Sequence Entering HOLD .................................................... 3-37 
3.36 Refresh Request During Bus Hold ................................................... 3-38 
3.37 Latching HLDA ................................................................................. 3-39 
3.38 Exiting HOLD .................................................................................... 3-41 
4.1 PCB Relocation Register ........ , ......................................................... 4-3 
5.1 Clock Generator ............................................................................... 5-1 
5.2 Ideal Operation of Pierce Oscillator .................................................. 5-2 
5.3 Crystal Connections to Microprocessor ........................................... 5-3 
5.4 Equations for Crystal Calculations ................................................... 5-3 
5.5 Simple RC Circuit for Powerup Reset .............................................. 5-6 
5.6 Cold Reset Waveform ...................................................................... 5-7 
5.7 Warm Reset Waveform .................................................................... 5-8 
5.8 Clock Synchronization at Reset ....................................................... 5-9 
5.9 Power Control Register .................................................................... 5-11 
5.10 Entering Idle Mode ........................................................................... 5-12 
5.11 HOLD/HLDA During Idle Mode ........................................................ 5-12 
5.12 Entering Powerdown Mode .............................................................. 5-15 
5.13 Powerdown Timer Circuit ................................................................. 5-16 
5.14 Power-Save Register ....................................................................... 5-17 
5.15 Power-Save Clock Transition ........................................................... 5-18 
6.1 Common Chip-Select Generation Methods ..................................... 6-1 
6.2 Chip-Select Block Diagram .............................................................. 6-3 
6.3 Chip-Select Relative Timings ........................................................... 6-4 
6.4 UCS Reset Configuration ................................................................. 6-5 
6.5 UMCS Register Definition ................................................................ 6-6 
6.6 LMCS Register Definition ................................................................. 6-7 
6.7 MMCS Register Definition ................................................................ 6-8 

x 



in1:et 

6.8 
6.9 
6.10 
6.11 
6.12 
6.13 
7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 
7.8 
7.9 
8.1 
8.2 
8.3 
8.4 
8.5 

8.6 

8.7 
8.8 
8.9 
8.10 
8.11 
8.12 
8.13 
8.14 
8.15 
8.16 
8.17 
8.18 
8.19 
8.20 
8.21 
9.1 
9.2 
9.3(a) 
9.3(b) 
9.4 
9.5 
9.6 
9.7 
9.8 

TABLE OF CONTENTS 

MPCS Register Definition ................................................................. 6-9 
PACS Register Definition ................................................................. 6-10 
MCS Active Range ........................................................................... 6-13 
Wait State and Ready Control Functions ......................................... 6-14 
Using Chip-Selects During HOLD .................................................... 6-16 
Typical System ................................................................................. 6-17 
Refresh Control Unit Block Diagram ................................................ 7-1 
Refresh Control Unit Operation Flow Chart ..................................... 7-3 
Refresh Address Formation ............................................................. 7-3 
Suggested DRAM Control Signal Timing Relationships .................. 7-6 
Formula for Calculating Refresh Interval for RFTIME Register ....... 7-6 
Refresh Base Address Register ., ..................................................... 7-8 
Refresh Clock Interval Register. ....................................................... 7-8 
Retresh Control Register .................................................................. 7-9 
Regaining Bus Control to Run a DRAM Refresh Bus Cycle ............ 7-12 
Interrupt Control Unit Block Diagram ............................................... 8-2 
Using 8259As in Cascade Mode ...................................................... 8-8 
Interrupt Control Unit Latency and Response Time ......................... 8-10 
Interrupt Control Register Template for Internal Sources ................ 8-12 
Interrupt Control Register Template for 
Non-Cascadeable Interrupt Pins ...................................................... 8-13 
Interrupt Control Register Template tor Cascadeable 
Interrupt Pins .................................................................................... 8-14 
Interrupt Request Register ............................................................... 8-15 
Interrupt Mask Register .................................................................... 8-16 
Priority Mask Register ...................................................................... 8-17 
In-Service Register ....................... ~ ................................................... 8-18 
Poll Register ..................................................................................... 8-19 
Poll Status Register .......................................................................... 8-20 
End-Of-Interrupt Register ................................................................. 8-21 
Interrupt Status Register .................................................................. 8-22 
Interrupt Control Unit In Slave Mode ................................................ 8-24 
Interrupt Sources In Slave Mode ...................................................... 8-24 
Interrupt Vector Register .................................................................. 8-26 
End-at-Interrupt Register in Slave Mode ......................................... 8-27 
Other Registers In Slave Mode ........................................................ 8-27 
Interrupt Vectoring In Slave Mode .................................................... 8-28 
Slave Mode Interrupt Response Time .............................................. 8-29 
Timer/Counter Unit Block Diagram ................................................... 9-1 
Counter Element Multiplexing and Timer Input Synchronization ..... 9-2 
Timers 0 and 1 Flow Chart ............................................................... 9-3 
Timers 0 and 1 Flow Chart (Continued) ........................................... 9-4 
Timer/Counter Unit Output Modes ................................................... 9-5 
Timer 0 and Timer 1 Control Registers ............................................ 9-6 
Timer 2 Control Register .................................................................. 9-7 
Timer Count Registers ..................................................................... 9-8 
Timer Maxcount Compare Registers ............................................... 9-8 

xi 



in1:et 

9.9 
10.1 
10.2 
10.3 
10.4 
10.5 
10.6 
10.8 
10.9 
10.10 
10.11(a) 
10.11(b) 
10.12 
11.1 
11.2 
11.3 
11.4 
12.1 

TABLE OF CONTENTS 

TxOUT Signal Timing ....................................................................... 9-12 
Typical DMA Transfer ....................................................................... 10-2 
DMA Request Minimum Response Time ......................................... 10-4 
Source Synchronized Transfers ....................................................... 10-5 
Destination Synchronized Transfers ................................................ 10-6 
Two Channel DMA Unit.. .................................................................. 10-8 
Examples of DMA Priority ................................................................ 10-10 
DMA Source Pointer (Low Order Bits) ............................................. 10-11 
DMA Destination Pointer (High Order Bits) ...................................... 10-12 
DMA Destination Pointer (Low Order Bits) ....................................... 10-13 
DMA Control Register Bit Positions .................................................. 10-13 
DMA Channel Control Register Bit Descriptions .............................. 10-14 
Transfer Count Register ................................................................... 10-16 
80C187-Supported Data Types ................................ , ....................... 11-8 
80C186 Modular Core Family/80C187 System Configuration ......... 11-9 
80C187 Configuration with Partially Buffered Bus ........................... 11-12 
80C187 Exception Trapping via Processor Interrupt Pin ................. 11-13 
Entering/Leaving ONCE Mode ......................................................... 12-1 

Tables 

2.1 Implicit Use of General Registers ..................................................... 2-5 
2.2 Logical Address Sources .................................................................. 2-11 
2.3 Data Transfer Instructions ................................................................ 2-17 
2.4 Arithmetic Instructions ...................................................................... 2-17 
2.5 Arithmetic Interpretation of 8-Bit Numbers ....................................... 2-18 
2.6 Bit Manipulation Instructions ............................................................ 2-21 
2.7 String Instructions ............................................................................. 2-21 
2.8 String Instruction Register and Flag Use ......................................... 2-21 
2.9 Program Transfer Instructions .......................................................... 2-21 
2.10 Interpretation of Conditional Transfers ............................................. 2-22 
2.11 Processor Control Instructions ......................................................... 2.23 
3.1 Bus Cycle Types ............................................................................... 3-1 0 
3.2 Read Bus Cycle Types ... ; ................................................................. 3-19 
3.3 Read Cycle Critical Timing Parameters ........................................... 3-19 
3.4 Write Bus Cycle Types .......... : .......................................................... 3-22 
3.5 Write Cycle Critical Timing Parameters ........................................... 3-23 
3.6 HALT Bus Cycle Pin States .............................................................. 3-26 
3.7 Queue Status Bit Encoding .............................................................. 3-35 
3.8 Signal Condition Entering HOLD ...................................................... 3-36 
4.1 80C186AE Peripheral Control Block Registers ................................ 4-2 
5.1 Suggested Values for Inductor L1 in Third Overtone 

Oscillator Circuit ., .............................................................................. 5-4 
5.2 Summary of Power Management Modes ......................................... 5-19 
6.1 Chip-Select Unit Registers ............................................................... 6-5 
6.2 MMCS Programming Restrictions .................................................... 6-12 
6.3 PCS Chip-Selects Active Range ...................................................... 6-12 

xii 



inlet. TABLE OF CONTENTS 

7.1 Identification of Refresh Bus Cycles ................................................ 7-4 
8.1 Default Interrupt Priorities .................................................................. 8-4 
8.2 Fixed Interrupt Type ....................................... , ................................. 8-9 
8.3 Interrupt Control Unit Registers in Master Mode .............................. 8-11 
8.4 Interrupt Control Unit Registers In Slave Mode ................................ 8-25 
8.5 Slave Mode Interrupt Type Bits ........................................................ 8-25 
9.1 Timer 0 and 1 Clock Sources ........................................................... 9-9 
9.2 Timer Retriggering ............................................................................ 9-11 
11.1 80C187 Data Transfer Instructions .................................................. 11-3 
11.2 80C187 Arithmetic Instructions ........................................................ 11-4 
11.3 80C187 Comparison Instructions ..................................................... 11-5 
11.4 80C187 Transcendental Instructions ............................................... 11-5 
11.5 80C187 Constant Instructions .......................................................... 11-6 
11.6 80C187 Processor Control Instructions ........................................... 11-6 
11 .7 80C 187 I/O Port Assignments .......................................................... 11-10 

Examples 

5.1 Idle or Powerdown Mode Initialization Code .................................... 5-13 
5.2 Power-Save Initialization Code ........................................................ 5-20 
6.1 Chip-Select Unit Initialization Code .................................................. 6-18 
7.1 Refresh Control Unit Initialization Code ........................................... 7-10 
8.1 Initializing The Interrupt Control Unit ................................................ 8-23 
9.1 Real-Time Clock .............•.................................................................. 9-14 
9.2 Square Wave Generator .................................................................. 9-18 
9.3 Digital One Shot ............................................................................... 9-19 
10.1 DMA Unit Initialization ...................................................................... 10-19 
10.2 Timed DMA Transfers ...................................................................... 10-24 
11.1 Initialization Sequence for 80C187 Math Coprocessor .................... 11-14 
11.2 Floating Point Math Routine Using FSINCOS .................................. 11-15 

xlii 





Introduction 1 

-.~-. 





CHAPTER 1 
INTRODUCTION 

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the 
microcomputer engine of choice. There are literally millions of 8086/8088 based systems in 
the world today. The amount of software written for the 8086/8088 is rivaled by no other 
architecture. 

By the early 1980's, however, it was clear that a replacement for the 8086/8088 was 
necessary. An 8086/8088 system required dozens of support chips to implement even a 
moderately complex design. Intel recognized the need to integrate commonly used system 
peripherals onto the same silicon die as the CPU. In 1982 Intel addressed this need by 
introducing the 80186/80188 family of embedded microprocessors. The original 80186/80188 
integrated an enhanced 808618088 CPU with six commonly used system peripherals. A 
parallel effort within Intel also gave rise to the 80286 microprocessor in 1982. The 80286 
began the trend toward very high performance "x86" compatible CPU s that today includes the 
i386™ and i486™ microprocessors. 

As technology advanced and turned toward small geometry CMOS processes, it became clear 
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186 
family: the 80C186/C188. The 80C186 family is pin compatible with the 80186 family while 
adding an enhanced feature set. The high performance CHMOS III process allowed the 
80C186 to run at twice the clock rate of the NMOS 80186 while consuming less than one 
quarter the power. 

The 80186 family took another major step in 1990 with the introduction of the 80C186EB 
family. The 80C186EB heralded many changes for the 80186 family. First, the enhanced 
8086/8088 CPU was redesigned as a static, stand alone module known as the 80C186 Modular 
Core. Second, the 80186 family peripherals were also redesigned as static modules with 
standard interfaces. The goal behind this redesign effort was to give Intel the capability to 
rapidly proliferate the 80186 family in order to provide solutions for an even wider range of 
customer applications. 

The 80C186EB/C188EB was the first product to use the new modular capability. The 
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power 
consumption was dramatically reduced as a direct result of the static design, power 
management features and advanced CHMOS IV process. The 80C186EB/C188EB has found 
acceptance in a wide array of portable equipment ranging from cellular phones to personal 
organizers. 

In 1991 the 80C186 Modular Core family was extended again with the introduction of three 
new products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XLlC188XL is 
a higher performance, lower power replacement for the older 80C186/C188. The 
80C186EAlC188EA combines the feature set of the 80C186 with power management features 
for power critical applications. For those applications that require higher integration than the' 
80C186EA or 80C186EB can provide, the 80C186EC/C188EC offers the highest level of 

1-1 



INTRODUCTION 

integration of any of the 80C186 Modular Core family products with a total of 14 on-chip 
peripherals. 

The 80C186 Modular Core family is the direct result of ten years of Intel development. It 
offers the designer the peace of mind of a well established architecture with the benefits of 
state of the art technology. 

FEATURE 

ENHANCED 8086 INSTRUCTION SET 

LOW POWER STATIC MODULAR CPU 

POWER SAVE (CLOCK DIVIDE) MODE 

POWER DOWN AND IDLE MODES 

80C187 INTERFACE 

ONCE MODE 

INTERRUPT CONTROL UNIT 

TIMER/COUNTER UNIT 

CHIP-SELECT UNIT 

DMAUNIT 

SERIAL COMMUNICATIONS UNIT 

REFRESH CONTROL UNIT 

WATCHDOG TIMER UNIT 

I/O PORTS 

Figure 1.1. Comparison of 80C186 Modular Core Family Products 

1.1 HOW TO USE THIS MANUAL 

Throughout this manual you will come across phrases such as "80C186 Modular Core. 
Family" or "80C188 Modular Core" as well as references to specific products such as 
"80C188EA". Each of these terms refers to a specific set of 80C186 family products. The 
phrases and the products they refer to are as follows: 

1-2 



intel .. INTRODUCTION 

80C186 Modular Core Family: This phrase refers to any device that uses the 
modular 80C186/C188 CPU core architecture. At this time these include: 
80C 186EAlC 188EA, 80C 186EB/C 188EB, 80C186EC/C188EC and 80C186XU 
C188XL. 

80C186 Modular Core: Without the word family, this refers to just the 16-bit bus 
members of the 80C186 Modular Core Family. 

80C188 Modular Core: This phrase refers to the 8-bit bus products. 

Specific Product References: For example the phrase "On the 80C188EC ... " refers 
strictly to the 80C188EC and not to any other device. 

Each chapter covers a specific section of the device beginning with the CPU core. Each 
peripheral chapter includes programming examples intended to aid in your understanding of 
device operation. Please read the comments carefully, as not all of the examples include all of 
the code necessary for a specific application. 

This user's guide is a supplement to the device data sheet. Specific timing values are not 
discussed in this guide. When designing a system, always consult the most recent version of 
the device data sheet for up to date specifications. 

1-3 





Overview of the 2 
80C186 Family 
Modular Microprocessor 
Core Architecture 





CHAPTER 2 
OVERVIEW OF THE 80C186 FAMILY MODULAR 

MICROPROCESSOR CORE ARCHITECTURE 

The 80C 186 Modular Microprocessor Core shares a common base architecture with the 8086, 
8088, 80186, 80188, 80286, i386™ and i486™ processors. The 80C 186 Modular Core 
maintains full object code compatibility with the 8086/8088 family of 16-bit microprocessors, 
while adding hardware and software performance enhancements. Most instructions require 
fewer clocks to execute on the 80C 186 Modular Core because of hardware enhancements in 
the Bus Interface Unit and the Execution Unit. There are several additional instructions which 
simplify programming and reduce code size (see 80C186 Instruction Set Additions and 
Extensions) . 

2.1. ARCHITECTURAL OVERVIEW 

The 80C 186 Modular Microprocessor Core incorporates two separate processing units: an 
Execution Unit (EU) and a Bus Interface Unit (BID). The Execution Unit is functionally 
identical among all family members. The Bus Interface Unit is configured for a 16-bit external 
data bus for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units 
interface via an instruction prefetch queue. 

The Execution Unit executes instructions and the Bus Interface Unit fetches instructions, reads 
operands and writes results. Whenever the Execution Unit requires another opcode byte, it 
takes the byte out of the prefetch queue. The two units can operate independently of one 
another and are able, under most circumstances, to overlap instruction fetches and execution. 

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic 
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data 
movement between registers, memory and I/O space. 

The 80C 186 Modular Core family CPU allows for high speed data transfer from one area of 
memory to another using string move instructions and between an I/O port and memory using 
block I/O instructions. The CPU also provides many conditional branch and control 
instructions. 

The 80C186 Modular Core architecture features 14 basic registers grouped as general 
registers, segment registers, pointer registers and status and control registers. The four 16-bit 
general purpose registers (AX, BX, CX and DX) may be used as operands for most arithmetic 
operations as either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP) 
may be used in arithmetic operations and in accessing memory-based variables. Four 16-bit 
segment registers (CS, DS, SS and ES) allow simple memory partitioning to aid modular 
programming. The status and control registers consist of an Instruction Pointer (IP) and the 
Processor Status Word register containing flag bits. Figure 2.1 is a simplified CPU block 
diagram. 

2-1 



in1'et 

}~ }~ 

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

ADDRESS BUS (20 BITS) 

LAi DATA 

> 
GENERAL 1 

REGISTERS 
1 

AH AL 
1 

BH BL 
1 " ~ 'US 

l1li( (16 BITS) > CH CL 
1 

DH DL 
1 8P C S 

8P 1 DS 

DI 1 
S S 

81 1 
E S 

1 l' 
:t 

IP 

" ALU DATA BUS INTERNAL 

11' 
COMMUNICATIONS 

), (16 BITS) REGISTERS 

" 1 

1 -I TEMPORARYI~· 
REGISTERS 

1 
BUS 

EXTERNAL 
CONTROL 

M 
1 LOGIC l1li( 
1 

• E U 1 INSTRUcnON J 
QUEUE 

--
CONTROL ~ t-j1 213141516 : : I : : • 

I 
" I I 

SYSTEM l' 

FLAGS 

I 
I~ 

EXECUTION UNIT 
(EU) 

~Q BUS 
1 (8 BITS) 

1 

BUS INTERFACE UNIT 
(BIU) 

Figure 2.1. Simplified Functional Block Diagram of the 
80C186 Modular Core Family CPU 

BUS 

> 

2.1.1. EXECUTION UNIT 

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface 
Unit and manipulates the general registers and the Processor Status Word. The l6-bit ALU 
within the Execution Unit maintains the CPU status and control flags and manipulates the 
general registers and instruction operands. All registers and data paths in the Execution Unit 
are 16 bits wide for fastintemal transfers. 

2-2 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The Execution Unit does not connect directly to the system bus. It obtains instructions from a 
queue maintained by the Bus Interface Unit. When an instruction requires access to memory 
or a peripheral device, the Execution Unit requests the Bus Interface Unit to read and write 
data. Addresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, 
however, performs an address calculation which allows the Execution Unit to access the full 
megabyte of memory space. 

For the Execution Unit to execute an instruction, it must fetch the object code byte from the 
instruction queue and then execute the instruction. If the queue is empty when the Execution 
Unit is ready to fetch an instruction byte, the Execution Unit waits for the instruction byte to 
be fetched by the Bus Interface Unit. 

2.1.2. BUS INTERFACE UNIT 

The 80Cl86 Mqdular Core and 80Cl88 Modular Core Bus Interface Units are functionally 
identical. They are implemented differently to match the structure and performance 
characteristics of their respective system buses. The Bus Interface Unit executes all external 
bus cycles. This unit consists of the segment registers, the Instruction Pointer, the instruction 
code queue and several miscellaneous registers. The Bus Interface Unit transfers data to and 
from the Execution Unit on the ALU data bus. 

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder 
shifts a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived 
from combinations of the pointer registers, the Instruction Pointer and immediate values (see 
Figure 2.2). Any carry from this addition is ignored. 

+ 

19 

2 

o 
15 

SHIFT LEFT 4 BITS 

• ..--------1,11
1_5 _2 __ 3 _4-,0 1 S E G MEN T BAS E } 

3 4: 0 I 10 0 2 21 OFFSET t ~1-5-----,----0~ 

2 2 I "!: 
o 

LI_1 ___ 2_---r __ 6 __ 2-------'1 PHYSICAL ADDRESS 

19 t 0 

TO MEMORY 

Figure 2.2. Physical Address Generation 

2-3 

LOGICAL 

ADDRESS 



int'et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit 
sequentially prefetches instructions from memory. As long as the prefetch queue is partially 
full, the Execution Unit fetches instructions. 

2.1.3. GENERAL REGISTERS 

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2.3). The 
general registers are subdivided into two sets of four registers. These sets are the data registers 
(also called the H & L group for high and low) and the pointer and index registers (also called 
the P & I group). 

DATA 
GROUP 

POINTER 
AND 

INDEX 
GROUP 

r 

\ 

H L 
15 o 

AX 
ACCUMULATOR -~ ~ ----------------- ., -- ------------------ -

AH AL 

BX 
BASE --------------------.,---------------------

BH BL 

CX 
COUNT 

DX 
DATA --------------------.,---------------------

DH DL 

SP STACK POINTER 

BP BASE POINTER 

SI SOURCE INDEX 

DI DESTINATION INDEX 

Figure 2.3. General Registers 

2-4 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The data registers may be addressed by their upper or lower halves. Each data register can be 
used interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always 
accessed as 16-bit values. The CPU can use data registers without constraint in most 
arithmetic and logic operations. Arithmetic and logic operations can also use the pointer and 
index registers. Some instructions use certain registers implicitly (see Table 2.1), allowing 
compact encoding. 

Table 2.1. Implicit Use of General Registers 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, Word 1/0 

AL Byte Multiply, Byte Divide, Byte 1/0, Translate, 
Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

OX Word Multiply, Word Divide, Indirect 1/0 

SP Stack Operations 

SI String Operations 

01 String Operations 

The contents of the general purpose registers are undefined following a processor reset. 

2.1.4. SEGMENT REGISTERS 

The 80C186 Modular Core family memory space is one megabyte in size and divided into 
logical segments of up to 64 Kbytes each. The CPU has direct access to four segments at a 
time. The segment registers contain the base addresses (starting locations) of these memory 
segments (see Figure 2.4). The CS register points to the current code segment, which contains 
instructions to be fetched. The SS register points to the current stack segment, which is used 
for all stack operations. The DS register points to the current data segment, which generally 
contains program variables. The ES register points to the current extra segment, typically used 
for data storage. Programs can access and manipulate the segment registers with several 
instructions. 

The CS register initializes to OFFFFH and the DS, ES and SS registers initialize to OOOOH. 

2-5 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

15 o 

CS CODE SEGMENT 

DS DATA SEGMENT 

SS STACK SEGMENT 

ES EXTRA SEGMENT 

Figure 2.4. Segment Registers 

2.1.5. INSTRUCTION POINTER 

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the 
offset of the next instruction to be fetched. Programs do not have direct access to the 
Instruction Pointer, but it may change, be saved or be restored as a result of program 
execution. For example, if the Instruction Pointer is saved on the stack, it is first automatically 
adjusted to point to the next instruction to be executed. 

Reset initializes the Instruction Pointer to OOOOH. The CS and IP values comprise a starting 
execution address 9f OFFFFOH (see Section 2.1.8 for a description of address formation). 

2.1.6. FLAGS 

The 80C186 Modular Core family has six status flags (see Figure 2.5) that the Execution Unit 
posts as the result of arithmetic or logical operations. Program branch instructions allow a 
program to alter its execution depending on conditions flagged by a prior operation. Different 
instructions affect the status flags differently, generally reflecting the following states: 

• If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the 
high nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low
order byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions. 

• If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order 
bit of the instruction result (8- or 16-bit). This flag is used by instructions that add or 

. subtract multibyte numbers. Rotate instructions can also isolate a bit in memory or a 
register by placing it in the Carry Flag. 

2-6 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

• If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit 
has been lost because the size of the result exceeded the capacity of its destination 
location. An Interrupt On Overflow instruction is available that will generate an interrupt 
in this situation. 

• If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary 
numbers are represented in standard two's complement notation, SF indicates the sign of 
the result (0 = positive, 1 = negative). 

• If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag 
can be used to check for data transmission errors. 

• If the Zero Flag (ZF) is set, the result of the operation is zero. 

Additional control flags (see Figure 2.5) can be set or cleared by programs to alter processor 
operations: 

• Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are 
processed from the high address to the low address or "right to left". Clearing DF causes 
string operations to auto-increment on process strings "left to right". 

• Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or 
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag 
has no effect on software interrupts or non-maskable, interrupts. 

• Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In 
this mode, the CPU automatically generates an interrupt after each instruction. This 
allows a program to be inspected instruction by instruction during execution. 

Both the status and control flags are contained in a 16-bit Processor Status Word (see Figure 
2.5). Reset initializes the Processor Status Word to OFOOOH. 

2.1.7. MEMORY SEGMENTATION 

Programs for the 80C186 Modular Core family view the one megabyte memory space as a 
group of user-defined segments. A segment is a logical unit of memory that may be up to 64 
Kbytes long. Each segment is composed of contiguous memory locations. Segments are 
independent and separately-addressable. Software assigns every segment a base address 
(starting location) in memory space. All segments begin on 16-byte memory boundaries. 
There are no other restrictions on segment locations. Segments may be adjacent, disjoint, 
partially overlapped or fully overlapped (see Figure 2.6). A physical memory location may be 
mapped into (covered by) one or more logical segments. 

2-7 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Register Name: 
Register Mnemonic: 
Register Function: 

Processor Status Word 
PSW (FLAGS) 
Posts CPU status information. 

o 
o D I T s Z 
F F F F F F 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

OF Overflow Flag 0 If OF is set, an arithmetic overflow has 
occurred. 

DF Direction Flag 0 If DF is set, string instructions are processed 
high address to low address. If DF is clear, 
strings are processed low address to high 
address. 

IF Interrupt 0 If IF is set, the CPU will recognize maskable 
Enable Flag interrupt requests. If IF is clear, maskable 

interrupts are ignored. 

TF Trap Flag 0 If TF is set, the processor will enter single-step 
mode. 

SF Sign Flag 0 If SF is set, the high-order bit of the result of an 
operation is 1, indicating it is negative. 

ZF Zero Flag 0 If ZP is set, the result of an operation is zero. 

AF Auxiliary 0 If AF is set, there has been a carry from the low 
Carry Flag nibble to the high or a borrow from the high 

nibble to the low nibble of an 8-bit quantity. 
Used in BCD operations. 

PF Parity Flag 0 If PF is set, the result of an operation has even 
parity. 

CF Carry Flag 0 If CF is set, there has been a carry out of, or a 
borrow into, the high-order bit of the result of an 
instruction. 

NOTE: Reserved register bits are shown with gray shading. 

Figure 2.5. Processor Status Word 

2-8 



inlet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

FULLY 
OVERLAPPED 

PARTLY ~I SEGMENT D 
OVERLAPPED ____ \f-! --------' 

CONTIGUOUS ~ SEGMENT C 

~~! 
SEGMENT A I SEGME~TB 

OH 10000H 20000H 

DISJOINT 

30000H 

Figure 2.6. Segment Locations in Physical Memory 

LOGICAL 
SEGMENTS 

The four segment registers point to four "currently addressable" segments (see Figure 2.7). 
The currently addressable segments provide a work space consisting of 64 Kbytes for code, a 
64 Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another 
segment by updating the segment register to point to the new segment. 

2.1.8. LOGICAL ADDRESSES 

It is useful to think of every memory location as having two kinds of addresses, physical and 
logical. A physical address is a 20-bit value that identifies a unique byte location in the 
memory space. Physical addresses range from OH to OFFFFFH. All exchanges between the 
CPU and memory use physical addresses. 

Programs deal with logical rather than physical addresses. Program code can be developed 
without prior knowledge of where the code will be located in memory. A logical address 
consists of a segment base value and an offset value. For any given memory location, the 
segment base value locates the first byte of the segment. The offset value represents the 
distance, in bytes, of the target location from the beginning of the segment. Segment base and 
offset values are unsigned 16-bit quantities. Many different logical addresses can map to the 
same physical location. In Figure 2.8, physical memory location 2C3H is contained in two 
different overlapping segments, one beginning at 2BOH and the other at 2COH. 

2-9 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

FFFFFH 

A 

B 

DATA: OS: B ~--- > tJ 
CODE: CS: E ~--l 

1 0 
STACK: SS: H ~-I 1 

1 

h 1 E 

tJ EXTRA: ES: 1 1 
~ 

1 1 
1 1 

G 
H 

1 1_----> 
1 

1 

1 
~ ---

K 

OH 

Figure 2.7. Currently Addressable Segments 

The segment register is automatically selected according to the rules in Table 2.2. All 
information in one segment type generally shares the same logical attributes (e.g., code or 
data). This leads to programs which are shorter, faster and better structured. 

The Bus Interface Unit must obtain the logical address before generating the physical address. 
The logical address of a memory location can come from different sources, depending on the 
type of reference that is being made (see Table 2.2). 

Segment registers always hold the segment base addresses. The Bus Interface Unit determines 
which segment register contains the base address according to the type of memory reference 
made. However, the programmer can explicitly direct the Bus Interface Unit to use any 
currently addressable segment (except for the destination operand of a string instruction). In 
assembly language, this is done by preceding an instruction with a segment override prefix. 

2-10 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

PHYSICAL 
ADDRESS 

LOGICAL 
ADDRESSES i 

f 

\. 

SEGMENT 
BASE 

SEGMENT 
BASE 

,-r' 

... 

t l' 
,. 

OFFSET 
(3H) 

~ 

OFFSET 
(13H) 

.... , 

Figure 2.8. Logical and Physical Address 

Table 2.2. Logical Address Sources 

DEFAULT ALTERNATE 
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT 

BASE BASE 

Instruction Fetch CS NONE 

Stack Operation SS NONE 

Variable (except following) DS CS,ES,SS 

String Source DS CS, ES, S8 

String Destination ES NONE 

BP Used As Base Register SS CS, DS, ES 

2-11 

,-r' 

IP 

SP 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

C4H 

C3H 

C2H 
C1H 
COH 
BFH 
BEH 
BDH 
BCH 
BBH 

BAH 
B9H 
BaH 
B7H 
B6H 
B5H 
B4H 
B3H 
B2H 
B1H 
BOH 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

OFFSET 

Effective Address 

SI 

DI 

Effective Address 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Instructions are always fetched from the aurrent code segment. The IP register contains the 
instruction's offset from the beginning of the segment. Stack instructions always operate on 
the current stack segment. The Stack Pointer (SP) register contains the offset of the top of the 
stack from the base of the stack. Most variables (memory operands) are assumed to reside in 
the current data segment,but a program can instruct the Bus Interface Unit to override this 
assumption. Often, the offset of a memory variable is not directly available and must be 
calculated at execution time. The addressing mode specified in the instruction determines how 
this offset· is calculated (see Section 2.2.2). The result is called the operand's Effective 
Address (EA). 

Strings are addressed differently than other variables. The source operand. of a string 
instruction is assumed to lie in the current data segment However, the program may use 
another currently addressable segment. The operand's offset is taken from the Source Index 
(SI) register. The destination operand of a string instruction always resides in the current extra 
segment. The destination's offset is taken from the Destination Index (DI) register. The string 
instructions automatically adjust the SI and DI registers as they process the strings one byte or 
word at a time. . 

When an instruction designates the Base Pointer (BP) register as a base register, the variable is 
assumed to reside in the current stack segment. The BP register provides a convenient way to 
access data on the stack. The BP register can also be used to access data in any other currently 
addressable segment. 

2.1.9. DYNAMICALLY RELOCATABLE CODE 

The segmented memory structure of the 80C186 Modular Core family allows creation of 
dynamically relocatable (position-independent) programs. Dynamic relocation allows a 
multiprogramming or multitasking system to make effective use of available memory. The 
processor can write inactive programs to a disk and reallocate the space they occupied to other 
programs. A disk-resident program can then be read back into available memory locations and 
restarted whenever it is needed. If a program needs a large contiguous block of storage and the 

. total amount is only available in non-adjacent fragments, other program segments can be 
compacted to free up enough continuous space. This process is illustrated graphically in 
Figure 2.9. 

To be dynamically relocatable, a program must not load or alter its segment registers and must 
not transfer directly to a location outside the current code segment. All program offsets .must 
be relative to the segment registers. This allows the program to be moved anywhere in 
memory provided the segment registers are updated to point to the new base addresses. 

2-12 



inlet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

BEFORE AFTER 
RELOCATION RELOCATION 

CODE 
SEGMENT 

.I 

'I CS CS 

- SS SS r---
STACK 

,--- DS DS t---

SEGMENT -
ES .I 

ES f-

""'" 

CODE 
SEGMENT 

DATA , 
SEGMENT STACK , , SEGMENT 

" , 
DATA 

SEGMENT 
" , 

EXTRA EXTRA 

SEGMENT .I " 
SEGMENT - -

c=J FREE SPACE 

Figure 2.9. Dynamic Code Relocation 

2.1.10. STACK IMPLEMENTATION 

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the 
Stack Segment register (SS) and the Stack Pointer (SP). A system may have multiple stacks. A 
stack may be up to 64 Kbytes long, the maximum kngth of a segment. Growing a stack 
segment beyond 64 Kbytes overwrites the beginning of the segment. Only one stack is directly 
addressable at a time. The SS register contains the base address of the current stack. The top of 
the stack, not the base address, is the origination point of the stack. The SP register contains an 
offset which points to the Top Of Stack (TOS). 

2-13 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one 
word at a time. An element is pushed onto the stack (see Figure 2.10) by first decrementing 
the SP register by 2 and then writing the data word. An element is popped off the stack by 
copying it from the top of the stack and then incrementing the SP register by 2. The stack 
grows down in memory toward its base address. Stack operations never move or erase 
elements on the stack. The top of the stack changes only as a result of updating the stack 
pointer. 

2.1.11. RESERVED MEMORY AND 1/0 SPACE 

Two specific areas in memory and one area in 1/0 space are reserved in the 80C186 Core 
family. 

• Locations OH through 3FFH in low memory are used for the Interrupt Vector Table. 
Programs should not be loaded here. 

• Locations OFFFFOH through OFFFFFH in high memory are used for system reset code 
since the processor begins execution at OFFFFOH. 

• Locations OF8H through OFFH in 1/0 space are reserved for communication with other 
Intel hardware products and may not be used. On the 80C186 core, these addresses are 
used as 1/0 ports for the 80C187 numerics processor extension. 

2.2. SOFTWARE OVERVIEW 

A1l80C186 Modular Core family members execute the same instructions. This includes all the 
8086/8088 instructions plus several additions and enhancements (see 80C186 Instruction Set 
Additions and Extensions). The following sections provide a description of the instructions by 
category and a detailed discussion of the operand addressing modes. 

Software. for 80C 186 core family systems does not need to be written in assembly language. 
The processor provides direct hardware support for programs written in the many high-Ieve.l 
languages available. The hardware addressing modes provide straight forward 
implementations of based variables, arrays, arrays of structures and other high-level language 
data constructs. A powerful set of memory-to-memory string operations allow efficient 
character data manipulation. Finally, routines with critical performance requirements may be 
written in assembly language and linked with high-level code. 

2-14 



int'et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

POP AX 
POPBX 

PUSH AX 10 1 50 j.-. 
EXISTING I 

AX 112 f-I STACK 34 I BB 1 AA kl 
,-" ,-" ,-r' ,-r' I II 

1062 00 11 t 1062 00 11 I 1062 00 11 " 1060 22 33 1060 22 33 I 1060 22 33 " 105E 44 55 :::;;:~ 105E 44 55 I 105E 44 55 II 
0° I " 105B 66 T7 1=j5 105B 66 T7 TOS 105B 66 T7 ocn 

I " TOS 105A 88 99 a:>15 105A 88 99 ~105A 88 99 

~1058 AA BB TOS 1058 AA BB f 1058 AA BB ~I 

1056 01 23 ~1056 34 12 ~ 1056 34 12 ~ }~~ 1054 45 67 
t-O 

1054 45 67 1054 45 67 zj5 
llicn 

89 AB 1052 1052 89 AB w w 1052 89 AB rr::c 

,1050 
o..t-

,1050 ,1050 CD EF t-z CD EF CD EF 00 z 

10 50 SS 10 50 SS 10 50 SS 

100 08 SP 00 06 SP I 00 OA SP 

STACK OPERATION FOR CODE SEQUENCE 

PUSH AX 
POP AX 
POPBX 

Figure 2.10. Stack Operation 

2.2.1. INSTRUCTION SET 

The 80C186 Modular Core family instructions treat different types of operands uniformly. 
Nearly every instruction can operate on either byte or word data. Register, memory and 
immediate operands may be specified interchangeably in most instructions. The exception to 
this is immediate values must serve as source operands and not destination operands. Memory 
variables may be added to, subtracted from, shifted, compared, etc., without moving them in 
and out of registers. This saves instructions, registers and execution time in assembly language 
programs. In high-level languages, where most variables are memory-based, compilers can 
produce faster and shorter object programs. 

2·15 



in1'et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One 
is the assembly level and the other is the machine level. To the assembly language 
programmer, the 80C186 Modular Core family appears to have about 100 instructions. One 
MOV (data move) instruction, for example, trallsfers 'a byte or a word from a register, a 
memory location or an immediate value to either a"register or a memory location. The 80C186 
Modular Core family CPUs, however, recognize 28 different machine versions of the MOV 
instruction. 

The two levels of instruction sets address two requirements: efficiency and simplicity. 
Approximately 300 forms of machine-level instructions make very efficient use of storage. 
For example, the machine instruction that increments a memory operand is three or four bytes 
long because the address of the operand must be enq)ded in the instruction. To increment a 
register, however, does not require as much information, so the instruction can be shorter. The 
80C186 Core family has eight one byte machine-level instructions that increment different 16-
bit registers. 

The assembly level instructions simplify the programmer's view of the instruction set. The 
programmer writes one form of an INC (increment) instruction and the assembler examines 
the operand to determine which machine level instruction to generate. The following 
paragraphs provide a functional description of ~h~ assembly-level instructions. 

2.2.1.1. DATA TRANSFER INSTRUCTIONS 

The instruction set contains 14 data transfer instructions. These instructions move single bytes 
and words between memory and registers. They also move single bytes and words between the 
AL or AX registers and 110 ports. Table 2.3 lists the four types of data transfer instructions 
and their functions. 

Data transfer instructions are categorized as general purpose, input/output, address object and 
flag transfer. The stack manipulation instructions, used for transferring flag contents and 
instructions used for loading segment registers are also included in this group. Figure 2.11 
shows the flag storage formats. The address object instructions manipulate the addresses of 
variables instead of the values of the variables. 

2-16 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.3. Data Transfer 
Instructions 

GENERAL PURPOSE 

MOV Move byte or word 

PUSH Push word onto stack 

POP Pop word off stack 

PUSHA Push registers onto stack 

POPA Pop registers off stack 

XCHG Exchange byte or word 

XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 

OUT Output byte or word 

ADDRESS OBJECT AND STACK FRAME 

LEA Load effective address 

LDS Load painter using DS 

LES Load pointer using ES 

ENTER Build stack frame 

LEAVE Tear down stack frame 

FLAG TRANSFER 

LAHF Load AH register from flags 

SAHF Store AH register in flags 

PUSHF Push flags onto stack 

POPF Pop flags off stack 

Table 2.4. Arithmetic Instructions 

ADDITION 

ADD Add byte or word 

ADC Add byte or word with carry 

INC Increment byte or word by 1 

AAA ASCII adjust for addition 

DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 

SBB Subtract byte or word with borrow 

DEC Decrement byte or word by 1 

NEG Negate byte or word 

CMP Compare byte or word 

AAS ASCII adjust for subtraction 

DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 

IMUL Integer multiply byte or word 

AAM . ASCII adjust for multiplication 

DIVISION 

DIV Divide byte or word unsigned 

IDIV Integer divide byte or word 

AAD ASCII adjust for division 

CBW Convert byte to word 

CWD Convert word to doubleword 

2-17 



inlet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.5. Arithmetic Interpretation of 8-Bit Numbers 

HEX BIT PATTERN UNSIGNED SIGNED UNPACKED PACKED 
BINARY BINARY DECIMAL DECIMAL 

07 00000111 7 +7 7 7 
89 10001001 137 -119 .. invalid 89 
C5 11000101 197 -59 invalid invalid 

~~~ IS,Z,U,A,U,P,u,cl 

PUSHF 
POPF 

IU,U,U,U,O,D,I 

15 14 13 12 11 10 9 

U = Undefined; Value is indeterminate 
o = Overflow Flag 
D = Direction Flag 
I = Interrupt Enable Flag 
T = Trap Flag 
S = Sign Flag 
Z = Zero Flag 
A = Auxiliary Carry Flag 
P = Parity Flag 
C = Carry Flag 

, 

7 6 5 4 320 

T ,S ,z ,U ,A ,u"p,u,c[ 

8 7 6 5 4 3 2 0 

Figure 2.11. Flag Storage Format 

2.2.1.2. ARITHMETIC INSTRUCTIONS 

The arithmetic instructions (see Table 2.4) operate on foW" types of numbers: 

• Unsigned binary 

.• Signed binary (integers) 

• Unsigned packed decimal 

• Unsigned unpacked decimal 

Table 2.5 shows the interpretations of various bit patterns according to number type. 

2-18 



int:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Binary numbers may be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per 
byte for packed decimal and one digit per byte for unpacked decimal. The processor assumes 
that the operands in arithmetic instructions contain data that represents valid numbers for that 
instruction. Invalid data may produce unpredictable results. The Execution Unit analyzes 
arithmetic instruction's results and adjusts status flags accordingly. 

2.2.1.3. BIT MANIPULATION INSTRUCTIONS 

There are three groups of instructions for manipulating bits within bytes and words. These 
three groups are logical, shifts and rotates. Table 2.6 lists these three groups of bit 
manipulation instructions with their functions. 

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR). 
Logical instructions also include a TEST instruction that sets the flags as a result of a Boolean 
AND operation, but does not alter either of its operands. 

Individual bits in bytes and words can be shifted arithmetically or logically. Up to 32 shifts 
may be performed, according to the value of the count operand coded in the instruction. The 
count may be specified as an immediate value or as a variable in the CL register. This allows 
the shift count to be a supplied at execution time. Arithmetic shifts can be used to multiply and 
divide binary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or 
words. 

Individual bits in bytes and words can also be rotated. The processor does not discard the bits 
rotated out of an operand. The bits circle back to the other end of the operand. The number of 
bits to be rotated is taken from the count operand, which may specify either an immediate 
value or the CL register. The carry flag may act as an extension of the operand in two of the 
rotate instructions. This allows a bit to be isolated in the Carry Flag (CF) and then tested by a 
JC (jump if carry) or JNC (jump if not carry) instruction. 

2.2.1.4. STRING INSTRUCTIONS 

Five basic string operations process strings of bytes or words, one element (byte or word) at a 
time. Strings of up to 64 Kbytes may be manipulated with these instructions. Instructions are 
available to move, compare or scan for a value, as well as move string elements to and from 
the accumulator. Table 2.7 lists the string instructions. These basic operations may be 
preceded by a one-byte prefix that causes the instruction to be. repeated by the hardware, 
allowing long strings to be processed much faster than with a software loop. The repetitions 
can be terminated by a variety of conditions. Repeated operations may be interrupted and 
resumed. 

String instructions operate similarly in many respects (see Table 2.8). A string instruction may 
have a source operand, a destination operand or both. The hardware assumes that a source 
string resides in the current data segment. A segment prefix may override this assumption. A 
destination string must be in the current extra segment. The assembler does not use the 
operand names to address strings. Instead, the contents of the Source Index (SI) register are 

2-19 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

used as an offset to address the current element of the source string. The contents of the 
Destination Index (DI) register are taken as the offset of the current destination string element. 
These registers must be initialized to point to the source/destination strings before executing 
the string in.structions. The LDS, LES and LEA instructions are useful in performing this 
function. 

String instructions automatically update the SI, DI or both registers prior to processing the 
next string element. The Direction Flag (DF) determines whether the index registers are auto
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, SI or both 
registers by one for byte strings or two for word strings. . 

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of 
the string instruction. The CX register must be initialized to the number of repetitions before 
the string instruction is executed. If the CX register is 0, the string instrUction is not executed 
and control goes to the following instruction. 

2.2.1.5. PROGRAM TRANSFER INSTRUCTIONS 

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the 
instruction execution sequence in the 80C186 Modular Core family. The CS register contains 
the base address of the current code segment. The Instruction Pointer register points to the 
memory location of the next in§truction to be fetched. In most operating conditions, the next 
instruction will already have been fetched and will be waiting in the CPU instruction queue. 
Program transfer instructions operate on the IP and CS registers. Changing the contents of 
these registers causes normal sequential operation to be altered. When a program transfer 
occurs, the queue no longer contains the correct instruction. The Bus Interface Unit obtains the 
next instruction from memory using the new IP and CS values. It then passes the instruction 
directly to the Execution Unit and begins refilling the queue from the new location; 

The 80C186· Modular Core family offers four groups of program transfer instructions (see 
Table 2.9). Thes~ are_ unconditional transfers, conditional transfers, iteration control 
instructions and interrupt-related instructions. 

Unconditional transfer instructions may transfer control to a target instruction within the 
.current code segment (intrasegment transfer) or to' a different code segment (intersegment 
transfer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment 
transfer FAR. The transfer is made unconditionally when the instruction is executed. CALL, 
RET and JMP are all unconditional transfers. CALL is used to transfer the program to a 
procedure. A CALL can be NEAR or.FAR. A NEAR CALL will stack only the Instruction 

. Pointer, while a FAR CALL will stack the Instruction Pointer and the Code Segment register. 
The ~T instruction uses the information pushed onto the stack to determine where to return 
when the procedure finishes. Note: the RET and CALL instructions must be the same type. 
This can be a problem when the CALL and RET instructions are in. separately assembled 
programs. The JMP instruction does not push any information onto the stack. A IMP 
instruction may be NEAR or FAR. 

2-20 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Table 2.6 Bit Manipulation 
Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHUSAL Shift logical/arithmetic left 
byte or word 

SHR Shift logical right byte or 
word 

SAR Shift arithmetic right byte or 
word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left 

byte or word 
RCR Rotate th rough carry right 

byte or word 

Table 2.7 String Instructions 

REPE/ Repeat while equal/zero 
REPZ 
REPNE/ Repeat while not equal/not 
REPNZ zero 
MOVSB/ Move byte or word string 
MOVSW 
MOVS Move byte or word string 

INS Input byte or word string 

OUTS Output byte or word string 
CMPS Compare byte or word string 
SCAS Scan byte or word string 
LODS Load byte or word string 

STOS Store byte or word string 

Table 2.8. String Instruction Register and 
Flag Use 

SI 

DI 
CX 
AUAX 

DF 

ZF 

Index (offset) for source string 

Index (offset) for destination string 
Repetition counter 
Scan value 
Destination for LODS 
Source for STOS 

o = auto-increment SI, DI 

1 = auto-decrement SI, DI 
Scan/compare terminator 

Table 2.9. Program Transfer Instructions 

CONDITIONAL TRANSFERS 

JAlJNBE Jump if above/not below nor equal 
JAE/JNB Jump if above or equal/not below 
JB/JNAE Jump if below/not above nor equal 
JBE/JNA Jump if below or equal/not above 

JC Jump if carry 
JE/JZ Jump if equal/zero 

JG/JNLE Jump if greater/not less nor equal 
JGE/JNL Jump if greater or equal/not less 
JUJNGE Jump if less/not greater nor equal 

JLE/JNG Jump if less or equal/not greater 

JNC Jump if not carry 
JNE/JNZ Jump if not equal/not zero 
JNO Jump if not overflow 

JNP/JPO Jump if not parity/parity odd 

JNS Jump if not sign 

JO Jump if overflow 
JP/JPE Jump if parity/parity even 

JS Jump if sign 

ITERATION CONTROL 

LOOP Loop 
LOOPEILOOPZ Loop if equal/zero 
LOOPNEILOOPNZ Loop if not equal/not zero 
JCXZ Jump if register CX=O 

INTERRUPTS 

INT Interrupt 
INTO Interrupt if overflow 
BOUND Interrupt if out of array bounds 
IRET Interrupt return 

2-21 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Conditional transfer instructions are jumps that mayor may not transfer control. This depends 
on the state of the CPU flags when the instruction is executed. These 18 instructions (see 
Table 2.10) each test a different combination of flags for a condition. If the condition is 
logically TRUE, control is transferred to the target specified in the instruction. If the condition 
is FALSE, control passes to the instruction following the conditional jump. All conditional 
jumps are SHORT. The target must be in the current code segment within -128 to +127 bytes 
of the next instruction's first byte. For example, JMP OOH causes a jump to the first byte of the 
next instruction. Jumps are made by adding the relative displacement of the target to the 
Instruction Pointer. All conditional jumps are self-relative and are appropriate for position
independent routines. 

Table 2.10. Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ... " 
JAlJNBE (CF or ZF)=O above/not below nor equal 
JAE/JNB CF=O above or equal/not below 
JB/JNAE CF=1 below/not above nor equal 
JBE/JNA (CF or ZF)=1 below or equal/not above 

JC CF=1 carry 
JElJZ ZF=1 equal/zero 
JG/JNLE ((SF xor OF) orZF)=O greater/not less nor equal 

JGE/JNL (SF xor OF)=O greater or equal/not less 

JUJNGE (SF xor OF)=1 less/not greater nor equal 
JLE/JNG ((SF xor OF) or ZF)=1 less or equal/not greater 

JNC CF=O not carry 

JNE/JNZ ZF=O not equal/not zero 

JNO OF=O not overflow 

JNP/JPO PF=O not parity/parity odd 
JNS SF=O not sign 

JO OF=1 overflow 

JP/JPE PF=1 parity/parity equal 
JS SF=1 sign 

" " " " Note: above and below refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

Iteration control instructions can be used to regulate the repetition of software loops. These 
instructions use the CX register as a counter. Like the conditional transfers, the iteration 
control instructions are self-relative and may only transfer to targets that are within -128 to 
+127 bytes of themselves. They are SHORT transfers. 

The interrupt instructions allow interrupt service routines to be activated by programs and 
external hardware devices. The effect of software interrupts is similar to hardware-initiated 
interrupts. The processor cannot execute an interrupt acknowledge bus cycle if the interrupt 
originates in software or with an NMI (Non-Maskable Interrupt). 

2-22 



inlet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.2.1.6. PROCESSOR CONTROL INSTRUCTIONS 

Processor control instructions (see Table 2.11) allow programs to control various CPU 
functions. One group of instructions updates flags and another group is used primarily for 
synchronizing the microprocessor to external events. Another instruction causes the CPU to do 
nothing. Except for flag operations, processor control instructions do not affect the flags. 

Table 2.11. Processor Control Instructions 

FLAG OPERATIONS 

STC Set Carry flag 
CLC Clear Carry flag 

CMC Complement Carry flag 
STD Set Direction flag 
CLD Clear Direction flag 
STI Set Interrupt Enable flag 
CLI Clear Interrupt Enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST# pin active 
ESC Escape to extemal processor 
LOCK Lock bus during next instruction 

NO OPERATION 
Nap No operation 

2.2.2. ADDRESSING MODES 

The 80C186 Modular Core family members access instruction operands in several ways. 
Operands may be contained in registers, the instruction itself, memory or at 1/0 ports. 
Addresses of memory and 1/0 port operands can be calculated in many ways. These 
addressing modes greatly extend the flexibility and convenience of the instruction set. The 
following paragraphs briefly describe register and immediate modes of operand addressing. A 
detailed description of the memory and 1/0 addressing modes is also provided. 

2.2.2.1. REGISTER AND IMMEDIATE OPERAND ADDRESSING MODES 

Usually, the fastest, most compact operand addressing forms specify only register operands. 
This is because the register operand addresses are encoded in instructions in just a few bits and 
no bus cycles are run (the operation occurs within the CPU). Registers may serve as source 
operands, destination operands or both. 

Immediate operands are constant data contained in an instruction. Immediate data may be 
either 8 or 16 bits in length. Immediate operands are available directly from the instruction 
queue and can be accessed quickly. Like the register operand, no bus cycles need to be run to 

2-23 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

get an immediate operand. Immediate operands can only be source operands and must have a 
constant value. 

2.2.2.2. MEMORY ADDRESSING MODES 

Although the Execution Unit has direct access to register and immediate operands, memory 
operands must be transferred to and from the CPU over the bus. When the Execution Unit 
needs to read or write a memory operand, it must pass an offset value to the Bus Interface 
Unit. The Bus Interface Unit adds the offset to the shifted contents of a segment register 
producing a 20-bit physical address. One or more bus cycles are then run to access the 
operand. 

The offset that the Execution Unit calculates for memory operand is called the operand's 
effective address (EA). This address is an unsigned 16-bit number that expresses the operand's 
distance, in bytes, from the beginning of the segment where it resides. The Execution Unit can 
calculate the effective address in several ways. Information encoded in the second byte of the 
instruction tells the Execution Unit how to calculate the effective address of each memory 
operand. A compiler or assembler derives this information from the instruction written by the 
programmer. Assembly language programmers have access to all addressing modes. 

The Execution Unit calculates the Effective Address by summing a displacement, the contents 
of a base register and the contents of an index register (see Figure 2.12). Any combination of 
these may be present in a given instruction. This allows a variety of memory addressing 
modes. 

The displacement is an 8- or 16-bit number contained in the instruction. The displacement 
generally is derived from the position of the operand's name (a variable or label) in the 
program. The programmer can modify this value or explicitly specify the displacement. 

The BX or BP register may be specified as the base register for an effective address 
calculation. 

Similarly, either the SI or DI register may be specified as the index register. The displacement 
value is a constant. The contents of the base and index registers may change during execution. 
This allows one instruction to access different memory locations depending upon the current 
values in the base or base and index registers. The default base register for effective address 
calculations with the BP register is SS, although DS or ES may be specified. 

Direct addressing is the simplest memory addressing mode (see Figure 2.13). No registers are 
involved and the effective address is taken directly from the displacement of the instruction. 
The programmer typically uses direct addressing to access scalar variables. 

2·24 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

ENCODED 
IN THE 

INSTRUCTION 

EXPLICIT 
IN THE 

INSTRUCTION 

ASSUMED UNLESS 
OVERRIDDEN 

BY PREFEX 

SINGLE INDEX 

{ 

DOUBLE INDEX 

DISPLACEMENT 
L __ --'--_-----' 

EFFECTIVE 
ADDRESS 

PHYSICAL ADDR 

Figure 2.12. Memory Address CQmputation 

L-_O_PC_O_DE ____ L-_M_OD_~_M ____ L_ ____ DI_SP_LA_C_EM~;ENT ~~~~ 

c6 
Figure 2.13. Direct Addressing 

2-25 

EU 

BIU 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

With register indirect addressing, the effective address of a memory operand may be taken 
directly from one of the base or index registers (see Figure 2.14). One instruction can operate 
on various memory locations if the base or index register is updated accordingly. Any 16-bit 
general register may be used for register indirect addressing with the JMP or CALL . . ", InstructIOns. 

In based addressing (see Figure 2.15), the effective address is the sum of a displacement value 
and the contents of the BX or BP register. Specifying the BP register as a base register directs 
the Bus Interface Unit to obtain the operand from the current stack segment (unless a segment 
override prefix is present). This makes based addressing with the BP register a convenient way 
to access stack data. 

OPCODE MOD RIM 

BX 
1---.f"IR 

BP 
t---oR 

DI 

Figure 2.14. Register Indirect Addressing 

EA 

'--_O_P_CO_D_E __ --''---_M_O_D..,RIM ____ ....L... _____ D_IS_PL_A_C+EMENT -= -= -= J 

BX 
~~--'OR----r---__ ~ 

BP 

EA 

Figure 2.15. Based Addressing 

2-26 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Based addressing provides a simple way to address data structures which may be located in 
different places in memory (see Figure 2.16). A base register can be pointed at the structure. 
Elements of the structure can then be addressed by their displacement. Different copies of the 
same structure can be accessed by simply changing the base re~ister. 

HIGH ADDRESS 
DISPLACEMENT DISPLACEMENT 

AGE STATUS 

RATE 

VAC SICK 

I DEPT DIV -I 

I I 
~ EMPLOYEE I I I 

L _______ I I 
-Y' -Y' I 

I 
I 

AGE I 
I 
I 

VAC SICK I 
DEPT DIV I 

EMPLOYEE 
________ -.J 

LOW ADDRESS 

Figure 2.16. Accessing a Structure with Based Addressing 

With indexed addressing, the effective address is calculated by summing a displacement and 
the contents of an index register (SI or DI, see Figure 2.17). Indexed addressing is often used 
to access elements in an array (see Figure 2.18). The displacement locates the beginning of the 
array and the value of the index register selects one element. If the index register contains 
OOOOH, the processor selects the first element. Since all array elements are the same length, 
simple arithmetic on the register may select any element. 

2-27 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

I OPCODE I MOD RIM I DISPLACEMENT = = = j 
I 

SI 

" OR " + , , 
DI 

W 

I EA I 

Figure 2.17. Indexed Addressing 

I 
I 
I 
: INDEX REGISTER 

I 
I 
I 
I EA 

L _______ _ 

HIGH ADDRESS 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

ARRAY (0) 

1 WORD 
LOW ADDRESS 

'--------,-----'~ I 

INDEX REGISTER 

I 
I 
I 
I 
I 
I 
I 

EA I 

----------' 

Figure 2.18. Accessing an Array with Indexed Addressing 

2-28 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Based index addressing generates an effective address which is the sum of a base register, an 
index register and a displacement (see Figure 2.19). The two address components can be 
determined at execution time, making this a very flexible addressing mode. 

1----1 
I I I OPCODE MOD RIM DISPLACEMENT ___ J 

BX 
... 

OR 
... + , , 

BP 

SI ,~ 

'" "R ... + ,. ,. 
DI 

,~ 

I EA I 

Figure 2.19. Based Index Addressing 

Based index addressing provides a convenient way for a procedure to address an array located 
on a stack (see Figure 2.20). The BP register can contain the offset of a reference point on the 
stack. This is typically the top of the stack after the procedure has saved registers and allocated 
local storage. The offset of the beginning of the array from the reference point can be 
expressed by a displacement value. The index register can be used to access individual array 
elements. Arrays contained in structures and matrices (two-dimensional arrays) can also be 
accessed with based indexed addressing. 

String instructions do not use normal memory addressing modes to access operands. Instead, 
the index registers are used implicitly (see Figure 2.21). When a string instruction executes, 
the SI register must point to the first byte or word of the source string. The DI register must 
point to the first byte or word of the destination string. In a repeated string operation, the CPU 
will automatically adjust the SI and DI registers to obtain subsequent bytes or words. For 
string instructions, the DS register is the default segment register for the SI register and the ES 
register is the default segment register for the DI register. This allows string instructions to 
operate on data located anywhere within the one megabyte address space. 

2-29 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

High Address 

Displacement PARM2 Displacement 

PARM 1 
I 

IP I I 
I Old BP 

I 
I Old BX 

I I I I Old AX 
I I I I Array (6) 

Index Register Index Register I I I I T 
Array (5) 

T I I I I Array (4) 
I I I I Array (3) 
I I I I EA Array (2) EA 
I I I I Array (1) I 

I I T Array (0) - II 
I I Count + I 
----->1 1~----tJ 

I t Temp 

~----~ L _____ ~ 
Status 

~1Word~ 
Low Address 

Figure 2.20. Accessing a Stacked Array with Based Index Addressing 

2-30 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

OPCODE 

SI >1 SOURCE EA 

DI >1 DESTINATION EA 

Figure 2.21. String Operand 

2.2.2.3. 1/0 PORT ADDRESSING 

Any memory operand addressing modes may be used to access an I/O port if the port is 
memory-mapped. String instructions can also be used to transfer data to memory-mapped 
ports with an appropriate hardware interface. 

Two addressing modes can be used to access ports located in the I/O space (see Figure 2.22). 
The port number is an 8-bit immediate operand for direct addressing. This allows fixed access 
to ports numbered 0 to 255. Indirect I/O port addressing is similar to register indirect 
addressing of memory operands. The DX register contains the port number which can range 
from 0 to 65,535. By adjusting the contents of the DX register, one instruction can access any 
port in the I/O space. A group of adjacent ports can be accessed using a simple software loop 
that adjusts the value of the DX register. 

PORT ADDRESS 

DIRECT PORT 
ADDRESSING 

DX 

INDIRECT PORT 
ADDRESSING 

Figure 2.22. 1/0 Port Addressing 

2·31 

PORT ADDRESS 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.2.2.4. DATA TYPES USED IN THE 80C186 MODULAR CORE FAMILY 

The 80CI86 Modular Core family supports the following data types: 

• Integer - A signed 8- or I6-bit binary numeric value. All operations assume a 2's 
complement representation; Signed 32- and 64-bit integers are directly supported with the 
addition of an 80CI87 Numerics Processor Extension to an 80CI86 Modular Core 
system. The 80CI88 Modular Core does not support the 80C187. 

• Ordinal- An unsigned 8- or I6-bit binary numeric value. 

• Pointer - A 16- or 32-bit quantity, composed of a I6-bit offset component or a I6-bit 
segment base component in addition to a I6-bit offset component. 

• String - A contiguous sequence of bytes or words. A string may contain from one to 64 
Kbytes. 

• ASCII - A byte representation of alphanumeric and control characters using the ASCII 
standard. 

• BCD - A byte (unpacked) representation of the decimal digits 0-9. 

• Packed BCD - A byte (packed) representation of two decimal digits (0-9). One digit is 
stored in each nibble (4 bits) of the byte. 

• Floating Point - A signed 32-, 64- .or 80-bit real number representation. The 80CI87 
Numerics Processor Extension, when added to an 80CI86 Modular Core system, directly 
supports floating point operands. The 80CI88 Modular Core does not support the 
80C187. 

In general, individual data elements must· fit within defined segment limits. Figure 2.23 
graphically represents the data types supported by the 80CI86 Modular Core family .. 

2.3. INTERRUPTS AND EXCEPTION HANDLING 

Interrupts and exceptions alter the program execution in response to an external event or an 
error condition. An interrUpt handles asynchronous external events, for example art NMI. 
Exceptions result directly froIIJ. the execution of an instruction, usually an instruction fault. 
The user can cause a software interrupt by executing an "INT n" instruction. The CPU 
processes software interrupts the same as exceptions. 

The 80C 186 Modular Core responds to interrupts and exceptions in the same way for all 
devices within the 80CI86 Modular Core family. However, devices within the family may 
have different Interrupt Control Units. The Interrupt Control Unit handles all external interrupt 
sources and presents them to the 80C186 Modular Core via one maskable interrupt request. 
See Figure 2.24. This section covers only areas of interrupts and exceptions common to the 
80CI86 Modular Core Architecture. The Interrupt Control Unit is proliferation dependent and 
is covered in another section. 

2-32 



OVERVIEW OF THE 80C186 FAMIL V ARCHITECTURE 

7 0 

SIGNED BYTE I Iii Iii i I 

SIGN BITJ LMAGNITUDE..J 
NOTE: • Supported directly with 

additional hardware 
7 0 

UNSIGNED BYTE Iii iii iii 
LMSB 
CMAGNITUDE~ 

1514 
+1 

8 7 

SIGNED WORD I Iii I i I I I I I i I I 
~~------~----------~ 

SIGN BITJ I LMSB 
MAGN�TuDE----

+2 
31 +3 24 23 1615 

SIGNED O:;~~~ I Iii Iii iii i i 

+1 
8 7 

ii' I 
SIGN BITJ LMSB 

~--------MAGNITUDE-------------' 

+7 +6 +5 +4 +3 
63 48 47 32 31 

+2 +1 
16 15 

SIGNE~~~ I I I 
~~-----~-----4-----L-----L-----L-----L--~ 

SIGN BITJ I LMSB 
~---------MAGNITUDE-----------

+1 
15 8 7 

I I i UNSIGNED Iii iii j 

WORD L.~-----L.---------' 
I LMSB 

BINARY CODED 
DECIMAL (BCD) 

ASCII 

I 
i 

MAGNITUDE-----

+N 
0 

i i 
I 

i i i 

I · . . I 
BCDDIGfTN 

+N 

iii • • • I 

7 
+1 0 7 

i i i i i i 

I 
BCD DIGIT 1 

+1 
0 7 

I I I 
I 

I i i 

I 
ASCII CHARACTER N ASCII CHARACTER 1 

7 +N 0 7 +1 7 0 

PACKED BCD Iii i I I i I I • • • 
~ 

0 
i i i 

I 
i i i 

I 
BCD DIGIT 0 

0 
I I i i I i 

I 
ASCII CHARACTER 0 

+0 

Iii i I 
~ 

MOST 
SIGNIFICANT DIGIT 

LEAST 
SIGNIFICANT DIGIT 

+N +1 o 7 

STRING · .. Iii i i i ( I i 

BYTE WORD N BYTE WORD 1 BYTE WORD 0 

+3 +2 +1 
31 2423 1615 8 7 0 

POINTER I 
i i i 

I i i i 

I 
i 

I 
i i i 

I 
i i i 

I 
i i i 

I 
i i i 

I 
i i i 

I 
SELECTOR OFFSET 

+9 +8 +7 +6 +5 +4 +3 +2 +1 79 
FLOATING I I 

POINT' L. J. ____ L-____ ~ ____ J_ ____ J-____ _L ____ _L ____ _L ____ _L ____ ~ ____ ~ 

SIGN BIT -.J ~EXPONENT---.J LI --------MAGNITUDE----------' 

Figure 2.23. 80C186 Modular Core Family Supported Data Types 

2-33 



intel .. OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

NMI 

CPU 

MASKABLE 
INTERRUPT 
REQUEST 

INTERRUPT 
ACKNOWLEDGE 

INTERRUPT' 
CONTROL 

UNIT 

Figure 2.24. Interrupt Control Unit 

2.3.1. INTERRUPT/EXCEPTION PROCESSING 

+----
EXTERNAL 

+---- INTERRUPT 
+---- SOURCES 

The 80C186 Modular Core can service up to 256different interrupts/exceptions. A 256 entry 
Interrupt Vector Table contains the pointers to interrupt service routines. Each interrupti 
exception is given a type number, 0 through 255 corresponding to its position in the Interrupt 
Vector Table. See Figure 2.25., Each entry is 4 bytes long. An entry contains the Code 
Segment (CS) and Instruction Pointer (IP) of the first instruction in the interrupt service 
routine. 

Interrupt types 0-31 are reserved for Intel and should not be used,by an application program. 

When an interrupt is acknowledged, a common sequence of events occur allowing the 
processor to execute the interrupt service routine (See Figure 2.26). 

1. The processor saves a partial machine status by pushing the Program Status Word onto 
the stack. 

2. The Trap Flag bit and Interrupt Enable bit are then cleared in th,e Program Status Word. 
This prevents maskable interrupts or single step exceptions from interrupting the 
processor during the interrupt service routine. 

3. The current CS and IP are pushed onto the stack. 

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt 
Vector Table and begins ,executing from that point. 

2-34 



in1:et 

MEMORY 
ADDRESS 

3FE 

3FC 

82 

80 

7 E 

7C 

52 

50 

4 E 

4C 

4A 

48 

46 

44 

42 

40 

3 E 

3C 

3A 

38 

36 

34 

32 

30 

OVERVIEW OF THE 80C186 FAMIL V ARCHITECTURE 

TABLE 

ENTRY 

CS255 

IP 255 

CS 32 

IP 32 

CS 31 

IP 31 

CS20 

IP20 

CS 19 

IP 19 

CS18 

IP 18 

CS17 

IP 17 

CS16 

IP 16 

CS15 

IP 15 

CS14 

IP 14 

CS13 

IP 13 

CS12 

IP 12 

VECTOR 

DEFINITION 

I} TYPE 255 

USER 
AVAILABLE l """ 

TYPE 31 

J 
J 
I~ 

I~ 

I~ 

I~ 

RESERVED 

TYPE 20 

TYPE 19 • TIMER 2 

TYPE 18 • TIMER 1 

TYPE 17· RESERVED 

TYPE 16· NUMERICS 
(80C186EA ONLY) 

TYPE 15 • INT3 

TYPE 14 • INT2 

TYPE 13· INTl 

TYPE 12 • INTO 

MEMORY 
ADDRESS 

2E 

2C 

2A 

28 

26 

24 

22 

20 

1 E 

1 C 

1 A 

18 

16 

14 

12 

10 

o E 

OC 

OA 

08 

06 

04 

02 

00 

TABLE 
ENTRY 

CS 11 

IP 11 

CS 10 

IP 10 

. CS 9 

IP 9 

CS 8 

IP 8 

CS 7 

IP 7 

CS 6 

IP 6 

CS 5 

IP 5 

CS 4 

IP 4 

CS 3 

IP 3 

CS 2 

IP 2 

CS 1 

IP 1 

CSO 

I PO 

VECTOR 
DEFINITION 

~ 

~ 

I~ 

I~ 

I~ 

I~ 

I~ 

~ 

~ 

~ 

TYPE 11 • DMAl 

TYPE 10 • DMAO 

TYPE 9· RESERVED 

TYPE 8 • TIMER 0 

TYPE 7 • ESC 
OPCODE 

TYPE 6 • UNUSED 
OPCODE 

TYPE 5 • ARRAY 
BOUNDS 

TYPE 4 • OVERFLOW 

TYPE 3 • BREAKPOINT 

TYPE 2 • NMI 

TYPE 1 • SINGLE·STEP 

TYPE O· DIVIDE 
ERROR 

~BYTES~ 

CS =CODE SEGMENT VALUE 

~BYTES~ IP = INSTRUCTION POINTER VALUE 

Figure 2.25. Interrupt Vector Table 

The CPU is now executing the interrupt service routine. The programmer must save (usually 
by pushing onto the stack) all registers used in the interrupt service routine or their contents 
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt 
Enable bit in the Program Status Word. 

When exiting an interrupt service routine, the programmer must restore (usually by popping 
off the stack) the saved registers and execute an IRET instruction. An IRET instruction: 

2-35 



in1:et OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

1. Loads the return CS and IP by popping them off the stack. 

2. Pops and restores the old Program Status Word from the stack. 

The CPU now executes from where it was before the interrupt/exception occurred. 

NTERRUPT ENABLE BIT 
STACK 

PSW 

CS PROGRAM STATUS WORD L-__ ~~~ ____ ~ 

IP 
SP ~r-------1 

CS 

IP 

INTERRUPT 
VECTOR TABLE 

r---------1! CODE SEGMENT REGIS11'R 

. INSTRUCTION POINTER 
~------------~ 

Figure 2.26. Interrupt Sequence 

2.3.1.1. NON·MASKABLE INTERRUPTS 

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a 
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked) 
by software. When the NMI input is asserted, the interrupt processing sequence begins after 
execution of the current instruction completes (see Section 2.3.4 on interrupt latency). The 
CPU automatically generates a type 2 interrupt vector. 

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition 
on a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT 
period and meet the correct setup and hold times. NMI is edge-triggered and level-latched. 
Multiple NMI requests cause multiple NMI service routines to be executed. NMI can be 
nested in this manner an infinite number of times. 

2-36 



inlet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

2.3.1.2. MASKABLE INTERRUPTS 

Maskable interrupts are the most common way to service external hardware interrupts. 
Software can globally enable or disable maskable interrupts. This is done by setting or clearing 
the Interrupt Enable bit in the Program Status Word. 

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents 
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the 
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among 
members of the 80C186 Modular Core family and is described in a different section. 

2.3.1.3. EXCEPTIONS 

Exceptions occur when an unusual condition prevents further instruction processing until the 
exception is corrected. The CPU handles software interrupts and exceptions in the same way. 
The interrupt type for an exception is either predefined or supplied by the instruction. 

Exceptions are classified as either faults or traps. This depends on when they are detected and 
if the instruction which caused the exception can be restarted. Faults are detected and serviced 
before the faulting instruction can be executed. The return address pushed onto the stack in the 
interrupt processing instruction points to the beginning of the faulting instruction. This way, 
the instruction can be restarted. A trap is detected and serviced immediately after the 
instruction which caused the trap. The return address pushed onto the stack during the 
interrupt processing points to the instruction following the trapping instruction. 

Divide Error - Type 0: 

A divide error trap is invoked when the quotient of an attempted division exceeds the 
maximum value of the destination. A divide-by-zero is a common example. 

Single Step - Type 1: 

The single step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit 
set in the Program Status Word. This allows programs to execute one instruction at a time. 
Interrupts will not be generated after prefix instructions (e.g. REP), instructions which modify 
segment registers (e.g. POP DS) or the WAIT instruction. Vectoring to the single-step 
interrupt service routine clears the Trap Flag bit. An IRET instruction in the interrupt service 
routine restores the Trap Flag bit to logic "I" and transfers control to the next instruction to be 
single-stepped. 

Breakpoint Interrupt - Type 3: 

This is a single byte version of the INT instruction. The breakpoint interrupt is commonly used 
by software debuggers to set breakpoints in RAM. Because the instruction is only one byte 
long, it can substitute for any instruction. 

2-37 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

Interrupt on Overflow - Type 4: 

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Program 
Status Word and the INTO instruction is executed. Interrupt on Overflow is a common way to 
conditionally handle arithmetic overflows. 

Array Bounds Check - Type 5: 

If the array index is outside the array bounds during execution of the BOUND instruction (see 
80C1861nstruction Set Additions and Extensions), an array bounds trap occurs. 

Invalid Opcode - Type 6: 

Execution of an undefined opcode causes an Invalid Opcode trap. 

Escape Opcode - Type 7: 

The Escape Opcode fault is used for floating point emulation. With 80Cl86 Modular Core 
family members, the escape opcode fault is enabled by setting the Escape Trap (ET) bit in the 
Relocation Register (see Peripheral Control Block). When a floating point instruction is 
executed with the Escape Trap bit set, the Escape Opcode Fault exception occurs. The Escape 
Opcode service routine then emulates the floating point instruction. If the Escape Trap bit is 
cleared, the CPU sends the floating point instruction to an external80C187. 

80C188 Modular Core Family members do not support the 80C187 interface and always 
generate the Escape Opcode Fault. The 80C186EA will generate the Escape Opcode Fault 
regardless of the state of the Escape Trap bit unless it is in Numerics Mode. 

Numerics Coprocessor Fault - Type 16: 

The Numerics Coprocessor Fault is caused by an external 80C187 numerics coprocessor. The 
80C187 reports the exception by asserting the ERROR pin. The 80C186 Modular Core only 
checks the ERROR pin when executing a numerics instruction. A Numerics Coprocessor 
Fault indicates that the previous numerics instruction caused the exception. The 80C 187 saves 
the address of the floating point instruction that caused the exception. The return address 
pushed onto the stack during theinterrupt processing points to the numerics instruction which 
detected the exception. This way, the last numerics instruction can be restarted. 

2.3.2. SOFTWARE INTERRUPTS 

A Software Interrupt is caused by executing an "INT n" instruction. The parameter n 
corresponds to the specific interrupt type to be executed. The interrupt type can be any number 
between 0 and 255. If the parameter n corresponds to an interrupt type associated with a 
hardware interrupt (NMI, Timers), the vectors will be fetched and the routine executed, but the 
correspondin~ bits in the Interrupt Status register will not be altered. 

2-38 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

The CPU processes software interrupts and exceptions in the same way. Software interrupts, 
exceptions and traps cannot be masked. 

2.3.3. INTERRUPT LATENCY 

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an 
interrupt. The CPU generally only recognizes interrupts between instructions or on instruction 
boundaries. Therefore, the current instruction must finish executing before an interrupt can be 
recognized. 

The worst case 80Cl86 instruction execution time is an integer divide instruction with 
segment override prefix. The instruction takes 69 clocks, assuming an 80Cl86 Modular Core 
family member and a zero wait state external bus. The execution time for an 80Cl88 Modular 
Core family member may be longer depending on the queue. 

This is one factor in determining interrupt latency. In addition, the following are also factors in 
determining maximum latency: 

1. The Interrupt Enable bit must be set for the CPU to recognize the Maskable Interrupt. 

2. The CPU will not recognize interrupts during HOLD. 

3. Once communication is completely established with an 80Cl87, the CPU will not 
recognize interrupts until the numerics instruction is finished. 

The CPU can only recognize interrupts on valid instruction boundaries. A valid instruction 
boundary usually occurs when the current instruction finishes. The following is a list of 
exceptions: 

1. MOVs and POPs referencing a segment register will delay servicing of interrupts until 
after the following instruction. The delay allows a 32-bit load to the SS and SP without an 
interrupt occurring between the two loads. 

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes 
precede a string instruction and the instruction is interrupted, only the one prefix 
preceding the string primitive is restored. 

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT 
instruction. 

2.3.4. INTERRUPT RESPONSE 

Interrupt response time is the time from the CPU recognizing an interrupt until the first 
instruction in the service routine is executed. 

Interrupt response time is less for interrupts or exceptions which supply their own vector type. 
The maskable interrupt has a longer response time because the vector type must be supplied 

2-39 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

by the Interrupt Control Unit. The response time for the maskable interrupt is covered in the 
Interrupt Control Unit section. 

Figure 2.27 shows the sequence of events which dictate interrupt response time for the 
interrupts which supply their type. Note that an on-chip bus master, such as the DRAM 
Refresh Unit, can make use of idle bus cycles. This can increase interrupt response time. 

Clocks 

I D L E 5 

READ IP 4 

IDLE 

READ CS 4 

IDLE 4 

PUSH FLAGS 4 

IDLE 3 

PUSH CS 4 

PUSH IP 4 

IDLE 

FIRST INSTRUTION 
FETCH FROM INTERRUPT 
ROUTINE 

------------------------------------- - > 

Total 42 

Figure 2.27. Interrupt Response Factors 

2.3.5. INTERRUPT AND EXCEPTION PRIORITY 

Interrupts can only be recognized on valid instruction boundaries. If an NMI and a maskable 
interrupt are both recognized on the same instruction boundary, NMI has precedence. The 
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the 
highest priority. 

Only the single step exception can occur concurrently with another exception. At most, two 
exceptions can occur at the same instruction boundary and one of the exceptions must be the 
single step. Single step is a special case which will be discussed later. By ignoring single step 
(for now), only one exception can occur at any given instruction boundary. 

An exception has priority over both NMI and the maskable interrupt. However, a pending 
NMI can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an 
exception service routine. If an exception and NMI occur simultaneously, the exception vector 

2-40 



intet OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

will be taken, followed immediately by the NMI vector. See Figure 2.28. While the exception 
has higher priority at the instruction boundary, the NMI interrupt service routine is executed 
first. 

NMI 

F=1 

DIVIDE ERROR 

PUSH PSW, CS, IP 
FETCH DIVIDE ERROR VECTOR 

EXECUTE DIVIDE 
SERVICE ROUTINE 

IRET 

PUSH PSW, CS, IP 
FETCH NMI VECTOR 

EXECUTE NMI 
SERVICE ROUTINE 

IRET 

Figure 2.28. Simultaneous NMI and Exception 

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same 
instruction boundary as a single step, the interrupt vector is taken first, followed immediately 
by the single step vector. The single step service routine is executed before the interrupt 
service routine. See Figure 2.29. If the single step service routine re-enables Single Step by 
setting the Trap Flag bit before executing the IRET, the interrupt service routine will also be 

, single stepped. This can severely limit the real-time response of the CPU to an interrupt. 

2-41 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

To prevent the single step routine from executing before a maskable interrupt, disable 
interrupts while single stepping an instruction. Then enable interrupts in the single step service 
routine. The maskable interrupt is serviced from within the single step service routine and that 
interrupt service routine is not single-stepped. To prevent single stepping before an NMI, the 
single step service routine must compare the return address on the stack to the NMI vector. If 
they are the same, return to the NMI service routine immediately without executing the single 
step service routine. 

NMI ~ I INSTRUCTION TRAP FLAG=1 

I 

~ 
PUSH PSW, CS, IP 

FETCH DIVIDE 
ERROR VECTOR 

TRAP FLAG=O 
I 

t 
PUSH PSW, CS, IP 

FETCH SINGLE STEP VECTOR 

t 
EXECUTE SINGLE STEP 

SERVICE ROUTINE· 

•••••• - IRET '" 

TRAP FLAG=??? 

Figure 2.29. Simultaneous NMI and Single Step Interrupts 

The most complicated case is when an NMI, maskable interrupt, single step and another 
exception are pending on the same instruction boundary. Figure 2.30 shows how this case is 
prioritized by the CPU. Note: if the single step routine sets the Trap Flag bit before executing 
the IRET instruction, the NMI routine will also be single stepped. 

2-42 



OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE 

NMI ~ 

INTERRUPT ENABLE BIT (IE) = 1 
TRAP FLAG (TF) = 1 

TIMER INTERRUPT 

PUSH PSW, CS, IP 
FETCH DIVIDE ERROR VECTOR 

INTERRUPT ENABLE BIT (IF) = 0 
TRAP FLAG (TF) = 0 

PUSH PSW, CS, IP 
FETCH NMI VECTOR 

EXECUTE SINGLE STEP 
SERVICE ROUTINE 

INTERRUPT ENABLE BIT (IF) = 0 
TRAP FLAG (TF) = 0 

INTERRUPT ENABLE BIT 
(IF) =0 

TRAP FLAG (TF) = 0 

.......... ---------' 
INTERRUPT ENABLE BIT (IF) = 0 
TRAP FLAG (TF) = ??? 

INTERRUPT ENABLE BIT (IF) = 1 
TRAP FLAG (TF) = X 

PUSH PSW, CS, IP 
FETCH SINGLE STEP VECTOR 

EXECUTE SINGLE STEP SERVICE ROUTINE 

IRET 

INTERRUPT ENABLE BIT (IE) = 1 
TRAP FLAG = X 

Figure 2.30. Simultaneous NMI, Single Step and Maskable Interrupt 

2-43 





Bus Interface Unit 3 



\ 



CHAPTER 3 
BUS INTERFACE UNIT 

The Bus Interface Unit, abbreviated BIU, generates bus cycles that prefetch instructions from 
memory, pass data to and from the execution unit, and pass data to and from the integrated 
peripheral units. 

The BIU drives address, data, status and control information to define a bus cycle. The start of 
a bus cycle presents the address of a memory or 110 location and status information defining 
the type of bus cycle. Read or write control signals follow address and define the direction of 
data flow. A read cycle requires data to flow from the selected memory or 110 device to the 
BIU. In a write cycle, the data flows from the BIU to the selected memory or I/O device. Opon 
termination of the bus cycle, the BIU latches read data or removes write data. 

3.1. MULTIPLEXED ADDRESS AND DATA BUS 

The BIU has a combined address and data bus, commonly referred to as a time multiplexed 
bus. Time multiplexing address and data information makes the most efficient use of device 
package pins. A system with address latching provided within the memory and I/O devices 
can directly connect to the address/data bus (or local bus). The local bus can be demultiplexed 
with a single set of address latches to provide non-multiplexed address and data information to 
the system. 

3.2. ADDRESS AND DATA BUS CONCEPTS 

The programmer views the memory or I/O address space as a sequence of bytes. Memory 
space consists of 1 Mbytes, while 110 space consists of 64 KBytes. Any byte may contain an 
eight bit data element, and any two consecutive bytes may contain a sixteen bit data element 
(identified as a word). The discussions in this section apply to both memory and I/O bus 
cycles. For brevity, memory bus cycles are used for examples and illustration. 

3.2.1. 16-BIT DATA BUS 

The memory address space on a 16-bit data bus is physically implemented by dividing the 
address space into two banks of up to 512 Kbytes (see Figure 3.1). One bank connects to the 
lower half of the data bus and contains even addressed bytes (AO=O). The other bank connects 
to the upper half ofthe data bus and contains odd addressed bytes (AO=l). Address lines A19-
Al select a specific byte within each bank. AO and Byte High Enable (BHE) determine 
whether one bank or both banks participate in the data transfer. 

3-1 



in1:et 

PHYSICAL IMPLEMENTATION 
OF THE ADDRESS SPACE FOR 

8-BIT SYSTEMS 

1 MBYlE 

FFFFF 

FFFFE 

~ 
IV' 

2 

1 

0 
L ~ 

~ 
A19:0 D7:0 

BUS INTERFACE UNIT 

PHYSICAL IMPLEMENTATION OF THE 
ADDRESS SPACE FOR 16-BIT SYSTEMS 

512 KBYlES 512 KBYTES 

FFFFF FFFFE 
FFFFD FFFFC 

~ 0- ,---1\ 

IV' -V 
5 4 
3 2 
1 0 

L ". L ". 

I " 7" 

A19:1 D15:8 BHE D7:0 

Figure 3.1. Physical Data Bus Models 

P--

AO 

Byte transfers to even addresses transfer information over the lower half of the data bus (see 
Figure 3.2). AO low enables the lower bank while BHE high disables the upper bank. The data 
value from the upper bank is ignored during a bus read cycle. BHE high prevents a write 
operation from destroying data in the upper bank. 

Byte transfers to odd addresses transfer information over the upper half of the data bus (see 
Figure 3.2). BHE low enables the upper bank while AO high disables the lower bank. The data 
value from the lower bank is ignored during a bus read cycle. AO high prevents a write 
operation from destroying data in the lower bank. 

To access even addressed 16-bit words (two consecutive bytes with the least significant byte at 
an even address), information is transferred over both halves of the data bus (see Figure 3.3). 
A19-Al select the appropriate byte within each bank. AO and BHE drive low to enable both 
banks simultaneously. 

Odd addressed word accesses require the BID to split the transfer into two byte operations (see 
Figure 3.4). The first operation transfers data over the upper half of the bus, while the second 
operation transfers data over the lower half of the bus. The BID automatically executes the 
two byte sequence whenever an odd addressed word access is performed. 

3-2 



in1:et BUS INTERFACE UNIT 

EVEN BYTE TRANFER 

~ 
Y + 1 ,-l\ Y 

X+ 1 ........ ··· •. • .... (X)...:.· 
r--V --V 

.L ~ .L il>-

I '" 7- ..., P 

A19:1 015:8 BHE (HIGH) 07:0 AO (LOW) 

ODD BYTE TRANSFER 

.---1\ Y + 1 
~ 

Y 

--y 'nml c, ·Cilil,,,, ••• llJ: •• ;;c ... IV' X 

A il>- I .L 

"'" 

I ..., 
'" I '" 7-

A19:1 015:8 BHE (LOW) 07:0 AD (HIGH) 

Figure 3.2. 16-Bit Data Bus Byte Transfers 

A19:1 D15:8 BHE(LOW) 07:0 AO (LOW) 

Figure 3.3. 16-Bit Data Bus Even Word Transfers 

3-3 



in1:et BUS INTERFACE UNIT 

During a byte read operation the BIU floats the entire 16-bit data bus even though the transfer 
occurs on only one half of the bus. This action simplifies the decoding requirements for read 
only devices (e.g., ROM, EPROM, FLASH). During the byte read, both halves of the bus can 
be driven and the BIU automatically accesses the correct half. The BIU drives both halves of 
the bus during a byte write operation. Information of the half of the bus not involved in the 
transfer is indeterminate. This action requires that the appropriate bank (defined by BHE or 
AO high) be disabled to prevent destroying data. 

3.2.2. 8-BIT DATA BUS 

The memory address space on an 8-bit data bus is physically implemented as one bank of 1 
Mbytes (see Figure 3.1). Address lines AI9-AO select a specific byte within the bank. Unlike a 
16-bit bus, byte and word transfers (to even or odd addresses) all transfer data over the same 
8-bit bus. 

FIRST BUS CYCLE 

A19:1 015:8 SHE (LOW) 07:0 AO (HIGH) 

A19:1 015:8 SHE (HIGH) 07:0 AO (LOW) 

Figure 3.4. 16-Bit Data Bus Odd Word Transfers 

3-4 



intel· BUS INTERFACE UNIT 

Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers 
to even or odd addresses transfer information in two bus cycles. The BIU automatically 
converts the word access into two consecutive byte accesses, making the operation transparent 
to the programmer. 

For word transfers, the word address defines the first byte transferred. The second byte 
transfer occurs from the word address plus one. Figure 3.5 illustrates a word transfer on an 8-
bit bus interface. 

FIRST BUS CYCLE SECOND BUS CYCLE 

A19:0 D7:0 A19:0 D7:0 

Figure"3.5. 8-Bit Data Bus Word Transfers 

3.3. MEMORY AND I/O INTERFACES 

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exchange 
information with the CPU during memory read, memory write and instruction fetch bus 
cycles. I/O (peripheral) devices exchange information with the CPU during memory read, 
memory write, I/O read, I/O write and interrupt acknowledge bus cycles. Memory mapped I/O 
refers to peripheral devices that exchanged information during memory cycles. Memory 
mapped I/O allows the full power of the instruction set to be use when communicating with 
peripheral devices. 

I/O read and I/O write bus cycles use a separate I/O address space. Only IN and OUT 
instructions can access I/O address space, and information must be transferred between the 
peripheral device and the AX register. The first 256 bytes (0-255) of I/O space can be 
accessed directly by the I/O instructions. The entire 64 Kbyte I/O address space can only be 
accessed indirectly through the DX register. I/O instructions always force address bits A19-
A16 to zero. 

Interrupt acknowledge, or INTA bus cycles access an I/O device intended to increase interrupt 
input capability. Valid address information is not generated as part of the INT A bus cycle, and 
data are transferred only over the lower bank (l6-bit device). 

3-5 



inlet BUS INTERFACE UNIT 

3.3.1. 16-BIT BUS MEMORY AND I/O REQUIREMENTS 

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to 
store instruction operands (i.e., the program) and immediate data must be i6-bits wide. 
Instruction prefetch bus cycles require tha,t both banks be used. The lower bank contains the 
even bytes of code and the upper bank contains the odd bytes of code. 

Memory used to store interrupt vectors and stack data must be 16-bits wide. Memory address 
space between OR and IFFR (1 Kbyte) hold the starting location of an interrUpt routine. In 
response to an interrupt, the BIU fetches two consecutive, even addressed words from this 1 
Kbyteaddress space. Stack pushes and pops always write or read ~ven addressed word data. 

3.3.2. 8-BIT BUS MEMORY AND 1/0 REQUIREMENTS 

An 8-bit bus interface has no restrictions on implementing the memory or 110 interfaces. All 
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers 
automatically execute two consecutive byte transfers. 

3.4. BUS CYCLE OPERATION 

The BIU executes a bus cycle to transf~r data to or from any of the integrated units and 
external memory or 110 devices (see Figure 3.6). A bus cycle consists of a minimum of four 
CPU clocks known as "T -States." AT-state is bounded by one falling edge of CLKOUT to the 
next falling edge of CLKOUT (see Figure 3.7). Phase 1 represents the low time of the T-state 
and starts at the high-to-Iow transition of CLKOUT. Phase 2 represent the high time of the T
state and starts at the low-to-high transition of CLKOUT. Address,data and control signals 
generated by the BIU go active and inactive at different phases within aT-state. 

Figure 3.8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T
states labeled Tl, T2, l'3 and T4. A TI (idle) state occurs when no bus cycle is pending. 
Multiple T3 states occur to generate wait states. The symbol TW represents a wait ,state. 

The operation ofa bus cycle can be broken up into two phases: 

• Address/Status Phase 

• Data Transfer Phase 

The address/status phase starts just prior to Tl and continues through TL The data transfer 
phase starts at T2 and continues through T4. Figure 3.9 illustrates the T-state relationship of 
the two phases. 

3-6 

. I 
! 



int:et 

CLKOUT 

ALE 

STATUS LINES 

ADDRESS/ 
DATA SIGNALS 

READ/WRITE 

BUS INTERFACE UNIT 

T1 T2 T3 T4 

Figure 3.S. Typical Bus Cycle 

CLKOUT 
I' Falling Rising 

I Edge Edge 
~------! 

PHASE 1 

(LOW 
PHASE) 

PHASE 2 

(HIGH 
PHASE) 

Figure 3.7. T-State Relation to CLKOUT 

3.4.1. ADDRESS/STATUS PHASE 

T1 

L 

Figure 3.10 shows signal timing relationships for the address/status phase of a bus cycle. A 
bus cycle begins with the transition of the ALE and S2:0. These signals transition during 
phase 2 of the T-state just prior to Tl. Referring back to Figure 3.8, T4 or TI precede T1 
depending on the operation of the previous bus cycle. 

3-7 



int'et 

REQUEST PENDING 
HOLD DEASSERTED 

CLKOUT 

BUS INTERFACE UNIT 

BUS READY 
REQUEST PENDING 
HOLD DEASSERTED 

----,>~8 -------i>~EX:? 

RESIN 
ASSERTED 

HALT BUS CYCLE 

HOLD ASSERTED 

READY 

BUS READY 
NO REQUEST PENDING 
HOLD DEASSERTED 

Figure 3.8. BIU State Diagram 

T40rTI T1 

ADDRESS/ 
STATUS PHASE 

T2 T3fTW 

DATA PHASE 

Figure 3.9. T -State and Bus Phases 

3-8 



int:et BUS INTERFACE UNIT 

CLKOUT 

ALE 

AD15-ADO 
A19:16 

S2:0 

TlorT4 T1 

VALID 

, 

SHE VALID: 

NOTES: 

1. T CHOV : Clock high to ALE high, 82:0 valid. 

2. T CLOV : Clock low to address valid, SHE valid. 

T2 

3. T AVLL : Address valid to ALE low (address setup to ALE). 

4. T CHOV : Clock high to ALE low. 

5. T CLOF : Clock low to address invalid (address hold from clock low). 

6. T LLAX : ALE low to address invalid (address hold from ALE). 

Figure 3.10. Address/Status Signal Relationships 

ALE provides a strobe to latch physical address information. Address is presented on the 
multiplexed address/data bus during T1 (see Figure 3.10). The falling edge of ALE occurs 
during the middle of Tl and provides a strobe to latch address. Figure 3.11 presents a typical 
circuit for latching addresses. 

The status signals S2:0 define the type of bus cycle. Table 3.1 lists the possible bus cycle 
types. S2:0 remain valid until phase 1 of T3 (or the last TW when wait states occur). The 
circuit shown in Figure 3.11 can also be used to extend S2:0 beyond the T3 (or TW) state. 

3-9 



intel .. BUS INTERFACE UN.IT 

SIGNALS FROM 
CPU 

A19:16 
82:0 

AD15:8 

AD7:0 

ALE 

4/ 

3/ 
" 

!} 

" 

!} 

" 

" ,. 

" , 
." , 

,---

.... ,. 

... , 

I~ 

.... , 

... 
~ 

It--

.--

I 
I 0 

STS 0 

-
OE 

I 

STS 0 
-
OE 

I 

STS 0 
-
OE 

,LATCHED 
ADDRESS SIGNALS 

4/ " 
" 

,. 

3/ '" 
" 

,. 

8/ .... 
/ , 

8/ .... 
,- , 

LA19:16 

LS2:0 

LA15:8 

LA7:0 

Figure 3.11. Demultiplexing Address Information 

, Table 3.1. Bus Cycle Ty~s 

5TATU5BIT 

52 51 50 OPERATION 

0 0 0 Interrupt Acknowledge 

0 0 1 1/0 Read 

0 1 0 110 Write 

0 1 1 Halt 

1 0 0 Instruction Prefetch 

1 0 1 Memory Read 

1 1 0 Memory Write 

1 1 1 Idle (passive) 

3-10 

I 

! 
, I 

, 
,\ 

I 
i 



3.4.2. 

CLKOUT 

RDI WR 

AD15:0 
WRITE 

AD15:0 
READ 

S2:0 

NOTES: 

T2 

BUS INTERFACE UNIT 

T30rTW 

VALID 
READ DATA 

T40rTI 

1. T CLOY : Clock low to valid RDI WR active; Write data valid 

2. T CLOY : Clock low to status inactive 

3. T CLiS : Data input valid to clock low 

4. T CLOY : Clock valid to RDI WR inactive 

5. T CLiS : Data input HOLD from clock low 

6. T WHDX : Output data HOLD from WR high 

7. T RHAV : Bus no longer floating from RD high 

Figure 3.12. Data Transfer Signal Relationships 

DATA PHASE 

Figure 3.12 shows the timing relationships for the data phase of a bus cycle. The only bus 
cycle type that does not have a data phase is a bus halt. During the data phase the bus transfers . 
information between the internal units and the memory or peripheral device selected during 
the address/status phase. Appropriate control signals become active to coordinate the transfer 
of data. 

3-11 



BUS INTERFACE UNIT 

The data phase begins at phase.1 of T2 and continues until phase 2 of T4 or TI. The length of 
the data phase varies depending on the number of wait states. Wait states occur after T3 and 
before T4 or TI. 

3.4.3. WAIT STATES 

Wait states extend the data phase of the bus cycle. Memory and 110 devices that can not 
provide or accept data in the minimum four CPU clocks require wait states. Figure 3.13 shows 
a typical bus cycle with wait states inserted. 

CLKOUT 

ALE ~ \ I 

STATUS \ VALID 7 

A19:16 /ADDRESS \ 
AD15:0 JDDRESS X VALID WRITE DATA 

WR \ r-
ARDY / \ 

Figure 3.13. Typical Bus Cycle With Wait States 

The bus ready pins and the Chip-Select Unit control bus cycle wait states. Only the bus ready 
pins are described in this section. Refer to Chapter 7 for a discussion of the Chip-Select Unit. 

The SRDY and ARDY inputs control the wait state operation of the BIU. Figure 3.14 shows a 
simplified block diagram of the SRDY and ARDY inputs. Either ARDY or SRDY must be 
active to signal a bus ready condition. However, both ARDY and SRDY must be inactive to 
signal a bus not-ready condition. Depending on the size and characteristics of the system, 
ready implementation may take one of two approaches: normally not-ready or normally ready. 

3-12 



in1:et 

ARDY 

CLKOUT 

SRDY 

BUS INTERFACE UNIT 

D Q 
D 

Rising 
Edge 

L---======~_---,-_-+-___ ----I> Falling 
Edge 

Q 

Figure 3.14. ARDV and SRDV Pin Block Diagram 

BUS READY 

The condition where ARDY and SRDY remain low at all times except to signal a ready 
condition defines a normally not-ready system. For any bus cycle, only the selected device 
drives either ready input high to allow the BIU to complete the bus cycle. The circuit shown in 
Figure 3.15 illustrates how to generate a normally not-ready signal. Note that if no device is 
selected the bus remains not-ready indefinitely. Systems with many slow devices that can 
not operate at the maximum bus bandwidth usually implement a normally not-ready signal. 

The start of a bus cycle clears the wait state module and forces ARDY low. After every rising 
edge of CLKOUT, INPUTl and INPUT2 are shifted through the module and eventually drive 
ARDY high. Assuming INPUTl and INPUT2 are valid prior to phase 2 of T2, no delay 
through the module causes one wait state. Each additional clock delay through the module 
generates one additional wait state. Two inputs are used to establish different wait state 
conditions. The same circuit works for SRDY, except no delay through the module results in 
no wait states. 

CS1 
CS2 

CS3 
CS4 

ALE 

CLKOUT 

WAIT STATE 
MODULE 

INPUT 1 

INPUT 2 

OUT 

CLEAR 

CLOCK 

Figure 3.15. Generating a Normally Not-Ready Signal 

3-13 

ARDY 



intet .. BUS INTERFACE UNIT 

A normally ready system drives ARDY or SRDY (or both) high at all times except when the 
selected d~vice needs to signal a not-ready condition. For any bus cycle, only the selected 
device drives the ready input (or inputs) low to delay the completion of the bus cycle. The 
circuit shown in Figure 3.16 illustrates a simple circuit to generate a normally ready signal. 
Note that if no device is selected the bus remains ready. Systems that have few or no 
devices requiring wait states usually implement a normally ready signal. 

The start of a bus cyclepreloads a "zero" shifter and forces SRDY active (high). SRDY 
remains active if neither CSI or CS2 go low. Should CSI or CS2 go low, a series of zeros 
are shifted out every rising edge of CLKOUT causing SRDY to go inactive. At the end of the 
shift pattern SRDY is forced active again. Assuming CS 1 and CS2 are active just prior to 
phase 2 of T2, shifting one "zero" through the module causes on~ wait state. Each additional 
zero shifted through the module generates one wait state. The same circuit works for ARDY, 
except shifting one "zero" through the module results in two wait states. 

WAIT STATE 
MODULE 

CS1 
CS2 ENABLE 

OUT SRDY 
ALE LOAD 

CLKOUT CLOCK 

Figure 3.16. Generating a Normal1y Ready Signal 

The BIU can execute an indefinite number of wait states. However, bus cycles with large 
numbers of wait states limit the performance of the CPU and the integrated peripherals. CPU 
performance suffers because the instruction prefetch queue can not be kept full. Integrated 
peripheral performance suffers because the maximum bus bandwidth decreases. 

3.4.3.1. ARDY INPUT 

The ARDY input has two major timing concerns that can effect whether a normally ready or 
normally not-ready signal may be required. Referring to Figure 3.14, two latches capture the 
state of the ARDY input. The first latch captures ARDY on the phase 2 clock edge. The 
second latch captures ARDY and the result of the first latch on the phase 1 clock edge. The 
following equations define the requirements of the ARDY input (SRDY is inactive) to meet 
ready or not-ready bus conditions. 

3-14 



BUS INTERFACE UNIT 

The bus is ready if: 
1. ARDY is active prior to the phase 2 clock edge. 

AND 
2. ARDY is active prior to the phase 1 clock edge. 

The bus is not-ready if: 
1. ARDY is inactive prior to the phase 2 clock edge. 

OR 
2. ARDY is inactive prior to the phase 1 clock edge. 

A normally not-ready system must generate a valid ready input at phase 2 of T2 to prevent 
wait states. If it can not, then a normally ready system is required to run no wait states. Figure 
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system. 
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not
reach system. 

: T2, T3 orTW T30rTW 

CLKOUT 

ARDY 

SRDY 

In a Normally-Not-Ready system, wait states are inserted until (1 or 2) and 3 are met. 

1. T CHIS: ARDY active to clock high (assumes ARDY remains active until 3) 

2. T CLiS : SRDY active to clock low 

3. T CLlH : ARDY + SRDY hold from clock low 

~ Failure to meet SRDY setup & hold can cause a device failure (i.e., the bus 
~ hangs or operates inappropriately). 

Figure 3.17. Normally Not-Ready System Timing 

T4 

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a 
normally ready system. A normally not-ready system is required to run wait states if the not
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum 
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates 
how to terminate a bus cycle with wait states in a normally ready system. 

3-15 



intel .. BUS INTERFACE UNIT 

: T2, T30rTW 

CLKOUT 

ARDY 

In a Normally-Not-Ready system, a wait state will be inserted when 1 & 2 are met. 
(Assumes SRDY is low.) 

1. T CLiS : ARDY low to clock high 

2. T CLiH : Clock high to ARDY high (ARDY inactive hold time) 

: T2, T30rTW 

CLKOUT 

ARDY , 

SRDY 

T30rTW 

Altematively, in a Normally-Ready system, a wait states will be inserted when 1 & 2 are 
met for both SRDY & ARDY. 

1. T CHIS: ARDY/SRDY low to clock low 

2. T CHIH : ARDY/SRDY low from clock low 
\ 

{'- Failure to meet ARDY & SRDY setup & hold time can cause a device failure 
~ (Le., the bus hangs or operates inappropriately). 

Figure 3.18. Normally Ready System Timing 

T4 

T4 

3.4.3.2. SRDY INPUT 

Referring to Figure 3.14, only one latch captures the state of the SRDY input. SRDY must be 
valid by phase 1 clock edge. The following equations define the requirements of the SRDY 
input CARDY is inactive) to meet ready or not-ready bus conditions. 

The bus.is ready if: 
1. SRDY is active prior to the phase 1 clock edge. 

The bus is not-ready if: 
1. SRDY is inactive prior to the phase 1 clock edge. 

3-16 



BUS INTERFACE UNIT 

A normally not-ready system must generate a valid ready input at phase 1 of T3 to prevent 
wait states. If it can not, then a normally ready system is required to run no wait states. Figure 
3.17 illustrates the timing necessary to prevent wait states in a normally not-ready system. 
Figure 3.17 also illustrates how to terminate a bus cycle with wait states in a normally not
ready system. 

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a 
normally ready system. A normally not-ready system is required to run wait states if the not
ready condition can not be met in time. Figure 3.18 illustrates the minimum and maximum 
timing necessary to insert wait states in a normally ready system. Figure 3.18 also illustrates 
how tq terminate a bus cycle with wait states in a normally ready system. 

3.4.4. IDLE STATES 

Under most operating conditions the BIU executes consecutive (back-to-back) bus cycles. 
However, several conditions cause the BIU to become idle. An idle condition occurs between 
bus cycles (see Figure 3.8), and may last an indefinite amount of time (depending on the 
instruction sequence). Conditions causing the BIU to become idle include: 

• The instruction prefetch queue is full 

• An effective address calculation is in progress 

• The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked 
operations) 

• Instruction execution forces idle states (e.g., HLT, WAIT) 

An idle bus state mayor may not drive the bus. An idle bus state following a bus read cycle 
continues to float the bus. An idle bus state following a bus write cycle continues to drive the 
bus. The BIU does not drive any of the control strobes active in an idle state unless to indicate 
the start of another bus cycle. 

3.5. BUS CYCLES 

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt 
acknowledge and halt bus cycles define special bus operations and require separate 
discussions. Read bus cycles include memory, 110 and i,nstruction prefetch bus operations. 
Write bus cycles include memory and 110 bus operations. All read and write bus cycles have 
the same basic format. 

The following sections present timing equations containing symbols found in the data sheet. 
The timing equations provide informati~n necessary to start a worst case design analysis. 

3.5.1. READ BUS CYCLES 

Figure 3.19 illustrates atypical read cycle. Table 3.2 lists the three types of read bus cycles. 

3-17 



in1:et BUS INTERFACE UNIT 

, T1 , T2 , T3 , T4 , 

CLKOUT~~~~ 
I I I I I I I ' I 

I I I I 'I I 

I I I I I I I 

S2:0 : . \ S~ATUS VALID 7:: . :C 
, , 

I I I I I I I :n--:\: : :r I I I I I I I 

ALE _1 : 1 --~--l-·--~--: ---7-- 1 -: 
, , , 
" , 
: }, ADDRESS L A18:16=0 y 

A19:16' V- ,VALID . A19=VALID STATUS (L 
~---+---~,----"--~: ,'----~---.--------~ 

, , 

-SH-E [-~-~~-::] .-__ ~'~X~_,'----~--_,'----V~A-L-ID--,_--~----,_--~'~ 
AD15:0 
[AD7:0] 

RD 

DT fR 

DEN 
-:T:~· :~:~.:L: : :F:~:--

I I I I , I " I I I 

I I I I , I ' I I I 

I I I I I I I I ' I 

_: I : I : 1 ____ : ___ 1 : I 

Figure 3.19. Typical Read Bus Cycle 

Figure 3.20 illustrates a typical16-bitinterface connection to a read-only device interface. The 
same example applies to an 8-bit bus system, except no devices connect to an upper bus. Four 
parameters must be evaluated when determining the compatibility of a memory (or I/O) 
device. TADLTCH defines the delay through the address latch. Table 3.3 lists the four 
parameters. 

TOE, T ACC and TCE define the maximum data access requirements for the memory device. 
These device parameters must be .less than the value calculated in the equation column. A 
equal to or greater than result indicates that wait states must be inserteq into the bus cycle. 

3-18 



BUS INTERFACE UNIT 

Table 3.2. Read Bus Cycle Types 

STATUS BIT 

S2 S1 SO BUS CYCLE TYPE 

0 0 1 Read 110 - Initiated by the Execution Unit for IN, OUT, 
INS, OUTS instructions or by the DMA Unit. A15:0 selects 
the desired I/O port. A 19: 16 drive to zero (see also DMA 
Unit). 

1 0 0 Instruction Prefetch - Initiated by the BIU. Data read from 
the bus fills the prefetch queue. 

1 0 1 Read Memory - Initiated by the Execution Unit, the DMA 
Unit, or the Refresh Control Unit. A 19:0 select the desired 
byte or word memory location 

TDF determines the maximum time the memory device can float its outputs before the next bus 
cycle begins. A TDF value greater than the equation result indicates a buffer fight. A buffer 
fight means two (or more) devices are driving the bus at the same time. This can lead to short 
circuit conditions, resulting in large current spikes and possible device damage. 

TRHAX cannot be lengthened (other than slowing the clock rate). To resolve a buffer fight 
condition, chose a faster device or buffer the AD bus (see Section 3.6.1). 

Table 3.3. Read Cycle Critical Timing Parameters 

MEMORY DEVICE 
PARAMETER DESCRIPTION EQUATION 

TOE Output enable (RD low) to data valid 2T - TCLOV2 - TCLIs 

TACC Address valid to data valid 3T - TCLOV2-TADLTCH - TCLIs 

--
TCE Chip enable (UCS) to data valid 3T - TCLOV2 - TCLIs 

TDF Output disable (RD high) to output float TRHAX 

3.5.1.1. REFRESH BUS CYCLES 

A refre~h bus cycle operates similarly to a normal read bus cycle except for the following: 

• For a 16-bit data bus, address bit AO and BHE drive to a 1 (high) and the data value on 
the bus is ignored. 

• For an8-bit data bus, address bit AO drives to a 1 (high) and RFSHis driven active. The 
data value on the bus is ignored. RFSH has the same bus timing as BHE. 

3-19 



intet BUS INTERFACE UNIT 

! - "- CE 
I /I T v 

AD7:0 0 0-7 I 

LA15:1 ) 27C256 
I AO-14 

I 

RD "- OE 
I 

v \ 

~ Of: ! 

) 
I 

AO-14 
I 

AD15:8 
27C256 

I 0 0-7 

I 
"- CE '-' 

I 

NOTE: Ao AND SHE ARE NOT USED. 

Figure 3.20. Read-Only Device Interface 

3.5.2. WRITE BUS CYCLES 

Figure 3.21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE 
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions 
high (inactive), although data remains valid for one additional clock. Table 3.3 lists the two 
types of write bus cycles. 

Figure 3.22 illustrates a typical 16-bit interface connection to a ReadlWrite device. Write bus 
cycles have many parameters that must be evaluated in determining the· compatibility of a 
memory (or 110) device. Table 3.4 lists some critical write bus cycle parameters. 

3-20 



intet BUS INTERFACE UNIT 

T1 T2 T3 T4 

CLKOUT I I' r---; 1--1 r-----L' 
_______ ~I L-_~ ~ 

S2:0 

ALE 

A19:16 

\ 
\ STATUS VALID 
\..-_-------~----~--

'/ ADDRESS ';------'---7:. --
/ VALID· / 

A18:16=0 
A19=VALID STATUS 

BHE-~~ rr--- -----~\--'-

X VALID l 
[A 15:8J -; ____ ----,-I_~, __ , ______ ~ _____ ---~----~----__J 

~----- ---------~~\ ' , I 
WR L _____ , ______ ----'-1 

DTI R-7---' ----:---------. ----.--- \ 
\'----

Figure 3.21. Typical Write Bus Cycle 

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address, 
chip-select and data must be valid (setup) prior to rising edge of WR. TAW, Tcw and TDW 
define the minimum data setup requirements. The value calculated by their respective 
equations must be greater than the device requirements. To increase the calculated value insert 
wait states. 

The minimum device data hold time (from WR high) is defined by TDH. The calculated value 
must be greater than the minimum device requirements; however, the value can only be 
changed by decreasing the clock rate. 

3-21 



in1:et BUS INTERFACE UNIT 

Table 3.4. Write Bus Cycle Types 

'STATUS BITS 

S2 S1 SO BUS CYCLE TYPE 

0 1 0 Write I/O - Initiated by executing IN, OUT, INS, OUTS 
instructions or by the DMA Unit. A 15:0 selects the desired 
I/O port. A19:16 are driven to zero (see also DMA Unit). 

1 1 0 Write Memory - Initiated by any of the Byte/ Word 
memory instructions or the DMA Unit. A 19:0 selects the 
desired byte or word memory location. 

LA15:1 A 0-14 

RD 0 OE I/O 1 

W AD7:O 
0 

-
WE I/O 8 

--
0 CS1 

LAO 
WR 

SHE 

OE I/O 1 

WAD15:8 

WE I/O 8 

LCS CS1 

Figure 3.22. 16-Bit Bus Read/Write Device Interface 

3-22 



intel" BUS INTERFACE UNIT 

Table 3.5. Write Cycle Critical Timing Parameters 

MEMORY DEVICE 
PARAMETER DESCRIPTION EQUATION· 

Twc Write cycle time 4T 

TAW Address valid to end of write strobe (WR high) 3T -TAOLTCH 

Tcw Chip enable (LCS) to end of write strobe (WR 3T 
high) 

TWR Write recover time TWHLH 

Tow Data valid to write strobe (WR high) 2T 

TOH Data hold from write strobe (WR high) TWHOX 

Twp Write pulse width TWLWH 

Twc and Twp define the minimum time (maximum frequency) a device can process write bus 
cycles. TwR determines the minimum time from the end of the current write cycle to the start 
of the next write cycle. All three parameters require calculated values be greater than device 
requirements. The calculated Twc and Twp values increase by inserting wait states. The 
calculated TWR value, however, can not be changed except by decreasing the clock rate. 

3.5.3. INTERRUPT ACKNOWLEDGE BUS CYCLE 

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral 
device such as the 82C59A Programmable Interrupt Controller. The BIU controls the bus 
cycles required to fetch vector information from the peripheral device, and then passes the 
information to the CPU. These bus cycles, collectively know as an INTA bus cycle, operate 
similarly to read bus cycles. However, instead of generating RD to enable the peripheral, the 
signal INTA is used. Figure 3.23 illustrates a typical Interrupt Acknowledge bus cycle. 

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is 
generated to indicate the sequential bus operation. The second bus cycle strobes vector 
information only from the lower half of the bus (D7:0). In a 16-bit bus system, the upper half 
of the bus floats. 

Figure 3.25 shows a typical 82C59A interface example. Bus ready must be provided to 
terminate both bus cycles in the interrupt acknowledge sequence. 

3-23 



int'et 

CLKOUT 

ALE 

82:0 

INTAO, 

INTA1 

AD15:0 
[AD7:0] 

LOCK 

DT/R 

DEN 

A19:16 
[A15:8] 

SHE 

RD,WR 

T1 T2 

BUS INTERFACE UNIT 

T3 TI TI 

A15:8 ARE UNKNOWN 
A 19: 16 ARE DRIVEN LOW 

TI T1 , T2 

NOTE: Vector Type is read from AD7:0 only. 
INTA occurs during T2 in Slave Mode 

Figure 3.23. Interrupt Acknowledge Bus Cycle 

3-24 

T3 



in1:et BUS INTERFACE UNIT 

PROCESSOR 

f 
82C59A 

-- --
INTAO ... ,. INTA IRO 

· I 
INTO J INT • \ ""'" - - · RD ... RD IR7 ,. 
- -.... WR , WR 

-- -
PCSO ... CS ,. 

LA1 ~ AO 
D7:0 

) II 1\ 

AD7:0 \ 
~ v 

Figure 3.24 Typical 82C59A Interface 

3.5.3.1. SYSTEM DESIGN CONSIDERATIONS 

Although ALE is generated for both bus cycles, the BIU does not drive valid address 
information. Actually, all address bits .except A19:16 float during the time ALE becomes 
active (on both 8- and 16-bit bus devices). Address decode circuitry must be disabled for 
Interrupt Acknowledge bus cycles to prevent erroneous operation. 

3.5.4. HALT BUS CYCLE 

Suspending the CPU reduces device power consumption and potentially reduces interrupt 
latency time. The HLT instruction initiates two sequences: 

1. Suspends the Execution Unit 

2. Instructs the BIU to execute a HALT bus cycle 

Chapter 5 discusses the concepts of Idle and Powerdown power management modes. Either of 
those two modes (or the absence of both of them, known as Active Mode) affects the 
operation of the bus HALT cycle. The effects relating to BIU operation and the HALT bus 

3·25 



BUS INTERFACE UNIT 

cycle are described in this section. However, refer to Chapter 5 for a discussion of Active, Idle 
and Powerdown Modes. 

After executing a HALT bus cycle, the BIU suspends operation until any of the following 
events occur: 

• An interrupt is generated 

• A bus HOLD is generated (except when Powerdown Mode is enabled) 

• A DMA request is generated (except when Powerdown Mode is enabled) 

• A refresh request is generated (except when Powerdown Mode is enabled) 

Figure 3.25 shows the operation of a HALT bus cycle. During n, the AD bus either floats or 
drives depending on the next bus cycle to be executed by the BIU. Under most instruction 
sequences, the BIU floats the AD bus because the next operation would most likely be an 
instruction prefetch. However, the AD bus drives either data or address information during TI 
if the HALT occurs just after a bus write operation. A 19: 16 continues to drive the previous 
bus cycle information under most instruction sequences (it drives the next prefetch address 
otherwise). TheBIU always operates the same way for any given instruction sequence. 

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT 
bus cycle. However, chip-selects generated by external decoder circuits must be disabled for 
HALT bus cycles. 

After several TI bus states, all address/data, address/status and bus control pins drive to a 
known state when Powerdown or Idle Mode is enabled. The address/data and address/status 
bus pins force a low (0) state. Bus control pins force their inactive state. Table 3.6 lists the 
state of each pin after entering the HALT bus state. 

Table 3.6. HALT Bus Cycle Pin States 

PIN STATE PIN STATE 
PIN(S) NO Powerdown Powerdown 

or Idle Mode or Idle Mode 

AD15:0 (AD7:0 for 8-bit) Float Drive Zero 

A 15:8 (8-bit) Drive Address Drive Zero 

A19:16 Drive 8H or Zero Drive Zero 

SHE (16-bit) Drive Last Value Drive One 

RD, VVR, DEN, DT/R, Drive One Drive One 
RF8H (8~bit), 82:0 

3·26 



BUS INTERFACE UNIT 

T1 TI TI 

CLKOUT 

ALE ~ \ 

82:0 \ 011 

AD15:0 
NOTE 1 [AD7:0] 

------------s----------------
\ NOTE 2 NOTE 3 

[A15:8] NOTE 2 
------------s----------------

\ NOTE 2 NOTE 3 

A19:16 \-------- -NOTE 4 ----------- --

BHE 
[RFSH=1] ----------------------------~I 

NOTES: 

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value, 
or driving the next instruction prefetch address value. For an 8-bit device, 
A 15:8 either drives the previous bus address value or the next instruction 
prefetch address value. 

2. The AD15:0 bus, or AD7:0 and A 15:8 buses for an 8-bit device, drive to a 
zero (all low) at this time if Powerdown Mode is enabled. When Powerdown 
Mode is not enabled, the AD15:0 [AD7:0] bus either floats or drives previous 
write data, and A15:8 (8-bit device) continues to drive its previous value. 

3. The AD15:0 bus, or AD7:0 and A 15:8 buses for an 8-bit device, drive to a 
zero (all low) at this time if Idle Mode is enabled. When Idle Mode is not 
enabled, the AD15:0 [AD7:0] bus either floats or drives previous write data, 
and A 15:8 (8-bit device) continues to drive its previous value. 

4. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6, 
which can be high H the previous bus cycle was a DMA or refresh operation). 
If either Idle or Powerdown Mode is enabled, the A 19:16 bus drives zeros 
(all low) at phase 1 of TI. Otherwise, the previous value remains active. 

Figure 3.25. HALT Bus Cycle 

3-27 



inlet. BUS INTERFACE UNIT 

3.5.5. TEMPORARILY EXITING THE HALT BUS STATE 

A DMA request, refresh request or bus hold request cause the BIU to temporarily exit the 
HALT bus state. This can only occur when in the Active or Idle power management mode. 
The BIU returns to the HALT bus state after it completes the desired bus operation; However, 
the BIU does not execute another bus HALT cycle (i.e., ALE and bus cycle status are not 
regenerated). Figures 3.26, 3.27, and 3.28 illustrate how the BIU temporarily exits and then 
returns to the HALT bus state. 

3.5.6. EXITING HALT 

The detection of an NMI forces the BIU to exit the HALT bus state when Powerdown Mode is 
enabled. Any NMI or nop-masked INTx interrupt exits the HALT bus state for any other 
power management mode except Powerdown Mode. The first bus operations to occur after 
exiting HALT are read cycles to reload the CS:IP registers. Figures 3.29 and 3.30 show how 
the HALT bus state is exited when and NMI or INTx (respectively) occurs. 

CLKOUT ,~ 
ALE 

-----jl n 
82:0 

-----jl 
\ 

AD15:0 
[AD7:0] ---i 

[A15:8] 
II FE1X ADDRESS· ~ 

A19:16 I NOTE 1 ~ A19=1. A18:16=O \ -----jl 

NOTE: 1. Previous bus cycle value. 

2. Only occurs for SHE on the first refresh bus cycle after entering HALT. 
--- ---

3. SHE = 1 for 16-bit device, RF8H = 0 for 8~bit device. 

Figure 3.26. Returning to,HAL T After a Refresh Bus Cycle 

3-28 



BUS INTERFACE UNIT 

T4 T1 T2 T3 T4 T1 T2 T3 TI TI TI TI 

CLKOUT 

ALE II n 
82:0 \ VALID STATUS I \ VALID STATUS 1 

AD15:0 
~ (ADDRX VALID DATA 

[AD7:0] '--

[A15:8] /NOTE X ADDRESS 
X 

ADDRESS ~ 
A19:16 L NOTE XADDRX 8H XADDRX 8H ~ 

SHE 
\ NOTE 

X 
VALID 

X 
VALID 7 [RFSH=1] 

NOTE: Drives previous bus cycle value 

Figure 3.27. Returning to HALT After a DMA Bus Cycle 

CLKOUT u-u-u-u-
HOLD J '~ 

HLDA r' 
AD15:0 

[ AD7:0] r' '---
A 15:8 

A19:16 II \ 

CONTROL VALID II VALID 

Figure 3.28. Returning to HALT After a HOLD/HLDA Bus Exchange 

3-29 



BUS INTERFACE UNIT 

CLKOUT ---1~~ 
~ ~ 
: 8 1/2 clocks to lirst vector fetch 

ALE 
-II :I~ 

82:0 -----jl-I -~------H---.----------

AD15:0 
[AD7:0] 

[A15:8] 

BHE 
[RFSH = 11 

A19:16 

NMI 

NOTE: 

-----jl--I ---f---,r--'t----(===>-

-----jl-I -.;......,.-.L~-----l: NOTE X~ __ _ 

-II, 111---------

~ Time is determined by PDTMR 
:,-I~ (41/2 clocks min.) 
~ ~. ------flll----------

Previous bus cycle address value. 

Figure 3.29. Exiting HALT (Powerdown Mode) 

3.6. SYSTEM DESrGN ALTERNATIVES 

Most system designs do not require any additional signaling requirements than those already 
provided by the BIU. However, heavily loaded bus conditions, slow memory or peripheral 
device performance, and off-board device interfaces may not be supported' directly without 
modifying the BIU interface. The following sections deal with topics to enhance or modify the 
operation of the BIU. 

3.6.1. BUFFERING THE DATA BUS 

The BIU generates two control signals, DEN and DT/R, to control bidirectional buffers or 
transceivers. The timing relationship of DEN and DTIR is shown in Figure 3.31. Conditions 
requiring transceivers include: 

• The capacitive load on the AD bus gets too large 

• The current load on the AD bus exceeds device specifications 

• Additional VOL and VOH drive is required 

• A memory or 1/0 device can not float its outputs in time to prevent a buffer fight 

3-30 



in1:et BUS INTERFACE UNIT 

CLKOUT~ 
~NOTE1 

NMI/INTXy~ 

ALE 
II 

II 
82:0 

AD15,0. 
[AD7:0] II 

[A15:8] 
II / 

A19:16 / II 

SHE, II 
\ RF8H 

NOTE: 

1. For NMI, delay = 4 1/2 clock 
For INTx, delay = 7112 clocks 

2. If previous bus cycle was a 
read, bus will float. If previous 
bus cycle was a write, bus will 
drive data value. 

L 
VALID 

NOTE 3 X ADDR 

NOTE 4 \ 
NOTE 3 \ 

3. Previous bus cycle value 

4. If previous bus cycle was a refresh 
or DMA bus cycle, value will be 8H 
(A19= 1); otherwise value will be O. 

Figure 3.30. Exiting HALT (Active/Idle Mode) 

The circuit shown in Figure 3.32 illustrates how to use transceivers to buffer the AD bus. The 
connection between the processor and the transceiver is known as the "local bus." Connections 
between the transceiver and other memory or 1/0 devices is known as the "buffered bus." A 
fully buffered system does not have any devices attached to the local bus. A partially buffered 
system has devices on both the local and buffered buses. 

DEN drives the transceiver output enable directly in a fully buffered system. A partially 
buffered system requires DEN to be qualified with another signal to prevent the transceiver 
from going active for local bus accesses. Figure 3.33 illustrates how to use chip-selects to 
qualify DEN. 

DT/R always connects directly to the transceiver. However, an inverter may be required if the 
polarity of DT/R does not match the transceiver. DTIR only goes low (0) for memory and 1/0 
read, instruction prefetch and interrupt acknowledge bus cycles. 

3-31 



intel .. BUS INTERFACE UNIT 

T1 T2 T3 T4 T1 

CLKOUT 

RD,WR \'---_---'1 
DT'/R ,~ \ ---------------./ 

DEN ____ I \-, ---~~----~/ --' -~ 
- - - WRITE CYCLE OPERATION 

--READ CYCLE OPERATION 

Figure 3.31. DEN and DT/R Timing Relationship 

ALE ... ,. 
~ 

A19.:16 
\ 
j 
v 

LATCH 

A \ 
.~D15:~ ADDRESS BUS 

PROCESSOR 

~7 
ADDR 

-\ 
J A 1\ 

MEMORY 
y 

XCVR 1< DATA BUS DATA OR CS ~ DEN 1/0 
'ii' ~ . V 

- - DEVICE 

I 

DT/R .... 
. -

v ~ 
CPU LOCAL BUS BUFFERED BUS 

Figure 3.32. Buffered AD Bus System 

3-32 



3.6.2. 

AD15:8 
DEN 

MCSO 

AD7:0 

DTI R 

8/ 
/ 

8/. 
/ 

BUS INTERFACE UNIT 

... , A 

... -
8/ '" , OE B / ,. 

~ T 

BUFFER 

"" A , 

... -
ft "" ,. OE B / , 

"" T , 

BUFFER 

8/ '" 
/ ,. 

8/ '" 
/ ,. 

D15:8 

D7:0 

} 

BUFFERED 
DATA 
BUS 

LOCAL 
DATA BUS 

Figure 3.33. Qualifying DEN with Chip-Selects 

SOFTWARE SYNCHRONIZATION 

The execution sequence of a program and hardware events occurring within a system are often 
asynchronous to each other. In some systems there may be a requirement to suspend program 
execution until an event (or events) occurs, and the program execution continues. 

One way to synchronize software execution with hardware events requires the use of 
interrupts. Executing a HALT instruction suspends program execution until an unmasked 
interrupt occurs. However, there is a delay associated with servicing the interrupt before 
program execution can once again proceed. Using the WAIT instruction removes the delay 
associated with servicing interrupts. 

The WAIT instruction suspends program execution until one of two events occurs: an 
interrupt is generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST 
input pin does not require program execution to be transferred to a new location (i.e., an 
interrupt routine is not executed). In processing the WAIT instruction, as long as TEST 
remains high program execution remains suspended (at least until an interrupt occurs). When 
TEST is sampled low, program execution resumes. 

3-33 



BUS INTERFACE UNIT 

The TEST input and WAIT instruction provide a mechanism to delay program execution until 
a hardware event occurs, without having to absorb the delay associated with servicing an 
interrupt. 

3.6.3. LOCKED BUS OPERATION 

To address the problems of controlling accesses to shared resources, the BIU provides a 
hardware LOCK output. The execution of a LOCK prefix instruction activates the LOCK 
output. 

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK 
prefix instruction. It remains active until phase 1 of Tl of the first bus cycle following the 
execution of the instruction following the LOCK prefix. To provide bus access control in 
multiprocessor systems, the LOCK signal should be incorporated into the system bus 
arbitration logic resident to the CPU. 

During normal multiprocessor system operation, pnonty of the shared system bus is 
determined by the arbitration circuits on a cycle by cycle basis. As each CPU requires a 
transfer over the system bus, it requests access to the bus via its resident bus arbitration logic. 
When the CPU gains priority (determined by the system bus arbitration scheme and any 
associated logic), it takes control of the bus, performs its bus cycle and either maintains bus 
control, voluntarily releases the bus or is forced off the bus by the loss of priority. 

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force) 
and guarantees that the CPU can execute multiple bus cycles without intervention and possible 
corruption of the data by another CPU. A classic use of the mechanism is the "TEST and SET 
semaphore" during which a CPU must read from a shared memory location and return data to 
the location without allowing another CPU to reference the same location during the test and 
set operations. 

Another application of LOCK for multiprocessor systems consists of a locked block move 
which allows high speed message transfer from one CPU's message buffer to another. 

During the locked instruction (i.e., while LOCK is active), a bus hold, DMA or refresh request 
are recorded but not acknowledged until completion of the locked instruction. However, 
LOCK has no affect on interrupts. As an example, a locked HALT instruction causes bus hold, 
DMA or refresh bus requests to be ignored, but still allows the CPU to exit the HALT state on 
an interrupt. 

In general, prefix bytes (like LOCK) are considered extensions of the instructions they 
preceded. Interrupts, DMA requests and refresh requests that occur during execution of prefix 
are not acknowledged until completion of the instruction following the prefix (except for 
instructions which are servicing interrupts during their execution, (i.e., HALT, WAIT and 
repeated string primitive). Note that multiple prefix bytes may precede an instruction. 

3-34 



int:eL BUS INTERFACE UNIT 

Another example is a "string primitive" preceded by the repetition prefix (REP) which is 
interruptible after each execution of the string primitive, even if the REP prefix is combined 
with the LOCK prefix. This prevents interrupts from being locked out during a block move or 
other repeated string operations. However, bus hold, DMA and refresh requests remain locked 
out until LOCK is removed (either by completing the block operation or after an interrupt 
occurs). 

3.6.4. QUEUE STATUS OPERATION 

The queue status indicates what information is being removed from the internal queue and 
when the queue is being reset due to a transfer of control (e.g., jump, interrupt, etc.). Since the 
Execution Unit can remove information from the queue on any clock boundary, the queue 
status pins can change state on every phase 1 clock edge (see Figure 3.34). The queue status 
signals can not be related to any specific T-state, although for a given sequence of instructions 
the relationship between the operation of the BIU and the sequence of queue status 
information always remains the same. 

CLKOUT 

080,081 

Figure 3.34. Queue Status Timing 

The queue status signals QSO and QS I become alternate functions of the ALE and WR 
signals, respectively. To enable QSO and QSI, the RD signal pin must be directly shorted to 
ground. RD, WR and ALE are no longer available for use by the system and must be 
generated by external hardware. A device like the 82C88 or a programmable logic device can 
recreate the function of RD, WR and ALE. Table 3.7 shows the encoding of the QSO and QSI 
signals. 

Table 3.7. Queue Status Bit Encoding 

QS1 QS2 DEFINITION 

0 0 No queue operation occurred 

0 1 First byte of a new instruction has been taken from the queue. 

1 0 The queue was reinitialized. Signals the flush of all prefetch information. BIU must 
begin prefetching new queue information. 

1 1 Subsequent byte of instruction taken from queue. The current instruction contains 
multiple opcode bytes or immediate data. 

3-35 



intel .. BUS INTERFACE UNIT 

Queue status mode is required in older generation devices for the purposes of interfacing with 
an 8087 Math Coprocessor. However, the 8087 Math Coprocessor has been replaced by the 
80187 Math Coprocessor, which has an 110 port interface similar to a peripheral device. This 
new interface no longer requires queue status mode. 

3.7. MULTI-MASTER BUS SYSTEM DESIGNS 
, , 

The BID supports protocols for transferring control of the local bus between itself and other 
devices capable of acting as bus masters. To support such a protocol, the BID uses a hold 
request input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake 
signals. To gain control of the bus, a device asserts the HOLD input, and then waits until the 
HLDA output goes active before driving the bus. After HLDA has gone active, the requesting 
device can take control of the local bus and remains in control of the bus until HOLD is 
removed. 

3.7.1. ENTERING BUS HOLD 

In responding to the hold request input, the BID floats the entire address and data bus, and 
many of the control signals. Table 3.8 lists the state of the BIU pins when HLDA is asserted. 
Figure 3.35 illustrates the timing sequence when acknowledging the hold request. Of those 
device pins not mentioned in Table 3.8 or shown in Figure 3.35, all other pins either remain 
active (e.g., CLKODT and TlODT) or remain in their inactive state (e.g., DCS and INTA). 
Refer to the data sheet for specific details of pin functioning during a bus hold. 

Table 3.S. Signal Condition Entering HOLD 

SIGNAL HOLD CONDITION 
--

A19:16, 52:0, RD, WR, DT/R, SHE RF5H, DT/R, These signals float one half clock before HLDA 
LOCK is generated (Le., phase 2). 

AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float the same clock HLDA is 
generated (Le., phase 1). ' 

3.7.1.1. ,HOLD BUS LATENCY 

The duration of time between the assertion of HOLD by the external device and the ass~rtion 
of HLDA by the BIU is known as bus latency. In Figure 3.35, the two clock delay between 
HOLD and HLDA represents the shortest bus latency. Normally this only occurs if the bus is 
idle, halted or the bus hold request ,occurs just prior to the BIU beginning another bus cycle. 

~"36 



HOLD 

HLDA 

AD15:0 

DEN 

A19:16, 
RD, WR, SHE, 

DTI R, 82:0 
LOCK 

BUS INTERFACE UNIT 

FLOAT 

NOTES: 
1. TCLIS : HOLD input to clock low 

2. TCHOF : Clock high to output float 

3. TCLOF : Clock low to output float 

4. TCLOV : Clock low to HLDA high 

Figure 3.35. Timing Sequence Entering HOLD 

The major factors that influence bus latency are listed below (in order of longest delay to 
shortest delay). 

1. Bus Not Ready - As long as the bus remains not ready a bus hold request can not be 
serviced. 

2. Locked Bus Cycle - As long as LOCK remains asserted a bus hold request can not be 
serviced. Performing a locked move string operation can take several thousands of clocks. 

3. Completion of Current Bus Cycle - A bus hold request is not serviced until the current 
bus cycle completes. A bus hold request will not separate bus cycles required to move odd 
aligned word data. Also, bus cycles with long wait states will delay the servicing of a bus 
hold request. 

4. Interrupt Acknowledge Bus Cycle - A bus hold request is not serviced until after an 
INT A bus cycle has completed. An INT A bus cycle drives LOCK active. 

5. DMA and Refresh Bus Cycles - A bus hold request is not serviced until after the DMA 
request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than 
hold bus requests. A bus hold request can not separate the bus cycles associated with a 

3·37 



intel .. BUS INTERFACE UNIT 

DMA transfer (worst case is an odd aligned transfer, which takes four bus cycles to 
complete). 

3.7.1.2. REFRESH OPERATION DURING A BUS HOLD 

Under normal operating conditions, once HDLA has been asserted it remains asserted until 
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is 
removed (driven low) to signal the need for the BID to regain control of the local bus. The 
BIU does not gain control of the bus until HOLD is removed. This procedure p~events the BIU 
from just arbitrarily regaining control of the bus. 

Figure 3.36 shows the timing associated with the occurrence of refresh request while HLDA is 
active. Note that HLDAcan be as short as one clock in duration. This happens when a refresh 
request occurs just after HLDA is granted. A refresh request has higher priority than a bus 
hold request, so when both occur simultaneously the refresh request occurs before HLDA 
becomes active. 

CLKOUT 

HOLD 

HLDA 

AD1S:0 

DEN 

A19:16 

RD, WR, BHE, 

DT/R, S2:0 

NOTES: 
1. HLDA deasserted, signaling need to run refresh bus cycle 
2. External bus master terminates use of the bus. 
3. HOLD deasserted. 
4. HOLD may be reasserted after one clock. 
5. BIU runs refresh bus cycle . 

Figure 3.36. Refresh Request During Bus Hold 

3·38 



BUS INTERFACE UNIT 

The device requesting a bus hold must be able to detect a one clock wide HLDA pulse. A bus 
lockup (hang) condition may result because the requesting device did not detect the short 
HLDA pulse and continues to wait for HLDA to be asserted, while the BIU waits for HOLD 
to be deasserted. The circuit shown in Figure 3.37 can be used to latch HLDA. 

+5 PRE 

o Q --LATCHED HLDA 

HLDA ____________ ~ 

CLR 

RESOUT 
HOLD -----(j 

Figure 3.37. Latching HLDA 

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain 
the bus and execute a refresh bus cycle. The BIU will release the bus and generate HLDA 
should HOLD go active prior to completing the refresh bus cycle. 

3.7.2. EXITING HOLD 

Figure 3.38 shows the timing associated with exiting the bus hold state. Normally a bus 
operation (e.g., instruction prefetch) occurs just after HOLD is released. However, if no bus 
cycle is pending when leaving a bus hold state, the bus and associated control signals remain 
floating (except if Idle or Powerdown Modes are active, see Section 3.5.5). 

3·39 



in1:et BUS INTERFACE UNIT 

3.S. BUS CYCLE PRIORITIES 

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals 
(e.g., DMA Unit) and external bus masters (i.e., bus hold requests). The list below summarizes 
the priority for all bus cycle requests (from highest to lowest). 

1. Instruction execution reads or writes following a non-pipelined effective address 
calculation. 

2. Refresh bus cycles. 

3. Bus hold request. 

4. Single step interrupt vectoring sequence. 

5. Non-Maskable interrupt vectoring sequence. 

6. Internal error (e.g., divide error, overflow) interrupt vectoring sequence. 

7. Hardware (e.g., INTO, DMA) interrupt vectoring sequence. 

8. 80C187 Math Coprocessor error interrupt vectoring sequence. 

9. DMA bus cycles. 

10. General instruction execution. This category includes read and write operations 
following a pipelined effective address calculation, vectoring sequences for software 
interrupts and numerics' code execution. The following points apply to sequences of 
related execution cycles: 

• The second read/write cycle of an odd addressed word operation is inseparable 
from the first bus cycle. 

• The second read/write cycle (j)f an instruction with both ;load and store accesses 
(e.g., EXCHG) may be separated from the first cycle by other bus cycles. 

• Successive bus cycles of string instructions (e.g., MOVS) may be separated by 
other bus cycles. 

• When a locked instruction begins, its associated bus cycles become the highest 
priority and can not be separated (or preempted) until completed. 

11. Bus cycles necessary to fill the prefetch queue. 

3·40 



infel .. 

I CLKOUT 

HOLD 

HLDA 

AD15:0 
DEN 

----
RD, WR, BHE, 

DT/R, S2:0 
A19:16 

NOTES: 

BUS INTERFACE UNIT 

--------------------~(~------

1. TCLIs 
2. 

: HOLD recognition setup to clock low 

: HOLD internally synchronized 

3. TCLOV : Clock low to HLDA low 

4. T CHOV : Clock high to signal active (high or low) 

5. 'T CLOV : Clock low to Signal active (high or low) 

Figure 3.38. Exiting HOLD 

3-41 





Peripheral Control Block 4 





CHAPTER 4 
PERIPHERAL CONTROL BLOCK 

All integrated peripherals in the 80C 186 Modular Core family are controlled by sets of 
registers within an integrated Peripheral Control Block (PCB). These registers are physically 
located in the peripheral devices they control, but they are addressed as a single block of 
registers. The Peripheral Control Block encompasses 256 contiguous bytes. The control block 
can be located on any 256 byte boundary of memory or I/O space. Table 4.1 shows a map of 
these registers. Unused locations are reserved. 

4.1. SETTING THE BASE LOCATION 

The Peripheral Control Block contains the Peripheral Control Block Relocation Register, in 
addition to control registers for each integrated peripheral device. The Relocation Register 
allows the Peripheral Control Block to be relocated to any 256 byte boundary within memory 
or I/O space, depending on the state of the Memory I/O (MEM) bit and R19:8. Figure 4.1 
shows the layout of the Relocation Register. 

The Relocation Register is located at a fixed offset within the Peripheral Control Block. If the 
Peripheral Control Block is moved, the Relocation Register will also move. 

The Peripheral Control Block Relocation Register contains the Escape Trap (ET) bit. When 
set, this bit forces the processor to trap whenever an ESC (coprocessor) instruction is 
encountered. 

The Relocation Register contains the value OOFFH upon RESET. This means the Peripheral 
Control Block will be located at the top of 110 space (OFFOOH to OFFFFH). 

As an example, to relocate the Peripheral Control Block to the memory range lOOOO-lOOFFH, 
the user would program the Relocation Register with the value llOOH. Since the Relocation 
Register is part of the Peripheral Control Block, it relocates to word lOOOOH plus its fixed 
offset. 

All communication between integrated peripherals and the Modular CPU Core occurs over a 
special bus called the F-Bus. The F-Bus always carries 16 bit data. 

4-1 



PERIPHERAL CONTROL BLOCK 

Table 4.1. 80C186EC Peripheral Control Block 

PCB Function PCB Function PCB Function PCB Function 
Offset Offset Offset Offset 

OOH MPICPO 40H T2CNT 80H GCSOST COH DOSRCL 

02H MPICP1 42H T2CMPA 82H GCSOSP C2H DOSRCH 

04H SPICPO 44H Reserved 84H GCS1ST C4H DODSTL 

06H SPICP1 46H T2CON 86H GCS1SP C6H DODSTH 

08H Reserved 48H P3DIR 88H GCS2ST C8H DHC 

OAH SCUIRL 4AH ·P3PIN 8AH GCS2SP CAH DOCON 

OCH DMAIRL 4CH P3CON 8CH GCS3ST CCH DMAPRI 

OEH TIMIRL 4EH P3LTCH 8EH GCS3SP CEH DMAHALT 

10H Reserved 50H P1DIR 90H GCS4ST DOH D1SRCL 

12H Reserved 52H P1PIN 92H GCS4SP D2H D1SRCH 

14H Reserved 54H P1CON 94H GCS5ST D4H 01 DSTL 

16H Reserved 56H P1LTCH 96H GCS5SP D6H D1DSTH 

18H ReServed 58H P2DIR 98H GCS6ST D8H DHC 

1AH Reserved 5AH P2PIN 9AH GCS6SP DAH D1CON 

1CH Reserved 5CH P2CON 9CH GCS7ST DCH Reserved 

1EH Reserved 5EH P2LTCH 9EH GCS7SP DEH Reserved 

20H WDTRLDH 60H BOCMP AOH LCSST EOH D2SRCL 

22H WDTRLDL 62H BOCNT A2H LCSSP E2H D2SRCH 

24H WDTCNTH 64H SOCON A4H GCSST E4H D2DSTL 

26H WDTCNTL 66H SOSTS A6H GCSSP E6H D2DSTH 

28H WDTCLR 68H SORBUF A8H RELREG E8H D2TC 

2AH WDTDIS 6AH SOTBUF AAH Reserved EAH D2CON 

2CH Reserved 6CH Reserved ACH Reserved ECH Reserved 

2EH Reserved 6EH Reserved AEH Reserved EEH Reserved 

30H TOCNT 70H B1CMP BOH RFBASE FOH D3SRCL 

32H TOCMPA 72H B1CNT B2H RFTIM F2H D3SRCH 

34H TOCMPB 74H S1CON B4H RFCON F4H D3DSTL 

36H TOCON 76H S1STS B6H RFADDR F6H D3DSTH 

38H T1CNT 78H. S1RBUF B8H PWRCON F8H D3TC 

3AH T1CMPA 7AH SHBUF BAH Reserved FAH D3CON 

3CH T1CMPB 7CH Reserved BCH STEPID FCH Reserved 

3EH T1CON 7EH Reserved BEH PWRSAV FEH Reserved 

4-2 



intel~ PERIPHERAL CONTROL BLOCK 

Whenever mapping the Peripheral Control Block to another location, the user should 
program the Relocation Register with a byte write (i.e., OUT DX, AL). Accesses to the 
Peripheral Control Block, like all integrated peripherals, are always done 16 bits at a time. 
Internally, the Relocation Register is written with 16 bits of the AX register while externally 
the Bus Interface Unit runs a single 8-bit bus cycle. If a word instruction is used with an 
80Cl88 Modular Core family member (i.e., OUT DX, AX), the Relocation Register is written 
on the first bus cycle. The Bus Interface Unit then runs an unnecessary second bus cycle. The 
address of the second bus cycle will no longer be within the control block (the Peripheral 
Control Block was moved on the first cycle). Generation of external READY is now needed to 
complete the cycle. For this reason, we recommend byte operations for the Relocation 
Register. Byte instructions should also be used for the other registers in the Peripheral Control 
Block of an 80Cl88 Modular Core family member. This requires half of the bus cycles of 
word operations. Byte operations are only valid for even addressed writes to the Peripheral 
Control Block. A word read (i.e., IN AX, DX) must be performed to read a l6-bit Peripheral 
Control Block register. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC 

ET 

MEM 

R19:8 

M 
E 
M 

R 
1 
9 

BIT NAME 

Escape Trap 

Memory/fO 

PCB Base 
Address 
Upper Bits 

PCB Relocation Register 
RELREG 
Relocates the PCB within memory or 1/0 space. 

RESET 
STATE FUNCTION 

0 If set, the CPU will trap when an ESC 
instruction is executed. 

0 If set, the PCB is located in memory space. If 
clear, the PCB is located in liD space. 

OFFH R19:8 define the upper address bits of the 
PCB base address. All lower bits are zero. 
R19:16 are ignored when the PCB is mapped 
to liD space. 

NOTE: Reserved register bits are shown with grey shading. Reserved register bits must be 
written with a logic zero value to maintain compatibility with future Intel products. 

Figure 4.1. PCB Relocation Register 

4-3 



PERIPHERAL CONTROL BLOCK 

4.2. PERIPHERAL CONTROL BLOCK REGISTERS 

Each of the integrated peripherals' control and status registers is located at a fixed offset above 
the programmed base location of the Peripheral Contiol Block. Many locations within the 
Peripheral Control lock are not assigned to any peripheral. If a write is made to these 
locations, a bus cycle will occur, but data will not be stored. If a subsequent read is made to 
the same location, the value written will not be read back. Unused Peripheral Control Block 
locations are reserved. 

The processor will run an external bus cycle for any memory or I/O cycle accessing a location 
within the Peripheral Control Block. Address, data and control information will be driven on 
the external pins as with an ordinary bus cycle. Information returned by an external device will 
be ignored, even if the access does not correspond to the location of an integrated peripheral 
control register. This is also true for the 80C188 Modular Core family, except word accesses 
made to integrated registers will be performed in two bus cycles. 

The processor generates an internal READY signal whenever an integrated peripheral is 
accessed. External READY is ignored. READY will also be generated if an access is made to 
the Peripheral Control Block not corresponding to an integrated peripheral control register. 
The processor will not insert wait states for any access to the integrated Peripheral Control 
Block. The exceptions to this are accesses to timer registers. Accesses to timer control and 
counting registers insert one wait state. This is required to properly mUltiplex processor and 
counter element accesses to the timer control registers. 

The F-Bus does not function identically to the external data bus for byte and word accesses. 
All write transfers on the F-Bus occur as words, regardless of how they are encoded. For 
example, the instruction OUT DX, AL (DX is even) will write the entire AX register to the 
Peripheral Control Block register at location [DX]. If DX were an odd location, AL would be 
placed in rDX] and AH would be placed at [DX-IJ. A word operation to an odd address would 
write [DXJ and [DX-l] with AL and AH, respectively. This differs from normal external bus 
operation where unaligned word writes cause the modification of [DX] and [DX+ 1]. In 
summary, do not use odd aligned byte or word writes to the PCB. 

Aligned word reads work normally. Unaligned word reads do not work normally. For 
example, IN AX, DX (DX is odd) will transfer IDX] into AL and [DX-l] into AH. Byte reads 
from even or odd addresses work normally, but only a byte will be read. For example, IN AL, 
DX will not transfer [DX] into AX (only AL is modified). 

4-4 



inteL PERIPHERAL CONTROL BLOCK 

No problems will arise if the following recommendations are adhered to. For the 80C186 
Modular Core: 

Word reads: Access only even aligned words with IN AX, DX or MaY <word 
register>, <even PCB address>. 

Byte reads: Work normally. Beware of reading word-wide PCB registers that may 
change value between successive reads (i.e. timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will 
give unexpected results. Use either OUT DX, AX or OUT DX, AL (or MOV <even 
PCB address>, <word register». 

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will 
modify the entire word PCB location. 

For the 80C188 Modular Core: 

Word reads: Access only even aligned words with IN AX, DX or MaY <word 
register>, <even PCB address>. 

Byte reads: Work normally. Beware of reading word-wide PCB registers that may 
change value between successive reads (i.e. timer count value). 

Word writes: Always write even aligned words. Writing an odd aligned word will 
give unexpected results. Use OUT DX, AL or MaY <even aligned byte PCB 
address>, <byte register low byte>. Using OUT DX, AX will perform an unnecessary 
bus cycle. 

Byte writes: Do not perform unaligned byte writes. Even aligned byte writes will 
modify the entire word PCB location. 

4.3. RESERVED LOCATIONS AND THE NUMERICS INTERFACE 

Locations within the Peripheral Control Block not explicitly used are reserved. Reading from 
these locations yields an undefined result. If reserved registers are written, for example during 
a block MaY instruction, they must be set to OH. Failure to follow this guideline could 
result in incompatibilities with future 80C186 Modular Core family products. 

Systems using the 80C187 Numeric Processor Extension must not relocate the Peripheral 
Control Block to location OH in 1/0 space. The 80C187 interface uses 1/0 locations OF8H 
through OFFH. If the Peripheral Control Block were relocated here, the processor would be 
communicating with the Peripheral Control Block, not the 80C187 interface circuitry. This 
will cause indeterminate system operation if a numerics instruction is encountered when the 
Escape Trap bit is clear. 

4-5 





Clock Generation and 
Power Management 

5 





CHAPTER 5 
CLOCK GENERATION AND POWER MANAGEMENT 

The clock generation and distribution circuits provide uniform clock signals for the Execution 
Unit, the Bus Interface Unit and all integrated peripherals. 80C186 Modular Core Family 
processors have additional logic which controls the clock signals to provide power 
management functions. 

5.1. CLOCK GENERATION 

The clock generation circuit includes a crystal oscillator, a divide-by-two counter and power
save and reset circuitry (see Figure 5.1). Section 5.2.4 describes Power-Save Mode as a power 
management option. 

5.1.1. 

OSCOUT 

RESIN 

,..--..... -----------...... ...-------{ POWERDOWN 
SCHMITI TRIGGER 

"SQUARES·UP" ClKIN 

-:-2 
CLOCK 

CLOCK 
DIVIDER 

IDLE 

.-----~-+---< POWERSAVE 

~1} INTERNAL 
PHASE 

~2 CLOCKS 

TO 
~-----~~ ClKOUT 

RESET CIRCUITRY I--_~~ INTERNAL 
RESET 

Figure 5.1. Clock Generator 

CRYSTAL OSCILLATOR 

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common 
phase shift oscillator. 

5-1 



CLOCK GENERATION AND POWER MANAGEMENT 

5.1.1.1. OSCILLATOR OPERATION 

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified 
version of the input connects back to the input. A 360 degree phase shift around the loop will 
sustain the feedback in the oscillator. The on-chip inverter provides a 180 degree phase shift. 
The combination of the inverter's output impedance and the first load capacitor (see Figure 
5.2) provides another 90 degree phase shift. At resonance, the crystal becomes primarily 
resistive. The combination of the crystal and the second IQad capacitor provides the final 90 
degree phase shift. Above and below resonance the crystal is reactive and forces the oscillator 
back toward the crystal's nominal frequency. 

Zo " IN V ER TE R 0 U TP U T Z ~ f------III------j 

~~------~v------~~ ~~------TV------'~ ~~------TV------~~ 

NOTE: At resonance, the crystal is essential resistive. 
Above resonance, the crystal is inductive. 
Below resonance, the crystal is capacitive. 

Figure 5.2. Ideal Operation of Pierce Oscillator 

Figure 5.3 shows the actual microprocessor crystal connections. For low frequencies, crystal 
vendors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the 
only choice. The external ca.pacitors, CX ] at CLKIN and CX2 at OSCOUT, together with stray 
capacitance, form· the load. A third overtone crystal requires an additional inductor L] and 
capacitor C] to select the third overtone frequency and reject the fundamental frequency. 
Section 5.1.1.2 discusses crystal vibration modes in more detail. 

Choose C] and L] component values in the third overtone crystal circuit to satisfy the 
following conditions: 

• Thy LC components form an equivalent series resonant circuit at a frequency below the 
fundamental frequency. This criteria makes the circuit inductive at the fundamental 
frequency. The inductive circuit cannot make the 90 degree phase shift and oscillations do 
not take place. 

• The LC components form an equivalent parallel resonant circuit at a frequency about 
halfway between the fundamental frequency and the third overtone frequency; This 

5-2 



CLOCK GENERATION AND POWER MANAGEMENT 

criteria makes the circuit capacitive at the third overtone frequency, necessary for 
oscillation. 

• The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately 
equal the 20 pF load capacitor, CX2, used alone in the fundamental mode circuit. 

ClKIN 

OSCOUT 

(a) 

Fundamental 
Mode Circuit 

O=t l 
D ~CX1 

O{ 
~CX2 

C x{ CX2 = 20pF 

C1 =200pF 

l 1 = (See Text) 

ClKIN 

OSCOUT 

(b) 

Third Overtone 
Mode Circuit 

D=t l 
D ~CX1 

iii 
~ 

(c) 

Third Overtone 
Mode 

(Equivalent Circuit) 

, ~. - - - - - - - - - - - - - - - - - - - - - --I , , 

Figure 5.3. Crystal Connections to Microprocessor 

Choosing CJ as 200 pF (at least lOX the load capacitor) simplifies the circuit analysis. At the 
series resonance, the capacitance connected to LJ is 200 pF in series with 20 pF. The 
equivalent capacitance is still about 20 pF and the equation in Figure 5.4(a) yields the series 
resonant frequency. 

f =----
21t~ 

(a) Series or Parallel 
Resonant Frequency 

Ceq = 
(02 C1 Cx2 L 1- C1 - CX2 

2 
(0 C1 L 1-1 

(b) Equivalent Capacitance 

Figure 5.4. Equations for Crystal Calculations 

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to 
Figure 5.3(b). The capacitance connected to LJ is 200 pF in parallel with 20 pF. The 

5-3 



in1:et CLOCK GENERATION AND POWER MANAGEMENT 

Choosing C j as 200 pF (at least lOX the load capacitor) simplifies the circuit analysis. At the 
series resonance, the capacitance connected to L j is 200 pF in series with 20 pF. The 
equivalent capacitance is still about 20 pF and the equation in Figure 5.4(a) yields the series 
resonant frequency. 

To examine the parallel resonant frequency, refer to Figure 5.3(c), an equivalent circuit to 
Figure 5.3(b). The capacitance connected to L j is 200 pF in parallel with 20 pF. The 
equivalent capacitance is still about 200 pF (within 10 percent) and the equation in Figure 
5.4(a) now yields the parallel resonant frequency. 

The equation in Figure 5.4(b) yields the equivalent capacitance Ceqat the operation frequency. 
The desired operation frequency is the third overtone frequency marked on the crystal. 
Optimizing equations for the above three criteria yields Table 5.1. This table shows suggested 
standard inductor values for various processor frequencies. The equivalent capacitance is 
about 15 pF. 

5.1.1.2. 

Table 5.1. Suggested Values for Inductor Ll 

in Third Overtone Oscillator Circuit 

fCLKOUT fao.T. Ll 

(MHz) (MHz) (IlH) 

10 20 10.0, 12.0, 15.0 

12.5 25 6.8, 8.2, 10.0 

16 32 3.9, 4.7, 5.6 

20 40 2.2, 2.7, 3.3 

SELECTING CRYSTALS 

When specifying crystals, consider these parameters: 

• Resonance and Load Capacitance - Crystals carry a parallel or series resonance 
specification. The two types do not differ in construction, just in test conditions and 
expected circuit application. Parallel resonant crystals carry a test load specification, with 
typical load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a 
load capacitance specification. You may use a series resonant crystal with the 
microprocessor even though the circuit is parallel resonant. However, it will vibrate at a 
frequency slightly (on the order of 0.1 %) higher than its calibration frequency. 

• Vibration Mode - The vibration mode is either fundamental or third overtone. Crystal 
thickness varies inversely with frequency. Vendors furnish third or higher overtone 
crystals to avoid manufacturing very thin, fragile quartz crystal elements. At a given 
frequency, an overtone crystal isthi¢ker and more rugged than its fundamental mode 
counterpart. Below 20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz 
range, you can purchase both· modes. Above 32 MHz, vendors usually offer a third 

5-4 



in1et CLOCK GENERATION AND POWER MANAGEMENT 

overtone component. You must know the vibrational mode to know whether to add the 
LC circuit at OSCOUT. 

• Equivalent Series Resistance (ESR) - ESR is proportional to crystal thickness, inversely 
proportional to frequency. A lower value gives a faster startup time, but the specification 
is usually not important in microprocessor applications. 

• Shunt Capacitance - A lower value reduces ESR, but typical values such as 7 pF will 
work fine. 

• Drive Level - Specifies the maximum power dissipation for which the manufacturer 
calibrated the crystal. It is proportional to ESR, frequency, load and V cc. Disregard this 
specification unless you use a third overtone crystal, whose ESR and frequency will be 
relatively high. Several crystal manufacturers stock a standard microprocessor crystalline. 
Specifying a "microprocessor grade" crystal should ensure the rated drive level is a 
couple of milliwatts with 5-Volt operation. 

• Temperature Range - Specifies an operating range over which the frequency will not 
vary beyond a stated limit. Specify the temperature range to match the microprocessor 
temperature range. 

• Tolerance - The allowable frequency deviation at a particular calibration temperature, 
usually 25 degrees C. Quartz crystals are more accurate than microprocessor applications 
call for; do not pay for a tighter specification than you need. Vendors quote frequency 
tolerance in percent or parts per million (ppm). Standard microprocessor crystals typically 
have a frequency tolerance of 0.01 % (100 ppm). If you use these crystals, you can usually 
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core 
family. 

An important consideration when using crystals is that the oscillator start correctly over the 
voltage and temperature ranges expected in operation. Observe oscillator startup in the 
labora~ory. Varying the load capacitors (within about ± 50 percent) can optimize startup 
characteristics versus stability. In your experiments, consider stray capacitance and scope 
loading effects. 

For help in selecting external oscillator components for unusual circumstances, count on the 
crystal manufacturer as your best resource. Using low cost ceramic resonators in place of 
crystals is possible if your application will tolerate less precise frequencies. 

5.1.2. USING AN EXTERNAL OSCILLATOR 

The microprocessor's on-board clock oscillatorallows the use of a relatively low cost crystal. 
However, the designer may also use a "canned oscillator" or other external frequency source. 
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input. 
Leave OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter 
directly, generating the CPU clock signals. The external frequency input can have practically 
any duty cycle, provided it meets the minimum high and low times as stated in the data sheet. 
Selecting an external clock oscillator is more straightforward than selecting a crystal. 

5-5 



inlet CLOCK GENERATION AND POWER MANAGEMENT 

5.1.3. OUTPUT FROM THE CLOCK GENERATOR 

The crystal oscillator output drives a divide-by-two circuit, generating a 50 percent duty cycle 
clock for the processor's integrated components. All processor timings refer to this clock, 
available externally at the CLKOUT pin. CLKOUT changes state on the high-to-Iow transition 
of the CLKIN signal, even during reset and bus hold. CLKOUT is also available during Idle 
Mode but not during Powerdown Mode (see Sections 5.2.2 and 5.2.3). 

In a CMOS circuit, significant current only flows during logic level transitions. Since the 
microprocessor consists mostly of clocked circuitry, the clock distribution is the basis of 
power management. 

5.1.4. RESET AND CLOCK SYNCHRONIZATION 

The clock generator provides a system reset signal (RESOUT). The RESIN input generates 
RES OUT and the clock generator synchronizes it to the CLKOUT signal. 

A Schmitt trigger in the RESIN input ensures that the switch point for a low-to-high transition 
is greater than the switch point for a high-to-Iow transition. The processor must remain in reset 
a minimum of four CLKOUT cycles after Vee and CLKOUT stabilize. The hysteresis allows a 
simple RC circuit to drive the RESIN input (see Figure 5.5). Typical applications can use 
about 100 ms. as an RC time constant. 

Reset may be either cold (power-up) or warm. Figure 5.6 illustrates a cold reset. Assert the 
RESIN input during power supply and oscillator startup. The processor's pins assume their 
reset pin states a maximum of 28 CLKIN periods after CLKIN and Vee stabilize. Assert 
RESIN four additional CLKIN periods after the device pins assume their reset states. 

Vc 

100 K TYP. 
< ~~ Vc(t) = V 

( 1·e ~) 
< 

--
RESET IN RESIN 

-- 1IlFTYP. 

~ 
--

Figure 5.5. Simple RC Circuit for Powerup Reset 

5-6 



intel .. CLOCK GENERATION AND POWER MANAGEMENT 

Applying RESIN when the device is running constitutes a warm reset (see Figure 5.7). In this 
case, assert RESIN at least 4 CLKOUT periods. The device pins will assume their reset states 
on the second falling CLKIN edge following the assertion of RESIN. 

CLKIN 

Vee ~LKIN STABLE TO OUTPUT VALID 
I 

28 CLKIN PERIODS (MAX) 

CLKOUT -+-_________ "'--1 

UCS 
LCS 

MCS3:0 
PCS6:0 

TOOUT -+----
T10UT 

NCS 

HLDA 
ALE -+-----

A19:16 -ll-----

AD15:0 

S2:0 

RD 

WR --'t'-----DW 
DEN 

LOCK 

I 
~I 

I 
I 

I I I I I I I I I 

·l···+····f····l····::·····f~··l···t=: 
I I I I I I I I I 
I I I I I I I I I 
I ! / I I I I & I I I 

RESIN -+----------t---+--+-I -t+J I I I I r I I 
I I I I I I I I I 
I I I I I I 

RESOUT-ll-___ _ I 

VeeANDCLKIN STABLE TO RESIN HIGH, RESIN HIGH TO FIRST BUS ACTIVITY, 
APPROXIMATELY 32 CLKIN PERIODS, 7 CLKOUT PERIODS, 

NOTE: 
ClKOUT synchronization occurs approximately 
1 • 1/2 ClKIN periods after RESIN is sampled low, 

Figure 5.6. Cold Reset Waveform 



CLOCK GENERATION AND POWER MANAGEMENT 

The falling RESIN edge generates an internal RESYNC' pulse (Figure 5.8) resynchronizing 
the divide-by-two internal phas.e clock. The clock generator samples RESIN on the falling 
CLKIN edge. If RESIN is sampled high while CLKOUT is high, the processor forces 
CLKOUT high for the next two CLKIN cycles. The clock essentially "skips a beat" to 
synchronize the internal phases. If RESIN is sampled high while CLKOUT is low,·CLKOUT 
is already in phase. 

elKIN 

CLKOUT 

UCS 

-.J&S 
MCS3:0, 

PCS6:0 
TOOUT 
nOUT. 

NCS 

HlDA 

ALE 

A191S6· 

A16 

AD15:0 

DTiR 

DEN 
lOCK 

RE8.0UT 

I 
I 

I I I I I I I I I I I. 

I ···:···--:---·~---~~-:--r----~----I ---~~·--~--·t 
I I I I I I I I I I I 
I I I I II I I I I I 

---------,\rnt.m : : : : .: / : 7 : :&:: 
I I I I I I I I I I I 
I I I I I I I II I I 

______ -+1---111 I 1 1 ijl 1 I W I I 

MINIMUM iiEsiN 
lOW TIME 4 
ClKOUT PERIODS 

RESIN HIGH TO FIRST 
BUS ACTIVITY 7 ClKOUT 
PERIODS 

Figure 5.7. Warm Reset Waveform 

5-8 



CLOCK GENERATION AND POWER MANAGEMENT 

At the second falling CLKOUT edge after sampling RESIN inactive, the processor deasserts 
RESOUT. Bus activity starts 6-112 CLKOUT periods after recognition of RESIN in the logic 
high state. If an alternate bus master asserts HOLD during RESET, the processor will 
immediately assert HLDA and will not prefetch instructions. 

ClKIN 

RESIN 

RESYNC 
(INTERNAL) 

ClKOUT 

RESOUT 

NOTES: 1. Setup of RESIN,to falling ClKIN. 

2. RESYNC pulse generated. 

3. RESYNC pulse drives ClKOUT high, resynchronizing the clock generator. 

4. RESOUT goes active. 

5. RESIN allowed to go inactive after minimum 4 ClKOUT cycles. 

6. RESOUT goes inactive H/2 ClKOUT cycles after RESIN sampled inactive. 

Figure 5.8. Clock Synchronization at Reset 

5.2. POWER MANAGEMENT 

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor 
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays 
over time due to leakage currents in the silicon. If the device does not use the stored 
information before it decays, the state of the entire device may be lost. Circuits must 
periodically refresh dynamic RAMs, for example, to ensure data retention. Any 
microprocessor which has a minimum clock frequency has dynamic logic. On a dynamic 
microprocessor, if you stop or slow the clock, the dynamic nodes within it begin discharging. 
With a long enough delay, the processor is likely to lose its present state, needing reset to 
resume normal operation. 

An 80C 186 Modular Core microprocessor is fully static. The CPU stores its current state in 
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can 
stop without losing any internal information, provided the design maintains power. When the 
clock restarts, the device will execute from its previous state. When the processor is inactive 

5-9 



intel .. CLOCK GENERATION AND POWER MANAGEMENT 

for significant periods, special power management hardware takes advantage of static 
operation to achieve major power savings. . 

5.2.1. OPERATIONAL MODES 

There are three power management modes: Idle, Powerdown and Power-Save. Power-Save 
Mode is a clock generation function, while Idle and Powerdown Modes are clock distribution 
functions. For this discussion, Active Mode is the condition of no programmed power 
management. Active Mode operation feeds the clock signal to the CPU core and all the 
integrated peripherals and power consumption reaches its maximum for the application. The 
processor defaults to Active Mode at reset . 

5.2.2. IDLE MODE 

During Idle Mode operation the clock signal is routed only to the integrated peripheral 
devices. CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus 
Interface Units) freeze in a logic low state. Idle Mode reduces current consumption about a 
third, depending on .the activity in the peripheral units. 

5.2.2.1. ENTERING IDLE MODE 

Setting the appropriate bit in the Power Control Register prepares for Idle Mode (see Figure 
5.9). The processor enters Idle Mode when it executes the HLT (halt) instruction. If the 
program arms both Idle Mode and Powerdown Mode by mistake, the device halts but remains 
in Active Mode. See Bus Interface Unit for detailed information on HL T bus cycles. Figure 
5.10 shows some internal and external waveforms during entry into Idle Mode: 

5.2.2.2., BUS OPERATION DURING. IDLE MODE . 

DMA requests, refresh requests and HOLD requests temporarily turn on the core clocks. 

If the processor needs to run a DMA cycle during Idle Mode, the internal core clock begins to 
toggle on the falling CLKOUT edge three clocks after the processor samples the DMA request 
pin. After one idle T-state, the processor runs the DMA cycle. The BIU uses the ready, wait 
state generation and chip-select circuitry as necessary for DMA cycles during Idle Mode. 
There is one idle T-state after T4before the internal core clock shuts off again. 

\ 

If the processor needs to run a refresh cycle during Idle Mode, the internal core clock begins to 
toggle on the falling CLKOUT edge immediately after the down-counter reaches zero. After 
one idle T -state, the processor runs the refresh cycle. As with all other bus cycles, the BIU 
uses the ready, wait state generation and chip-select circuitry as necessary for refresh cycles 
during Idle Mode. There is one idle T-state after T4 before the internal core clock shuts off 
again. 

A HOLD request from an external bus master turns on the core clock as long as HOLD is 
active (see Figure 5.11). The core clock restarts one CLKOUT cycle after the bus processor 

5-10 



CLOCK GENERATION AND POWER MANAGEMENT 

samples HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts. 
The core clock turns off and the processor deasserts HLDA one cycle after the external bus 
master deasserts HOLD. 

As in Active Mode, refresh requests will force the BIU to drop HLDA during bus hold. 
Section 7.8 contains more information on refresh cycles during hold. Refresh requests will 
also correctly break into sequences of back-to-back DMA cycles. 

5.2.2.3. LEAVING IDLE MODE 

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Active 
Mode. Reset also returns the processor to Active Mode, but the device loses its prior state. 

Any unmasked interrupt received by the core \vill return the processor to Active Mode. For an 
external interrupt, the core clock begins toggling seven clocks after the processor recognizes 
the asserted input. Interrupt Control Unit priority and mask checking requires these seven 
clocks. Six CLKOUT cycles later, the core begins the interrupt vectoring sequence (including 
INTA cycles if appropriate). 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

IDLE Idle Mode 

PWRDN Powerdown 
Mode 

Power Control Register 
PWRCON 
Arms power management functions. 

o ,----1 
I P I 

I wi 
R: 

I ~ I 

RESET 
STATE FUNCTION 

0 Setting the IDLE bit forces the CPU to enter the 
Idle mode when the HL T instruction is executed. 
The PWRDN bit must be cleared when setting 
the IDLE bit, otherwise Idle mode is not armed. 

0 Setting the PWRDN bit forces the CPU to enter 
the Powerdown mode when the next HL T 
instruction is executed. The IDLE bit must be 
cleared when setting the PWRDN bit, otherwise 
Powerdown mode is not armed. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 5.9. Power Control Register 

5-11 



intel .. CLOCK GENERATION AND POWER MANAGEMENT 

HALT CYCLE . 
":' 

T40rTI T1 TI TI TI 

CLKOUT 

INTERNAL 
PERIPHERAL CLOCK 

CLKOUT 

INTERNAL 
PERIPHERAL 

CLOCK 

INTERNAL 
CORE CLOCK 

HOLD 

HLDA 

CPU CORE CLOCK 

TI TI 

S2:0 \ i 011 J i 

ALE ~ \ 

Figure 5.10. Entering Idle Mode 

1 CLOCK 
DELAY 

L, 
CORE 

RESTART 

~ PROCESSOR IN HOLD 
CORE CLOCK 

SHUTS OFF 
r-' r ...,.. .-:- . 

"i '.' , 
TI TI TI TI TI TI: :TI TI:TI:TI:TI: 

I I I I I I ., .. 
I • , I • 

I I I • I 
, I I L I 
I I , I I 
I • I , I 

I • I , I 

I I I I ... 

: ... : 
, ., 

Figure 5.11. HOLDIHLDA During Idle Mode 

Mter execution of the IRET (interrupt return) instruction in the interrupt service routine, the 
CS:IPwill point to the instruction following the HALT. Interrupt execution does not modify 
the Power Control Register. Unless the programmer intentionally reprograms the register after 

. exiting Idle Mode the processor will re-enter Idle Mode at the next HL T instruction. 

5-12 



in1:el" CLOCK GENERATION AND POWER MANAGEMENT 

Like an unmasked interrupt, an NMI returns the core to Active Mode from Idle Mode. It takes 
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not 
need the mask and priority checks that a maskable interrupt does. This results in the five clock 
cycle difference in clock restart time between an NMI and an unmasked interrupt. 

The core begins the interrupt response six cycles after the core clock re-starts when it fetches 
the NMI vector from location OOOOSH. NMI does not clear the IDLE bit in the Power Control 
Register. 

Resetting the microprocessor will return the device to Active Mode. Reset clears the Power 
Control Register, unlike the interrupt case. Execution begins as it would following a warm 
reset (see Section 5.1.4). 

5.2.2.4. EXAMPLE IDLE MODE INITIALIZATION CODE 

Example 5.1 illustrates programming the Power Control Register and entering Idle Mode upon 
HLT. The interrupts from the serial port and timers are not masked. Assume that the serial port 
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte and the 
processor wakes up to service the interrupt. After acting on the keystroke, the core will go 
back into Idle Mode. The example excludes the actual keystroke processing. 

$mod186 
name 

; FUNCTION: 
SYNTAX: 
INPUTS: 

OUTPUTS: 
NOTE: 

PWRCON 

This function reduces CPU power consumption. 
extern void far power_mgt (int mode); 
mode - 00 -> Active Mode 

None 

01 -> Powerdown Mode 
02 -> Idle Mode 
03 -> Active Mode 

Parameters are passed on the stack as required 
by high-level languages 

equ xxxxH ;substitute PWRCON register 
;offset 

lib_80C186 segment public 'code' 
assume cs:lib_80C186 

public 

Example 5.1. Idle or Powerdown Mode Initialization Code 

5-13 



int'et CLOCK GENERATION AND POWER MANAGEMENT 

-power_mgt proc far 

push bp isave caller's bp 
mov bp, sp iget current top of stack 

push ax isave registers that will 
I push dx ibe modified 

_mode equ word ptr [bp+6] iget parameter off the 
istack 

mov dx, PWRCON iselect Power Control Reg 
mov ax, _mode iget mode 
and ax, 3 imask off unwanted bits 
out dx, ax 

hlt ienter mode 

pop dx i restore ,saved registers 
pop ax 

pop bp irestore caller's bp 
ret 

-power_mgt endp 

lib 80C186 ends -
end 

Example 5.1. Idle or Powerdown Mode Initialization Code (Co~tinued) 

5.2.3. POWERDOWN MODE 

Powerdown Mode freezes the clock to the entire device (core and peripherals) and disables the 
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their state as 
long as V ~ is applied. The BID will not honor DMA, PRAM refresh and HOLD requests in 
Powerdown Mode because the clocks for those functions are off. CLKOUT freezes in a logic 
high state. Current consumption in Powerdown Mode consists of just transistor leakage 
(typically less than 100 rnicroamps). 

5.2.3.1. ENTERING POWERDOWN MODE 

Powerdown Mode is entered by executing the HLT instruction after setting the PWRDN bit in 
the Power Control Register. The HL T cycle turns off both the core and peripheral clocks and 
disables the crystal oscillator. See Chapter 3 for detailed information on HLT bus cycles. 

Figure 5.12 shows the internal and external waveforms during entry intoPowerdown Mode. 

5-14 



CLOCK GENERATION AND POWER MANAGEMENT 

During the T2 phase of the HLT instruction, the core generates a signal called 
ENTER_POWERDOWN. ENTER_POWERDOWN immediately disables the internal CPU 
core and peripheral clocks. The processor disables the oscillator inverter during the next 
CLKOUT cycle. If the design uses a crystal oscillator, the oscillator stops immediately. When 
CLKIN originates from an external frequency input (EFI), Powerdown isolates the signal on 
the CLKIN pin from the internal circuitry. Therefore, the circuit may drive CLKIN during 
Powerdown Mode although it will not clock the device. ' 

CLKIN 

OSCOUT 

CLKOUT 

CPlJ CORE CLOCK 

INTERNAL 
PERIPHERAL CLOCK 

HALT CYCLE 

:T4orTI T1 T2 

S2:0 \ i 011 J 

.., 
TI 

P CLKIN 
: TOGGLES 
, ONLY WHEN 

---------, 
I 

INOETERMINAT~ 

------- -- -~ 

AN EXTERNAL 
FREQUENCY INPUT 
IS USED 

ALE U: \L...;~---';~---';------; 

Figure 5.12. Entering Powerdown Mode 

5.2.3.2. LEAVING POWER DOWN MODE 

An NMI or reset returns the processor to Active Mode. 

If the device leaves Powerdown Mode via NMI, a delay must follow the NMI request to allow 
the crystal oscillator to stabilize before gating it to the internal· phase clocks. An external 
timing pin sets this delay as described below. Leaving Powerdown via an NMI does not clear 
the PWRDN bit in the Power Control Register. 

A reset also takes the processor out of Powerdown Mode. Since the oscillator is off, the user 
should follow the oscillator cold start guidelines (see Section 5.1.4). 

5-15 



intet CLOCK GENERATION AND POWER MANAGEMENT 

The Powerdown,timer circuit has a PDTMR pin (see Figure 5.13). Connecting this pin to an 
external capacitor gives the user control over the gating of the crystal oscillator to the internal 
clocks.' The strong P-channel device is always on except during exit from Powerdown Mode. 
This pullup keeps the powerdown capacitor CpD charged up to V cc. When the processor 
detects NMI, the weak N-channel device turns on and the P-channel device turns off. CpD 

discharges slowly. At the same time, the circuit turns on the feedback inverter on the crystal 
oscillator and oscillation starts. 

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal when 
the voltage at the pin drops below its switching threshold. The OSC_OK signal gates the 
crystal oscillator output to the internal clock circuitry. One CLKOUT cycle runs before the 
internal clocks tum back on. It takes two additional CLKOUT cycles before an NMI request 
reaches the CPU, with the vector fetched another six clocks later; 

CpO I 

STRONG 
P-CHANNEL PULLUP 

WEAK N·CHANNEL 
PULLOOWN 

~ 0, EXCEPT WHEN 
~- LEAVING POWEROOWN 

Figure 5.13. Powerdown Timer Circuit 

The first step in determimng the proper CPD value is startup time characterization for crystal 
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for 
scope probe loading effects. Characterize startup over the full range of operating voltages and 
temperatures. The oscillator starts up on the order of a couple of milliseconds. After 
determining the oscillator startup time, refer to "PDTMR Pin Delay Calculation" in the data 
~heet. Multiply the startup time (in seconds) by the given constant to get the CPD value. Typical 
values are less than IIlF. 

, , 

If the design uses an external oscillator instead of a: crystal, the external oscillator continues 
running during Powerdown Mode. Leave the PDTMR pin unconnected and the processor can 
exit Powerdown Mode immediately. 

5-16 



intet CLOCK GENERATION AND POWER MANAGEMENT 

5.2.4. POWER-SAVE MODE 

In addition to Idle and Powerdown Modes, this microprocessor offers Power-Save Mode as 
another means to reduce operating current. Power-Save Mode enables a programmable clock 
divider in the clock generation circuit. This divider operates in addition to the divide-by-two 
counter mentioned in Section 5.1. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

PSEN Power Save 
Enable 

F1:0 Clock Division 
Factor 

Power Save Register 
PWRSAV 
Enables and sets clock division factor. 

RESET 
STATE FUNCTION 

0 Settina this hit p.nahlp.R Powp.r SAVP. Monp. Ann 
divides the internal operating clock by the value 
defined by F1 :0. This bit is cleared to disable 
Power-Save mode and force the CPU to operate 
at full speed. PSEN is automatically cleared 
whenever an interrupt occurs. 

OH These bits control the division factor used when 
Power Save mode is enabled. The allowable 
values are listed below: 

F1 FO Divisor 

0 0 By 1 

0 1 By4 
1 0 By8 
1 1 By 16 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 5.14. Power-Save Register 

5-17 



CLOCK GENERATION AND POWER MANAGEMENT 

Possible clock divisor settings are 1,4,8 and 16 (1 has no effect). The divided frequency feeds 
the core, the integrated peripherals and CLKOUT. The processor operates at the divided clock 
rate exactly as if the crystal or external oscillator frequency were lower by the same amount. 

The advantage of Power-Save Mode over Idle and Powerdown Modes is that operation of both 
the core and the integrated peripherals can continue. However, it may be necessary to 
reprogram units such as the Timer Counter Unit and the Refresh Control Unit to compensate 
for the overall reduced clock rate. 

5.2.4.1. ENTERING POWER-SAVE MODE 

The Power-Save Register (see Figure 5.14) controls Power-Save Mode operation. The lower 
two bits select the divisor. When program execution sets the PSEN bit, the processor enters 
Power-Save Mode. The internal clock frequency changes at the falling edge of T3 of the write 
to the Power-Save Register. CLKOUT changes simultaneously and does not glitch. Figure 
5.15 illustrates the change at CLKOUT. 

5.2.4.2. 

CLKOUT 

WR \L-G) ____ ~~/ 

NOTES: 1. Write to Power-Save Register (as viewed on the bus). 
2. Low-going edge of T3 starts new clock rate. 

Figure 5.15. Power-Save Clock Transition 

LEAVING POWER-SAVE MODE 

Power-Save Mode continues until one of three events: execution clears the PSEN bit in the 
Power-Save Register, an unmasked interrupt occurs or an NMI occurs. 

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by
two) at the falling T3 edge of the write to the Power-Save Register. The same result happens' 
from reprogramming the clock divisor to a new value. The Power-Save Register can be read or 
written at any time. 

Unmasked interrupts include those from the Interrupt Control Unit but not software interrupts. 
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core, 
Power-Save Mode will end. The PSEN bit clears and the clock resumes full speed operation at 
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is 
undefined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN 
bit again. If you still want Power-Save Mode operation, you can set the PSEN bit as part of the 
interrupt service routine. 

5-18 



CLOCK GENERATION AND POWER MANAGEMENT 

5.2.4.3. EXAMPLE POWER-SAVE INITIALIZATION CODE 

Example 5.2 illustrates programming the Power-Save Unit for a typical system. The program 
also includes code to change the DRAM refresh rate to compensate for the reduced clock rate. 

5.2.5. IMPLEMENTING A POWER MANAGEMENT SCHEME 

Table 5.2 summarizes the power management options available to the user. With three ways 
available to reduce power, here are some guidelines: 

• Powerdown Mode reduces power consumption by several orders of magnitude. If the 
application goes in and out of Powerdown frequently, the power reduction can probably 
offset the relatively long intervals spent leaving Powerdown Mode. 

• If background CPU tasks are usually necessary and the overhead of reprogramming 
peripherals is not severe, Power-Save Mode can "tune" the clock rate to the best value. 
Remember that current varies linearly with respect to frequency. 

• Idle Mode fits DMA-intensive and interrupt-intensive (as opposed to CPU-intensive) 
applications perfectly. 

Table 5.2. Summary of Power Management Modes 

RELATIVE TYPICAL USER CHIEF 
MODE POWER POWER OVERHEAD ADVANTAGE 

Active Full 250mW ------- Full Speed 

@ 16 MHz Operation 

Idle Low 175 mW Low Peripherals 

@ 16 MHz Unaffected 

Power-Save Adjustable 125 mW Moderate to Code Execution 

@ 16/2 MHz High Continues 

Powerdown Lowest 250f-lW Low to Moderate Long Battery Life 

The processor can operate in Power-Save Mode and Idle Mode concurrently. With Idle Mode 
alone, rated power consumption typically drops a third or more. Power-Save Mode multiplies 
that reduction further according to the selected clock divisor. 

Overall power consumption has two parts: switching power dissipated by driving loads such 
as the address/data bus and device power dissipated internally by the microprocessor whether 
or not connected to external devices. A power management scheme should consider loading as 
well as the raw specifications in the processor's data sheet. 

5-19 



$mod186 
name 

; FUNCTION: 

SYNTAX: 
INPUTS: 

OUTPUTS: 
NOTE: 

PWRSAV 
RFTIME 
Register 
RFCON 
PSEN 

data 
FreqTable 
data 

CLOCK GENERATION AND POWER MANAGEMENT 

This function reduces CPU power consumption 
by dividing the CPU operating frequency by a 
divisor. 
extern void far power_save(int divisor); 
divisor - This variable represents FO and F1 of 
PWRSAV. 
None 
Parameters are passed on the stack as required 
by high-level languages 

equ xxxxH 
equ xxxxH 

equ xxxxH 
equ 8000H 

segment public 
dw 1, 4, 8, 
ends 

'data' 
16 

;substitute register offset 
;Power-Save Register 
;Refresh Interval Count 

;Refresh Control Register 
;Power-Save enable bit 

lib_80C186 segment public 'code' 
assume cs:lib_80C186, ds:data 

public -power_save 
-power_save proc far 

push bp ; save caller's bp 
mov bp, sp ;get current top of stack 

push ax ; save registers that will 
push bx ;be modified 
push dx 

- divisor equ word ptr [bp+6] ;get parameter off the 
;stack 

mov dx, RFCON ;get current DRAM refresh 
in ax, dx irate 
and ax, 01ffh ;mask off unwanted bits 

div FreqTable[_divisor] ; divide refresh rate 
;by divisor 

Example 5.2. Power-Save Initialization Code 

5-20 



intel" 

-power_save 

lib 80C186 -

CLOCK GENERATION AND POWER MANAGEMENT 

mov dx, 
out dx, 
mov dx, 
mov ax, 
and ax, 
or ax, 
out dx, 
pop dx 
pop ax 
pop bp 
ret 
endp 

ends 
end 

RFTIME 
ax 
PWRSAV 
divisor -

3 
PSEN 
ax 

;set new refresh rate 

;select Power-Save Register 
;get divisor 
;mask off unwanted bits 
;set enable bit 
;divide frequency 
;restore saved registers 

;restore caller's bp 

Example 5.2. Power-Save Initialization Code (Continued) 

5-21 





Chip Select Unit 6 





CHAPTER 6 
CHIP SELECT UNIT 

Every system requires some form of component select mechanism so the CPU can access a 
specific memory or peripheral device. The signal selecting the memory or peripheral device is 
referred to as a chip-select. Besides selecting a specific device, each chip-select can be used to 
control the number of wait states inserted into the bus cycle. Devices too slow to keep up with 
the maximum bus bandwidth can use wait states to slow the bus down. 

One method of generating chip-selects uses latched address signals directly. An example 
interface is shown in Figure 6.1 (A). In the example, an inverted A16 is connected to an 
SRAM device with an active low chip-select. Any bus cycle with an address between lOOOOH 
and 1FFFFH (A16 = 1) enables the SRAM device. Also note that any bus cycle with an 
address starting at 3FFFFH, 5FFFFH, 7FFFFH and so on also selects the SRAM device. 

Decoding more address bits solves the problem of a chip-select being active over multiple 
address ranges. In Figure 6.1 (B), a one-of-eight decoder is connected to the upper most 
address bits. Each of the eight decoded outputs are active for one-eighth of the 1 Mbyte 
address space. However, each chip-select has a fixed starting address and range. Future system 
memory changes may require circuit changes to accommodate the additional memory. 

27C256 

A::~) :~= II}~"'" 
, / D15·8 

I k---' . 
! 

RD-----dC5E 
I 

A16 CS I 

(A) 

CHIP-SELECTS USING 
ADDRESSES DIRECTLY 

74AC138 

A 19 - t ~------Y7-1~ SELECTS 896K TO 1 M 

A18 - A2 Y6 ~SELECTS768KT0896K 
A17 - A1 Y5 t).~ 

I Y4 r~ 
ALE~. E1 Y3 r~ 

HLDA -(~ E2 Y2 b-~ 
I Y1 ~SELECTS128KT0256K 

,- E3 YO ~)---> SELECTS 0 TO 128K 

l __ . _____ J 
(B) 

CHIP-SELECTS USING 
SIMPLE DECODER 

Figure 6.1. Common Chip-Select Generation Methods 

6-1 



CHIP-SELECT UNIT 

The Chip-Select Unit overcomes limitations found in the above designs and has the following 
features: 

• Thirteen chip-select outputs 

• Programmable chip-select active range 

• Memory or I/O bus cycle decoder 

• Programmable wait state generator 

• . Provision to override bus ready 

Figure 6.2 illustrates the logic blocks that generate a chip-select. 

6.1. FUNCTIONAL OVERVIEW 

The Chip-Select Unit, abbreviated CSU, decodes bus cycle address and status information and 
enables the appropriate chip-select. Figure 6.3 illustrates the timing of a chip-select during a 
bus cycle. Note the chip-select goes active in the same bus state as address goes active, 
eliminating any delay through address latches and decoder circuits. The Chip Select Unit 
activates a chip-select for CPU, DMA Control Unit or Refresh Control Unit initiated bus 
cycles. 

Six of the thirteen chip-selects only map into memory address space. The remaining seven 
chip-selects can map into memory or I/O address space. The chip-selects typically associate 
with memory and peripheral devices as follows: 

MCSO:3 

Mapped only to upper memory address space and selects the BOOT memory 
device (EPROM or FLASH memory types). 

Mapped only to lower memory address space and selects a static memory 
(SRAM) device that stores the interrupt vector table, local stack and data and 
scratch pad data. 

Mapped only to memory address space and selects additional SRAM memory, 
DRAM memory or system bus. 

Mapped to memory or I/O address space and selects peripheral devices or 
generates a DMA acknowledge strobe. 

The LCS chip-select always starts at address location OH and has a programmable block size 
up to 256 Kbytes. The UCS chip-select always ends at address location OFFFFH and has a 
programmable block size up to 256 Kbytes. 

6-2 



INTERNAL 
ADDRESS 

BUS 

CHIP-SELECT UNIT 

-
= BLOCK SIZE UCS 

-
= BLOCK SIZE LCS 

-
= BLOCK SIZE/4 r- MCS3 

-
= BLOCK SIZE/4 r- MCS2 

= BASEf -
= BLOCK SIZE/4 r- MCS1 

= BLOCK SIZE/4 r-- MCSO 

-
BASE + 0 PCSO 

-
)I = BASE f-- BASE + 128 PCS1 

y~ -
MEMORY I 

BASE + 256 PCS2 
-

1/0 SELECTOR BASE + 384 f------ PCS3 
MS -

BASE + 512 1----- PCS4 

BASE + 640 f---

BASE + 768 r-

,--A 
INTERNAL A1 

ADDRESS BIT A2- B 

EX 
CONTROL BIT 

Figure 6.2. Chip-Select Block Diagram 

MUX r--

AlB r-

The four MCS chip-selects access one contiguous block of memory address space. The block 
size can range from -8 Kbytes to 512 Kbytes and each chip-select goes active for one fourth of 
the block size. The block start address is programmable but must be an integer multiple of the 
block size. This start address limitation prevents the MCS chip-selectsJrom covering the entire 
address space between the LCS and UCS chip-selects. 

The PCS chip-selects access a contiguous block of memory or I/O address space. Each chip
select goes active for 128 bytes of the 896 byte block. The PCS block start address can begin 
on any 1 Kbyte boundary. 

6-3 



CLKOUT 

ALE 

AD15:0 
A19:16 

UCS, PCS6:0 

MCS3:0, LCS 

S2:0 

RD,WR 

CHIP-SELECT UNIT 

T4 T1 T2 T3 

STATUS 

Figure 6.3. Chip-Select Relative Timings 

A chip-select goes active when it meets all of the following criteria: 

1) The chip-select is enabled. 

T4 

2) The bus cycle status matches the default or programmed type (memory or I/O). 

3) The bus cycle address is within the default or programmed block size. 

4) The bus cycle is NOT accessing the Peripheral Control Block. 

A memory address applies to memory read, memory write and instruction prefetch bus cycles. 
An I/O address applies to I/O read and I/O write bus cycles. Interrupt acknowledge and HALT 
bus cycles never activate a chip-select regardless of the address generated. 

After power-on or system reset only the DCS chip-select is initialized and active (see Figure 
6.4). 

6-4 



(I) 

I 1 
JSRDY 

.. ·~ARDY 

CHIP-SELECT UNIT 

UCS 

I 
I 

. ADDRESS) 

I 

1 

I I 

I PROCESSOR I 

) DATA 

UCS ~:~2:K 
(I) _ 3 WAIT STATES 

AUTOMATICALLY INSERTED 

- BUS READY MUST BE PROVIDED 

ACTIVE FOR I 

TOP 1 KBYTE 
MEMORY 

MAP 

Figure 6.4. UCS Reset Configuration 

6.2. PROGRAMMING 

! 

I ___ ,0 

A set of registers determine the operating characteristics of the chip-selects. The Peripheral 
Control Block defines the location of the Chip-Select Unit registers. Table 6.1 lists all of the 
Chip-Select Unit registers and their associated programming names. 

The UCS and LCS chip-selects each have one register that defines their operation (see Figure 
6.5 and Figure 6.6). 

Table 6.1. Chip-Select Unit Registers 

REGISTER REGISTER CHIP-SELECT 
MNEMONIC MNEMONIC AFFECTED 

UMCS UCS 
LMCS LCS 
MMCS MPCS MCS3:0 
PACS MPCS PCS7:0 

6-5 



Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

CHIP-SELECT UNIT 

UCS Control Register 
UMCS 
Controls the operation of the UCS chip-select. 

RESET 
STATE FUNCTION 

U17:10 Start Address OFFH Defines the starting address for the UCS chip-
select. During memory bus cycles, address bits 
A17:10 are compared against U17:10 and an 
equal to or greater than result enables the chip-
select (A 19 and A 18 must be 1 also). Allowable 
bit programming combinations are as follows: 

U17:0 Starting Address Block Size 

OOH OCOOOOH 25.6 Kbytes 
80H OEOOOOH 128 Kbytes 
COH OFOOOOH 64 Kbytes 
EOH OF8000H 32 Kbytes 
FOH OFCOOOH 16 Kbytes 
F8H OFEOOOH 8 Kbytes 
FCH OFFOOOH 4 Kbytes 
FEH OFF800H 2 Kbytes 
FFH OFFCOOH 1 Kbytes 

R2 Bus Ready 0 Clearing R2 requires bus ready be active to 
Disable complete a bus cycle. When R2 is cleared, R1:0 

control the number of bus wait states (bus ready 
is ignored). 

R1:0 Wait State 3H R1:0 define the minimum number of wait states 
Value inserted into the bus cycle. 

NOTE: Reserved register bits are shown with grey shading and must cQntam a value of zero 
when writing this register (to ensure compatibility with future products). Do not program 
U17:10 with values other than what is shown. Failure to do so results in unreliable chip
select operation. Reading this register (prior to writing it) enables the chip-select, however, 
none of the programmable fields will have been properly initialized. 

Figure 6.5. UMCS Register Definition 

6-6 



int:et 

Register Name: 
Register Mnemonic: 
Register Function: 

U U 
1 

7 6 

BIT 
MNEMONIC BIT NAME 

U17:10 End Address 

R2 Bus Ready 
Disable 

R1:0 Wait State 
Value 

CHIP-SELECT UNIT 

LCS Control Register 
LMCS 
Controls the operation of the LCS chip-select. 

0 

U U U U U ~-r R 
1 1 1 1 I 0 

5 4 3 2 

RESET 
STATE FUNCTION 

XXH Defines the ending address for the LCS chip-
select. During memory bus cycles, address bits 
A17:10 are compared against U17:10 and a less 
than result enables the chip-select (A 19 and A 18 
must be 0 also). Allowable bit programming 
combinations are as follows: 

U17:0 Ending Address Block Size 
OOH 003FFH 1 Kbytes 
01H 007FFH 2 Kbytes 
03H OOFFFH 4 Kbytes 
07H 01FFFH 8 Kbytes 
OFH 03FFFH 16 Kbytes 
1FH 07FFFH 32 Kbytes 
3FH OFFFFH 64 Kbytes 
7FH 1FFFFH 128 Kbytes 
FFH 3FFFFH 256 KbYJes 

X Clearing R2 requires bus ready be active to 
complete a bus cycle. When R2 is cleared, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

XH R1:0 define the minimum number of wait states 
inserted into the bus cycle. A zero value means 
no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Do not program 
U17:10 with values other than what is shown. Failure to do so results in unreliable chip-select 
operation. Reading this register (prior to writing it) enables the chip-select, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.6. LMCS Register Definition 

6-7 



CHIP-SELECT UNIT 

The MCS and PCS chip-selects require two registers to define their operation. One register is 
shared between them. The MMCS and MPCS registers control the MCS chip-selects. The 
PACS and MPCS registers control the PCS chip-selects. Figure 6.7, Figure 6.8 and Figure 6.9 
define the programming attributes for each of the registers. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

MCS Control Register 
MMCS 
Controls the operation of the MCS chip-selects 

R R 
o 

RESET 
STATE FUNCTION 

o 

U19:13 Start Address XXH Defines the starting (base) address for the block 
of MCS chip-selects. During memory bus cycles, 
address bits A 19: 13 are compared against 
U19:13 and an equal to or greater than result 
enables the chip-select. The start address must 
be an integer multiple of the MCS block size 
(defined in the MPCS register). 

R2 Bus Ready XH Clearing R2 requires bus ready be active to 
Disable complete a bus cycle. When R2 is cleared, R1:0 

control the number of bus wait states (bus ready 
is ignored). 

R1:0 Wait State XH R1:0 define the minimum number of wait states 
Value inserted into the bus cycle. A zero value means 

no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MPCS register (prior to writing them) enables the MCS chip-selects, however, none 
of the programmable fields will have been properly initialized. 

Figure 6.7. MMCS Register Definition 

6-8 



int:et 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

CHIP-SELECT UNIT 

MCS and PCS Alternate Control Register 
MPCS 
Controls the operation for both the l\ifCS and PCS 
chip-selects. 

M 
6 

M, M 

1 I 0 

E 
X 

M 
S ~ I ~:: ~ j ~ 

I , __________ . _, ___ ~ __ . _____ " L _____ .~ __ 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

M6:0 Block Size XXH Defines the block size for the MCS chip-selects. 
Allowable bit programming combinations are as 
follows: 

M6 M5 M4 M3 M2 M1 MO Block Size 

0 0 0 0 0 0 1 8 Kbytes 

0 0 0 0 0 1 X 16 Kbytes 

0 0 0 0 1 X X 32 Kbytes 

0 0 0 1 X X X 64 Kbytes 

0 0 1 X X X X 128 Kbytes 

0 1 X X X X X 256 Kbytes 

1 X X X X X X 512 Kbytes 

X = Don't Care, but should be 0 for future 
compatibility. 

EX Pin Selector XH Setting EX configures PCS5 and PCS6 pins as 
chip-selects. When EX is cleared, PCS5 __ 
becomes latched address bit 1 (A 1) and PCS6 
becomes latched address bit 2 (A2). 

MS Bus Cycle XH When MS is cleared the PCS chip-selects go 
Selector active for I/O bus cycles. Setting MS activates 

the PCS chip-selects for memory bus cycles. 

R2 Bus Ready XH This bit applies to the PCS4-PCS6 chip-selects 
Disable only. Clearing R2 requires bus ready be active 

to complete a bus cycle. When R2 is set, R1:0 
control the number of bus wait states (bus ready 
is ignored). 

R1:0 Wait State XH These bits apply to the PCS4-PCS6 chip-
Value selects only. R1:0 define the minimum number 

of wait states inserted into the bus cycle. A zero 
value means no wait states. 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MMCS register or PACS register (prior to writing them) enables the associated chip
selects, however, none of the programmable fields will have been properly initialized. 

Figure 6.8. MPCS Register Definition 

6-9 



intel .. 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

U U U U 
t 1 1 1 
9 8 76 

BIT 
MNEMONIC BIT NAME 

CHIP-SELECT UNIT 

P"C"S".Control Register 
PACS 
Controls the operation of the PeS" chip-selects. 

U U U U 
1 1 1 1 
5 4 3 2 

RESET 
STATE 

U U 
1 
o 

FUNCTION 

U19:10 Start Address XXH Defines the starting (base) address forthe block 
of PCS chip-selects. During memory or 1/0 bus 
cycles, address bits A 19: 13 are compared 
against U 19: 13 and an equal to or greater than 
result enables the chip-select. U19:16 must be 
programmed to zero for proper 1/0 bus cycle 
operation. 

R2 Bus Ready XH Clearing R2 requires bus ready be active to 
Disable complete a bus cycle. When R2 is set, R1:0 

control the number of bus wait states (bus ready 
is ignored). 

R1:0 Wait State XH R1:0 defil1e the minimum number of wait states 
Value inserted into the bus cycle. A zero value means 

no wait states (unless R2 is zero, which means 
bus ready controls wait states) 

NOTE: Reserved register bits are shown with grey shading and must contain a value of zero 
when writing this register (to ensure compatibility with future products). Reading this register 
and the MPCS register (prior to writing them) enables the PCS chip-selects, however, none of 
the programmable fields will have been properly initialized. 

Figure 6.9. PACS Register Definition 

6-10 



inlet CHIP-SELECT UNIT 

6.2.1. INITIALIZATION SEQUENCE 

Chip-selects do not have to be initialized in any specific order. However, the following 
guidelines help prevent a system failure. 

1) Initialize local memory chip-selects 

2) Initialize local peripheral chip-selects 

3) Perform local diagnostics 

4) Initialize off-board memory and peripheral chip-selects 

5) Complete system diagnostics 

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been 
written to memory. Failure to prevent an interrupt from occurring during initialization will 
cause a system failure. Use external logic to generate the chip-select if interrupts cannot be 
masked prior to initialization. 

Programming the UMCS and LMCS registers can be done in any sequence. To program the 
MCS and PCS chip-selects, follow the sequence shown below: 

1) Program the MPCS register 

2) Program the MMCS register to enable the MCS chip-selects 

3) Program the P ACS register to enable the PCS chip-selects 

6.2.2. START ADDRESS 

The LCS chip-select has a fixed starting address of zero in memory address space. The UCS 
chip-select defines its starting address as 100000H (l Mbyte) minus the programmed block 
size (see Section 6.2.4). The MCS chip-selects have a programmable base address that 
determines their individual start addresses (see Figure 6.10). However, there are limitations on 
the location of the base address depending on the MCS block size. 

Table 6.2 lists the limitations of the base address for the MCS chip-selects. Figure 6.10 
illustrates how to calculate the starting address for each MCS chip-select. 

Each PCS chip-select is active for 128 bytes and start at an offset above the programmed base 
address. The base address can start on any 1 Kbyte memory or I/O address location. Table 6.3 
lists the range for each chip-select. 

6·11 



in1:et CHIP-SELECT UNIT 

Table 6.2. MMCS Programming Restrictions 

ALLOWABLE BASE ADDRESS 
BLOCK SIZE RESTRICTIONS NOTES 

8 Kbytes None 

16 Kbytes U13 must be zero . 

32 Kbytes U13-14 must be zero 

64 Kbytes U13-15 must be zero 

128 Kbytes U13-16 must be zero 

256 Kbytes U13-17 must be zero 

512 Kbytes U13-18 must be zero Will overlap UCS if U19 is 1 

Table 6.3. PCS Chip-Selects Active Range 

CHIP 
SELECT ACTIVE RANGE 

PC SO Base to Base + 127 (7FH) 

"PeST Base + 128 (080H) to Base + 255 (OFFH) 

PCS2 Base + 256 (1 OOH) to Base + 383 (17FH) 

·PCS3 Base + 384 (180H) to Base + 511 (1 FFH) 

PCS4 Base + 512 (200H) to Base + 639 (27FH) 

PCS5 Base + 640 (280H) to Base + 767 (2FFH) 

PCS6 Base + 768 (300H) to Base + 895 (37FH) 

6.2.3. STOP ADDRESS 

The DCS chip-select has a fixed ending address of OFFFFFH in memory address space. The 
LCS chip-select defines its ending address as one byte less than the programmed block size 
(see Section 6.2.4). 

6-12 



intel .. CHIP-SELECT UNIT 

STARTING ADDRESS ENDING ADDRESS 

BLOCK SIZE IS DEFINED BY M6 :0 

BASE + 314 BLOCK 

BASE + 112 BLOCK 

BASE + 114 BLOCK 

~#BASE 
(DEFINED BY U19:10) 

SIZE 

SIZE 

SIZE 

BASE + (BLOCK SIZE - 1) 

MCS3 ACTIVE RANGE 
BASE + (314 BLOCK SIZE - 1) 

MCS2 ACTIVE RANGE 
BASE + (112 BLOCKSIZE-1) 

MCS1 ACTIVE RANGE 
BASE + (1/4 BLOCK SIZE -1) 

MCSO ACTIVE RANGE 

> 

MEIIORYMAP 

Figure 6.10. MCS Active Range 

The ending address for the MCS chip-selects is defined by the programmed base address and 
the block size_ Figure 6_10 illustrates how to calculate the ending address for each MCS chip
select. 

The PCS chip-selects have fixed ending addresses defined by the programmed base address. 
Table 6.3 defines the ending address for each chip-select. ) 

6.2.4. BLOCK SIZE 

The LCS, UCS and MCS chip-selects have programmable block sizes to define their active 
ranges. The PCS chip-selects have fixed block sizes of 128 bytes. 

The LMCS and UMCS registers define the block size for the LCS and UCS chip selects, 
respectively. The allowable block sizes, in Kbytes, for the LCS and UCS chip-selects are 1, 2, 
4,8,16,32,64, 128 and 256. 

The combined MCS block size is controlled by the MPCS register. Each MCS chip-select is 
active for one quarter of the block size. Table 6.2 defines the allowable block sizes for the 
MCS chip-selects. . 

6·13 



intel® CHIP-SELECT UNIT 

6.2.5. BUS WAIT STATE AND READY CONTROL 

Normally the bus ready inputs must be inactive at the appropriate time to insert wait states into 
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready inputs to extend and 
complete the bus cycle automatically. Most memory and peripheral devices operate properly 
using three or less wait states. However, accessing devices such as a dual-port memory, an . 
expansion bus interface, a system bus interface or remote peripheral devices can require more 
than three wait states to complete a bus cycle. 

The Chip-Select Unit can insert up to three wait states and control the state of the bus ready 
inputs. The UMCS, LMCS, MMCS, MPCS and PACS registers define a three-bit field (RO, 
Rl, R2) that control bus wait state and ready requirements. Figure 6.11 shows a simplified 
logic diagram of the wait state and ready control functions. 

BUS READY 

R2 CONTROL BIT 

WAIT STATE VALUE 
(RtO) 

WAIT 
STATE 

COUNTER 

WAIT STATE 
READY 

READY 

Figure 6.11. Wait State and Ready Control Functions 

The RO and Rl control bits define the number of wait states to insert into the bus cycle. The 
R2 control bit determines whether the bus cycle should complete normally (i.e., require bus 
ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices requiring 
three wait states or less can program R2 active to complete the bus cycle automatically. 
Devices that may require more than three wait states must program R2 inactive. 

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle ignoring 
bus ready cannot be lengthened. 

6.2.6. OVERLAPPING CHIP-SELECTS 

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same 
physical address space. This is true if any portion of the chip-selects address range overlap 
(i.e., chip-selects ranges do not need to completely overlap to all go active). There are various 

6-14 



intet CHIP-SELECT UNIT 

reasons for overlapping chip-selects. For example, overlapping a portion of read-only memory 
with read/write memory or copying data to two devices simultaneously. 

If overlapping chip-selects do not have identical wait state value and bus ready programming, 
the following priority scheme exists: 

1. If any MCS chip-select is active, the MPCS R2:0 bits are used. 

2. If the PCS chip-selects overlap the LCS or UCS chip selects, the LMCS or UMCS R2:0 
bits (respectively) are used. 

As an example, consider the case where MCS3 overlaps UCS. MCS3 is programmed for two 
wait states and requires bus ready. UCS is programmed for no wait states and ignores bus 
ready. An access to the overlapped region results in two wait states and bus ready is required. 

Be cautious when overlapping chip selects with different wait state and bus ready 
programming. Here are two conditions that require special attention to ensure proper system 
operation. 

1. When all overlapping chip-selects ignore bus ready but have different wait states, make 
sure each chip-select still works properly using the highest wait state value. A system 
failure may result when the required number of wait states does not occur in the bus 
cycle. 

2. If one or more of the overlapping chip-selects requires bus ready, verify the following: 

A. All chip-selects that ignore bus ready work properly using the smallest wait state 
value. 

B. All chip-selects that ignore bus ready work properly for the longest bus cycle 
possible. 

A system failure may result when not enough or too many wait states occur in the bus cycle. 

6.2.7. MEMORY OR 1/0 BUS CYCLE DECODING 

The PCS chip-selects go active for memory or I/O address space. The MS control bit in the 
MPCS register selects the appropriate address space. Memory address space accesses consist 
of memory read, memory write and instruction prefetch bus cycles. I/O address space accesses 
consist of I/O read and I/O write bus cycles. 

The UCS, PCS and MCS chip-selects only go active for memory bus cycles. Chip-selects go 
active for CPU, DMA Control Unit and Refresh Control Unit initiated bus cycles. 

6.3. PROGRAMMING CONSIDERATIONS 

When programing the PCS chip-selects active for I/O bus cycles, remember that eight bytes 
of I/O are reserved by Intel. These eight bytes, located between OOF8H and OOFFH, control the 

6-15 



CHIP-SELECT UNIT 

interface to an 80C187 Numerics Coprocessor. A chip-select can overlap this reserved space 
provided there is no intention of using the 80C187. However, Intel recommends that the base 
address of the PCS chip-selects not start at OH in I/O address space to avoid possible future 
compatibility issues. 

An access to the appropriate chip-select register or registers, enables the chip-select. An 
access is any read or write operation. For instance, reading the LMCS register enables the 
LCS chip-select. However, reading the LMCS register does not ensure it has been 
programmed correctly. 

Do not read any chip-select register unless it has been previously written. Reading a register 
before programming it enables the chip-select and results in indeterminate operation. 

A chip-select can not be disabled once it has been enabled. However, the operating 
characteristics of the chip-select can be changed by writing the appropriate register. 

6.4. CHIP-SELECTS AND BUS HOLD 

The Chip-Select Unit only decodes address and bus state information generated internally. An 
external bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects 
remain inactive. 

The circuit shown in Figure 6.12 allows an external bus master to access a device during bus 
HOLD. 

CSU CHIP-SELECT 

EXTERNAL MASTER 
CHIP SELECT 

___ ~D--DEVICE SELECT 

Figure 6.12. Using Chip-Selects During HOLD 

6-16 



intet CHIP-SELECT UNIT 

ARDY~<~--------------------------------------------, 

SRDY~'~-----------------------II-/-I~,11111 

r- EPROM D S32RAKM FLOPPY 
ALE " L 128K DISK 

'A ~ R ~ 

~~~:~:~ V/'-A-D-B~-SJ,\ 6 ADD BUS/ ~ ~ ~ ~ DACK ~ 

H ----),-C-,E1r-T1-,J ~~W' ~ e, U~ ~ ~ L---.. 
0 
1/1 
1/1 

~ 
D-

DRO 

-
PCS1 

--
UCS 

--
MCS3:0 

,,4 

'\ 

-
LCS 

-pcso 

Figure 6.13. Typical System 

6.5. EXAMPLES 

The following sections provide examples of programming the Chip-Select Unit to meet the 
needs of a particular application. The examples do not go into hardware analysis or design 
issues. 

6.5.1. EXAMPLE 1: TYPICAL SYSTEM CONFIGURATION 

Figure 6.13 illustrates a block diagram of a typical system design. The EPROM memory has a 
total size of 64 Kbytes and the SRAM memory has a total size of 64 Kbytes also. The 
peripherals are mapped to 110 address space. 

6-17 



$ 
$ 

TITLE 
MOD186 
NAME 

CHIP-SELECT UNIT 

(Chip-Select Unit Initialization) 
XREF 
CSU_EXAMPLE_l 

.************************************************************** , 
* 

EXTERNAL REFERENCE FROM THIS MODULE * 
* 

.************************************************************** , 

$ include (PCBMAP.INC) File declares register 
locations and names 

.************************************************************** , 

MODULE EQUATES 
* 
* 
* 

;************************************************************** 

INTRDY 
EXTRDY 
IO 
ALLPCS 

EQU 
EQU 
EQU 
EQU 

CONFIGURATION EQUATES 

0004H 
OOOOH 
0080H 
0040H 

Ixternal bus ready modifier 
External bus ready modifier 
PCS Memory/IO Modifier 
PCS PCS/Latched Address Modifier 

Below is a list of the default system memory and I/O 
environment. These defaults configure the Chip-Select Unit 
for proper system operation. 

EPROM memory is located from OEOOOO to OFFFFF (128 Kbytes) 
Wait states are calculated assuming 16MHz operatidn. 
UCS# controls the accesses to EPROM memory space. 

EPROM_SIZE 
EPROM_BASE 
EPROM_WAIT 
EPROM_RDY 

EQU 
EQU 
EQU 
EQU 

128 
1024 - EPROM_SIZE 
2 
INTRDY 

Size in Kbytes 
Start address in Kbytes 
Wait states 
Ignore bus ready 

The UMCS regiser value is calculated using the above 
system constraints and the equations below. 

EQU (EPROM_BASE SHL 6) OR (OC038H) OR 
(EPROM_RDY) OR (EPROM_WAIT) 

Example 6.1. 

6-18 



CHIP-SELECT UNIT 

SRAM memory starts at OH and continues to 7FFFH (32 Kbytes). 
Wait states are caclulated assuming l6MHz operation. 
LCS# cQntrols the accesses to SRAM memory space. 

SRAM_SIZE 
SRAM_BASE 
SRAM_WAIT 
SRAM_RDY 

EQU 
EQU 
EQU 
EQU 

32 
o 
o 
INTRDY 

Size in Kbytes 
Start address in Kbytes 
Wait states 
Ignore bus ready 

The LMCS register value is calculated using the above 
system constraints and the equation below 

EQU ((SRAM_SIZE - 1) SHL 6) OR (00038H) OR 
(SRAM_RDY) OR (SRAM_WAIT) 

A DRAM interface is selected by the four MCS# chip-selects. 
The BASE value defines the starting address of the DRAM 
window. The SIZE value (along with the BASE value) define 
the ending address. Zero wait state performance is assumed. 
The Refresh Control Unit uses DRAM-BASE to properly configure 
refresh operation. 

DRAM_BASE EQU 256 Window start address in Kbytes 
DRAM_SIZE EQU 256 Window size in Kbytes 
DRAM_WAIT EQU 0 Wait states 
DRAM_RDY EQU INTRDY Ignore bus ready 

The MPCS register is used to program both the MCS and PCS 
chip-selects. Below are the equates for the I/O peripherals 
(also used to program the PACS register) . 

IO_WAIT 
IO_RDY 
PCS SPACE 
PCS_FUNC 

EQU 
EQU 
EQU 
EQU 

4 
INTRDY 
10 
ALLPCS 

10 Wait states 
Ignore bus ready 
Put PCSx# in I/O Space 
Generate PCS5# and PCS6# 

The MMCS and MPCS register values are calculated using the 
above system constraints and the equations below 

MMCS_VAL EQU (DRAM_BASE SHL 6) OR ( OOlF8H) OR 
& (DRAM_RDY) OR (DRAM_WAIT) 

MPCS _VAL EQU (DRAM_SIZE SHL 5) OR (08038H) OR 
& (PCS_SPACE) OR (PCS_FUNC) OR 
& (1O_RDY) OR (1O_WAIT) 

Example 6.1. (Continued) 

6-19 



CHIP-SELECT UNIT 

I/O is selected using t~e PCSO# chip-select. wait states 
assume operation at 16MHz. For this example, the Floppy Disk 
Controller is connect to PCS2# and PCS1# provides the DACK# 
signaL 

EQU 1 ; 10 start address in KBytes 

The PACS register value is calculated using the above 
system contraints and the equation below 

EQU (IO_BASE SHL 6) 
(IO_RDY) 

OR (00038H) 
OR (IO_WAIT) 

OR 

The following statements define the default assumptions 
for segment locations. 

CODE 

ASSUME 
ASSUME 
ASSUME 
ASSUME 

CS:CODE 
DS:DATA 
SS:DATA 
ES:DATA 

SEGMENT PUBLIC 'CODE' 

.************************************************************** , ' 

* 
ENTRY POINT ON POWER UP * 

* 
.************************************************************** , 

LABEL FAR FORCES FAR JUMP 

CLI Disable Interrupts 

Place register initialization code here 

Example 6.1. (Continued) 

6-20 



CHIP-SELECT UNIT 

SET UP CHIP SELECTS 

UCS - EPROM Select (Initialized during POWER_ON code) 
LCS 
PCS 
MCS 

CODE 

- SRAM Select (Set to SRAM Size) 
- I/O Select (PCSO-l Support Floppy) 
- DRAM Select (Set to DRAM Size) 

Set up LCS Register MOV DX, LMCS - REG 
MOV AX, LMCS_VAL 
OUT DX, AL Remember, BYTE Writes OK 

MOV DX, MPCS - REG READY FOR PCS LINES 4-6 
MOV AX, MPCS_VAL AS WELL AS MCS PROGRAMMING 
OUT X, AL 

MOV DX, MMCS - REG SET UP DRAM Chip-Select 
MOV AX, MMCS_VAL 
OUT DX, AL 

MOV DX, PACS - REG SET UP 10 Chip-Select 
MOV AX, PACS_VAL 
OUT DX, AL 

ENDS 

POWER ON RESET CODE TO GET STARTED 

ASSUME CS:POWER_ON 

POWER_ON SEGMENT AT OFFFFH 

MOV DX, UMCS_REG 
MOV AX, UMCS_VAL 
OUT DX, AL 

. JMP FW_START 

Point to UMCS Register 
Reprogram UMCS to match 
system requirements 
Jump to init code 

Example 6.1. (Continued) 

6·21 



intel® CHIP-SELECT UNIT 

.************************************************************* , 

DATA SEGMENT 
* 
* 
* 

;************************************************************* 

DATA SEGMENT PUBLIC 'DATA' 

DD 256 DUP (?) Reserved for Interrupt Vectors 

iPlace memory variables Here 

DW 500 DUP (?) Stack Allocation 

LABEL WORD 

DATA ENDS 

Program ends 

END 

Example 6.1. (Continued) 

6-22 



Refresh Control Unit 7 





CHAPTER 7 
REFRESH CONTROL UNIT 

The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its 
integrated address and clock counters. Figure 7.1 shows the relationship between the Bus 
Interface Unit and the Refresh Control Unit. Integrating the Refresh Control Unit into the 
processor allows an external DRAM controller to use chip-selects, wait state logic and status 
lines. 

r---'" 

F· 
BUS 

L-/ 

/I ~ 

'\j v 

CPU 
CLOCK " , 

/I ~ 

'\j v 

/I ~ 

'\j v 

REFRESH CLOCK 
INTERVAL REGISTER 

~7 
9·BITDOWN 

COUNTER 
REFRESH REQUEST 

CLR , REFRESH ACKNOWLEDGE 
REQ ..... 

REFRESH CONTROL 
REGISTER 

" 
12·BIT ADDRESS COUNTER 

REFRESH BASE 
ADDRESS REGISTER REFRESH ADDRESS 

REGISTER 
}// J- / 

" 

20·BI.1 
REFRESH ADDRESS 

"" ,. 

Figure 7.1. Refresh Control Unit Block Diagram 

7.1. THE ROLE OF THE REFRESH CONTROL UNIT 

BIU 
INTERFACE 

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU 
execution. Unlike a DMA controller, however, the Refresh Control Unit does not run bus 
cycle bursts nor does it transfer data. The DRAM refresh process freshens individual DRAM 
rows in "dummy read" cycles, while cycling through all necessary addresses. 

7-1 



-

REFRESH CONTROL UNIT 

The microprocessor interface to DRAMs is more complicated than other memory interfaces. A 
complete DRAM controller requires circuitry beyond that provided by the processor even in 
the simplest configurations. This circuitry must respond correctly to reads, writes and DRAM 
refresh cycles. The external DRAM controller generates the Row Address Strobe (RAS), 
Column Address Strobe (CAS) and other DRAM control signals. 

Pseudo-static RAMs use dynamic memory· cells but generate address strobes and refresh 
addresses internally. The address counters still need external timing pulses. These pulses are 
easy to derive from the processor's bus control signals. Pseudo-static RAMs do not need a full 
DRAM controller. 

7.2. REFRESH CONTROL UNIT CAPABILITIES 

A nine-bit address counter forms the refresh addresses, supporting any dynamic memory 
devices with up to nine rows of memory cells (nine refresh address bits~ This. includes all 
practical DRAM sizes for the processor's one Mbyte address space . 

. 7.3. REFRESH CONTROL UNIT OPERATION 

Figure 7.2 illustrates Refresh Control Unit counting, address generation and BIU bus cycle 
generation in flow chart form. 

The 9-bit down-counter loads from the Refresh Interval Register on the falling edge of 
CLKOUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then 
the down-counter reloads and starts counting again, simultaneously triggering a refresh 
request. Once enabled, the DRAM refresh process continues indefinitely until the user 
reprograms the Refresh Control Unit, a reset occurs, or the processor enters Powerdown 
Mode. Power-Save Mode divides the Refresh Control Unit clocks, so reprogramming the 
Refresh Interval Register becomes necessary. 

The refresh request remains active until the bus becomes available. When the bus is free, the 
BIU will run its "dummy read" cycle. Refresh bus requests have higher priority than most 
CPU bus cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles 
also have a higher priority than the HOLDIHLDA bus arbitration protocol (see Section 7.8). 

The 9-bit refresh clock counter does not wait until the BID services the refresh request to 
continue counting. This operation ensures refresh requests occur at the correct interval. 
Otherwise, the time between refresh requests would be a function of varying bus activity. 
When the BIU services the refresh request, it clears the request and increments the refresh 
address. 

7-2 

. I 

I 



inlet REFRESH CONTROL UNIT 

REFRESH CONTROL UNIT BIU REFRESH BUS 
OPERATION OPERATION 

SET "E" BIT REFRESH REQUEST 

LOAD COUNTER 
FROM REFRESH CLOCK 

INTERVAL REGISTER 

COUNTER =? 
EXECUTED 
EVERY 
CLOCK 

ACKNOWLEDGED 

Figure 7.2. Refresh Control Unit Operation Flow Chart 

FROM FROM 
REFRESH BASE ADDRESS REGISTER FIXED REFRESH ADDRESS COUNTER 

20-BIT REFRES H ADDRESS 

Figure 7.3. Refresh Address Formation 

7-3 

FIXED 



intel .. REFRESH CONTROL UNIT 

The BID does not queue DRAM refresh requests. If the Refresh Control Unit generates 
another request before the BID handles the present request, the BIU loses the present request. 
However, the address associated with the request is not lost. The refresh address changes only 
after the BIU runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is 
still a chance that the processor will successfully refresh the corresponding row of cells in the 
DRAM, retaining the data. 

7.4. REFR.ESH ADDRESSES 

Figure 73 shows the physical address generated during a refresh bus cycle. This figure applies 
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:13 
come from the Refresh Base Address Register described in Section 7.7.2.1. 

Refresh address bits RA12:10 ar!'l always zero. A linear-feedback shift counter generates 
address bits RA9: 1. The counter does not increment linearly from 0 through IFFH. However, 
the counting algorithm cycles uniquely through all possible 9-bit values. It only matters that 
each row of DRAM memory cells gets refreshed at a specific interval. The order of the rows is 
unimportant. 

Address bit AO is fixed at zero during all refresh operations. In applications based ona 16-bit 
data bus processor? AO typically selects memory devices placed on the low (even) half of the 
bus. Applications based on an 8-bit data bus processor typically use AO as a true address bit. 
The DRAM controller must not route AO to row address pins on the DRAMs. 

7.5. REFRESH BUS CYCLES 

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control 
~ignals indicated in Table 7.1. The 16-bit bus processor drives both the BHE and AO pins high 
during refresh cycles. These signals may be AND'ed in a DRAM controller to detect a refresh 
bus cycle. The 8-bit bus version replaces the BHE pin with RFSH, which is low during refresh 
cycles. RFSH and BHE timings are the same. AO is also high during refresh, cycles on the 8-bit 
bus processor. 

Table 7.1. Identification of Refresh Bus Cycles 

DATA BUS WIDTH BHEIRFSH AO 

16-Bit Device 1 1 

8-Bit Device 0 1 

7·4 



in1:et REFRESH CONTROL UNIT 

7.6. GUIDELINES FOR DESIGNING DRAM CONTROLLERS 

The basic DRAM access method consists of four phases: 

1. The DRAM controller supplies a row address to the DRAMs. 

2. The controller asserts a Row Address Strobe (RAS), which latches the row address inside 
the DRAMs. 

3. The controller supplies a column address to the DRAMs. 

4. The controller asserts a Column Address Strobe (CAS), which latches the column address 
inside the DRAMs. 

Most 80Cl86 Modular Core family DRAM interfaces use only this method. Others will not be 
discussed here. 

The DRAM controller's purpose is to use the processor's address, status and control lines to 
generate the multiplexed addresses and strobes. These signals must be appropriate for three 
bus cycle types: read, write and refresh. They must also meet specific pulse width, setup, and 
hold timing requirements. DRAM interface designs need special attention to transmission line 
effects, since DRAMs represent significant loads on the bus. 

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller 
requires a tapped digital delay line to derive the proper timings. 

Clocked DRAM controllers may use either discrete or programmable logic devices. A state 
machine design is appropriate, especially if the circuit must provide wait state control (beyond 
that possible with the processor's Chip-Select Unit). Because of the microprocessor's four
clock bus, clocking some logic elements on each CLKOUT phase is advantageous (see Figure 
7.4). The cycle begins with presentation of the row address. RAS should go active on the 
falling edge of T2• At the rising edge of T2, the address lines should switch to a column 
address. CAS goes active on the falling edge of T3• Refresh cycles do not require CAS. When 
CAS is present, the "dummy read" cycle becomes a true read cycle (the DRAM drives the 
bus), and the DRAM row still gets refreshed. 

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge of 
T4• At the rising edge of T4, the address multiplexer shifts to its original selection (row 
addressing), preparing for the next DRAM access. 

7.7. PROGRAMMING THE REFRESH CONTROL UNIT 

Given a specific processor operating frequency and information about the DRAMs in the 
system, the user can program the Refresh Control Unit registers. 

7-5 



REFRESH CONTROL UNIT 

T4 T1 T2 T3/TW T4 

CLKOUT 

MUXED ADDRESS 

S2:0 

CS 

RAS 

CAS G) 

WE (g) \ «/ 
NOTES: 

1. CAS is unnecessary for refresh cycles only. 

2. WE is necessary for write cycles only. 

Figure 7.4. Suggested DRAM Control Signal Timing Relationships 

Rp . (~s) x f(MHz) 
enod ---------------- = RFTIME Register Value 

# Refresh Rows + # (Refresh Rows x % Overhead) 

Rp . d = Maximum refresh period specified by DRAM manufacturer (microseconds). 
eno 

f = Operating frequency in MHz. 

# Refresh Rows = Total number of rows to be refreshed. 

% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%). 

Figure 7.5. Formula for Calculating Refresh Interval for RFTIME Register 

7-6 



inlet REFRESH CONTROL UNIT 

7.7.1. CALCULATING THE REFRESH INTERVAL 

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary 
and the maximum period to run the cycles. The indicated number of cycles is the same as the 
number of rows. Multiply the specified refresh period (convert to microseconds) by the 
microprocessor's CLKOUT frequency (MHz). Then divide the result by the number of rows 
in the DRAM. Figure 7.5 shows the formula. 

Bus latency is the time the Refresh Control Unit needs to gain control of the bus. Reduce the 
calculated refresh interval by one to five percent to compensate. If an external bus master will 
be extremely slow to release the bus, reduce the interval even more. At standard operating 
frequencies, DRAM refresh bus overhead totals two or three percent of the total bus 
bandwidth. 

If the processor enters Power-Save Mode, the refresh rate must increase to offset the reduced 
CPU clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases. 
At frequencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time 
running refresh cycles. There may not be enough bandwidth left for the processor to perform 
other activities, especially if the processor must share the bus with an external master. 

7.7.2. REFRESH CONTROL UNIT REGISTERS 

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the 
Refresh Base Address Register, Refresh Clock Interval Register and the Refresh Control 
Register. 

7.7.2.1. REFRESH BASE ADDRESS REGISTER 

The Refresh Base Address Register (see Figure 7.6) programs the base (upper 7 bits) of the 
refresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary 
within the one Mbyte address space. When the partial refresh address from the 9-bit address 
counter (see Section 7.3) passes 1FFH, the Refresh Control Unit does not increment the 
refresh base address. 

7.7.2.2. REFRESH CLOCK INTERVAL REGISTER 

The Refresh Clock Interval Register (Figure 7.7) defines the time between refresh requests. 
The higher the value, the longer the time between requests. The down-counter decrements 
every falling CLKOUT edge, regardless of core activity. When the counter reaches 1, the 
Refresh Control Unit generates a refresh request and the counter again loads the value from 
the register. 

7-7 



intet REFRESH CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

RA19:13 Refresh Base 

Refresh Base Address Register 
RFBASE 
Determines upper 7 bits of refresh address. 

RESET 
STATE FUNCTION 

OOH Uppermost address bits for DRAM refresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.S. Refresh Base Address Register 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

RG8:0 Refresh 
Counter 
Reload Value 

Refresh Clock Interval Register 
RFTIME 
Sets refresh rate. 

o 
11~~T~~r~l -;r~-~T;' 
IIGIGIGIGI GIG GIG 

7 6 54
1 

3
1

2 1 10, 

I I_L_I _~~--' 
~~-~~-~ 

RESET 
STATE FUNCTION 

OOOH Sets the desired clock count between refresh 
cycles. 

NOTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.7. Refresh Clock Interval Register 

7-8 



intet. REFRESH CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 
MNEMONIC BIT NAME 

REN Refresh 
Control Unit 
Enable 

RC7:0 Refresh 
Counter 

Refresh Control Register 
RFCON 
Controls Refresh Unit operation. 

I!;P~J -~_~R l~R-l ~TI~ -t~ 76543210 

.... _-- _._-- -

RESET 
STATE FUNCTION 

0 Setting REN enables the Refresh Unit. Clearing 
REN disables the Refresh Unit. 

OOOH These bits contain the present value of the down 
counter which triggers refresh requests. 

N.OTE: Reserved register bits are shown with gray shading. Always program reserved register 
bits with a "0" to insure proper device functionality and compatibility with future Intel products. 

Figure 7.S. Refresh Control Register 

7.7.2.3. REFRESH CONTROL REGISTER 

Figure 7.8 shows the Refresh Control Register. The user may read or write the REN bit at 
any time to tum the Refresh Control Unit on or off. The lower nine bits I;:ontain the current 
9-bit down-counter value. The user cannot program these bits. Disabling the Refresh Control 
Unit clears both the counter and the corresponding counter bits in the control register. 

7.7.3. PROGRAMMING EXAMPLE 

Example 7.1 contains sample code to initialize the Refresh Control Unit. Example 5.2 shows 
the additional code to reprogram the Refresh Control Unit upon entering Power-Save Mode. 

7-9 



$mod186 
name 

REFRESH CONTROL UNIT 

; FUNCTION: This function initializes the DRAM Ref'resh 
;Control Unit to refresh the DRAM starting at dram_addr 
;at clock_time intervals. . 

SYNTAX: 
extern void far config_rcu(int dram_addr , int clock_time); 

INPUTS: dram_addr - Base address of DRAM to refresh 
clock time - DRAM refresh rate 

i -

OUTPUTS: None 

NOTE: Parameters are passed on the stack as 
required by high-level languages. 

RFBASE equ xxxxh ; substitute 
RFTIME equ xxxxh 
RFCON equ xxxxh 

Enable equ 8000h ;enable bit 

lib_ 80186 segment public 'code' 
assume cs:lib_ 80186 

public 
_conJig_rcu proc far 

push bp 
mov bp, sp 

- clock_time equ word ptr[bp+6] 

- dram_addr equ word ptr [bp+8] 

push ax 

push cx 
push dx 
push di 

register offset 

;save caller's bp 
;get current top of stack 

;get parameters off 
;the stack 

; save registers that 
;will be modified 

Example 7.1. Refresh Control Unit Intialization Code 

7-10 



mov dx, 
mov ax, 
out dx, 

mov dx, 
mov ax, 
out dx, 

mov dx, 
mov ax, 
out dx, 

mov cx, 

xor di, 

_exercise_ram: 

REFRESH CONTROL UNIT 

RFBASE ;set upper 7 address 

- dram_addr 
ax 

RFTIME ;set clock pre_ scaler 
clock time 

ax 

RFCON 
Enable 
ax 

8 

di 

-

;Enable RCD 

;8 dummy cycles are. 
;required by DRAMS 
;before actual use 

mov word ptr [dil, 0 
loop _exercise_ram 

bits 

pop di ;restore saved registers 
pop dx 
pop cx 
pop ax 

pop bp ;restore caller's bp 

ret 
_config_rcu endp 

lib_ 80186 ends 
end 

Example 7.1. Refresh Control Unit Initialization Code (Continued) 

7.8. REFRESH OPERATION AND BUS HOLD 

When another bus master controls the bus, the processor keeps HLDA active as long as the 
HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus 
hold, the processor drives theHLDA signal inactive, indicating to the current bus master that it 
wishes to regain bus control (see Figure 7.9). The BIU begins a refresh bus cycle only after the 
alternate master removes HOLD. The user must design the system so the processor can regain 
bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle, 
the CPU will give up the bus afterwards. 

7-11 



REFRESH CONTROL UNIT 

CLKOUT 

HOLD 

HLDA 

ADO-AD1S, DEN 

A19:16, RD, WR, SHE, 
DT/R, S2:0 

T1 

» (( 

T4 T1 

NOTES: 1. HLDA deasserted; signaling needs to run DRAM refresh cycles less than T CLOV 
2. External bus master terminates use of the bus 
3. HOLD deasserted; greater than TellS 
4. HOLD rnay be reasserted after one clock 
5. Lines come out of float in order torun DRAM refresh cycle 

Figure 7.9. Regaining Bus Control to Run a DRAM Refresh Bus Cycle 

7-12 



Interrupt Control Unit 8 





CHAPTER 8 
INTERRUPT CONTROL UNIT 

The 80C186 Modular Core has a single maskable interrupt input (See Section 2.3.1.2). An 
Interrupt Control Unit is needed to expand the interrupt capabilities beyond a single input. To 
fulfill this function, the Interrupt Control Unit has two different modes of operation; Master 
Mode and Slave Mode. 

In Master Mode, the Interrupt Control Unit processes all maskable interrupt sources and 
presents them to the CPU through the single maskable interrupt input. The Interrupt Control 
Unit synchronizes and prioritizes interrupt sources and provides the interrupt type vector to the 
CPU. The interrupts can originate from on-chip peripherals and from four external interrupt 
pins. Most systems use Master Mode. 

In Slave Mode, an external 8259A interrupt controller acts as the master interrupt controller. 
The 8259A now actually controls the maskable interrupt input to the CPU. The Interrupt 
Control Unit is only responsible for processing the on-chip interrupt sources and must request 
service from the external 8259A. 

Features of the Interrupt Control Unit are: 

• Programmable priority of each interrupt source 

• Support for polled operation 

• Individual masking of each interrupt source 

• Nesting of interrupt sources 

• External 8259As can be used for expanding external interrupt sources (Cascade Mode) 

8.1. FUNCTIONAL OVERVIEW 

All microprocessor systems must communicate in some way with the external world. A typical 
system may have a set of peripherals, for example, a keyboard, communications port and a 
display. Each peripheral requires the attention of the CPU at different times. There are two 
distinct ways to process peripheral I/O requests; polling and interrupts. 

Polling requires the CPU to check each peripheral in the system periodically to see if an 110 
request is pending. However, polling is not a very efficient use of CPU time and in most cases 
is detrimental to system throughput. 

Interrupts eliminate polling by allowing the peripheral to signal the CPU that it has an I/O 
request pending. The CPU then stops execution of the current task, saves its state and begins 
executing the peripheral servicing routine (interrupt handler). At the end of the interrupt 
handler, the CPU restores its original state and returns to executing the original task. 

8-1 



INTERRUPT CONTROL UNIT 

The Interrupt Control Unit is responsible for processing interrupts from multiple peripherals 
and presenting them to the CPU in an orderly and defined fashion. 

8.2. MASTER MODE 

A block diagram of the Interrupt Control Unit in Master Mode is shown in Figure 8.1. 

TIMER TIMER TIMER 
o 1 2 

TO CPU 
INTERRUPT REQUEST 

DMA DMA 
o 

INTERRUPT 
PRIORITY 

RESOLVER 

INT INT INT INT 
o 1 2 3 

VECTOR 
GENERATION 

LOGIC 

Figure 8.1. Interrupt Control Unit Block Diagram 

8.2.1. GENERIC FUNCTIONS IN MASTER MODE 

There are several functions of the Interrupt Control Unit which are common among most 
interrupt controllers. This section covers how these generic functions are implemented on the 
Interrupt Control Unit. 

8.2.1.1. INTERRUPT MASKING 

There are several instances where a programmer may want to disable an interrupt source 
temporarily. Executing time-critical sections of code or servicing a high priority task are 
common examples of when interrupt sources may need to be disabled. This is called interrupt 
masking. All interrupts from the Interrupt Control Unit may be globally masked or selectively 
masked on an individual basis. 

8-2 



intel® INTERRUPT CONTROL UNIT 

8.2.1.1.1. GLOBAL MASKING OF INTERRUPT SOURCES 

The Interrupt Enable Bit in the Program Status Word globally enables or disables the 
rnaskable interrupt request from the Interrupt Control Unit. The programmer controls the 
Interrupt Enable Bit by using the STI (Set Interrupt) and the CLI (Clear Interrupt) instructions. 

8.2.1.1.2. INDIVIDUAL MASKING OF INTERRUPT SOURCES 

In addition to the Interrupt Enable Bit, each interrupt source can be individually enabled or 
disabled. The Interrupt Mask Register has a single bit for each interrupt source. By setting or 
clearing a bit in the Interrupt Mask Register, the programmer can selectively mask or unmask 
the corresponding interrupt source. 

8.2.1.2. INTERRUPT PRIORITY 

One of the critical functions of the Interrupt Control Unit is to prioritize interrupt requests. 
Priority determines which interrupt request is serviced first if multiple interrupts are pending. 
In many systems, it is possible that an interrupt handler may itself be interrupted by another 
interrupt source. This is known as interrupt nesting. When nesting interrupts, priority 
determines if an interrupt source can preempt an interrupt handler which is currently 
executing. 

An interrupt source is assigned a priority between zero and seven. Zero is the highest possible 
priority and seven is the lowest. After reset, the interrupts default to the priority shown in 
Table 8.1. Because the timers share an interrupt source, they also share a priority. Within the 
assigned priority, they are prioritized relative to each other. Timer 0 has the highest relative 
priority, Timer 2 the lowest. 

Different priorities can be assigned for each source. This is done by programming the Interrupt 
Control Register with a new priority. The priority must be between zero and seven. Interrupt 
sources can be programmed to share the same priority. The Interrupt Control Unit handles this 
by using the default priorities within the shared priority level. For example, assume INTO and 
INTI are programmed to priority seven. INTO is serviced first because it has the higher default 
priority. 

Interrupt sources can also be masked on the basis of their priority. The Priority Mask Register 
masks all interrupts with a lower priority than its programmed value. After reset, the Priority 
Mask Register contains priority seven, effectively enabling interrupts of any priority. The 
register can then be programmed with any valid priority. 

8-3 



int:et INTERRUPT CONTROL UNIT 

Table 8.1. Default Interrupt Priorities 

Interrupt Name Relative 
Priority 

Timer 0 o (a) 

Timer 1 o (b) 

Timer 2 o (c) 

DMAO 1 

DMA1 2 

INTO 3 

INT1 4 

INT2 5 

INT3 6 

8.2.1.2.1. OPERATION WHEN INTERRUPT NESTING IS NOT ENABLED 

When entering an interrupt handler, the Program Status Word is pushed onto the stack. The 
Interrupt Enable Bit is cleared. The processor enters all interrupt handlers with maskable 
interrupts disabled. Maskable interrupts will not be enabled again until either the IRET 
instruction restores the Interrupt Enable Bit or the programmer explicitly enables interrupts. 
Enabling maskable interrupts within an interrupt handler allows interrupts to be nested. 
Otherwise, interrupts are processed sequentially; an interrupt handler must finish before 
another executes. 

The simplest way to use the Interrupt Control Unit is when nesting is not needed. The 
operation and servicing of all sources of maskable interrupts is straightforward. However, the 
application tradeoff is that an interrupt handler will finish executing even if a higher priority 
interrupt occurs. This can add considerable latency to the higher priority interrupt. 

In simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU 
and waits for the interrupt acknowledge. When the Interrupt Control Unit receives the 
acknowledge, it presents the highest priority unmasked interrupt type at that time to the CPU. 
The CPU then executes the interrupt handler for that interrupt. Because the Interrupt Enable 
Bit is never set within the interrupt handler, the interrupt handler can never be interrupted. 

8.2.1.2.2. OPERATION WHEN NESTING INTERRUPTS 

The function of the Interrupt Control Unit is· more complicated when nesting interrupts. An 
interrupt now can occur within an interrupt handler. The term used here is an interrupt 
preempting another interrupt. The following rules apply for nesting interrupts: 

8-4 



in1:et INTERRUPT CONTROL UNIT 

• An interrupt source can only preempt other interrupts of equal or higher priority. 

• An interrupt source cannot preempt itself. The interrupt handler must finish executing 
before the interrupt is serviced again. (An exception to this is Special Fully Nested Mode, 
which is covered in Section 8.3.3.1) 

8.3. MASTER MODE OPERATION 

This section covers the process in which the Interrupt Control Unit receives interrupts and 
asserts the Maskable Interrupt Request to the CPU. 

8.3.1. TYPICAL INTERRUPT SEQUENCE 

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the 
Interrupt Request Register. That interrupt is pending or waiting to be serviced. The Interrupt 
Control Unit checks all pending interrupt sources. If the interrupt is not masked and it meets 
the priority criteria (see Section 8.3.2 on Priority Resolution), the Interrupt Control Unit 
asserts the maskable interrupt request to the CPU. 

The Interrupt Control Unit then waits for the interrupt acknowledge from the CPU. At that 
time, it passes the interrupt type to the CPU and the interrupt processing sequence takes place. 
See Section 2.3.1 for a detailed explanation of the interrupt processing sequence. The Interrupt 
Control Unit always passes the highest priority interrupt vector at the time the acknowledge is 
received. If a higher priority interrupt occurs before the interrupt acknowledge, the higher 
priority interrupt has precedence. 

When the interrupt acknowledge occurs, the corresponding bit in the Interrupt Request 
Register is cleared. The corresponding bit in the In-Service Register is set. The In-Service 
Register keeps track of which interrupt handlers are being processed. At the end of Interrupt 
Handler, the programmer must explicitly clear the bit in the In-Service Register by issuing an 
End-Of-Interrupt (EO!) command. If the bit remains set, the Interrupt Control Unit cannot 
process any more interrupts from that source. 

8.3.2. PRIORITY RESOLUTION 

The criteria for asserting the maskable interrupt request to the CPU is somewhat complicated. 
The complexity is needed to support interrupt nesting. First, an interrupt occurs and the 
corresponding bit is set in the Interrupt Request Register. The Interrupt Control Unit then 
asserts the maskable interrupt request to the CPU based on the following criteria: 

1. The interrupt is not masked. 

2. The interrupt has higher priority than the Priority Mask Register. 

3. The interrupt must not have its own In-Service bit set. 

4. An interrupt has equal or higher priority than any interrupt whose In-Service bit is set. 

8-5 



intel .. INTERRUPT CONTROL UNIT 

The In-Service Register keeps track of any currently executing interrupt handler. The Interrupt 
Control Unit uses this information to decide if another interrupt source has enough priority to 
preempt an interrupt handler that is currently executing. 

The following example illustrates the priority resolution: 

The initial conditions are: 

• The Interrupt Control Unit has been initialized. 

• There are no pending interrupts. 

• No bits are set in the In-Service Register. 

• All interrupts are unmasked and the Interrupt Enable bit is set. 

• The default priority scheme is used. 

• The Priority Mask Register is set to the lowest priority (seven). 

1. A low to high transition on INTO sets its bit in the Interrupt Request Register. The 
interrupt is now pending. 

2. Because INTO is the only interrupt pending, it must meet all the priority criteria. The 
Interrupt Control Unit asserts the interrupt request' to the CPU and waits for an 
acknowledge. 

3. The CPU acknowledges the interrupt. The Interrupt Control Unit passes the interrupt type 
(in this case type 12) to the CPU. 

4. The Interrupt Control Unit clears the INTO in the Interrupt Request Register and sets the 
INTO bit in the In-Service Register. . 

5., The CPU executes the interrupt processing sequence and begins executing the interrupt 
handler for INTO. 

\ 6. During execution of the interrupt handler, a low to high transition on INT3 sets its bit in 
the Interrupt Request Register. . 

7. INT3 has lower priority than INTO, whose interrupt handler is currently executing 
(INTO's .In-Service bit is set). INt3. does not meet the priority criteria and thus no 
interrupt request is sent to the CPU. If INT3 had been· programmed with an equal or 
higher priority. than INTO, the interrupt request would have been sent to the CPU. INT3 
remains pending in the Interrupt Request Register. 

8. The INTO interrupt handler completes and an EO! cominand clears the INTO bit in the In
Service Register. 

9. INT3 is still pending and now meets all the priority criteria. An interrupt request is sent to 
the CPU and the process begins again. 

8-6 



intel® INTERRUPT CONTROL UNIT 

8.3.2.1. INTERRUPTS WHICH SHARE A SINGLE SOURCE 

Multiple interrupt requests can share a single source input to the Interrupt Control Unit (the 
three timer interrupts, for example). Although these interrupts share a source input, each has 
its own interrupt vector. The actual vectoring sequence is transparent to the user (i.e., when a 
TimerO interrupt occurs, the TimerO interrupt handler gets executed). The application 
consequences of how these interrupts get prioritized and serviced is covered in this section. 
We will use the three timer interrupts as an example. 

The Interrupt Status Register acts as a second level request register to process the three timer 
interrupts. The Interrupt Status Register contains a bit for each timer interrupt. Lets assume a 
timer interrupt occurs. The specific bit for that timer in the Interrupt Status Register and the 
shared timer interrupt bit in the Interrupt Request Register are both set. Now the shared timer 
interrupt is processed like any other interrupt source. Multiple timer interrupt bits can be set at 
one time in the Interrupt Status Register. 

When the shared interrupt is acknowledged, the highest priority timer interrupt at that time 
gets serviced first (see Table 8.1). The highest priority timer bit is cleared in the Interrupt 
Status Register. Any other timer interrupts remain pending and their bits set. If only one timer 
interrupt is pending, the timer bit in the Interrupt Request Register is also cleared. Otherwise, 
it remains set, signalling other timer interrupts are pending. 

The shared In-Service Bit is set when the timer interrupt is acknowledged. No other timer 
interrupts can occur when the In-Service Bit is set. For example, assume a lower priority timer 
interrupt is being serviced and a higher priority timer interrupt occurs. The In-Service Bit is 
already set for the shared timer interrupt. The higher priority timer interrupt remains pending 
until the lower priority timer interrupt handler is finished and the In-Service Bit cleared. 

8.3.3. CASCADING WITH EXTERNAL 8259As 

For some applications, the number of external interrupt pins on the Interrupt Control Unit is 
not enough. The Interrupt Control Unit has Cascade Mode which expands the number of 
external interrupt pins using 8259A interrupt controllers. The INT2/INTAO and INT3/INTAI 
have two functions. They can function as external interrupt pins or as interrupt acknowledge 
outputs in Cascade Mode. INTAO is the acknowledge for INTO and INTAI is the 
acknowledge for INTI as shown in Figure 8.2. 

The INT2/INTAO and INT3/INTAI are inputs after reset until the pins are configured as 
outputs. The pullup resistors insure the INT A pins never float (issuing a spurious inteITupt 
acknowledge to the 8259A). The value of the resistors must be high enough to prevent 
excessive loading on the INT A pins. 

8-7 



int:et INTERRUPT CONTROL UNIT 

INT " INTO , 
8259A Vee 

OR 
82C59A 

- -.J 

INTA ..... INTAO 

INTERRUPT 
CONTROL 
' UNIT 

'" INT , INT1 
8259A Vee 

OR 
82C59A 

- -J 
INTA ..... INTA1 

Figure 8.2. Using 8259As in Cascade Mode 

8.3.3.1. SPECIAL FULLY NESTED MODE 

Special Fully Nested Mode is an optional feature normally used with Cascade Mode and is 
only applicable to INTO and INTI. In Special Fully Nested Mode, a request from an interrupt 
source is serviced even if its In-Service Bit is set. 

In Cascade Mode, up to eight external interrupts share a single interrupt pin under the control 
of an 8259A. Special Fully Nested Mode allows the priority structure of the 8259A to be 
maintained. For example, let's assume the CPU is currently servicing a low priority interrupt 
from the 8259A. While the interrupt handler is executing, the 8259A receives a higher priority 
interrupt from one of its sources. The 8259A applies its own priority criteria to that interrupt 
and asserts its interrupt pin to the Interrupt Control Unit. Special fully Nested Mode would 
allow that 8259A interrupt to be serviced even though the In-Service Bit is already set for that 
interrupt source. A higher priority interrupt has preempted a lower priority interrupt therefore 
fully maintaining interrupt nesting. 

Special Fully Nested Mode can still be used without Cascade Mode. This allows a single 
external interrupt pin, (either INTO or INTI) to preempt itself. 

8.3.4. INTERRUPT ACKNOWLEDGE SEQUENCE 

During the interrupt acknowledge sequence, the Interrupt Control Unit passes the int~rrupt 
type to the CPU. The CPU then multiplies the interrupt type by four to get the interrupt vector 
address in the interrupt vector table. See Section 2.3.1. 

8-8 



INTERRUPT CONTROL UNIT 

The interrupt types for all the sources are fixed and unalterable (see Table 8.2). The Interrupt 
Control Unit passes these types to the CPU internally. The first external indication of the 
interrupt acknowledge sequence will be the CPU fetching from the interrupt vector table. 

Table 8.2. Fixed Interrupt Types 

Interrupt Name Interrupt Type 

Timer 0 8 

Timer 1 18 

Timer 2 19 

DMAO 10 

DMA1 11 

INTO 12 

INT1 13 

INT2 14 

INT3 15 

In Cascade Mode, the external 8259A supplies the interrupt type to the CPU. Therefore, the 
CPU runs an external interrupt acknowledge cycle (see Section 3.5.3) to fetch the interrupt 
type from the 8259A. 

8.3.5. POLLING 

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU asks or polls, 
the Interrupt Control Unit for any pending interrupts. The user can then service interrupts 
whenever it is convenient. The Interrupt Control Unit has the Poll and Poll Status Registers to 
support polling. 

By reading the Poll Register, the user gets the type of the highest priority pending interrupt. 
Now the user must call that interrupt handler. Reading the poll register also acknowledges the 
interrupt. The specific bit in the Request Register is cleared and the bit in the In-Service 
Register is set. The Poll Status Register has the same format as the Poll Register. Reading the 
Poll Status Register does not acknowledge the interrupt. 

8.3.6. EDGE AND LEVEL TRIGGERING 

The external interrupt pins (INT3-0) are programmable for either edge or level triggering. 
Both types of triggering are active high. 

Edge triggering is defined as a zero to one transition on an external interrupt pin. The pin must 
remain high until after the CPU acknowledges the interrupt. The external interrupt pin must go 
low again to reset the edge detect circuitry (see the data sheet for timing information). No 
further interrupts will occur unless the external interrupt pin goes low after being 
acknowledged. 

8-9 



intel .. INTERRUPT CONTROL UNIT 

Level triggering is defined as a valid logic one on the external interrupt pin. The logic one 
must remain until after the CPU acknowledges the interrupt. Unlike edge triggering, level 
triggering will continue to generate interrupts if the pin remains high. A. level triggered 
external interrupt pin must be deasserted before the EOI command or another interrupt occurs. 

8.3.7. ADDITIONAL LATENCY AND RESPONSE TIME OF MASTER MODE 

The Interrupt Control Unit adds five clocks to the interrupt latency of the CPU. The Interrupt 
Control Unit also adds an extra 13 clocks to the interrupt response time when the Cascade 
Mode is used because the interrupt acknowledge bus cycles must be run. (See Figure 8.3). 

Section 2.3.3 defines the interrupt latency and interrupt response time of the 80C 186 Modular 
CPU. 

INTERRUPT PRESENTED TO 
Clocks 

INTERRUPT CONTROL UNIT 
.. ~ 

5 
INTERRUPT PRESENTED TO ... ~ 

CPU INTA 4 

IDLE 2 CASCADE 

INTA 4 MODE ONLY 

IDLE 5 

READIP 4 

IDLE 3 (5 IF NOt CASCADE MODE) 

READCS 4 

IDLE 4 

PUSH FL.AGS 4 

IDLE 3 

PUSH CS 4 

PUSHIP 4 

IDLE 5 
FIRST INSTRUCTION FETCH 
FROM INTERRUPT ROUTINE .~ 

Total 55 

Figure 8.3. Interrupt Control Unit Latency and Response Time 

a-to 



int:et INTERRUPT CONTROL UNIT 

8.4. MASTER MODE INTERRUPT UNIT PROGRAMMING 

The Peripheral Control Block map of the Interrupt Control Unit registers in Master Mode is 
shown in Table 8.3. 

Table 8.3. Interrupt Control Unit Registers in Master Mode 

Register Name Offset Address 

INT3 Control Register 3EH 

INT2 Control Register 3CH 

INT1 Control Register 3AH 

INTO Control Register 38H 

DMA 1 Control Register 36H 

DMAO Control Register 34H 

Timer Control Register 32H 

Interrupt Status Register 30H 

Interrupt Request Register 2EH 

In-Service Register 2CH 

Priority Mask Register 2AH 

Interrupt Mask Register 28H 

Poll Status Register 26H 

Poll Register 24H 

EOI Register 22H 

8.4.1. INTERRUPT CONTROL UNIT REGISTER DEFINITIONS 

The following sections define the bit-level functionality of the individual Interrupt Control 
Unit Registers. 

8-11 



intel.. INTERRUPT CONTROL UNIT 

8.4.1.1. INTERRUPT CONTROL REGISTERS 

Each interrupt source has its own Interrupt Control Register (See Figures 8.4-8.6). Each 
Interrupt Control Register has three bits which can be programmed with the priority level for 
the interrupt source (see Figure 8.4). Also, each register has a mask bit which enables the 
interrupt source. The mask bit is the.same bit in the Inteirupt Mask Register. Modifying one 
bit in either register also modifies the other bit. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

MSK Interrupt 
Mask 

Interrupt Control Register (Internal Sources) 
TCUCON, DMAOCON, DMA1CON 
Control Register for the internal interrupt sources. 

o 
M P P P 
S M M M 
K 2 1 0 

RESET 
STATE FUNCTION 

1 Cleared to enable interrupts from this source. 

PM2:0 Priority Level 111 Sets the priority level for this source. 
Field 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.4. Interrupt Control Register Template for Internal Sources 

Each Interrupt Control Register for the external interrupt pins also has a LVL bit (see Figure 
8.5). The LVL bit selects· between Level-triggered and Edge-triggered mode· for the 
corresponding external interrupt pin. In Edge-triggered Mode, a low to high transition causes 
the interrupt. The pin must remain low at least one clock before the low to high transition. The 
interrupt pin must still must remain asserted until the CPU acknowledges the interrupt. 
Otherwise, the interrupt is lost. 

In Level-triggered Mode, an interrupt pin left asserted after the EOI causes another interrupt. 
Level-triggered Mode is useful when interrupt requests are wire-ORedto a single interrupt 
pin. 



INTERRUPT CONTROL UNIT 

Register Name: 

Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

LVL Level-trigger 

MSK Interrupt 
Mask 

Interrupt Control Register (Non-cascadable 
external pins) 
12CON, 13CON 
Control Register for non-cascadable 
external interrupt pins. 

RESET 
STATE FUNCTION 

0 o = Edge-triggered mode 
1 = Level-triggered mode 

1 Cleared to enable interrupts from this source. 

PM2:0 Priority Level 111 Sets the priority level for this source. 
Field 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.5. Interrupt Control Register Template for 
Non-Cascadeable Interrupt Pins 

Level-triggered mode must be used when external 8259As are cascaded into the Interrupt 
Control Unit. 

To support external 8259As, the INTO and INTI Interrupt Control Registers have the CAS and 
SFNM bits (see Figure 8.6). The CAS bit enables Cascade Mode operation and the SFNM bit 
enables the Special Fully Nested Mode. 

8-13 



INTERRUPT CONTROL UNIT 

Register Name: 

Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

Interrupt Control Register (Cascadable 
external pins) 
IOCON, 11 CON 
Control register for the cascadable external 
interrupt pins. 

RESET 
STATE 

S C L 
F A V 
N S L 
M I~ 

FUNCTION 

P P 
M M 
2 1 

SFNM Special Fully 0 Set to enable Special Fully Nested Mode. 
Nested Mode 

CAS Cascade 0 Set to enable Cascade Mode. 
Mode 

LVL Level-trigger 0 '0 = Edge-trigger mode 
1 = Level-trigger mode 

o 
P 
M 
0 

MSK Interrupt 1 ClearEld to enable interrupts from this source. 
Mask 

PM2:0 Priority Level 111 Sets the priority level for this interrupt source. 
Field 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8~6. Interrupt Control Register Template for Cascadeable Interrupt Pins 

8.4.1.2. THE INTERRUPT REQUEST REGISTER 

The Interrupt Request Register has seven bits, one for each interrupt source (see Figure S.7). 
When an interrupt occurs, the corresponding bit is set in the Interrupt Request Register. The 
bit is set whether the interrupt is masked or unmasked. The bit is cleared when the interrupt is 
acknowledged. 

8-14 



intet INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

INT3:0 External 
Interrupts 

DMA1:0 DMA 
Interrupts 

TMR Timer 
Interrupt 

Interrupt Request Register 
REQST 
Stores pending interrupt requests. 

RESET 
STATE 

0 

0 

0 

I I I I 
N N N N 
T T T T 
3 2 0 

D D 
M M 
A A 
1 0 

FUNCTION 

When set, the corresponding INT pin has an 
interrupt pending. 

DMA channel interrupt requests. When set, the ' 
corresponding DMA channel has an interrupt 
pending. 

Timer/Counter Unit interrupt request. When set, 
the TCU has an interrupt pending. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.7. Interrupt Request Register 

For the external interrupt pins, the request must remain asserted until the interrupt is 
acknowledged. Otherwise, that bit in the Interrupt Request Register will be cleared and the 
interrupt will not be serviced. 

8.4.1.3. INTERRUPT MASK REGISTER 

The Interrupt Mask Register contains a mask bit for each interrupt source (see Figure 8.8). The 
bit for an interrupt source is the same as the mask bit in the Interrupt Control Register. The 
Interrupt Mask Register may be read or written. 

8-15 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

INT3:0 External 
ilterrupts 

DMA1:0 DMA 
Interrupts 

TMR Timer, 
Interrupt 

Interrupt Mask Register 
IM~SK 
Masks individual interrupt sources. 

RESET 
STATE 

1111 

11 

1 

I I I I 
N N N N 
T T T T 
3 2 1 0 

o 0 
M M 
A A 
1 0 

FUNCTION 

Set to mask interrupt requests from the 
corresponding INT pin. 

Set to m~sk interrupt requests from the 
corresponding DMA channel. 

Set to mask interrupt requests from the 
Timer/Counter Unit. 

NOTE: Reserv.edregister bits are shown With gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.8. Interrullt Mask Register 

8.4.1.4.· PRIORITY MASK REGISTER 

The Priority Mask Register (see Figure 8.9) indicates the lowest interrupt priority that will be 
serviced. Any interrupts with a lower priority will be masked. After reset, the Priority Mask 
Register is set to the lowest priority (seven) to enable interrupts of any priority. 

8·16 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

Priority Mask Register 
PRIMSK 
Masks all interrupts with a lower priority. 

RESET 
STATE FUNCTION 

PM2:0 Priority Mask 111 Interrupts with a lower priority than PM2:0 will 
Field not be serviced. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.9. Priority Mask Register 

8.4.1.5. IN-SERVICE REGISTER 

The In-Service Register (see Figure 8.10) has a bit for each interrupt source. The bits indicate 
which source's interrupt handlers are executing. The bit in the In-Service Register is set when 
the interrupt is acknowledged. The bit is then cleared at the end of the interrupt handler by the 
End-Of-Interrupt (EDI) command. 

The Interrupt Control Unit uses the In-Service Register to support interrupt nesting. 

8-17 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

INT3:0 External 
Interrupts 

DMA1:0 DMA 
Interrupts 

TMR Timer 
Interrupt 

In-Service Register 
INSERV 
Indicates which interrupt handlers are 
currently in process. 

RESET 
STATE FUNCTION 

0 When set, the corresponding INT pin's interrupt 
request is in-service. 

0 When set, the corresponding DMA interrupt 
request is in-service. 

0 When set, the corresponding Timer interrupt 
request is in-service. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.10. In-Service Register 

8.4.1.6. POLL AND POLL STATUS REGISTERS 

The Poll and Poll Status Registers (see Figures 8.11 and 8.12) support polling the Interrupt 
Control Unit. They indicate an interrupt is pending and also the type of the highest priority 
pending interrupt. The programmer reads these registers to service interrupts through software. 

The Poll Register and Poll Status Register both contain the same information. If an interrupt of 
sufficient priority is pending, the IREQ bit is set and the highest priority vector type is 
contained in bits VT4:0. 

8-18 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

IREO Interrupt 
Request 

VT4:0 Poll Status 

Poll Register 
POLL 
Read to check for pending interrupts when 
polling. 

RESET 
STATE FUNCTION 

0 Set if an interrupt is pending. 

0 Indicate the type of the highest pending 
interrupt. Reading the Poll Register 
acknowledges highest pending interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.11. Poll Register 

Reading the Poll Register acknowledges the pending interrupt the same as if the CPU had 
started the interrupt vectoring sequence. The processor will not actually run any interrupt 
acknowledge sequence or fetch the vector from the vector table. The user has the 
responsibility to use this information and execute the proper routine to service the interrupt. 
The Interrupt Control Unit updates the Interrupt Request, In-Service, Poll and Poll Status 
Registers the same as in the normal interrupt acknowledge sequence. 

The Poll Status Register may be read to get the same information as the Poll Register. 
However, the interrupt is not actually acknowledged and none of the other registers in the 
Interrupt Control Unit will be modified. 

8-19 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 
MNEMONIC BIT NAME 

IREO lriterrupt 
Request 

VT4:0 Poll Status 

Poll Status Register 
POLLSTS 
Read to check for pending interrupts when p~lIing. 

o 
v v VV 
T T T T 
320 

RESET 
STATE FUNCTION 

0 SeUf an interrupt is pending. 

0 Indicate the type of the highest pending , 
interrupt. Reading the poll status register will 
NOT acknowledge the interrupt. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.12. Poll Status Register 

8.4.1.7. END-OF-INTERRUPT REGISTER 

The End-Of-Interrupt Register (see Figure 8.13) is used to issue the EOI (End-Of-Interrupt) 
command to the Interrupt Control Unit. The EOI command is usually issued at the end of an 
interrupt handler and clears the bit in the In-Service Register. 

There are two types of EOIs, specific and non-specific. A non-specific EOI simply clears the 
In-Service bit of the highest priority interrupt. A non-specific EOI is performed by writing a 
word to the End-Of-Interrupt Register with the NSPEC bit set (8000H). 

8·20 



int'et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

NSPEC Non-specific 
EOI 

End of Interrupt Register 
EOI 
Used to issue the EOI command. 

RESET 
STATE FUNCTION 

0 Set to issue a non-specific EOI. 

V VI 
T T 

2 0 

VT4:0 Interrupt Type 0 Specifies the interrupt type when issuing a 
Number specific EOI. 

NOTE: Reserved register bits are shown with gray shading .. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.13. End-Of-Interrupt Register 

A specific EO! clears a particular bit in the In-Service Register. To perform a specific EOI, 
write a word to the End-Of-Interrupt Register with the interrupt type in bits VT4:0 of the In
Service bit to be cleared .. The NSPEC bit must be cleared when issuing specific EO! 
command. 

The timer interrupts share a bit in the In-Service Register. Write the interrupt type 8 to the 
End-Of-Interrupt Register to clear any timer interrupt with a specific EOI. 

8.4.1.8. INTERRUPT STATUS REGISTER 

All three timer interrupts share a single interrupt source. The Interrupt Status Register 
distinguishes between the interrupts which share an interrupt source (see Figure 8.14). The bits 
in the Interrupt Status Register are cleared when the interrupt request is acknowledged. More 
than one of these bits may be set at a time. 

8-21 



int:et INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

DHLT DMA Halt 

TMR2:0 Timer 
Interrupts 

Interrupt Status Register 
INTSTS 
Indicates which interrupt(s) is(are) pending for 
those interrupts which share a source. 

RESET 
STATE FUNCTION 

0 Set to prevent any DMA activity. 

0 Set when a timer has an interrupt request 
pending. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.14. Interrupt Status Register 

8.4.2. INTERRUPT CONTROL UNIT INITIALIZATION SEQUENCE 

To initialize the Interrupt Control Unit, follow these steps: 

1. Determine which interrupt sources will be utilized. 

2. Determine if the default priority scheme will be used or figure out your own priority. 

3. Initialize the Interrupt Control Registers for all used interrupt sources. 

A. For the external interrupt pins, determine whether edge or level triggered will be 
used. 

B. For either INTO or INTi determine whether The Cascade Mode and/or the Special 
Fully Nested Mode will be used. 

C. If using your own priority scheme, program the priority levels. 

4. Initialize the Priority Mask Register if seven is too Iowa priority for your application. 

5. Unmask all desired interrupt sources with the Interrupt Mask Register. 

6. Set the Interrupt Enable bit by executing the STI instruction. 

8-22 



intel.. INTERRUPT CONTROL UNIT 

8.4.3. MASTER MODE INITIALIZATION EXAMPLE 

The following example shows how to initialize the Interrupt Control Unit. 

$mod186 
name 

; This routine configures the interrupt controller to provide 
;two cascaded interrupt inputs (through an external 8259A 
;connected to INTO and INTAO#) and two direct interrupt inputs 
;connected to INTl and INT3. The default priorities are used. 

; The example assumes that the register addresses have been 
;properly defined. 

code 

set int 

segment 
assume 
proc 
push 
push 
mov 
mov 
out 
mov 
mov 
out 
pop 
pop 
ret 
endp 
end,s 
end 

cs:code 
near 
dx 
ax 
aX,OlOOlllB 
dX,IOCON 
dx,ax 
aX,OlOOllOlB 
dX,IMASK 
dx,ax 
ax 
dx 

:Cascade Mode 
;INTO Control Register 

;Unmask INTl and INT3 

Example 8.1. Initializing The Interrupt Control Unit 

8.5. SLAVE MODE 

Although Master Mode is the most common mode used in the Interrupt Control Unit, Slave 
Mode has some unique features that make it useful in larger system designs. In Slave Mode, 
an external 8259A acts as the master intemipt controller. The 8259A now controls the 
maskable interrupt input tothe CPU. The Interrupt Control Unit acts as an interrupt input to 
the 8259A. In simplest terms, the Interrupt Control Unit behaves like a cascaded 8259A to the 
master 8259A (See Figure 8.15). 

8-23 



int:eL INTERRUPT CONTROL UNIT 

INTO ./ I NT 
~ 

VI' 8259AI 
I NTA# 82C59A 

'" I NTA# 
80186 

, 

H MO DULAR 
CORE 

CASCADE 
SELECH ./ ADDRESS 

'" DECODE 

IRQ 

Figure 8.15. Interrupt Control Unit In Slave Mode 

TIMER TIMER TIMER 
o 

TO EXTERNAL 8259A 
INTERRUPT REQUEST 

2 

INTERRUPT 
PRIORITY 

RESOLVER 

DMA DMA 
o 1 

VECTOR 
GENERATION 

LOGIC 

Figure 8.16. Interrupt Sources In Slave Mode 

8-24 



int:et INTERRUPT CONTROL UNIT 

8.5.2. SLAVE MODE PROGRAMMING 

Slave Mode adds one new register. Most of the registers retain the same functionality as in 
Master Mode. Many of the bit positions have changed, to account for each timer interrupt now 
being its own source to the Interrupt Control Unit. The register positions in the Peripheral 
Control Block have also changed (See Table 8.4). 

8.5.2.1. INTERRUPT VECTOR REGISTER 

The Interrupt Vector Register (see Figure 8.17) is the additional register in Slave Mode. In 
Slave Mode, the interrupt vector types are programmable. While in Master Mode, the interrupt 
vector types are fixed and unalterable. The Interrupt Vector Register specifies the five most 
significant bits of the interrupt vector type. The three least significant bits are fixed according 
to Table 8.5. 

Table 8.4. Interrupt Control Unit Registers In Slave Mode 

Register Name Offset Address 

Timer 2 Control Register 3AH 

Timer 1 Control Register 38H 

DMA 1 Control Register 36H 
DMAO Control Register 34H 

Timer 0 Control Register 32H 

Interrupt Status Register 30H 

Interrupt Request Register 2EH 

In-Service Register 2CH 

Priority Mask Register 2AH 

Interrupt Mask Register 28H 

EOI Register 22H 

Interrupt Vector Register 20H 

Table 8.5. Slave Mode Interrupt Type Bits 

Interrupt Source Type bits 2-0 
Timer 0 000 

(reserved) 001 
DMAO 010 
DMA1 011 

Timer 1 100 
Timer 2 101 

8-25 



INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

Interrupt Vector Register (Slave Mode) 
INTVEC 
Sets the five most significant bits of the 
interrupt types for the interrupt sources in 
Slave Mode. 

RESET 
STATE 

o 
T T T T 
320 

FUNCTION 

T4:0 Interrupt Type 0 Sets the five most significant bits of the interrupt 
Field types for the internal sources. 

NOTE: ReseNed register bits are shown with gray shading. ReseNed bits must be written to 
a logic zero to insure compatibility with fI,.Iture Intel products. . 

figure 8.17. Interrupt Vector Register. 

8.5.2.2. END-Of-INTERRUPT REGISTER 

The End-Of-Interrupt Register (see FigUre 8.18) retains the same function in Slave Mode. 
However, only specific EOIs can be issued to the Interrupt Control Register in Slave Mode. 
Non-specific EOIs are not supported. To clear an In-Service Bit in Slave Mode, write the three 
least significant bits of the interrupt type to VT2:0 in the End-Of-Interrupt Register . 

. 8.5.2.3. . OTHER REGISTERS IN SLAVE MODE 

The Interrupt Control, Interrupt Request, Interrupt Mask, . In-Service and Interrupt Status 
Registers all retain the same functionality in Slave Mode as in Master Mode. The individual 
bits are different to account for the addition of the separate timer sources and the deletion of 
the external interrupt pins (see Figure 8.19). 

The Priority Mask Register maintains the eX'a~t function and bit definitions in Slave Mode as 
in Master Mode. 

The Poll and Poll Status Registers are' not supported in Slave Mode. 

8-26 



intet INTERRUPT CONTROL UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

End of Interrupt Register (Slave Mode) 
EOI 
Used to issue the EOI command in Slave 
Mode. 

RESET 
STATE FUNCTION 

o 
v v V 
T T T! 
2 1 0 

VT2:0 Interrupt Type 0 Write three LSBs of the interrupt type to VT2:0 to 
Number issue an EOI in Slave Mode. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 8.18. End-Of-Interrupt Register In Slave Mode 

15 
i -----: 

T D D 
M M M 
R " A A 

I 
0 

-,I 

Figure 8.19. Other Registers In Slave Mode 

8.5.2.4. INTERRUPT VECTORING IN SLAVE MODE 

The external 8259A acts as the master interrupt controller in Slave Mode. Therefore, interrupt 
acknowledge cycles must be run for every interrupt. This includes any interrupts from the 
integrated peripherals. During the first interrupt acknowledge cycle, the external 8259A 
determines which slave interrupt controller has the highest priority interrupt request. The 
external 8259A then drives the address of that interrupt controller onto its CAS2:0 pins (see 
Figure 8.20). External logic must decode the correct slave address of the Interrupt Control 
Unit from the CAS2:0 signals to drive the SELECT pin. 

8-27 



int:et INTERRUPT CONTROL UNIT 

T2 T3 T4 Ti Ti T1 T2 T3: T4 

INTAO 

SELECT 

LOCK 

, 

CAS2:0 _+-_--+-_-+_-1~: SLAVe CASC~DE A~DRES$ FRO~ 8259~ c= 
NOTES: 

1. INT1/SELECT HAS THE SELECT FUNCTION IN SLAVE MODE 

2. INT2/INTAO HAS THE INTAO FUNCTION IN SLAVE MODE 

3. CASCADE ADDRESS IS DRIVEN BY THE EXTERNAL 8259A 

4. SELECT MUST BE DRIVEN BEFORE PHASE 2 OF T2 OF THESECOND INTA 

5. SELECT READ BY PROCESSOR 

6. ALE IS GENERATED FOR EACH INTA 

7. RD IS INACTIVE 

Figure 8.20. Interrupt Vectoring In Slave Mode 

The SELECT pin is used as the slave-select input to the Interrupt Control Unit. During the 
second interrupt acknowledge cycle, the slave interrupt controller with the highest priority 
transfers the interrupt type to the CPU of its highest priority interrupt. If the Interrupt Control 
Unit is selected, it passes the interrupt type internally to the CPU. However, the interrupt 
acknowledge cycle still must be run for the benefit of the external 8259A. 

External interrupt acknowledge cycles must be run for every maskable interrupt. Therefore, 
the interrupt response time for every interrupt will be 55 clocks. This is shown in Figure 8.21. 

8-28 



intel .. INTERRUPT CONTROL UNIT 

INTERRUPT PRESENTED TO 
INTERRUPT CONTROL UNIT 

INTERRUPT PRESENTED TO 
EXTERNAL 82C59A 

FIRST INSTRUCTION FETCH 
FROM INTERRUPT ROUTINE 

Clocks 
----------------------------------~ 

5 
-----------------------------------~ 

INTA 4 

IDLE 2 

INTA 4 

IDLE 5 

READIP 4 

IDLE 3 

READCS 4 

IDLE 4 

PUSH FLAGS 4 

IDLE 3 

PUSH CS 4 

PUSHIP 4 

IDLE 5 

-----------------------------------~ 

Toial55 

Figure 8.21. Slave Mode Interrupt Response Time 

8-29 



" 
I 



Timer/Counter Unit 9 





CHAPTER 9 
TIMER I COUNTER UNIT 

The Timer/Counter Unit can be used in many applications. Some of these applications include: 
a real-time clock, a square-wave generator and a digital one-shot. All of these can be 
implemented in a system design. A real-time clock can be used to update time-dependent 
memory variables. A square-wave generator can be used to provide a system clock tick for 
peripheral devices. Code examples configuring the Timer/Counter Unit to function as a real
time clock, a square-wave generator, and a digital one-shot are provided in Section 9.4. 

CPU 

,"-"". 

TO IN 

TRANSITION 
LATCH/ 

SYNCHRONIZER 

CPU 
CLOCK::------' 

T11N 

TRANSITION 
LATCH/ 

SYNCHRONIZER 

IOUTPUT LATCH ~ TO OUT 

IOUTPUT LATCH ~ T1 OUT 

Figure 9.1. Timer/Counter Unit Block Diagram 

9.1. FUNCTIONAL OVERVIEW 

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9.1). 
These timers operate independently of the CPU. The internal Timer/Counter Unit can be 
modeled as a single counter element, time multiplexed to three register banks. The unit is 
serviced over 4 clock periods, one timer during each clock with an idle clock at the end (see 
Figure 9.2)'. No connection exists between the counter element's sequencing through timer 
register banks and the Bus Interface Unit's sequencing through T-states. Timer operation and 

. 9-1 



TIMER/COUNTER UNIT 

bus interface operation are asynchronous. This time multiplexed scheme results in a 2 112 to 6 
112 CLKOUT period delay from timer input to timer output. 

The register banks are dual-ported between the counter element and the CPU. During a given 
bus cycle, the counter element and CPU may both access the register banks. Counter element 
and CPU accesses to the register banks are synchronized. 

TIMER 0 TIMER 1 TIMER 2 TIMER 0 TIMER 1 TIMER 2 TIMER 0 
SERVICED SERVICED SERVICED DEAD SERVICED SERVICED SERVICED DEAD SERVICED 

--------------------------------------------@ 

TOIN 

T11N 

TOOUT 

T10UT 

NOTES: 1. TOIN resolution time (setup time met). 
2. T11N resolution time (setup time not met). 
3. Modified count value written into Timer 0 count register. 
4. T11N resolution time, count valuewrilten into Timer 1 count register. 
5. T11N resolution time. 

Figure 9.2. Counter Element Multiplexing and Timer Input Synchronization 

Each timer keeps its own running count and has a user-defined maximum count value. Timers 
o and 1 can use one maximum count value (single maximum count mode) or two alternating 
maximum count values (dual maximum count mode). Timer 2 can only use one maximum 
count value. The control register for each timer determines the counting mode to be used. 
When a timer is serviced, its present count value is incremented and compared to the 
maximum count for that timer. If these two values match, the count value resets to zero. The 
timers can be configured to either stop after a single cycle or run continuously. 

9-2 



NO 

TIMER/COUNTER UNIT 

NO 

NO RETRIGGER YES 

TIMER INPUT 
AT HIGH LEVEL 

LOTOHI 
TRANSITION 

ON INPUT PIN SINCE 
LAST SERVICE 

YES 

IS 

L-----o~E____--Y-E-S-< . TIMER RUNNING 
FLAG SET 

PRESCALER ON 
(PRE=l) 

YES 

NO 

DID TIMER 2 
REACH MAXCOUNT >-Y_E_S __ ~ 

LAST SERVICE 
STATE 

NO 

DONE 

START 

YES 

EXTERNAL 
CLOCKING 

(EXT=l) 

YES 

DONE 

CONTINUED 
"A" 

NO 

Figure 9.3(a). Timers 0 and 1 Flow Chart 

9·3 

DONE 

LOTOHI 
TRANSITION 

ON INPUT .PIN SINC 
ASTSERVIC 

YES 



COUNTER = 
COMPARE "A" 

YES CONTINUOUS 
MODE? 

(CONT=1) 

NO 

TIMER/COUNTER UNIT 

CONTINUED FROM 
"A" 

NO ALTERNATIN 
MAXCOUNT REGS 

YES 

(ALT=1) 

YES USING 
(USE "A") MAXCOUNT A 

(RIU:O) 

COUNTER = 
COMPARE "A" 

YES 

NO 
INT BIT SET 

NO 
(USE "B") 

COUNTER = 
COMPARE"B" 

CONTINUOUS 
MODE? 

(CONT+1) 

NO 

Figure 9.3(b). Timers 0 and 1 Flow Chart (Continued) 

9-4 

DONE 



TIMER/COUNTER UNIT 

Timers 0 and 1 are functionally identical. Each has a latched, synchronized input pin and a 
single output pin. Each timer may be clocked internally or externally. Internally, the timer may 
increment at either 114 CLKOUT frequency or be prescaled by Timer 2. If a timer is prescaled 
by Timer 2, when Timer 2 reaches its maximum count value, the timer increments. When 
configured for internal clocking, the Timer/Counter Unit uses the input pins to either enable 
timer counting or retrigger the associated timer. Externally, a timer will increment on LOW
TO-HIGH transitions on its input pin (up to 114 CLKOUT frequency). A flow chart for Timer 
o and 1 operation is given in Figures 9.3(a) and 9.3(b). 

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, 
indicating the end of a timing cycle, or a variable duty cycle wave. These two output options 
correspond to single maximum count mode and dual maximum count mode, respectively (see 
Figure 9.4). Interrupts can be generated at the end of every timing cycle. 

Timer 2 has no inputor output pins and may only be operated in single maximum count mode. 
It may be used as a free-running clock and a prescaler to Timers 0 and 1. Timer 2 can only be 
clocked internally, at 114 CLKOUT frequency. Timer 2 can also generate interrupts at the end 
of every timing cycle. 

DUAL MAXIMUM 
COUNT MODE 

SINGLE MAXIMUM 
COUNT MODE 

MAXCOUNT A MAXCOUNTB 
+- + 

ONE CPU 
MAX COUNT A CLOCK 
------.~--__ 'r __ ~·~~ 

Figure 9.4. Timer/Counter Unit Output Modes 

9.2. PROGRAMMING THE TIMER/COUNTER UNIT 

Each timer has three registers: a Timer Control· register (see Figures 9.5 and 9.6), a Timer 
Count register (see Figure 9.7) and a Timer Maxcount Compare register (see Figure 9.8). 
Timers 0 and 1· also have access to an additional MaXcount Compare register. The Timer 
Control register controls timer operation. The Timer Count register holds the current timer 
count value. The Maxcount Compare register holds the maximum timer count value. 

9-5 



int:et 

Register Name: 
Register Mnemonic: 
Register Function: 

m-15 
I -1-1----1 E I I 1.1. R j 

N I N I N I I 

I I H T U j 

. I 1 1_I_J~__ __ 
BIT 

MNEMONIC BIT NAME 

EN Enable 

INH Inhibit 

INT Interrupt 

RIU Register In 
Use 

MC Maximum 
Count 

RTG Retrigger 

P Prescaler 

EXT External 
Clock 

ALT Alternate 
Compare 
Register 

CONT Continuous 
Mode 

TIMER/COUNTER UNIT 

Timer 0 and 1 Control Registers 
TOCON, T1 CON 
Defines Timer 0 and 1 operation. 

RESET 
STATE 

0 

X 

X 

X 

X 

X 

X 

X 

X 

X 

o 
R 
T 
G 

II ;-1 ~ I ~fg-i 
I TIT I N I 

I j i IT! 
~_--"-~-' C_~_~_" 

FUNCTION 

If set, the timer is enabled. This bit cannot be written to 
unless the INH bit is set. 

If set, writes to the Enable bit are allowed. If clear. 
writes to the Enable bit are ignored. This bit is not 
stored and is always read as zero. 

If set, an interrupt request is generated when the 
Count register equals a maximum count. If clear, the 
timer will not issue interrupt requests. 

If set, Maxcount Compare register S is being used. If 
clear, Maxcount Compare register A is being used. 

If set, counter has reached a maximum count. If clear, 
counter has not reached a maximum count. 

If set, 0 to 1 edge on TxlN resets count. If clear, high 
input enables counting. This bit is ignored with external 
clocking (EXT=1). 

If set, timer is prescaled by Timer 2. If clear, timer 
counts 1/4 CLKOUT. This bit is ignored with external 
clocking (EXT =1). 

If set, use external clock. If clear, use internal clock. 

If set, count to Maxcount Compare A, reset Count 
register to zero, count to Maxcount Compare S, reset 
Count register to zero again. If clear, count to 
Maxcount Compare A and reset Count register to zero. 

If set, timer runs continuously. If clear, EN is cleared 
after each timer counting sequence. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic 
zero to insure compatibility with future Intel products. 

Figure 9.5. Timer 0 and Timer 1 Control Registers 

9-6 



intel" TIMER/COUNTER UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

E I 
N N 

H 

BIT 
MNEMONIC 

EN 

INH 

INT 

MC 

CONT 

BIT NAME 

Enable 

Inhibit 

Interrupt 

Maximum 
Count 

Continuous 
Mode 

Timer 2 Control Register 
T2CON 
Defines Timer 2 operation. 

RESET 
STATE FUNCTION 

0 If set, the timer is enabled. If clear, the timer is 
disabled. This bit cannot be written to unless the 
INH bit is set. 

X If set, writes to the Enable bit are allowed. If 
clear, writes to the Enable bit are ignored. This 
bit is not stored and is always read as zero. 

X If set, ali interrupt request is generated when the 
Count register equals a maximum count. If clear, 
the timer will not issue interrupt requests. 

X If set, counter has reached a maximum count. If 
clear, counter has not reached a maximum 
count. This bit must be cleared by the user after 
maximum count is reached. 

X If set, timer runs continuously. If clear, EN is 
cleared ·after each timer counting sequence. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.6. Timer 2 Control Register 

9.2.1. INITIALIZATION 

When initializing the Timer/Counter Unit, the following sequence is suggested: 

1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table. 

2. Clear the Timer Count register. 

3. Set Timer Maxcount Compare register to maximum count value. Make sure to program 
Maxcount Compare A and B if dual maximum count mode is used. 

4. Program Timer Control register to enable timer. 

9-7 



Register Name: 
Register Mnemonic: 
Register Function: 

15 

TIMER/COUNTER UNIT 

Timer Count Register 
TOCNT,T1CNT,T2CNT 
Contains the current timer count. 

IT ! T T T 
C I C C C 
1 1 1 1 
5 . 4 3 2 

I 

il~irTI T T-C ... C .C C 
1 i 1 9 8 
1 i 0 I 

_~~I 

,-

TITI T T 
C C ;I~ 7 6 5 i 4 

! 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

TC15:0 Timer Count XXXXH Register contains the current count of the 
Value associated timer. 

o 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.7. Timer Count Registers 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

BIT 
MNEMONIC BIT NAME 

TC15:0 Timer 
Compare 
Value 

Timer Maxcount Compare Register 
TOCMPA, TOCMPB, T1CMPA, T1CMPB, T2CMPA 
Contains timer maximum count value. 

RESET 
STATE FUNCTION 

XXXXH Register contains the maximum value a timer 
will count to before resetting its Count register to 
zero. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to 
a logic zero to insure compatibility with future Intel products. 

Figure 9.8. Timer Maxcount Compare Registers 

The programmer must cle\lf the Timer Count register before enabling the timer because the 
count register is undefined at reset. This ensures counting begins at zero. 

9·8 



int'et TIMER/COUNTER UNIT 

When using Timer 2 to prescale another timer, Timer 2 should be enabled last. If Timer 2 is 
enabled first, it will be at an unknown point in its timing cycle when the timer to be prescaled 
is enabled. This results in an unpredictable duration of the first timing cycle for the prescaled 
timer. 

9.2.2. CLOCK SOURCES 

The 16-bit Timer Count register increments once for each timer event. A timer event can be a 
LOW-to-HIGH transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth 
CPU Clock (all timers) or a time-out of Timer 2 (Timers 0 and 1). Up to 65536 (2 16) events 
may be counted. 

Timers 0 and 1 can be programmed to count LOW-TO-HIGH transitions on their input pins as 
timer events by setting the External (EXT) bit in their control registers. Transitions on the 
external pin are synchronized to the CPU clock before being presented to the timer circuitry. 
The timer counts transitions on this pin. The input signal must go LOW, then HIGH, to cause 
the timer to increment. The maximum count-rate for the timers is 114 the CPU clock rate 
(measured at CLKOUT) because the timers are only serviced once every four clocks. 

All timers can use transitions of the CPU clock as timer events. For internal clocking, the 
timer increments every fourth CPU clock due to the counter element's time-multiplexed 
servicing scheme. Timer 2 may only use the internal clock as a timer event. 

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this 
configuration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. 
See Table 9.1 for a summary of clock sources for Timers 0 and 1. 

Timer 2 must be initialized and running in order to increment values in other 
timer/counters. 

Table 9.1. Timer 0 and 1 Clock Sources 

EXT P CLOCK SOURCE 

0 0 Timer clocked internally at 1/4 CLKOUT 
frequency. 

0 1 Timer clocked internally, prescaled by Timer 2. 

1 X Timer clocked externally at up to 1/4 CLKOUT 
frequency. 

9.2.3. COUNTING SEQUENCE 

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1 
also have access to a second Maxcount Compare B register. Whenever the contents of the 

9-9 



TIMER/COUNTER UNIT 

Timer Count register equal the contents of the Maxcount Compare register, the count register 
resets to zero. The maximum count value will never be stored in the count register. This is 
because the counter element increments, compares and resets a timer in one clock cycle. 
Therefore, the maximum value is never written back to the count register. The Maxcount 
Compare register may be written to any time durihg timer operation. 

The timer counting from its initial count (usually zero) to its maximum count (either 
Maxcount Compare A or B) and resetting to zero defines one timing cycle. A Maxcount 
Compare value of 0 implies a maximum count of 65536, a Maxcount Compare value of 1 
implies a maximum count of 1, etc. 

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The 
count does not reset to zero ifits value is greater than the maximum count. If the count value 
exceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then 
counts to the value in the Maxcount Compare register. Upon reaching a maximum count 
value, the Maximum Count (MC) bit in the Timer Control register sets. The MC bit must be 
cleared by writing to the Timer Control register, this is not done automatically. 

The Timer/Counter Unit may be configured to execute different counting sequences. The 
timers may operate in single maximum count mode (all timers) or dual maximum count mode 
(Timers 0 and 1 only). They may also be programmed to run continuously in either of these 
modes. The Alternate (AL T) bit in the Timer Control register determines the counting modes 
used by Timers 0 and 1. 

All timers may use single maximum count mode, where only Maxcount Compare A is used. 
The timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2 
can only operate in this mode. 

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A 
and Maxcount Compare B are both used. The timer counts to the value contained in Maxcount 
Compare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets 
to zero again. The Register In Use (RIU) bit in the Timer Control register indicates which 
Maxcount Compare register is currently in use. 

The timers can be programmed to run continuously in single maximum count and dual 
maximum count modes. The Continuous (CONT) bit in the Timer Control register determines 
if a timer is disabled after a single counting sequence. 

9.2.3.1. RETRIGGERING 

The timer input pins affect timer counting in three ways (see Table 9.2). The programming of 
the External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the 
input signals are used. When the timers are clocked internally, the RTG bit determines if the 
input pin enables timer counting or retriggers the current timing cycle. 

9-10 



TIMER/COUNTER UNIT 

Table 9.2. Timer Retriggering 

EXT RTG TIMER OPERATION 

0 0 Timer counts internal events, if input pin remains 
high. 

0 1 Timer counts internal events, count will reset to 
zero on every LOW-to-HIGH transition on the 
input pin. 

1 X Timer input acts as clock source. 

When the EXT and RTG bits are LOW, the timer counts internal timer events. In this mode, 
the input is level· sensitive, not edge-sensitive. A LOW-to-HIGH transition on the timer input 
is not required for operation. The input pin acts as an external enable. If the input is HIGH, the 
timer will count through its sequence, provided the timer remains enabled. 

When the EXTbit is LOW and the RTG bit is HIGH, every LOW-to-HIGH transition on the 
timer input pin causes the Count register to reset to zero. After the timer is enabled, counting 
begins only afte~ the first LOW-to-HIGH transition on the input pin. If another LOW-to
HIGH transition occurs before the end of the timer cycle, the timer count resets to zero and 
the timercyc1e begins again. In dual maximum count mode, the Register In Use (RIU) bit does 
not clear when a LOW-to-HIGH transition occurs. For example, if the timer retriggers while 
Maxcount Compare B is in use, the timer resets to zero and counts to maximum count B 
before the RIU bit clears. In dual maximum count mode, the timer retriggering extends 
the use of the current Maxcount Compare register. 

9.2.4. PULSED AND VARIABLE DUTY CYCLE OUTPUT 

Timers 0 and 1 each have an output pin which can perform two functions. First, the output 
may be a single pulse, indicating the end of a timing cycle (single maximum count mode). 
Second, the output may be a level indicating the Maxcount Compare register currently in use 
(dual maximum count mode). The output occurs one clock after the counter element services 
the timer when the maximum count is reached (see Figure 9.9). 

With external clocking, the time between a transition on a timer input and the corresponding 
transition of the timer output varies from 2 112 to 6 112 clocks. This delay occurs due to the 
time multiplexed servicing scheme of the Timer/Counter Unit. The exact timing depends on 
when the input occurs relative to the counter element's servicing of the timer. Figure 9.2 
shows the two extremes in timer output delay. Timer 0 demonstrates the best possible case, 
where the input occurs immediately before the timer is serviced. Timer 1 demonstrates the 
worst possible case, where input is latched, but the setup time is not met and the input is not 
recognized until the counter element services the timer again. 

In single maximum count mode, the timer output pin goes LOW for one CPU clock period 
(see Figure 9.4). This occurs when the count value equals the Maxcount Compare A value. If 
programmed to run continuously, the timer generates periodic pulses. 

9-11 



int:et TIMER/COUNTER UNIT 

INTERNAL COUNT VALUE 

TxQUT PIN 

NOTES: (j) T CLOV1 

TIMER 0 SERVICED 
~ 

MAXCOUNT-1 

Figure 9.9. TxOUT Signal Timing 

In dual maximum count mode, the timer output pin indicates which Maxcount Compare 
register is currently in use. A LOW output indicates Maxcount Compare B, and a HIGH 
output indicates Maxcount Compare A (see Figure 9.4). If programmed to,run continuously, a 
repetitive waveform can be generated. For example, if Maxcount Compare A contains 10, 
Maxcount Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 
percent duty cycle waveform at 104 KHz. The output pin always goes HIGH at the end of the 
counting sequence (even if the timer is not programmed to run continuously). 

9.2.5. ENABLING/DISABLING COUNTERS 

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting. 
The Inhibit (lNH) bit controls write accesses .to the EN bit. Timers 0 and 1 can be 
programmed to use their input pins as enable functions also. If a timer is disabled, the count 
register will not increment when the counter element services the timer. 

The Enable bit can be altered by programming or the timers can be programmed to disable 
themselves at the end of a counting sequence with the Continuous (CaNT) bit. If the timer is 
not programmed for continuous operation, the Enable bit automatically clears at the end of a 
counting sequence. In single maximum count mode, this occurs after Maxcount Compare A is 
reached. In ,dual maximum count mode, this occurs after Maxcount Compare B is reached 
(Timers 0 and 1 only). 

The, input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer 
counting. When using internal clocking, the input pin can be programmed to either enable the 
timer or reset the timer count depending on the state of the Retrigger (RTG) bit in the control 
register. When used as an enable function, the input pin either allows (input HIGH) or 
prevents (input LOW) timer counting. To ensure recognition of an input level, it must be valid 
for four CPU clocks. This is due to the counter element's time-multiplexed servicing scheme 
for the timers. 

9-12 



inlet TIMER/COUNTER UNIT 

9.2.6. TIMER INTERRUPTS 

All timers can generate internal interrupt requests. Although all three timers share a single 
interrupt request to the CPU, each has its own vector location and internal priority. Timer 0 
has the highest interrupt priority and Timer 2 has the lowest interrupt priority. 

Timer Interrupts are enabled or disabled via the Interrupt (INT) bit in the Timer Control 
register. If enabled, an interrupt is generated every time a maximum count value is reached. In 
dual maximum count mode, an interrupt will be generated each time the value in Maxcount 
Compare A or Maxcount Compare B is reached. If the interrupt is disabled after a request has 
been generated, but before a pending interrupt is serviced, the interrupt request will still be 
active (the Interrupt Controller latches the request). If a timer generates a second interrupt 
request before the CPU services the first interrupt request, the first request will be lost. 

9.2.7. PROGRAMMING CONSIDERATIONS 

Timer registers can be read or written whether the timer is operating or not. Since processor 
accesses to timer registers are synchronized with counter element accesses, a half-modified 
count register will never be read. 

When the Timer 0 and Timer 1 use an internal clock source, the input pin must be HIGH to 
enable counting. 

9.3. TIMING 

Certain timing considerations need to be made with the Timer/Counter Unit. These include: 
input setup and hold times, synchronization and operating frequency. 

9.3.1. INPUT SETUP AND HOLD TIMINGS 

To ensure recognition, setup and hold times must be met with respect to CPU clock edges. The 
timer input signal must be valid TCHIS before the rising edge of CLKOUT. The timer input 
signal must remain valid TCHIH after the same rising edge. If these timing requirements are not 
met, the input will not be recognized until the next clock edge. 

9.3.2. SYNCHRONIZATION AND MAXIMUM FREQUENCY 

All timer inputs are latched and synchronized with the CPU clock. Because of the internal 
logic required to synchronize the external signals, and the multiplexing of the counter element, 
the Timer/Counter Unit may only operate up to 114 of the CLKOUT frequency. Clocking at 
greater frequencies will result in missed clocks. 

9-13 



TIMER/COUNTER UNIT 

9.4. TIMER/COUNTER UNIT APPLICATION EXAMPLES 

The following examples are possible applications of the Timer/Counter Unit. They include: a 
real-time clock, a square wave generator and a digital one-shot. 

9.4.1. REAL-TIME CLOCK 

Example 9.1 contains sample code to configure Timer 2 to generate an interrupt request every 
10 milliseconds. The CPU then increments memory-based clock variables. 

$mod186 

name 

;----------------------------------------------------- -~------

; FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

This function sets up the timer and interrupt 

controller to cause the timer to generate an 

interrupt every 10 milliseconds, and to 

service interrupts to implement a realtime clock. 

Timer 2 is used in this example because no input or 

output signals are required. 

extern void far set_time (hour, minute, second, 
T2Compare) ; 

hour ~ hour to set time to. 

minute - minute to set time to. 

second - second to set time to. 

T2Compare - T2CMPA value (see note below) 

None 

Parameters are passed on the stack as required by 
high-level languages 

For a CLKOUT of 16Mhz, 

f(timer2) = 16Mhz/4 

4Mhz 

= 0.25us for T2CMPA 1 

T2CMPA(10ms) = 10ms/0.25us 

10e-3/0.25e-6 

= 40000 

Example 9.1. 

9·14 



intel .. TIMER/COUNTER UNIT 

.------------------------------------~---------------- --------, 

T2CON 

T2CMPA 

T2CNT 

TCUCON 

EOI 

INTSTS 
timer_2_int 

data 

_hour 

_minute 

second 
_msec 

data 

public 
_set_time 

hour 

minute 

second 

T2Compare 

equ xxxxh 
equ xxxxh 

equ xxxxh 

equ xxxxh 

equ xxxxh 

equ xxxxh 

equ 19 

segment public 'data' 

;substitute register offsets 

;Timer 2 Control register 
;Timer 2 Compare register 

;Timer 2 Counter register 

;Int. Control register 

;End Of Interrupt register 

;Interrupt Status register 
;timer 2:vector type 19 

public _hour, _minute, _second, _msec 

db 
db 

db 

db 

ends 

? 

? 

? 

? 

segment public 'code' 

assume cs:lib_80186, ds:data 

_set_time 

proc far 

push bp 

mov bp, sp 

equ word 
equ word 

equ word 

equ word 

push ax 
push DX 

push si 

push ds 

xor ax, ax 
mov ds, ax 

;save caller's bp 

;get current top of stack 

ptr[bp+6] ;get param~ters off stack 

ptr[bp+8] 

ptr[bp+10] 

ptr[bp+12] 

;save registers used 

;set interrupt vector 

mov si, 4*timer_2_int 

mov word ptr ds: lsi], offset 

Example 9.1. (Continued) 

9·15 



in1:et TIMER/COUNTER UNIT 

timer _2_interrupt_ routine 
inc si 
inc si 
mov ds: [si], cs 
pop ds 

mov ax, hour 
mov _hour, al 
mov ax, minute 
mov _minute, al 
mov ax, second 

mov _second, al 
mov _msec, 0 

mov DX, T2CNT 

xor ax, ax 

out DX, ax 

mov DX, T2CMPA 
mov ax, T2Compare 

out DX, ax 

mov DX, T2CON 

mov ax, OEOOlH 

out DX, ax 

mov DX, TCUCON 

xor ax, ax 

out DX, ax 

sti 

pop si 
pop DX 
pop ax 

pop bp 

ret 

set - time endp 

timer _2_interrupt_ routine proc far 
push ax 
push DX 

;set time 

;clear Count register 

;set maximum count value 
;see note in header above 

;set up the control word: 

;enable counting, generate 

;interrupt on MC, 
;continuous counting 

;set up interrupt controller 

;unmask highest 

;priority interrupt 

;enable interrupts 

;restore saved registers 

;restore caller's bp 

;save registers used 

Example 9.1. (CQntinued) 

9·16 



intaL TIMER/COUNTER UNIT 

cmp _msec, 99 ;has 1 sec passed? 

jae bump_second 

inc _msec 
jmp short reset int_ctl 

bump_second:mov _msec, 0 

cmp _minute, 59 

jae bump_minute 

inc second 

jmp short reset int ctl 

bump_minute:mov _second, 0 

cmp _minute, 59 
jae bump_hour 

inc _minute 

jmp short reset 

mov _minute, 0 

cmp _hour, 12 
jae reset_hour 

inc _hour 

int ctl 

jmp reset int ctl 

reset hour: mov _hour, 1 ;reset hour 

mov ax, 8000h 

out DX, ax 
pop DX 
pop ax 

iret 

lib_80186 ends 

end 

;if above or equal ... 

;reset millisecond 

;has 1 minute passed? 

;reset second 

;has 1 hour passed? 

;reset minute 

;have 12 hours passed? 

;non-specific end of interrupt 

Example 9.1. (Continued) 

9.4.2. SQUARE WAVE GENERATOR 

A square-wave generator can be useful to act as a system clock tick. Example 9.2 illustrates 
how to configure the Timer 1 to operate this way. 

9-17 



$mod186 

name 

; FUNCTION: 

SYNTAX: 

INPUTS: 

OUTPUTS: 

NOTE: 

TIMER/COUNTER UNIT 

This function generates a square wave of given 

frequency and duty cycle on Timer 1 output pin. 

extern void far clock(int mark, int space) 

mark - This is the mark (1) time. 

space - This is the space (0) time. 

The register compare value for a given time can be 

easily calculated from the formula below. 

CompareValue (req-pulse_width*f)/4 

None 

Parameters are passed on the stack as required by 

high-level Languages 
i----------------------------------------------------- --------

TICMPA equ 

TICMPB equ 

TICNT equ 

TICON equ 

public 

clock 

_space 

_mark 

xxxxH 

xxxxH 

xxxxH 

xxxxH 

segment public 'code' 

assume cs:lib_80186 

_clock 

proc far 

push bp 

mov bp, sp 

equ word ptr[bp+6] 

equ word ptr[bp+8] 

push ax 

push bx 
push DX 

; substitute register offset,s 

;save caller's bp 

;get current top 

;get parameters off thest"ck 

;save registers that will be 

;modified 

Example 9.2. 

9-18 



TIMER/COUNTER UNIT 

mov DX, TICMPA ;set mark time 

mov ax, _mark 

out DX, ax 

mov DX, TICMPB ;set space time 

mov ax, _space 

out DX, ax 

mov DX, TICNT ;Clear Timer 1 Counter 

xor ax, ax 

out DX, ax 

mov DX, TICON ;start Timer 1 

mov ax, COO3H 

out DX, ax 

pop DX ;restore saved registers 
pop bx 
pop ax 

pop bp ;restore caller's bp 

ret 

- clock endp 

lib_80186 ends 

end 

Example 9.2. (Continued) 

9.4.3. DIGITAL ONE-SHOT 

Example 9.3 configures Timer 1 to act as a digital one-shot. 

$mod186 

name 

; FUNCTION: 

SYNTAX: 

This function generates an active-low one shot 

pulse on Timer 1 output pin. 

extern void far one_shot (int CMPB); 

Example 9.3. 

9-19 



INPUTS: 

OUTPUTS: 

NOTE: 

·TIMERICOUNTER UNIT 

CMPB - This is the T1CMPB value required to 

generate a pulse of given pulse .width. This value 

is calculated from the formula below. 

CMPB (re~ulse_width*f)/4 

None 

Parameters are passed on the stack as required by 

high-level languages 

.~---------------------------------------------------- ---------, 

T1CNT 

T1CMPA 

T1CMPB 

T1CON 

MaxCount 

public 
_one_shot 

equ xxxxH 

equ XXxxH 

equ xxxxH 

equ xxxxH 

equ 0020H 

segment public 'code' 

assume cs:lib_80l86 

one_shot 

proc far 

push bp 

mov bp, sp 

equ word ptr [bp+6] 

push ax 

push DX 

mov DX, T1CNT 

xor ax, ax 

out DX, ax 

mov DX, T1CMPA 

mov ax, 1 

out DX, ax 

; substit.ute register offsets 

;save caller's bp 

;get current top of stack 

;get parameter off the stack 

;save registers that will be 

;modified 

;C~ear Timer 1 Counter 

;set time before t shot to 0 

Example 9.3. (Continued) 

9-20 



CountDown: 

_one shot 

TIMER/COUNTER UNIT 

mov DX, T1CMPB 

mov ax, - CMPB 

out DX, ax 

mov DX, T1CON 

mov ax, COO2H 

out DX, ax 

in ax/ DX 

test ax, MaxCount 

jz CountDown 

and ax, not MaxCount 

out DX, ax 

pop DX 

pop ax 

pop bp 

ret 

endp 

;set pulse time 

;start Timer 1 

;read in T1CON 

;max count occurred? 

;no: then wait 

;clear max count bit 

;updi'lte T1CON 

;restore saved registers 

;restore caller's bp 

"-------------------------------------------------------------, 
lib_80186 ends 

end 

Example 9.3. (Continued) 

9-21 





Direct Memory 
Access Unit 

10 





CHAPTER 10 
DIRECT MEMORY ACCESS UNIT 

In many applications, large blocks of data must be transferred between memory and I/O space. 
A disk drive, for example, usually reads and writes data in blocks that may be thousands of 
bytes long. If the CPU were required to handle each byte of the transfer, the main tasks would 
suffer a severe performance penalty. Even if the data transfers were interrupt driven, the 
overhead for transferring control to the interrupt handler would still have a detrimental effect 
on system throughput. 

Direct Memory Access, or DMA, allows data to be transferred between memory and 
peripherals without the intervention of the CPU. Systems that use DMA have a special 
device, known as the DMA controller, that takes control of the system bus and performs the 
transfer between memory and the peripheral device. When the DMA controller receives a 
request for a transfer from a peripheral, it signals the CPU that it needs control of the system 
bus. The CPU then releases control of the bus and the DMA controller performs the transfer. 
In many cases, the CPU will release the bus and continue to execute instructions from the 
prefetch queue. If the DMA transfers are relatively infrequent there will be no degradation of 
software performance; the DMA transfer is transparent to the CPU. 

The DMA Unit of the 80C186EA/C188EA has two channels. Each channel can accept DMA 
requests from one of 3 sources: an external request pin, the Timer/Counter Unit or by direct 
programming. Data can be transferred between any combination of memory and I/O space. 
The DMA Unit can access the entire memory and I/O space in either byte or word increments. 

10.1. FUNCTIONAL OVERVIEW 

The DMA Unit is comprised of two identical channels. Both channels are functionally 
identical. The following discussion is hierarchical beginning with an overview of a single 
channel and ending with a description of the two channel unit. 

10.1.1. THE DMA TRANSFER 

A DMA transfer begins with a request. The requesting device may either have data to transmit 
(a source request) or it may require data (a destination request). Alternatively, transfers may be 
initiated by the system software without an external request. 

When the DMA request is granted, the Bus Interface Unit provides the bus signals for the 
DMA transfer while the DMA channel provides the address information for the source and 
destination devices. The DMA Unit does not provide a discrete DMA acknowledge signal, 
unlike other DMA controller chips (an acknowledge can be synthesized, however). The DMA 
channel will continue transferring data as long as the request is active and it has not exceeded 
its programmed transfer limit. 

10-1 



intel .. DIRECT MEMORY ACCESS UNIT 

Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure 
10.1). During the fetch cycle, the byte or word is read from the data source and placed in an 
internal temporary·storage register. The data in the temporary storage register is written to the 
destination. during the deposit cycle. The two bus cycles are indivisible; they cannot be 
separated bya bus hold request, a refresh request or another DMA request. 

IfooiI~I-·---,--- FETCH ----l~~I~ ...... -- DEPOSIT ---.. 

CLKOUT 

ALE 
, 
" , , , ' 

~ >-
'---.------,: SOURCE 'SOURCE : DEST -DE-S-TI-NA-T-IO-N-' 

AD15:0 

: ADDRESS DATA : ADDRESS pATA, 

RD 

WR 

-~-~-~:\ :/r-~-~--~-~:--
I ," I , 

i \'--7--_:""'; I 
, , 

Figure 10.1. Typical DMA Transfer 

10.1.1.1. DMA TRANSFER DIRECTIONS 

The source and destination. addresses fot a DMA transfer are programmable and can be in 
either memory or I/O space. DMA transfers can be programmed for any of the following four 
directions: 

• From memory space to I/O space 

• From I/O space to memory space 

• From memory space to memory space 

• From I/O space to I/O space 

DMA transfers can access the Peripheral Control Block. 

10~1.1.2. BYTE AND WORD TRANSFERS 

DMA transfers can be programmed to handle either byte or word sized transfers. The handling 
of byte and word data is the same as that for normal bus cycles and is processor bus width 

10-2 



DIRECT MEMORY ACCESS UNIT 

dependent. For example, odd aligned word DMA transfers on a 16-bit bus processor requires 
two fetches and two deposits (all back-to-back). BID bus cycles are covered in greater detail in 
Chapter 3. Word transfers are illegal on the 8-bit bus device. 

10.1.2. SOURCE AND DESTINATION POINTERS 

Each DMA channel maintains a twenty bit pointer for the source of data and a twenty bit 
pointer for the destination of data. The twenty bit pointers allow access to the full 1 Mbyte of 
memory space. The DMA Unit views memory as a linear (unsegmented) array. 

With a twenty bit pointer it is possible to create an 1/0 address that is above the CPU limit of 
64 Kbytes. The DMA Unit will run 1/0 DMA cycles above 64K even though these addresses 
are not accessible through CPU instructions (e.g., IN and OUT). Some applications may wish 
to make use of this by swapping pages of data from 1/0 space above 64K to standard CPU 
memory. 

The source and destination pointers can be individually programmed to increment, decrement 
or remain constant after each transfer. The amount that a pointer is incremented or 
decremented is dependent on the programmed data width, byte or word, for the channel. Word 
transfers will change the pointer by two, byte transfers change the pointer by one. 

10.1.3. DMA REQUESTS 

There are three distinct sources of DMA requests: the external DRQ pin, the internal DMA 
request line and the system software. In all three cases, the system software must arm a DMA 
channel before it recognizes DMA requests. Arming a DMA channel is discussed in the 
programming section of this chapter. 

10.1.4. EXTERNAL REQUESTS 

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the 
. falling edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated 

by the BIU (see Figure 10.2). The DMA request is cleared four clocks before the end of the 
DMA cycle (effectively re-arming the DRQ input). 

10-3 



int'et DIRECT MEMORY ACCESS UNIT 

ORO 

NOTES: 

T 4 or 

T 3 or 

T 2 or 

T 1 or 
T w or 

Ti 

T 4 or 
T 3 or 

T 2 or 

T w or 

T j 

o TellS : OMA request to clock low. 
eD Synchronizer resolution time. 
G) OMA unit priority arbitration and overhead. 
CD Bus interface Unit latches OMA request and decides to run OMA cycle. 

Figure 10.2. DMA Request Minimum Response Time 

External requests (and the resulting DMA transfer) are classified as either source synchronized 
or destination synchronized. A source synchronized request originates from the peripheral 
from which data is transferred. For example, a disk controller in the process of reading data 
from a disk would use a source synchronized request. A destination synchronized request 
originates from the peripheral to which data is transferred. If the previously mentioned disk 
controller were writing data to the disk, it would use destination synchronization since the data 
would be moving from memory to the disk. The type of synchronization a channel uses is 
programmable. 

10.1.4.1. SOURCE SYNGHRONIZATION 

A typical source synchronized transfer is shown in Figure 10.3. Most DMA driven peripherals 
do not deassert their DRQ line until after the DMA transfer has begun. The DRQ signal must 
be deasserted at least 4 clocks before the end of the DMA transfer (at the Tl state of the 
deposit phase) in order to prevent another DMA cycle from occurring. A source synchronized 
transfer provides the source device at ·least three clock cycles from when it is accessed 
(acknowledged) to deassert its request line if further transfers are not required. 

10-4 



CLKOUT 

DRQ 
(CASE 1) 

DRQ 
(CASE 2) 

NOTES: 

DIRECT MEMORY ACCESS UNIT 

FETCH CYCLE DEPOSIT CYCLE 

r--------'~~-------~r--------'~,--------~ 

CD Current source synchronized transfer will not be immediately 
followed by another DMA transfer. 

® Current source synchronized transfer will be immediately 
followed by another DMA transfer. 

Figure 10.3. Source Synchronized Transfers 

10.1.4.2. DESTINATION SYNCHRONIZATION 

A destination synchronized transfer differs from a source synchronized transfer by the addition 
of two idle states at the end of the deposit cycle (Figure 10.4). The two idle states extend the 
DMA cycle to allow the destination device to deassert its DRQ pin four clocks before the end 
of the cycle. If the two idle states were not inserted, the destination device would not be able 
to deassert its request in time to prevent another DMA cycle from occurring. 

The insertion of two idle states at the end of a destination synchronization transfer has an 
important side effect. A destination synchronized DMA channel gives up the bus during 
the idle states allowing any other bus master to gain ownership. This includes the CPU, 
the Refresh Control Unit, an external bus master or another DMA channel. 

10.1.5. INTERNAL REQUESTS 

Internal DMA requests can come from either Timer 2 or from the system software. 

10-5 



infel .. 

CLKOUT 

DRQ 
(CASE 1) 

ORQ 
(CASE 2) 

NOTES: 

DIRECT MEMORY ACCESS UNIT 

FETCH CYCLE DEPOSIT CYCLE 

r __ ------~A------__ ~~.-----------'~-------------~ 
T4 T1 T2 T3 T4 TIT I 

CD Current destination synchronized transfer will not be immediately 
followed by another DMA transfer. 

® Current destination synchronized transfer will be immediately 
followed by another DMA transfer. 

Figure 10.4. Destination Synchronized Transfers 

10.1.5.1. TIMER 2 INITIATED TRANSFERS 

When programmed for Timer 2 initiated transfers, the DMA channel performs one DMA 
transfer every time that Timer 2 reaches its maximum count. Tinier 2 initiated transfers are 
useful for servicing time based peripherals. For example, an AID converter would require data 
every 22 microseconds in order tP. produce an audio nmge waveform. In this case the DMA 
source would point at the waveform data, the· destination would point to the AID converter and 
Timer 2 would~request a transfer every 22 microseconds. 

10.1.5.2. UNSYNCHRONIZI;D TRANSFERS 

DMA transfers can be initiated directly by .the system software by selecting unsynchronized 
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, until the 
channel's transfer count reaches zero or DMA transfers are suspended by an NMI. 

10.1.6. DMA TRANSFER COUNTS. 

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the total 
number of transfers the channel runs. The transfer count is decremented by one after each 

10-6 



infel .. DIRECT MEMORY ACCESS UNIT 

transfer (regardless of data size). The DMA channel can be programmed to terminate transfers 
when the transfer count reaches zero (also referred to as terminal count). 

10.1.7. TERMINATION AND SUSPENSION OF DMA TRANSFERS 

When DMA transfers for a channel are terminated, no further DMA requests for that channel 
will be granted until the channel is re-started by direct programming. A suspended DMA 
transfer temporarily disables transfers in order to perform a specific task. A suspended DMA 
channel does not need to be re-started by direct programming. 

10.1.7.1. TERMINATION AT TERMINAL COUNT 

When programmed to terminate on terminal count, the DMA channel disarms itself when the 
transfer count value reaches zero. No further DMA transfers take place on the channel until it 
is re-armed by direct programming. 

Unsynchronized transfers always terminate when the transfer count reaches zero 
regardless of programming. 

10.1.7.2. SOFTWARE TERMINATION 

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in 
progress will complete but no further transfers are run until the channel is re-armed. 

10.1.7.3. SUSPENSION OF DMA DURING NMI 

DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA 
activity is halted in order to give the CPU full command of the system bus during the NMI 
service. Exit from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers 
can be enabled during an NMI service routine by the system software. 

10.1.7.4. SOFTWARE SUSPENSION 

DMA transfers can be temporarily suspended by direct programming. In time critical sections 
of code, interrupt handlers for example, it may be necessary to temporarily shut off DMA 
activity in order to give the CPU total control of the bus. 

10.1.8. DMA UNIT INTERRUPTS 

Each DMA channel can be programmed to generate an interrupt request when its transfer 
count reaches zero. . 

10-7 



inlet DIRECT MEMORY ACCESS UNIT 

10.1.9. DMA CYCLES AND THEBIU 

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit has a 
pending request, it signals the BIU. If the BIU has no other higher priority request pending it 
runs the DMA cycle (BIU priority is described in Chapter 3). The BIU signals that it is 
running a bus cycle initiated by a master other than the CPU by driving the S6 status bit high. 

The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to 
activate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a 
DMA channel accesses a region of memory or I/O space within a chip-select's programmed 
range, then that chip-select is asserted during the cycle. The Chip-Select Unit will not 
recognize DMA cycles that access I/O space above 64K. 

TIMER 2 
REQUEST 

10.1.10. 

DESTINATION POINTER 

CHANNEL 0 
CONTROL LOGIC 

DRQ PIN 

MODULE DMA EQUEST 

INTER-MODULE 
ARBITRATION 

LOGIC 

DESTINATION POINTER 

CHANNEL 1 
CONTROL LOGIC 

DRQ PIN 

Figure 10.5. Two Channel DMA Unit 

THE 2 CHANNEL DMA UNIT 

TIMER 2 
REQUEST 

Two DMA channels are combined with arbitration logic to form the two channel DMA Unit 
(see Figure 10.5). 

10-8 



int'et DIRECT MEMORY ACCESS UNIT 

10.1.10.1. DMA CHANNEL ARBITRATION 

Within a two channel DMA module, the arbitration logic decides which channel takes 
precedence when both channels simultaneously request transfers. Each channel can be set to 
either low priority or high priority. If the two channels are set to the same priority (either both 
high or both low) then the channels rotate priority. 

10.1.10.1.1. FIXED PRIORITY 

Fixed priority results when one channel in a module is programmed to high priority and the 
other is set to low priority. If both DMA requests occur simultaneously, the high priority 
channel will perform its transfer (or transfers) first. The high priority channel continues to 
perform transfers as long as the following conditions are met: 

• the channel's DMA request is still active 

• the channel has not terminated or suspended transfers (through programming or 
interrupts) 

• the channel has not released the bus (through the insertion of idle states for destination 
synchronized transfers) 

The last point is extremely important when the two channels use different synchronization. For 
example, consider the case where channel 1 is programmed for high priority and destination 
synchronization and channel 0 is programmed for low priority and source synchronization. If a 
DMA request occurred for both channels simultaneously channel 1 would perform the first 
transfer. At the end of channell' s deposit cycle two idle states are inserted (thus releasing the 
bus). With the bus released, "Channel 0 is free to perform its transfer even though the higher 
priority channel 0 has not completed all of its transfers. Channel 1 would regain the bus at 
the end of channel O's transfer. The transfers would alternate as long as both requests 
remained active. 

A higher priority DMA channel will interrupt the transfers of a lower priority channel. Figure 
10.6 shows several transfers with different combinations of channel priority and 
synchronization. 

10.1.10.1.2. ROTATING PRIORITY 

Channel priority rotates when both channels are programmed as both high or both low 
priority. The highest priority is initially assigned to channell of the module. After a channel 
performs a transfer it is assigned the lower priority. When requests are active for both 
channels, the transfers alternate between the two as long as the bus is not released by the DMA 
Unit. For the 80C186EAlC188EA, channell is reassigned high priority whenever the bus is 
released (i.e., at the end of a destination synchronized transfer, or when DMA requests are no 
longer active). 

10-9 



intet DIRECT MEMORY ACCESS UNIT 

BOTH REQUESTS ASSERTED 

I CHANNEL I 0 11 I 

PRIORITY I LOW ~ 
I SYNCH SRC SRC 

t 
~NEL 1 ) CHANNEL 0 ! CHANNEL 1 I CHANNEL 0 I • E~C .• 

~I C_H_A_NN_E_L_O_I~C_H_A_NN_E_L_0---'71 ::~ ___ -"-___ ~I. E~C. 

I CHANNEL 0 \tANN~HANNEL OJ CHANNELiJ • E~C. 
DESTINATION 
SYNC RELEASES 
BUS 

Figure 10.6. Examples of DMA Priority 

10.2. PROGRAMMING THE DMA UNIT 

A total of six Peripheral Control Block registers configure each DMA channel. 

10.2.1. DMA CHANNEL PARAMETERS 

The first step in programming the DMA Unit is to set up the parameters for each of the 
channels. 

10.2.1.1. PROGRAMMING THE SOURCE AND DESTINATION POINTERS 

The following parameters are programmable for the source and destination pointers: 

• pointer address 

• address space (memory or I/O) 

• automatic pointer indexing (increment/decrement) after transfer 

Two 16-bit Peripheral Control Block registers define each of the 20-bit pointers. Figures 10.7 
through 10.10 show the layout of the DMA Source and DMA Destination pointer address 
registers. The DS19:16 and DD19:16 (high order address bits) are driven on the bus even if 
I/O transfers have been programmed. When performing I/O transfers within the normal 64K 
I/O space only, the high order bits in the pointer registers must be cleared. 

10-10 



int:et DIRECT MEMORY ACCESS UNIT 

Register Name: DMA Source Address Pointer (High) 
DxSRCH Register Mnemonic: 

Register Function: 

BIT 
MNEMONIC BIT NAME 

DSA19:16 DMA Source 
Address 

Contains the upper 4 bits of the DMA Source 
pointer. 

a 

.rDT. 0--· D-~ s:sls s 
A I A I· A A 
1 • 1 1 1 

I 9 I 8 I 7 1_6 

RESET 
STATE FUNCTION 

XXXXH DSA19:16 are driven on A19:16 during the fetch 
phase of a DMA transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.7. DMA Source Pointer (High Order Bits) 

Register Name: 
Register Mnemonic: 

DMA Source Address Pointer (Low) 
DxSRCL 

Register Function: Contains the lower 16 bits of the DMA Source 
pointer. 

15 fOrD --- c---,------,-----,--

·S S ~ ~11:!Dln ~ ~ ~I \ A A A A II A A A A 

1

1 1 1 1 1 1 981 
5432,10 

"--'-----'-----__ ~ I _~J 

D! D 
S 

I 
S 

A A 
7 6 

I 

BIT RESET 
MNEMONIC BIT NAME STATE 

D 
S 
A 
5 

I 

D 
S 
A 
4 

I 

r 

D 
S 
A 
3 

FUNCTION 

D 
S 
A 
2 

D 
S 
A 
1 

a 
D 
S 

~I 

DSA15:0 DMA Source XXXXH DSA 15:0 are driven on the lower 16 bits of the 
Address address bus during the fetch phase of a DMA 

transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.8. DMA Source Pointer (Low Order Bits) 

10·11 



DIRECT MEMORY ACCESS UNIT 

The address space referenced by the source and destination pointers is programmed in the 
DMA Control Register for the channel (see Figure 10.13). The SMEM and DMEM bits 
control the address space (memory or I/O) for source pointer and destination pointer, 
respectively. 

Automatic pointer indexing is also controlled by the DMA Control Register. Each pointer has 
a two bit field, increment and decrement, that controls the indexing. If the increment and 
decrement bits for a pointer are programmed to the same value then the pointer will remain 
constant. The amount that a pointer is incremented or decremented is automatically controlled 
by the programmed data width, byte or word, for the channel. 

Register Name: 
Register Mnemonic: 
Register Function: 

BIT 
MNEMONIC BIT NAME 

DDA19:16 DMA 
Destination 
Address 

DMA Destination Address Pointer (High) 
DxDSTH 
Contains the upper 4 bits of the DMA Source 
pointer. 

RESET 
STATE 

XXXXH 

o 
I· ·DT[)ioro··! 

D D' DI D: 
IA AlA A. 

1 ~!1 .11 
I 

9 8 7 6 
. 1 ! 

~l _ 

FUNCTION 

DDA19:16 am driven on A19:16 during the 
deposit phase of a DMA transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be wntten 
toa logic zero to insure compatibility with future Intel products. 

Figure 10.9. DMA Destination Pointer (High Order Bits) 

10-12 



int:et DIRECT MEMORY ACCESS UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 

DMA Destination Address Pointer (Low) 
DxDSTL 
Contains the lower 16 bits of the DMA Source 
pointer. 

o 

Ii 
I 

D 
D 
A 
1 
4 

D 
D 
A 
1 
3 

D 
D 
A 
1 
2 I-rp 

D 
D 
A 
9 

D D D 
D D D 
A A A 
8 7 6 

D D D D D D 
D D D D D D 
A A A A A A 
5 4 3 2 1 0 

L 

BIT BIT NAME RESET FUNCTION 
MNEMONIC STATE 

DDA15:0 DMA XXXXH DDA 15:0 are driven on the lower 16 bits of the 
Destination address bus during the deposit phase of a DMA 
Address transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.10. DMA Destination Pointer (Low Order Bits) 

Register Name: 
Register Mnemonic: 

DMA Control Register 
DxCON 

Register Function: 

15 

D 
DI D 81 

M D I M. 
E E N ~I M C Ie 

L_~_~ 

Controls DMA channel parameters. 

I ~ I! T I 8 
C N y 

T N 

LJ~ __ 1 

--- -

8 p 
y 
N 

~j-
~I 
Q, 

L-J 

o 
C 8 W 
H T 0 
G R R 

T D 

Figure 10.11 (a).DMA Control Register Bit Positions 

10-13 



DIRECT MEMORY ACCESS UNIT 

BIT RESET 
MNEMONIC BIT NAME STATE FUNCTION 

SMEM/DME Source/ X Selects memory or I/O space for the corresponding 
M Destination pointer. Set SMEM/DMEM to select memory space; Clear 

Address SMEM/DMEM to select I/O space. SMEM corresponds to 
Space Select the source pOinter. DMEM corresponds to the destination 

pointer. 

SINC/DINC Source/ X Set to automatically increment the source/destination 
Destination pointer after each transfer. A pointer will remain constant if 
Increment its increment and decrement bits are equal. 

SDEC/DDEC Source/ X Set to. automatically decremer:lt-tiwsource/destination 
Destination pointer after each transfer. A pointerwillremain constant if 
Decrement its increment and decrement bits are equal. 

TC Terminal X Set to terminate transfers on Terminal Count. 
Count 

INT Interrupt X Set to generate an interrupt request on Terminal Count. 
TherC bit must be set to generate an interrupt. 

SYN1:0 Synchron- XX Selects channel synchronization: 
ization Type 

SYN1 :0 Synchronization Type 
Unsynchronized 
Source Synchronized 
Destination Synchronized 
Reserved (Do Not Use) 

P Relative X Setting P selects high priority for the channel. 
Priority 

IDRO Internal DMA X Setting IDRO selects internal (Timer 2) DMA requests. 
Request When IDRO is set the external DRO pin is ignored. 
Select Clearing IDRO selects the DRO pin as the source of DMA 

requests. 

CHG Change Start X CHG must be set to modify the STRT bit. 
Bit 

STRT StartDMA The DMA channel is armed by setting the STRT bit. The 
Channel STRT bit can only be modified when the CHG bit is set. 

WORD Word X The WORD bit selects between byte and word transfers. 
Transfer Setting WORD selects word transfers; clearing WORD 
Select selects byte transfers. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a logic 
zero to insure compatibility with future Intel products. 

Figure 10.11 (b). DMA Channel Control Register Bit Descriptions 

10-14 



intel® DIRECT MEMORY ACCESS UNIT 

10.2.1.2. SELECTING BYTE OR WORD SIZE TRANSFERS 

The WORD bit in the DMA Control Register is used to control the data size for a channel. 
When WORD is set, the channel transfers data in 16-bit words. Byte transfers are selected by 
clearing the WORD bit. The data size for a channel also affects pointer indexing. Word sized 
transfers modify (increment or decrement) the pointer registers by two for each transfer 
whereas byte transfers modify the pointer registers by one. 

10.2.1.3. SELECTING THE SOURCE OF DMA REQUESTS 

DMA requests can come from either an internal source (Timer 2) or an external source. 

Timer 2 DMA requests are selected by setting the IDRQ bit in the DMA Control Register for 
the channel. The DMA channel ignores its DRQ pin when internal requests are programmed. 
Similarly, the DMA channel only responds to the DRQ pin (and ignores internal requests) 
when external requests are selected. 

10.2.1.4. ARMING THE DMA CHANNEL 

Each DMA channel must be armed before it will recognize DMA requests. A channel is armed 
by setting its STRT (Start) bit in the DMA Control Register. The STRT bit can only be 
modified if the CHG (Change Start) bit is set at the same time. The CHG bit is a safeguard to 
prevent unwanted arming of a DMA channel while modifying other channel parameters. 

A DMA channel is disarmed by clearing its STRT bit. The STRT bit is cleared either directly 
by software or by the channel itself when programmed to terminate on terminal count. 

10.2.1.5. SELECTING CHANNEL SYNCHRONIZATION 

The synchronization method for a channel is controlled by the SYNI:O bits in the DMA 
Control Register. The combination SYNl:O=ll is reserved and will result in unpredictable 
operation, if used. 

When programmed for unsynchronized transfers (SYNl:O=OO) the DMA channel will begin to 
transfer data as soon as the STRT bit is set. 

Transfers requested by Timer 2 must always be programmed for source 
synchronization. 

10.2.1.6. PROGRAMMING THE TRANSFER COUNT OPTIONS 

The Transfer Count Register and the TC bit in the DMA Control Register are used to stop 
DMA transfers for a channel after a specified number of transfers have occurred. 

10-15 



intet . DIRECT MEMORY ACCESS UNIT 

Register Name: 
Register Mnemonic: 
Register Function: 

15 
r I T! T , T I T T 

C C cic C 
I 

1 1 1 i 1 1 i 

DMA Transfer Count 
DxTC 
Contains the DMA channel's transfer count. 

r- - .. ~ ---
T I T T 

C C C I 
T T T T 
C C C C 

1 9 8 7 6 5 4 
5 I 4 3 I 2 

I 1 I 0 I 

I ..J 

I 
I 

BIT BIT NAME RESET FUNCTION 
MNEMONIC STATE 

TC15:0 Transfer XXXXH Contains the transfer count for a DMA channel. 
Count This value is decremented by one after each 

transfer. 

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written 
to a logic zero to insure compatibility with future Intel products. 

Figure 10.12. Transfer Count Register 

The number of transfers desired are written to the DMA Transfer Count Register (see Figure 
10.12) The Transfer Count Register is 16-bits wide limiting the total number of transfers for a 
channel to 65,536 (without reprogramming). The Transfer Count Register is decremented by 
one after each transfer (for both byte and word transfers). 

The TC bit, when set, instructs the DMA channel to disarm itself (by clearing the STRT bit) 
when the transfer count reaches zero. If the TC bit is cleared, the channel continues to perform 
transfers regardless of the state of the Transfer Count Register. Unsynchronized (software 
initiated) transfers always terminate when the transfer count reaches zero; the TC bit is 
ignored. 

10.2.1.7. GENERATING INTERRUPTS ON TERMINAL COUNT 

A channel can be programmed to generate an interrupt request whenever the transfer count 
reaches zero. Both the TC bit and the INT bit (in the DMA Control Register) must be set to 
generate an interrupt request. 

10.2.1.8. SETTING THE RELATIVE PRIORITY OF A CHANNEL 

The priority of a channel within a module is controlled by the Priority bit in the DMA Control 
Register. A channel may be assigned either high or low priority. If the priority for both 

10-16 



DIRECT MEMORY ACCESS UNIT 

channels is programmed to the same priority (i.e., both high or both low) then the channels 
will rotate priority. 

10.2.2. SUSPENSION OF DMA TRANSFERS 

Whenever an NMI is received by the CPU, all DMA activity is suspended at the end of the 
current transfer. The CPU suspends transfers by setting the DHLT (DMA Halt) bit in the 
Interrupt Status Register (see Chapter 8). The DHLT bit is automatically cleared upon 
execution of an IRET instruction. DMA transfers resume when the DHLT bit is cleared. 

The DHL T bit may be read and written by the user. Do not write to the DHLT bit while 
Timer/Counter Unit interrupts are enabled; a conflict with the internal use of the 
register may lead to incorrect timer interrupt processing. 

The DHLT bit does not function when the interrupt controller is in Slave Mode. 

10.2.3. INITIALIZING THE DMA UNIT 

Use the following sequence when programming the DMA Unit: 

1. Program the source and destination pointers for all used channels. 

2. Program the DMA Control Registers in order of highest priority channel to lowest priority 
channel. 

10.3. HARDWARE CONSIDERATIONS AND THE DMA UNIT 

The following sections cover hardware interfacing and performance factors for the DMA Unit. 

10.3.1. DRQ PIN TIMING REQUIREMENTS 

The DRQ pins are sampled on the falling edge of CLKOUT. The DRQ pins must be setup a 
minimum of TCLlS before CLKOUT falling and must be held a minimum of TCLlH after 
CLKOUT falls. Refer to the datasheet for specific values. 

The DRQ pins have an internal synchronizer. Violating the setup and hold times may only 
result in a missed DMA request, not a processor malfunction. 

10.3.2. DMA LATENCY 

DMA Latency is the delay between a DMA request being asserted and the DMA cycle being 
run. The DMA latency for a channel is controlled by many factors, including: 

10-17 



intel® DIRECT MEMORY ACCESS UNIT 

• Bus HOLD: Bus HOLD takes precedence over internal DMA requests. Using bus HOLD 
will degrade DMA latency. 

• LOCKed Instructions: Long LOCKed instructions (e.g., LOCK REP MOVS) will 
monopolize the bus, preventing access by the DMA Unit. 

• Inter-channel Priority Scheme: Setting a channel at low priority will affect its latency. 

The minimum latency in all cases is four CLKOUT cycles. This is the amount of time it takes 
to synchronize and prioritize a request. 

10.3.3. DMA TRANSFER RATES 

The maximum DMA transfer rate is a function of processor operating frequency and 
synchronization mode. For unsynchronized and source synchronized transfers, 2 bytes can be 
transferred every eight CLKOUT cycles for the 80C186EA and one byte can be transferred for 
the 80C188EA. Maximum transfer rate for the 80C186EA is calculated by: 

Maximum DMA Transfer Rate in Mbytes/sec = .25*Fcpu 
(Source and Unsynchronized) 

Where Fcpu is the CPU operating frequency in megahertz. 

For destination synchronized transfers, the addition of two idle T -states reduces the bandwidth 
by two clocks per word: 

Maximum DMA Transfer Rate in Mbytes/sec = .20*Fcpu 
(Source and Unsynchronized) 

Where Fcpu is the CPU operating frequency in megahertz. 

Maximum transfer rates for the 80C188EA are half those calculated by the above equations as 
the 80C188EA can only transfer one byte per cycle. 

10.3.4. GENERATING A DMA ACKNOWLEDGE 

The DMA channels do not provide a distinct DMA acknowledge signal. A chip select line can 
be programmed to.active for the memory or I/O range that requires the acknowledge. The chip 
select must be programmed to active only when a DMA is in progress. Latched status line S6 
can be used as a qualifier to the chip select in situations where the chip select line will be 
active for both DMAand normal data accesses. 

10.4. DMA UNIT EXAMPLES 

In Example 10.1, channel 0 is set up to perform an unsynchronized burst transfer from 
memory to memory while channell is used to service an ~xternal DMA request from a hard 
disk controller. 

10-18 



DIRECT MEMORY ACCESS UNIT 

Timed DMA transfers are shown in Example 10.2. A sawtooth waveform is created using 
DMA transfers to an AID converter. 

$MODl86 

NAME 

This example shows code necessary 

to setup of two DMA channels. One 

channel performs an unsynchronized 

transfer from memory to memory. 

The second channel is used by a 

hard disk controller located in 

I/O space. 

It is assumed that the constants for PCB register 

addresses are defined elsewhere with EQUates. 

SEGMENT 

ASSUME CS:CODE_SEG 

START: MOV DATA SEGMENT POINTER 

MOV DS, AX 

ASSUME DS:DATA_SEG 

First we must initialize DMA channel O. DMAO will 

an unsynchronized transfer from SOURCE_DATA_l to 

DEST_DATA_l. The first step is to calculate the 
proper values for the source and destination 

pointers. 

ROL AX, 4 

MOV BX, AX 

AND AX, OFFFOH 

GET HIGH 4 BITS 

SAVE ROTATED VALUE 

GET SHIFTED LOW 4 

NIBBLES 

Example 10.1. DMA Unit Initialization 

10-19 



int:et DIRECT MEMORY ACCESS UNIT 

NOW LOW BYTES OF 
POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 

TO THE HIGH NIBBLE 
AND BX, OOOFH GET JUST THE HIGH 

NIBBLE 

MOV DX, DOSRCL 
OUT DX, AX AX=LOW 4 BYTES 

MOV DX, DOSRCH 

MOV AX, BX GET HIGH NIBBLE 
OUT DX, AX 

SOURCE POINTER DONE. REPEAT FOR DEST. 

MOV AX, SEG DEST_DATA_l 

ROL AX, 4 

MOV BX, AX 

AND AX, OFFFOH 

NOW LOW BYTES OF 

POINTER ARE IN AX 

ADC BX, 0 

AND BX, OOOFH 

MOV DX, DODSTL 
OUT DX, AX 

MOV DX, DODSTH 

MOV AX, BX 

OUT DX, AX 

GET HIGH 4 BITS 

SAVE ROTATED VALUE 

GET SHIFTED LOW 4 

NIBBLES 

ADD IN THE CARRY 

TO THE HIGH NIBBLE 

GET JUST THE HIGH 
NIBBLE 

AX=LOW 4 BYTES 

GET HIGH NIBBLE 

Example 10.1. DMA Unit Initialization (Continued) 

10-20 



in1:et DIRECT MEMORY ACCESS UNIT 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 
WE SET UP THE TRANSFER COUNT. 

MOV AX, 29 

MOV DX, DOTC 
OUT DX, AX 

THE MESSAGE IS 
29 BYTES LONG. 
XFER COUNT REG 

NOW WE NEED TO SET THE PARAMETERS FOR 

THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

MEMORY SPACE MEMORY SPACE 
INCREMENT PTR INCREMENT PTR 

TERMINATE ON TC, NO INTERRUPT, UNSYNCHRONIZED, 
LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS. 
WE START THE CHANNEL 

MOV AX, 1011011000000110B 
MOV DX, DOCON 
OUT DX, AX 

THE UNSYNCHRONIZED BURST IS NOW RUNNING ON 

THE BUS ... 

NOW SET UP CHANNEL 1 TO SERVICE THE DISK 

CONTROLLER. FOR THIS EXAMPLE WE WILL ONLY 
BE READING FROM THE DISK. 

THE SOURCE IS THE I/O PORT FOR THE 
DISK CONTROLLER. 

MOV AX, DISK_IO_ADDR 

MOV DX, D1SRCL 
OUT DX, AL PROGRAM LOW ADDR 

XOR AX, AX 
MOV DX, D1SRCH HI ADDR FOR 10=0 
OUT DX, AL 

Example 10.1. DMA Unit Initialization (Continued) 

10-21 



DIRECT MEMORY ACCESS UNIT 

THE DESTINATION IS THE DISK BUFFER IN MEMORY 

MOV AX, SEG DISK_BUFF 

ROL AX, 4 GET HIGH 4 BITS 
MOV BX, AX SAVE ROTATED VALUE 

AND AX, OFFFOH GET SHIFTED LOW 4 

NIBBLES 

ADD AX, OFFSET DISK_BUFF 

NOW LOW BYTES OF 
POINTER ARE IN AX 

ADC BX, 0 ADD IN THE CARRY 

TO THE HIGH NIBBLE 

AND BX, OOOFH GET JUST THE HIGH 
NIBBLE 

MOV DX, D1DSTL 

OUT DX, AX AX=LOW 4 BYTES 

MOV DX, D1DSTH 

MOV AX, BX GET HIGH NIBBLE 
OUT DX, AX 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 

WE SET UP THE TRANSFER COUNT. 

MOV AX, 512 

MOV DX, D1TC 

OUT DX, AX 

THE DISK READS IN 

512 BYTE SECTORS. 

XFER COUNT REG 

Example 10.1. DMA Unit Initialization (Continued) 

10-22 



intet .. DIRECT MEMORY ACCESS UNIT 

NOW WE NEED TO SET THE PARAMETERS FOR 
THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

MEMORY SPACE I/O SPACE 
INCREMENT PTR CONSTANT PTR 

TERMINATE ON TC, INTERRUPT, SOURCE SYNC, 
HIGH PRIORITY RELATIVE TO CHANNEL 0, BYTE XFERS, 

USE DRQ PIN FOR REQUEST SOURCE. 

THE CHANNEL IS ARMED. 

MOV AX, 1010001101100110B 
MOV DX, DOCON 
OUT DX, AX 

; REQUESTS ON DRQl WILL NOW RESULT IN TRANSFERS 

ENDS 

SEGMENT 

SOURCE_DATA_l DB 
DEST_DATA_l DB 

'80C186EC INTEGRATED PROCESSOR' 
30 DUP ( 'MITCH' ) ; JUNK DATA FOR TEST 

512 DUP(?) 

END START 

Example 10.1. DMA Unit Initialization (Continued) 

10-23 



DIRECT MEMORY ACCESS UNIT 

$MOD186 
NAME DMA_EXAMPLE_l 

This example sets up the DMA Unit 
to perform a memory to I/O space 
transfer every 22uS. The data is 
sent to an A!D converter. 

It is assumed that the constants for PCB register 
addresses are defined elsewhere with EQUates. 

SEGMENT 
ASSUME CS:CODE_SEG 

START: MOV DATA SEGMENT POINTER 
MOV DS, AX 
ASSUME DS:DATA_SEG 

First, setup the pointers. The source is in memory. 

MOV AX, SEG WAVEFORM_DATA 

ROL AX, 4 GET HIGH 4 BITS 
MOV BX, AX SAVE ROTATED VALUE 
AND AX, OFFFOH GET SHIFTED LOW 4 

NIBBLES 

ADD AX, OFFSET WAVEFORM DATA 

Example 10.2. Timed DMA Transfers 



rnRECT MEMORY ACCESS UNIT 

MOV 

NOW LOW BYTES OF 
POINTER ARE IN AX 

ADC BX, 0 

AND BX, OOOFH 

MOV DX, DOSRCL 
OUT DX, AX 

MOV DX, DOSRCH 
MOV AX, BX 
OUT DX, AX 

AX, DA_CNVTR; I/O 
MOV DX, DODSTL 
OUT DX, AX 

MOV DX, DODSTH 
XOR AX, AX 
OUT DX, AX 

ADD IN THE CARRY 

TO THE HIGH NIBBLE 
GET JUST THE HIGH 
NIBBLE 

AX=LOW 4 BYTES 

GET HIGH NIBBLE 

ADDRESS OF D/A 

CLEAR HIGH NIBBLE 

THE POINTER ADDRESSES HAVE BEEN SET UP. NOW 
WE SET UP THE TRANSFER COUNT. 

MOV AX, 255 

MOV DX, DOTC 

OUT DX, AX 

8-BIT D/A SO 
WE SEND 256 BYTES 
TO GET A FULL SCALE 

Example 10.2. Timed DMA Transfers (Continued) 

10-25 



intel .. DIRECT MEMORY ACCESS UNIT 

NOW WE NEED TO SET THE PARAMETERS FOR 
THE CHANNEL AS FOLLOWS: 

DESTINATION SOURCE 

I/O SPACE MEMORY SPACE 

CONSTANT PTR INCREMENT PTR 

TERMINATE ON'TC, INTERRUPT, SOURCE SYNCHRONIZE, 
; INTERNAL REQUESTS, 

; LOW PRIORITY RELATIVE Tb CHANNEL 1, BYTE XFERS. 

MOV AX, 0001011101010110B 
MOV DX, DOCON 

OUT DX, AX 

NOW WE ASSUME THAT TIMER 2 HAS BEEN PROPERLY 
PROGRAMMED FOR A 22US DELAY. 

WHEN THE TIMER IS STARTED, A DMA 
TRANSFER WILL OCCUR EVERY 22US. 

ENDS 

SEGMENT 

WAVEFORM_DATA DB 0,1,2,3,4,5,6,7,8,9,10,11,12,13 
14,15,16,17,18,19,20,21,22,23,24 DB 

; ETC. UP TO 255 

ENDS 

END START 

. Example 10.2. Timed DMA Transfers (Continued) 

10·26 

\ 



Math Coprocessing 11 





CHAPTER 11 
MATH COPROCESSING 

The 80C186 Modular Core Family meets the need for a general-purpose embedded 
microprocessor. In most data control applications, efficient data movement and control 
instructions are foremost and arithmetic performed on the data is simple. However, some 
applications do require more powerful arithmetic instructions and more complex data types 
than provided by the 80C186 Modular Core. 

11.1. OVERVIEW OF MATH CO PROCESSING 

Applications needing advanced mathematics capabilities have the following characteristics: 

• Numeric data values are non-integral or vary over a wide range 

• Algorithms produce very large or very small intermediate results 

• Computations must be precise, i.e., calculations must retain several significant digits 

• Computations must be reliable without dependence on programmed algorithms 

• Overall math performance exceeds that afforded by a general-purpose processor and 
software alone 

For the 80C186 Modular Core family, the 80C187 satisfies the need for powerful 
mathematics. The 80C 187 can ihcrease the math performance of the microprocessor system by 
50 to 100 times. 

11.2. AVAILABILITY OF MATH CO PROCESSING 

The processor supports the 80C187 with a hardware interface under microcode control. To 
execute numerics instructions, the 80C186EA must exit reset in Numerics Mode. The 
processor checks its TEST pin at.reset and enters Numerics Mode automatically if the Math 
Coprocessor is present. 

The core has a TRAP bit in the Relocation Register to control the availability of math 
coprocessing. If the bit is a one, attempted numerics execution results in a Type 7 interrupt. 
The 80C187 will not work with the 8-bit bus version of the processor because all 80C187 
accesses must be 16-bit. The 8-bit bus version will automatically trap ESC (numerics)opcodes 
to the Type 7 interrupt regardless of Relocation Register programming. 

The 3-Volt version of the microprocessor does not specify numerics coprocessing because the 
80C187 only has a 5-Volt rating. 

11-1 



intel® MATH CO PROCESSING 

11.3. THE 80C187 MATH COPROCESSOR 

The 80C 187' s high performance is due to its 80-bit internal architecture. It contains three 
units: a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit. 
The foundation of the Floating Point Unit is an 8-element register file, usable as· individually 
addressable registers or as a register stack. The register file allows storage of intermediate 
results in the SO-bit format. The Floating Point Unit operates under supervision of the Data 
Interface and Control Unit. The Bus Control Logic Unit maintains handshaking and 
communications with the host microprocessor. The 80C187 has built-in exception handling. 

The 80C187 executes code written for the 387™ DX and 387™ SX math coprocessors. The 
80Cl87 conforms to ANSI/IEEE Standard 754-1985. . 

11.3.1. 80C187 INSTRUCTION SET 

80C187 instructions fall into six functional groups: data transfer, arithmetic, comparison, 
transcendental, constant and processor control. Typical 80C187 instructions accept one or two 
operands and produce a single result. Operands ;tre usually located in memory or the 80C 187 
stack. Some operands are predefined; FSQRT always takes the square root of the number in 
the top stack element, for example. Other instructions allow or require the programmer to 
specify explicitly the operand(s) along with the instruction mnemonic. Still other instructions 
accept one explicit operand and one implicit operand (usually the top stack element). 

As with the basic (non-numerics) instruction set, there are two types of operands for 
coprocessor instructions, source and destination. Instruction execution does not alter a source 
operand. Even when an instruction converts the source operand from one format to another 
(for example, real to integer), the coprocessor performs the conversion in a work area to 
preserve the source operand. A destination operand differs from a source operand because the 
80C187 may alter the register when it receives the.result of the operation. For most destination 
operands, the coprocessor usually replaces the destinations with results. 

11.3.1.1. OAT A TRANSFER INSTRUCTIONS 

Data transfer instructions move operands between elements of the 80C187 register stack or 
between stack top and memory. Instructions can convert any of the data types to temporary 
real and load it onto the stack in a single operation. Conversely, instructions can convert a 
temporary real operand on the stack to any data type and store it to memory in a single 
operation. Table 11.1 summarizes the data transfer instructions. 

11-2 



MATH COPROCESSING 

Table 11.1. 80C187 Data Transfer Instructions 

REAL TRANSFERS 

FLD Load real 

FST Store real 

FSTP Store real and pop 

FXCH Exchange registers 

INTEGER TRANSFERS 

FILD Integer load 

FIST Integer store 

FISTP Integer store and pop 

PACKED DECIMAL TRANSFERS 

FBLD Packed decimal (BCD) load 

FBSTP Packed decimal (BCD) store and 
pop 

11.3.1.2. ARITHMETIC INSTRUCTIONS 

The 80C187's arithmetic instruction set includes many variations of add, subtract, multiply, 
and divide operations and several other useful functions. Examples include a simple absolute 
value and a square root instruction that executes faster than ordinary division. Other arithmetic 
instructions perform exact modulo division, round real numbers to integers and scale values by 
powers of two. 

Table 11.2 summarizes the available operation and operand forms for basic arithmetic. In 
addition to the four normal operations, two "reversed" instructions make subtraction and 
division "symmetrical" like addition and multiplication. In summary, the arithmetic 
instructions are highly flexible because: 

• The 80C 187 uses register or memory operands 

• The 80C 187 may save results in a choice of registers 

Available data types include temporary real, long real, short real, short integer and word 
integer. The 80C 187 performs automatic type conversion to temporary real. 

11-3 



MATH COPROCESSING 

Table 11.2. 80C187 Arithmetic Instructions 

ADDITION 

FADD Add real 

FADDP Add real and pop 

FIADD Integer add 

SUBTRACTION 

FSUB Subtract real 

FSUBP Subtract real and pop 

FISUB I nteger subtract 

FSUBR Subtract real reversed 

FSUBRP Subtract real reversed and pop 

FISUBR Integer subtract reversed 

MULTIPLICATION 

FMUL Multiply real 

FMULP Multiply real and pop 

FIMUL Integer multiply 

DIVISION 

FDIV Divide real 

FDIVP Divide real and pop 

FIDIV Integer divide 

FDIVR Divide real reversed 

FDIVRP Divide real reversed and pop 

FIDIVR Integer divide reversed 

OTHER OPERATIONS 

FSQRT Square root 

FSCALE Scale 

FPREM Partial remainder 

FRNDINT Round to integer 

FXTRACT Extract exponent and significand 

FABS Absolute value 

FCHS Change sign 

FPREMI Partial remainder (IEEE) 

11-4 



inlet MATH CO PROCESSING 

11.3.1.3. COMPARISON INSTRUCTIONS 

Each comparison instruction (see Table 11.3) analyzes the stack top element, often in 
relationship to another operand. Then it reports the result in the Status Word condition code. 
The basic operations are compare, test (compare with zero) and examine (report tag, sign and 
normalization). 

Table 11.3. 80C187 Comparison Instructions 

FCOM Compare real 

FCOMP Compare real and pop 

FCOMPP Compare real and pop twice 

FICOM Integer compare 

FICOMP Integer compare and pop 

FTST Test 

FXAM Examine 

FUCOM Unordered compare 

FUCOMP Unordered compare and pop 

FUCOMPP Unordered compare and pop 
twice 

11.3.1.4. TRANSCENDENTAL INSTRUCTIONS 

Transcendental instructions perform the core calculations for common trigonometric, 
hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue code to 
reduce arguments to a range accepted by the instruction. Use epilogue code to adjust the result 
to the range of the original arguments. The transcendentals operate on the top one or two stack 
elements and return their results to the stack. Table 11.4 lists the transcendental instructions. 

Table 11.4. 80C187 Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2x - 1 

FYL2X Y log2X 

FYL2XP1 Y log2 (X+1) 

FCOS Cosine 

FSIN Sine 

FSINCOS Sine and Cosine 

11-5 



infel® MATH COPROCESSING 

11.3.1.5. CONSTANT INSTRUCTIONS 

Each constant instruction (see Table 11.5) loads a commonly used constant onto the stack. The 
values have full 80-bit precision and are accurate to about 19 decimal digits. Since a 
temporary real constant occupies 10 memory bytes, the constant instructions, only two bytes 
long, save memory space. 

Table 11.5. 80C187 Constant Instructions 

FLDZ Load +0.1 

FLD1 Load +1.0 

FLDPI Load 1t 

FLDL2T Load 109210 

FLDL2E Load 1092e 

FLDLG2 Load 109102 

FLDLG2 Load 10ge2 

11.3.1.6. PROCESSOR CONTROL INSTRUCTIONS 

Computations do not use the processor control instructions; they are available for activities at 
the operating system level. This group (see Table 11.6) includes initialization, exception 
handling and task switching instructions. 

Table 11.6. 80C187 Processor Control Instructions 

FINIT/FNINIT Initialize processor 

FDISI/FNDISI Disable interrupts 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSTCW/FNSTCW Store control word 

FSTSW/FNSTSW Store status word 

FCLEX/FNCLEX Clear exceptions 

FSTENV IFNSTENV Store environment 

FLDENV Load environment 

FSAVE/FNSAVE Save state 

FRSTOR Restore state 

FINCSTP Increment stack pointer 

FDECSTP Decrement stack pOinter 

FFREE Free re9ister 

FNOP No operation 

FWAIT CPU wait 

11-6 



inlet MATH COPROCESSING 

11.3.2. 80C187 DATA TYPES 

'\ The microprocessor/math coprocessor combination supports the following seven data types: 

• Word Integer - A signed l6-bit numeric value. All operations assume a 2's complement 
representation. 

• Short Integer - A signed 32-bit numeric value (double word). All operations assume a 
2's complement representation. 

• Long Integer - A signed 64-bit numeric value (quad word). All operations assume a 2's 
complement representation. 

• Packed Decimal- A signed numeric value contained in an '80-bit BCD format. 

• Short Real - A signed 32-bit floating point numeric value. 

• Long Real- A signed 64-bit floating point numeric value. 

• Temporary Real - A signed 80-bit floating point numeric value. Temporary real is the 
native 80C187 format. 

Figure 11.1 graphically represents these data types. 

11.4. MICROPROCESSOR AND COPROCESSOR OPERATION 

The 80C187 interfaces directly to the microprocessor (see Figure 11.2) and operates as an 
I/O-mapped slave peripheral device. Hardware handshaking requires connections between the 
80C187 and four special pins op. the processor: NCS, BUSY, PEREQ and ERROR. These 
pins are multiplexed with MCS3, TEST, MCSO and MCSl, respectively. When the processor 
leaves reset, the presence of the 80C187 automatically places the 80C186EA in Numerics 
Mode and configures the pins correctly. Note that MCS2 always retains its function as a chip 
select. The processor also retains the wait state and ready programming for the entire mid
range memory block, even though MCSO, MCS 1 and MCS3 are no longer available. 

11.4.1. CLOC~ING THE 80C187 

The microprocessor and math coprocessor operate asynchronously and their clock rates may 
differ. The 80C187 has a CKM pin which determines whether it uses the input clock directly 
or divided by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed 
the clock input from the microprocessor's CLKOUT pin. Beyond 12.5 MHz, the 80C187 must 
use a 2X frequency clock input up to a maximum of 32 MHz. The microprocessor and the 
math coprocessor have correct timing relationships even with operation at different. 
frequencies. 

11-7 



intel .. MATH COPROCESSING 

Figure 11.1. 80C187-Supporled Data Types 

11.4.2. PROCESSOR BUS CYCLES ACCESSING THE 80C187 

Data transfers between the microprocessor and the 80C187 occur through the dedicated, 16-bit 
I/O ports shown in Table 11.7. When the processor encounters a numerics opcode, it first 
writes the opcode to the 80C187. The 8OC187 decodes the instruction and passes elementary. 
instruction information (Opcode Status Word) back to the processor. Since the 80C187 is a 
slave processor,the Modular Core processor performs all loads and stores to memory. 
Including the overhead in the microprocessor's microcode, each data transfer between 
memory and the 80C 187 (via the microprocessor) takes at least 17 processor clocks. 

11-8 



int'et 

EXTERNAL 
OSCILLATOR 

AD 15:0 

ALE 

CLKOUT 

80C18S 
MODULAR 

CORE 

RESOUT 

WR 

RD 

BUSY 

ERROR 

PEREQ 

l'JCS 

MATH COPROCESSING 

LATCH 

+1 

CKM 

+2 

80C187 
AO 

A1 

RESET 

NPWR 

NPRD 

BUSY 

ERROR 

PEREQ 

I\fPSl 

Figure 11.2. 80C18S Modular Core Family/80C187 System Configuration 

11-9 



intet MATH COPROCESSING 

Table 11.7. 80C187 1/0 Port Assignments 

1/0 READ WRITE 
ADDRESS DEFINITION DEFINITION 

OOF8H Status/ Control Opcode 

OOFAH Data Data 

OOFCH Reserved CS:IP, DS:EA 

OOFEH Opcode Status Reserved 

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU encounters 
a numerics opcode with the TRAP bit in the Relocation Register a zero and the 80C187 is not 
present, its operation is indeterminate. Even the FINITIFNINIT initialization instruction (used 
in the past to test the presence of a coprocessor) will fail without the 80C187. If an application 
offers the 80C 187 as an option, problems can be prevented in three ways: 

• Remove all numerics (ESC) instructions, including code which checks for the presence of 
the 80C187. 

• Use a jumper or switch setting to indicate the presence of the80C187. The program can 
interrogate the jumper or switch setting and branch away from numerics instructions when 
the 80C 187 socket is empty. 

• Trick the microprocessor into predictable operation when the 80C187 socket is empty. 
The fix is placing pull-up or pull-down resistors on certain data and handshaking lines so 
the CPU reads a recognizable Opcode Status Word. This solution requires a detailed 
knowledge of the interface. 

Bus cycles involving the 80C187 Math Coprocessor behave exactly like other 110 bus cycles 
with respect to the processor's control pins. The next section covers integration of the 80C 187 
into the overall system. . 

11.4.3. SYSTEM DESIGN TIPS 

All 80C187 operations require that bus ready be asserted. The simplest way to return the ready 
indication is via hardware connected to the processor's ARDY or SRDY pin. If you program a 
chip select to cover the math coprocessor port addresses, its ready programming will be in 
force and can provide bus ready for coprocessor accesses. The user must verify there are no 
conflicts from other hardware connected to that chip select pin. 

A chip select pin will go active on 80C 187 accesses if you program it for a range including the 
math coprocessor 110 ports. The converse is not true - a non-80C187 access cannot activate 
NCS (numerics chip select) regardless of programming. 

11-10 



in1:et MATH COPROCESSING 

In a buffered system, it is customary to place the 80C187 on the local bus. Since DTIR and 
DEN function normally during 80C187 transfers, you must qualify DEN with NCS (see 
Figure 11.3). Otherwise, contention between the 80C187 and the transceivers occurs on read 
cycles to the 80C187. 

The microprocessor's local bus is available to the integrated peripherals during numerics 
execution whenever the CPU is not communicating with the 80C187. The idle bus allows the 
processor to intersperse DRAM refresh cycles and DMA cycles with accesses to the 80C187. 

The microprocessor's local bus is available to alternate bus masters during execution of 
numerics instructions when the CPU does not need it. Bus cycles driven by alternate masters 
(via the HOLD/HLDA protocol) can suspend coprocessor bus cycles for an indefinite period. 

The programmer may lock 80C187 instructions. The CPU asserts the LOCK pin for the entire 
duration of a numerics instruction, monopolizing the bus for a very long time. 

11.4.4. EXCEPTION TRAPPING 

The 80C 187 detects six error conditions that can occur during instruction execution. The 
80C187 can apply default fix-ups or signal exceptions to the microprocessor's ERROR pin. 
The processor tests ERROR at the beginning of numerics instructions, so it traps an exception 
on the next attempted numerics instruction after it occurs. When ERROR tests active, the 
processor executes a Type 16 interrupt. 

There is no automatic exception-trapping on the last numerics instruction of a series. If the last 
numerics instruction writes an invalid result to memory, subsequent non-numerics instructions 
can use that result as if it is valid, further compounding the original error. Insert the FNOP 
instruction at the end of the 80C187 routine to force an ERROR check. If the program is 
written in a high-level language, it is impossible to insert FNOP. In this case, route the error 
signal through an inverter to an interrupt pin on the microprocessor (see Figure 11.4). With 
this arrangement, use a flip-flop to latch BUSY upon assertion of ERROR. The latch gets 
cleared during the exception-handler routine. Use an additional flip-flop to latch PEREQ to 
maintain the correct handshaking sequence with the microprocessor. 

11.5. EXAMPLE MATH COPROCESSOR ROUTINES 

Example 11.1 shows the initialization sequence for the 80C187. Example 11.2 is an example 
of a floating point routine using the 80C 187. The FSINCOS instruction yields both sine and 
cosine in one operation. 

11-11 



MATH COPROCESSING 

EXTERNAL LATCH 

OSCILLATOR 

BUFFER 
015:8 

AD 15:0 71 

ALE 
CK 

T OE 
-

-

CLKOUT ~ 

72 
80C186 80C187 

MODULAR 
CORE 

AO 
A1 

RESOUT RESET BUFFER 

07:0 
WR NPWR 

RD NPRD 

BUSY BUSY T OE 

ERROR ERROR 

PEREQ PEREQ 

T\ICS ~1 

CS 

DEI'J 

DTIR 

Figure 11.3. 80C187 Configuration with Partially Buffered Bus 

11-12 



MATH COPROCESSING 

80C186 
MODULAR CORE L1 --

ERROR 

RESOUT 

1 - ~~ CSx 
~ 

INTx ..... 
~ 

lATCH BUSY ~ '---1-,-- ..... 

PEREQ " ..... 
~ ALE -

EN ..... NCS .... 
A19-A16 - f---RD 

'-- AD15-ADO 
-
WR I--

A ClKOUT I- D 
C 

Q -
D '74 
D ..-> -

.I>. - Q 
R DATA 15-0 S 

'"I" 
E 
S 

.. D15-DO LJ S ClK OOIIIIE 

A2. .... -- ~ , CMD1 NPWR 
19 -0 

A1 
"" -

~ v ~ CMDO NPRD 

80C187 , 

L 
NPS1 "" C 

D Q 

CKM PEREQ 
'74 

~> -

L BUSY S 

NPS2 -- --[> LJ ERROR 

RESET " ..... 

Figure 11.4. 80C187 Exception Trapping via Processor Interrupt Pin 

11-13 



in1:et MATH COPROCESSING 

$mod186 
name 

FUNCTION: This function initializes the 80C187 numerics 
co-processor. 

SYNTAX: extern unsigned char far 187_init(void); 

INPUTS: None 

OUTPUTS: unsigned char - OOOOh -> False -> coprocessor not 
initialized 

ffffh -> True -> coprocessor 
initialized 

NOTE: Parameters are passed on the stack as required by 
high-level languages. 

187 init 

segment public 'code' 
assume cs:lib_80186 

public 
proc far 

push bp 

187 init 

mov bp, sp 

cli 

fninit 
fnstcw [bp-2] 

sti 

mov ax, [bp-2] 
and ax, 0300h 

cmp ax, 0300h 
je Ok 
xor ax, ax 

.. 

;save caller's bp 
;get current top of stack 

;disable maskable 
; interrupts 

;init 80C187 processor 
;get current control word 

;enable interrupts 

;mask off unwanted control 
;bits 
;PC bits = 11 
;yes: processor ok 
;return false (80C187 not 
;ok) 

Example 11.1. Initialization Sequence for 80C187 Math Coprocessor 

11-14 



Ok: 

187 init 

pop 
ret 

and 
fldcw 

mov 
pop 
ret 

endp 

ends 
end 

MATH COPROCESSING 

bp 

[bp-2 J , Offfeh 
[bp-2J 

aX,Offffh 
bp 

;restore caller's bp 

;unmask possible exceptions 

;return true (80C187 ok) 
;restore caller's bp 

Example 11.1. Initialization Sequence for 80C187 
Math Coprocessor (Continued) 

$mod186 
$modc187 

name 

DESCRIPTION: 

VARIABLES: 

RESULTS: 

NOTES: 

This code section uses the 80C187 FSINCOS 
transcendental instruction to convert the 
locus of a point from polar to Cartesian 
coordinates. 

The variables consist of the radius, r, and 
the angle, theta. Both are expressed as 
32-bit reals and 0 <= theta <= pi/4. 

The results of the computation are the 
coordinates x and y expressed as 32-bit 
reals. 

This routine is coded for Intel ASM86. It lS 

not set up as a HLL-callable routine. 

This code assumes that the 80C187 has already 
been initialized. 

assume cs:code, ds:data 

Example 11.2. Floating Point Math Routine Using FSINCOS 

11-15 



inlet. MATH COPROCESSING 

data segment at OlOOh 
r dd x.xxxx ; substitute real operand 
theta dd x.xxxx ; substitute real operand 
x dd ? 

Y dd ? 
data ends 

Example 11.2. Floating Point Math Routine Using FSINCOS (Continued) 

11-16 



ONCl?M Mode 12 





CHAPTER 12 
ONCETM MODE 

ONCE (pronounced: ahnce) Mode provides the ability to three-state all output, bidirectional, 
or weakly held high/low pins except OSCOUT. OSCOUT does not three-state to allow device 
operation with a crystal network. 

ONCE Mode electrically isolates the 80Cl86EA or 80Cl88EA form the rest of the board 
logic. This isolation allows a bed-of-nails tester to drive the device pins directly for more 
accurate and thorough testing. An in-circuit emulation probe uses ONCE Mode to isolate a 
surface mounted device from board logic and essentially "take over" operation of the board 
(without removing the soldered device from the board). 

12.1. ENTERING/LEAVING ONCE MODE 

Forcing UCS and LCS low while RESIN is asserted (low) enables ONCE Mode (see Figure 
12.1). Maintaining UCS, LCS and RESIN low continues to keep ONCE Mode active. 
Returning UCS and/or LCS back high exits the ONCE Mode. 

However, it is possible to always keep ONCE Mode active by deasserting RESIN while 
keeping UCS and LCS low. Removing RESIN "latches" ONCE Mode and allows UCS and 
LCS to be driven to any level. UCS and LCS must remain. low for at least one clock beyond 
the time RESIN is driven high. Asserting RESIN exits ONCE Mode, assuming UCS and 
LCS do not remain low also (see Figure 12.1). 

RESIN 

UCS 

LCS 

ALL OUTPUT, 
BI·DIRECTIONAL, 

WEAKLY HELD 
PINS EXCEPT 

OSCOUT 

NOTES: 1. Entering ONCE Mode. 
2. Latching ONCE Mode. 
3. Leaving ONCE Mode (assuming 2. occurred) 

Figure 12.1. Entering/Leaving ONCE Mode 

12-1 





Appendix A 
80C186 Instruction Set 
Additions and Extensions 





APPENDIX A 
80C186 INSTRUCTION SET ADDITIONS AND 

EXTENSIONS 

The 80Cl86 Modular Core family instruction set differs from the original 8086/8088 
instruction set in two ways. First, there are several additional instructions that were not 
available in the 8086/8088 instruction set. Second, there are several 8086/8088 instructions 
that have been enhanced for the 80Cl86 Modular Core family instruction set. 

A.1. 80C186 INSTRUCTION SET ADDITIONS 

The following sections describe instructions added to the base 8086/8088 instruction set to 
make the instruction set for the 80Cl86 Modular Core family. These instructions did not exist 
in the 8086/8088 instruction set. 

A.1.1.DATA TRANSFER INSTRUCTIONS 

PUSHAIPOPA 

PUSHA (push all) and POP A (pop all) allow all general purpose registers to be stacked and 
unstacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the 
stack. The POP A instruction pops all registers pushed by PUSHA off of the stack. The 
registers are pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DI. 
The Stack Pointer (SP) value pushed is the Stack,Pointer value before the AX register was 
pushed. When POP A is executed, the Stack Pointer value is popped, but ignored. 

Note: This instruction does not save segment registers (CS, DS, SS, ES), the Instruction 
Pointer (IP), the Program Status Word or any integrated peripheral registers. 

A.1.2.STRING INSTRUCTIONS 

INS source _string, port 

INS (in string) performs block input from an 110 port to memory. The port address is placed in 
the DX register. The memory address is placed in the DI register. This instruction uses the ES 
segment register (which cannot be overridden). After the data transfer takes place, the pointer 
register (DI) increments or decrements, depending on the value of the Direction Flag (DF). 
The pointer register changes by I for byte transfers or 2 for word transfers. 

A-1 



APPENDIX A 

OUTS port, destination_string 

OUTS (out string) performs block output from memory to an I/O port. The port address is 
placed in the DX register. The memory address is placed in the SI register. This instruction 
uses the DS segment register, but this may be changed with a segment override instruction. 
After the data transfer takes place, . the pointer register (SI) increments or decrements, 
depending on the value 'of the Direction Flag (DF). The pointer register changes by 1 for byte 
transfers or 2 for word transfers. 

A.1.3.HIGH LEVEL INSTRUCTIONS 

ENTER size, level 

ENTER creates the stack frame required by most block-structured high-level languages. The 
first parameter, size, specifies the number of bytes of dynamic storage to be allocated for the 
procedure being entered (16-bit value). The second parameter, level, is the lexical nesting level 
of the procedure (8-bit value). Note: the higher the lexical nesting level, the lower the 
procedure is in the nesting hierarchy. 

The lexical nesting level determines the number pointers to higher level stack frames copied 
into the current stack frame. This list of pointers is called the display. The first word of the 
display points to the previous stack frame. The display allows access to variables of higher
level (lower lexical nesting level) procedures. 

After ENTER creates a display for the current procedure, it allocates dynamic storage space. 
The Stack Pointer decrements by the number of bytes specified by size. All PUSH and POP 
operations in the procedure use this value of the Stack Pointer as a base. 

Two forms of ENTER exist: non-nested and nested. A lexical nesting level of ° specifies the 
non-nested form. In this situation, BP is pushed, the Stack' Pointer is copied to BP and 
decremented by the size of the frame. If the lexical nesting level is greater than 0, the nested 
form is used. Figure A1 gives the formal definition of ENTER. 

ENTER treats a reentrant procedure as a procedure calling another procedure at the same 
lexical level. A reentrant procedure can only address its own variables and variables of higher
level calling procedures. ENTER ensures this by copying only stack frame pointers from 
higher-level procedures. 

Block-structured high-level languages use lexical nesting levels to control access to variables 
of previously nested procedures. For example, assume, as shown in Figure A2, PROCEDURE 
A calls PROCEDURE B which calls PROCEDUREC ~hich calls PROCEDURE D . 
. PROCEDURE C, will have access to the variables of MAIN and 
PROCEDURE A, but not PROCEDURE B because they operate at the same lexical nesting 
.level. The following is a summary of the variable access for Figure A2. 

A·2 



in1:et APPENDIX A 

The formal definition of the ENTER instruction for all cases is given by the 
following listing: (LEVEL denotes the value of the second operand.) 

Push BP 
Set a temporary value FRAME_PTR: = SP 
If LEVEL> 0 then 

Repeat (LEVEL - 1) times: 
BP: = BP - 2 
Push the word pointed to by BP 

End repeat 
Push FRAME_PTR 

End if 
BP: = FRAME_PTR 
SP: = SP - first operand 

Figure A.1. Formal Definition of ENTER 

MAIN PROGRAM (LEXICAL LEVEL 1) 

PROCEDURE A (LEXICAL LEVEL 2) 

PROCEDURE B (LEXICAL LEVEL 3) 

PROCEDURE C (LEXICAL LEVEL 3) 

PROCEDURE D (LEXICAL LEVEL 4) 

Figure A.2. Variable Access in Nested Procedures 

A-3 



in1:et APPENDIX A 

1. MAIN PROGRAM has variables at fixed locations. 

2. PROCEDURE A can access only the fixed variables of MAIN. 

3. PROCEDURE B can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE B cannot access the variables of PROCEDURE C or PROCEDURE D. 

4. PROCEDURE C can access only the variables of PROCEDURE A and MAIN. 
PROCEDURE C cannot access the variables of PROCEDURE B or PROCEDURE D. 

5. PROCEDURE D can access the variables of PROCEDURE C, PROCEDURE A and 
MAIN. PROCEDURE D cannot access the variables of PROCEDURE B. 

The first ENTER, executed in the MAIN PROGRAM, allocates dynamic storage space for 
MAIN, but no pointers are copied. The only word in the display points to itself because no 
previous value exists to return to after LEAVE is executed (see Figure A.3). 

BP~ 

SP~ 

15 

OLD BP 

BPM 

* -BPM - BP VALUE FOR MAIN 

o 

} DISPLAY MAIN 

} 
DYNAMIC 
STORAGE 

MAIN 

Figure A.3. Stack Frame for MAIN at Level 1 

After MAIN calls PROCEDURE A, ENTER creates a new display for PROCEDURE A. The 
first word points to the previous value of BP (BPM). The second word points to the current 
value of BP (BPA). BPM contains the base for dynamic storage in MAIN. All dynamic 
variables for MAIN will be at a fixed offset from this value (see Figure AA). 

After PROCEDURE A calls PROCEDURE B, ENTER creates the display for PROCEDURE 
B. The first word of the display points to the previous value of BP (BPA). The second word 
points to the value of BP for MAIN (BPM). The third word points to the BP for 
PROCEDURE A (BPA). The last word points to the current BP (BPB). PROCEDURE B can 
access variables in PROCEDURE A or MAIN via the appropriate BP in . the display (see 
Figure A.5). 

A-4 



int:et APPENDIX A 

15 

OLD BP 

BPM 

BPM 

BPM 

BPA' 

SP~ 

'BPA = BP VALUE FOR PROCEDURE A 

0 

} DISPLAY A 

} DYNAMIC 
STORAGE A 

Figure A.4. Stack Frame for Procedure A at Level 2 

After PROCEDURE B calls PROCEDURE C, ENTER creates the display for PROCEDURE 
C. The first word of the display points to the previous value of BP (BPB). The second word 
points to the value of BP for MAIN (BPM). The third word points to the value of BP for 
PROCEDURE A (BPA). The fourth word points to the current BP (BPC). Because 
PROCEDURE B and PROCEDURE C have the same lexical nesting level, PROCEDURE C 
cannot access variables in PROCEDURE B. The only pointer to PROCEDURE B in the 
display of PROCEDURE C exists to allow the LEA VE instruction to collapse the 
PROCEDURE C stack frame (see Figure A.6). 

LEAVE 

LEA VE reverses the action of the most recent ENTER instruction. It collapses the last stack 
frame created. First, LEA VE copies the current BP to the Stack Pointer releasing the stack 
space allocated to the current procedure. Second, LEA VE pops the old value of BP from the 
stack, to return to the calling procedure's stack frame. An RET instruction will remove 
arguments stacked by the calling procedure for use by the called procedure. 

BOUND register, address 

BOUND verifies that the signed value in the specified register lies within specified limits. If 
the value does not lie within the bounds, an array bounds exception (type 5) occurs. 

A-S 



in1:et APPENDIX A 

15 

OLD BP 
BPM 

BPM 

BPM 
BPA 

BPA 

BF;'M 
BPA 

BPB 

SP~ 

o 

} DISP~YB 

} DYNAMIC 
STORAGE B 

Figure A.S. Stack Frame for Procedure B at Level 3 Called from A 

BOUND has two operands. The first, register, specifies the register being tested. The second, 
address, contains the effective relative address of the two signed boundary values. The lower 
limit word is at this address and the upper limit word immediately follows. The limit values 
cannot be register operands (if they are, an invalid opcode exception occurs). 

BOUND is useful for checking array bounds before attempting to access an array element. 
This avoids the program overwriting information outside the limits of the array. 

A.2. 80C186 INSTRUCTION SET ENHANCEMENTS 

The following sections describe enhancements to the 8086/8088 instruction set available with 
the 80Cl86 Modular Core family. These instructions were available with the 8086/8088 
instruction set, but have been expanded to be more useful. 

A·6 



in1:et APPENDIX A 

15 

OLD BP 
BPM 

BPM 
BPM 
BPA 

BPA 

BPM 
BPA 
BPB 

BPB 
BP~ 

BPM 

BPA 

BPC 

SP~ 

o 

} DISPLAYC 

} DYNAMIC 
STORAGE C 

Figure A.6. Stack Frame for Procedure C at Level 3 Called from B 

A·7 



intel .. APPENDIX A 

A.2.1.DATA TRANSFER INSTRUCTIONS 

PUSH data 

PUSH (push immediate) allows an immediate argument, data, to be pushed onto the stack. 
The value can be either a byte or a word. Byte values will be sign extended to word size before 
being pushed. . 

A.2.2.ARITHMETIC INSTRUCTIONS 

IMUL destination, source, data 

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate 
operand. IMUL requires three operands. The first, destination, is the register where the result 
will be placed. The second, source, is the effective address of the multiplier. The source may 
be the same register as the destination, another register or a memory location. The third, data, 
is an immediate value used as the multiplicand. The data operand may be a byte or word. If 
data is a byte, it is be sign extended to 16-bits. Only the lower 16-bits of the result are saved. 
The result must be placed in a general purpose register. 

A.2.3.BIT MANIPULATION INSTRUCTIONS , 

The 80C186 Modular Core .instruction set includes enhancements to the bit manipUlation 
instructions. The following sections describe these enhancements. 

A.2.3.1. SHIFT INSTRUCTIONS 

SAL destination, count 
I 

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate 
value. SAL has two operands. The first, destination, is the effective address to be shifted. The 
second, count, is an immediate byte value representing the number of shifts to be made. The 
CPU will AND count with IFH before shifting to allow no more than 32 shifts. Zeros shift in 
on the right. 

SHL destination, count 

SHL (Immediate shift logical left) is physically the same instruction as SAL (immediate shift 
arithmetic left). 

SAR destination, count 

SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate 
value. SAL has two operands. The first, destination, is the effective address to be shifted. The 
second, count, is an immediate byte value representing the number of shifts to be made. The 

A-8 



APPENDIX A 

CPU will AND count with IFH before shifting to allow no more than 32 shifts. The value of 
the original sign bit shifts into the most-significant bit to preserve the initial sign. 

SUR destination, count 

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate shift 
arithmetic right). 

A.2.3.2. ROTATE INSTRUCTIONS 

ROL destination, count 

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value. 
ROL has two operands. The first, destination, is the effective address to be rotated. The 
second, count is an immediate byte value representing the number of rotations to be made. The 
most-significant bit of destination rotates into the least-significant bit. 

ROR destination, count 

ROR (immediate rotate right) rotates the destination byte or word right by an immediate value. 
ROR has two operands. The first, destination, is the effective address to be rotated. The 
second, count is an immediate byte value representing the number of rotations to be made. The 
least-significant bit of destination rotates into the most-significant bit. 

RCL destination, count 

RCL (immediate rotate through carry left) rotates the destination byte or word left by an 
immediate value. RCL has two operands. The first, destination, is the effective address to be 
rotated. The second, count, is an immediate byte value representing the number of rotations to 
be made. The Carry Flag (CF) rotates into the least-significant bit of destination. The 
most-significant bit of destination rotates into the Carry Flag. 

RCR destination, count 

RCR (immediate rotate through carry right) rotates the destination byte or wor9 right by an 
immediate value. RCR has two operands. The first, destination, is the effective address to be 
rotated. The second, count, is an immediate byte value representing the number of rotations to 
be made. The Carry Flag (CF) rotates into the most-significant bit of destination. The least
significant bit of destination rotates into the Carry Flag. 

A-9 





AppendixB 
Input Synchronization 





APPENDIX B 
INPUT SYNCHRONIZATION 

Many input signals to an 80C186EA or 80C188EA embedded processor are asynchronous. 
Asynchronous signals do not require a specified set up or hold time to ensure the device does 
not incur a failure. However, asynchronous setup and hold times are specified in the data sheet 
to ensure recognition. Associated with each of these inputs is a synchronizing circuit (see 
Figure B-1) which samples the asynchronous signal and synchronizes it to the internal 
operating clock. The output of the synchronizing circuit is then safely routed to the logic units. 

ASYNCHRONOUS D Q D Q t--SYNCHRONIZED 
INPUT OUTPUT 

FIRST SECOND 

(1)-~ LATCH <V-i> LATCH 

NOTES: 1. First latch sample clock, can be phase 1 or phase 2 depending on pin function 

2. Second latch sample clock, opposite phase of first latch sample clock 
(e.g. if first latch is sampled with phase 1, the second latch is sampled with phase 2). 

I 

Figure B.1. Input Synchronization Circuit 

B.1. WHY SYNCHRONIZERS ARE REQUIRED 

Every data latch requires a specific set up and hold time to operate properly. The duration of 
the setup and hold time defines a window where the device attempts to latch the data. If the 
input makes a transition within this window, the output may not attain a stable state. The data 
sheet specifies a setup and hold window larger than is actually required. However, variations 

. in device operation (e.g., temperature, voltage) require a larger window be specified to cover 
all conditions. 

Should the input to the data latch transition during the sample and hold window, the output of 
the latch eventually attains a stable state. Reaching this stable state must occur before the 
second stage of sychroniztion requires a valid input. To synchronize an asynchronous signal, 
the circuit in Figure B-1 samples the input into the first latch, allows to output to stabilize, then 
samples the stabilized value into a second latch. With the asynchronous signal resolved in this 
way, the input signal can not cause a internal device failure. 

8-1 



APPENDIX B 

A synchronization failure can occur when the output of the first latch does not meet the setup 
and hold requirements of the input of the second latch. The rate of failure is determined by the 
actual size of the sampling window of the data latch, and by the amount of time between the 
strobe signals of the two latches. As the sampling window gets smaller, the number of times 
an asynchronous transition occurs during the sampling window drops. 

B.2. ASYNCHRONOUS PINS 

The 80C186EA and 80C188EA embedded processors use the two stage synchronization 
circuit on the following pins: TUN, T2IN, NMI, TESTIBUSY, INTO-3, HOLD, DRQO, and 
DRQl. 

8-2 



AppendixC 





Table C.1. Instruction Set Summary 

Function Format 
Clock Comments Cycles 

DATA TRANSFER 
MDV.MDVE: 

Register to RegisterlMemory I, 0 0 o , 0 0 wi mod reg rim 2/'2 
Register/memory to register I, 0 0 0 , 0 , wi mod reg rim 219 
Immediate to register memory I, , 0 0 0 , , wi modOOO rim data I data n w=' I '2-'3 8/'6-blt 
Immediate to register I, o , , w reg I data dataifw=1 I 3-4 8/'6-bit 
Memory to accumulator I' o , o 0 0 0 wi addr-Iow addr-high I 9 
Accumulator to memory I' 0 , 0 0 0 , wi addr-Iow addr-high I 8 
Register/memory to segment register I, 0 0 0 , , , 01 mod 0 reg rim 219 
Segment register to register/memory I, 0 0 0 , , 0 o I mod 0 reg rim 

2/" 

PUSH. Push: 

Memory I, , , i' , , , , I mod"O rim I '6 
Register 10 , 0 , 0 reg I '0 
Segment register 10 0 0 reg , , o I 9 

PUSHA. Push All 10 , , o 0 0 0 o I 36 

POP = Pop: 

Memory I, 0 0 o , , , , I modOOO rim I 20 
Register 10 , 0 , , reg I '0 
Segment register 

10 0 0 reg , , , I (reg,O') 8 

XCHG • EI,honga: 

Register/memory with register I, 0 0 0 0 , , wi mod reg rim I 4117 

Register with accumulator I, 0 0 , 0 reg I 3 

IN = Input from: 

fixed port I, , , 0 0 , 0 wi port I '0 

Variable port I, , , 0 , , 0 wi 8 

OUT. Output 10: 

fixed port I, , , 0 0 , , w port I 9 

Variable port j, , , o , , , w 7 

XLAT = Translate byte to AL I' , 0 , 0 , , , " LEA = Load EA to register I, 0 0 0 , , 0 1 mod reg rim I 6 

LOS = Load pOintar to OS I, 1 o 0 o , o , mod reg rim I (mod,'I) '8 

LES = load pointer to ES 11 1 0 0 0 1 0 0 mod reg rim I (mod,'I) '8 

LAHF = Load AH with flags 11 0 0 t 1 1 , , 2 

SAHF = Store AH into flags I, o 0 , 1 , , 0 3 

PUSHF = Push flags 11 0 o , , 1 0 0 9 

POPF = Pop flags I' 0 0 1 , , 0 1 8 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-1 



infel .. APPENDIXC' 

".:\" .~ "': . ~,'.'" 

Table C.1. Instruction Set Summary (Continued) 

Regliilemoiy With r;gister to efiher 

Immediate to register/memory 

Imms91ate to accumulator 

ADC. Add with .arry: 

Reg/memory with" register to either 

Immediate to register/memory 

Immediate to accumulator 

INC • Increment 

Reglsterlmemory 

Register 

SUB = Subtract 

Reg/memory and register to either 

Immediate from register/memory 

Immediate,from accumulator 

SBB = Subtract with borrow 

Reg/memory and register to either 

Imniediate"from register/memory 

Register-Byte 

Register-WOrd 

Memory-Byte 

Memo/y-Word 

10'0 1 

10 

10 

10 

10 

11 

10 o 0 

11 

10 

10 o 1 

11 o 0 

10 o 1 

11 '1 

10 

10 

o 1 

,0 0 

Formal 

o 1 1 1 01 

1, 0 o I 
1 1 o I 
o 0 o I 

wi mod reg rim 

5 wi modOOO rim data I data if 5 w=OI 

o 1 wi data dataifw",,1 I 

t wi mcdOOO rim 

o 0 reg I 

wi mod reg rim 

s wi mod 101 rim data I data if s w=OI 

wi data dataifw=1 I 

wi modOOl rim 

reg I 

I. wi mod reg rim 

1 o w mod reg rim 

0 ,~ w modlll rim- data data if s w=OI 

1 1 data dataifw=1 

,0 mod 0 11 rim 

0 

l' wi modl00 rim 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

C-2 

Clock 
Cycles 

3110 

4116 

314 

3110 

4116 

,314 

3115 

3110 

4116 

314 

3110 

4116 

314 

3115 

3 

3110 

3110 

3110 

314 

26-28 

35·37 

32-34 

41-43 

Comments 

8/16-bit 

8/16-bO 

alf6-bit 

8/16-bit 

8/16-bn 



APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

function format 
Clock Comments Cycles 

ARITHMETIC (Continued) 
IMUL = Integer multiply (signed): 11 1 1 1 o 1 1 wi mod 10 1 rim I 

Register-Byte 25-28 

Register-Word 34-37 
Memory-Byte 31-34 

Memory-Word 40-43 

!~'!'!' 

DIV = Divide (unsigned): 11 1 1 1 o 1 1 wi mod 110 rim I 

Register-Byte 29 

Register-Word 38 

Memory-Byte 35 

Memory-Word 44 

IDIV = Integer divide (signed): 11 1 1 1 o 1 1 wi mod 111 rim I 
Register-Byte 44-52 

Register-Word 53-61 

Memory-Byte 50-58 

Me'!l0ry-Word 59-67 

AAM = ASCliadiu,t for multiply 11 1 0 1 0 1 0 o 10 0 0 0 1 0 1 01 19 

AAO = ASCII adjust for divide 11 1 o 1 0 1 0 1 10 0 0 0 1 0 1 01 15 

CRW = Convert byte to word 11 0 0 1 1 0 0 o I 2 

CWO = Convert word to double word 11 0 0 1 1 0 0 1 I 4 

LOGIC 
Shlft/Rotate Instructions: 

Register/Memory by 1 11101 ooowi modm rim I 2115 

Register/Memory by CL 11 1 0 1 0 0 1 wi modm rim I 5+0/17+0 
, '" W,,,,,,,HWHeWW,,, 

m Instruction 
o 0 0 ROL 
o 0 1 ROR 
o 1 0 RCL 
o 1 1 RCR 
1 0 0 SHUSAL 
1 0 1 SHR 
111 SAR 

AND = And: 

Reg/memory and register to either 10 0 1 0 0 0 d wi mod reg rim I 3110 

Immediate to register/memory It 0 0 0 0 0 0 wi mod 1 00 rim I data I data if w-1 I 4116 

Immediate to accumulator 10 0 1 0 0 1 0 wi data I data ifw=1 I 314 8/16-bil 

TEST lIZ And funcllon 10 flags, no resull: 

Register/memory and register 11 0 0 0 0 1 0 wi mod reg rim I 3/10 

Immediate data and register/memory 11 1 1 1 0 1 1 wi modOOO rim I data I data ifw_1 I 4/10 

Immediate data and accumulator 11 0 1 0 1 0 0 wi data I data ifw=1 I 314 8116-bit 

OR= Or: 

Reg/memory and register to either 10 0 0 0 1 0 d wi mod reg rim I 3/10 

Immediate to register/memory 11 0 0 0 0 0 0 wi mod 0 0 1 rim I data I data ifw=1 I 4116 

Immediate to accumulator 10 0 0 0 1 1 0 wi data I dataifw=l I 314 8/16-bit 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystem~. 

C-3 



infel" APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Function 

lOGIC (ConIlnuad) 
XOR = Exclus'" or: 

Reg/memory and register to eit.her 

Immediate to register/memory 

Immediate to accumulator 

Not = Invert register/memory 

SmING,MANIPULAnON: 

MOVS = Move byte/Word 

CMPS = Compare byte/Word 

SCAS = Scan byte/Word 

LODS = Load byte/Wd to AUAX 

CONTROL TRANSFER 
CALL. call: 

Direct within segment 

Register memory indirect within segment 

Directintersegment 

Indirect"intersegment 

JMP = UnconditiOnal jump: 

Short/long, 

Direct within segment 

Register/memory indirect with segment 

Direct intersegment 

Indirect intersegment 

RET. Return from CHPS: 

Within segmer'!t 

With seg adding immed to SP 

Intersegment 

Intersegment adding immediate to SP 

JEiJZ = Jump on equal zero 

JUJNGE = Jump on less/not greater or equal 

JLE/JNG = Jump on less or equal/not greater 

Formal 

10 wi mod reg 'rim I 
wi mod 11 0 rim I data dataffw=1 

10 wi data I dataifw=l 

wi mod010 rim I 

11 o 0 o I disp-Iow disp-hour 

11 modQ10 rim J 
11 o 1 segmern; offset 

-

selector 
-

11 1 1 1 1 1 1 1 mod011 rim (mod ?11) 

I disp-Iow 

~ I disp-Iow disp-high 

1 I mod 1 00 rim 

o I segment offset , 

I selector 

LI1:..'..:1...:.1_1,-,1,-,-1_-,-11:..L..:m",0",d..:1.::0..:1_--,,,r/::.:....Jml (mod? 11) 

11 11 

11 01 I data-low data-high 

11 11 

11 1 o I data-low data-high 

10 0' o I disp 

10 o I disp 

10 o I disp 

Shaded areas indicate instructions not available in iAPX 86, 88 micro systems_ 

C·4 

Clock 
Cycles 

-3/10 

4/16 

314 

14 

22 

15 

12 

10 

StSn 

5+22n 

5t15n 

6+11n 

6t9n, 

15 

13/19 

23 

38 

14 

14 

26 

14 

11/17 

16 

18 

22 

25 

4/13 

4/13 

4/13 

Commen1s 

8/16-bit 

13ifJMP 
taken 

4ffJmp 
not taken 

~-



APPENDIXC 

Table C.1. Instruction Set Summary (Continued) 

Format 
Clock Comments Function Cycles 

Conlrol Transler (Continued) 
J8/JNAE = Jump on below/not above or equal 10 disp 4/13 

JBEJJNA = Jump on below or equallnot above 10 disp 4/13 

JP/JPE = Jump on parity/parity even 10 disp 4/13 

JD = Jump on overflow 10 disp 4/13 

JS = Jump on sign 10 disp 4/13 

JNE/JNZ = Jump on not equal/not zero 10 disp 4/13 

JNUJGE = Jump on not less/greater or equal 10 disp 4/13 

JNLEJJG = Jump on not less or equal/greater 10 disp 4/13 

JNB/JAE ;; Jump on not below/above or equal 10 disp 4/13 

JNBE/JA = Jump on not below or equal/above 10 disp 4/13 

JNP/JPO = Jump on not par/par odd 10 disp 4/13 

JNO = Jump on not overtlow 10 disp 4/13 

JNS = Jump on not sign 10 1 disp 5/15 

JCXZ = Jump on ex zero 11 disp 6/16 

LOOP = Loop ex times 11 disp 6/16 

lOOPZjLOOPE = Loop while zero/equal 11 0 disp 16 JMPtakenl 

LOOPNZ/LOOPNE = loop while not ze'ra/equal 11 1 1 0 disp JMPnottaken 

INT= Interrupt: 

Type specified 11 11 type 47 if INTtakenl 

Type 3 11 o 1 45 if INTnot 

INTO = Interrupt on overflow 11 1 1 1 o 1 48/4 taken 

IRET = Interrupt return 11 28 

PROCESSOR CONTROL 

CLC = Clear carry 11 1 01 

CMC = Complement carry 11 11 

STC = Set carry 11 1 1 1 1 
CLO = Clear direction 11 o 1 
STD = Set direction 11 11 

CLI = Clear interrupt 11 o 1 
STI = Set interrupt 11 11 

HLT= Hall 11 1 o 1 

WAIT = Wait 11 0 1 11 if teSt =0 

LOCK = Bus lock prefix 11 1 0 0 0 o 1 

ESC = Processor extension escape 11 TI mod L L L rim 

(TIT LLL are opcode to processor extension) 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

c-s 



, inial .. APPENDIXC 

FOOTNOTES 

The Effective Address (EA) of the Il;lemory operand reg is assigned according to the following: 
is computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 
if mod = 00 then DISP = 0*, disp-Iow and disp-high 
are absent 
if mod = 01 then DISP = disp-Iow sign-extended to 
16-bits, disp-high is absent 
if mod = 10 then DISP = disp-high:disp-Iow 

if rim = 000 then EA = (BX) + (SI) + DISP 
if rim = 00 1 then EA = (BX) + (01) + DISP 
if rim = 010 then EA = (BP) + (SI) + DISP 
if rim = 011 then EA = (BP) + (01) + DISP 
if rim = 100 then EA = (SI) + DISP 
if rim = 101 then EA = (01) + DISP 
if rim = 110 then EA = (BP) + DISP* 
if rim = 111 then EA = (BX) + DISP 

DISP follows 2nd byte of jnstruction (before data 
if required) 

*exc~pt if mod = 00 and rim = 110 then EA = disp-high:disp-Iow. 

SEGMENT OVERRIDE PREFIX 

001 reg. 1 1 01 

C-6 

Segment 
reg Register 

00 ES 
01 CS 
10 SS 
11 OS 

REG is assigned according to the 
following table: 

16-Bit (w=l) 

000 AX 
001CX 
010 OX 
011 BX ' 
100SP 
101 BP 
110 SI 
111 Ol 

8-Bi,t (w=o) 

OOOAL 
001CL 
0100L 
011 BL 
l00AH 
101 CH 
1100H 
111 BH 

The physical address of all operands 
addressed by the BP register are com
puted using the SS segment register. The 
physical addresses of the destination ' 
operands of the string primitive operation 
(those addTessed by the 01 register) are 
computed using the ES segment, which 
may not be overridden. 



lSTBYTE 

HEX BINARY 

00 
01 
02 
03 
04 
OS 
06 
07 
08 
09 
OA 
OB 
oc 
OD 
OE 
OF 
10 
11 

12 
13 
14 

15 
16 
17 
18 
19 
lA 

IB 
lC 

10 
IE 
IF 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 

0000 0000 
0000 0001 
0000 0010 
0000 0011 
0000 0100 
0000 0101 
0000 0110 
0000 0111 
0000 0100 
0000 1001 
0000 1010 
0000 1011 
0000 1100 
0000 
0000 
0000 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 

0001 

0001 
0001 
0001 
0001 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 
0010 

1101 
1110 
1111 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1100 

APPENDIXC 

Table C.2. Machine Instruction Decoding Guide 

lNDBYTE 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
MOD REG RIM 
DATA-8 
DATA-LO 

BYTES 3,4,5,6 

(DISP-LO),(DISP·ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 

DATA-ID 

(DISP-LO),(DISP-ID) 
(DISP-LOl,(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 

DATA-ID 

(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),<DISP-ID) 

DATA-ID 

(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO).(DISP-ID) 
(DISP-LO),(DISP-ID) 

DATA-ID 

(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 

DATA-ID 

(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 
(DISP-LO),(DISP-ID) 

DATA-ID 

C-7 

ASM.86 INSTRUCTION FORMAT 

ADD 
ADD 
ADD 
ADD 
ADD 
ADD 
PUSH 
pop 

OR 
OR 
OR 
OR 
OR 

REG8IMEM8,REG8 
REG161EM16,REG16 
REG8,REG8IMEM8 
REGl 6,REG 161MEM16 
AL,IMMED8 
AX,IMMED16 
ES 
ES 
REG8IMEMS,REG8 
REGl6IMEM16,REG16 i, " 
REG8,REG8IMEM8 
REG16,REG161MEM16 
AL,IMMED8 

OR AX,IMMED16 " " " 
, ': 

PUSH CS , I,; ; trj 
~ uaed) REG8JMEM8,REG8 '~;'; ¥,~, \~'\; ;'; ~i,:, 
ADC REG161MEM16,RE<f16:;';! I';' 
ADC REG8,REG8IMEM8:', P/ , " 

ADC REG16,REG161MEM16, " 
ADC AL,IMMED8 :" 
ADC 
PUSH 
pop 

SBB 
SBB 
SBB 
SBB 
SBB 
SBB 
PUSH 
pop 

AND 
AND 

AND 
AND 
AND 
AND 
ES: 
DAA 
SUB 
sUB 
SUB 
SUB 
SUB 
SUB 

AX,IMMED16 
SS 
SS 
REG8IMEM8,REG8 
REGl6IMEM16,REG16 " 
REG8,REG8JMEM8 
REG 16,REG161MEM16 
AL,IMMED8 
AX,IMMEDI6 
OS 
OS 
REG8IMEM8,REG8 
REG16IMEM16,REGlti 
REG8,REG8JMEM8 ' , 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM·86INSTRUCflON FORMAT 

HEX BINARY 

2E 0010 1110 cs: (segment override prefix) 

2F 0010 1111 DAS 

30 0011 0000 MOD REG RIM (DlSP·LO).(DISP·ID) XOR REG8IMEM8.REG8 

31 0011 0001 MOD REG RIM (DlSP.LO).(DISP·ID) XOR REG I 6IMEMI 6.REG16 

32 0011 0010 MOD REG RIM (DISP·LO).(DISP·ID) XOR REG8.REG8IMEM8 

33 0011 0011 MOD REG RIM (DISP·LO).(DISP·ID) XOR REG16.REGI6IMEMI6 

34 0011 0100 DATA·8 XOR AL,IMMED8 

35 0011 0100 DATA·LO DATA·ID XOR AX,IMMEDI6 

36 0011 OliO SS: (segment override prefix) 

37 0011 OUI AAA 

38 0011 1000 MOD REG RIM (DISP·LO).(DISP·ID) CMP REG8IMEM8.REG8 

39 0011 1001 MOD REG RIM (DISP·LO).(DISP·ID) CMP REGI6IMEMI6.REG 16 

3A 0011 10tO MOD REG RIM (DISP·LO).(DISP·ID) CMP REG8.REG81MEM8 

3B 0011 lOll MOD REG RIM (DlSP·LO).(DISP·ID) CMP REG 16.REG I 6IMEM 16 

3C 0011 1100 DATA·8 CMP AL,IMMED8 

3D 0011 1101 DATA·LO DATA·ID CMP AX.IMMEDI6 

3E 0011 1110 OS: (segment override prefix) 

3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC ex 
42 0100 0010 INC OX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 

45 0100 0101 INC BP 
46 0100 OliO INC SI 
47 0100 0111 INC DI 
48 0100 1000 DEC AX 
49 0100 1001 DEC ex 

, 
4A 0100 1010 DEC OX 
4B 0100 lOll DEC BX 

4C 0100 1100 DEC SP 

40 0100 1101 DEC BP 
4E 0100 1110 DEC SI 
4F 0100 1111 DEC DI 
50 0101 0000 PUSH AX 
51 0101 0001 PUSH ex 
52 0101 0010 PUSH OX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP 
55 0101 0101 PUSH BP 
56 0101 OliO PUSH SI 
57 0101 0111 PUSH DI 
58 0101 1000 POP AX 
59 0101 1001 POP ex 
SA 0101 1010 POP OX 
5B 0101 lOll POP BX 

C-8 



in1:et APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
lNDBYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

SC 0101 1100 pop SP 

SO 0101 1101 pop BP 

SE 0101 1110 pop SI 
SF 0101 1111 pop DI 
60 0110 0000 PUSHA (186/8 ONLY) 

61 0110 0001 POPA (186/8 ONLY) 

62 0110 0010 MOD REG RIM BOUND REGl6,MEMI6(186/8 ONLY) , 

63 0110 0011 (not used) 

64 0110 0100 (not used) 

65 0110 0101 (not used) 

66 0110 0110 (not used) 

67 0110 0111 (not used) 

68 0110 1000 DATA-LO DATA-In PUSH IMMED16(186/8 ONLY) 

69 0110 1001 MOD REG RIM DATA-LO.DATA-In IMUL IMMED16(186/8 ONLY) 

6A 0110 1010 DATA-8 PUSH IMMED8(186/8 ONLY) 

6B 0110 1011 MOD REG RIM DATA-8 IMUL IMMED8(186/8 ONLY) 

6C 0110 1100 INS MEM8,DX(186/8 ONLY) 

60 0110 1101 INS MEMI6,DX(I86/8 ONLY) 

6E 0110 1110 ours MEM8,CX(186/8 ONLY) 

6F 0110 1111 ours MEMI6,DX(186/8 ONLY) 
70 0111 0000 IP;INCS 10 SHORT-LABEL 

71 0111 0001 IP-INC8 JNO SHORT-LABEL 

72 0111 0010 IP-INC8 ml SHORT-LABEL 
JNAEI 
lC 

73 0111 0011 IP-INC8 JNBI SHORT-LABEL 
JAEI 
JNC 

74 0111 0100 IP-INC8 JElJZ SHORT-LABEL 
75 0111 0101 IP-INC8 JNEIJNZ SHORT-LABEL 
76 0111 0110 IP-INC8 mElJNA SHORT-LABEL 
77 0111 0111 IP-INC8 JNBEI SHORT-LABEL 

lA 
78 0111 1000 IP-INC8 JS SHORT-LABEL 
79 0111.· 1001 IP-INC8 JNS SHORT-LABEL 
7A 0111 1010 IP-INCg JPIJPE SHORT-LABEL 
7B 0111 1011 IP-INC8 JNPflPO SHORT-LABEL 
7C 0111 1100 IP-INC8 JU SHORT-LABEL 

JNGE 
7D 0111 1101 IP-INC8 JNLJGE SHORT-LABEL 
7E 0111 1110 IP-INC8 JLEI SHORT-LABEL 

JNG 
7F 0111 1111 IP-INC8 JNLEI SHORT-LABEL 

JG 

80 1000 0000 MOD 000 RIM (DISP LO),(DISP In) ADD REG8IMEM8.IMMED8 
DATA-S 

e-g 



intel .. APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBYTE 
ZNDBYTE . BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY ., 
80 1000 0000 MOD 001 RIM (DISP-LO).(DISP·HI). OR REG8IMEMS,IMMEDS 

! 
DATA-8 

80 1000 000 MOD 010 RIM (DISP-LO).(DISP-HI). ADC REG8IMEMS,IMMEDS 
DATA-8 

80 1000 0000 MOD on RIM (DISP-LO).(DISP-HI). SBB REG8IMEMS,IMMED8 
DATA·8 

SO 1000 0000 MOD 100 RIM (DISP.LO~.(DISP.ID). AND REG8IMEMS,IMMED8 
DATA·8 

8G 1000. 0000 MOD 101 RIM (DISP·LO).(DISP-HI). SUB REG8IMEMS,IMMED8 
DATA-S 

80 1000 0000 MODllORIM (DISP-LO).(DISP-HI). XOR REG8IMEMS,IMMEDS 
DATA·8 

80 1000 0000 MOD III RIM (DISP·LO).(DISP·HI). CMP REG8IMEMS,IMMED8 
DATA-8 

St. 1000 0001 MOD 000 RIM (DISP-LO).(DISP-ID). ADD REG 161MEM16,IMMED16 
DATA-LO.DATA·ID 

SI 1000 0001 MODoot RIM (DISP·LO).(DISP-ID). OR REG 161MEM16,IMMED16 
DATA·LO.DATA-ID 

81 iOOO 0001 MOD 010 RIM (DISP·LO).(DISP-HI). ADC REGl61MijM16,IMMED16 
DATA·LO.DATA-ID 

81 1000 ,0001 MOD 011 RIM (DISP·LO).(DISP-HI). SBB REG161MEM16,IMMED16 
DATA·LO.DATA·ID 

81 1000 0001 MOD 100 RIM (DISP·LO).(DISP·ID). AND REG 161MEM16,IMMED16 
DATA-LQ.DATA-ID 

81 lOOG 0001 MOD 101 RIM (DISP-LO).(DISP-ID). SUB REG 161MEM16,IMMED16 
DATA-LO.DATA-ID 

81 1000 0001 MOD 110 RIM (DISP-LO).(DISP-ID). XOR REGl61MEM16,IMMED16 
DATA·LO.DATA-ID 

SI 1000 000,1 MOD III RIM (DISP-LO).(DISP-ID). CMP REG161MEM16,IMMED16 
DATA·LO.DATA-ID 

82 1000 0010 MOD 000 RIM (DISP-LO).(DISP-ID). ADD REG8IMEMS,IMMED8 
DATA·8 

82 1000 0010 MOD 001 RIM (not UBCd) 

82 1000 0010 MOD 010 RIM (DISP-LO).(DISP-HI). ADC REG8IMEM8,IMMED8 
DATA·8 

82 1000 0010 MOD 011 RIM (DISP-LO).(DISP.HI). SBB REG8/MEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 100 RIM (not UBCd) 

82 1000 0010 MOD 101 RIM (DISP·LO)'(PISP-ID). SUB R15G8IMEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 110 RIM (not UBCd) 

82 1000 0010 MOD 111 RIM (DISP·LO).(DISP-ID). CMP .• REG8JMEMSJMMEDS 
DATA-8 

83 IOOG 01>11 MOD 000 RIM (DISP-LO).(DISP-ID). APD REG 16/MEMI6.,IMMED8 
DATA-SX 

83 1000 0011 MODOOllUM (notUBCd) 

. C-10 



int:et APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

ISTBYlE 
lNDBYlE BYlES 3,4,5,6 ASM-86 INSTRUcnON FORMAT 

HEX BINARY 

83 1000 0011 MOD 010 RIM (DISP·LO),(DISP-HI), ADC REGI6IMEMI6JMMED8 

DATA-SX 

83 1000 0011 MOD 011 RIM (DISP·LO),(DISP-HI), SBB REG16IMEMI 6JMMED8 

DATA-SX 

83 1000 0011 MOD 100 RIM (not used) 

83 1000 0011 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG16IMEMI 6JMMED8 

DATA-SX 

83 1000 Oil MOD 110 RIM (not used) 

83 1000 0011 MOD III RIM (DISP-LO),(DISP-HI), CMP REGI6IMEMI6JMMED8 

DATA-SX 

84 1000 0100 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG8,MEM8,REG8 

85 1000 9101 MOD REG RIM (DISP·LO),(DISP-HI) TEST REG I 6IMEMI 6.REG16 

86 1000 0110 MOD REG RIM (DISP-LO).(DISP-HI) XCHG REG8.REGSlMEM8 

87 1000 0111 MOD REG RIM (DISP-LO).(DISP-HI) XCHG REGI6.REGI6,MEMI6 

88 1000 1000 MOD REG RIM (DISP-LO).(DISP-HI) MOV REG8IMEM8.REG8 

89 1000 1001 MOD REG RIM (DISP-LO).(DISP-Hl) MOV REG161MEM161REG16 

8A 1000 1010 MOD REG RIM (DISP-LO).(DISP-HI) MOV REG8.REG8IMEM8 

8B 1000 lOll MOD REG RIM (DISP-LO).(DISP-HI) MOV REGI6.REG16IMEMI6 

8C 1000 1100 MODOSRRIM (DISP·LO).(DISP·HI) REG 16IMEMI6.SEGREG 

8C 1000 1100 MODI·RM (not used) 

8D 1000 1101 MOD REG RIM (DISP-LO).(DISP·HI) LEA REG16,MEMI6 

8E 1000 1110 MODOSRRIM (DISP·LO),(DISP-HI) MOV SEGREG,REGI6IMEMI6 

8E 1000 1110 MODI·RIM (not used) 

8F 1000 1111 MOD 000 RIM (DISP·LO).(DISP·HI) 

8F 1000 1111 MOD 001 RIM (not used) 

8F 1000 1111 MOD 010 RIM (not used) 

8F 1000 1111 MODOl! RIM (not used) 

8F 1000 1111 MOD 100 RIM (not used) 

8F 1000 1111 MOD 101 RIM (not used) 

8F 1000 1111 MOD 110 RIM (not used) 

90 1001 0000 NOP (exchange AX.AX) 

91 1001 0001 XCHG AX,ex 

92 1001 0010 XCHG AX,oX 

93 1001 0011 XCHG AX.BX 

94 1001 0100 XCHG AX.SP 

9S 1001 0101 XCHG AX,BP 

96 1001 0110 XCHG AX.SI 

97 1001 0111 XCHCi AX,oI 

98 1001 1000 CBW 
99 1001 1001 CWO 
9A 1001 1010 DISp·LO DISP-HI.SEG-LO. CALL FAR_PROC 

SEQ-HI 

9B 1001 lOll WAIT 

9C 1001 1100 PUSHF 

9D 1001 1101 POPF 

9E 1001 1110 SAHF 

C-11 



in1'et APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBVTE 
lNDBYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

9F 1001 1111 LAHF 

AO 1010 0000 ADDR-LO ADDR-In MOV AL,MEMS 

Al 1010 0001 ADDR-LO ADDR-In MOV AX,MEM16 

A2 1010 0010 ADDR-LO ADDR-In MOV MEMS,AL 

A3 1010 0011 ADDR-LO ADDR-In MOV MEM16,AL 

A4 1010 0100 MOVS DEST-STRS,SRC-STRS 

AS 1010 0101 MOVS DEST -STR16,SRC-STR16 

A6 1010 0110 CMPS DEST -STRS,SR-STR8 

A7 1010 0111 CMPS DEST -STR.16,SRC-STR16 

AS 1010 1000 DATA-8 TEST ALJMMEDS 

A9 1010 1001 DATA-LO DATA-In TEST AXJMMED16 

AA 1010 1010 STOS DEST-STRS 

AD 1010 1011 STOS DEST-STR16 

AC 1010 1100 LaDS SRC-STRS 

AD 1010 1101 LODS SRC-STR16 

AE 1010 1110 SCAS DEST-STR8 

AF 1010 1111 SCAS DEST-STR16 

DO lOll 0000 DATA-S MOV ALJMMEDS 

B1 1011 0001 DATA-S MOV CL,IMMEDS 

B2 1011 0010 DATA-S MOV DLJMMEDS 

B3 1011 0011 DATA-S MOV BL,IMMEDS 

B4 lOll 0100 DATA-S MOV AHJMMEDS 

BS 1011 0101 DATA_S MOV CHJMMEDS 

B6 lOll 0110 DATA-8 MOV DHJMMEDS 

B7 1011 0111 DATA-8 MOV BH,IMMEDS 

BS 1011 1000 DATA-La DATA-In MOV AX,IMMED16 

B9 1011 1001 DATA-La DATA-In MOV CX,IMMEDI6 

BA lOll 1010 DATA-La DATA-In MOV DX,IMMED16 

BB 1011 lOll DATA-La DATA-In MOV BX,lMMEDI6 

BC 1011 1100 DATA-La DATA-In MOV SP,lMMED16 

BD lOll 1101 DATA-LO DATA-In MOV BPJMM.ED16 

BE 1011 1110 DATA-LO DATA-In MOV SlJMMEDI6 

BF 1011 1111 DATA-LO DATA-In MOV DIJMMED16 

CO 1100 0000 MOD 000 RiM DATA-S ROL REG8IMEMS.IMMED8(tS618 ONLY) 

CO 1100 0000 MOD 001 RiM DATA-S ROR REG8IMEMS,IMMED8(18618 ONLY) 

CO 1100 0000 MOD 010 RiM DATA-S RCL REG8IMEM8.IMMED8(t8618 ONLY) 

CO 1100 0000 MOD 011 RiM DATA-S OCR REG8IMEM8.IMMED8( 18618 ONLY) 

CO 1100 0000 MOD 100 RiM DATA-8 SHLISAL REG8IMEM8.IMMED8(18618 ONLY) 

CO llOO 0000 MOD 101 RiM DATA-8 SHR REG8IMEM8.IMMED8(18618 ONLY) 

CO llOO 0000 MOD III RIM DATA-8 SAR REG8IMEMS.IMMED8(18618 ONLY) 

C1 1100 0001 MOD 000 RIM DATA-8 ROL REG16IMDM16.IMMED8(18618 ONLY) 

CI 1100 0001 MOD 001 RiM DATA-8 ROR REG161MDM 16.IMMED8(18618 ONLY) 

C1 1100 0001 MOD 010 RiM DATA-8 RCL REG16IMDM16.IMMED8(18618 ONLY) 

CI 1100 0001 MOD Oil RIM DATA-8 RCR REG161MDMI6JMMED8(18618 ONLY) 

CI 1100 0001 MOD 100 RiM DATA-8 SHLISAL REG16IMDMI6.IMMED8(18618 ONLY) 

C1 1100 0001 MOD 101 RiM DATA-8 SHR REGI6IMDMI6,IMMED8(18618 ONLY) 

C-12 



intet APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

1ST BYTE 
lNDBYTE BYTES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

CI 1100 0001 MOD III RIM DATA·S SAR REGI6IMDMI6,IMMEDS(IS618 

ONLY) 

C2 1100 0010 DATA·LO DATA·1n RET IMMEDI6(intraseg) 

C3 1100 0011 RET (intrasegment) 

C4 1100 0100 MOD REG RIM (DlSP·LO),(DISP·In) LES REG16,MEMI6 

C5 1100 0101 MOD REG RIM (DISP·LO),(DISP·In) LOS REG16,MEMI6 

C6 1100 0110 MOD 000 RIM (DISP·LO),(DISP·In), MOV MEMS,IMMED8 

DATA·S 

C6 1100 0110 MOD 001 RIM (not used) 

C6 1100 0110 MOD 010 RIM (not used) 

C6 1100 0110 MOD 011 RIM (not used) 

C6 1100 0110 MOD 100 RIM (not used) , 
C6 1100 0110 MOD 101 RIM (not used) 

C6 1100 0110 MOD 110 RIM (not used) 

C6 1100 0110 MOD 111 RIM (not used) 

C7 1100 0111 MOD 000 RIM (DISp·LO),(DISP·In), MOV MEMI6,IMMEDI6 

DATA·LO.DATA·1n 

C7 1100 0111 MOD 001 RIM (not used) 

C7 1100 0111 MOD 010 RIM (not used) 

C7 1100 0111 MOD 011 RIM (not used) 

C7 1100 0111 MOD 100 RIM (not used) 

C7 1100 0111 MOD 101 RIM (not used) 

C7 1100 0111 MOD 110 RIM (not used) 

C7 1100 0111 MOD 111 RIM (not used) 

CS 1100 1000 DATA·LO DATA·In,LEVEL ENTER IMMEDI6,IMMEDS(lS6/S ONLY) 

C9 1100 1001 LEAVE (lS618 ONLY) 

CA 1100 1010 DATA·LO DATA·1n RET IMMEDl6 (intersegment) 

CB 1100 lOll RET (intersegmeot) 

CC 1100 1100 INf 3 

CD 1100 1101 DATA·8 INf IMMEDS 

CE 1100 1110 INfO 

CF 1100 1111 IRET 

DO 1101 0000 MOD 000 RIM (DISP·LO),(DISP·In) ROL REGSIMEMS,l 

DO 1101 0000 MOD 001 RIM (DISP·LO),(DISp·ln) ROR REG8IMEMS,I 

DO 1101 0000 MOD 010 RIM (DISP·LO),(DISP·In) RCL REGSIMEMS,I 

DO 1101 0000 MOD 011 RIM (DISP·LO),(DISP·In) RCR REGSIMEM8,l 

DO 1101 0000 MOD 100 RIM (DIS P·LO),(DISP·In) SAUSHL REG8IMEM8,l 

DO 1101 0000 MOD 101 RIM (DISP·LO),(DISP·In) SHR REG8IMEM8,I 

DO 1101 0000 MOD 110 RIM (not used) 

DO 1101 0000 MaDill RIM (DISP·LO),(DISP·In) SAR REG8IMEM8,I 

Dl 1101 0001 MOD 000 RIM (DISP·LO),(DISp·ln) SAR REGI6IMEMI6,I 

Dl 1101 0001 MOD 001 RIM (DISP·LO),(DISP·In) ROR REG16IMEMI6,1 

DI 1101 0001 MOD 010 RIM (DISP·LO),(DISP·In) RCL REGI6IMEMI6,I 

Dl 1101 0001 MOD 011 RIM (DISP·LO),(DISP·In) RCR REG16IMEMI6,l 

Dl 1101 0001 MOD 100 RIM (DISP·LO),(DISP·In) SAUSHL REGI6IMEMI6,l 

DI 1101 0001 MOD 101 RIM (DISP·LO),(DISp·ln) SHR REGI6IMEMI6,I 

Dl 1101 0001 MOD 110 RIM (oot used) 

C-13 



APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

lSTBY1E 
2NDBY1E BY1ES 3,4,5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

D1 1101 0001 MOD 111 RIM (DISP·LO),(DISP·ID) SAR REG161MEM16,1 

02 1101 0010 MOD 000 RIM (DISP·LO),(DISP·ID) ROL REG8IMEM8,CL 
02 1101 0010 MOD 001 RIM (DISP·LO),(DISP·ID) ROR REG8IMEM8,CL 

02 1101 0010 MOD 010 RIM (DISp·LO),(DISP·ID) RCL REG8IMEM8,CL 
02 1101 DOlO MOD 011 RIM (DISP·LO),(DISP·ID) RCR REG8IMEM8,CL 

02 1101 0010 MOD 100 RIM (DISP·LO),(DISP·ID) SALISHL REG8IMEM8,CL 

02 1101 DOlO MOD 101 RIM (DISP·LO),(DISP·ID) SHR REG8IMEM8,CL 

02 1101 0010 MOD 110 RIM (not used) 

02 1101 0010 MOD 111 RIM (DISP·LO),(DISP·ID) SAR REG8IMEM8,CL 

03 1101 0011 MOD 000 RIM (DISP·LO),(DISP·ID) ROL REGI6,MEMI6,CL 

03 1101 0011 MOD 001 RIM (DISP·LO),(DISP·ID) ROR REG16,MEMI6,CL 

03 1101 0011 MOD 010 RIM (DISP·LO),(DISP·ID) RCL REG16,MEMI6,CL 
03 1101 0011 MOD 011 RIM (DISP·LO),(DISP·ID) RCR REG16,MEMI6,CL 
03 1101 0011 MOD 100 RIM (DISP·LO),(DISP·ID) SALISHL REGI6,MEMI6,CL 
03 1101 0011 MOD 001 RIM (DISP·LO),(DISP·ID) SHR REG16,MEM16,CL 
03 1101 0011 MOD 110 RIM (not used) 

03 1101 0011 MOD 111 RIM (DISP·LO),(DISP·ID) SAR REGI6,MEMI6,CL 
D4 1101 0100 00001010 AAM 
05 1101 0101 00001010 AAD 
D6 1101 0110 (not used) 

D7 1101 0111 XLAT SOURCE-TABLE 

08 1101 1000 MOD 000 RIM 
lXXX MODYYYRIM (DISP·LO),(DISP·ID) ESC OPCODE,SOURCE 

OF 1101 1111 MOD 111 RIM 
EO 1110 0000 Ip·INC·8 LOOPNFJI SHORT· LABEL 

LOOPNZ 

EI 1110 0001 IP·INC·8 LOOPFJ SHORT· LABEL 
LOOPZ 

E2 1110 0010 Ip·INC·8 LOOP SHORT·LABEL 
E3 1110 0011 IP·INC·8 ]CXZ SHORT· LABEL 
E4 1110 0100 DATA·8 IN AL,IMMED8 
E5 1110 0101 DATA·8 IN AX,IMMED8 
E6 1110 0110 DATA·8 OUT AL,IMMED8 
E7 1110 0111 DATA·8 OUT AX,IMMED8 
E8 1110 1000 Ip·INC·LO Ip·PINC·ID CALL NEAR·PROC 
E9 1110 1001 Ip·INC·LO IP·INC·ID IMP NEAR· LABEL 
EA 1110 1010 IP·LO IP·ID,CS-LO,CS·ID IMP FAR·LABEL 
EB 1110 1011 IP·INC8 IMP SHORT· LABEL 

EC 1110 1100 IN AL,DX 

ED 1110 1101 IN AX,DX 
EE 1110 1110 OUT AL,DX 
EF 1110 1111 OUT AX,DX 
PO 1111 0000 . LOCK (prefix) 

Fl 1111 0001 (not used) 

F2 1111 0010 REPNEJREPNZ 
F3 1111 0011 REPIREPElREPZ 

C-14 



intet APPENDIXC 

Table C.2. Machine Instruction Decoding Guide (Continued) 

1ST BYTE 
lNDBYTE BYTES 3,4.5,6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

F4 1111 0100 HLT 

F5 1111 0101 CMC 

F6 1111 0110 MOD 000 RIM (DISP·LO),(DISP.ID), TEST REG8IMEM8,IMMED8 

DATA·8 

F6 1111 0110 MOD 001 RIM (not used) 

F6 1111 0110 MOD 010 RIM (DISP·LO),(DISP·ID) NOT REG8IMEM8 

F6 1111 0110 MOD 011 RIM (DISP·LO),(DlSP·ID) NEG REG8IMEM8 

F6 1111 0110 MOD 100 RIM (DISP-LO),(DISP-ID) MUL REG8IMEM8 

F6 1111 0110 MOD 101 RIM (DISP-LO),(DISP·ID) IMUL REG8IMEM8 

F6 1111 0110 MOD 110 RIM (DISP·LO),(DISP·ID) DIV REG8IMEM8 

F6 1111 0110 MOD III RIM (DISPLO),(DISPID) IDIV REG8IMEM8 

F7 1111 0111 MOD 000 RIM (DISP-LO),(DlSP-ID), TEST REG 161MEM16,IMMED16 

DATA-LO,DATA-ID 

F7 1111 0111 MOD 001 RIM (not used) 

F7 1111 0111 MOD 010 RIM (DISP·LO),(DISP-ID) NOT REG 16IMEM16 

F7 1111 0111 MOD 011 RIM (DlSP-LO),(DISP-ID) NEG REGl6IMEM16 

F7 1111 0111 MOD 100 RIM (DISP-LO),(DISP-ffi) MUL REGl6IMEM16 

F7 1111 0111 MOD 101 RIM (DISP-LO),(DISP-ffi) IMUL REG16IMEM16 

F7 1111 0111 MOD 110 RIM (DISP·LO),(DISP-ffi) DIV REGl6IMEM16 

F7 1111 0111 MOD 111 RIM (DISP-LO),(DISP-ffi) IDIV REG 16IMEM16 

F8 1111 0100 CLC 

F9 1111 1001 STC 

FA 1111 1010 CLI 

FB 1111 1011 STI 

FC 1111 1100 CLD 

FD 1111 1101 STD 

FE 1111 1110 MOD 000 RIM (DISP-LO),(DlSP-ffi) INC REG8IMEM8 

FE 1111 1110 MOD 001 RIM (DISP-LO),(DISP-ffi) DEC REG8IMEM8 

FE 1111 1110 MOD 010 RIM (not used) 

FE 1111 1110 MOD 011 RIM (not used) 

FE 1111 1110 MOD 100 RIM (not used) 

FE 1111 1110 MOD 101 RIM (not used) 

FE 1111 1110 MOD 110 RIM (not used) 

FE 1111 1110 MOD 111 RIM (not used) 

FF 1111 1111 MOD 000 RIM (DISP-LO),(DISP-ffi) INC MEM16 

FF 1111 1111 MOD 001 RIM (DlSP-LO).(DlSP-ffi) DEC MEM16 

FF 1111 1111 MOD 010 RIM (DISP·LO),(DlSP-ffi) CALL REGl6IMEMI6(intra) 

FF 1111 1111 MODOl! RIM (DIS P-LO),(DISP-ffi) CALL MEMI6(intersegment) 

FF 1111 1111 MOD 100 RIM (DISP-LO),(DISP-ffi) IMP REG16IMEMI6(intra) 

FF 1111 1111 MOD 101 RIM (DISP-LO),(DISP-ffi) IMP MEMI6(intersegment) 

FF 1111 1111 MOD 110 RIM (DISP-LO),(DlSP-ffi) PUSH MEM16 

FF 1111 1111 MOD III RIM (not used) 

C-15 



LO 
H I 0 I 

ADD ADD 
0 

b,f,r/m w,f,r/m 

ADC ADC 
I 

b,f,rim w,f,rim 

AND AND 
2 

b,f,r/m w,f,r/m 

XOR XOR 
3 

b,f,r/m w,f,rJm 

INC INC 
4 

AX CX 

PUSH PUSH 
5 

AX CX 

6 PUSHA POPA 

7 10 JNO 

Immed Immed 
8 

b,r/m w,r/m 

XCHG XCHG 
9 

AX CX 

MOV MOV 
A 

m-AL m ........ AX 

MOV MOV 
B 

j--->AL i--->CL 

Shift Shift 
C 

b,i w,i 

Shift Shift 
D 

b W 

LOOPNZI LOOPz} 
E 

LOOPNE LOOPE 

F LOCK 

APPENDIXC 

Table C.3. Mnemonic Encoding Matrix 

2 3 

ADD ADD 

b,t,rim w,t,r/m 

ADC ADC 

b,t,rlm w,t,rim 

AND_ AND 

b,l,rlm w,t,r/m 

XOR XOR 

b,t,r/m w,t,rim 

INC INC 

DX BX 

PUSH PUSH 

DX BX 

BOUND 

w,f,r/m 

JBI JNBI 

JNAE JAE 

lromed Immed 

b,r/m is,r/m 

XCHO XCHO 

DX BX 

MOV MOV 

AL--+m AX~m 

MOV MOV 

i-~DL i--->BL 

RET. 

(i+SP) 
RET 

Shift Shift 

b,' W,' 

LOOP JCXZ 

REP 
REP 

Z 

where' 

modOr/m 

Immed 

Shift 

Grp I 

Gcp2 

4 5 6 7 8 9 A 

ADD ADD PUSH POP OR OR OR 

b,ia w,ia ES ES b,f,r/m w,f,rim b,t,rlm 

ADC ADC PUSH POP SBB SBB SBB 

h,i w,i SS SS b,f,r/m w,f,rlm b,t,rim 

AND AND SE~ SUB SUB SUB 
DAA 

b,i w,i =ES b,f,rim w,f,r/m b,t,rlm 

XOR XOR SE~ CMP CMP CMP 

b,i w,i =SS 
AAA 

b,f,rim w,f,rim b,t,rlm 

INC INC INC INC DEC DEC DEC 

SP BP SI DI AX CX DX 

PUSH PUSH PUSH PUSH POP POP POP 

SP BP SI DI AX CX DX 

PUSH IMUL PUSH 

w,i w,i h,i 

JEI JNEI !BEl JNBEI JPI 

JZ }NZ JNA JA 
JS JNS 

JPE 

TEST TEST XCHG XCHG MOV MOV MOV 

b,r/m w,r/m b,r/m w,r/m b,f,r/m w,f,r/m b,t,rim 

XCHO XCHG XCHG XCHG CALL 

SP BP SI DI 
CBW CWD 

I,d 

TEST TEST 
MOVS MOVS CMPS CMPS 

b,i,a w,j,a 
STOS 

MOV MOV MOV MOV MOV MOV MOV 

i--->AH i--->CH j--->DH i--->BH i--->AX i-4CX i--->DX 

MOV MOV RET. 
LES LOS 

b,i,r/m w,i,r/m 
ENTER LEAVE 

1.(i+SP) 

ESC ESC ESC 
AAM AAD XLAT 

0 I 2 

IN IN OUT OUT CALL JMP JMP 

b W b W d d I,d 

Gcpl Grp 1 
HLT CMC CLC STC CLI 

b,r/m w,r/m 

000 001 OlD Oil 100 101 

ADD OR ADC SBB AND SUB 

ROL ROR RCL RCR SHUSAL SHR 

TEST - NOT NEG MUL IMUL 

INC 
CALL 

DEC 
id 

b = byte operation 
d=direct 
f = from CPU reg 
i = immediate 
ia = immed. to accum. 
id = indirect 
is = immed. byte, sign ext. 
I = long Ie. intersegment 

CALL 

Lid 

C-16 

JMP JMP 

id Lid 

m=memory 
rim = EA is second byte 
si = short intrasegment 
sr = segment register 
t=toCPUreg 
v=variable 
w = word operation 

B 

OR 

w,t,r/m 

SBB 

w,t,r/m 

SUB 

w,t,rim 

CMP 

w,t,rim 

DEC 

BX 

POP 

BX 

IMUL 

b,i 

JNPI 

JPO 

MOV 

w,t,r/m 

WAIT 

STOS 

MOV 

HBX 

RET 

I 

ESC 

3 

JMP 

si,d 

STI 

110 

XOR 

-

DIY 

PUSH 

C D E F 

OR OR PUSH 

b,i w,i CS 

SBB SBB PUSH POP 

b,i w,i DS DS 

SUB SUB SE~ 
DAS 

b, w,i =CS 

CMP CMP SE~ 

h,i w,i =DS 
AAS 

DEC DEC DEC DEC 

SP BP SI DI 

POP POP POP POP 

SP BP SI DI 

INS INS OUTS OUTS 

b W b W 

JU JNU JLEI JNLEI 

JNGE JOE JNO JO 

MOV MOV POP 
LEA 

sr,f,r/m sr,t,r/m ,1m 

PUSHF POPF SAHF LAHF 

LODS LODS SCAS SCAS 

MOV MOV MOV MOV 

i--->SP i--->BP i-4SI j-4DL 

INT INT 

Type 3 (Any) 
INTO IRET 

ESC ESC ESC ESC 

4 5 6 7 

IN IN OUT OUT 

',b ',W v,b V,W 

Gcp2 Gcp2 
CLO STD 

b,r/m w,rim 

III 

CMP 

SAR 

IDIV 

-



Appendix 0 
Upgrading from the 
80C186 to the80C186EA 





APPENDIX D 
UPGRADING FROM THE 80C186 TO THE 80C186EA 

The 80C186EA is a direct functional upgrade from the standard 80C186 for power-sensitive 
applications. With its 80C186 Modular Core, the 80C186EA maintains 100% code 
compatibility with the original 80C 186. The Chip-Select, Refresh Control, Interrupt Control, 
Timer/Counter and DMA Units are also identical. 

The 80C186EA offers power reduction in several ways: 

• The 80C 186EA device geometry is smaller than the original 80C 186, resulting in about 
half the power consumption, even if the user does not use power management. 

• Since the processor is fully static, its clock may be stopped and restarted at any time 
without losing its present state. 

• The clock generation circuit offers Power-Save Mode as a power management feature. 
Power-Save Mode reduces power consumption by dividing the operating clock frequency. 

• The clock distribution circuits offer Idle and Powerdown Modes as power management 
features. Idle Mode reduces power consumption by almost a third. Powerdown Mode 
reduces power consumption to microwatts. 

In general, pin functions are the same between the standard 80C 186 and the 80C 186EA. 
Some pin names changed for consistency within the 80C186 Modular Core family. Most 
differences between the standard 80C186 and the 80C186EA involve AC and DC 
specifications. Design upgrades should need minimal effort. 

0.1. PINOUT COMPATIBILITY 

Intel manufactures the 80C186EA in two plastic packages, a 68-lead Plastic Leaded Chip 
Carrier (PLCC) and an 80-lead EIAJ Quad Flat Pack (QFP). 

0.1.1. S8-LEAD PLCC COMPATIBILITY 

67 of the 68 80C 186EA PLCC leads are identical to the standard 80C 186. The remaining lead, 
Pin 40, is Data Transmit/Receive DT/R on the standard 80C186 and the Powerdown Timer 
(PDTMR) on the 80C186EA. The Powerdown Timer lead allows the user to set the period of 
time for exiting Powerdown Mode by connecting an external capacitor. 

No redesign is necessary if the application does not use DTIR or Powerdown Mode. A 
configuration that needs DT/R can synthesize the signal by latching status line S1 with a 
transparent latch gated by ALE. For a configuration that needs Powerdown Mode, add the 
capacitor at the PDTMR pin. 

0-1 



~nlet APPENDIX 0 

0.1.2. 80-LEAD QFP (EIAJ) COMPATIBILITY 

The 80-lead QFP pinout differs by ten leads between the 80C186 and 80C186EA. Four of the 
former 80Cl86 NO CONNECT leads are 80C186EA Vee or Vss pins. Lead 38, DEN on the 
standard 80C186, is PDTMR on the 80C186EA. Lead 39 becomes DEN on the 80C186EA. 
The four Mid-Range Chip-Select (MCS) lines (leads 39-42) shift by one lead, using a former 
80C186 NO CONNECT at lead 43. 

Table D.I compares the pinout of the 80-lead standard 80C186 to the 80-lead 80C186EA. The 
80-lead 80C186EA does have DT/R. Notice that the 80C186EA renames some pins. 

Table 0.1. Comparison of standard 80C186 and 80C186EA in 
80-Lead QFP (EIAJ) Package 

lEAD # 80C186 FUNCTION 80C186EA FUNCTION 

" 
1 AD15 AD15 

2 NO CONNECT VCC .. 

3 A16 A16 

4 A17 A17 

5 A18 A18 

6 
-

A19/86 A19/ S6 

7 BHE BHE 

8 WR/QS1 WR/QS1 

9 RD/QSMD RD/QSMD 

10 AlE/QSO AlElQSO 

11 NO CONNECT NO CONNECT 

12 VSS VSS 

13 VSS VSS 

14 NO CONNECT NO CONNECT 

15 NO CONNECT NO CONNECT 

16 X1 ClKIN (NOTE) 

17 X2 OSCOUT (NOTE) 

18 RESET RESOUT (NOTE) 

19 CLKOUT CLKOUT 

20 ARDY ARDY 
- -

21 S2 S2 

0-2 



APPENOIXO 

Table 0.1. Compar.ison of Standard 80C186 and 80C186EA in 
80-Lead QFP (EIAJ) Package (Continued) 

22 S1 S1 

23 SO SO 

24 NO CONNECT VSS 

25 HLDA HLDA 

26 HOLD HOLD 

27 SRDY SRDY 

28 LOCK LOCK 

29 TEST/BUSY TEST/BUSY 

30 NMI NMI 

31 INTO INTO 

32 INT1/SELECT INT1/SELECT 

33 VCC VCC 

34 VCC VCC 

35 I NT2I1NTAO I NT2I1NTAO 

36 INT3/1NTA 1/1RQ INT3/1NTA1/1RQ 

37 DT/R DT/R 

38 DEN PDTMR 

39 MSCO/PEREQ DEN 

40 MCS1/ERROR MCSO/PEREQ 

41 MSC2 MCS1/ERROR 

42 MSC3/NPS MSC2 

43 NO CONNECT MSC3/NCS (NOTE) 

44 NO CONNECT VCC 

45 UCS UCS 

46 LCS LCS 

47 PCS6/A2 PCS6/A2 

48 PCS5/A1 PCS5/A1 

49 PCS4 PCS4 

50 PCS3 PCS3 

51 PCS2 PCS2 

0-3 



APPENDIX 0 

Table 0.1. Comparison of Standard 80C186 and 80C186EA in 
80-Lead QFP (EIAJ) Package (Continued) 

52 PCS1 PCS1 

53 VSS VSS 

54 pcso PC SO 

55 RES RESIN (NOTE) 

56 TMR OUT 1 T10UT (NOTE) 

57 TMR OUT 0 TOOUT (NOTE) 

58 TMR IN 1 T1IN (NOTE) 

59 TMR IN 0 TOIN (NOTE) 

60 DRQ1 DRQ1 

61 DRQO DRQO 

62 NO CONNECT VSS 

63 NO CONNECT NO CONNECT 

64 ADO ADO 

65 AD8 AD8 

66 AD1 AD1 

67 AD9 AD9 

68 AD2 AD2 

69 AD10 AD10 

70 AD3 AD3 

71 AD11 AD11 

72 VCC VCC 
.. 

73 VCC VCC 

74 AD4 AD4 

75 AD12 AD12 

76 AD5 AD5 

77 AD13 AD13 

78 AD6 AD6 

79 AD14 AD14 

80 AD7 AD7 

NOTE: 
Some pins renC'imed for consistency with 80C186 Modular Core family_ 

0-4 



APPENDIX D 

D.2. OPERATING MODES 

The concept of operating mode differs between the 80C186 and the 80C186EA. 

The standard 80C 186 exits reset in either Compatible Mode or Enhanced Mode, depending on 
the TESTIBUSY pin state. Compatible Mode derived its name because of its likeness to the 
NMOS 80186. The standard 80C186 requires Enhanced Mode operation for Power-Save 
Mode, the Refresh Control Unit and the 80C187 Math Coprocessor interface. Enhanced Mode 
changes the three MCS pin functions to handshaking pins for the math coprocessor. 

The 80C186EA allows use of Power-Save Mode and the Refresh Control Unit during regular 
operation. However, the 80C186EA does have a separate Numerics Mode. Like the standard 
80C186, the TESTIBUSY pin state at reset determines whether the processor enters Numerics 
Mode. Numerics Mode changes the three MCS pin functions. 

An 80C186EA placed into an unmodified standard 80C186 design will respond correctly, 
whether the original operation was Compatible or Enhanced. All execution proceeds 
identically on a clock-for-clock basis. The processor activates new power management 
features only if the user programs them. 

D.3.' PROGRAM EXECUTION 

All existing 80C186 programs execute correctly on the 80C186EA without modification. All 
80C186 control registers have the same offsets in the 80C186EA Peripheral Control Block. 
Although the register functions are identical, many register and bit names differ on the 
80C186EA to conform to other 80C186 Modular Core family members. 

The 80C 186EA has two new registers. They are the Power Control Register, for power 
management programming, and the Step ID Register, to determine the product stepping. To 
avoid accidental power management activation, check existing software for spurious writes to 
the Power Control Register location. See the 80C186EA data sheet for details. 

D.4. TTL VS. CMOS INPUTS 

Intel manufactures both the standard 80C186 and the 80C186EA in CMOS logic. However, 
the standard 80C186 has TTL-compatible inputs while the 80C186EA has CMOS-compatible 
inputs. TTL Logic in existing 80C186 designs must change to CMOS logic if the outputs drive 
the 80C186EA. Using pullup resistors is an alternative for peripherals which are unavailable in 
CMOS, but the added current draw is inconsistent with choosing the 80C186EA for low 
power. 

CMOS-Level inputs have several advantages. The main advantage is increased noise margin. 
For example, the standard 80C 186 has a V OH minimum of 2.4 V and a VIH minimum is 0.2 Vee 
+ 0.9 V, for a noise margin of 0.5 V (with 5-Volt operation). The 80C186EA has a VOH 

minimum of Vee - 0.5 V and a VIH minimum is 0.7 Vee, for a noise margin of 1.0 V (with 5-
Volt operation). 

0-5 



APPENOIXO 

,/, 

The standard 80Cl86 data sheet references AC timings to 1.5 V (the TTL switchpoint). The 
80Cl86EA data sheet references AC timings to Vcd2 (the CMOS switchpoint). Reducing the 
operating voltage (80L186EAl80L188EA) directly scales the specified reference point. 

0.5. TIMING SPECIFICATIONS 

The 80Cl86 Modular Core family uses faster transistor technology than the standard 80Cl86. 
, The result is faster product speed selections. Consult the latest 80Cl86EA data sheet for all 
timing specifications, 

Intel specifies 80Cl86EA AC timings in a simplified format consistent with other 80Cl86 
Modular Core family members. Since the 80Cl86EA can run faster than the standard 80Cl86, 
compare specifications carefully before using the 80Cl86EA in your design. Table D.2 lists 
all standard 80Cl86 AC timing mnemonics and their 80Cl86EA equivalents. If timing 
margins are very tight, remember also that the timing reference points for AC specifications 
differ, as explained above. 

Table 0.2. 80C186 Equivalents to Standard 80C186 AC Timing Mnemonics 

STANDARD 
80C186 PARAMETER EQUIVALENT 80C186EA 

ACTIMING AC TIMING MNEMONIC" 
MNEMONIC 

TDVCL Data in Setup (AID) , TCLIS 

TCLDX Data in Hold (AID) TCLIH 

TCHSV Status Active Delay TCHOV1 

TCLSH Status Inactive Delay TCLOV2 

TCLAV Address Valid Delay TCLOV1 (A19:16, DEN), TCLOV2 

(AD15:0) 

TCLAX Address Hold TCLOV1 (A19:16), TCLOV2 (AD15:0) 

TCLDV Data Valid Delay T CLOV1 (A 19:16), T CLOV2 (AD15:0) 

TCHDX Status Hold Time Eliminated 

TCHLH ALE Active Delay TCHOV1 

TLHLL ALE Width TLHLL 

TCHLL ALE Inactive Delay TCHOV1 

0·6 

~ I 



in1:et 

TAVLL 

TLLAX 

TAVCH 

TCLAZ 

TCLCSV 

TCXCSX 

TCHCSX 

TDXDL 

TCVCTV 

TCVDEX 

TCHCTV 

TCLLV 

TCLRL 

TRLRH 

TCLRH 

TRHLH 

TCLDOX 

TCVCTX 

TWLWH 

APPENDIX D 

Table D.2. 80C186 Equivalents to Standard 80C186 AC 
Timing Mnemonics (Continued) 

Address Valid to ALE Low 

Address Hold from ALE Inactive 

Address Valid to Clock High 

Address Float Delay 

Chip-Select Active Delay 

Chip-Select Hold from Command 
Inactive 

Chip-Select Inactive Delay 

DEN Inactive to'DT/R Low 

Control Active Delay 1 

DEN Inactive Delay 

Control Active Delay 2 

LOCK Valid/Invalid Delay 

Address Float to Read Active 

RD Active Delay 

RD Pulse Width 

RD Inactive Delay 

RD Inactive to ALE High 

RD Inactive to Address Active 

Data Hold Time 

Control Inactive Delay 

WR Pulse Width 

0-7 

TAVLL 

TLLAX 

Eliminated 

TCLOF 

TCLOV2 

TRHPH (RD), TWHPH (WR) 

TCHOV2 

TDXDL 

TCHOV1 (DEN), TCLOV2 (WR, INTA) 

TCLOV1 

TCHOV1 

TCLOV1 

TAFRL 

TCLOV2 

TRLRH 

TCLOV2 

TRHAV 

TCLOV2 

TCLOV2 (WR, INTA), TCHOV1 (DEN) 

TWLWH 



TWHlH 

TWHDX 

TWHDEX 

TCKIN 

TClCK 

TCHCK 

TCKHl 

TCKlH 

TCICO 

TClCl 

TClCH 

TCHCl 

TCH1CH2 

TCl2Cl1 

TSRYCl 

TClSRY 

TARYCH 

TClARX 

TARYCHl 

TARYlCl 

APPENDIX 0 

Table 0.2. 80C186 Equivalents to Standard 80C186 AC 
Timing Mnemonics (Continued) 

-
WRlnactive to ALE High TWHlH 

Data Hold after WR TWHDX 

WR Inactive to DEN Inactive TWHDEX 

ClKIN Period TC 

ClKIN low Time TCl 

ClKIN High Time TCH 

ClKIN Fall Time TCF 

ClKIN Rise Time TCR 

ClKIN to ClKOUT Skew TCD 

ClKOUT Period T 

ClKOUT low Time Tpl 

ClKOUT High Time TpH 

ClKOUT Rise Time TpR 

ClKOUT Fall Time TpF 

Synchronous Ready (SRDY) TCLIS 
Transition Setup Time 

SRDY Transition Hold Time TCLIH 

ARDY Resolution Transition Setup 
TCHIH 

Time 

ARDY Active Hold Time TCLIH 

ARDY Inactive Holding Time TCHIH 

Asynchronous Ready (ARDY) Setup TCLIS 
Time 

0-8 



intel" 

TINVCH 

TINVCL 

TCLTMV 

TCHQSV 

TRESIN 

THVCL 

TCLRO 

TCLHAV 

TCHCZ 

TCHCV 

APPENOIXO 

Table 0.2. 80C186 Equivalents to Standard 80C186 AC 
Timing Mnemonics (Continued) 

INTx, NMI, TEST IBUSY, TMR IN TCHIH 
Setup Time 

DRQO, DRQ1 Setup Time TCLIH 

Timer Output Delay TCLOV1 

Queue Status Delay Eliminated 

RES Setup TCLIS 

HOLD Setup TCLIS 

Reset Delay TCLOV1 

HLDA Valid Delay TCLOV1 

Command Lines Float Delay TCHOF 

Command Lines Valid Delay (after TCHOV1 (A19:16, BHE, DT/R, S2:0, 
Float) 

LOCK), TCHOV2 (RD,WR) 

0·9 



UNITED STATES 
Intel Corporation 
3065 Bowcrs Avenuc 
Santa Clara, CA 95051 

JAPAN 
Intcl Japan K.K. 
5-6 Tokodai, Tsukuba-shi 
Ibaraki,300-26 

FRANCE 
Intel Corporation S.A.R.L. 
1, Rue Edison, BP 303 
78054 Saint-Qucntin-en-Yvelincs Cedcx 

UNITED KINGDOM 
Intcl Corporation (U.K.) Ltd. 
Pipers Way 
Swindon 
Wiltshire, England SN3 ] RJ 

WEST GERMANY 
Intcl GmbH 
Dornachcr Strassc 1 
8016 Feldkirchcn bci Muenchcn 

HONG KONG 
Intcl Semiconductor Ltd. 
10/F East Tower 
Bond Centcr 
Queensway, Central 

CANADA 
Intel Scmiconductor of Canada, Ltd. 
190 Attwell Drive, Suite 500 
Rcxdale, Ontario M9W 6H8 

Printed in USAl891/20KlRRO OM ISBN 1-55512-156-X 


