Non-Volatile Memory Data Book

NON-VOLATILE MEMORY DATA BOOK

TABLE OF CONTENTS

Section 1 Read Only Memories

General Instrument Microelectronics offers a complete line of reliable mask programmed, Read Only Memories, manufactured in both NMOS and CMOS processes. These memory products are fully static and range in density from 16K bits to 1 megabit.

Section 2 <u>Electrically Erasable Programmable</u> Read Only Memories

General Instrument Microelectronics offers a broad line of highly reliable +5V only, N-channel, utility EEPROMs including parallel access, serial access and Inter-Integrated Circuit (I²C) compatible devices. Application - specific EEPROMs, including a nonvolatile counter and a microcomputer with on-board EEPROM memory, are also available in both commercial and industrial temperature ranges.

Section 3 Sales Offices

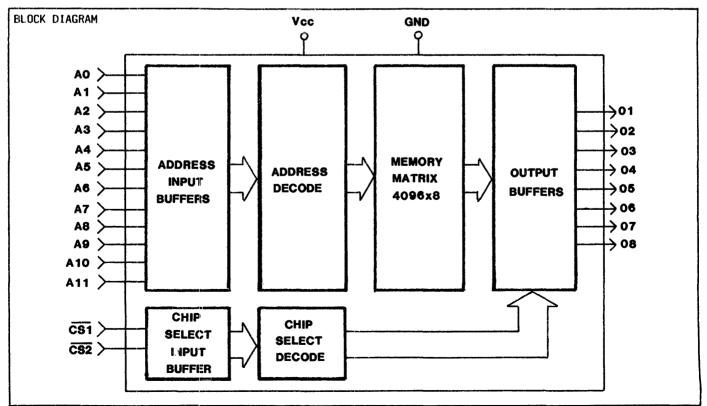
Worldwide field sales offices are located throughout the U.S., Europe and Asia. Contact the office nearest you for further information regarding General Instrument Microelectronics products.

SECTION 1

READ ONLY MEMORIES

Description	Part Number	Page Number
32K ROM organized 4K x 8	R09432 R09433	1-3 1-6
64K ROM organized 8K x 8	R09464 R094164 R09864	1-9 1-9 1-12
128K ROM organized 16K x 8	R09128	1-16
256K ROM organized 32K x 8	R09256 R0C256	1-22 1-28
512K ROM organzied 64K x 8	R09512X R0C512X	1-34 1-41
Megabit ROM organized 128K x 8	R09100X R0C100X	1-48 1-55

32,768 BIT STATIC READ ONLY MEMORY


FEATURES:

- 4096 x 8 organization
- Fully static operation no clocks required
- Single +5V +10% supply
- 450ns access time: R09432B
- 300ns access time: R094320
- 250ns access time: R09432DS
- 200ns access time: R09432D
- Inputs and outputs TTL compatible
- Three state outputs under the control of two mask programmable chip select inputs
- Output drive capability of 2 TTL loads 100pf
- Low power dissipation
- Totally automated custom programming
- Pin compatible with 2532 EPROM
- ESD protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD883

PIN CONFIGUE		
24 LEAD DUAL	-IN-LINE	
	Тор	View
	A7	24 0 V _{CC} (+5V)
	A6 🗖 2	23 A8
	A5 L 3	22 D A9
	A4 🗖 4	21 CS2/CS2
	A305	20 CS1/CS1
	A2 16	19 5 A10
		18 0 A11
	AO CB	17 08
		16 07
		15 06
	03□11	14 🗖 05
	GND 🗖 12	1304
	L	

DESCRIPTION

The R09432 is a 32,768 bit fully static Read Only Memory utilizing MOS N-Channel Silicon Gate Ion Implanted technology. It is organized 4096 words by 8 bits and operates from a single +5 Volt power supply with $\pm 10\%$ supply tolerance. All inputs are TIL compatible, and the three-state outputs can drive two standard TIL loads each.

Maximum Ratings*

 $V_{\mbox{CC}}$ and Inut Voltages (with Respect

Storage Temperature..... -65°C to +150°C

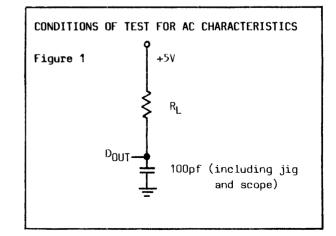
Standard Conditions (unless otherwise noted): $V_{CC} = +5V + 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to +70°C Output Loading Two TTL Loads + C_L TOTAL = 100pf

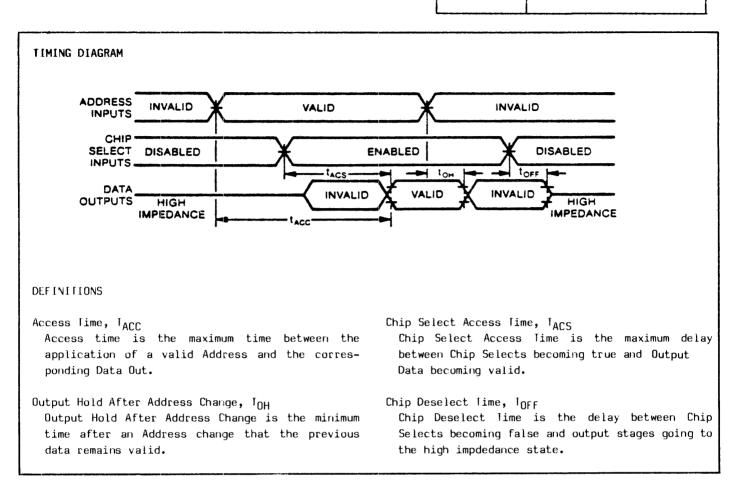
DC CHARACTERISTICS

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied - operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

Characteristics	Sym	Min	Тур	Max	Units	Conditions
Input Low Voltage Input High Voltage Input Load Current Output Low Voltage Output High Voltage Output Leakage Current Power Supply Current	VIL VIH IIL VOL VOH ILO ICC	-0.5 2.0 - 2.4 -		0.8 V _{CC} 10 0.40 V _{CC} 10 100	۷ ۷ ۹ ۷ ۷ ۹ ۹ ۳ ۹	$V_{IN} = 0.4V$ to V_{CC} $I_{OL} = +3.2mA$ $I_{OH} = -200\mu A$ $V_{OUT} = 0.4V$ to V_{CC} All Inputs +5.5V, Outputs Loaded


AC CHARACTERISTICS

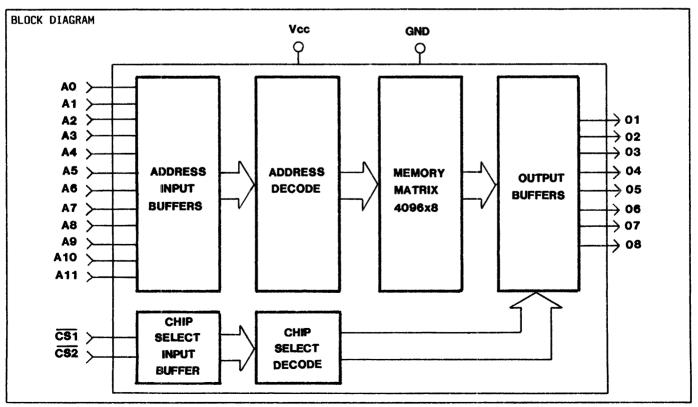

		R094	432B	R09	432C	R094	32DS	R09	432D		
Characteristic	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time	t _{ACC}		450	-	300	-	250	_	200	ns	
Chip Select Access Time		-	150	-	100	-	85	-	70	ns	
Chip Deselect Time	tOFF	-	150	-	100	-	85	-	70	ns	
Output Hold After											
Address Change	t _{OH}	10	- 1	10	-	10	-	10	-	ns	
Capacitance**								ł			
Input Capacitance	c _{in}	-	7	-	7	-	7	-	7	pf	T _A =25°C,F=1MHz
Output Capacitance	с _{оит}	-	10	-	10	-	10	-	10	pf	T _A =25°C,F=1MHz

**Capacitance is periodically samples and is not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels	0.4V to	2.4V
Input Rise and Fall Times	• • • • • •	10ns
Timing Measurement Levels:		
Input		1.5V
Output	0.8V to	2.0V
Output Load 2TTL Loads +100pf (S	ee Figur	re 1)

32,768 BIT STATIC READ ONLY MEMORY


FEATURES:

- 4096 x 8 organization
- Fully static operation no clocks required
- Single +5V +10% supply
- 450ns access time: R09433B
- 300ns access time: R09433C
- 250ns access time: R09433DS
- 200ns access time: R09433D
- Inputs and outputs TTL compatible
- Three state outputs under the control of two mask programmable chip select inputs
- Output drive capability of 2 TTL loads 100pf
- Low power dissipation
- Totally automated custom programming
- Pin compatible with 2732 EPROM
- ESD protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD 883

	Top View	
A7 🗖	•1	24 V _{CC} (+5V)
A6 🗖	2	23 🗖 A8
A5 C	3	22 🗖 A9
A4 C	4	21 A11
A3 C	5	20 CS1/CS1
A2 🕻	6	19 D A10
A1 C	7	18 CS2/CS2
A0 🖸	8	17 🗖 08
01 C	9	16 🗖 07
02 🗖	10	15 🗖 06
030	11	14 🗖 05
GND C	12	1304

DESCRIPTION

The R09433 is a 32,768 bit fully static Read Only Memory utilizing MOS N-Channel Silicon Gate Ion Implanted technology. It is organized 4096 words by 8 bits and operates from a single +5 Volt power supply with $\pm 10\%$ supply tolerance. All inputs are [[L compatible, and the three-state outputs can drive two standard [[L loads each.

Maximum Ratings*

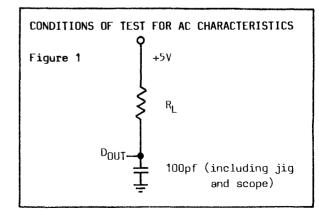
V_{CC} and Inut Voltages (with Respect to GND)..... -0.5V to +7.0V Storage Temperature..... -65°C to +150°C

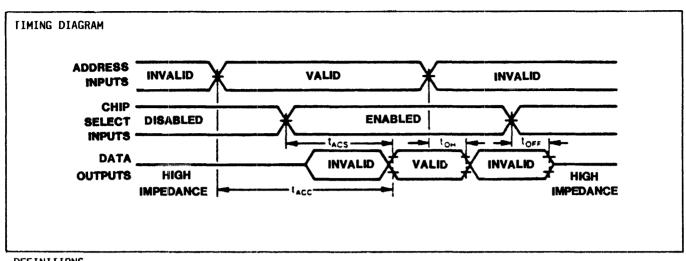
Standard Conditions (unless otherwise noted): $V_{CC} = +5V \pm 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to $+70^{\circ}C$ Output Loading Two TTL Loads $+ C_L$ TOTAL = 100pf

DC CHARACTERISTICS

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied - operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.


Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CHIP SELECTS						
Inputs						
Logic "1"	V _{IH}	2.0	-	V _{CC}	V	
Logic "O"	۷ _{IL}	0	-	0.8	v	
Leakage	ILI	-	-	10	Aىر	$V_{\rm IN} = 0.4V \ tp \ V_{\rm CC}$
Data Outputs						
Logic "1"	V _{OH}	2.4	-	V _{CC}	V	I _{OH} = -200µА
Logic "O"	V _{OL}	-	-	0.4	v	$I_{OL} = 3.2 \text{mA}$
Leakage	ILO	-	-	10	Au	$V_{OUT} = 0.4V$ to V_{CC}
Power Supply Current	ICC	-	-	100	mA	All inputs +5.5V,
						Outputs Unloaded


AC CHARACTERISTICS											
		R09	<u>433B</u>	R094	<u>433C</u>	R094	33DS	R094	433D		
Characteristic	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time	tACC	-	450	-	300	-	250	_	200	ns	
Chip Select Access Time	t _{ACS}		150	-	100	-	85	-	70	ns	
Chip Deselect Time	tOFF	-	150	-	100	-	85	-	70	ns	
Output Hold After											
Address Change Capacitance**	^t он	10		10	-	10	-	10	-	ns	
Input Capacitance	C _{IN}		7	-	7	-	7	-	7	pf	T _A =25°C,F=1MHz
Output Capacitance	C _{OUT}	-	10	-	10	-	10		10	pf	T _A =25°C,F=1MHz

**Capacitance is periodically sampled and is not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels 0.4V to 2.4V
Input Rise and Fall Times 10ns
Timing Measurement Levels:
Input 1.5V
Output 0.8V to 2.0V
Output Load 2TTL Loads +100pf (See Figure 1)

Access Time, TACC

Access time is the maximum time between the application of a valid Address and the corresponding Data Out.

Output Hold After Address Change, ${\rm T}_{\rm OH}$

Output Hold After Address Change is the minimum time after an Address change that the previous data remains valid. Chip Select Access Time, T_{ACS}

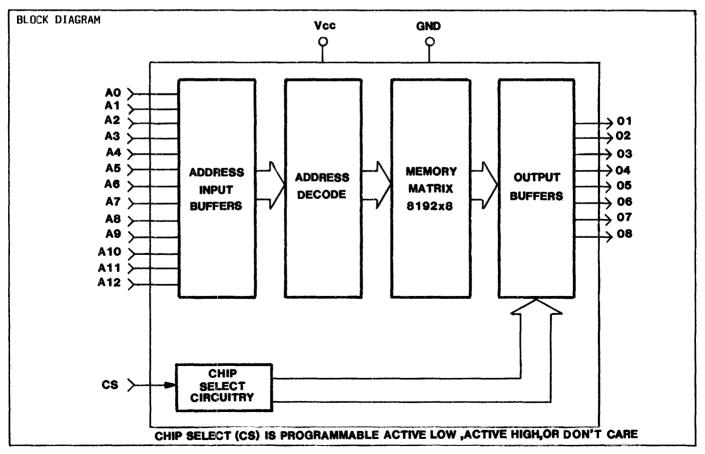
Chip Select Access Time is the maximum delay between Chip Selects becoming true and and Output Data becoming valid.

Chip Deselect Time, T_{OFF}

Chip Deselect Time is the delay between Chip Selects becoming false and output stages going to the high impdedance state.

65,536 BIT STATIC READ ONLY MEMORY

FEATURES:


- 8192 x 8 organization
- Fully static operation
- Single +5V ±10% / ±5% supply (R094164)
- Inputs and outputs IIL compatible
- Three state outputs
- Output drive capability of 2 TTL/1 TTL Load and 100pf
- 24 pin JEDEC approved pinout
- LSD protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-SID883

DESCRIPTION

The General Instrument R09464 and R094164 Series are 65,536 Bit Static Read Only Memories organized as 8192 eight-bit words and are ideally suited for microprocessor memory applications. Fabricated with General Instrument N-Channel Silicon Gate technology, the R09464 and R094164 Series provide the designer with a high performance, easy to use MOS circuit featuring operation from a single +5

PIN CONFIGURATION		
24 LEAD DUAL-IN-LINE		
R09464/R094164		
_	Top View	
A7 C •	$1 \bigcirc$	24 - V _{CC}
A6 🗖 2		2 3 A8
A5 C 3	,	22 D A9
A4 C 4		21 D A12
A3 C 5		20 – CS
A2 🗖 6		19 D A10
A1 🗖 7		18 D A11
AO 🗖 8	;	170 08
01 🗖 9		160 07
02 🗖 1	0	150 06
03 🗖 1	1	140 05
GND 🗖 1	2	130 04

volt power supply and low power dissipation. The R09464 and R094164 Series offer the best combination of high performance, large bit storage and simple interfacing of any MOS Read Only Memory available today.

1984 General Instrument Corporation

Maximum Ratings*

.0	und / .					••••		0.71	11.01
Power	Diss	ipati	lon.	• • •	••••	•••	• • • • • •	• • • • • • • • •	1.OW

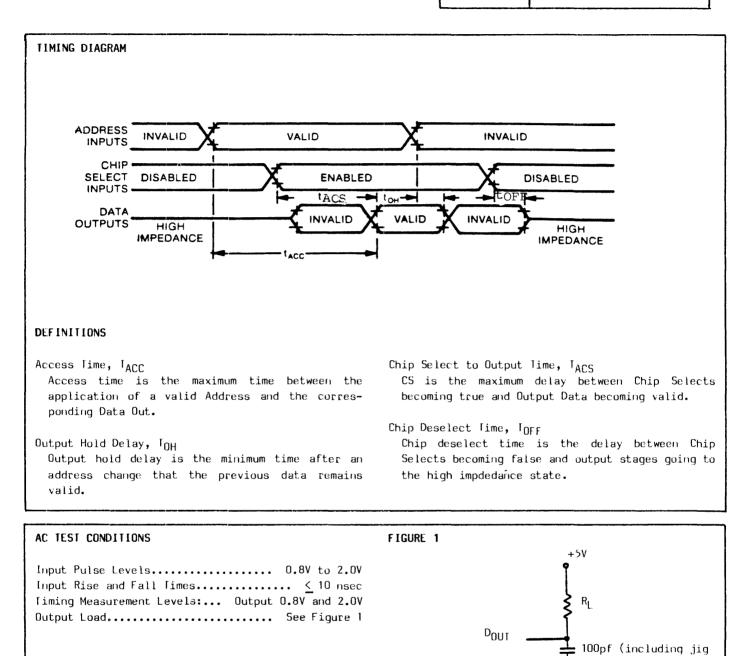
Standard Conditions (unless otherwise noted): Operating Temperature $\Gamma_A = 0^{\circ}C$ to $+70^{\circ}C$ $V_{CC} = +5V \pm 10\% / \pm 5\%$ (R094164) *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied - operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

Characteristics	Sym	Min	Гур	Max	Units	Conditions
Output High Level	v _{он}	2.4	-	v _{cc}	v	I _{OH} = –200µA/–100µA (R094164)
Output Low Level	V _{OL}	-	-	0.4	v	I _{OL} = 3.2mA/1.6mA (R094164)
Input High Level	VIH	2.0	-	V _{CC}	V	
Input Low Level	V _{IL}	-	-	0.8	v	
Input Leakage Current	ILI	-	-	10	Aىر	$V_{\rm IN} = 0.4V$ to $V_{\rm CC}$
Output Leakage Current	ILO	-	-	10	Aىر	$V_{OUI} = 0.4V$ to V_{CC}
Operating Supply Current	I _{CC}	-	-	100	mA	Note 1, V _{OUF} = 5.5/5.25V (R094164)

AC CHARACTERISTICS		R094	64B	R094	64CS	R094	64C	R094	64DS		
		R094	164B	R094	164CS	R094	164C				
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access [ime	tacc	-	450	-	350	-	300	_	250	ns	
Output Hold After	"ALL		1.2 0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Address Change	t _{OH}	10	-	10	-	10	-	10	-	ns	Note 2
Chip Select Access Time	t _{ACS}	-	150	-	125	-	100	-	100	กร	
Output Disable Time	tOFF	-	150	-	125	-	100	-	100	ns	
Capacitance**											
Input Capacitance	C1	-	7	_	7	-	7	-	7	pf	$F=1.0MHz$, $\Gamma_{A} = +25°C$
Output Capacitance	с _О	-	10	-	10	-	10	-	10	pf	F=1.0MHz, $T_A = +25$ °C


**Capacitance is periodically sampled and is not 100% tested.

NOTES:

1. Measured with device selected and outputs unloaded.

2. This parameter is periodically sampled and is not 100% tested.

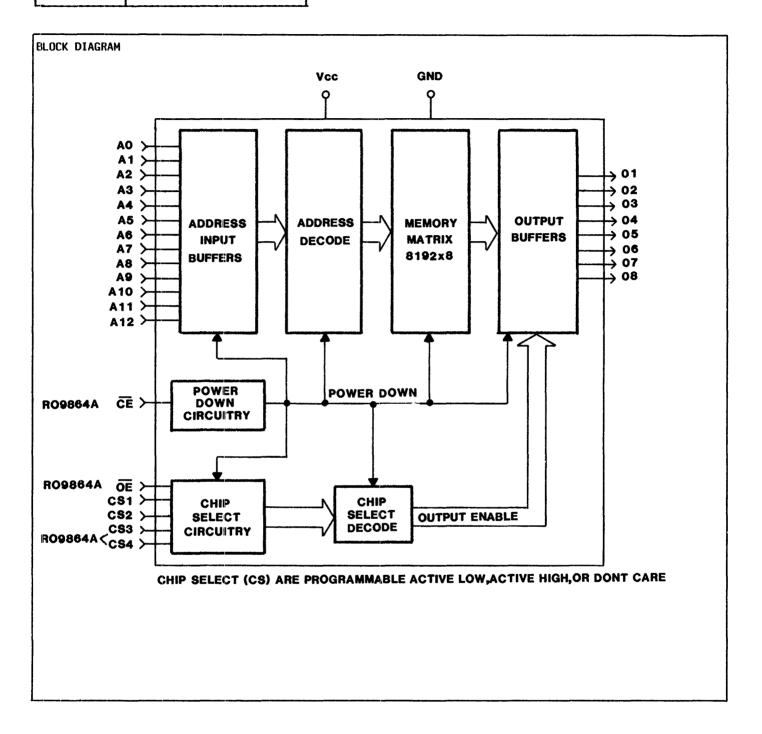
PART NUMBER	MAXIMUM ACCESS TIME	V _{CC} SUPPLY TOLERANCE	TTL LOADS
R094164B	450ns	5%	1
R094164CS	350ns	5%	1
R094164C	300ns	5%	1
R09464B	450ns	10%	2
R09464CS	350ns	10%	2
R09464C	300ns	10%	2
R09464DS	250ns	1 0%	2

and scope)

65,536 BIT STATIC READ ONLY MEMORY

FEATURES:

- 8192 x 8 organization
- Fully static operation
- Single +5V \pm 10% supply
- Inputs and outputs TIL compatible
- Three state outputs
- ~ 28 pin JEDEC approved pinout (R09864A)
- ESD protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD883


DESCRIPTION

The General Instrument R09864 and R09864A series are 65,536 bit static read only memories organized as 8192 eight-bit words and are ideally suited for microprocessor memory applications fabricated with General Instrument N-channel silicon gate technology, the R09864 and R09864A series provide the designer with a high performance, easy to use MOS circuit featuring operation from a single +5 volt power supply and a low power dissipation. The R09864 and R09864A series offer the best combination of high performance, large bit storage and simple interfacing of any MOS read only memory available today.

The R09864 series provides four fully programmable chip selects (CS3 and CS4 are on Pins 22 and 20 respectively) which enables a memory system to contain up to sixteen R09864s without using any external address decode circuitry.

The R09864A series offers an automatic down feature. Power down is controlled by Pin 20, the Chip Enable (CE) input. When CE goes high, the device will power down and remain in a low power standby mode as long as CE remains high. Pin 22 provides the Output Enable (OE) function allowing additional bus control.

R09864	Тор	View
		28 V _{CC}
		27 0 CS1
	A7 0 3	26 D CS2
	A6 🗖 4	25 A8
	A5 🗖 5	24 🗖 A9
	A4 🗖 6	23 🗖 A11
	A3 🗖 7	22 🗖 CS 3
	A2 🗖 8	21 🗖 A10
	A1 🗗 9	20 🗖 CS4
	AO 🗖 10	19 🗖 08
	01 🗖 11	1807
	02 🗖 12	17 2 06
	03 🗖 13	16 🗖 05
	GND [14	15 04
R09864A	Тор	View
		28 V _{CC}
	A12 02	27 D CS 1
	A7 🗖 3	26 DCS2
	A6 🗖 4	25 🗖 A8
	A5 🗖 5	24 🗖 A9
	A4 🗖 6	23 D A11
	A3 🖸 7	22 <mark>-</mark> OE
	A2 🗖 8	21 🗖 A 10
	A1 C 9	20 D CE
		19 08
		18 07
	02 🗖 12	17 06
	0.1.00 1.1	
	03 🗖 13 GND 🗖 14	16 ם 05 15 ם 04

Maximum Ratings*

Storage Temperature	-65°C to +150°C
V _{CC} and Applied Voltages	
(with respect to GND)	-0.5V to +7.0V
Power Dissipation	1.OW

Standard Conditions (unless otherwise noted): Operating Temperature $T_A = 0^{\circ}C$ to $+70^{\circ}C$ $V_{CC} = +5V \pm 10\%$ *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied - operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

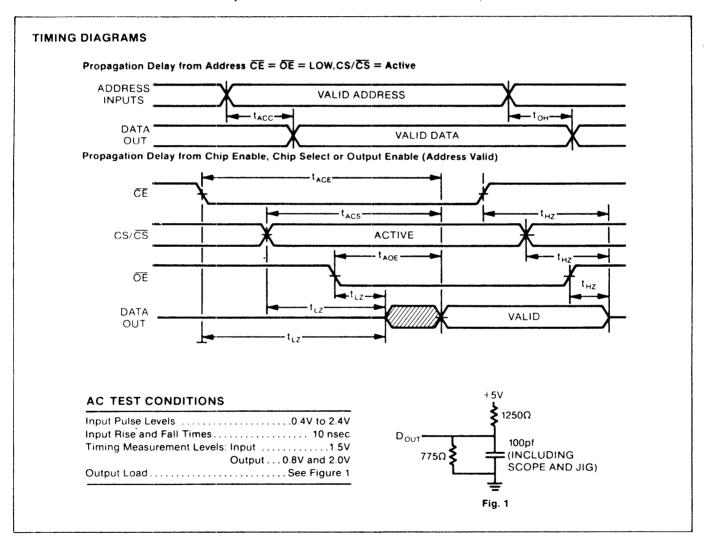
Characteristics	Sym	Min	Тур	Max	Units	Conditions
Output High Level	V _{OH}	2.4	-	v _{cc}	v	I _{OH} = -200µА
Output Low Level	V _{OL}	-	-	0.4	V	$I_{OL} = 3.2 \text{mA}$
Input High Level	٧ _{IH}	2.0	-	V _{CC}	V	
Input Low Level	VIL	-0.5	-	0.8	V	
Input Leakage Current	ILI	- 1	- 1	10	Aىر	$V_{IN} = 0.4V$ to V_{CC}
Output Leakage Current	ILO	-	-	10	Au	$V_{OUT} = 0.4V$ to V_{CC}
Operating Supply Current	ICC	-	-	100	mA	Note 1
Standby Supply Current	ISB	-	-	12	mA	Note 2

AC CHARACTERISTICS

		R098 R098		R098 R098	64CS 64ACS	R098 R098		R098 R098	64DS 64ADS	R098 R098			
Characteristic	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time Output Hold After	tacc	-	450	-	350	-	300	-	250	-	200	ns	
Address Change	t _{OH}	10	-	10	-	10	-	10	-	5	-	ns	
Chip Enable Access Time	tACE	-	450	-	350	-	300	-	250	-	200	ns	Note 3
Chip Select Access Time	tACS	-	150	-	125	-	100	-	100	-	85	ns	
Output Enable Access Time	tADE	-	150	-	125	-	100	-	100	-	85	ns	Note 3
Output Low Z Delay	tLZ	10	-	10	-	10	-	10	-	5	-	ns	Note 4
Output High Z Delay	t _{HZ}	-	150		125	-	100	-	85	-	85	ns	Note 5

NOTES:

1. Measured with device selected and outputs unloaded.


2. Applies to "A" versions only and measured with $\overline{\text{CE}}$ = 2.0V.

3. Applies to "A" versions only.

- 4. Output low impedance delay (t_{LZ}) is measured from \overline{CE} and \overline{OE} going low and \overline{CS} going active, whichever occurs last.
- 5. Output high impedance delay (t_{HZ}) is measured from either \overline{CE} or \overline{OE} going high or \overline{CS} going inactive, whichever occurs first.

R09864B/CS/C/DS/D R09864AB/ACS/AC/ADS/AD

PART NUMBER	MAXIMUM ACCESS TIME	OPERATING CURRENT	STANDBY CURRENT
R098648	450ns	100mA	NA
R09864CS	350ns	100mA	NA
R09864C	300ns	100mA	NA
R09864DS	250ns	100mA	NA
R09864D	200ns	85mA	NA
R09864AB	450ns	100mA	12mA
R09864ACS	350ns	100mA	12mA
R098964AC	300ns	100mA	12mA
R09864ADS	250ns	100mA	12mA
R09864AD	200ns	85mA	12mA

131,072 BIT STATIC READ ONLY MEMORY

FEATURES

- 16,384 x 8 organization
- Single +5V <u>+</u>10% volt supply
- 450ns max access time: R09128B
- 350ns max access time: R09128CS
- 300ns max access time: R09128C
- 250ns max access time: R09128DS
- 200ns max access time: R09128D
- Totally static operation
- Three state outputs
- All TTL compatible inputs/outputs
- 28 pin JEDEC approved pinout
- Programmable "FlexSelect"TM chip enable/disable/ power down capabilities controlled by the chip enable ($\overline{\text{CE}}$) and output enable ($\overline{\text{OE}}$) inputs
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD883B

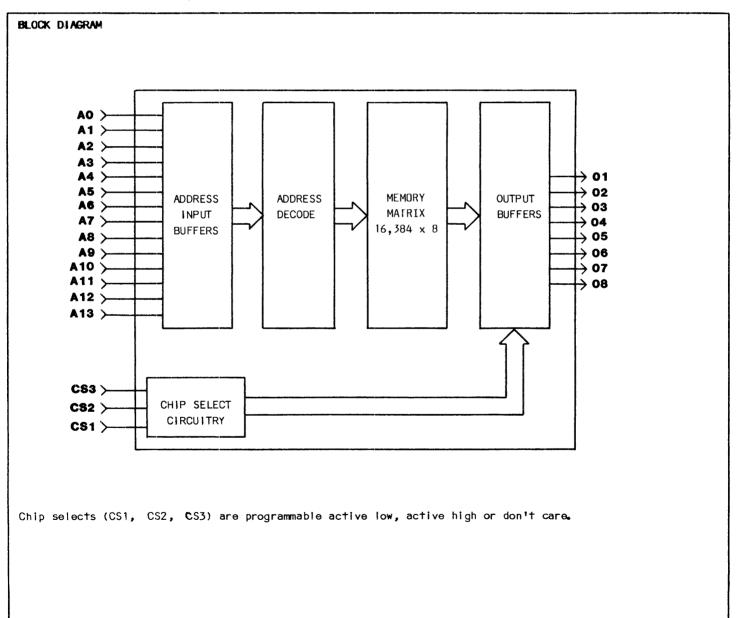
DESCRIPTION

The General Instrument R09128 is a 131,072 Bit Static Read Only Memory organized as 16,384 eightbit words and is ideally suited for microprocessor memory applications. Fabricated with General Instrument N-Channel Silicon Gate Technology, the R09128 provides the designer with a high performance, easy to use MOS circuit featuring operation from a single +5 Volt power supply and low power dissipation.

PIN CONFIGURATION	· · · · · · · · · · · ·	
28 LEAD DUAL-IN-LIN	E	
	Top View	
N.C. C	o1	28 V CC
A12		27 0 CS1
A7 🗖	3	26 口 A13
A6 🗖	4	25 🗖 AB
A5 🗖	5	24 🗖 A9
A4 🗖	6	23 🗖 A11
A3 🗖	7	220E/CS2
A2 🗖	8	21 🗖 A 10
A1 🗖	9	20 1 CE/CS3
A0 🗖	10	19 08
01 🗖	11	18 07
02 🖸	12	17006
03 🖸	13	16 05
GND 🗖	14	15 🗖 04

The R09128 offers a programmable "Flexselect"TM chip enable/disable/power down feature controlled by the chip enable ($\overline{\text{CE}}$), output enable ($\overline{\text{OE}}$) and chip select (CS) inputs. These inputs can be programmed to implement various logic functions which provides the designer with a flexible and easy means of "chip selecting" and/or "powering down" the device. The chip select options are as shown on the following pages.

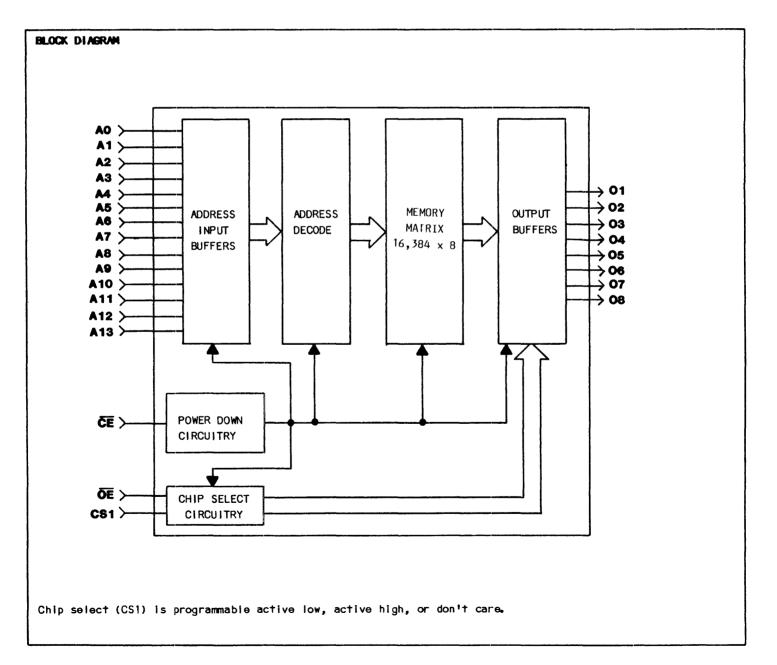
DS10017B-1


I) *Standard Chip Select requirements - Non-Power Down

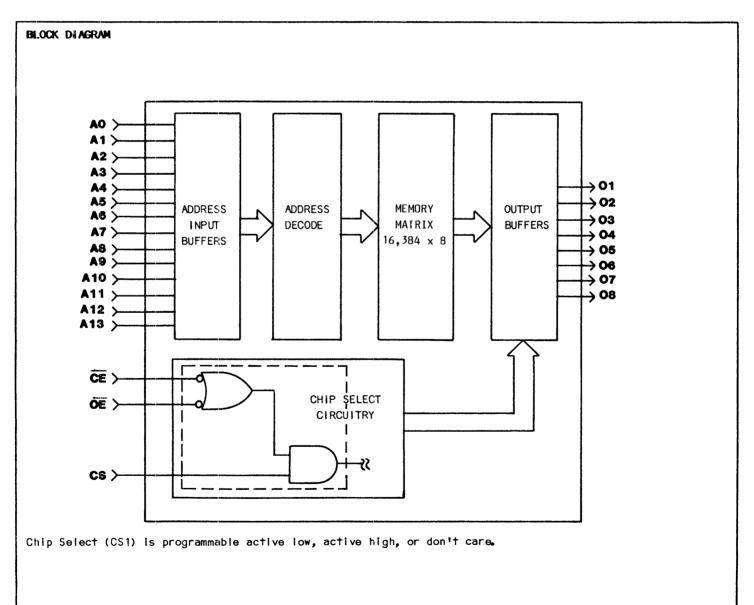
```
CS1 = 0,1 or don't care (Pin 27)
CS2 = 0,1 or don't care (Pin 22)
CS3 = 0,1 or don't care (Pin 20)
```

Logic Function $1(CS1) \cdot 1(CS2) \cdot 1(CS3) = Chip Selected$

```
1 Programmed in active state
"." = Logical "AND"
```


*Not available on "D" speed devices

- II) Standard Chip Select requirements Power Down
 - CS1 = 0,1 or don't care (Pin 27)
 - $\overline{\text{OE}}$ (Pin 22) When $\overline{\text{CE}}$ goes high, the device will automatically power down and remain in a low power $\overline{\text{CE}}$ (Pin 20) standby mode as long as $\overline{\text{CE}}$ remains high. $\overline{\text{OE}}$ and CS functions eliminate bus contention in multiple memory device systems.


Logic Function: $1(CS1) \cdot (\overline{CE}) \cdot (\overline{OE}) = Chip Selected$

¹Programmed in active state "." = LOGICAL "AND"

III) **"ORED" chip select requirement (chip selects at pins 20 (CE) and 22 (OE) function as a logical "OR").

- * This is ideally suited for applications that have limited chip select decoding capabilities.
- CS1 = 0,1 or don't care (Pin 27)
- Logic Function: 1(CS). (CE + OE) = Chip Selected
- ¹Programmed in active state
- "." = LOGICAL "AND" "+" = LOGICAL "OR"
- **Not available on "D" speed devices

GENERAL	
INSTRUMENT	R09128B/CS/C/DS/D
	FlexSelect ^{IM}

Maximum Ratings*

V_{CC} and Input Voltages

(with Respect to GND)...... -0.5V to +7.0V Storage Temperature...... -65°C to + 150°C

Standard Conditions (unless otherwise noted):

 $V_{\rm CC} = 5V + 10\%$

Operating Temperature $T_A = 0^{\circ}C$ to + 70°C

Output Loading: Two TTL Loads, CL TOTAL = 100pf

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

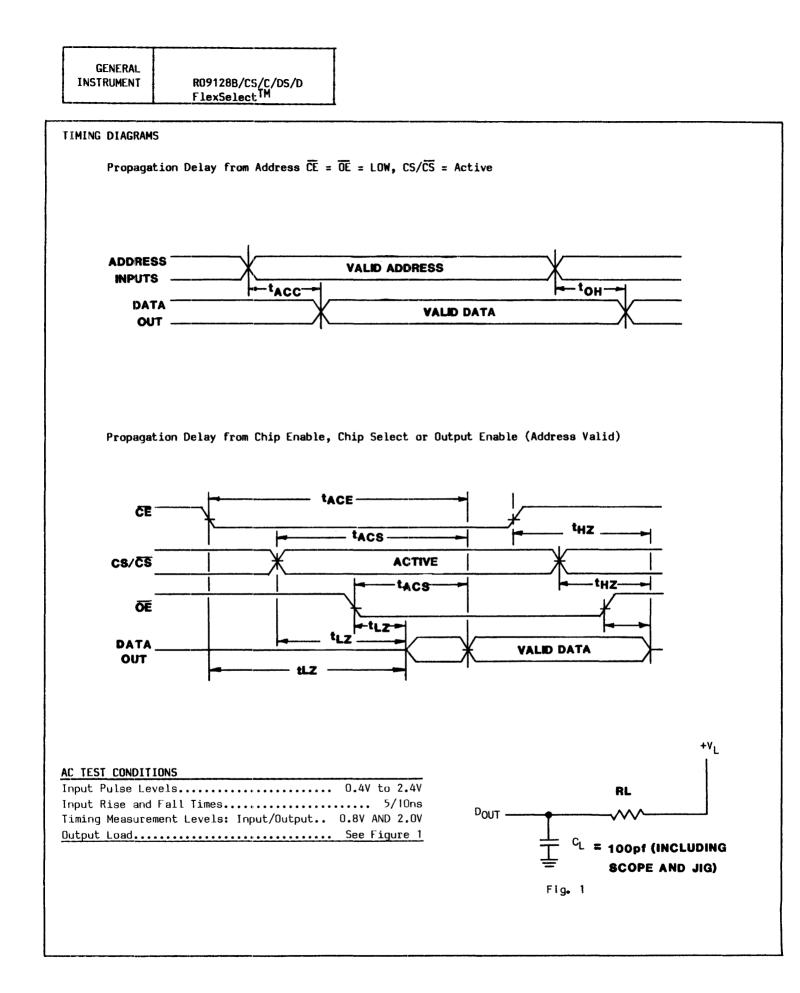
Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CE/CS3, OE/CS2, CS1						
Inputs		2				
Logic "1"	V _{IH}	2.0	-	۷ _{CC}	V	
Logic "O"	٧ _{IL}	0	-	0.8	v	
Leakage	ILI	-10	-	+10	Aپ	$V_{IN}=0.4V$ to V_{CC}
Data Outputs						
Logic "1"	V _{ОН}	2.4	-	V _{CC}	V	Ι _{ΟΗ} =-200μΑ
Logic "O"	V _{OL}	-	-	0.4	V	$I_{OL} = 3.2 \text{ mA}$
Leakage	ILO	-10	-	+10	μA	V _{OUT} =0.4V to V _{CC}
Power Supply Current						
I _{CC} (Active)	-	-	-	100	mA	Note 1
I _{CC} (Standby)	-	-	- 1	15	mA	Note 2,6
I _{CC} (Standby)	-	-	-	50	mA	Note 7

AC CHARACTERISTICS		R09	128B	R09	128CS	R09	128C	R09	128DS	R09	128D		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time	tACC	-	450	-	350	-	300	-	250	-	200	ns	
Address Hold After						1							
Address Change	t _{OH}	10	-	10	-	5	-	5		5	-	ns	Note 3
Chip Enable Time	tACE	-	450	-	350	-	300	-	250	-	208	ns	
Chip Select, Output										1			
Enable Access Time	t _{ACS}	-	150	-	125	-	100	-	85	-	70	ns	Note 4
Output Disable Time	tOFF	-	150	-	125	- 1	100	-	85	-	70	ns	
Output Low Z Delay	tLZ	10	-	10	-	5	~	5		5	70	ns	Note 3
Output High Z Delay	t _{HZ}	-	150	-	125	-	100	-	85	1 -	70		
Capacitance***										1			
Input Capacitance	CI	-	7	-	7	-	7	-	7	-	7	pf	F=1MH _Z , T _A =+25°C
Output Capacitance	с _о	-	10	-	10	-	10	-	10	-	10	pf	F=1MH _Z , T _A =+25°C

***Capacitance is periodically sampled and is not 100% tested.

NOTES:

1. Measured with device selected and outputs unloaded.


2. Device disabled with $\overline{CE} \ge 2.0V$ ("Power Down" programmed parts only).

3. These parameters are periodically sampled and are not 100% tested.

4. Access time to valid data measured from CS1 going active and/or \overline{OE} going low which ever occurs last/first.

- 5. Output high impedance delay (t_{HZ}) is measured from \overline{CE} and/or \overline{OE} going high or CS1 going active, which ever occurs last/first.
- 6. Applies to B, CS, and C speeds only.

7. Applies to DS, D speeds only.

262,144 BIT STATIC READ ONLY MEMORY

FEATURES:

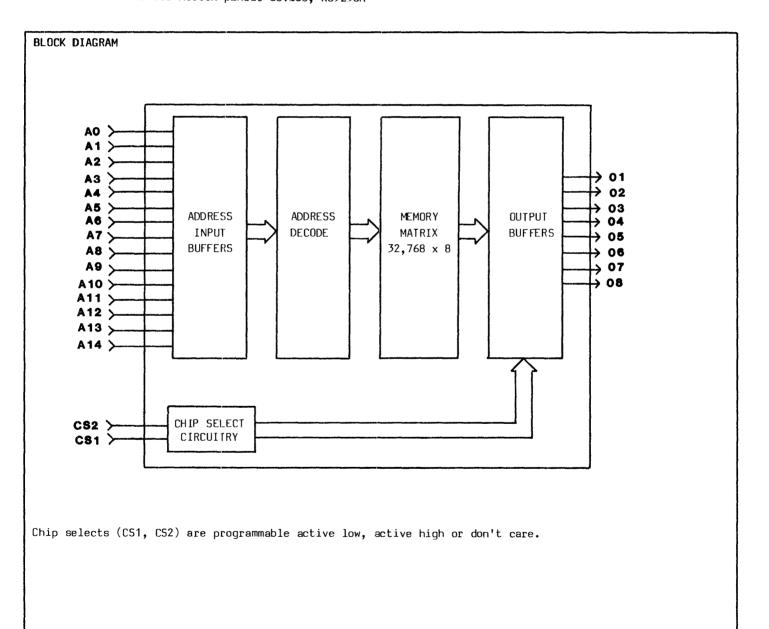
- 32,768 x 8 organization
- Single +5V <u>+</u>10% supply
- 450ns max access time: R09256B
- 350ns max access time: R09256CS
- 300ns max access time: R09256C
- 250ns max access time: R09256DS
- 200ns max access time: R09256D
- Totally static operation
- Three state outputs
- All ITL compatible input/outputs
- 28 Pin JEDEC approved pinout: R09256
- Programmable "FlexSelect"TM chip enable/disable/power down capabilities controlled by the chip enable (CE) and output enable (OE) inputs
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD883B
- Alternate 28 pin Mostek compatible pinout (R09256A) available for DS/D speeds only

DESCRIPTION

The General Instrument R09256 is a 262,144 Bit Static Read Only Memory organized as 32,768 eightbit words and is ideally suited for microprocessor memory applications. Fabricated with General Instrument N-Channel Silicon Gate Technology, the R09256 provides the designer with a high performance, easy to use MOS circuit featuring operation from a single +5 Volt power supply and low power dissipation.

Operation

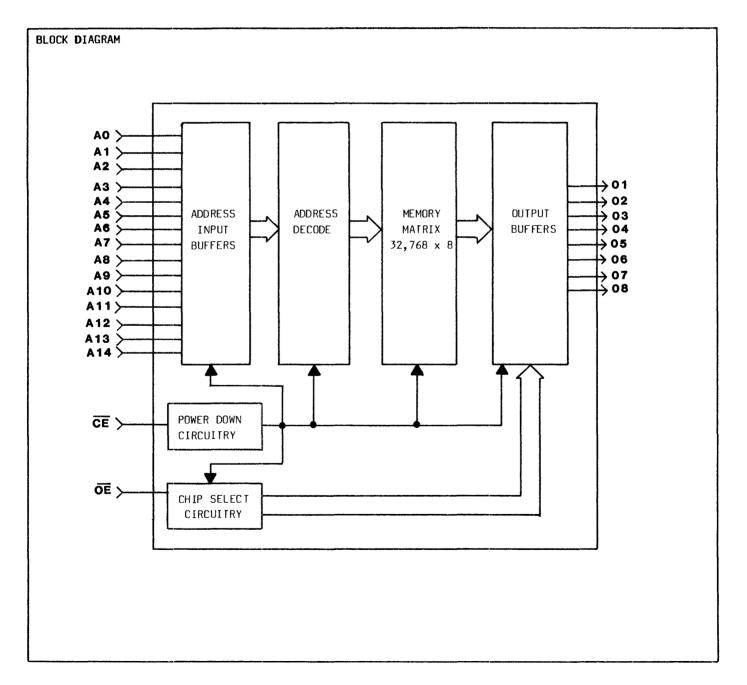
Address (AO-A14)


The address-valid interval determines the device cycle time. The 15-bit positive logic address is decoded on-chip to select on the 32,768 words of 8bit length in the memory array. AO is the leastsignificant bit and A14 the most significant bit of the word address.

Chip Select

Chip enable/disable/power down "FlexSelect"TM. These inputs can be programmed during mask fabrication to implement various logic functions which provides the designer with a flexible and easy means of "chip selecting" and/or "powering down" the device. The "FlexSelect"TM options are on the following pages.

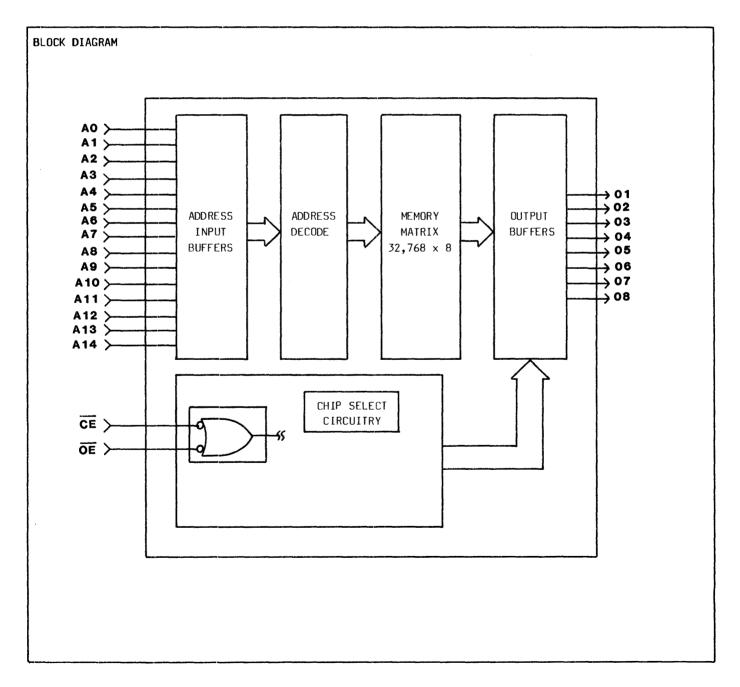
R09256		Top View	
10/2/0	N.C. C		28 V _{CC}
	A12 2		27 A 14
	A7 C 3		26 A13
	A6 🗖 4		25 AB
	A5 🗖 5		24 A9
	A4 匚 6		23 🗖 A11
	A3C 7		22 DE/CS1
	A2 C 8		21] A10
	A1 C 9		20 CE/CS2
	AO C 1	0	19 08
	0101	1	18 07
	02		17 06
	03 C 1		16 05
		4	15 04
<u>R09256A</u>	A14	Top View	28 V _{CC}
	A120 2		27 D N.C.
	A70 3		26 A13
	A6 C 4		25 D A8
	A5 C 5		24 D A9
	A4C 6		23 A11
			220 OE
	A3C 7		
	A2C 8		21 1 A10
	1		21 1 A10 20 1 CE
	A2C 8		21 A10 20 CE 19 08
	A2C 8 A1C 9 AOC 1 01C 1	D 1	21 A10 20 CE 19 08 18 07
	A2C 8 A1C 9 A0C 11 01C 1 02C 1	D 1 2	21 A 10 20 CE 19 08 18 07 17 06
	A2C 8 A1C 9 AOC 1 01C 1	D 1 2 3	21 A10 20 CE 19 08 18 07


- I) Standard Chip Select requirements Non-Power Down
 - CS1 = 0,1 or don't care (Pin 22) CS2 = 0,1 or don't care (Pin 20)
 - Logic Function $^{1}(CS1) \cdot ^{1}(CS2)$ = Chip Selected
 - 1 Programmed in active state
 "." = Logical "AND"
 - * Not available for "D" speed devices **Not available for Mostek pinout device, R09256A

- II) Standard Chip Select requirements Power Down
 - $\overline{\text{OE}}$ (Pin 22) When $\overline{\text{CE}}$ goes high, the device will automatically power down and remain in a low power $\overline{\text{CE}}$ (Pin 20) standby mode as long as $\overline{\text{CE}}$ remains high. The $\overline{\text{OE}}$ function eliminates bus contention in multiple memory device systems.

Logic Function: $(\overline{CE}) \cdot (\overline{OE}) = Chip Selected$

"." = LOGICAL "AND"


III) "ORED" chip select requirement (chip selects at pins 20 (\overline{CE}) and 22 (\overline{OE}) function as a logical "OR"). *This is ideally suited for applications that have limited chip select decoding capabilities.

Logic Function: $(\overline{CE} + \overline{OE}) = Chip Selected$

"+" = LOGICAL "OR"

** Not available for D speed devices

***Not available for Mostek pinout device, R09256A

Maximum Ratings*

V _{CC} and	Input Voltages			
(with	Respect to GND)	0.5	V to	+7.0V
Storage	Temperature	-65°C	to +	150°C

Standard Conditions (unless otherwise noted): $V_{CC} = 5V \pm 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to + 70°C Output Loading: Two TTL Loads, C_L TOTAL = 100pf

DC CHARACTERISTICS

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

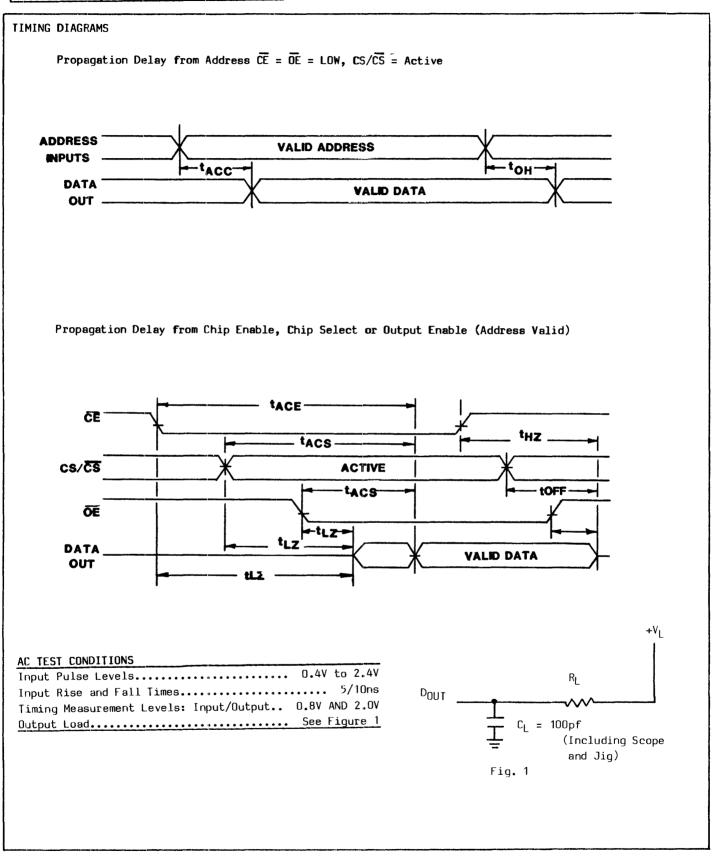
Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CE/CS2, OE/CS1						
Inputs						
Logic "1"	V _{IH}	2.0	-	V _{CC}	v	
Logic "O"	VIL	0	-	0.8	v	
Leakage	ILI	-10	-	+10	Au	$V_{\rm IN} = 0.4V$ to $V_{\rm CC}$
Data Outputs						
Logic "1"	V _{OH}	2.4	-	٧ _{CC}	v	AبرI _{OH} = –400A
Logic "O"	VOL	-	-	0.4	v	$I_{OL} = 3.2 \text{mA}$
Leakage	ILO	-10	-	+10	Au	$V_{OUT} = 0.4V$ to V_{CC}
Power Supply Current						
I _{CC} (Active)	-	-	-	100	mA	Note 1
I _{CC} (Standby)	-	-	-	20	mA,	Note 2
I _{CC} (Standby) D-speed only	-	-	-	50	mA	Note 2

AC CHARACTERISTICS		R092	2568	R092	56CS	R092	256C	R092	256DS	R092	256D		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time	tACC	-	450	-	350	-	300	-	250	-	200	ns	
Address Hold After													
Address Change	t _{OH}	10	-	10	-	5	-	5	-	5	-	ns	Note 3
Chip Enable Time	tACE	-	450	-	350	-	300	-	250	-	200	ns	
Chip Select, Output													
Enable Access Time	t _{ACS}	-	150	-	125	-	100	-	85	-	70	ns	Note 4
Output Disable Time	tOFF	-	150	-	125	-	100	-	85	-	70	ns	
Output Low Z Delay	τ _{LZ}	10	-	10	-	5	-	5	-	5	-	ns	Note 3
Output High Z Delay	t _{HZ}	-	150	-	125	-	100	-	85	-	70	ns	Note 5
Capacitance***													
Input Capacitance	CI	-	7	-	7	-	7	-	7	-	7	pf	$F = 1MH_Z, T_A = +25^{\circ}C$
Output Capacitance	C _O	-	10	-	10	-	10	-	10	-	10	pf	$F = 1MH_Z, T_A = +25°C$

***Capacitance is periodically sampled and is not 100% tested.

NOTES:

1. Measured with device selected and outputs unloaded.


2. Device disabled with $\overline{CE} \ge 2.0V$ ("Power Down" programmed parts only).

3. These parameters are periodically sampled and not 100% tested.

- 4. Access time to valid data measured from CS1 going active and/or OE going low whichever occurs last/first.
- 5. Output high impedance delay (t_{HZ}) is measured from CE and/or OE going high or CS1 going active,

which ever occurs first/last.

262,144 BIT STATIC READ ONLY MEMORY

FEATURES:

- 32,768 x 8 organization
- Single +5 /Volt Supply
- 450ns max access time: ROC256B
- 350ns max access time: ROC256CS
- 300ns max access time: ROC256C
- 250ns max access time: ROC256DS
- 200ns max access time: ROC256D
- Totally static operation
- Three state outputs
- All TTL compatible input/outputs
- 28 Pin JEDEC approved pinout
- Programmable "FlexSelect"TM chip enable/disable/power down capabilities controlled by the chip enable (\overline{CE}) and output enable (\overline{OE}) inputs
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD883B
- Low Power Dissipation:
 - I_{CC} (Active) max @ 5.5V, 0°C = 40mA, I_{CC} (Standby) max @ 5.5V, 0°C = 1mA

DESCRIPTION

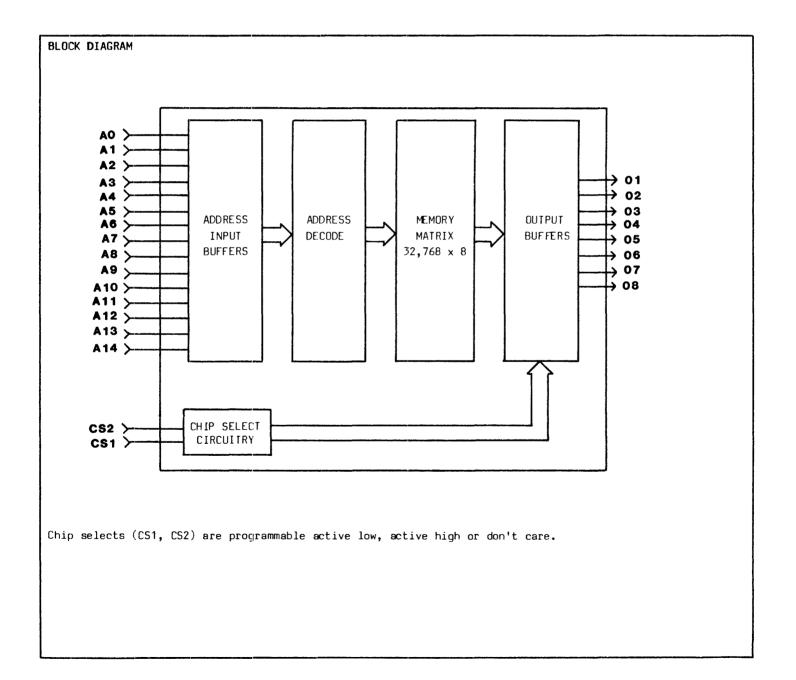
The General Instrument ROC256 is a 262,144 Bit CMOS Static Read Only Memory organized as 32,768 eightbit words and is ideally suited for microprocessor memory applications. Fabricated with General Instrument CMOS Silicon Gate Technology, the ROC256 provides the designer with a high performance, easy to use CMOS circuit featuring operation from a single +5 Volt power supply and low power dissipation.

Operation

Address (AD-A14)

The address-valid interval determines the device cycle time. The 15-bit positive logic address is decoded on-chip to select on the 32,768 words of 8bit length in the memory array. AO is the leastsignificant bit and A14 the most significant bit of the word address.

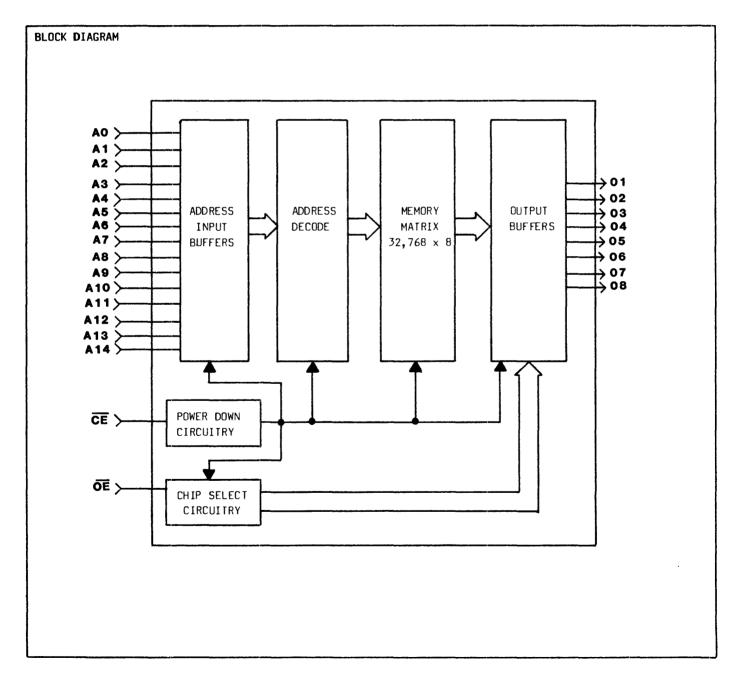
28 LEAD DUAL-IN-LINE	
Тор	View
N.C. D •1	28 🗖 V _{CC}
A12 🗖 2	27 D A14
A7 🗖 3	26 🗖 A 1 3
A6 C 4	25 🗖 A8
A5 🗖 5	24 🗖 A9
A4 C 6	23 D A11
A3 🗖 7	22 DOE/CS1
A2 C 8	21 🗖 A10
A1 C 9	20 CE/CS2
AO 🕻 10	19 🗖 08
01 C 11	18 🗖 07
02 🖬 12	17 🗖 06
03 🖬 13	16 口 05
GND C 14	15 🗖 04


Chip Select

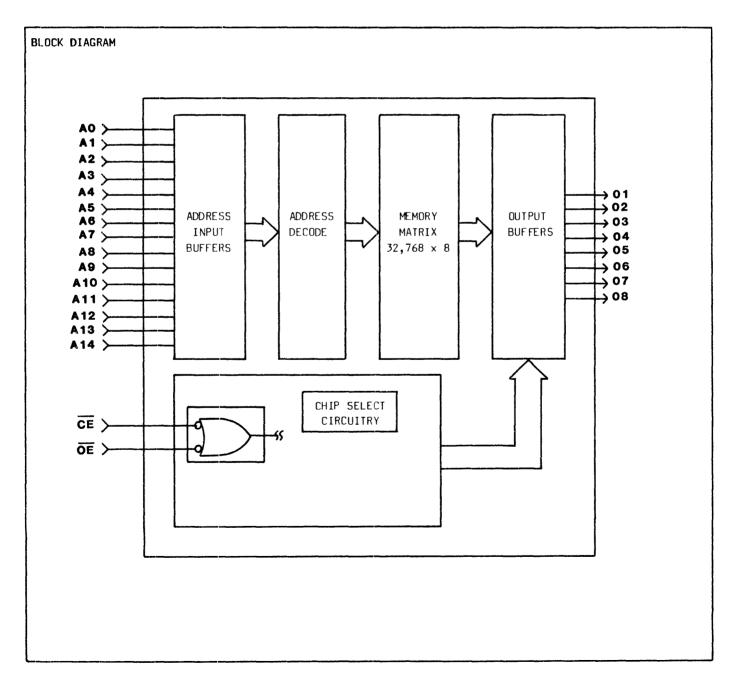
Chip enable/disable/power down "FlexSelect"TM. These inputs can be programmed during mask fabrication to implement various logic functions which provides the designer with a flexible and easy means of "chip selecting" and/or "powering down" the device. The "FlexSelect"TM options are explained on the following pages. I) Standard Chip Select requirements - Non-Power Down

CS1 = 0,1 or don't care (Pin 22) CS2 = 0,1 or don't care (Pin 20)

Logic Function $^{1}(CS1) \cdot ^{1}(CS2) = Chip Selected$


1 Programmed in active state
"." = Logical "AND"

- II) Standard Chip Select requirements Power Down
 - OE (Pin 22) When CE goes high, the device will automatically power down and remain in a low power CE (Pin 20) standby mode as long as CE remains high. The OE function eliminates bus contention in multiple memory device systems.


Logic Function: $(\overline{CE}) \cdot (\overline{OE}) = Chip Selected$

"." = LOGICAL "AND"

III) "ORED" chip select requirement (chip selects at pins 20 (\overline{CE}) and 22 (\overline{OE}) function as a logical "OR"). *This is ideally suited for applications that have limited chip select decoding capabilities. Logic Function: ($\overline{CE} + \overline{OE}$) = Chip Selected

"+" = LOGICAL "OR"

GENERAL ROC256B/CS/C/DS/D INSTRUMENT FlexSelectTM

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

 $V_{\mbox{\scriptsize CC}}$ and Input Voltages

Standard Conditions (unless otherwise noted):

 $V_{CC} = 5V \pm 10\%$

Operating Temperature $T_A = 0^{\circ}C$ to + 70°C

Output Loading: Two TTL Loads, C_L TOTAL = 100pf

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

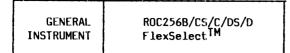
DC CHARACTERISTICS

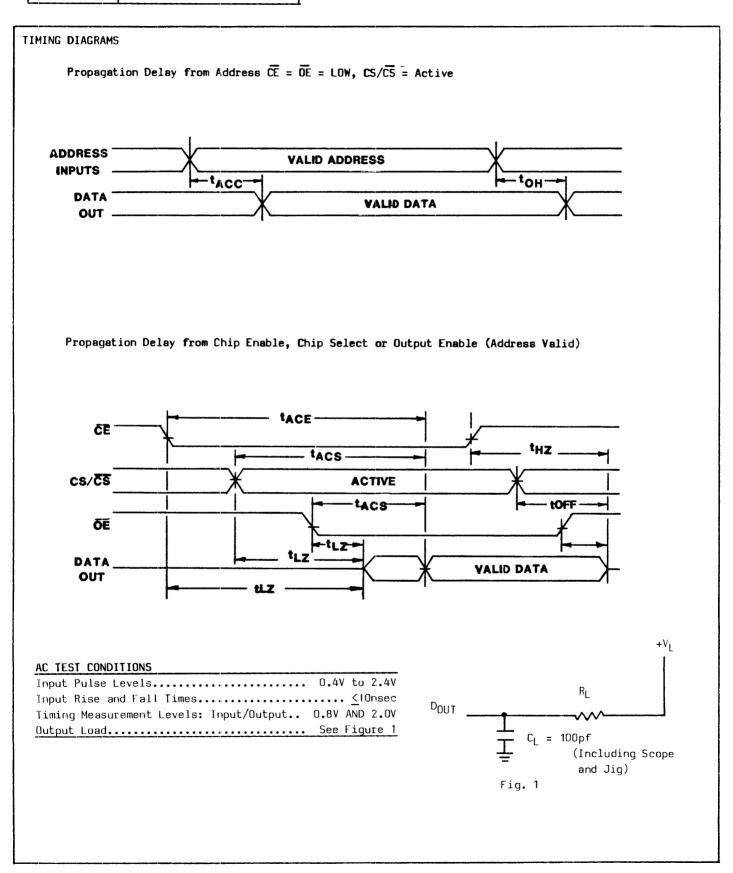
Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CE/CS2, OE/CS1						
Inputs						
Logic "1"	۷ _{IH}	2.0	-	V _{CC}	v	
Logic "O"	٧ _{IL}	0	-	0.8	v	
Leakage	ILI	-10	-	+10	μA	$V_{IN} = 0.4V$ to V_{CC}
Data Outputs						
Logic "1"	V _{OH}	2.4	-	V _{CC}	v	I _{OH} = -400µA
Logic "O"	V _{OL}	-	-	0.4	v	$I_{OL} = 3.2 \text{mA}$
Leakage	ILO	-10	-	+10	μA	$V_{OUT} = 0.4V$ to V_{CC}
Power Supply Current						
I _{CC} (Active)	-	-	-	40	mA	Note 1
I _{CC} (Standby)	-	-	-	1	mA	Note 2

AC CHARACTERISTICS		ROC 2	56B	ROC 2	56CS	ROC2	56C	ROC2	56DS	ROC 2	56D		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units	Conditions
Address Access Time	tACC	-	450	-	350	1	300	-	250	-	200	ns	
Address Hold After													
Address Change	t _{OH}	10	-	10	-	5	-	5	-	5	-	ns	Note 3
Chip Enable Time	tACE	-	450	-	350	-	300	-	250	-	200	ns	
Chip Select, Output													
Enable Access Time	t _{ACS}	-	150	-	125	-	100	-	85	-	70	ns	Note 4
Output Disable Time	tOFF	-	150	-	125	-	100	-	85	-	70	ns	
Output Low Z Delay	tLZ	10	-	10	-	5	-	5	-	5	-	ns	Note 3
Output High Z Delay	t _{HZ}	-	150	-	125	-	100	-	85	-	70	ns	Note 5
Capacitance***													
Input Capacitance	CI	-	7	-	7	-	7	-	7	-	7	pf	$F = 1MH_Z, T_A = +25^{\circ}C$
Output Capacitance	CO	-	10	-	10	-	10		10	-	10	pf	$F = 1MH_Z, T_A = +25^{\circ}C$
·····					L				I			l	

***Capacitance is periodically sampled and is not 100% tested.

NOTES:


1. Measured with device selected and outputs unloaded.


2. Device disabled with $\overline{CE} \ge 2.0V$ ("Power Down" programmed parts only).

3. These parameters are periodically sampled and not 100% tested.

4. Access time to valid data measured from CS1 going active and/or DE going low whichever occurs last/first.

5. Output high impedance delay (t_{HZ}) is measured from \overline{CE} and/or \overline{OE} going high or CS1 going active, which ever occurs first/last.

PRELIMINARY INFORMATION

PIN CONFIGURATION

524,288 STATIC READ ONLY MEMORY

FEATURES:

- Mask programmable storage providing 64K x 8 bit words with programmable "VariPage"TM memory array organization
 - Single 64K Byte Pages: R095120
 - Two 32K Byte Pages: R095121
 - Four 16K Byte Pages: R095122
- One programmable chip select (CS); R09512X, or: power down feature (CE); R09512XA
- 250ns max access time: R09512XDS, R09512XADS
- 200ns max access time: R09512XD, R09512XAD
- 150ns max access time: R09512XES, R09512XAES
- Fully static operation
- Single +5V +10% supply
- Inputs and outputs TTL compatible
- Three state outputs under the control of one mask programmable chip select input
- Low power dissipation
- 28 pin JEDEC approved pinout
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD 8838

DESCRIPTION

The General Instrument R09512X is a 524,288 bit static read only memory capable of variable page organization. Fabricated with General Instrument's N-Channel Silicon Gate Technology, the R09512X provides the designer with a high performance, flexible NMOS memory circuit featuring operation from a single +5V power supply and low power dissipation.

Memory Organization

The R09512X is designed to offer a mask programmable option of choosing page sizes consistent with specific addressing limitations. For example, if only fifteen address lines are available, the R09512X could be programmed to "bank select" on 256K page boundaries (i.e. two 32K x 8 pages), see block diagram.

The R09512X in its straight (non-paging) format, will utilize all sixteen address inputs for direct addressing. When programmed to bank select on either 16K or 32K byte page boundaries, page selection is accomplished via the write enable ($\overline{\text{WE}}$) and the three I/O pins.

28 LEAD DUAL	IN LINE	
R095120		VIEW
	A15 []1	28 2 V _{CC}
64 x 8	A12 []2	
organization	А7 С 3 Аб С 4	26 🗖 A13 25 🗖 A8
	A5 C 5	24 D A9
	A4 C 6	23 A11
	A3C 7	
	A2 L 8	21 D A10
	A1 C 9	20 0 CS/CE
	A0 C 10	19 07
	0Ø C 11	
	01 C 12	
		16 日 04 15 日 03
	V _{SS} C 14	

R095121	TOP VIE	W
WE	1	28 🗖 V _{CC}
(2) 32K x 8 A12 (2	27 🗖 A14
organization A7	3	26 口 A13
A6 (4	25 D A8
A5 (5	24 🗖 A9
A4(6	23] A11
A3 (7	22 0 OE
A2 C	8	21 D A10
A10	9	20 D CS/CE
AO	10	19 D 07
1/0Ø (11	18 🗖 06
I/01	12	170 05
I/02 (13	16 🗖 04
v _{SS} t	14	15 03

R095122	TOP	VIEW
	NCE 1	28 V _{CC}
(4) 16K x 8	A12 C 2	27 WE
organization	A7 C 3	26 口 A13
organizza au	A6 C 4	25 D A8
	A5 C 5	24 🗖 A9
	A4 🗖 6	23 D A11
	A3C 7	22 日 0E
	A2 🗖 8	21 D A10
	A1 C 9	20 2 CS/CE
	AO C 10	19 07
	1/0Ø E 11	18 🗖 06
	1/01 C 12	17 2 05
	1/02 C 13	16 04
	۷ _{SS} C 14	15 03

Operation

Address (AO-A13, A14-A15 optional)

The address valid interval determines the device cycle time. The positive logic address is decoded to select 16K, 32K, or 64K by 8-bit pages. AO is the least significant bit and A15 is the most significant bit of the word address.

Chip Select (CS)

This is a programmable chip select which will be sacrificed if the power down option is selected. The address bus will tri-state when CS is in the inactive state.

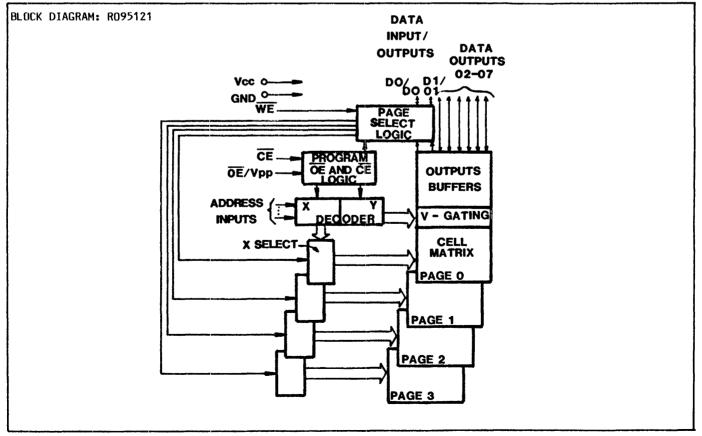
Chip Enable (\overline{CE})

The power down feature of the R09512XA is controlled by the chip enable (\overline{CE}) input. If the power down feature is programmed, the device will go into a low current mode when \overline{CE} is equal to or greater than 2.0 volts. The R09512XA will remain in a low power standby mode as long as CE remains high.

Output Enable (OE)

The $\overline{\text{OE}}$ functions as a chip select for the RO95121 and RO95122. The address bus will tri-state when $\overline{\text{OE}}$ is high.

Write Enable (WE)


The $\overline{\text{WE}}$ pin allows the R095121 or R095122's RAM to accept a page transition address. The page address is entered via the three I/O pins and latched into the RAM on the rising edge of the $\overline{\text{WE}}$ signal. The three-bit page address is decoded as follows:

PAGE DEFINITIONS

	16K	x 8 Pa		32K	x 8 Pa	qes
Page	1/02	1/0 ¹	1/0 ⁰	1/02	I/0 ¹	I/0 ⁰
PO	0	0	0	0	0	х
P ₁	0	0	1	0	1	х
P2	0	1	0	1	0	Х
Ρ3	0	1	1	1	1	х
P4	1	0	0	Х	X	X
P ₅	1	0	1	X	х	Х
P6	1	1	0	Х	х	х
P7	1	1	1	X	X	х
L						

Note:

During power-up, the device will reset to page O. Upon page selection, only the selected page will be powered, the non-selected pages will automatically power down.

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

V_{CC} and Input Voltages
 (with Respect to GND)..... -0.5V to +7.0V
Storage Temperature..... -65°C to + 150°C

Standard Conditions (unless otherwise noted): $V_{CC} = 5V \pm 10\%$ Operating Temperature T_A = 0°C to + 70°C Output Loading: Two TTL Loads, C_L TOTAL = 100pf *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CE/CS, OE Inputs				1		
Logic "1"	V _{IH}	2.0	-	V _{CC}	v	
Logic "O"	VIL	0	~	0.8	v	
Leakage	ILI	-	-	10	μA	V_{IN} = 0.4V to V_{CC}
Data Outputs						
Logie "1"	V _{OH}	2.4	-	V _{CC}	v	$I_{OH} = -400 \mu A$
Logic "O"	VOL	-		0.4	V	$I_{OL} = 2.1 \text{mA}$
Leakage	ILO	-	-	10	Αبر	$V_{OUT} = 0.4V$ to V_{CC}
Power Supply Current						
I _{CC} (Active, Non-Paged)	ICC	-	-	125	mA	Note 1
I _{CC} (Active, Paged)	ICC	-	-	100	mA	Note 2
I _{CC} (Standby)	ICC	-	-	30	mA	Note 3

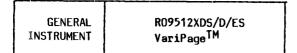
READ OPERATION

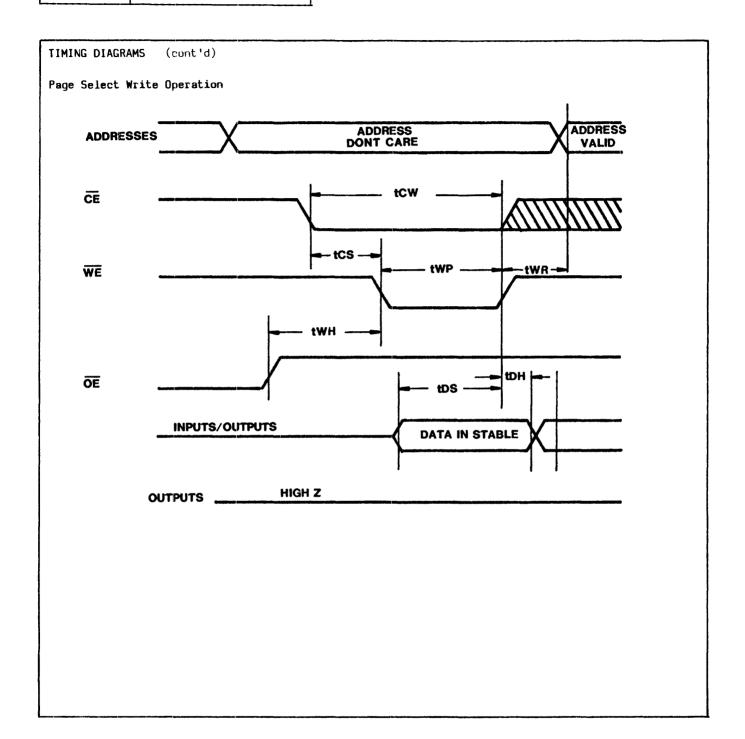
		R095	1XDS	R095	51XD	R095	1XES		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Address to Output Delay	t _{ACC}	-	250	-	200	-	150	ns	CE = OE = V _{IL}
CE to Output Delay	t _{CE}	-	250	-	200	-	150	ns	$\overline{OE} = V_{IL}$
OE to Output Delay	t _{OE}	-	85	-	70	-	55	ns	CE = V _{IL}
OE or CE High to Output Data Float	t _{DF}	0	85	O	70	0	55	ns	CE = V _{IL} , Note 4
Output Hold From Addresses CE or OE Whichever Occured First	t _{OH}	O	-	0	-	-	-	ns	$\overline{CE} = \overline{OE} = V_{IL}$

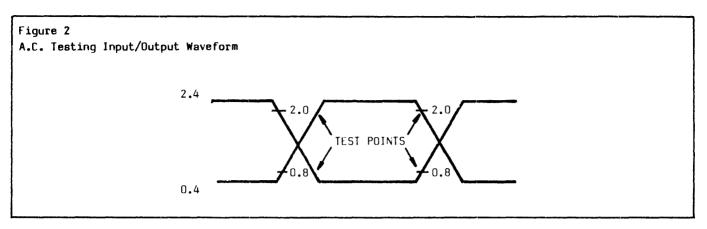
PAGE SELECT WRITE OPERATION AC CHARACTERISTICS

		ALL	SPEEDS		
Characteristics	Sym	Min	Max	Units	Conditions
CE to End of Write	t _{CW}	120	-	ns	OE = V _{IH} , Note 5
Write Pulse Width	t _{WP}	70	-	ns	$\overline{\text{OE}}$ = V _{IH} , Note 5
Write Recovery Time	t _{WR}	20	-	ns	
Data Setup Time	t _{DS}	40	-	ns	OE = V _{IH}
Data Hold Time	t _{DH}	20	-	ns	OE = V _{IH}
CE to Write Setup Time	t _{CS}	0	-	ns	OE = V _{IH}
WE Low From OE High Delay Time	t _{WH}	50	-	ns	Note 6

CAPACITANCE*** ($T_A = 25^{\circ}C$, f = 1MHz),

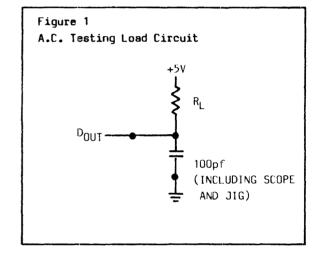

CAPACITANCE*** ($T_A = 25^{\circ}C$, f = 1		R0951XDS		R0951XD		R0951XES			
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Input Capacitance	C _{IN}	-	7	-	7	-	7	pf	V _{IN} = OV
Output Capacitance	C _{OUT}	-	10	-	10	-	10	pf	V _{OUT} = OV


***Capacitance is periodically sampled and is not 100% tested.


NOTES:

- 1. Measured with device selected and outputs unloaded.
- 2. Measured with device selected, non-active pages powered down, and outputs unloaded.
- 3. Device disabled with $\overline{\text{CE}} \ge 2.0 \text{V}$ ("Powered Down" programmed parts only).
- 4. TDF = Output float time from OE or CE going high, whichever occurs last.
- 5. Write may be terminated either by \overline{CE} or \overline{WE} .
- 6. DE must be high during write cycle.

R09512XDS/D/ES VariPageTM GENERAL INSTRUMENT TIMING DIAGRAMS Read Operation VIH ADDRESSES ADDRESS VALID VIL -VIH ĊĒ VIL tCE-VaH ŌĒ VIL . tpf _tOE_ tACQ tOH . V_{IH} VALID OUTPUT HIGH Z HIGH Z OUTPUT ۷_{IL} VIH 4 ŴĒ VIL



AC Testing inputs are driven at 2.4V for a logic 1 and 0.4V for a logic 0. Timing measurements are made at 2.0V for a logic 1 and 0.8V for a logic 0.

A.C. TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Falls Times	< 5nsec
Timing Measurement Levels: Input/Output	0.8V and 2.0V
Output Load	See Figure 1

524,288 STATIC READ ONLY MEMORY PIN CONFIGURATION 28 LEAD DUAL IN LINE FEATURES: TOP VIEW R0C5120 A15 28 UVCC - Mask programmable storage providing 64K x 8 bit 27 DA14 A12**2**2 words with programmable "VariPage"TM memory 64K x 8 A7 **D** 3 26 A13 array organization organization 25 DAB A6**D**4 • Single 64K Byte Pages: ROC5120 24**b**A9 A5**C**5 • Two 32K Byte Pages: R0C5121 A4**D**6 23**D**A11 • Four 16K Byte Pages: R0C5122 22b TF A307 - One programmable chip select (CS); ROC512X, A2**D**8 21**D**A10 or: power down feature (CE); ROC512XA 20 \Box CS/ \overline{CE} A1**C**9 - 250ns max access time: ROC512XDS, ROC512XADS 19 07 A0**1** 10 - 200ns max access time: R0C512XD, R0C512XAD 0Ø**C** 11 18006 - 150ns max access time: ROC512XES, ROC512XAES 17005 01**C** 12 - Fully static operation 16004 020 13 - Single +5V +10% supply 1503 V_{SS}C 14 - Inputs and outputs TTL compatible - Three state outputs - under the control of one mask programmable chip select input - Low power dissipation - 28 pin JEDEC approved pinout - ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD 883B

DESCRIPTION

The General Instrument ROC512X is a 524,288 bit static read only memory capable of variable page organization. Fabricated with General Instrument's N-Channel Silicon Gate Technology, the ROC512X provides the designer with a high performance, flexible NMOS memory circuit featuring operation from a single +5V power supply and low power dissipation.

Memory Organization

The ROC512X is designed to offer a mask programmable option of choosing page sizes consistent wit specific addressing limitations. For example, if only fifteen address lines are available, the ROC512X could be programmed to "bank select" on 256K page boundaries (i.e. two $32K \times 8$ pages), see block diagram.

The ROC512X in its straight (non-paging) format, will utilize all sixteen address inputs for direct addressing. When programmed to bank select on either 16K or 32K byte page boundaries, page selection is accomplished via the write enable (\overline{WE}) and the three I/O pins.

ROC5121	TOP	VIEW
	WEL 1	28 🗖 V _{CC}
(2) 32K x 8	A12 C 2	27 D A14
organization	A7 C 3	26 🗖 A13
	A6 C 4	25 D A8
	A5C 5	24 🗖 A9
	A4 C 6	23 🗖 A11
	A3 C 7	22 D DE
	A2 C 8	21 21 A 10
	A1 C 9	20 0 CS/CE
	AO C 10	19 07
	1/0Ø C 11	18 🗖 06 🛛 🗸 🔹
	1/01 L 12	170 05
	1/02 C 13	16 🗖 04
	۷ _{SS} C 14	15 🗖 03

R0C5122	TOP	VIEW
NCE	1	28 🗖 V _{CC}
(4) 16K x 8 A12C	2	27 D WE
organization A7C	3	26 D A13
A6 C	4	25 D A8
A5 C	5	24] A9
A4 C	6	23 D A11
A3C	7	22 1 0E
A2C	8	21 D A10
A1C	9	20 0 CS/CE
AOC	10	19 1 07
1/0Ø C	11	18 🗗 06
I/01 C	12	17 3 05
1/02	13	16 04
۷ _{SS} C	14	150 03
	L	

1985 General Instrument Corporation

Operation

Address (AO-A13, A14-A15 optional)

The address valid interval determines the device cycle time. The positive logic address is decoded to select 16K, 32K, or 64K by 8-bit pages. AO is the least significant bit and A15 is the most significant bit of the word address.

Chip Select (CS)

This is a programmable chip select which will be sacrificed if the power down option is selected. The address bus will tri-state when CS is in the inactive state.

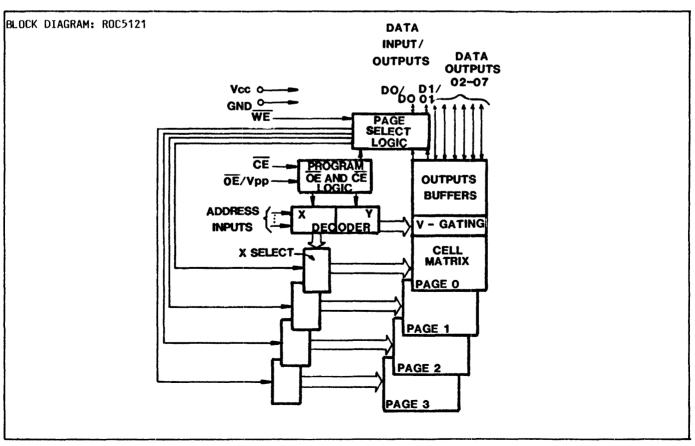
Chip Enable (\overline{CE})

The power down feature of the ROC512XA is controlled by the chip enable (\overline{CE}) input. If the power down feature is programmed, the device will go into a low current mode when \overline{CE} is equal to or greater than 2.0 volts. The ROC512XA will remain in a low power standby mode as long as CE remains high.

Output Enable (OE)

The \overline{OE} functions as a chip select for the ROC5121 and ROC5122. The address bus will tri-state when \overline{OE} is high.

Write Enable (WE)


The \overline{WE} pin allows the ROC5121 or ROC5122's RAM to accept a page transition address. The page address is entered via the three I/O pins and latched into the RAM on the rising edge of the \overline{WE} signal. The three-bit page address is decoded as follows:

PAGE DEFINITIONS

	16K	x 8 Pa	32K	x 8 Pa	qes	
Page	1/02	1/01	1/00	1/02	1/01	1/00
PO	0	0	0	0	0	x
P ₁	0	0	1	0	1	Х
P2	0	1	0	1	0	X
P3	0	1	1	1	1	X
P4	1	0	0	Х	Х	Х
P5	1	0	1	X	X	x
P ₆	1	1	0	х	х	x
P ₇	1	1	1	Х	X	X
	l					

Note:

During power-up, the device will reset to page 0.

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

DC CHARACTERISTICS

V _{CC} and	Input Voltages
(with	Respect to GND)
Storage	Temperature -65° C to $+ 150^{\circ}$ C

Standard Conditions (unless otherwise noted): $V_{CC} = 5V \pm 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to + 70°C Output Loading: Two TTL Loads, C_L TOTAL = 100pf *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

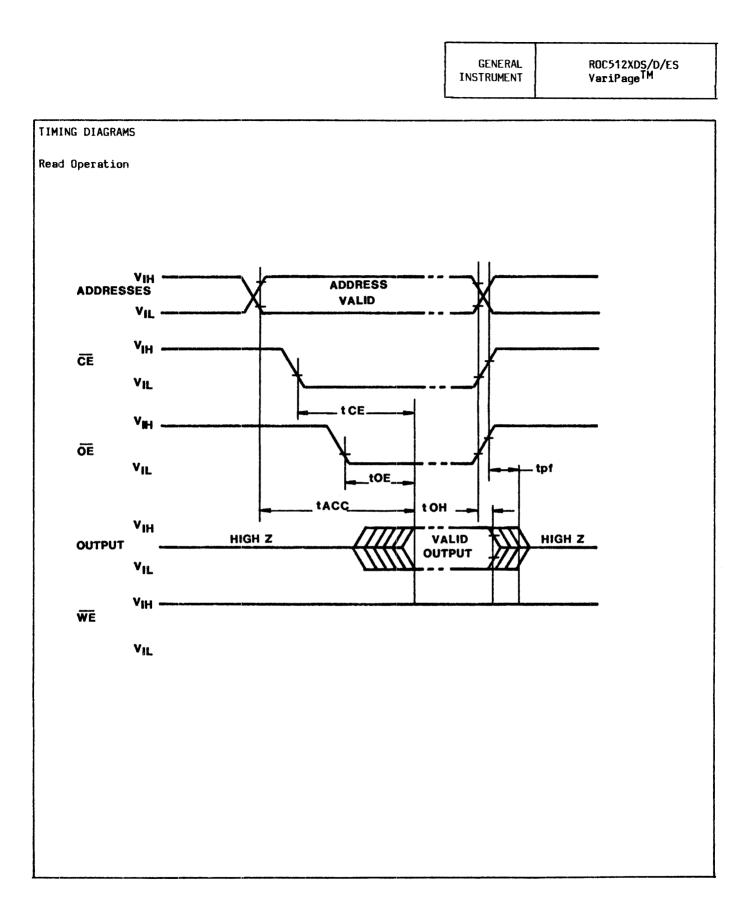
Characteristics Sym Min Тур Max Units Conditions Address, CE/CS, OE Inputs Logic "1" $v_{\rm CC}$ VIH 2.0 ۷ Logic "0" V_{IL} 0 ----0.8 V Leakage _ 10 JA $V_{\rm IN}$ = 0.4V to $V_{\rm CC}$ ILI Data Outputs Logic "1" ۷ 2.4 $I_{0H} = -400 \mu A$ VOH ----^VCC Logic "O" VOL 0.4 ٧ $I_{OL} = 2.1 \text{mA}$ Leakage ILO ---10 μA $V_{OUT} = 0.4V$ to V_{CC} _ Power Supply Current 35 Note 1 $I_{\Gamma\Gamma}$ (Active) mΑ ICC I_{CC} (Standby) 40 Note 2 ICC ---μA

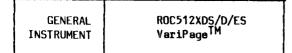
READ OPERATION AC CHARACTERISTICS

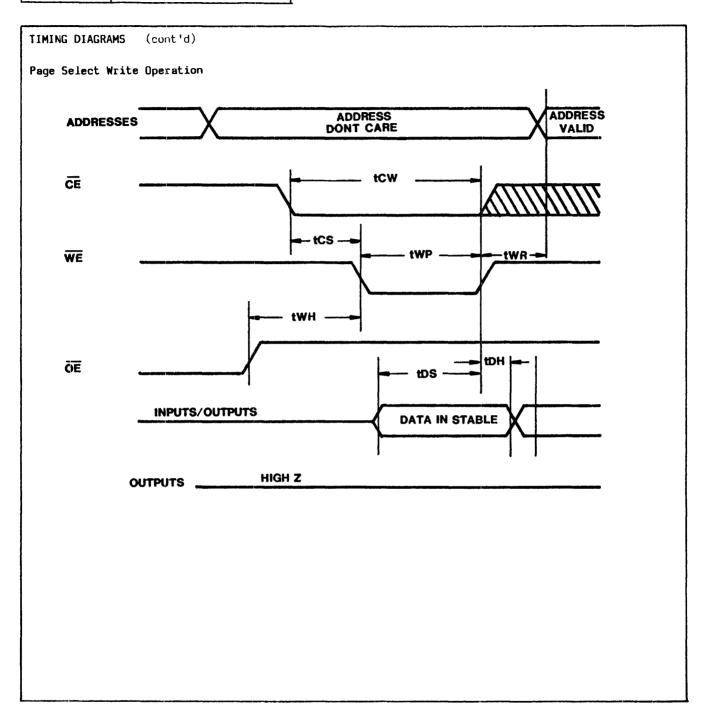
		ROCS	1XDS	ROCS	51XD	ROCS	1XES		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Address to Output Delay	t _{ACC}	-	250	-	200	-	150	ns	CE = OE = V _{IL}
CE to Output Delay	t _{CE}	-	250	-	200	-	150	ns	OE = V _{IL}
OE to Output Delay	t _{OĽ}	-	85	-	70	-	55	ns	$\overline{CE} = V_{IL}$
OE or CE High to Output Data Float	t _{DF}	O	85	0	70	O	55	ns	CE = V _{IL} , Note 3
Output Hold From Addresses CE or OE Whichever Occured First	t _{OH}	0	-	0	-	-	-	ns	<u>ce</u> = <u>oe</u> = v _{il}

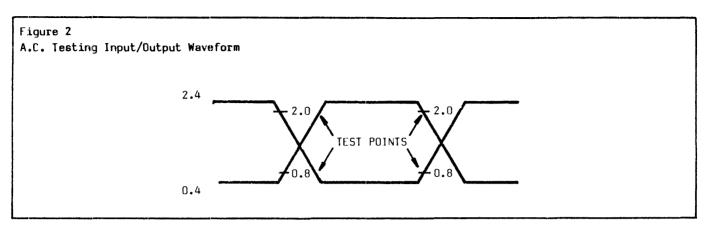
PAGE SELECT WRITE OPERATION AC CHARACTERISTICS

		ALL SF	PEEDS		
Characteristics	Sym	Min	Max	Units	Conditions
CE to End of Write	⁺cw	120	-	ns	\overline{OE} = V _{IH} , Note 4
Write Pulse Width	t _{WP}	70	-	ns	\overline{OE} = V _{IH} , Note 4
Write Recovery Time	t _{WR}	20	-	ns	
Data Setup Time	t _{DS}	40	-	ns	OE = V _{IH}
Data Hold Time	^t DH	20	-	ns	OE = V _{IH}
CE to Write Setup Time	tcs	0	-	ns	$\overline{OE} = V_{IH}$
WE Low From OE High Delay Time	t _{WH}	50	-	ns	Note 5

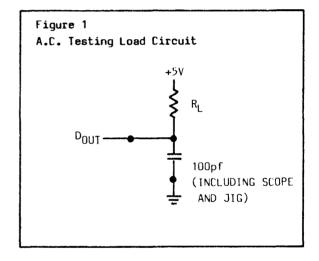

CAPACITANCE*** ($T_A = 25^{\circ}C$, f = 1MHz)


		ROC 5	1XDS	ROCS	1XD	ROC 5	1XES		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Input Capacitance	C _{IN}	-	7	-	7	-	7	pf	V _{IN} = OV
Output Capacitance	с _{оит}	-	10	-	10	-	10	pf	V _{OUT} = OV


***Capacitance is periodically sampled and is not 100% tested.


NOTES:

- 1. Measured with device selected and outputs unloaded.
- 2. Device disabled with $\overline{CE} \ge 2.0V$ ("Powered Down" programmed parts only). 3. TDF = Output float time from \overline{OE} or \overline{CE} going high, whichever occurs last.
- 4. Write may be terminated either by $\overline{\text{CE}}$ or $\overline{\text{WE}}$.
- 5. DE must be high during write cycle.



AC Testing inputs are driven at 2.4V for a logic 1 and 0.4V for a logic 0. Timing measurements are madet at 2.0V for a logic 1 and 0.8V for a logic 0.

A.C. TEST CONDITIONS

Input Pulse Levels 0.4V to 2.4V
Input Rise and Falls Times < 5nsec
Timing Measurement Levels: Input/Output 0.8V and 2.0V
Output Load See Figure 1

PRELIMINARY INFORMATION

PIN CONFICURATION

ONE MEGABIT STATIC READ ONLY MEMORY

FEATURES:

- Mask programmable storage providing 128K x 8 bit words with programmable "VariPage"TM memory array organization
 - Single 128K Byte Pages: R091000
 - Four 32K Byte Pages: R091001
 - Eight 16K Byte Pages: R091002
- One programmable chip select (CS); RO9100X, or: power down feature (CE); RO9100XA
- 300ns max access time: R09100XC, R09100XAC
- 250ns* max access time: R09100XDS, R09100XADS
- 200ns* max access time: R09100XD, R09100XAD
- Fully static operation
- Single +5V +10% supply
- Inputs and outputs TTL compatible
- Three state outputs under the control of one mask programmable chip select input
- Low power dissipation
- 28 pin JEDEC approved pinout
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD 883B

DESCRIPTION

The General Instrument R09100X is a 1,048,576 bit static read only memory capable of variable page organization. Fabricated with General Instrument's N-Channel Silicon Gate Technology, the R09100X provides the designer with a high performance, flexible NMOS memory circuit featuring operation from a single +5V power supply and low power dissipation.

Memory Organization

The R09100X is designed to offer a mask programmable option of choosing page sizes consistant with specific addressing limitations. For example, if only fifteen address lines are available, the R09100X could be programmed to "bank select" on 256K page boundaries (i.e. four 32K x 8 pages), see block diagram.

The R09100X in its straight (non-paging) format, will utilize all seventeen address inputs for direct addressing. When programmed to bank select on either 16K or 32K byte page boundaries, page selection is accomplished via the write enable (\overline{WE}) and the three I/O pins.

FIN CUNFIGURATION											
28 LEAD DUAL	IN LINE										
R091000	TOP	VIEW									
	A15 C 1	28	Vnn								
128K x 8	A12 C 2	27									
organization	A7 C 3	260/	A13								
	A6 L 4	25 þ 7	8								
	A5 C 5	24 þ /	49								
	A4 🗖 6	23Þ/	A11								
	A3C 7	22 þ /	A16								
	A2🗖 8	210/	A10								
	A1 C 9	20 þ a	CS/CE								
	AO C 10	19 🗖 (07								
	0ØC 11	180	06								
	01 C 12	170	35								
	02	16 🗖 (04								
	V _{SS} C 14	15 🗖 (33								
	~~										

<u>R091001</u>	тор	VIEW
	WEL 1	28 🗖 V _{CC}
(4) 32K x 8	A12 C 2	27 D A14
organization	A7 C 3	26 口 A13
	A6 C 4	25 0 A8
	A5 C 5	24 🗖 A9
	A4 C 6	23] A11
	A3 C 7	22 0 0E
	A2 C 8	21 2 A10
	A1 C 9	20 2 CS/CE
	AO C 10	19 口 07
	1/0Ø C 11	18 🗖 06
	1/01 C 12	17 0 05
	1/02 C 13	16 口 04
	۷ _{SS} L 14	15 03

<u>R091002</u>	TOP	VIEW
	NCE 1	28 0 V _{CC}
(8) 16K x 8	A12 C 2	27 D WE
organization	A7 C 3	26 D A13
	A6 🗖 4	25 口 A8
	A5🖸 5	24 口 A9
1	A4 🗖 6	23 D A11
	A3C 7	22 0 OE
	A2 C 8	21 0 A10
	A1 C 9	20 0 CS/CE
	AOC 10	19 1 07
	1/0Ø C 11	18 日 06
	1/01 C 12	170 05
	1/02 C 13	16 D 04
	۷ _{SS} C 14	15 03

Operation

Address (AO-A13, A14-A16 optional)

The address valid interval determines the device cycle time. The positive logic address is decoded to select 16K, 32K, or 128K by 8-bit pages. AO is the least significant bit and A16 is the most significant bit of the word address.

Chip Select (CS)

This is a programmable chip select which will be sacrificed if the power down option is selected. The address bus will tri-state when CS is in the inactive state.

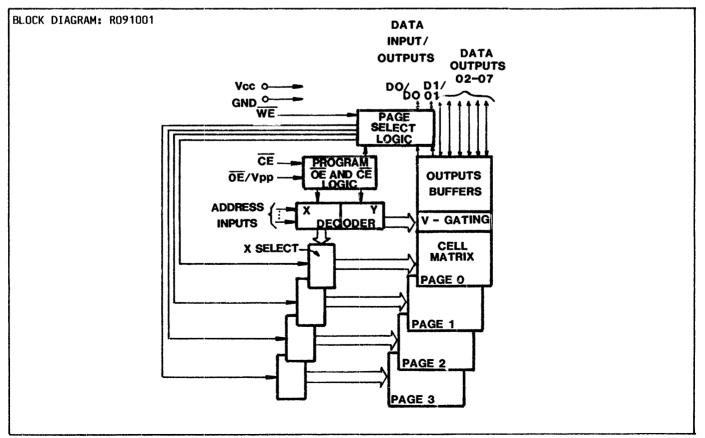
Chip Enable (\overline{CE})

The power down feature of the R09100XA is controlled by the chip enable (\overline{CE}) input. If the power down feature is programmed, the device will go into a low current mode when \overline{CE} is equal to or greater than 2.0 volts. The R09100XA will remain in a low power standby mode as long as CE remains high.

Output Enable (OE)

The $\overline{\text{OE}}$ functions as a chip select for the RO91001 and RO91002. The address bus will tri-state when $\overline{\text{OE}}$ is high.

Write Enable (WE)


The $\overline{\text{WE}}$ pin allows the R091001 or R09102's RAM to accept a page transition address. The page address is entered via the three I/O pins and latched into the RAM on the rising edge of the $\overline{\text{WE}}$ signal. The three-bit page address is decoded as follows:

PAGE DEFINITIONS

	16K	x 8 Pa	32K	x 8 Pa	qes	
Page	1/02	I/0 ¹	1/0 ⁰	1/0 ²	1/01	1/00
Po	0	0	0	0	0	х
P1	0	0	1	0	1	Х
P2	0	1	0	1	0	Х
P3	0	1	1	1	1	Х
P4	1	0	0	Х	Х	Х
P ₅	1	0	1	Х	Х	х
P ₆	1	1	0	Х	X	х
P ₇	1	1	1	X	Х	х
						L

Note:

During power-up, the device will reset to page O. Upon page selection, only the selected page will be powered, the non-selected pages will automatically power down.

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

V_{CC} and Input Voltages (with Respect to GND)..... -0.5V to +7.0V

Standard Conditions (unless otherwise noted):

 $V_{CC} = 5V + 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to + 70°C Output Loading: Two TTL Loads, C_L TOTAL = 100pf *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

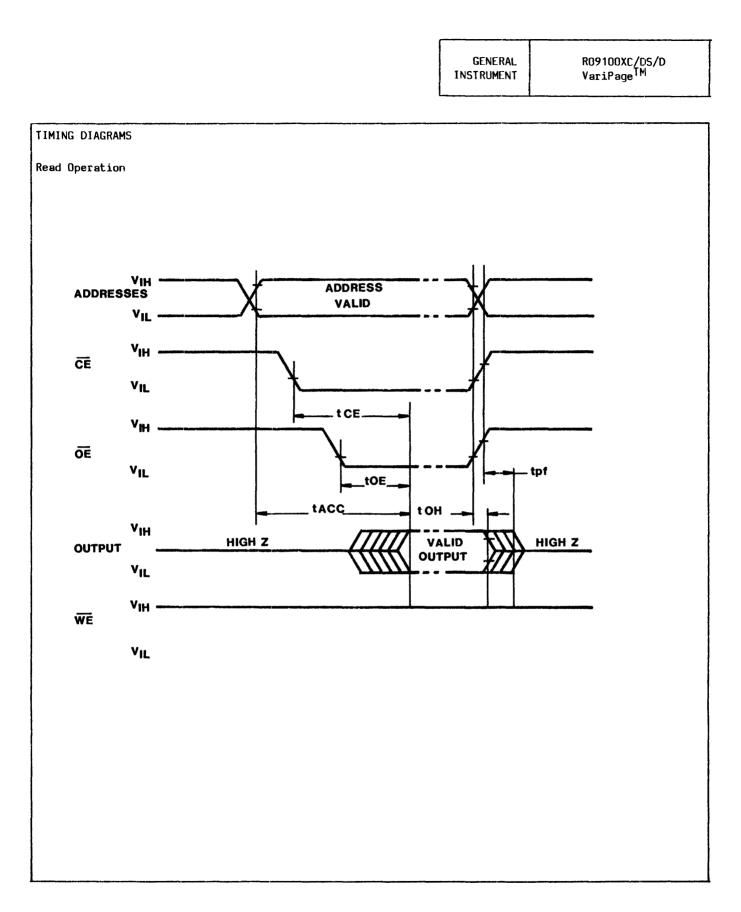
Characteristics	Sym	Min	Тур	Max	Units	Conditions
Address, CE/CS, OE Inputs						
Logic "1"	٧ _{IH}	2.0	-	۷ _{CC}	V	1
Logic "O"	V _{IL}	0		0.8	v	
Leakage	ILI	-	-	10	Aىر	$V_{\rm IN}$ = 0.4V to $V_{\rm CC}$
Data Outputs						
Logic "1"	V _{OH}	2.4	-	۷ _{CC}	V	AبرI _{OH} = –400
Logic "O"	V _{OL}	-	-	0.4	V	$I_{OL} = 2.1 \text{mA}$
Leakage	^I L0	-	-	10	Αىر	$V_{OUT} = 0.4V$ to V_{CC}
Power Supply Current						
I _{CC} (Active, Non-Paged)	ICC	_		150	mA	Note 1
I _{CC} (Active, Paged)	ICC	-	-	125	mA	Note 2
I _{CC} (Standby)	ICC	-	-	40	mA	Note 3

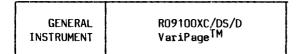
READ OPERATION

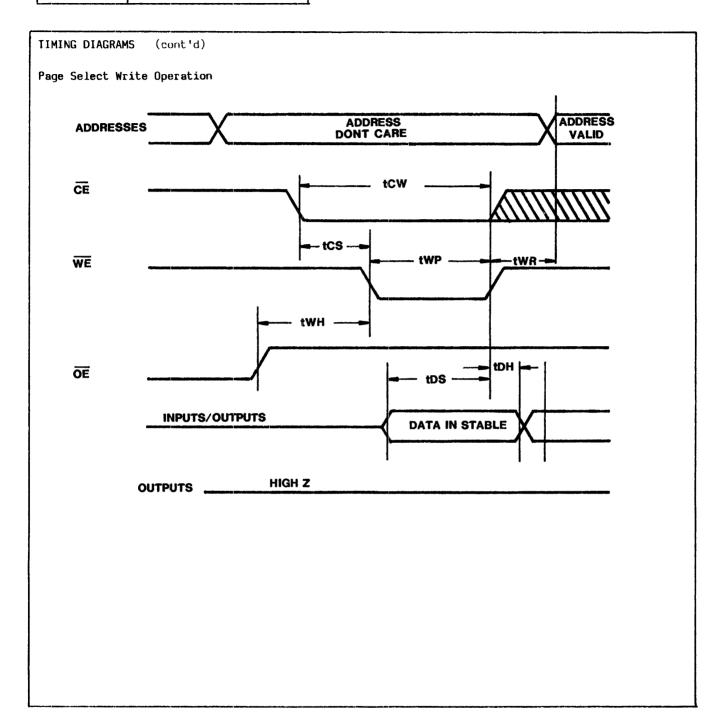
AC CHARACTERISTICS		R09100XC		R09100XDS		R09100XD		1	
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Address to Output Delay	t _{ACC}	-	300	_	250	-	200	ns	ce = de = v _{il}
CE to Output Delay	t _{CE}	-	300	-	250	-	200	ns	OE = V _{IL}
OE to Output Delay	t _{OE}	-	120	-	100	-	85	ns	CE = V _{IL}
ŌĒ or ŒĒ High to Output Data Float	^t DF	0	100	0	85	0	70	ns	$\overline{\text{CE}}$ = V _{IL} , Note 4
Output Hold From Addresses CE or OE Whichever Occured First	t _{OH}	0	-	0	-	-		ns	CE = OE = V _{IL}

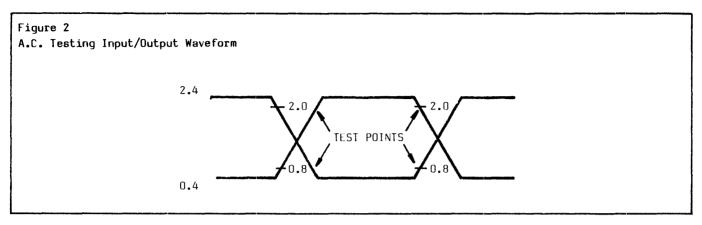
PAGE SELECT WRITE OPERATION AC CHARACTERISTICS

		R09100XC		R0910	R09100XDS		R09100XD		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
CE to End of Write	t _{CW}	180	-	180	-	180	-	ns	DE = V _{IH} , Note S
Write Pulse Width	t _{WP}	100	-	100	-	100	-	ns	OE = V _{IH} , Note S
Write Recovery Time	t _{WR}	20	-	20	-	20	-	ns	
Data Setup Time	t _{DS}	50	-	50	-	50	-	ns	OE = V _{IH}
Data Hold Time	t _{DH}	20	-	20	-	20	-	ns	OE = V _{IH}
CE to Write Setup Time	t _{CS}	O	-	O	-	0	-	ns	OE = V _{TH}
WE Low From OE High Delay Time	t _{WH}	55	-	55	-	55	-	ns	Note 6

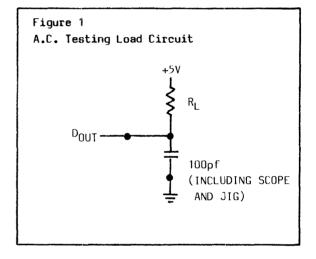

CAPACITANCE*** ($T_A = 25^{\circ}C$, f = 1MHz),


CAPACITANCE*** ($T_A = 25^{\circ}C$, $f = 1MHz$)		R09100XC		R09100XDS		R09100XD			
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Input Capacitance	C _{IN}	-	7	-	7	-	7	pf	$V_{IN} = 0V$
Output Capacitance	с _{оит}	-	10	-	10	-	10	pf	v _{out} = ov


***Capacitance is periodically sampled and is not 100% tested.


NOTES:

- 1. Measured with device selected and outputs unloaded.
- 2. Measured with device selected, non-active pages powered down, and outputs unloaded.
- 3. Device disabled with \overline{CE} > 2.0V ("Powered Down" programmed parts only).
- 4. TDF = Output float time from \overline{OE} or \overline{CE} going high, whichever occurs last.
- 5. Write may be terminated either by \overline{CE} or \overline{WE} .
- 6. DE must be high during write cycle.



AC Testing inputs are driven at 2.4V for a logic 1 and 0.4V for a logic 0 timing measurements are made at 2.0V for a logic 1 and 0.8V for a logic 0.

A.C. TEST CONDITIONS

Input Pulse Levels	0.4V to 2.4V
Input Rise and Falls Times	< 5nsec
Timing Measurement Levels: Input/Output	0.8V and 2.0V
Output Load	See Figure 1

PRELIMINARY INFORMATION

PIN CONFIGURATION ONE MEGABIT STATIC READ ONLY MEMORY FEATURES: - Mask programmable storage providing 128K x 8 bit words with programmable "VariPage"TM memory array organization • Single 128K Byte Pages: ROC1000 • Four 32K Byte Pages: R0C1001 • Eight 16K Byte Pages: R0C1002 - One programmable chip select (CS); ROC100X, or: power down feature (CE); ROC100XA - 250ns max access time: ROC100XDS, ROC100XADS - 200ns max access time: ROC100XD, ROC100XAD - 150ns max access time: ROC100XES, ROC100XAES - Fully static operation - Single +5V +10% supply - Inputs and outputs TTL compatible - Three state outputs - under the control of one

- mask programmable chip select input
- Low power dissipation
- 28 pin JEDEC approved pinout
- ESD Protection: Inputs are designed to meet 2.3KV per test method 3015.1, MIL-STD 883B

DESCRIPTION

The General Instrument ROC100X is a 1,048,576 bit static read only memory capable of variable page organization. Fabricated with General Instrument's CMOS Silicon Gate Technology, the ROC100X provides the designer with a high performance, flexible CMOS memory circuit featuring operation from a single +5V power supply and low power dissipation.

Memory Organization

The ROC100X is designed to offer a mask programmable option of choosing page sizes consistent with specific addressing limitations. For example, if only fifteen address lines are available, the ROC100X could be programmed to "bank select" on 256K page boundaries (i.e. four 32K x 8 pages), see block diagram.

The ROC100X in its straight (non-paging) format, will utilize all seventeen address inputs for direct addressing. When programmed to bank select on either 16K or 32K byte page boundaries, page selection is accomplished via the write enable ($\overline{\text{WE}}$) and the three I/O pins.

PIN CONFIGURA	NUTUN			
28 LEAD DUAL	IN LIN	NE		
<u>ROC1000</u>		TOP	VIEW	L
	A15	1	28	D v _{cc}
128K x 8	A12C		27	D A14
organization	A7 🗖	3	26	J A13
2	A6 Ľ	4	25	D AB
	A5 C	5	24	D A 9
	A4 C	6	23	DA11
	A3 C	7	22	D A16
	A2 Ľ	8	21	A 10
	AIC	9	20	DCS/CE
	AOC	10	19	07
	oød	11	18	D 06
	01	12	17	D 05
	02	13	16	D 04
	٧ _{SS} d	14	15	D 03
L				

R0C1001	TOP VIE	W
W	E C 1	28 V _{CC}
(4) 32K x 8 A12	2 d 2	27 🗖 A14
organization A	7 🗖 3	26 口 A13
	6 C 4	25 D A8
A	505	24 🗖 A9
A	4 C 6	23 1 A11
A	307	22 D DE
A	208	21 D A10
A	109	20 0 CS/CE
A	00 10	19 07
1/0	Ø C 11	18 🗖 06
I/O	1 🗖 12	17 🗖 05
I/0	2 d 13	16 D 04
۷ _S	s Ľ 14	15 03

R0C1002	TOP	VIEW
		28 V _{CC}
(8) 16K x 8	A12 C 2	27 1 WE
organization	A7 C 3	26 D A13
_	A6 C 4	25 D A8
	A5C 5	24 D A9
	A4 C 6	23 D A11
	A3C 7	22 🗖 OE
	A2 🗖 8	21 D A10
	A1 C 9	20 2 CS/CE
	AOC 10	19 🗖 07
	I/0Ø C 11	180 06
	1/01 C 12	17 3 05
	1/02 C 13	16 D 04
	۷ _{SS} C 14	15 D 0 <i>3</i>

Operation

Address (AO-A13, A14-A16 optional)

The address valid interval determines the device cycle time. The positive logic address is decoded to select 16K, 32K, or 128K by 8-bit pages. AO is the least significant bit and A16 is the most significant bit of the word address.

Chip Select (CS)

This is a programmable chip select which will be sacrificed if the power down option is selected. The address bus will tri-state when CS is in the inactive state.

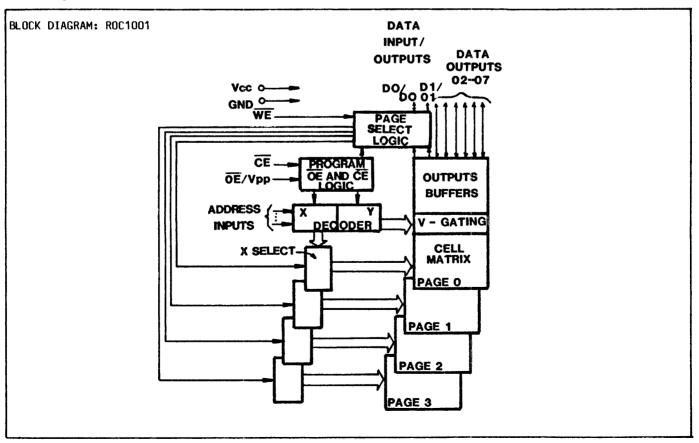
Chip Enable (\overline{CE})

The power down feature of the ROC100XA is controlled by the chip enable (\overline{CE}) input. If the power down feature is programmed, the device will go into a low current mode when \overline{CE} is equal to or greater than 2.0 volts. The ROC100XA will remain in a low power standby mode as long as CE remains high.

Output Enable (OE)

The $\overline{\text{OE}}$ functions as a chip select for the ROC1001 and ROC1002. The address bus will tri-state when $\overline{\text{OE}}$ is high.

Write Enable (\overline{WE})


The $\overline{\text{WE}}$ pin allows the ROC1001 or ROC102's RAM to accept a page transition address. The page address is entered via the three I/O pins and latched into the RAM on the rising edge of the $\overline{\text{WE}}$ signal. The three-bit page address is decoded as follows:

PAGE DEFINITIONS

	16K	x 8 Pa	32K	x 8 Pa	ges	
Page	1/02	1/01	1/0 ⁰	1/0 ²	I/0 ¹	I/0 ⁰
Po	0	0	0	0	0	x
P ₁	0	0	1	0	1	Х
P2	0	1	0	1	0	Х
P3	0	1	1	1	1	Х
Ρ4	1	0	0	Х	X	Х
P ₅	1	0	1	X	X	х
P ₆	1	1	0	Х	x	х
P7	1	1	1	Х	Х	x
L	l					

Note:

During power-up, the device will reset to page 0.

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

 V_{CC} and Input Voltages (with Respect to GND)..... -0.5V to +7.0V Storage Temperature..... -65°C to + 150°C

Standard Conditions (unless otherwise noted): $V_{CC} = 5V \pm 10\%$ Operating Temperature $T_A = 0^{\circ}C$ to $+ 70^{\circ}C$ Output Loading: Two TTL Loads, C_L TOTAL = 100pf *Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied -- operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

DC CHARACTERISTICS

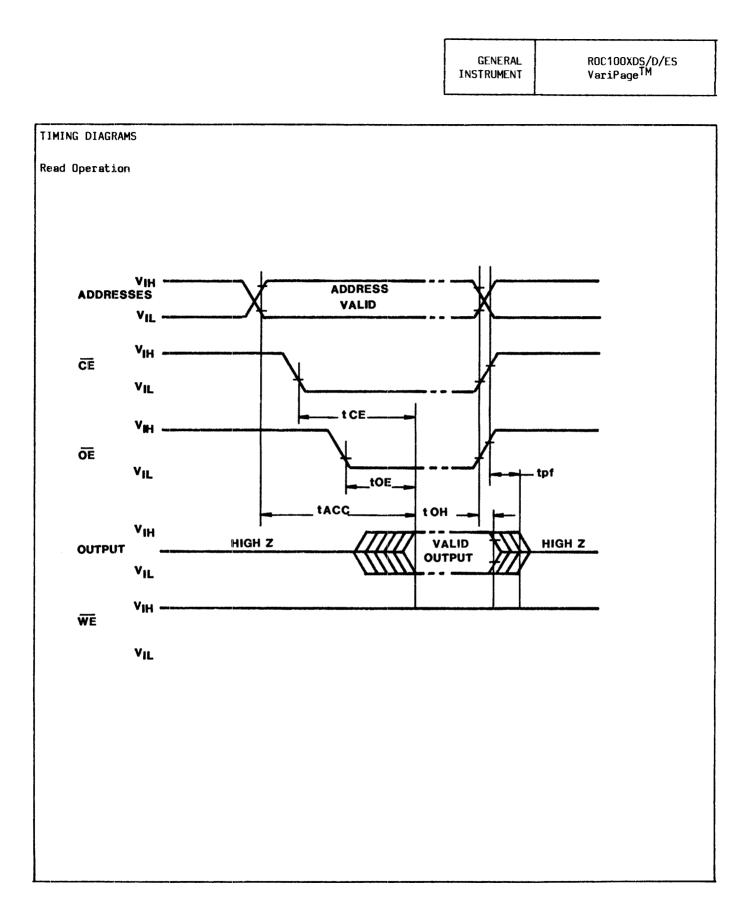
Characteristics	Sym	Min	Тур	Max	Units	Conditions
dress, CE/CS, OE Inputs						
gic "1"	٧ _{1H}	2.0	_	v _{cc}	v	
gic "0"	VIL	0	-	0.8	v	
akage	ILI	-	-	10	μΑ	$V_{\rm IN}$ = 0.4V to $V_{\rm CC}$
ta Outputs						
jic "1"	v _{он}	2.4	-	V _{CC}	v	I _{OH} = -400µА
jic "O"	VOL	-	-	0.4	V	$I_{OL} = 2.1 \text{mA}$
akage	ILO	-	-	10	Αų	$V_{OUT} = 0.4V$ to V_{CC}
wer Supply Current						
(Active)	ICCA	-	-	40	mA	Note 1
(Standby)	ICCS	-	-	50	uA	Note 2
		-				1

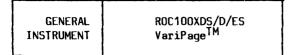
READ OPERATION

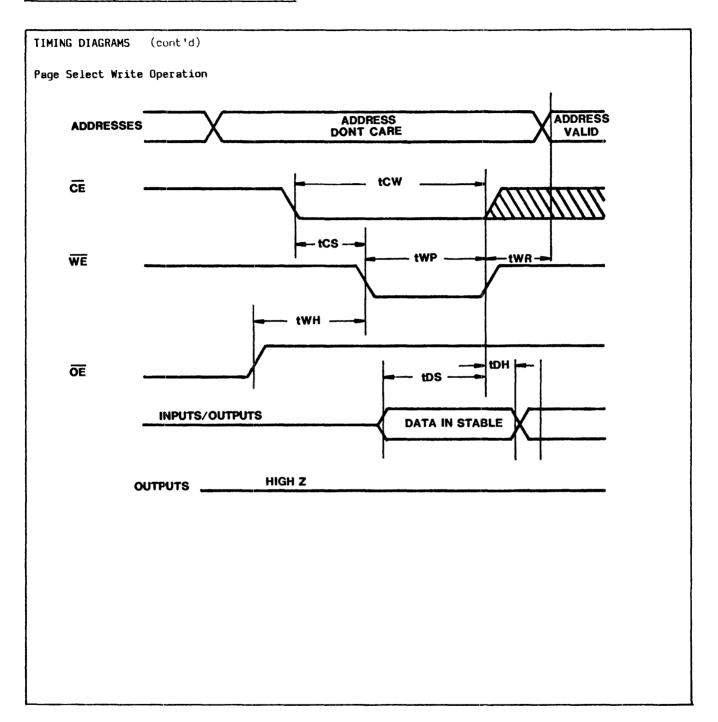
		ROC10	ROC100XDS ROC100XD F		C100XD ROC100XES		ROC100XES		
Characteristics	Sym	Min	Max .	Min	Max	Min	Max	Units	Conditions
Address to Output Delay	t _{ACC}	-	250	-	200	-	150	ns	TE = TE = V _{IL}
CE to Output Delay	t _{CE}	-	250	-	200	-	150	ns	OE = V _{IL}
OE to Output Delay	t _{OE}	-	85	-	70	-	55	ns	CE = V _{IL}
OF or CE High to Output Data Float	t _{DF}	0	85	0	70	0	55	ns	CE = V _{IL} , Note
Output Hold From Addresses CE or OE Whichever Occured First	t _{OH}	0	-	0	-	0	-	ns	CE = OE = V _{IL}

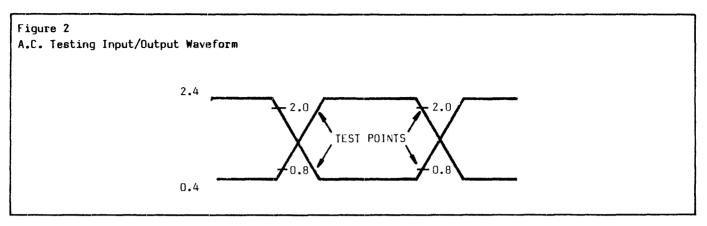
PAGE SELECT WRITE OPERATION AC CHARACTERISTICS

		ALL S	SPEEDS		
Characteristics	Sym	Min	Max	Units	Conditions
CE to End of Write	t _{CW}	120	-	ns	$\overline{\text{OE}}$ = V _{IH} , Note 4
Write Pulse Width	t _{WP}	70	-	ns	$\overline{\text{OE}}$ = V _{IH} , Note 4
Write Recovery Time	t _{WR}	20	-	ns	
Data Setup Time	^t DS	40	-	ns	OE = V _{IH}
Data Hold Time	tDH	20	-	ns	OE = V _{IH}
CE to Write Setup Time	t _{CS}	0	-	ns	OE = V _{IH}
WE Low From OE High Delay Time	t _{WH}	50	-	ns	Note 5

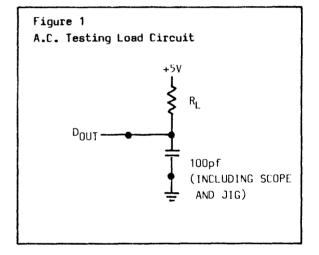

CAPACITANCE*** ($T_A = 25^{\circ}C$, f = 1MHz)


		ROC10	OXDS	ROC1	OOXD	ROC10	OXES		
Characteristics	Sym	Min	Max	Min	Max	Min	Max	Units	Conditions
Input Capacitance	C _{IN}	-	7	-	7	-	7	pf	$V_{IN} = 0V$
Output Capacitance	с _{оит}	-	10	_	10	-	10	pf	V _{OUT} = OV


***Capacitance is periodically sampled and is not 100% tested.


NOTES:

- 1. Measured with device selected and outputs unloaded.
- 2. Device disabled with $\overline{CE} \ge 2.0V$ ("Powered Down" programmed parts only). 3. TDF = Output float time from \overline{OE} or \overline{CE} going high, whichever occurs last.
- 4. Write may be terminated either by \overline{CE} or \overline{WE} .
- 5. DE must be high during write cycle.



AC Testing inputs are driven at 2.4V for a logic 1 and 0.4V for a logic 0. Timing measurements are made at 2.0V for a logic 1 and 0.8V for a logic 0.

A.C. TEST CONDITIONS

Input Pulse Levels
Input Rise and Falls Times < 5nsec
Timing Measurement Levels: Input/Output 0.8V and 2.0V
Output Load See Figure 1

SECTION 2

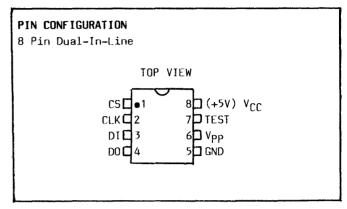
ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORIES

Description	Operating Temperature	Part Number	Page Number
	Sta	andard Parts:	Serial
256 bit EEPROM - organized 16 x 16	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	ER59256 ER59256 I	2-3 2-10
1K (1024) bit EEPROM - organized 128 x 8 or 64 x 16	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	ER5911 ER5911I	2-17 2-26
2K (2048) bit EEPROM - organized 256 x 8 or 128 x 16	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	ER5912 ER5912I	2-35 2-46
1K (1024) bit EEPROM - I ² C bus compatible organized 128 x 8	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	PCD8572 PCD8572I	2-57 2-66
2K (2048) bit EEPROM - I ² C bus compatible organized 256 x 8	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	PCD8582 PCD85821	2-75 2-84

SECTION 2

ELECTRICALLY ERASABLE PROGRAMMABLE READ ONLY MEMORIES (continued)

Description	Operating	Part	Page
	Temperature	Number	Number
	Star	dard Parts:	Parallel
lK (1024) bit EEPROM -	Commercial (O°C to +70°C)	ER5901	2-93
organized 128 x 8	Industrial (-40°C to +85°C)	ER5901 I	2-101
2K (2048) bit EEPROM -	Commercial (O°C to +70°C)	ER5902	2-109
organized 256 x 8	Industrial (-40°C to +85°C)	ER5902I	2-116
4K (4096) bit EEPROM -	Commercial (O°C to +70°C)	ER5904	2-123
organized 512 x 8	Industrial (-40°C to +85°C)	ER5904 I	2-130
		Application	Specific
Non-Volatile Counter	Commercial (0°C to +70°C)	ER1000	2-137
8-bit microcomputer with on-board EEPROM - organized as 32 x 8 bit EEPROM and 512 x 12 bit mask programmable ROM.	Commercial (O°C to +70°C) Industrial (-40°C to +85°C)	PIC16E57	2-144

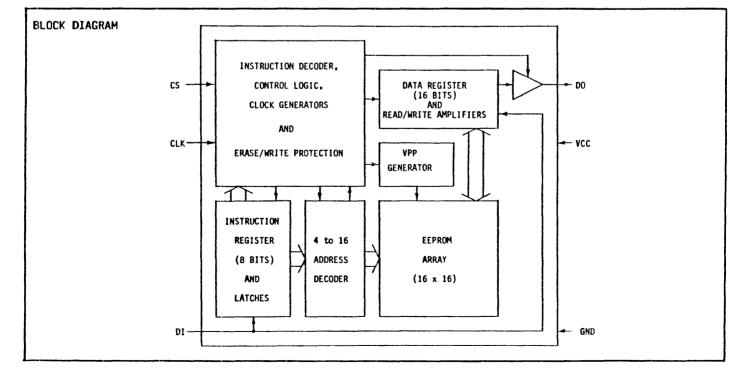

256 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES

- Low cost
- 16 x 16 serial EEPROM
- Single +5V only operation
- Binary addressing
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 0°C to +70°C operating ambient temperature range
- Power on/off data protection circuitry

DESCRIPTION

The ER59256 is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5V only operation and microcomputer compatible architecture. Six 9-bit instructions can be executed. See Table 1. The instruction format has a logical "1" as a start bit, four bits as an op code, and four bits of address. See Table 1.



PIN FUNCTIONS

CS	Chip Select
CLK	Clock Input
DI	Serial Data Input
DO	Serial Data Output
V _{CC}	+5V Power Supply
GND	Ground

TEST PINS

Vpp High Voltage Test (Float)
TEST EEPROM Margin Test (Ground/Float)

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

DC CHARACTERISTICS

All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to 150°C
Soldering temperature of leads
(10 seconds)+300°C

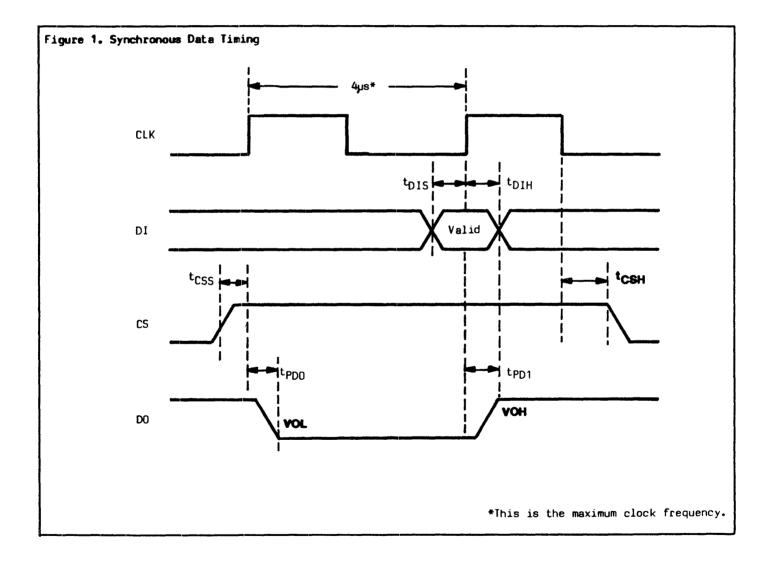
Standard Conditions (unless otherwise noted) $V_{CC} = +5 \pm 10\%$ volts GND = 0 volts Operating Temperature Range (T_A): 0°C to +70°C (Commercial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

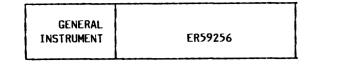
Data labelled "typical" is presented for design guidance only and is not guaranteed.

General Instrument makes no warranty, expressed or implied, as to the merchantability of fitness for a particular purpose of this device or its software supplied to the customer.

	$I_{OH} = -400\mu A$ $I_{OL} = 3.2mA$
	$I_{OL} = 3.2 \text{mA}$
V V	$I_{OL} = 3.2 \text{mA}$
V	$I_{OL} = 3.2 \text{mA}$
۸ىز ($V_{IN} = GND$ to V_{CC}
Αμ ($V_{OUT} = GND$ to V_{CC}
) mA	$V_{\rm CC} = 5.5V, \ \rm CS = 1$
5 mA	$V_{\rm CC} = 5.5V, \ \rm CS = 0$
2 mA	$V_{\rm CC} = 5.5V$
5 mW	$V_{\rm CC} = 5.5V$, CS = 1
7 mW	$V_{\rm CC} = 5.5V$, CS = 0
	$V_{\rm CC} = 5.5V$, CS = 1
2	3 mA 2 mA 5 mW

AC CHARACTERISTICS


Characteristic	Sym	Min	Тур	Max	Units	Conditions
Clock Frequency	fclk	D	_	250	кнг	
Clock Duty Cycle	DCLK	25	_	75	°,	
Chip Select Setup Time	t _{CSS}	0.2	-	-	μs	
Chip Select Hold Time	t _{CSH}	0	-	-	μs	
Data Input Setup Time	tDIS	0.4	_	-	μs	
Data Input Hold Time	t _{DIH}	0.4	-	-	μs	
DO Output Delay (H to L)	tpDD	-	-	2	μs	C _L = 100pf
DO Output Delay (L to H)	tPDI	-	-	2	μs	$C_{L} = 100 p f$
Erase/Write Pulse Width	t _{E/W}	10	-	30	ms	-
Input Capacitance	CI	-	-	6	pf	$V_{IN} = OV$
Output Capacitance	C _O	-	-	10	pf	$V_{OUT} = OV$


GENERAL	-
INSTRUMENT	

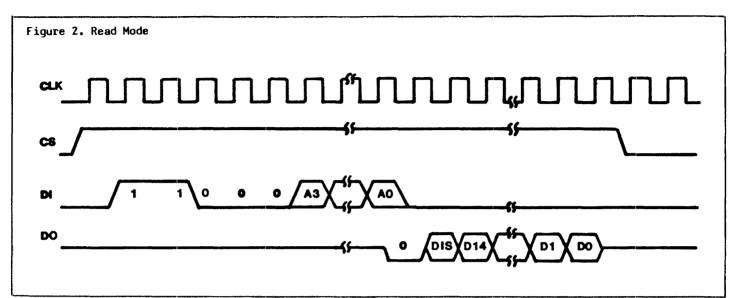
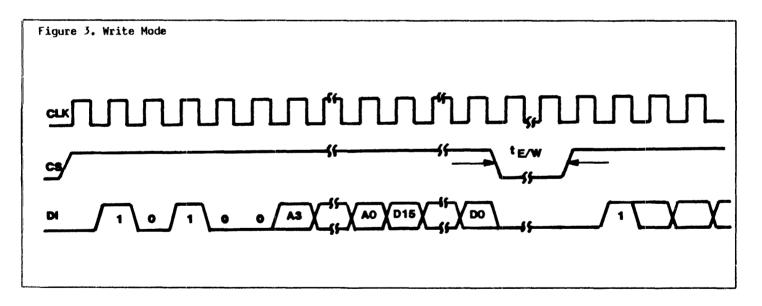
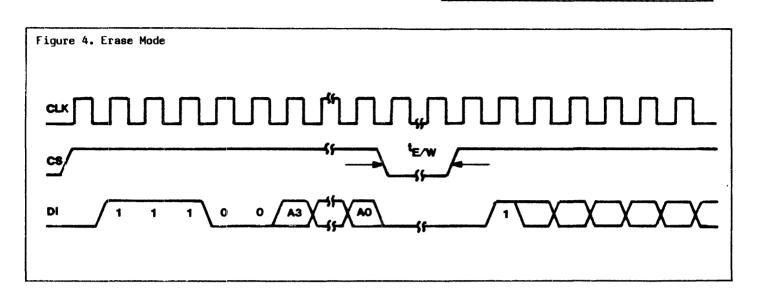
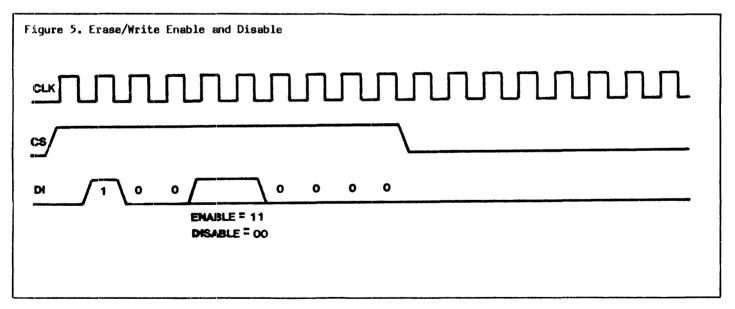
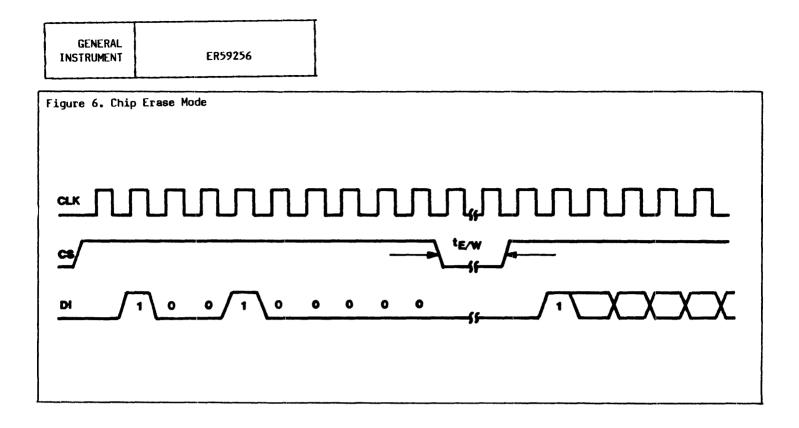

T

Table 1 - Instruction Set

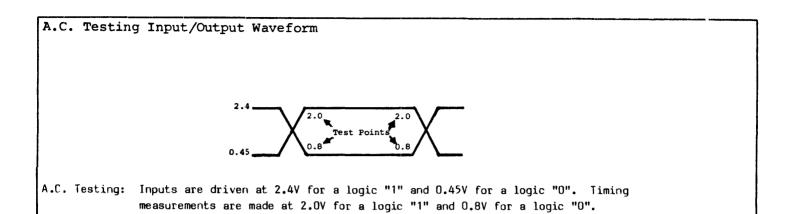

Instruction	SB	Op Code	Address	Data	Comments
READ	1	1000	A 3A 2A 1A0		Read register A3A2A1AO
WRITE	1	0100	A3A2A1AO	D15-D0	Write register A3A2A1A0
ERASE	1	1 100	A 3A 2A 1A0		Erase Register A3A2A1A0
EWEN	1	0011	0000		Erase/write enable
EWDS	1	0000	0000		Erase/write disable
ERAL	1	0010	0000		Erase all registers

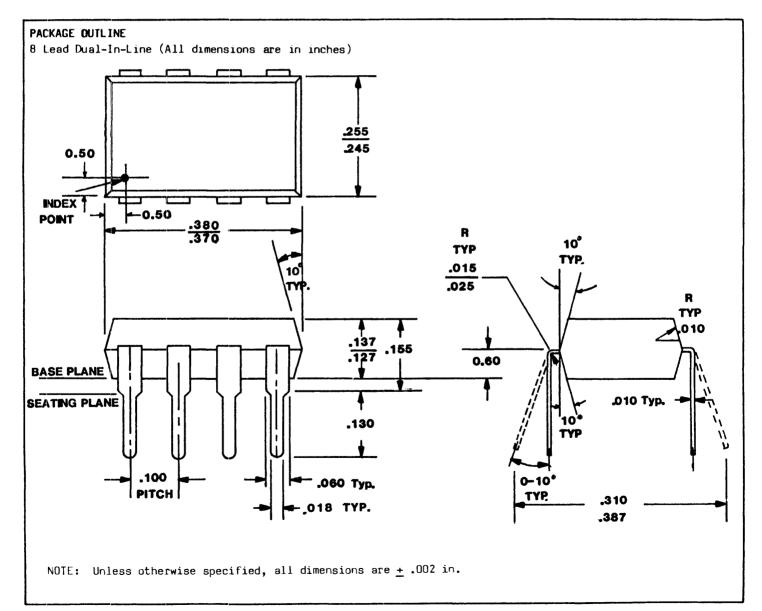



The READ instruction is the only instruction which outputs serial data on the DO pin. Only during the READ mode is the output pin (DO) valid. During all other modes the DO pin is in tri-state, eliminating bus contention. A dummy bit (logical "O") precedes the 16-bit output string. The output data changes during the high state of the system clock.


The WRITE instruction is followed by 16 bits of data which are written into the specified address. This register must have been previously erased. Like any programming mode, erase/write time is determined by the low state of CS following the instruction. The on-chip high voltage section only generates high voltage during these programming modes which prevents spurious programming during other modes. When CS rises to $V_{\rm IH}$, the programming cycle ends. All programming modes should be ended with CS high for one CLK period, or followed by another instruction.

Like most E^2PROMs , the register must first be erased (all bits set to 1s) before the register can be written (certain bits set to Ds). After an ERASE instruction is input, CS is dropped low. This falling edge of CS determines the start of programming. The register at the address specified in the instruction is then set entirely to 1s. When the erase/write programming time ($t_{E/W}$) constraint has been satisfied, CS is brought up for at least one CLK period. A new instruction may then be input, or a low-power standby state may be achieved by dropping CS low.

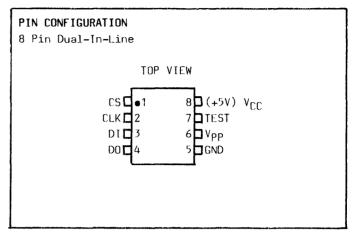



Programming must be preceded once by an Erase/Write Enable (EWEN) instruction. Programming remains enabled until an Erase/Write Disable (EWDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both EWEN and EWDS instructions. The device powers up in the Erase/Write Disable (EWDS) mode.

Entire chip erasing is provided for ease of programming. Erasing the chip means that all registers in the memory array have each bit set to a 1. Each register is then ready for a WRITE instruction.

<u>DI/DO:</u> It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin. Power On/Off Data Protection Circuitry: During power-up all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

DS20014H-7


256 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES

- Low cost
- 16 x 16 serial EEPROM
- Single +5V only operation
- Binary addressing
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- -40°C to +85°C operating ambient temperature range
- Power on/off data protection circuitry

DESCRIPTION

The ER59256I is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5V only operation and microcomputer compatible architecture. Six 9-bit instructions can be executed. See Table 1. The instruction format has a logical "1" as a start bit, four bits as an op code, and four bits of address. See Table 1.

PIN FUNCTIONS

CS Chip Select CLK Clock Input DI Serial Data Input DO Serial Data Output V_{CC} +5V Power Supply GND Ground

TEST PINS

Vpp High Voltage Test (Float)
TEST EEPROM Margin Test (Ground/Float)

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to 150°C
Soldering temperature of leads
(10 seconds)+300°C

Standard Conditions (unless otherwise noted)

 V_{CC} = +5 + 10% volts GND = 0 volts Operating Temperature Range (T_A): -40°C to +85°C (Industrial)

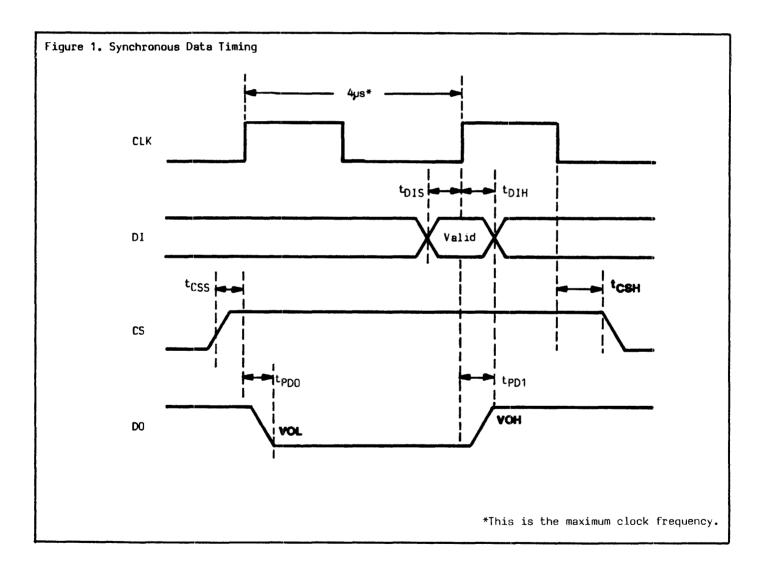
DC CHARACTERISTICS

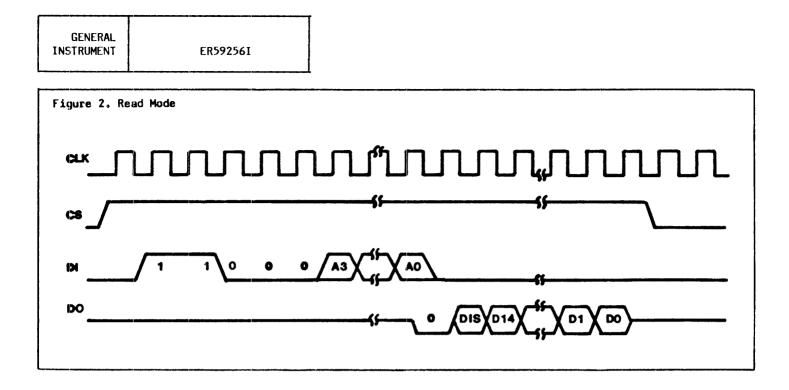
*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labelled "typical" is presented for design guidance only and is not guaranteed.

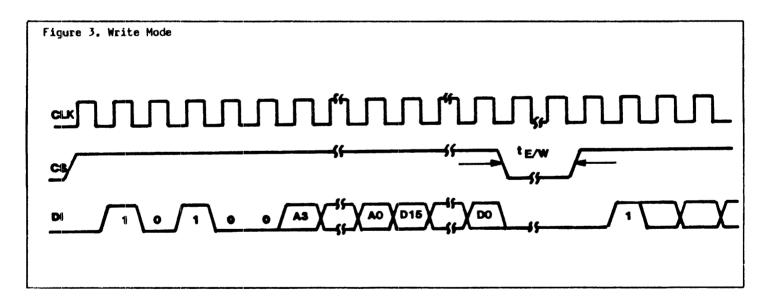
General Instrument makes no warranty, expressed or implied, as to the merchantability of fitness for a particular purpose of this device or its software supplied to the customer.

Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	V _{IH}	2.0	-	V _{CC} +1.0	v	
Low Level Input Voltage	VIL	-0.3	-	+0.8	v	
High Level Output Voltage	V _{OH}	2.4	- 1	v _{cc}	V	AبرCH = -400A
Low Level Output Voltage	V _{OL}	-	-	0.4	v	$I_{OL} = 3.2 \text{mA}$
Input Leakage Current	ILI	-	-	+10	Αىر	$V_{IN} = GND$ to V_{CC}
Output Leakage Current	^I LO	-	-	+10	Αبر	V_{OUT} = GND to V_{CC}
POWER SUPPLY REQUIREMENTS						
Operating Current	^I CC ¹	-	-	13	mA	$V_{\rm CC} = 5.5V, \ \rm CS = 1$
Standby Current	I _{CC} 2	-	-	5	mA	$V_{\rm CC} = 5.5V, \ \rm CS = 0$
E/W Operating Current	1 _{CC} 3	-	-	15	mA	$V_{CC} = 5.5V$
Power Consumption (Operating)	P _{CC} 1	-	-	72	mW	$V_{\rm CC} = 5.5V$, CS = 1
Power Consumption (Standby)	P _{CC} 2	-	-	28	мW	$V_{\rm CC} = 5.5V, \rm CS = 0$
Power Consumption (E/W)	P _{CC} 3	-	-	83	mW	$V_{CC} = 5.5V, CS = 1$

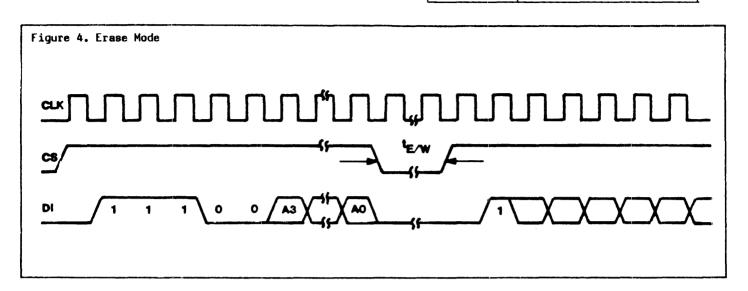

AC CHARACTERISTICS

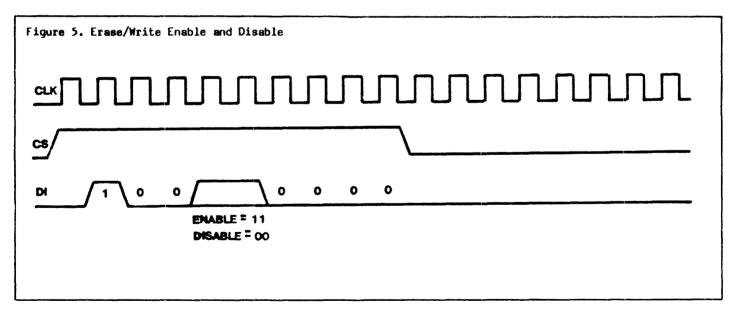

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Clock Frequency	^f clk	0	-	250	KHZ	
Chip Select Setup Time	tcss	0.2	-	-	μs	
Chip Select Hold Time	t _{CSH}	0	-	-	μs	
Data Input Setup Time	tDIS	0.4	-	-	μs	
Data Input Hold Time	t _{DIH}	0.4	-	-	μs	
DO Output Delay (H to L)	tpDO	-	-	2	μs	$C_{l} = 100 p f$
DO Output Delay (L to H)	t _{PDI}	-	-	2	μs	$C_1 = 100 pf$
Erase/Write Pulse Width	t _{E/W}	10	-	30	ms	-
Input Capacitance	c _I	-	-	6	pf	$V_{IN} = 0V$
Output Capacitance	C _O	-	-	10	pf	$v_{OUT} = OV$
	Ŭ					

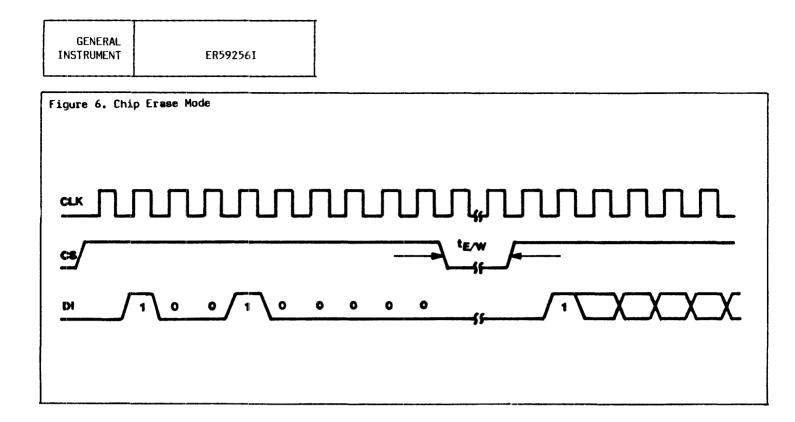
GENERAL INSTRUMENT	ER592561


Table 1 - Instruction Set

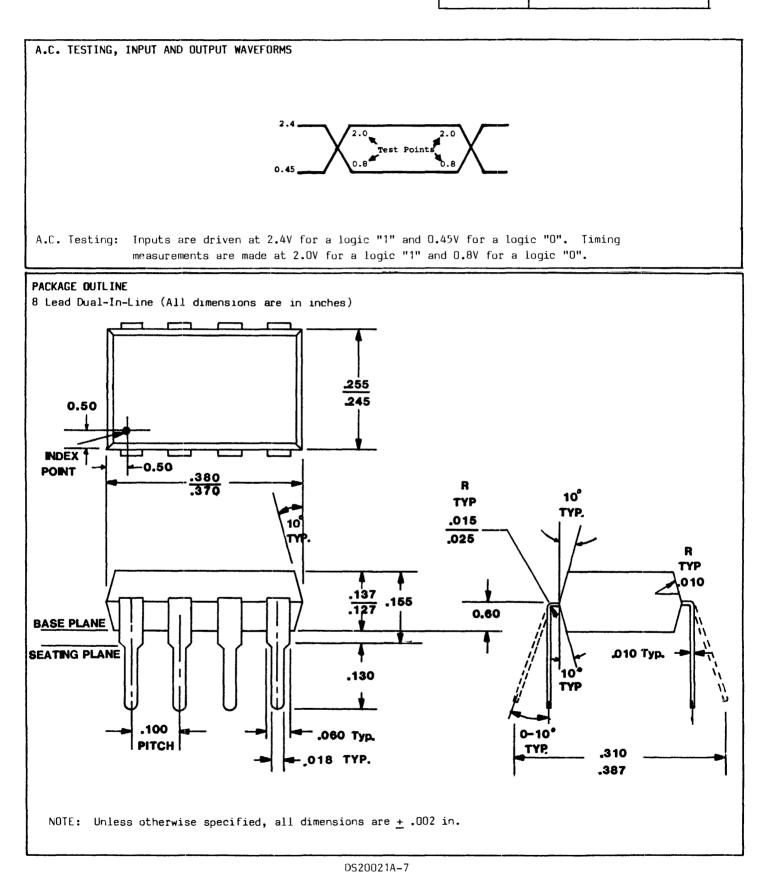
Instruction	SB	Op Code	Address	Data	Comments
READ	1	1000	A3A2A1A0		Read register A3A2A1AO
WRITE	1	0100	A3A2A1AO	D15-D0	Write register A3A2A1AO
ERASE	1	1100	A3A2A1A0		Erase Register A3A2A1AO
EWEN	1	0011	0000		Erase/write enable
EWDS	1	0000	0000		Erase/write disable
ERAL	1	0010	0000		Erase all registers




The READ instruction is the only instruction which outputs serial data on the DO pin. Only during the READ mode is the output pin (DO) valid. During all other modes the DO pin is in tri-state, eliminating bus contention. A dummy bit (logical "O") precedes the 16-bit output string. The output data changes during the high state of the system clock.


The WRITE instruction is followed by 16 bits of data which are written into the specified address. This register must have been previously erased. Like any programming mode, erase/write time is determined by the low state of CS following the instruction. The on-chip high voltage section only generates high voltage during these programming modes which prevents spurious programming during other modes. When CS rises to $V_{\rm IH}$, the programming cycle ends. All programming modes should be ended with CS high for one CLK period, or followed by another instruction.

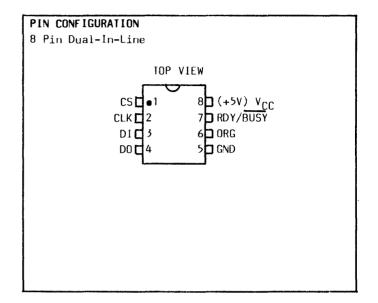
Like most E^2PROMs , the register must first be erased (all bits set to 1s) before the register can be written (certain bits set to 0s). After an ERASE instruction is input, CS is dropped low. This falling edge of CS determines the start of programming. The register at the address specified in the instruction is then set entirely to 1s. When the erase/write programming time ($t_{E/W}$) constraint has been satisfied, CS is brought up for at least one CLK period. A new instruction may then be input, or a low-power standby state may be achieved by dropping CS low.



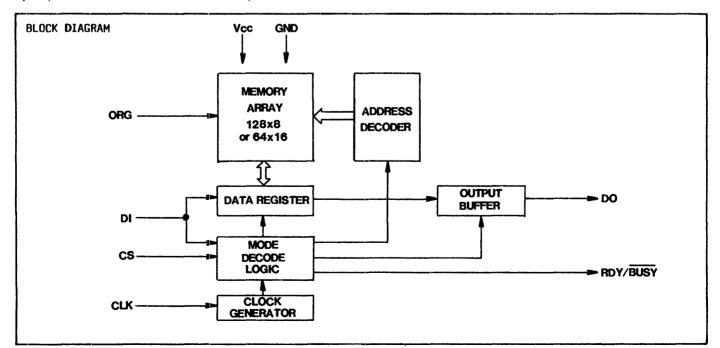
Programming must be preceded once by an Erase/Write Enable (EWEN) instruction. Programming remains enabled until an Erase/Write Disable (EWDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both EWEN and EWDS instructions. The device powers up in the Erase/Write Disable (EWDS) mode.

Entire chip erasing is provided for ease of programming. Erasing the chip means that all registers in the memory array have each bit set to a 1. Each register is then ready for a WRITE instruction.

<u>DI/DO:</u> It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin. <u>Power On/Off Data Protection Circuitry</u>: During power-up all modes of operation are inhibited until $V_{\rm CC}$ has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when $V_{\rm CC}$ has fallen below the voltage range of 2.8 to 3.5 volts.


1024 SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES


- Low cost
- User-selectable organization: 64 x 16 or 128 x 8
- Single +5V only operation
- Binary addressing
- Fully automatic self-timed erase/write mode
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- O°C to +70°C operating ambient temperature range
- Power-on/off data protection circuitry

DESCRIPTION

The ER5911 is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. This device features +5V only operation, a self-timed reprogramming cycle and two user-selectable memory array organizations, 64×16 or 128 x 8, which are selectable externally by means of a one bit code applied to control pin ORG. The Input (DI) and Output (DO) pins are controlled by separate serial formats. When separate lines are

used the DO output pin is valid only in the read mode and is in the high impedance state in all other modes, thus eliminating bus contention. Five instructions may be executed and the instruction length will be twelve bits when using the 128 x 8 organization and eleven bits when the 64 x 16 organization is used. The instruction format has a logical 1 as a start bit, four bits as an opcode and either six or seven address bits.

GENERAL INSTRUMENT	ER5911

	PIN	FUNCTIONS	
CS CLK DI DO V _{CC} RDY/BUSY GND	Chip Select Clock Input Serial Data Input Serial Data Output +5V Power Supply Status Output Ground	ORG	Memory Array Organization Selection Input. When the ORG pin is connected to +5V the 64 x 16 organization is selected. When it is connected to ground the 128 x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device will select the 64 x 16 organ- ization.

	Start		Addr	'ess	Da	ta	
Instruction	Bit	Opcode	128 x 8	64 x 16	128 x 8	64 x 16	Comments
READ	1	1000	A ₆ -A ₀	A5-A0			Read Address A _N -A _O
PROGRAM	1	X 1 0 0	A ₆ -A ₀	A5-A0	D7-D0	D ₁₅ -D ₀	Program Address A _N -A _O
PEN	1	0011	0000000	000000			Program Enable
PDS	1	0000	0000000	000000			Program Disable
ERAL	1	0010	0000000	000000			Erase All Addresses

<u>DI/DO:</u> It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin.

<u>Power-On Data Protection Circuitry:</u> During powerup all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

GENERAL	
INSTRUMENT	

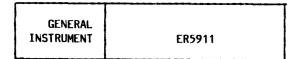
1

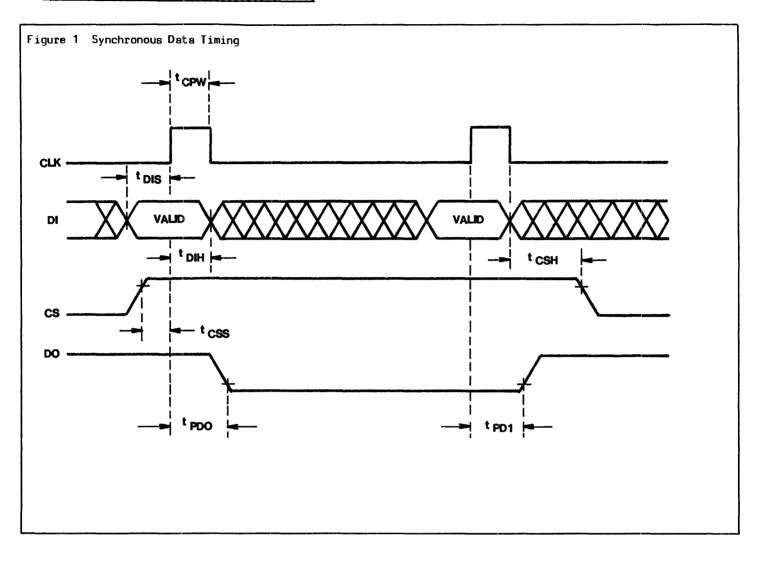
ER5911

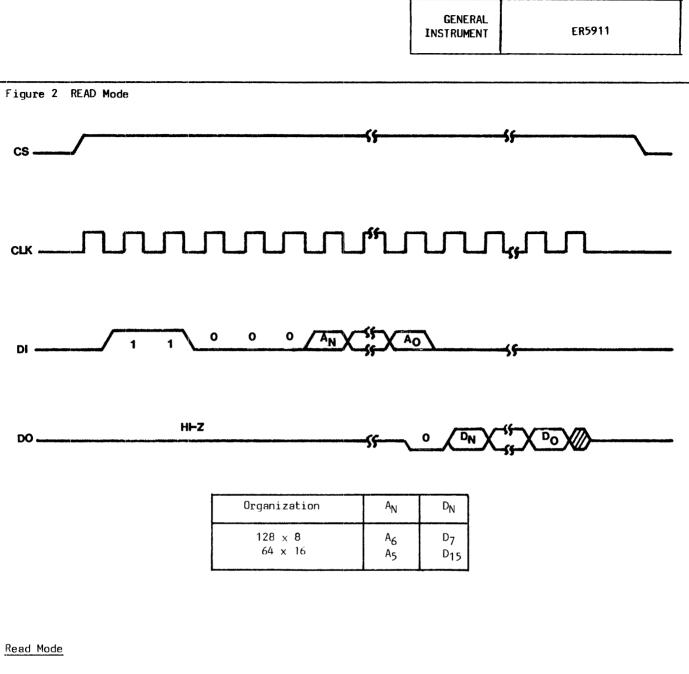
ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

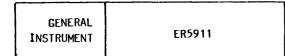
*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

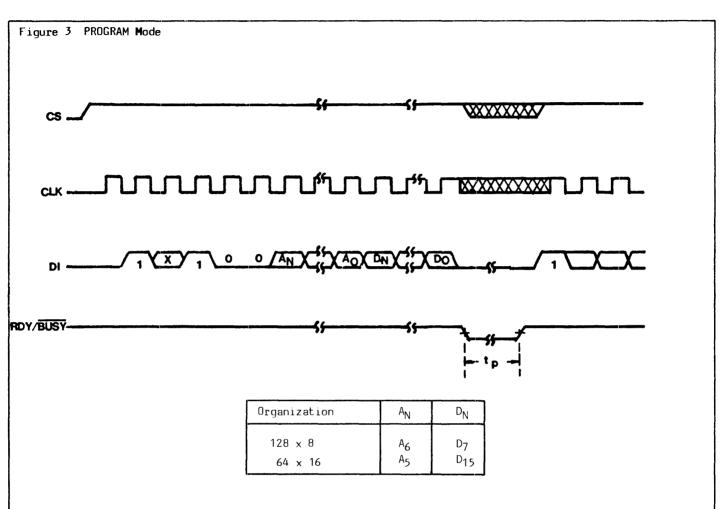

Data labeled "typical" is presented for design guidance only and is not guaranteed.


General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.


Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	V _{IH}	2.0	-	V _{CC} +1.0	V	
Low Level Input Voltage	VIL	-0.3	- 1	+0.8	v	
High Level Output Voltage	VOH	2.4	-	۷ _{CC}	v	AبرI _{OH} = -400A
Low Level Output Voltage	V _{OL}	-	-	0.4	v	$I_{01} = 1.6 mA$
Input Leakage Current	ILI	-	-	+10	μA	$V_{IN} = GND$ to V_{CC}
Output Leakage Current	ILO	-	- 1	+10	μA	$V_{OUT} = GND to V_{CC}$
Power Supply Requirements					-	
V _{CC} Supply:						
Chip Selected	ICC	-	-	10	mA	$V_{\rm CC} = 5.5V$
Chip Selected (PROGRAM and						
ERAL modes)	ICC	-	_	12	mA	$V_{CC} = 5.5V$
Chip Deselected (STANDBY)	ICC	-		3	mA	$V_{CC} = 5.5V$
Power Consumption						
Chip Selected	Pcc	-	-	55	mW	$V_{\rm CC} = 5.5V$
Chip Selected (PROGRAM and						
ERAL modes)	PCC	-	-	66	mW	$V_{CC} = 5.5V$
Chip Deselected (STANDBY)	P _{CC}	-	-	17	mW	$V_{CC} = 5.5V$

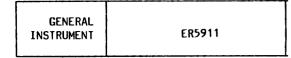
AC CHARACTERISTICS (See Figure 1)

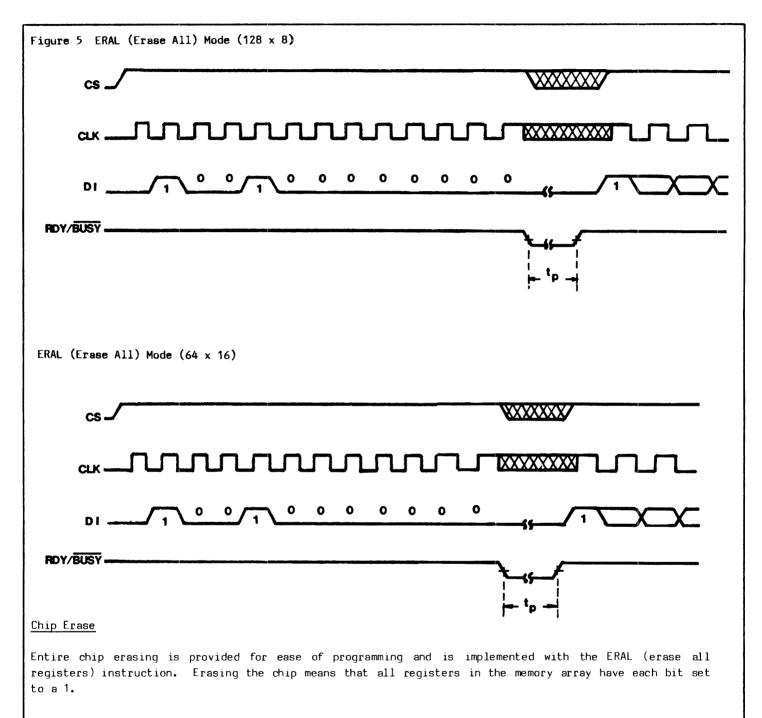

Characteristic	Sym	Min	Тур	Мах	Units	Conditions
CLK Frequency	f _{CLK}	0	-	250	KHz	
Chip Select Setup Time	t _{CSS}	0.2	-	-	μs	
Chip Select Hold Time	t _{CSH}	0	-	-	μs	
Data Input Setup Time	t _{DIS}	0.4	-	-	μs	
Data Input Hold Time	t _{DIH}	0.4	-	-	μs	
CLK Pulse Width	t _{CPW}	2.0	-	-	μs	
Data Output Delay	t _{PD1}	-		2.0	μs	$C_1 = 100 p f$
Data Output Delay	t _{PDO}	-	-	2.0	μв	$V_{OL} = 0.8V$ $V_{OH} = 2.0V$ $C_{L} = 100pf$ $V_{OL} = 0.8V$
Status Low Time (programming time)	t _{PR}	20	40	75	ms	V _{OH} = 2.0V

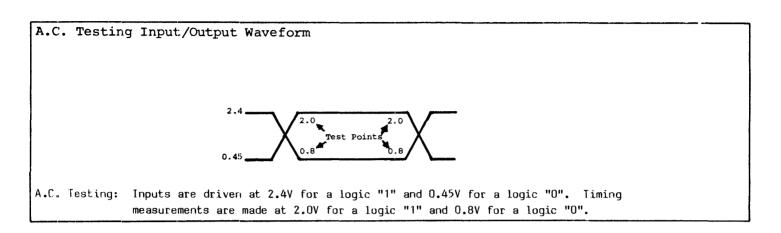


The READ instruction is the only instruction which outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the memory register into a serial-out shift register. A dummy bit (logical "O") precedes the data output string. The output data changes during the high states of the system clock.

Program Mode


The program instruction is followed by either eight or sixteen bits of data, which are to be written into the specified address.


After the last data bit (DO) has been shifted into the data register the contents of the specified address will be erased and the new data written to the same address.


During the automatic erase/write sequence the RDY/BUSY output will go low for the duration of the automatic programming cycle as indicated by tp.

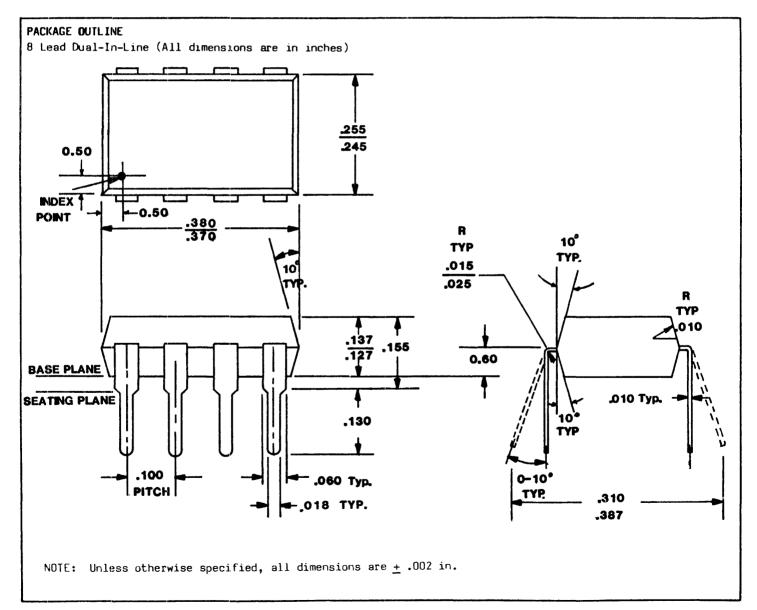
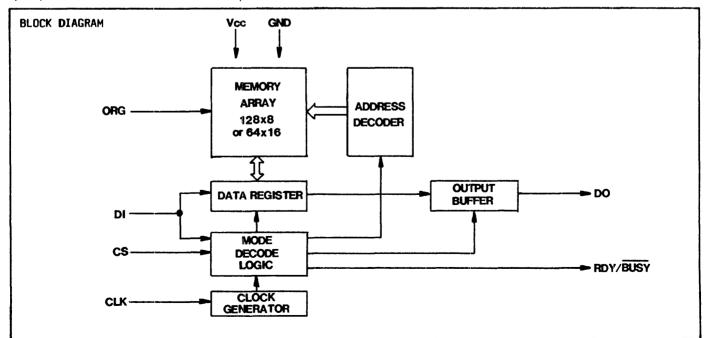
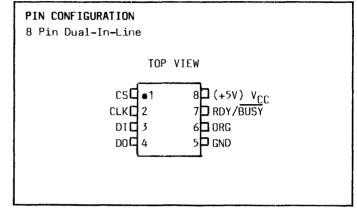

During a program cycle the internal erase and write operations occur automatically and are self-timed on the device. A single memory location may also be erased by programming that address with all "1's".

Figure 4 PEN (Program Enable) and PDS (Program Disable)
cs
ENABLE=11
DISABLE=00
PEN AND PDS FOR 128x8 ORGANIZATION
CS
ENABLE=11 DISABLE=00
PEN AND PDS FOR 64x16 ORGANIZATION
Program Enable and Program Disable
Programming must be preceded once by a programming enable (PEN) instruction. Programming remains enabled
until a programming disable (PDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of
both PEN and PDS instructions.


1024 SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM


FEATURES

- Low cost
- User-selectable organization: 64 x 16 or 128 x 8
- Single +5V only operation
- Binary addressing
- Fully automatic self-timed erase/write mode
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- -40°C to +85°C operating ambient temperature range
- Power-on/off data protection circuitry

DESCRIPTION

The ER5911I is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. This device features +5V only operation, a self-timed reprogramming cycle and two user-selectable memory array organizations, 64×16 or 128×8 , which are selectable externally by means of a one bit code applied to control pin ORG. The Input (DI) and Output (DO) pins are controlled by separate serial formats. When separate lines are used the D0 output pin is valid only in the read mode and is in the high impedance state in all other modes, thus eliminating bus contention. Five instructions may be executed and the instruction length will be twelve bits when using the 128 x 8 organization and eleven bits when the 64 x 16 organization is used. The instruction format has a logical 1 as a start bit, four bits as an opcode and either six or seven address bits.

PIN FUNCTIONS								
CS CLK DI DO V _{CC} RDY/BUSY GND	Chip Select Clock Input Serial Data Input Serial Data Output +5V Power Supply Status Output Ground	ORG	Memory Array Organization Selection Input. When the ORG pin is connected to +5V the 64 x 16 organization is selected. When it is connected to ground the 128 x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device will select the 64 x 16 organ- ization.					

			IN	STRUCTION SE	T		
	Start		Addr	ess	Da	ta	
Instruction	Bit	Opcode	128 x 8	64 x 16	128 × 8	64 x 16	Comments
READ	1	1000	A ₆ -A ₀	A5-A0			Read Address A _N -A _O
PROGRAM	1	X 1 0 0	A ₆ A ₀	A5-A0	D7-D0	D ₁₅ -D ₀	Program Address A _N -A _O
PEN	1	0011	000000	000000			Program Enable
PDS	1	0000	0000000	000000			Program Disable
ERAL	1	0010	0000000	000000			Erase All Addresses

<u>DI/DO:</u> It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin.

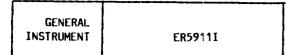
<u>Power-On Data Protection Circuitry:</u> During powerup all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

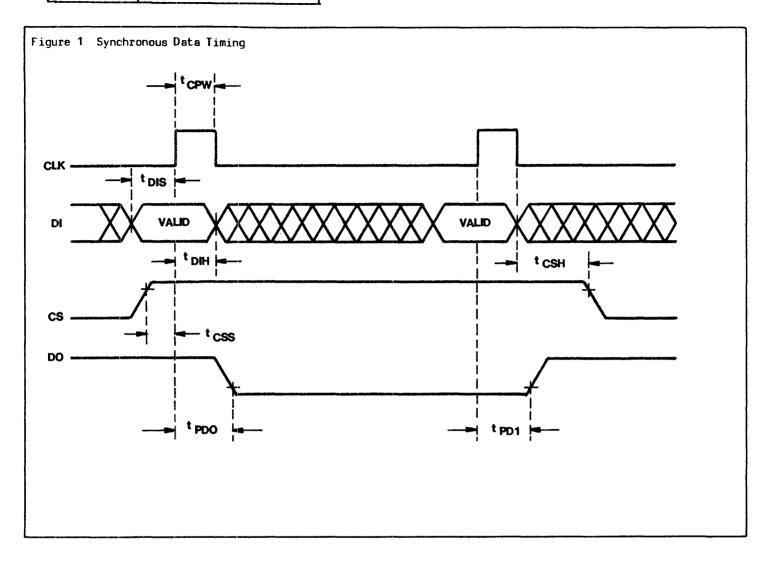
GENERAL	
INSTRUMENT	ER59111

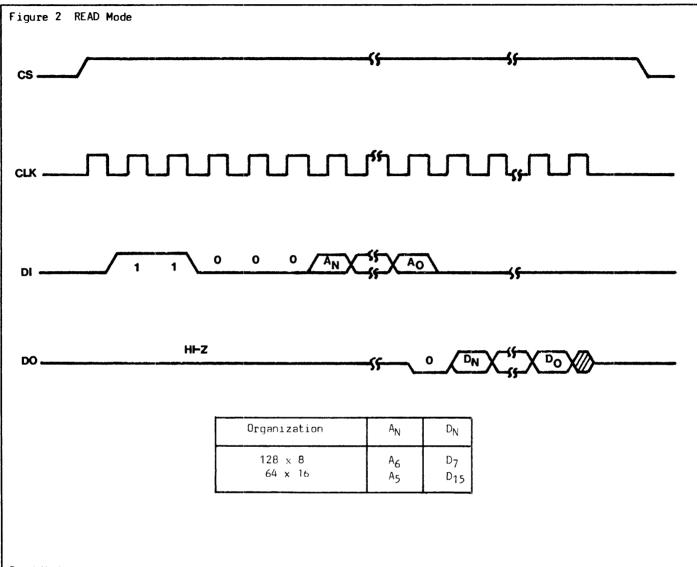
ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

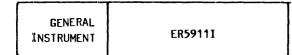

Data labeled "typical" is presented for design guidance only and is not guaranteed.

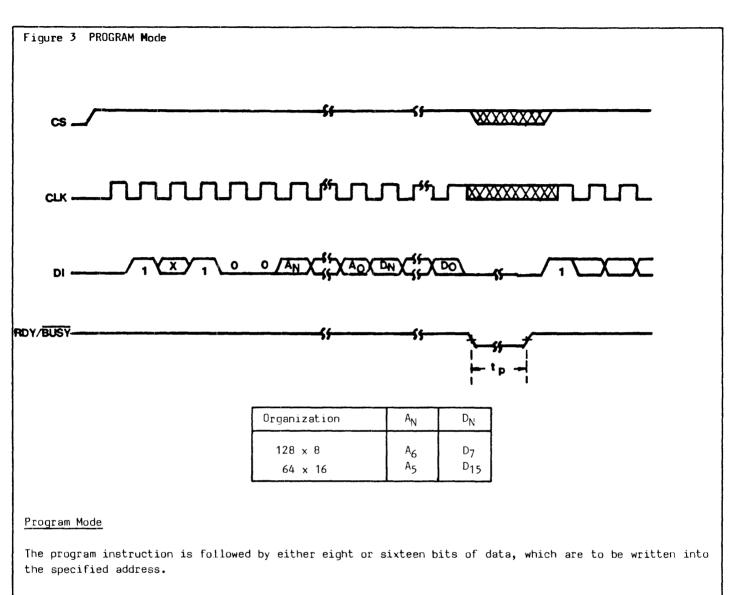

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.


Characteristic Min Max Units Conditions Sym Тур High Level Input Voltage 2.0 V_{CC}+1.0 ۷ ۷_{IH} ----0.3 Low Level Input Voltage ۷ +0.8 ٧ _ $I_{OH} = -400 uA$ High Level Output Voltage ۷он 2.4 ۷ _ V_{CC} Low Level Output Voltage ٧_{OL} ٧ _ _ 0.4 $I_{OL} = 1.6 \text{mA}$ Input Leakage Current μA ILI _ +10 $V_{IN} = GND$ to V_{CC} ----Output Leakage Current +10 $V_{OUT} = GND to V_{CC}$ ILO _ _ μA Power Supply Requirements V_{CC} Supply: Chip Selected $V_{CC} = 5.5V$ ^ICC 12 mΑ ----Chip Selected (PROGRAM and ERAL modes) 15 $V_{CC} = 5.5V$ ICC mΑ ---- $V_{\Gamma\Gamma} = 5.5V$ Chip Deselected (STANDBY) 5 101_ _ mΑ Power Consumption Chip Selected $V_{\rm EE} = 5.5V$ PCC 66 mW -Chip Selected (PROGRAM and ERAL modes) P_{CC} 83 $V_{CC} = 5.5V$ _ mW Chip Deselected (STANDBY) 28 $V_{CC} = 5.5V$ PCC _ m₩ _

AC CHARACTERISTICS (See Figure 1)

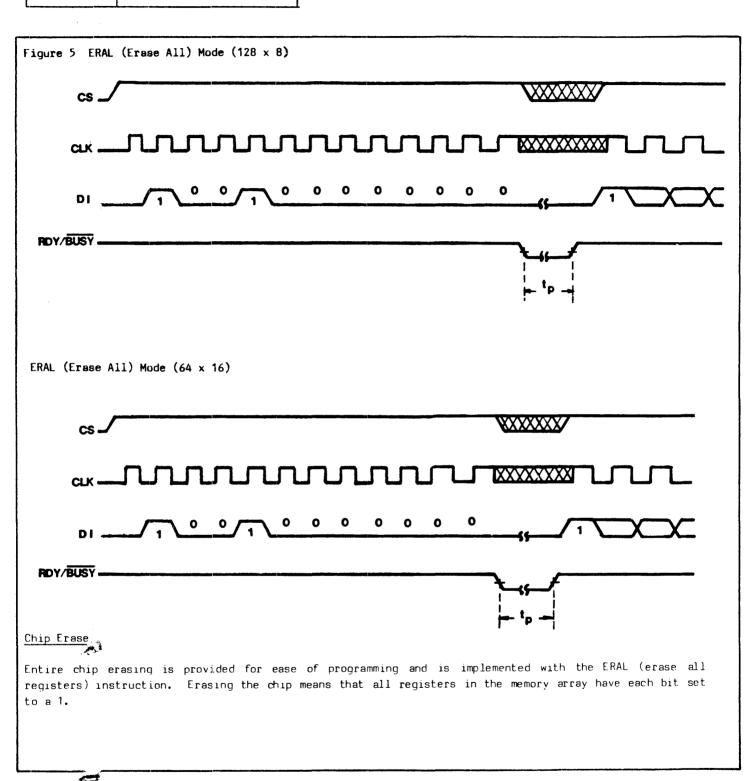
Characteristic	Sym	Min	Тур	Мах	Units	Conditions
CLK Frequency	f _{CLK}	0	-	250	KHz	
CLK Duty Cycle	D _{CLK}	25		75	%	
Chip Select Setup Time	t _{CSS}	0.2	-	-	μs	
Chip Selected Hold Time	t _{CSH}	0	-	-	μs	
Data Input Setup Time	t _{DIS}	0.4	-	-	μs	
Data Input Hold Time	t _{DIH}	0.4		-	μs	
CLK Pulse Width	t _{CPW}	2.0	-	-	μs	
Data Output Delay	t _{PD1}	-	-	2.0	μs	C ₁ = 100pf
					,	$V_{OL} = 0.8V$
						$V_{OH} = 2.0V$
Data Output Delay	t _{PD0}	-	-	2.0	μs	C _L = 100pf
						V _{OL} = 0.8V
						V _{OH} = 2.0V
Status Low Time	t _{PR}	20	40	75	ms	
(programming time)						

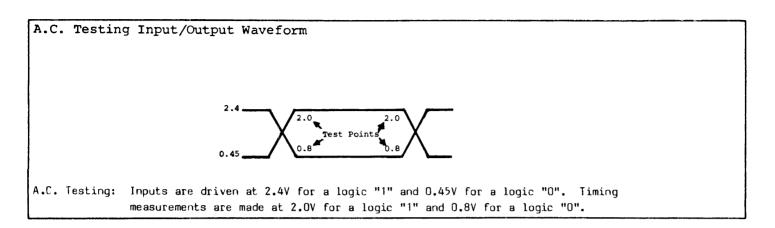


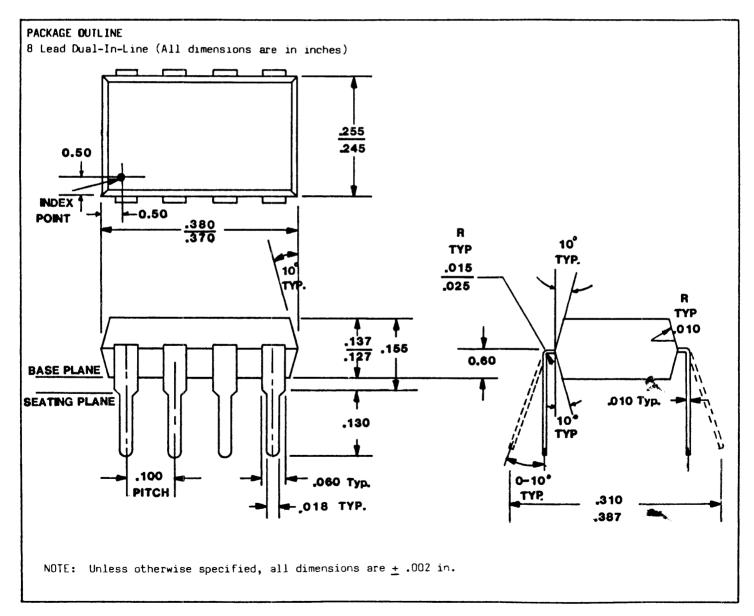


Read Mode

The READ instruction is the only instruction which outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the memory register into a serial-out shift register. A dummy bit (logical "O") precedes the data output string. The output data changes during the high states of the system clock.

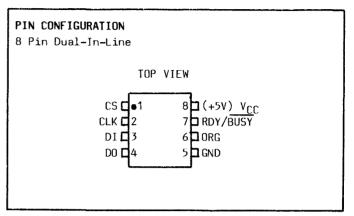



After the last data bit (DD) has been shifted into the data register the contents of the specified address will be erased and the new data written to the same address.

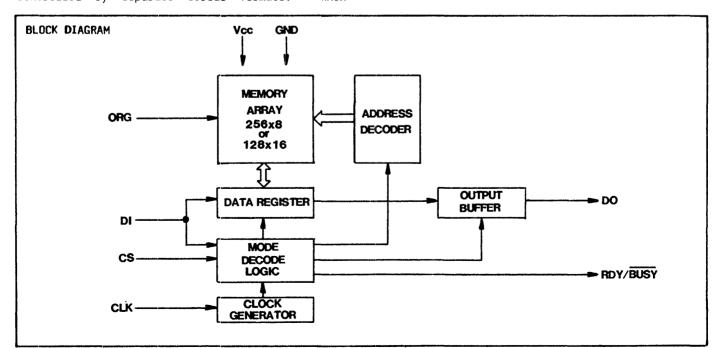

During the automatic erase/write sequence the RDY/\overline{BUSY} output will go low for the duration of the automatic programming cycle as indicated by tp.

During a program cycle the internal erase and write operations occur automatically and are self-timed on the device. A single memory location may also be erased by programming that address with all "1's".

Figure 4 PEN (Program Enable) and PDS (Program Disable)
cs
ENABLE=11 DISABLE=00
PEN AND PDS FOR 128x8 ORGANIZATION
cs
ENABLE=11 DISABLE=00
PEN AND PDS FOR 64x16 ORGANIZATION
Program Enable and Program Disable
Programming must be preceded once by a programming enable (PEN) instruction. Programming remains enabled until a programming disable (PDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both PEN and PDS instructions.


2048 SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES


- Low cost
- User-selectable organization: 128 x 16 or 256 x 8
- Single +5V only operation
- Binary addressing
- Fully automatic self-timed erase/write mode
- Self timed separate erase and write modes
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 0°C to +70°C operating ambient temperature range
- Power-on/off data protection circuitry

DESCRIPTION

The ER5912 is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. This device features +5V only operation, a self-timed reprogramming cycle as well as separate erase and write cycles and two userselectable memory array organizations, 128 x 16 or 256 x 8, which are externally selectable by means of a one bit code applied to control pin ORG. The Data Input (DI) and Data Output (DO) pins are controlled by separate serial formats. When

separate lines are used the DO output pin is valid only in the read mode and is in the high impedance state in all other modes, thus eliminating bus contention. Seven instructions may be executed and the instruction length will be thirteen bits when using the 256 x 8 organization and twelve bits when the 128 x 16 organization is used. The instruction format has a logical 1 as a start bit, four bits as an opcode and either seven or eight address bits.

DS20024A-1

GENERAL INSTRUMENT	ER5912

	PI	N FUNCTIONS
CS CLK DI DO V _{CC} RDY/BUSY GND	Chip Select Clock Input Serial Data Input Serial Data Output +5V Power Supply Status Output Ground	ORG Memory Array Organization Selection Input. When the ORG pin is connected to +5V the 128 x 16 organization is selected. When it is connected to ground the 256 x 8 organization is selected. If the ORG pin is left unconnected, then an internal pullup device will select the 128 x 16
		organization.

INSTRUCTION SET									
	Start		Addr	688	Da	ta			
Instruction	Bit	opcode	256 x 8	128 x 16	256 x 8	128 x 16	Comments		
READ	1	1000	A7-A0	A6-A0			Read Address A _N -A _O		
PROGRAM	1	X 1 0 0	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Program Address A _N -A ₍		
ERASE	1	1110	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Erase Address A _N -A _O		
WRITE	1	0110	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Write Address A _N -A _O		
PEN	1	0011	00000000	0000000			Program Enable		
PDS	1	0000	00000000	0000000			Program Disable		
ERAL	1	0010	00000000	0000000			Erase All Addresses		

<u>DI/DO:</u> It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin. <u>Power-On Data Protection Circuitry:</u> During powerup all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

GENERAL INSTRUMENT

ER5912

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

All inputs and outputs

without data retention)..... $-65^{\circ}C$ to $+150^{\circ}C$ Soldering temperature of leads

(10 seconds).....+300°C

Standard Conditions (Unless otherwise noted)

 $V_{SS} = GND$

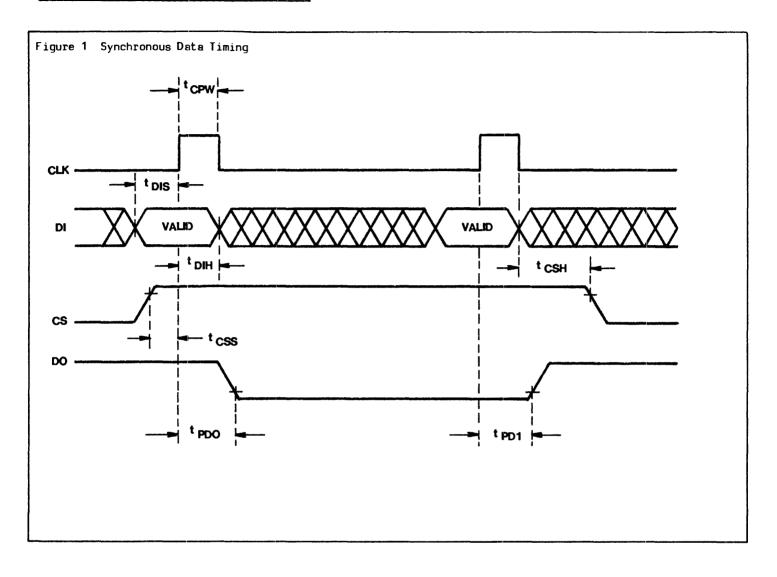
 $V_{CC} = +5V + 10\%$ volts

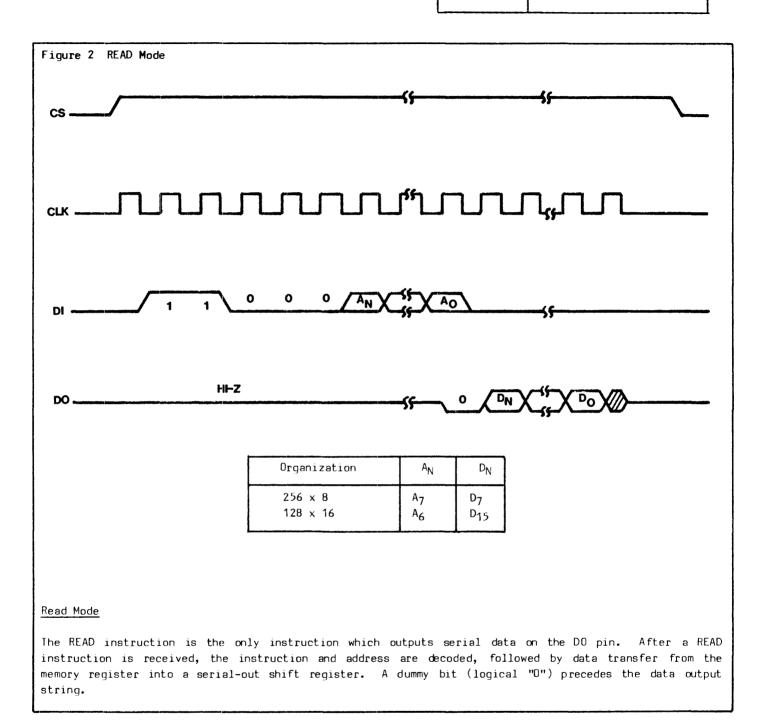
Operating Temperature Range (T_A) :

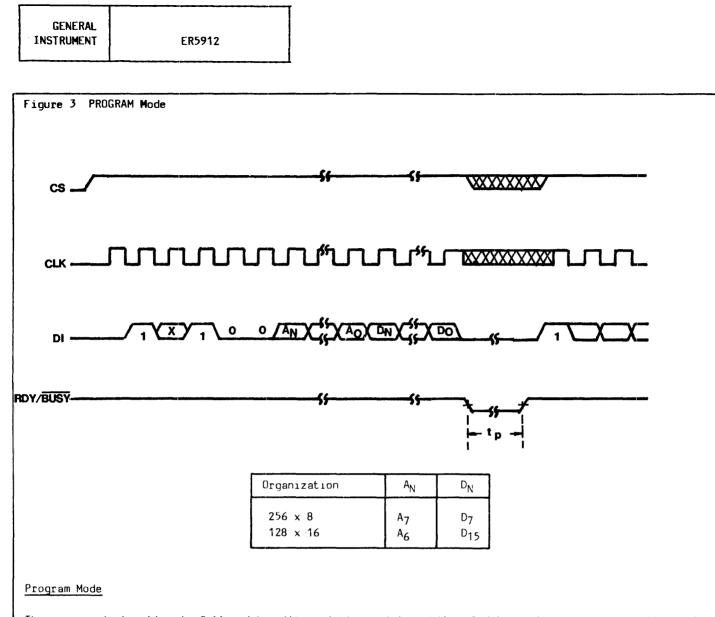
O°C to +70°C (Commercial)

DC CHARACTERISTICS

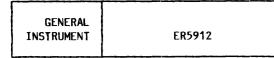
*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

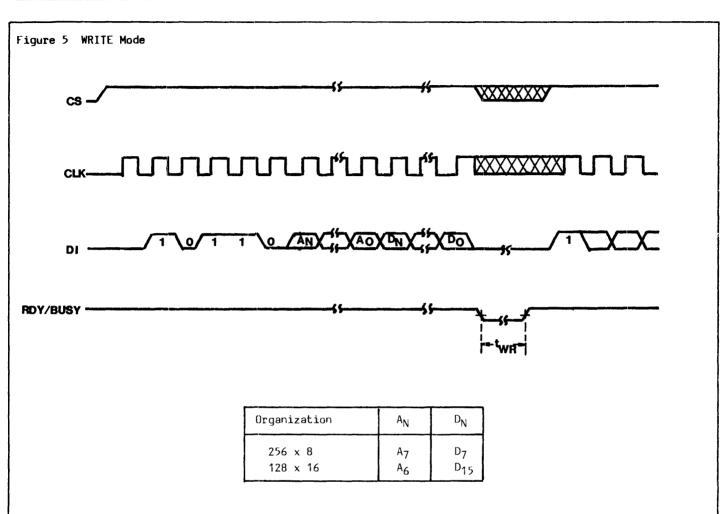

Data labeled "typical" is presented for design guidance only and is not guaranteed.


General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.


Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	VIH	2.0		۷ _{CC} +1.0	V	
Low Level Input Voltage	VIL	-0.3		+0.8	v	
High Level Output Voltage	V _{OH}	2.4		V _{CC}	v	$I_{OH} = -400 uA$
Low Level Output Voltage	VOL	-		0.4	v	$I_{OL} = 1.6 \text{mA}$
Input Leakage Current	ILI	-	-	+10	Αىر	$V_{IN} = GND \text{ to } V_{CC}$
Output Leakage Current	ILO	-	_,	+10	Αىر	$V_{OUT} = GND \text{ to } V_{CC}$
Power Supply Requirements					1	
V _{CC} Supply:	1					
Chip Selected	¹ CC	-	-	10	mA	$V_{\rm CC} = 5.5V$
Chip Selected (PROGRAM and						
ERAL modes)	^I CC	-	-	12	mA	$V_{\rm CC} = 5.5V$
Chip Deselected (STANDBY)	ICC	-	-	3	mA	$V_{\rm CC} = 5.5V$
Power Consumption						
Chip Selected	PCC	-	-	55	m₩	$V_{\rm CC} = 5.5V$
Chip Selected (PROGRAM and						
ERAL modes)	PCC	-	-	66	mW	$V_{CC} = 5.5V$
Chip Deselected (STANDBY)	PCC	_	-	17	mW	$V_{CC} = 5.5V$

Characteristic	Sym	Min	Тур	Max	Units	Conditions
CLK Frequency	f _{CLK}	0	-	500	KHz	
Chip Select Setup Time	t _{CSS}	0.2	-		sų	
Chip Select Hold Time	t _{CSH}	0	-	-	μs	
Data Input Setup Time	t _{DIS}	0.4	-	-	μs	
Data Input Hold Time	t _{DIH}	0.4	-	-	μs	
CLK Pulse Width	t _{CPW}	1.0	-	-	μs	
Data Output Delay	t _{PD1}	-	-	2.0	عر	$C_{L} = 100 pf$
Data Output Delay	t _{PD0}	-	-	2.0	ра	$V_{OL} = 0.8V$ $V_{OH} = 2.0V$ $C_{L} = 100pf$ $V_{OL} = 0.8V$ $V_{OH} = 2.0V$
Status Low Time						
programming time	t _{PR}	20	30	40	ms	
erase time	t _{ER}	10	-	20	ms	
write time	t _{PR}	10	-	20	ms	


The program instruction is followed by either eight or sixteen bits of data, which are to be written into the specified address.

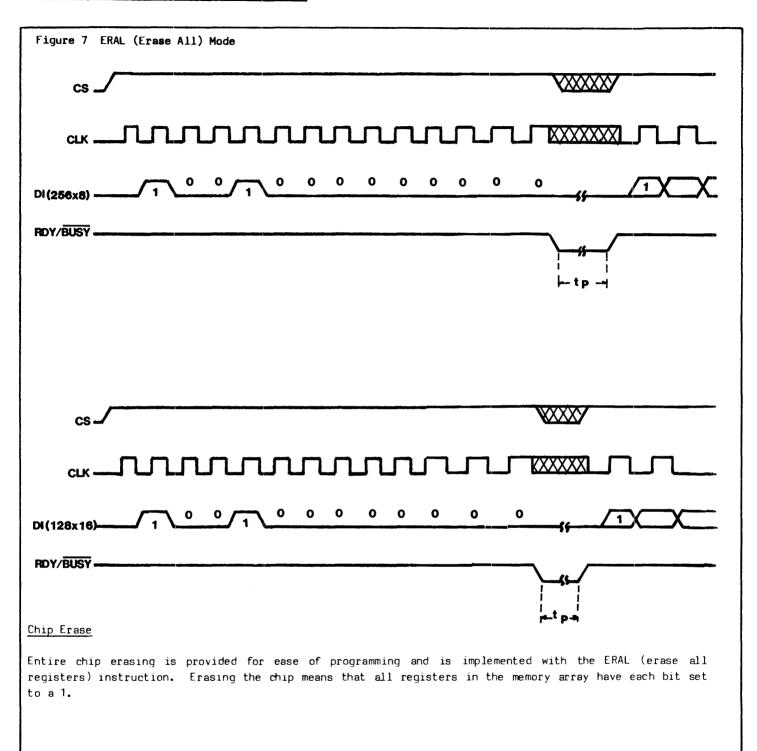

After the last data bit (DD) has been shifted into the data register the contents of the specified address will be erased and the new data written to the same address.

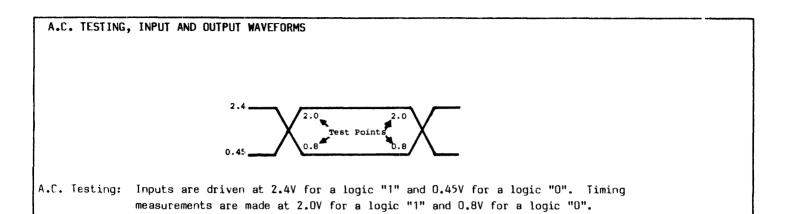
During the automatic erase/write sequence the RDY/BUSY output will go low for the duration of the automatic programming cycle as indicated by tp.

During a program cycle the internal erase and write operations occur automatically and are self-timed on the device. A single memory location may also be erased by programming that address with all "1's".

Figure 4 ERASE Mode	
cs	
DI1 1 1 1	$ \underline{\circ} \underline{\wedge} \underline{\wedge} \underline{\vee} \underline{\vee} \underline{\vee} \underline{\vee} \underline{\vee} \underline{\vee} \underline{\vee} \vee$
RDY/BUSY	
	OrganizationAN256 x 8A7128 x 16A6
(set to all 1's). After the last address bit (A _O) has	by seven or eight bits of address indicating the address to be erased as been entered the contents of the specified address will be erased. (BUSY output will go low for the duration of the erase cycle as indicated cimed on the chip.

Write Mode


The write instruction is followed by either eight or sixteen bits of data, which are to be written into the specified address.


After the last data bit (D_0) has been shifted into the data register the new data will be written to the specified address. (Note that a write instruction must be preceeded by an erase instruction for programming since a write will only modify erased bits at that address.

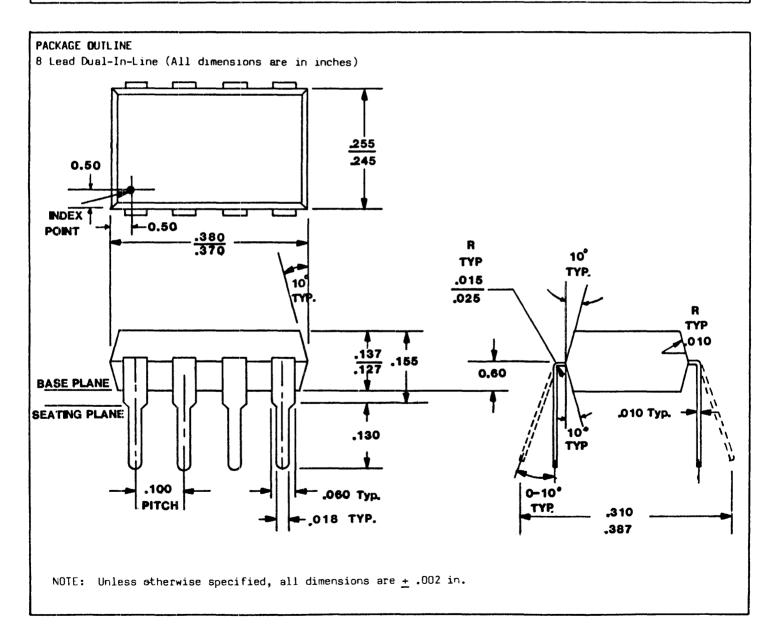
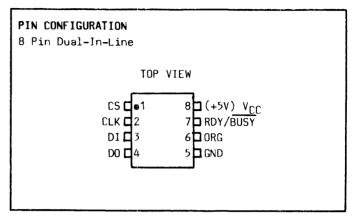
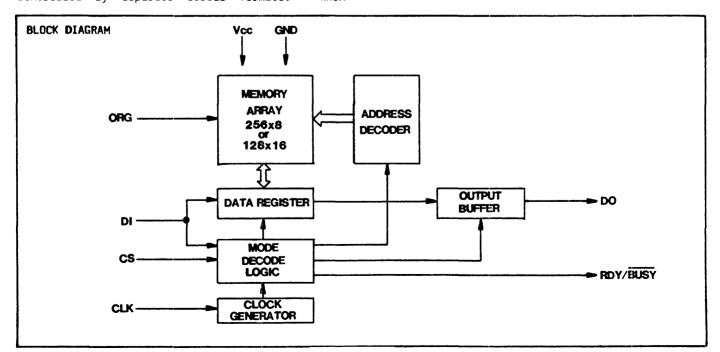

During the write sequence the RDY/ \overline{BUSY} output will go low for the duration of the write cycle as indicated by twe. The write cycle is self-timed on the chip.

Figure 6 PEN (Program Enable and PDS (Program Disable)	
cs	
ENABLE=11 DISABLE=00	
PEN AND PDS FOR 256x8 ORGANIZATION	
cs	
DISABLE=00	
PEN AND PDS FOR 128 x 16 ORGANIZATION	
Program Enable and Program Disable	
Programming must be preceded once by a programming enable (PEN) instruction. Programming remains enabled until a programming disable (PDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both PEN and PDS instructions.	
Note that the ER5912I will power up with programming disabled.	


2048 SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES


- Low cost
- User-selectable organization: 128 x 16 or 256 x 8
- Single +5V only operation
- Binary addressing
- Fully automatic self-timed erase/write mode
- Self timed separate erase and write modes
- Word and chip erasable
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- -40°C to +85°C operating ambient temperature range
- Power-on/off data protection circuitry

DESCRIPTION

The ER5912I is a low cost, serial EEPROM manufactured in General Instrument's highly reliable SNOS technology. This device features +5V only operation, a self-timed reprogramming cycle as well as separate erase and write cycles and two userselectable memory array organizations, 128 x 16 or 256 x 8, which are externally selectable by means of a one bit code applied to control pin ORG. The Data Input (DI) and Data Output (DO) pins are controlled by separate serial formats. When

separate lines are used the DO output pin is valid only in the read mode and is in the high impedance state in all other modes, thus eliminating bus contention. Seven instructions may be executed and the instruction length will be thirteen bits when using the 256 x 8 organization and twelve bits when the 128 x 16 organization is used. The instruction format has a logical 1 as a start bit, four bits as an opcode and either seven or eight address bits.

GENERAL INSTRUMENT	ER5912I

	PIN	FUNCTIONS
CS	Chip Select	ORG Memory Array Organization Selection
CLK	Clock Input	Input. When the ORG pin is connected
DI	Serial Data Input	to +5V the 128 x 16 organization is
DO	Serial Data Output	selected. When it is connected to
v _{cc}	+5V Power Supply	ground the 256 x 8 organization is
RDY/BUSY	Status Output	selected. If the ORG pin is left
GND	Ground	unconnected, then an internal pullup
		device will select the 128 x 16
		organization.

INSTRUCTION SET										
	Start		Addr	Address Data						
Instruction	Bit	opcode	256 x 8	128 x 16	256 x 8	128 x 16	Comments			
READ	1	1000	A7-A0	A6-A0			Read Address A _N -A _O			
PROGRAM	1	X 1 0 0	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Program Address A _N -A			
ERASE	1	1110	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Erase Address A _N -A _O			
WRITE	1	0110	A7-A0	A6-A0	D7-D0	D ₁₅ -D ₀	Write Address A _N -A _O			
PEN	1	0011	00000000	0000000			Program Enable			
PDS	1	0000	00000000	0000000			Program Disable			
ERAL	1	0010	00000000	0000000			Erase All Addresses			

<u>DI/D0</u>: It is possible to connect the Data In and Data Out pins together. However, with this configuration it is possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A_0 is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A_0 . The higher the current sourcing capability of A_0 , the higher the voltage at the Data Out pin. <u>Power-On Data Protection Circuitry:</u> During powerup all modes of operation are inhibited until V_{CC} has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V_{CC} has fallen below the voltage range of 2.8 to 3.5 volts.

All inputs and outputs

with respect to ground..... +7V to -0.3V Storage temperature (unpowered and without data retention)..... -65°C to +150°C Soldering temperature of leads

(10 seconds).....+300°C Standard Conditions (Unless otherwise noted) V_{SS} = GND

- V_{CC} = +5V +10% volts
- Operating Temperature Range (T_A) :

AC OUNDACTEDICTICS (Car Educat 4)

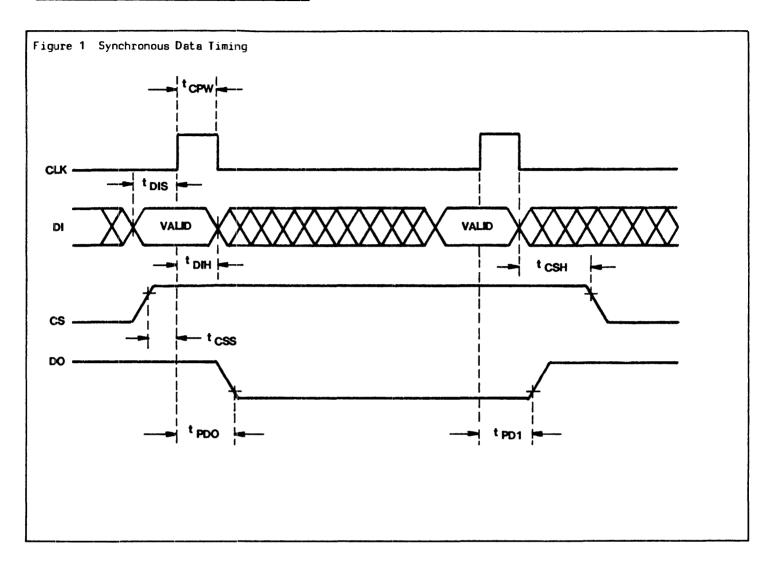
-40°C to +85°C (Industrial)

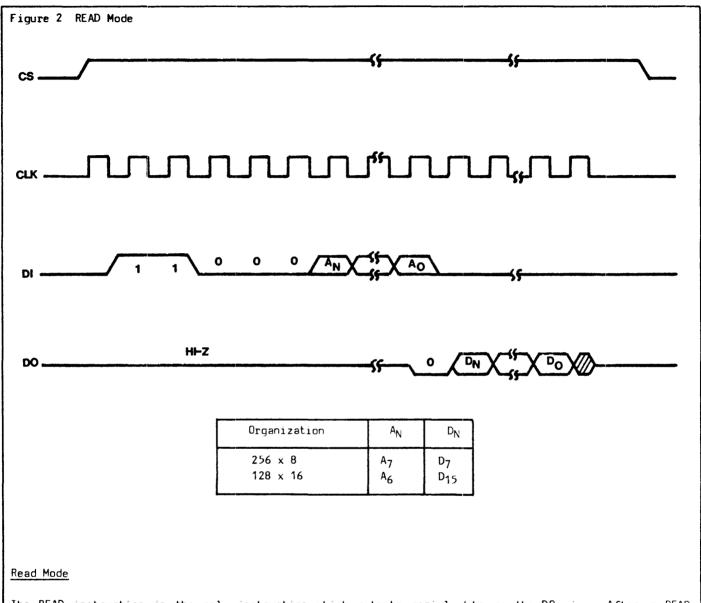
DC CHARACTERISTICS

GENERAL INSTRUMENT

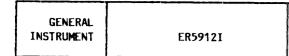
ER5912I

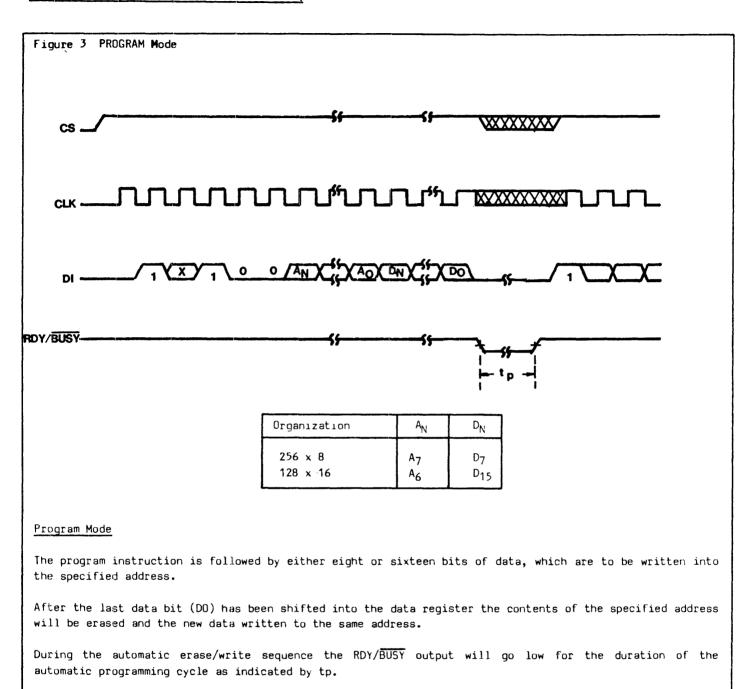
*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

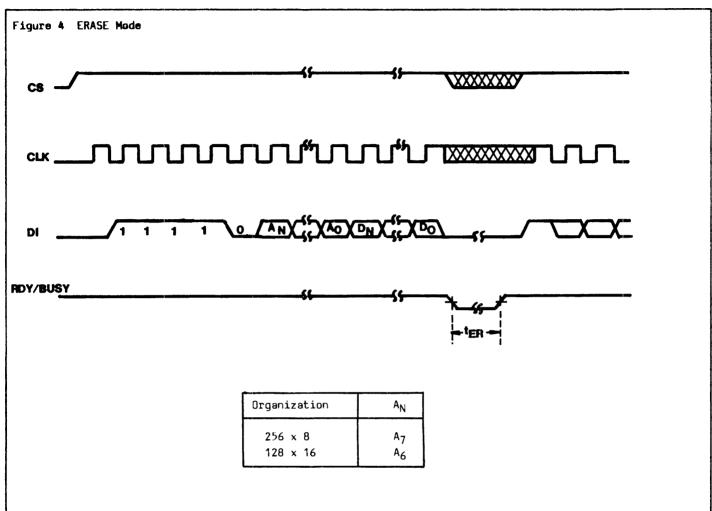

Data labeled "typical" is presented for design guidance only and is not guaranteed.


General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.

Characteristic	Sym	Min	Тур	Max .	Units	Conditions
High Level Input Voltage	VIH	2.0	-	۷ _{CC} +1.0	v	
Low Level Input Voltage	VIL	-0.3	-	+0.8	v	
High Level Output Voltage	V _{OH}	2.4	-	V _{CC}	v	I _{OH} = -400uA
Low Level Output Voltage	VOL	-	-	0.4	v	$I_{OL} = 1.6 \text{mA}$
Input Leakage Current	ILI	- 1	-	+10	Αىر	V _{IN} = GND to V _{CC}
Output Leakage Current	ILO	-	- 1	+10	Au	$V_{OUT} = GND$ to V_{CC}
Power Supply Requirements						
V _{CC} Supply:	1					
Chip Selected	^I cc	-	-	13	mA	$V_{CC} = 5.5V$
Chip Selected (PROGRAM and						
ERAL modes)	ICC	-	-	15	mA	$V_{\rm CC} = 5.5V$
Chip Deselected (STANDBY)	ICC	-	-	5	mA	$V_{CC} = 5.5V$
Power Consumption						
Chip Selected	PCC	-	- 1	72	mW	$V_{\rm CC} = 5.5V$
Chip Selected (PROGRAM and		1				
ERAL modes)	PCC	-	-	83	mW	$V_{CC} = 5.5V$
Chip Deselected (STANDBY)	PCC	- 1	-	28	mW	$V_{CC} = 5.5V$
•	L	L]	l	Ł <u>. </u>	I

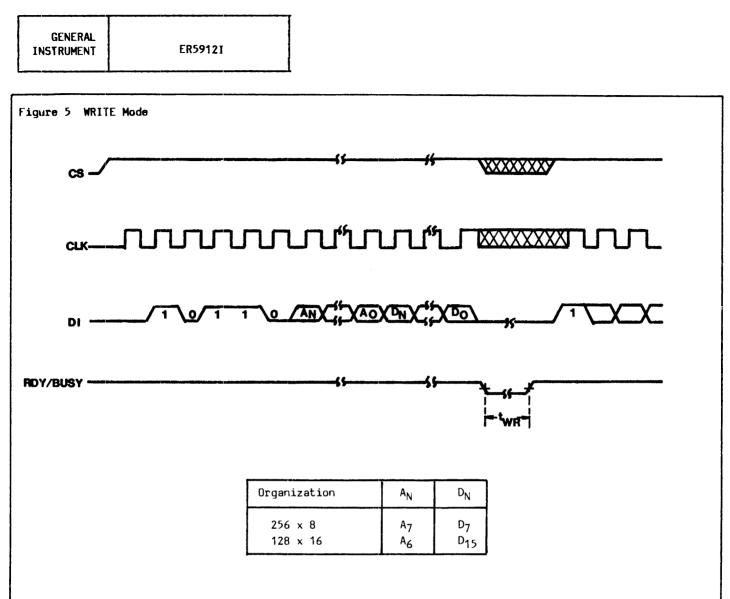

Characteristic	Sym	Min	Тур	Max	Units	Conditions
CLK Frequency	f _{CLK}	0	-	500	KHz	
Chip Select Setup Time	t _{CSS}	0.2	-	-	su	
Chip Select Hold Time	tCSH	0	-	-	μs	
Data Input Setup Time	tDIS	0.4	-	-	μs	
Data Input Hold Time	t _{DIH}	0.4	-	-	μs	
CLK Pulse Width	t _{CPW}	1.0	-	-	μs	
Data Output Delay	t _{PD1}	-	-	2.0	عر	C _L = 100pf
Data Output Delay	t _{PDO}	-	-	2.0	۶ų	$V_{0L} = 0.8V$ $V_{0H} = 2.0V$ $C_{L} = 100pf$ $V_{0L} = 0.8V$ $V_{0H} = 2.0V$
Status Low Time						011
programming time	t _{PR}	20	30	40	ms	
erase time	t _{ER}	10	-	20	ms	
write time	t _{PR}	10	-	20	ms	


GENERAL	
INSTRUMENT	ER5912I



The READ instruction is the only instruction which outputs serial data on the DO pin. After a READ instruction is received, the instruction and address are decoded, followed by data transfer from the memory register into a serial-out shift register. A dummy bit (logical "O") precedes the data output string.

During a program cycle the internal erase and write operations occur automatically and are self-timed on the device. A single memory location may also be erased by programming that address with all "1's".



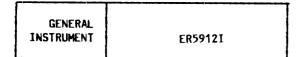
Erase Mode

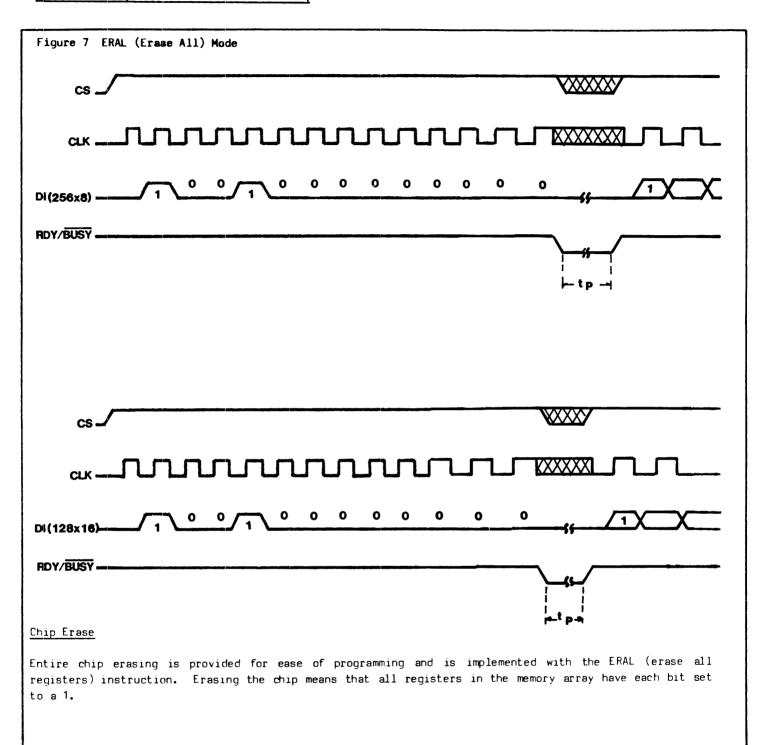
The erase instruction is followed by seven or eight bits of address indicating the address to be erased (set to all 1's).

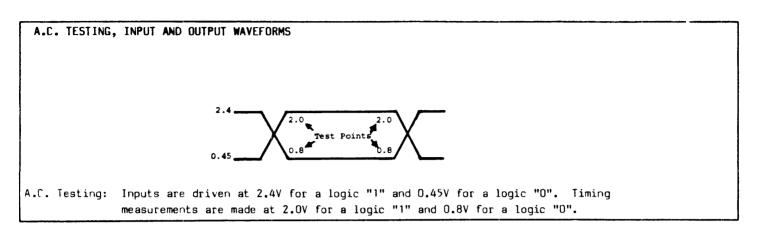
After the last address bit (A_0) has been entered the contents of the specified address will be erased.

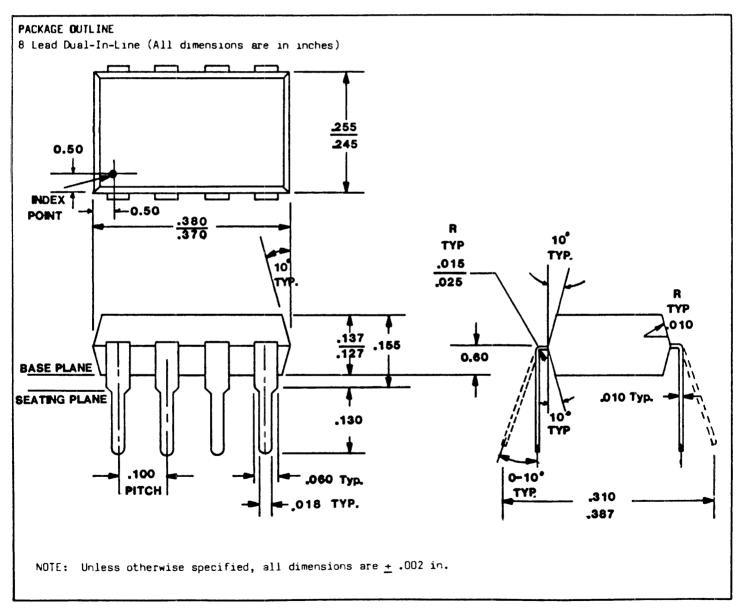
During the erase sequence the RDY/ $\overline{\text{BUSY}}$ output will go low for the duration of the erase cycle as indicated by t_{FR} . The erase cycle is self-timed on the chip.

<u>Write Mode</u>

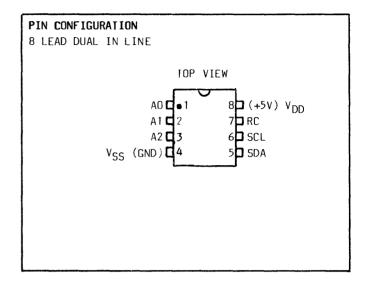

The write instruction is followed by either eight or sixteen bits of data, which are to be written into the specified address.


After the last data bit (D_0) has been shifted into the data register the new data will be written to the specified address. (Note that a write instruction must be preceeded by an erase instruction for programming since a write will only modify erased bits at that address.


During the write sequence the RDY/ $\overline{\text{BUSY}}$ output will go low for the duration of the write cycle as indicated by twp. The write cycle is self-timed on the chip.

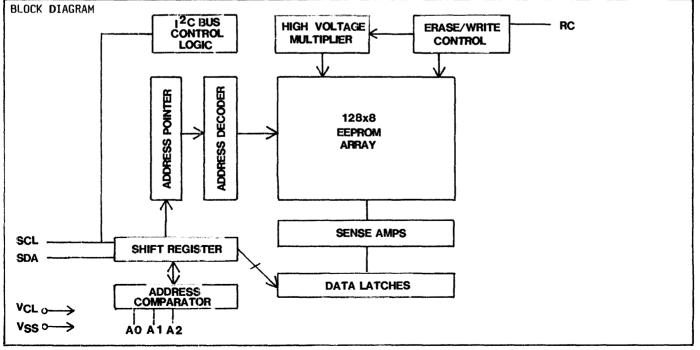

Figure 6 PEN (Program Enable and PDS (Program Disable)
cs
ENABLE=11 DISABLE=00 0 0 0 0 0 0 0 0 DI
PEN AND PDS FOR 256x8 ORGANIZATION
cs
ENABLE#11 DISABLE#00
PEN AND PDS FOR 128 x 16 ORGANIZATION
Program Enable and Program Disable
Programming must be preceded once by a programming enable (PEN) instruction. Programming remains enabled until a programming disable (PDS) instruction is executed. The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both PEN and PDS instructions.

Note that the ER59121 will power up with programming disabled.


1024 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES:

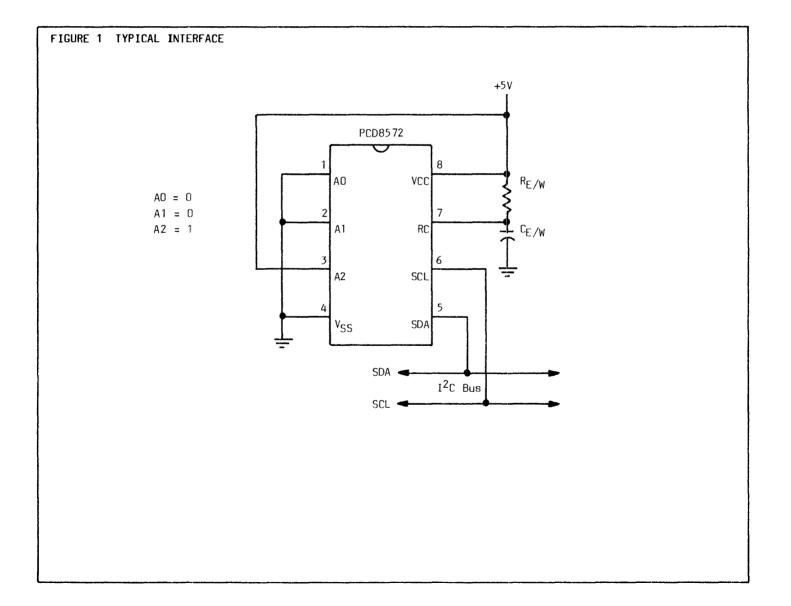
- 128 x 8 serial EEPROM
- Single +5V only operation
- Compatible with the inter-integrated-circuit ($I^2 \mbox{C}$) bus
- Fully Iff. compatible inputs and outputs
- Unlimited read accesses
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-SID 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 0°C to +70°C operating ambient temperature range


DESCRIPTION

The PCD8572 is a 1K EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5 volt only operation and inter-integrated circuit (I^2C) bus compatibility. This revolutionary bus provides the facilities of a local area network within a single system or equipment. Each IC serves as both transmitter and receiver in the synchronous data transfer of up to 100K bits per second. The use of I^2C compatible devices make possible modular circuit design with up to 600 feet of separation

allowable between IC's (400 pf maximum bus capacitance).

Chip select is accomplished by means of the three address inputs AO, A1 and A2. Each of these inputs must be connected externally to either +5V or GND and each chip is then selected through software by placing its 3 bit chip select address on the serial data input line (SDA) at the appropriate time in the bus protocol. Up to eight PCD8572s may be connected to the I^2C bus.



PIN FUNCTIONS

		purposes of illustration chip address A2A1AO = 100
AO, A1, A2	Chip Address Inputs	is shown. This is only one of eight possible
V _{SS}	Ground	addresses since up to eight PCD8572s can be connected to the I ² C bus of a single system. The erase/write cycle time of this device I _{F/W} is
SDA	Serial Data/Address, Input/Output	determined by an external resistor and capacitor:
SCL	Serial Clock Input, Erase/Write	$R_{E/W}$ and $C_{E/W}$.
		NOTE:
RC	Time Constant Network Input	When the PCD8572 is not used in an I ² C bus configuration, pull-up resistors for SDA and SCL
v _{DD}	+5V Power Supply	are required.

Figure 1 below shows the typical manner in which the PCD8572 is interfaced to the I^2C bus.

For

CHARACTERISTICS OF THE 1²C BUS

The I^2C bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pullup resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

<u>Bus not busy:</u> Both data and clock lines remain HIGH.

<u>Start data transfer:</u> A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines the START condition.

<u>Stop data transfer:</u> A change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the STOP condition.

<u>Data valid:</u> The state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line may be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the

number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE + WRITE mode and is not limited in the READ mode. The information is transmitted bytewise and each reciever acknowledges with a nineth bit which must be provided by the user.

Within the I²C bus specifications a low speed mode (2 KHz clock rate) and a high speed mode (100 KHz clock rate) are defined. The PCD8572 works in both modes. By definition a device that gives out a message is called "transmitter", the receiving device that controls the message is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves".

Acknowledge: Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clockpulse in such a way that the SDA line is stable LOW during the high period of the acknowledge related clock pulse. Of course setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line HIGH to enable the master to generate the STOP condition.

Standard Conditions (unless otherwise noted)

 $V_{SS} = 0V (GND)$ $V_{DD} = +5 \pm 10\%$ volts Ambient Operating Temperature (T_A): 0°C to +70°C (Commercial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.

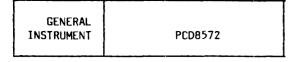
*ABSOLUTE MAXIMUM RATINGS

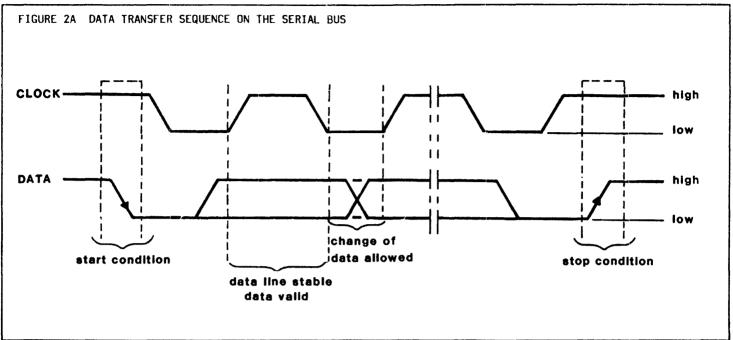
Characteristic	Sym	Min	Тур	Max	Units
Power Supply Voltage	V _{DD}	-0.3	-	7.0	V
Voltage On Any Input Pin	٧ _I	V _{SS} -0.8	-	V _{DD} +0.8	V
Ambient Operating Temperature	TA	0	-	+70	°C
Storage Temperature (Unpowered					
and without data retention)	^r sig	-65	-	+150	°C
Current Into Any Input Pin	II	-	-	100	Ац
Output Current	I ₀	-	-	3	mA (SINK)
Soldering Temperature of Leads	<u> </u>				
(10 seconds)	-	-	-	300	°C

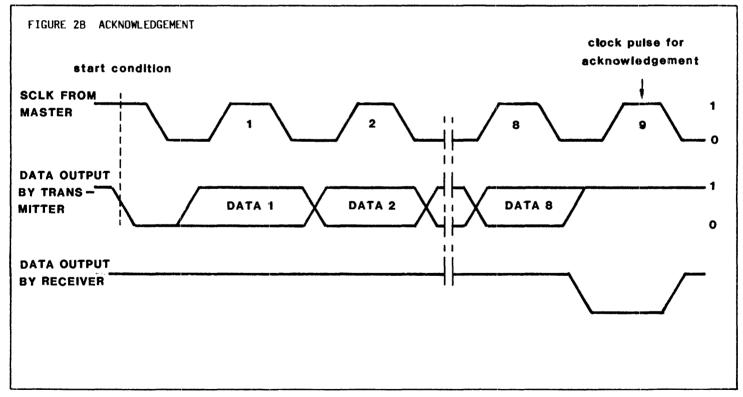
DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Operating Supply Current						
READ Mode	IDDR	-	15	-	mA	
Operating Supply Current						
WRIFE/ERASE Mode	IDDW	-	15	-	mA	
Operating Supply Current				;		
STANDBY Mode	I _{DDO}	-	12	-	mA	
Input Leakage Current						
(AO, A1, A2, SCL Pins)	IIL	-	-	1	дЦ	
Output Leakage Current HIGH	I _{ОН}	-	-	1	Aىر	
SCL Input and SDA Input/						
Output Pins:						
High Level Input Voltage	V _{IH}	3.0	_ i	۷ _{DD} +0.8	v	
Low Level Input Voltage	VIL	-0.3	-	1.5	v	
Low Level Output Voltage	VOL	-	-	0.4	v	I _{OL} = 3mA
	UL UL					$V_{DD} = 4.5V$
AO, A1, A2 Pins:						
High Level Input Voltage	V _{IH}	V _{DD} -0.5	-	V _{DD} +0.5	ν	
Low Level Input Voltage	VIL	-0.3	-	0.5	ν	

GENERAL INSTRUMENT	PCD8572

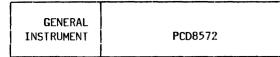

AC CHARACTERISTICS

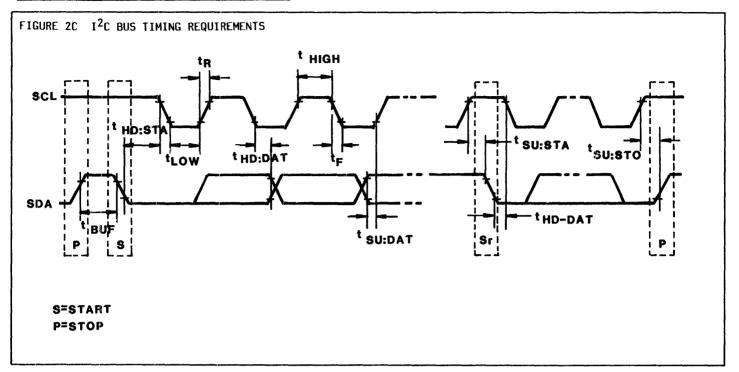

Characteristic	Sym	Min	Тур	Max	Units	Conditions
SCL Clock Frequency	f _{SCL}	0	_	100	KHz	
The LOW period of the clock	tLOW	4.7	_	-	μs	
The HIGH period of the clock	t _{HIGH}	4.0	-	-	μs	
SDA and SCL rise time	t _R	-	-	1	μs	
SDA and SCL fall time	t _F	-	-	300	กร	
START condition hold time. After this period the first clock						
pulse is generated.	t _{HD} ;sta	4.0	-	-	su	
Setup time for start condition	יזטייטחי				-	
(Only relevant for a repeated						
start condition)	tsu;sta	4.7	-	-	μs	
Data set-up time	t _{SU} ;DAT	250	-	-	ns	Caracter 2
Data hold time for I ² C devices	t _{HD} ;DAT	0	-	-	μs	See note 2
STOP condition set-up time	t _{SU} ; _{STO}	4.7	-	-	sىر	
Time the bus must be free before a new transmission can start	t _{BUF}	4.7	-	-	μs	
	001					
Erase/Write Cycle Time (per word) Endurance (Number of erase/	Τ _{Ε/W}	20	30	100	ms	C=2500pf, R=10K
write cycles)	N _E /W	-	-	10,000	E/W cycles	Per byte
Data Retention Time	t _S	10	-	-	Years	
Input Capacitance on SCL, SDA	CI	-	-	7	pf	
Noise Suppression Time Constant at SCL and SDA input	тI	0.25	0.5	1.0	μs	
	• 1				-	


NOTES:

1. All values referred to $V_{\mbox{IH}}$ and $V_{\mbox{IL}}$ levels.

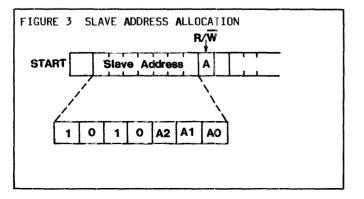
2. Note that a transmitter must internally provide at least a hold time to bridge the undefined region (max. 300ns) of the falling edge of SCL.





ACKNOWLEDGEMENT

An extra clock pulse is generated during which the receiver pulls the data line LOW.



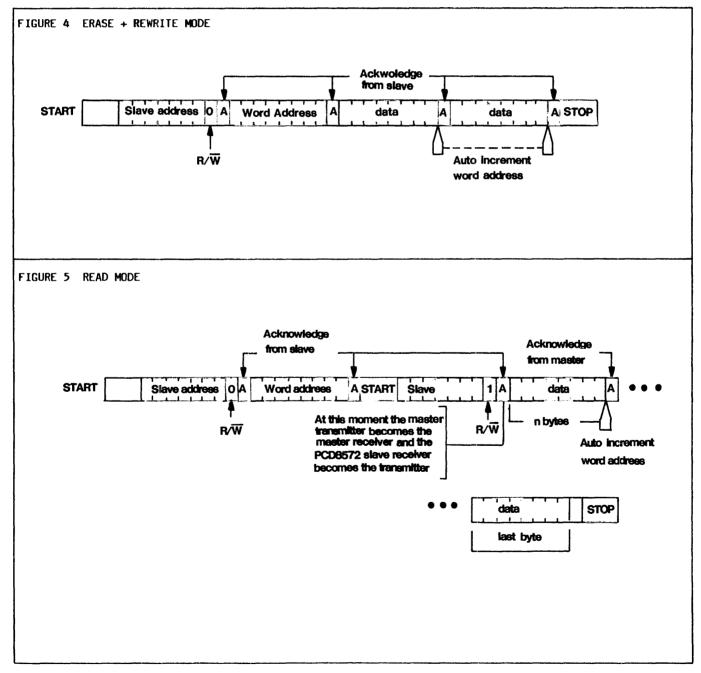
1²C BUS PROTOCOL

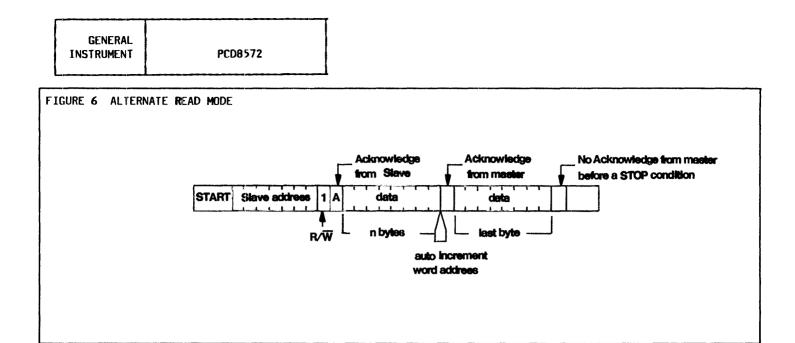
A thorough description of the inter-IC bus specifications appears in the Philips document number IVE 81107 which is available upon request from General Instrument. The following is a condensed description of each mode of operation.

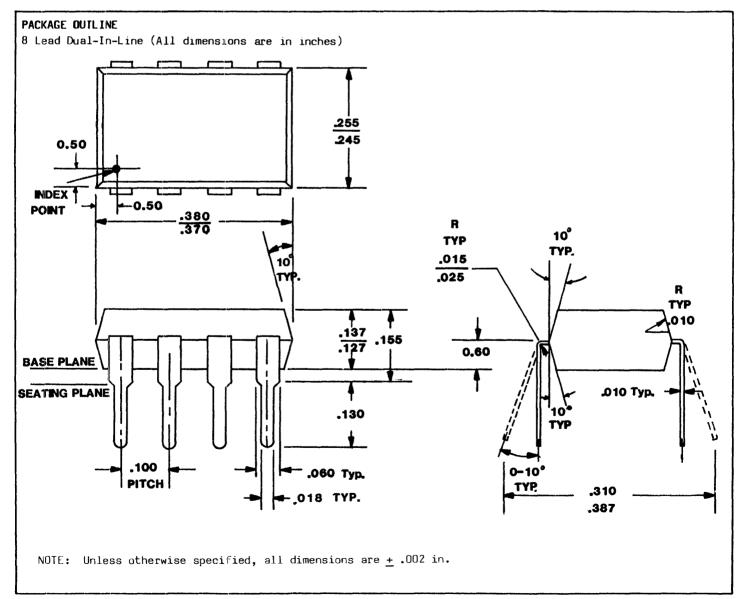
<u>Chip Address (Slave Address) Allocation</u>: The three chip address inputs of each PCD8572 (A2, A1, A0) must be externally connected to either +5V (V_{DD}) of ground (V_{SS}) thereby assigning to each PCD8572 a unique three-bit chip address. Up to eight PCD8572s may be connected to the I²C bus. Chip selection is then accomplished through software by setting the least significant three bits of the slave address to the corresponding hardwired logic levels of the selected PCD8572. The correct bus protocol is shown in figure 3.

Erase/Write Mode: In this mode the master transmitter transmits to the PCD8572 slave receiver. Bus protocol is shown in figure 4. Following the SIARI condition and slave address a logic 0 (R/W=0)is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the nonvolatile memory is strobed in next, and is loaded in the address pointer. A second data byte may be strobed in following this the address pointer. In the erase/ write mode no more than two successive data bytes may be strobed into the PCD8572. The PCD8572 slave receiver will send an acknowledge bit to the master transmitter after it has received the slave address and again after it has received the word address and each data byte. After the STOP condition the erase/write cycle starts. Its duration is approximately 20ms. if only one byte is written, and 40ms. if two bytes are written.

<u>Read Mode:</u> In this mode the master reads the PCD8572 slave after setting the slave address. See figure 5. Following the write mode control bit (R/W=0) and the acknowledge bit, the word address An is written to the on-chip address pointer.

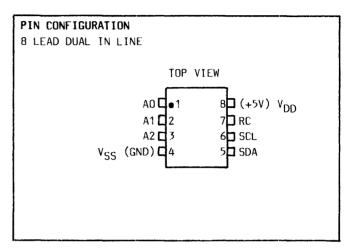

GENERAL INSTRUMENT	PCD8572


Next the START condition and slave address are repeated followed by the READ mode control bit $(R/\overline{W}=1)$. At this point the master transmitter becomes the master receiver and the PCD8572 slave receiver becomes the slave transmitter. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The PCD8572 slave transmitter will now place the data byte at address A_{n+1} on the bus, the master receiver reads and acknowledges the new byte


and the address pointer is incremented to A_{n+2} .

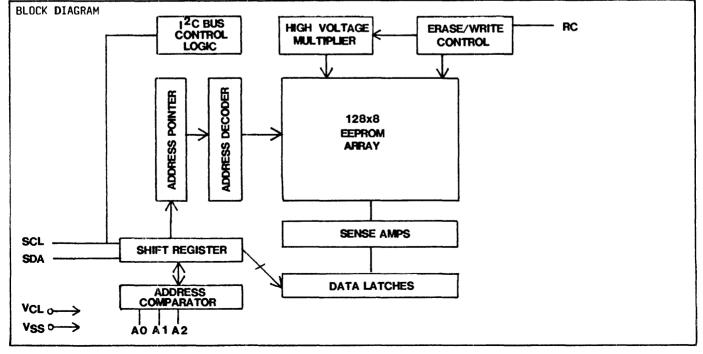
This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

An alternate READ mode may also be implemented whereby the master reads the PCD8572 slave without first writing to the (voltaile) address pointer. The first address that is read is the last one stored in the pointer. See figure 6.


1024 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES:

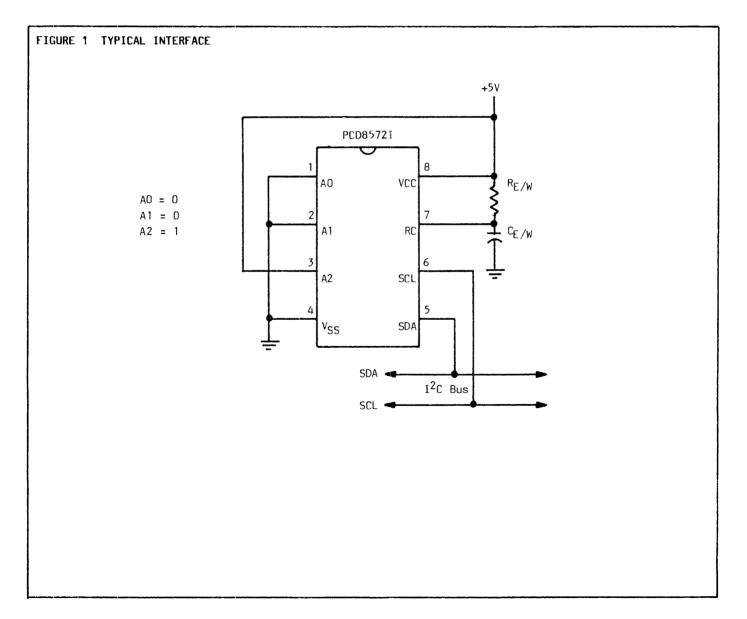
- 128 x 8 serial EEPROM
- Single +5V only operation
- Compatible with the inter-integrated-circuit ($\rm I^2C)$ bus
- Fully TTL compatible inputs and outputs
- Unlimited read accesses
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 40°C to +85°C operating ambient temperature range


DESCRIPTION

The PCD8572I is a 1K EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5 volt only operation and inter-integrated circuit (I^2C) bus compatibility. This revolutionary bus provides the facilities of a local area network within a single system or equipment. Each IC serves as both transmitter and receiver in the synchronous data transfer of up to 100K bits per second. The use of I^2C compatible devices make possible modular circuit design with up to 600 feet of separation

allowable between IC's (400 pf maximum bus capacitance).

Chip select is accomplished by means of the three address inputs AO, A1 and A2. Each of these inputs must be connected externally to either +5V or GND and each chip is then selected through software by placing its 3 bit chip select address on the serial data input line (SDA) at the appropriate time in the bus protocol. Up to eight PCD8572Is may be connected to the I²C bus.


PIN FUNCTIONS

AO, A1, A2	Chip Address Inputs
٧ _{SS}	Ground
SDA	Serial Data/Address, Input/Output
SCL.	Serial Clock Input, Erase/Write
RC	Time Constant Network Input
v _{DD}	+5V Power Supply

Figure 1 below shows the typical manner in which the PCD8572I is interfaced to the I^2C bus. For purposes of illustration chip address A2A1AO = 100 is shown. This is only one of eight possible addresses since up to eight PCD8572Is can be connected to the I^2C bus of a single system. The erase/write cycle time of this device $T_{\rm E/W}$ is determined by an external resistor and capacitor: $R_{\rm E/W}$ and $C_{\rm E/W}$.

NOTE:

When the PCD8572I is not used in an $\rm I^2C$ bus configuration, pull-up resistors for SDA and SCL are required.

CHARACTERISTICS OF THE I²C BUS

The I^2C bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pullup resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines the START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line may be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the

number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE + WRITE mode and is not limited in the READ mode. The information is transmitted bytewise and each reciever acknowledges with a nineth bit which must be provided by the user.

Within the I²C bus specifications a low speed mode (2 KHz clock rate) and a high speed mode (100 KHz clock rate) are defined. The PCD8572I works in both modes. By definition a device that gives out a message is called "transmitter", the receiving device that controls the message is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves".

<u>Acknowledge:</u> Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clockpulse in such a way that the SDA line is stable LOW during the high period of the acknowledge related clock pulse. Of course setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line HIGH to enable the master to generate the STOP condition.

Standard Conditions (unless otherwise noted)

 $V_{SS} = 0V$ (GND) $V_{DD} = +5 + 10\%$ volts Ambient Operating Temperature (T_A): -40°C to +85°C (Industrial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.

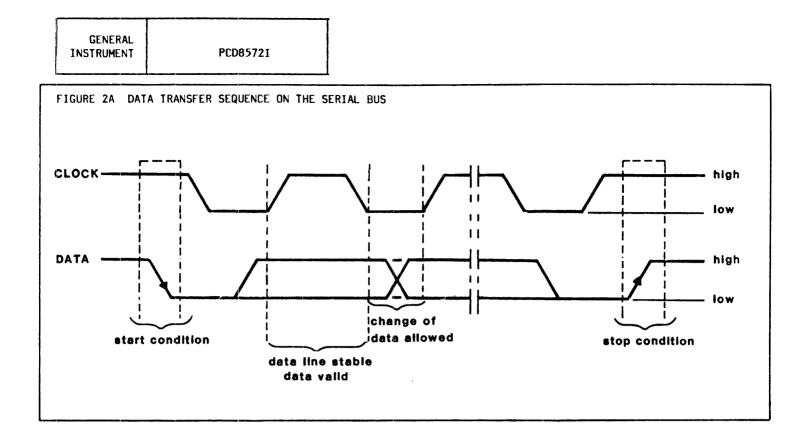
*ABSOLUTE MAXIMUM RATINGS

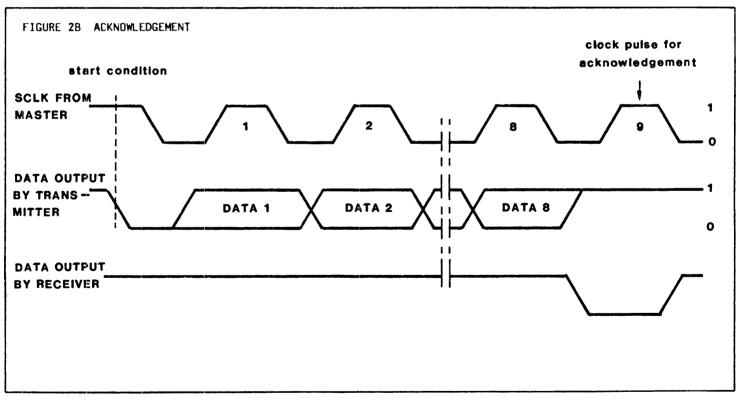
Sym	Min	Тур	Max	Units	
V	-0.3		7.0	V	
		-		v v	
-		-		v	
TA	0	-	+70	°C	
TSTG	-65	-	+150	°C	
II	-	-	100	Au	
IO	-	-	3	mA (SINK)	
-	-	-	300	°C	
	V _{DD} V _I T _A T _{STG} I _I	$ \begin{array}{cccc} V_{DD} & -0.3 \\ V_{I} & V_{SS} - 0.8 \\ T_{A} & 0 \\ \end{array} $ $ \begin{array}{cccc} T_{STG} & -65 \\ T_{I} & - \\ T_{0} & - \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Operating Supply Current						
READ Mode	I DDR	-	15	-	mA	
Operating Supply Current	1					
WRITE/ERASE Mode	IDDW	-	15	-	mA	
Operating Supply Current						
STANDBY Mode	IDDO	-	12	-	mA	
Input Leakage Current						
(AO, A1, A2, SCL Pins)	IIL	-	-	1	Αىر	
Output Leakage Current HIGH	Тон	-	-	1	Αىر	
SCL Input and SDA Input/						
Output Pins:						
High Level Input Voltage	V _{IH}	3.0	-	۷ _{DD} +0.8	v	
Low Level Input Voltage	VIL	-0.3	-	1.5	V	
Low Level Output Voltage	V _{OH}	-	-	0.4	ν	I _{OL} = 3mA
						$V_{DD} = 4.5V$
AO, A1, A2 Pins:						
High Level Input Voltage	V _{IH}	۷ _{DD} -0.5	-	۷ _{DD} +0.5	v	
Low Level Input Voltage	VIL	-0.3	-	0.5	ν	

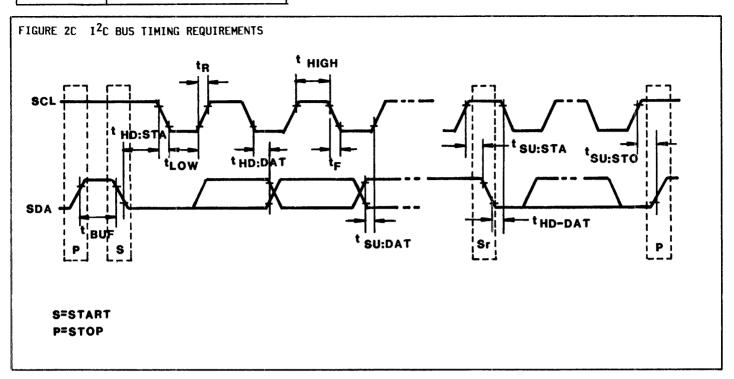
GENERAL	PCD85721
INSTRUMENT	PCD85721


AC CHARACTERISTICS

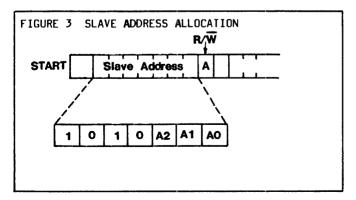

Characteristic	Sym	Min	Тур	Max	Units	Conditions
SCL Clock Frequency The LOW period of the clock The HIGH period of the clock SDA and SCL rise time SDA and SCL fall time	f _{SCL} t _{LOW} thigh t _R t _F	0 4.7 4.0 - -	- - - -	100 1 300	KHz រូរទ រូរទ ns	
<pre>START condition hold time. After this period the first clock pulse is generated. Setup time for start condition (Only relevant for a repeated start condition) Data set-up time Data hold time for I²C devices STOP condition set-up time Time the bus must be free before a new transmission can start</pre>	t _{HD} ;sta tsu;sta tsu;dat tHD;dat tsu;sto t _{BUF}	4.0 4.7 250 0 4.7 4.7	- - - -	- - - -	פע s s s s ע s	See note 2
Erase/Write Cycle Time (per word) Endurance (Number of erase/ write cycles) Data Retention Time	^T E∕W ^N E/W ^t S	20 10	30 - -	100 10,000 -	ms E/W cycles Years	C=2500pf, R=10K Per byte
Input Capacitance on SCL, SDA	CI	_	-	7	pf	
Noise Suppression Time Constant at SCL and SDA input	ΤI	0.25	0.5	1.0	aų	

NOTES:

1. All values referred to $V_{\mbox{IH}}$ and $V_{\mbox{IL}}$ levels.


2. Note that a transmitter must internally provide at least a hold time to bridge the undefined region (max. 300ns) of the falling edge of SCL.

ACKNOWLEDGEMENT

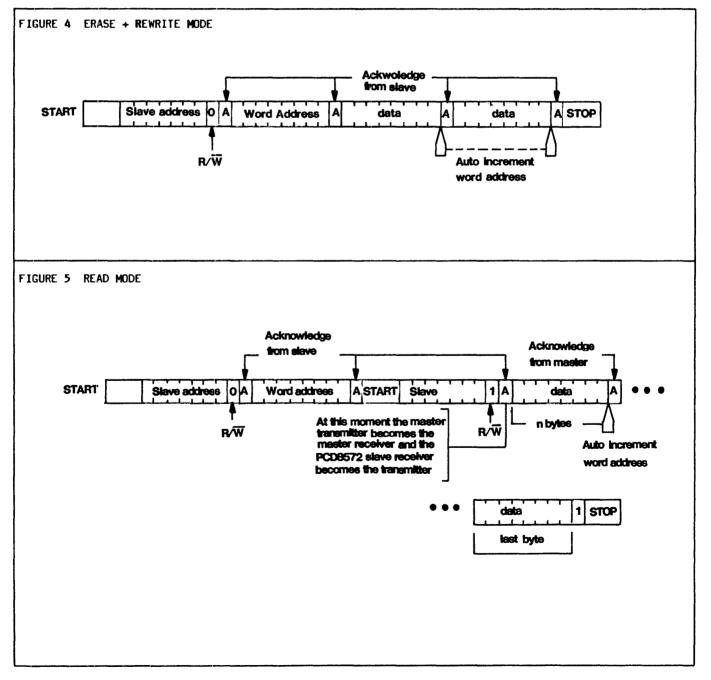

An extra clock pulse is generated during which the receiver pulls the data line LOW.

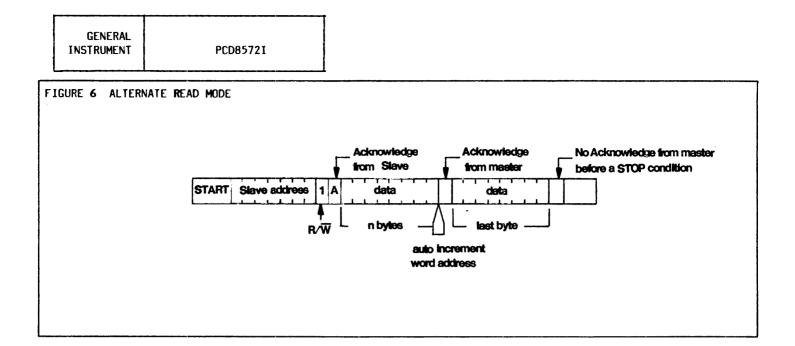
1²C BUS PROTOCOL

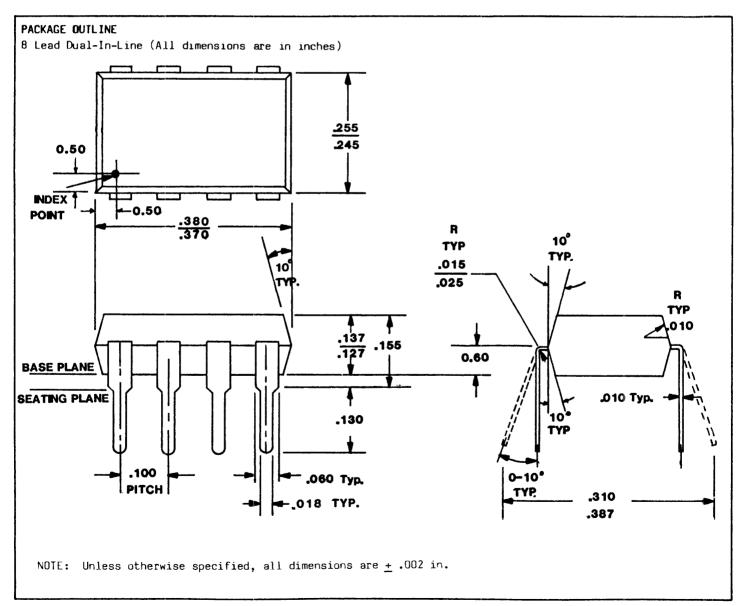
A thorough description of the inter-IC bus specifications appears in the Philips document number TVE 81107 which is available upon request from General Instrument. The following is a condensed description of each mode of operation.

<u>Chip Address (Slave Address) Allocation</u>: The three chip address inputs of each PCD8572 (A2, A1, A0) must be externally connected to either +5V (V_{DD}) of ground (V_{SS}) thereby assigning to each PCD8572I a unique three-bit chip address. Up to eight PCD8572Is may be connected to the I²C bus. Chip selection is then accomplished through software by setting the least significant three bits of the slave address to the corresponding hardwired logic levels of the selected PCD8572I. The correct bus protocol is shown in figure 3.

Erase/Write Mode: In this mode the master transmitter transmits to the PCD8572I slave receiver. Bus protocol is shown in figure 4. Following the START condition and slave address a logic O (R/W=O) is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the nonvolatile memory is strobed in next, and is loaded in the address pointer. A second data byte may be strobed in following this the address pointer. In the erase/ write mode no more than two successive data bytes may be strobed into the PCD8572I. The PCD8572I slave receiver will send an acknowledge bit to the master transmitter after it has received the slave address and again after it has received the word address and each data byte. After the STOP condition the erase/write cycle starts. Its duration is approximately 20ms. if only one byte is written, and 40ms. if two bytes are written.

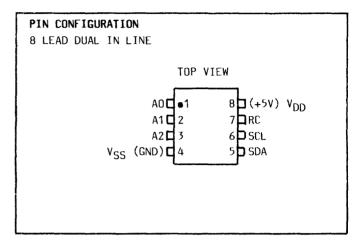

<u>Read Mode:</u> In this mode the master reads the PCD8572I slave after setting the slave address. See figure 5. Following the write mode control bit (R/W=0) and the acknowledge bit, the word address An is written to the on-chip address pointer.


Next the START condition and slave address are repeated followed by the READ mode control bit (R/W=1). At this point the master transmitter becomes the master receiver and the PCD8572I slave receiver becomes the slave transmitter. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The PCD8572I slave transmitter will now place the data byte at address A_{n+1} on the bus, the master receiver reads and acknowledges the new byte


and the address pointer is incremented to A_{n+2} .

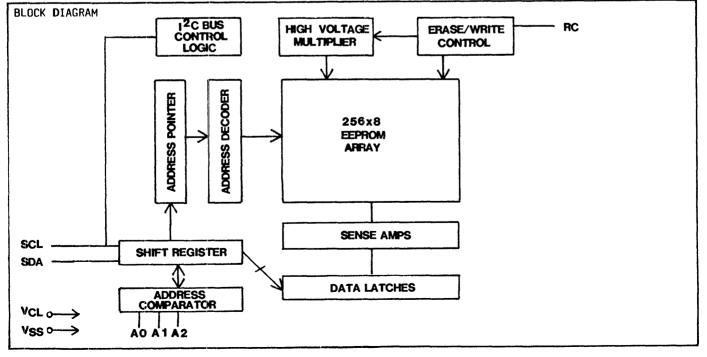
This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

An alternate READ mode may also be implemented whereby the master reads the PCD8572I slave without first writing to the (voltaile) address pointer. The first address that is read is the last one stored in the pointer. See figure 6.


1024 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES:

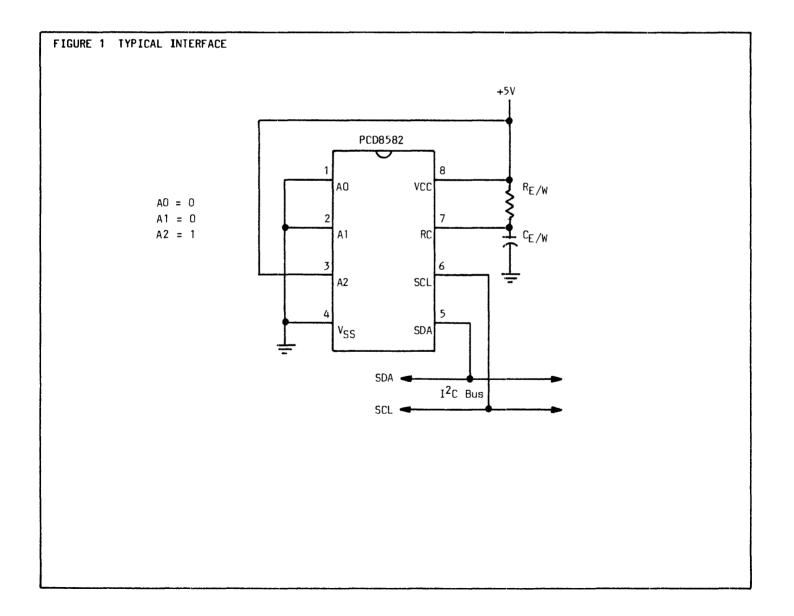
- 256 x 8 serial EEPROM
- Single +5V only operation
- Compatible with the inter-integrated-circuit ($\rm I^2C)$ bus
- Fully TTL compatible inputs and outputs
- Unlimited read accesses
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 0°C to +70°C operating ambient temperature range


DESCRIPTION

The PCD8582 is a 2K EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5 volt only operation and inter-integrated circuit ($I^{2}C$) bus compatibility. This revolutionary bus provides the facilities of a local area network within a single system or equipment. Each IC serves as both transmitter and receiver in the synchronous data transfer of up to 100K bits per second. The use of $I^{2}C$ compatible devices make possible modular circuit design with up to 600 feet of separation

allowable between IC's (400 pf maximum bus capacitance).

Chip select is accomplished by means of the three address inputs AO, A1 and A2. Each of these inputs must be connected externally to either +5V or GND and each chip is then selected through software by placing its 3 bit chip select address on the serial data input line (SDA) at the appropriate time in the bus protocol. Up to eight PCD8582s may be connected to the I²C bus.


PIN FUNCTIONS

AO, A1, A2	Chip Address Inputs
٧ _{SS}	Ground
SDA	Serial Data/Address, Input/Output
SCL	Serial Clock Input, Erase/Write
RC	Time Constant Network Input
v _{DD}	+5V Power Supply

Figure 1 below shows the typical manner in which the PCD8582 is interfaced to the I^2C bus. For purposes of illustration chip address A2A1AO = 100 is shown. This is only one of eight possible addresses since up to eight PCD8582s can be connected to the I^2C bus of a single system. The erase/write cycle time of this device $T_{\rm E/W}$ is determined by an external resistor and capacitor: $R_{\rm E/W}$ and $C_{\rm E/W}.$

NOTE:

When the PCD8582 is not used in an $\rm I^2C$ bus configuration, pull-up resistors for SDA and SCL are required.

PCD8582

CHARACTERISTICS OF THE 12C BUS

The I^2C bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pullup resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines the START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line may be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE + WRITE mode and is not limited in the READ mode. The information is transmitted bytewise and each reciever acknowledges with a nineth bit which must be provided by the user.

Within the I^2C bus specifications a low speed mode (2 KHz clock rate) and a high speed mode (100 KHz clock rate) are defined. The PCD8582 works in both modes. By definition a device that gives out a message is called "transmitter", the receiving device that controls the message is called "receiver". The device that controls the message is called "master". The devices that ате controlled by the master are called "slaves".

Acknowledge: Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each Also a master receiver must generate an byte. acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the high period of the acknowledge related clock pulse. Of course setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line HIGH to enable the master to generate the STOP condition.

Standard Conditions (unless otherwise noted)

 $V_{SS} = OV (GND)$ $V_{DD} = +5 \pm 10\%$ volts Ambient Operating Temperature (T_A): $O^{\circ}C$ to $+70^{\circ}C$ (Commercial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

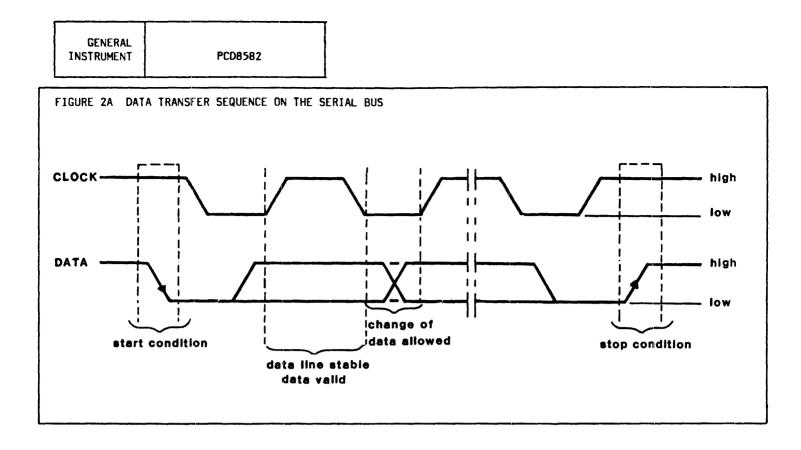
General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.

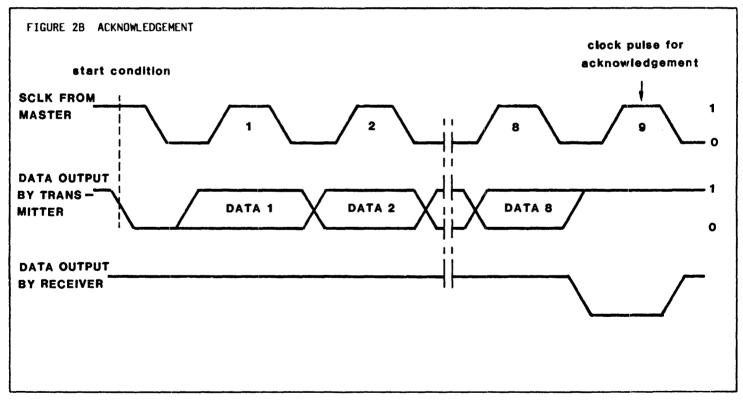
*ABSOLUTE MAXIMUM RATINGS

Characteristic	Sym	Min	Тур	Max	Units
Power Supply Voltage Voltage On Any Input Pin	v _{DD} v _I	-0.3 [•] V _{SS} -0.8	-	7.0 V _{DD} +0.8	V V
Ambient Operating Temperature Storage Temperature (Unpowered	TA	0	-	+70	°C
and without data retention)	^T STG	- 65	-	+150	°C
Current Into Any Input Pin	ΙI	-	-	100	Ац
Output Current Soldering Temperature of Leads	Ι _Ο	-	-	3	mA (SINK)
(10 seconds)	_	-	-	300	°C

DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Operating Supply Current						
READ Mode	IDDR	-	15	-	mA	
Operating Supply Current						
WRITE/ERASE Mode	IDDW	-	15	-	mA	
Operating Supply Current	1					
STANDBY Mode	I _{DDO}	-	12	-	mA	
Input Leakage Current						
(AO, A1, A2, SCL Pins)	IIL	-	-	1	Ац	
Output Leakage Current HIGH	I _{OH}	-	-	1	Aىر	
SCL Input and SDA Input/						
Output Pins:						
High Level Input Voltage	V _{IH}	3.0	-	V _{DD} +0.8	V	
Low Level Input Voltage	VIL	-0.3	-	1.5	V	
Low Level Output Voltage	VOL	-	-	0.4	V	I _{OL} = 3mA
	UL UL					$V_{DD} = 4.5V$
AO, A1, A2 Pins:						
High Level Input Voltage	V _{IH}	V _{DD} -0.5	-	V _{DD} +0.5	v	
Low Level Input Voltage	v _{IL}	-0.3	-	0.5	v	

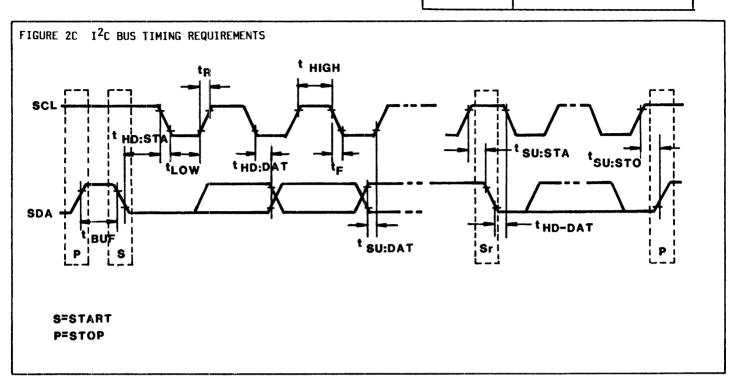



AC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
SCL Clock Frequency The LOW period of the clock The HIGH period of the clock SDA and SCL rise time SDA and SCL fall time	f _{SCL} t _{LOW} thigh t _R t _F	0 4.7 4.0 - -		100 - - 1 300	KHz باد باد ns	
<pre>START condition hold time. After this period the first clock pulse is generated. Setup time for start condition (Only relevant for a repeated start condition) Data set-up time Data hold time for I²C devices STOP condition set-up time Time the bus must be free before a new transmission can start</pre>	t _{HD} ;sta tsu;sta tsu;dat t _{HD} ;dat tsu;sto t _{BUF}	4.0 4.7 250 0 4.7 4.7	-		פע su su su su su	See note 2
Erase/Write Cycle Time (per word) Endurance (Number of erase/ write cycles) Data Retention Time	™E/W NE/W ^t S	20 - 10	30 - -	100 10,000 -	ms E/W cycles Years	C=2500pf, R=10K Per byte
Input Capacitance on SCL, SDA	CI	-	-	7	pf	
Noise Suppression Time Constant at SCL and SDA input	ΤI	0.25	0.5	1.0	נע	

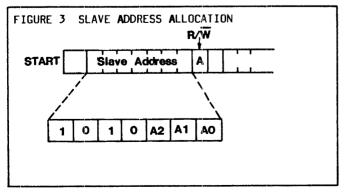
NOTES:

1. All values referred to $V_{\rm IH}$ and $V_{\rm IL}$ levels. 2. Note that a transmitter must internally provide at least a hold time to bridge the undefined region (max. 300ns) of the falling edge of SCL.



ACKNOWLEDGEMENT

An extra clock pulse is generated during which the receiver pulls the data line LOW.


PCD8582

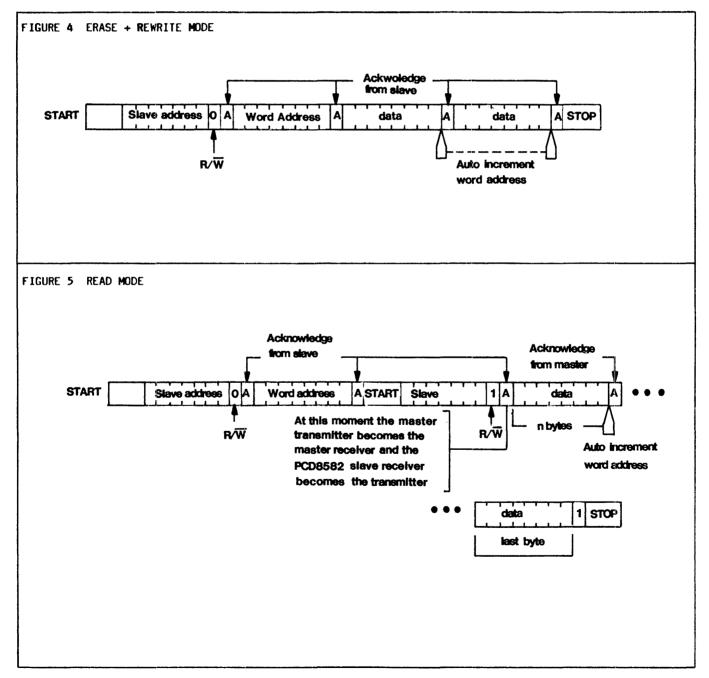
1²C BUS PROTOCOL

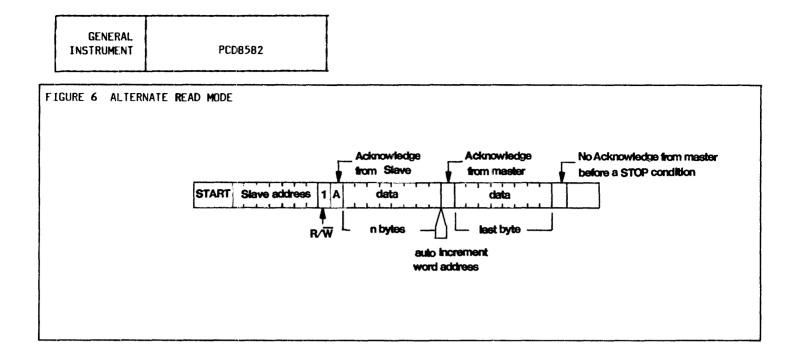
A thorough description of the inter-IC bus specifications appears in the Philips document number TVE 81107 which is available upon request from General Instrument. The following is a condensed description of each mode of operation.

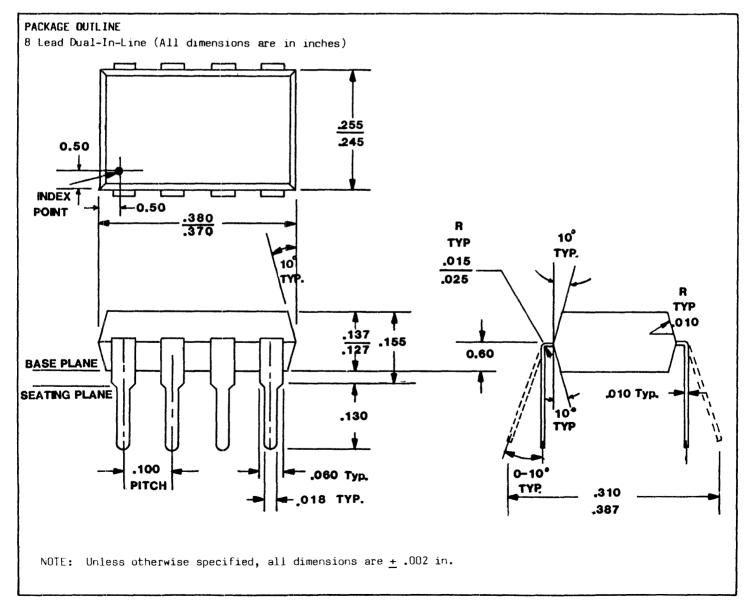
<u>Chip Address (Slave Address) Allocation:</u> The three chip address inputs of each PCD8582 (A2, A1, A0) must be externally connected to either +5V (V_{DD}) or ground (V_{SS}) thereby assigning to each PCD8582 a unique three-bit chip address. Up to eight PCD8582s may be connected to the I^2C bus. Chip selection is then accomplished through software by setting the least significant three bits of the slave address to the corresponding hardwired logic levels of the selected PCD8582. The correct bus protocol is shown in figure 3.

Erase/Write Mode: In this mode the master transmitter transmits to the PCD8582 slave receiver. Bus protocol is shown in figure 4. Following the START condition and slave address a logic O(R/W=0)is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the nonvolatile memory is strobed in next, and is loaded in the address pointer. A second data byte may be strobed in following this the address pointer. In the erase/ write mode no more than two successive data bytes may be strobed into the PCD8582. The PCD8582 slave receiver will send an acknowledge bit to the master transmitter after it has received the slave address and again after it has received the word address and each data byte. After the STOP condition the erase/write cycle starts. Its duration is approximately 20ms. if only one byte is written, and 40ms, if two bytes are written.

<u>Read Mode:</u> In this mode the master reads the PCD8582 slave after setting the slave address. See figure 5. Following the write mode control bit (R/W=0) and the acknowledge bit, the word address An is written to the on-chip address pointer.

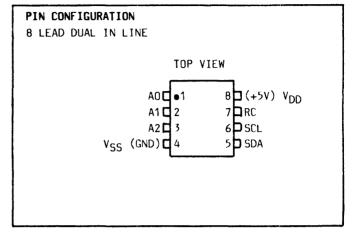

GENERAL	
INSTRUMENT	PCD8582
1	


Next the START condition and slave address are repeated followed by the READ mode control bit (R/W=1). At this point the master transmitter becomes the master receiver and the PCD8582 slave receiver becomes the slave transmitter. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The PCD8582 slave transmitter will now place the data byte at address A_{n+1} on the bus, the master receiver reads and acknowledges the new byte


and the address pointer is incremented to ${}^{A}_{n+2}\boldsymbol{\cdot}$

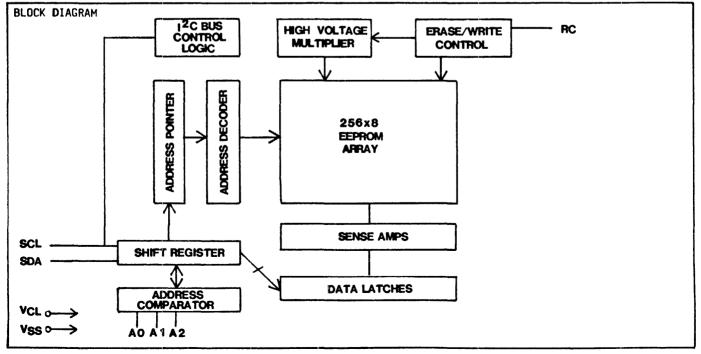
This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

An alternate READ mode may also be implemented whereby the master reads the PCD8582 slave without first writing to the (voltaile) address pointer. The first address that is read is the last one stored in the pointer. See figure 6.


1024 BIT SERIAL ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM

FEATURES:

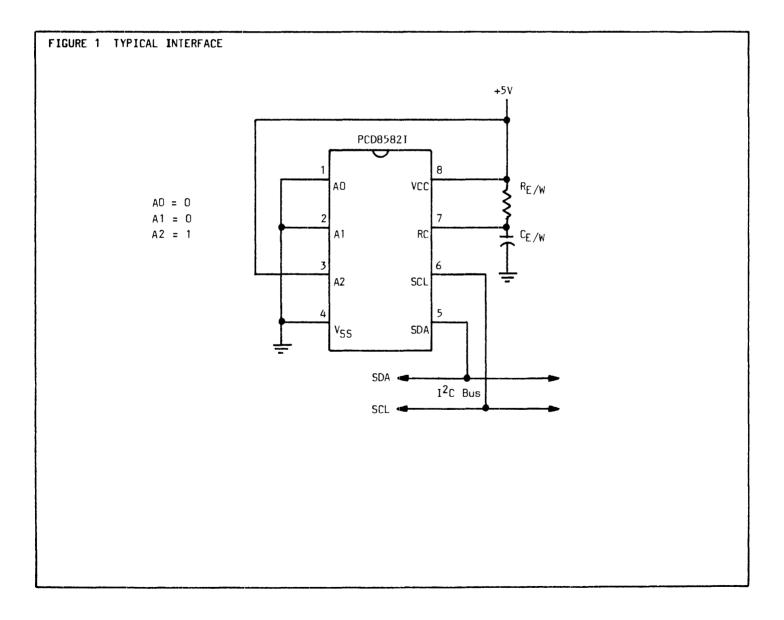
- 256 x 8 serial EEPROM
- Single +5V only operation
- Compatible with the inter-integrated-circuit ($\rm I^2C)$ bus
- Fully TTL compatible inputs and outputs
- Unlimited read accesses
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- -40°C to +85°C operating ambient temperature range


DESCRIPTION

The PCD8582I is a 2K EEPROM manufactured in General Instrument's highly reliable SNOS technology. The key features of this device are its +5 volt only operation and inter-integrated circuit (I^2C) bus compatibility. This revolutionary bus provides the facilities of a local area network within a single system or equipment. Each IC serves as both transmitter and receiver in the synchronous data transfer of up to 100K bits per second. The use of I^2C compatible devices make possible modular circuit design with up to 600 feet of separation

allowable between IC's (400 pf maximum bus capacitance).

Chip select is accomplished by means of the three address inputs AO, A1 and A2. Each of these inputs must be connected externally to either +5V or GND and each chip is then selected through software by placing its 3 bit chip select address on the serial data input line (SDA) at the appropriate time in the bus protocol. Up to eight PCD8582Is may be connected to the I²C bus.


PIN FUNCTIONS

AO, A1, A2	Chip Address Inputs
V _{SS}	Ground
SDA	Serial Data/Address, Input/Output
SCL	Serial Clock Input, Erase/Write
RC	Time Constant Network Input
V _{DD}	+5V Power Supply

Figure 1 below shows the typical manner in which the PCD8582I is interfaced to the I²C bus. For purposes of illustration chip address A2A1AO = 100 is shown. This is only one of eight possible addresses since up to eight PCD8582Is can be connected to the I²C bus of a single system. The erase/write cycle time of this device $T_{E/W}$ is determined by an external resistor and capacitor: $R_{E/W}$ and $C_{E/W}$.

NOTE:

When the PCD8582I is not used in an $\rm I^2C$ bus configuration, pull-up resistors for SDA and SCL are required.

GENERAL INSTRUMENT

PCD85821

CHARACTERISTICS OF THE 1²C BUS

The I^2C bus is intended for communication between different ICs. This serial bus consists of two bidirectional lines: one for data signals (SDA) and one for clock signals (SCL). Both the SDA and the SCL lines must be connected to a positive supply voltage via a pullup resistor.

The following protocol has been defined:

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines the START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock is HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line may be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a start condition and terminated with a stop condition; the

number of the data bytes, transferred between the start and stop conditions is limited to two bytes in the ERASE + WRITE mode and is not limited in the READ mode. The information is transmitted bytewise and each reciever acknowledges with a nineth bit which must be provided by the user.

Within the I²C bus specifications a low speed mode (2 KHz clock rate) and a high speed mode (100 KHz clock rate) are defined. The PCD8582I works in both modes. By definition a device that gives out a message is called "transmitter", the receiving device that controls the message is called "receiver". The device that controls the message is called "master". The devices that are controlled by the master are called "slaves".

<u>Acknowledge:</u> Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse.

A slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.

The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the high period of the acknowledge related clock pulse. Of course setup and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this case the transmitter must leave the data line HIGH to enable the master to generate the STOP condition.

ELECTRICAL CHARACTERISTICS

Standard Conditions (unless otherwise noted)

 $V_{SS} = 0V (GND)$ $V_{DD} = +5 \pm 10\%$ volts Ambient Operating Temperature (T_A): -40°C to +85°C (Industrial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software supplied to the customer.

#ABSOLUTE MAXIMUM RATINGS

Characteristic	Sym	Min	Тур	Max	Units	
Power Supply Voltage	v _{DD}	-0.3	-	7.0	V	
Voltage On Any Input Pin	vI	V55-0.8	-	V _{DD} +0.8	v	
Ambient Operating Temperature	TA	0	_	+70	°C	
Storage Temperature (Unpowered						
and without data retention)	ISLC	-65	-	+150	°C	
Current Into Any Input Pin	II	-	-	100	Αىر	
Output Current	Ι _Ο	-	-	3	mA (SINK)	
Soldering Temperature of Leads	0				,	
(10 seconds)	-	-	-	300	°C	

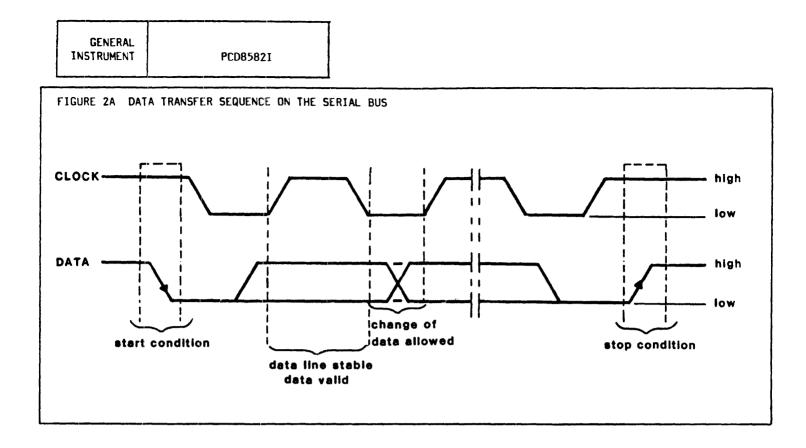
DC CHARACTERISTICS

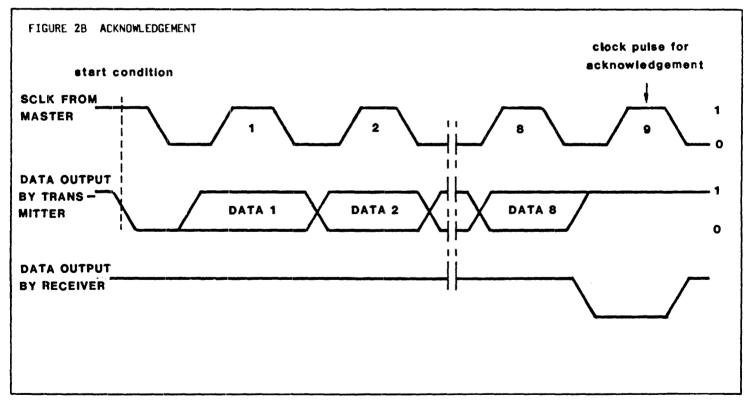
Characteristic	Sym	Min	Тур	Max	Units	Conditions
Operating Supply Current						
READ Mode	IDDR	-	15		mA	
Operating Supply Current						
WRITE/ERASE Mode	IDDW	-	15	-	mA	
Operating Supply Current						
STANDBY Mode	I _{DDO}	-	12	-	mA	
Input Leakage Current						
(AO, A1, A2, SCL Pins)	IIL	-	-	1	Aц	
Output Leakage Current HIGH	I _{DH}	-	-	1	Aц	
SCL Input and SDA Input/						
Output Pins:						
High Level Input Voltage	V _{IH}	3.0	-	V _{DD} +0.8	V	
Low Level Input Voltage	VIL	-0.3	-	1.5	v	
Low Level Output Voltage	VOL	-	-	0.4	V	I _{OL} = 3mA
						$V_{DD} = 4.5V$
AO, A1, A2 Pins:						
High Level Input Voltage	V _{IH}	V _{DD} -0.5	-	V _{DD} +0.5	v	
Low Level Input Voltage	v _{IL}	-0.3	-	0.5	v	

1	
GENERAL	
INSTRUMENT	PCD85

5821

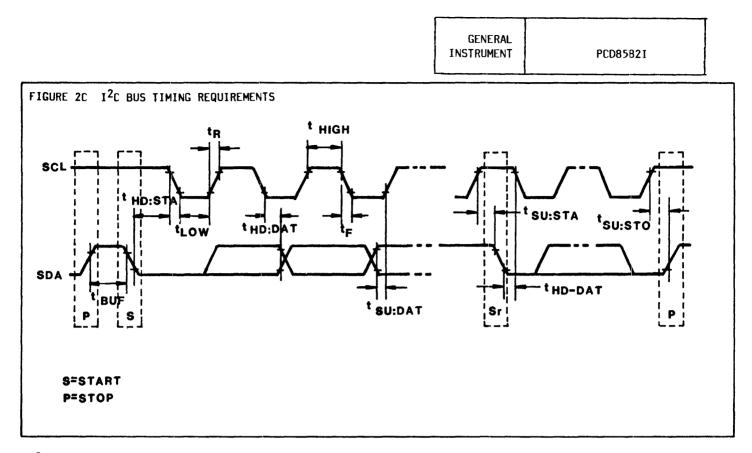
ELECTRICAL CHARACTERISTICS


AC CHARACTERISTICS

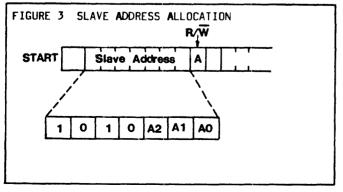

Characteristic	Sym	Min	Тур	Max	Units	Conditions
SCL Clock Frequency The LOW period of the clock The HIGH period of the clock SDA and SCL rise time SDA and SCL fall time	f _{SCL} t _{LOW} thigh t _R t _F	0 4.7 4.0 -	- - - -	100 - - 1 300	KHz پاد یر su ns	
<pre>START condition hold time. After this period the first clock pulse is generated. Setup time for start condition (Only relevant for a repeated start condition) Data set-up time Data hold time for I²C devices STOP condition set-up time Time the bus must be free before a new transmission can start</pre>	t _{HD} ;sta tsu;sta tsu;dat t _{HD} ;dat t _{SU} ;sto t _{BUF}	4.0 4.7 250 0 4.7 4.7	- - - -	- - - -	פע פע פע פע פע	See note 2
Erase/Write Cycle Time (per word) Endurance (Number of erase/ write cycles) Data Retention Time	T _{E/W} NE/W t _S	20 - 10	30 - -	100 10,000 -	ms E/W cycles Years	C=2500pf, R=10K Per byte
Input Capacitance on SCL, SDA	CI	-	-	7	pf	
Noise Suppression Time Constant at SCL and SDA input	ΤI	0.25	0.5	1.0	sىر	

NOTES:

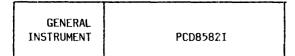
1. All values referred to $V_{\rm I\,H}$ and $V_{\rm I\,L}$ levels.


^{2.} Note that a transmitter must internally provide at least a hold time to bridge the undefined region (max. 300ns) of the falling edge of SCL.

ACKNOWLEDGEMENT


An extra clock pulse is generated during which the receiver pulls the data line LOW.

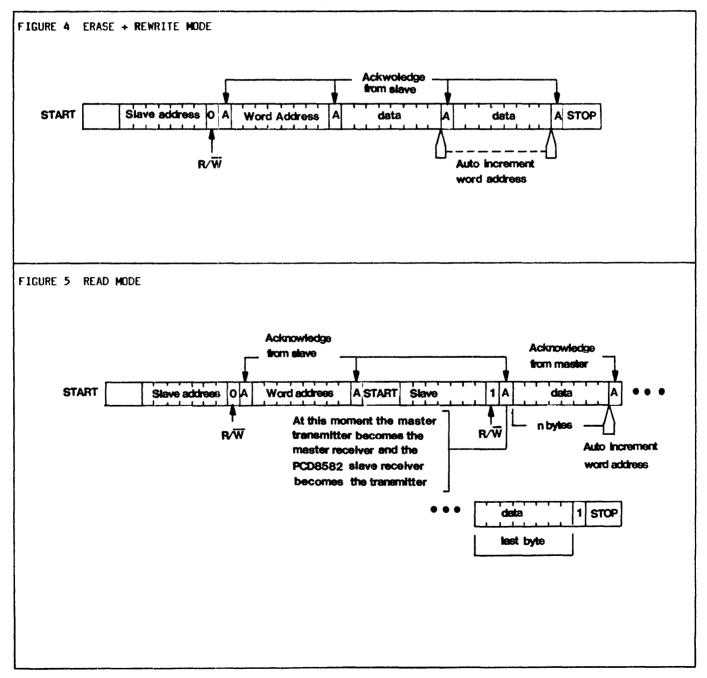
1²C BUS PROTOCOL

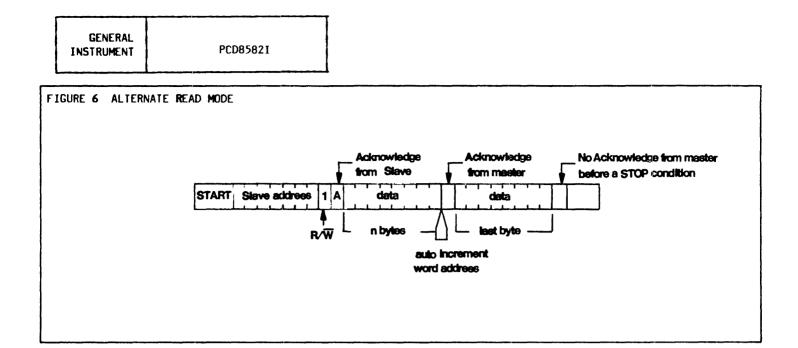

A thorough description of the inter-IC bus specifications appears in the Philips document number TVE 81107 which is available upon request from General Instrument. The following is a condensed description of each mode of operation.

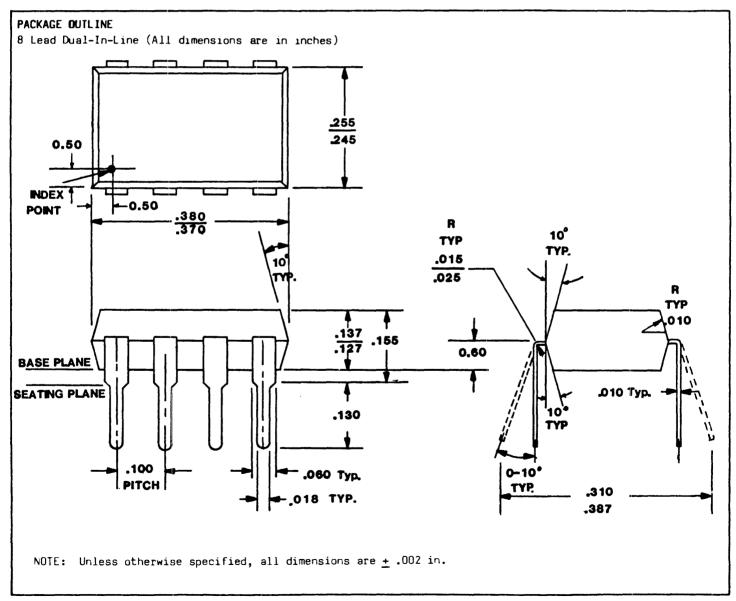
<u>Chip Address (Slave Address) Allocation:</u> The three chip address inputs of each PCD8582 (A2, A1, A0) must be externally connected to either +5V (V_{DD}) or ground (V_{SS}) thereby assigning to each PCD8582I a unique three-bit chip address. Up to eight PCD8582Is may be connected to the I²C bus. Chip selection is then accomplished through software by setting the least significant three bits of the slave address to the corresponding hardwired logic levels of the selected PCD8582I. The correct bus protocol is shown in figure 3.

Erase/Write Mode: In this mode the master transmitter transmits to the PCD85821 slave receiver. Bus protocol is shown in figure 4. Following the START condition and slave address a logic O(R/W=0)is placed on the bus and indicates to the addressed device that word address An will follow and is to be written to the on-chip address pointer. The data word to be written to the nonvolatile memory is strobed in next, and is loaded in the address A second data byte may be strobed in pointer. following this the address pointer. In the erase/ write mode no more than two successive data bytes may be strobed into the PCD8582I. The PCD85821 slave receiver will send an acknowledge bit to the master transmitter after it has received the slave address and again after it has received the word address and each data byte. After the STOP condition the erase/write cycle starts. Its duration is approximately 20ms. if only one byte is written, and 40ms, if two bytes are written.

<u>Read Mode:</u> In this mode the master reads the PCD8582I slave after setting the slave address. See figure 5. Following the write mode control bit (R/W=0) and the acknowledge bit, the word address An is written to the on-chip address pointer.

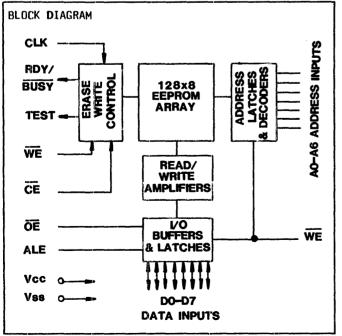


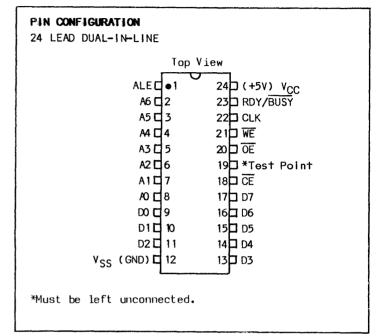

Next the START condition and slave address are repeated followed by the READ mode control bit (R/W=1). At this point the master transmitter becomes the master receiver and the PCD8582I slave receiver becomes the slave transmitter. The data byte which was addressed will be transmitted and the master receiver will send an acknowledge bit to the slave transmitter. The address pointer is only incremented on reception of an acknowledge bit. The PCD8582I slave transmitter will now place the data byte at address A_{n+1} on the bus, the master receiver reads and acknowledges the new byte


and the address pointer is incremented to $\mathsf{A}_{n+2}.$

This cycle of reading consecutive addresses will continue until the master receiver sends a STOP condition to the slave transmitter.

An alternate READ mode may also be implemented whereby the master reads the PCD8582I slave without first writing to the (voltaile) address pointer. The first address that is read is the last one stored in the pointer. See figure 6.


WORD ALTERABLE 1024 BIT ELECTRICALLY ERASABLE AND PROGRAMABLE ROM


FEATURES

- 1024 bits, organized 128 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Self-timing
- RC controlled write timing
- RDY/BUSY signal
- Address and data buses may be used separately or multiplexed
- $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs to avoid bus contention
- Word Alterable
- Read Access time of less than 300ns
- On-chip data protection
- Unlimited read accesses
- Fully ITL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pin out
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5901 is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5901 can be modified using simple TIL level signals and a single +5V power supply. Writing data into the ER5901 is analogous to writing data in a static

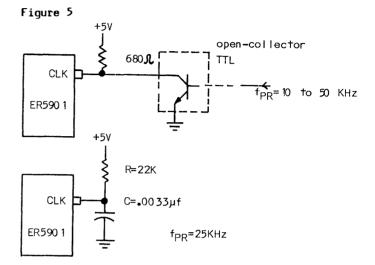
RAM. Since the address and data are internally latched and the RDY/BUSY signal is available, the ER5901 frees the system for other tasks during the programming cycle. The READ/write logic is designed such that bus contention will be minimized by use of \overline{OE} and \overline{CE} inputs.

TRUTH TABLE

Mul	Multiplexed Mode: Address & Data Tied To Data Bus ³							
ĈĒ	ŌĒ	WE	ALE ^{1,2}	RDY/BUSY	MODE	I/0	POWER	
Н	Х	X	Х	Н	STANDBY	High Z	Standby	
L	t.	н	<u></u>	н	READ	D _{OUT}	ACTIVE	
L	х	٦r	<u>~</u>	L	PROGRAM	D _{IN}	ACTIVE	
L	Н	н	Х	Н	READ/Write	High Z	ACTIVE	
					inhibit			

1. In non-multiplexed mode, connect ALE and WE together.

- 2. In multiplexed mode, address inputs are latched on the falling edge, and data inputs are latched on the rising edge.
- 3. In non-multiplexed mode, address and data bus are separate.


Device Operation

ADDRESSES:

The address inputs select one of the EEPROM 8-bit words. The address latch enable (ALE) is provided so the memory may be used with a multiplexed address and data bus. When this feature is not required, the address bus and data bus are separate and ALE may be tied to $\overline{\text{WE}}$.

CHIP ENABLE (CE):

The chip enable terminal affects the data-in/dataout and write enable (\overline{WE}) terminals. When chip enable is high, the I/O terminals are in the floating or high impedance state.

PIN FUNCTIONS

Symbol	Function	Comments
ALE	Address Latch Enable	Address inputs latched on negative edge. May be tied to $\overline{\text{WE}}$ when separate address and data lines are used.
A 0- A6	7 bit address	
DO-D7	8 bit Data 1/0	
v _{SS}	Chip Ground Connection	
CE	Chip Enable Input	Used for chip selection.
ŌĒ	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprograming cycle; input data latched on a positive edge.
CLK	Timing Input	Defines clock frequency for reprograming. May be RC or external clock.
RDY/BUSY	Status Output	Low when chip is in reprograming mode and cannot be accessed. High when in read mode.
V _{CC}	+5 Volt power connection	

ER5901

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to +150°C
Soldering temperature of leads
(10 seconds)+300°C

Standard Conditions (unless other noted) $V_{SS} = GND$ $V_{CC} = +5V \pm 10\%$ Operating Temperature Range (T_A): 0°C to +70°C (Commercial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

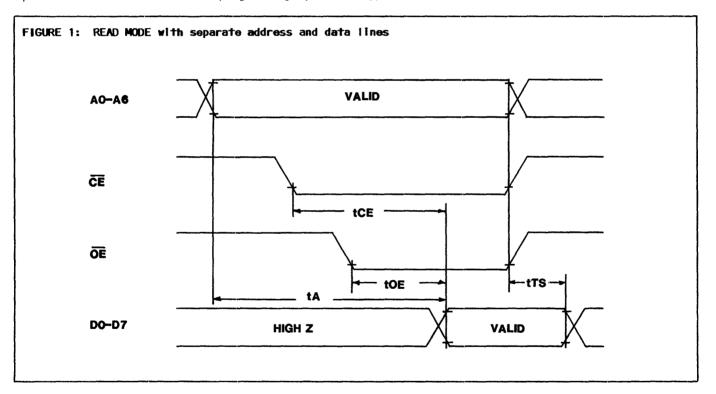
General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software

DC CHARACTERISTICS

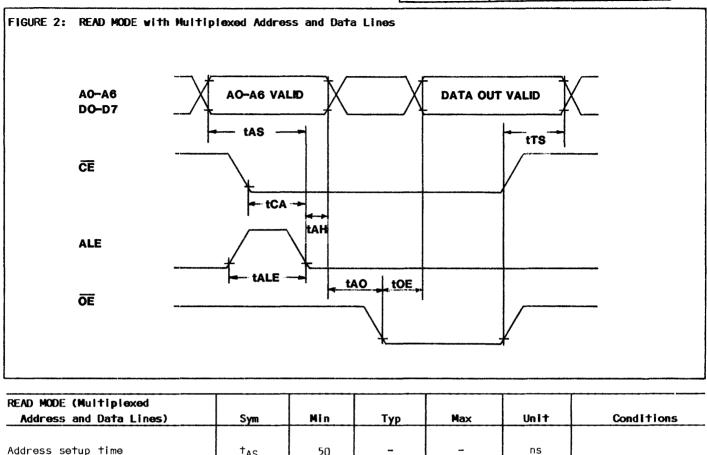
Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	۷ _{IH}	2.0	-	V _{CC} +1.0	v	
Low Level Input Voltage	V _{IL}	-0.5	-	+0.8	v	
CLK High Level Input Voltage	VIHT	3.5		V _{CC} +1.0	v	
CLK Low Level Input Voltage	VILT	-0.5		+0.8	v	
High Level Output Voltage	VOH	2.4	-	۷ _{CC}	v	Aبر 1 _{DH} = -200 A
Low Level Output Voltage	VOL	-	~	0.4	v	$I_{0L} = 1.6 \text{ mA}$
Input Leakage Current	I	-		<u>+</u> 10	Αىز	$V_{IN} = GND$ to V_{CC}
Output Leakage Current	IOL			<u>+</u> 10	Aپر	$V_{OUT} = GND$ to V_{CC}
POWER SUPPLY REQUIREMENTS V _{CC} Supply:						
Chip Selected	ι _{cc}	-	60	80	mA	V _{CC} = +5.5V
Chip Deselected (Standby Mode)	I _{CC}	-	50	60	mA	$V_{\rm PP} = +5.5V$
Power Dissipation:	-11					
Chip Selected	Р _D	~	330	440	mW	V _{CC} = +5.5V
Chip Deselected (Standby Mode)	PD	-	275	330	mW	$V_{CC} = +5.5V$

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance	CI		-	6	рF	V _{IN} = OV
Output Capacitance	c ₀	-	~	10	pF	V _{IN} = OV V _{OUT} = OV


GENERAL	
INSTRUMENT	ER5901

MEMORY CHARACTERISTICS

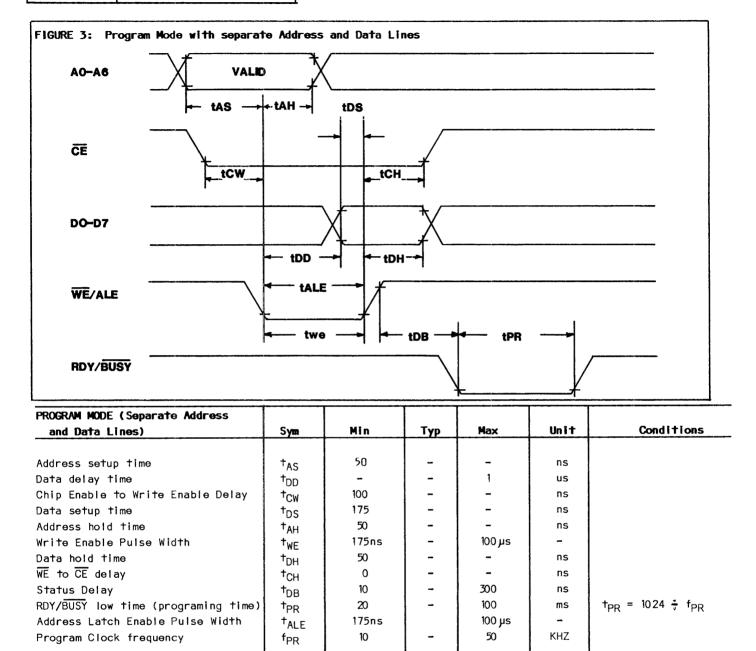

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Erased State	v _E	-	^v iн, ^v он	-	v	
Written State	vw	-	V _{IH} ,V _{OL}	-	v	
Data Retention Time (powered or unpowered)	+s	10	_		years	
Number of reprograming cycles per byte	Np	10 ⁴	-		-	See note below
Number of Read Access between refresh	N _{RA}		Unli	mited		

NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

READ MODE (Separate Address and Data Lines)	Sym	Min	Тур	Max	Unit	Conditions
Access time - Address to output delay	+ _A	-	-	300	ns	Load = 1TTL gate + $C_L = 100 \text{ pF}$ $\overline{CE} = \overline{OE} = V_{1L}$
CE to output delay OE to output delay Address, CE or OE to output tri-state	†се †ое † _{ТS}	- 10 10	- - -	300 175 150	ns ns ns	$\frac{\overline{OE}}{\overline{CE}} = V_{1L}$

Address and Vata Lines)	ут		Тур	Max		Conditions
Address setup time Chip Enable to Address	†AS †CA	50 100			ns ns	
Latch Enable ALE Pulse Width		175	_	_	ns	
Address Hold time	[†] ALE [†] AH	50	-	-	ns	
Address float to Output Enable OE to output delay	† _{AO} † _{OE}	20 10		- 175	ns ns	$\overline{CE} = V_{1L}$
Address, CE or OE to output tri-state	+ _{TS}	10	-	150	ns	

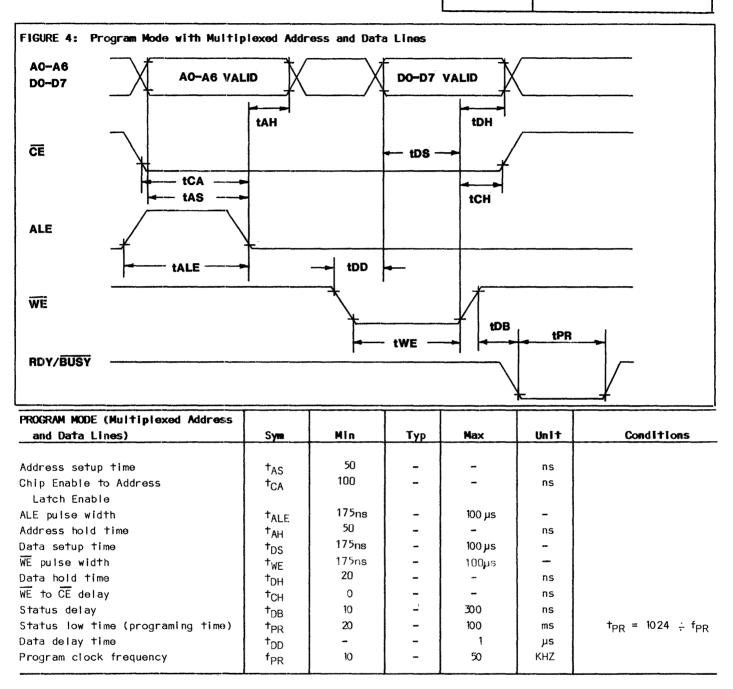

WRITE ENABLE (WE):

WRITE CYCLE:

By virtue of the on-chip reprogramming control and timing of the ER5901, a minimum amount of servicing is required from the host microprocessor.

The programming/writing of the ER5901 can be done in the multiplexed address and data mode or separate address and data mode. In the multiplexed mode, the ALE line is pulsed high while the address to be altered is presented to lines AO to A6 of the selected device (see figure 4). The falling edge of ALE latches the address into the ER5901, and the information on the bus lines is then changed to the data to be written into the EEPROM. WE is pulsed low and the data is latched on its rising edge, after a delay t_{DB} the RDY/BUSY output will go low for the the duration of the programming cycle.

In the separate data and address mode, the ALE may be tied to $\overline{\text{WE}}$ (see figure 3). With a stable address and data presented to the respective inputs of a selected device, the $\overline{\text{WE}}$ /ALE line is pulsed low to initiate a program cycle. The falling edge of $\overline{\text{WE}}$ /ALE latches the address inputs and the rising edge latches the data inputs. After a delay t_{DB}, the RDY/BUSY output goes low and remains



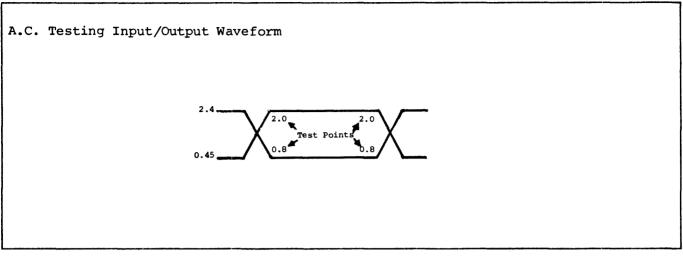
low for the duration of the programming cycle. All inputs to the ER5901 are disabled during a programming cycle.

OUTPUT ENABLE (OE): READ

Reading can be accomplished in the multiplexed or separate address and data bus mode as well. When reading in the multiplexed mode, the ALE line is pulsed high while a valid address is presented to the AO to A6 inputs. The address is latched into the ER5901 on the falling edge of ALE. In order to avoid bus contention these lines should be tristated prior to pulsing $\overline{\text{OE}}$ low. After a delay, t_{OE} , the selected byte will appear on lines DO to D7 until either $\overline{\text{OE}}$ or $\overline{\text{CE}}$ goes high (see figure 2).

When reading in the separate data and address mode, valid address and data must appear on the respective bus and they must remain there for the duration of the READ cycle because ALE doesn't latch the address in this mode (see figure 1). Data will appear on the data bus after a time delay $t_{\rm OE}$ measured from the falling edge of $\overline{\rm OE}$.

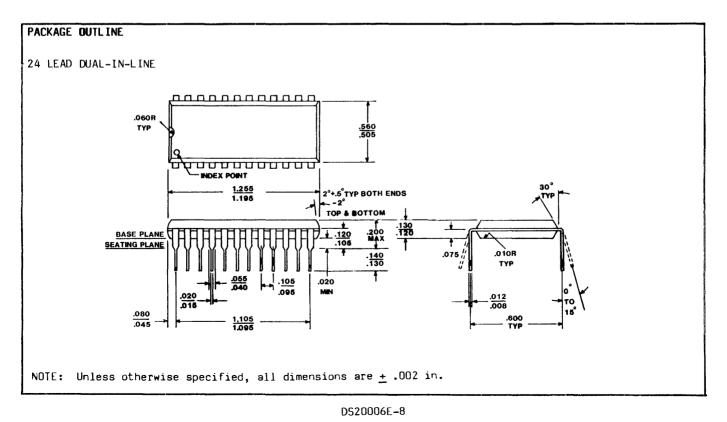
CLOCK CONSIDERATIONS (CLK):


The CLK is a schmitt trigger timing input which defines the clock frequency for the programming cycle. Either an RC combination or an external clock may be used for this input (see figure 5). Typical vales of R and C are 22K and $.0033\mu$ F respectively, with 5% tolerance. As the clock rate increases, the write cycle will be shortened. In applications where data is updated often, the retention time need not be long. Therefore, the

write cycle may be shorter than 20ms. When driving the ER5901 with an external clock, an open collector transistor with a 680 ohm pull-up resistor should be used. (See Figure 5). The logic levels (V_{IHT}, V_{ILT}) that apply to the clock input are defined in the table, "DC CHARACTERISTICS".

POWER-UP

During power-up it is recommended to hold $\overline{\text{OE}}$ high to minimize bus contention.

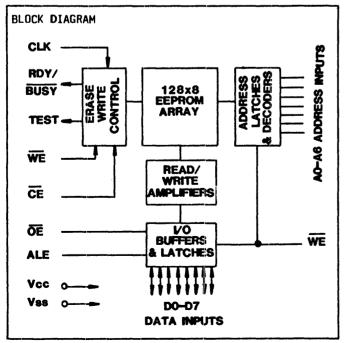

A.C. Testing:

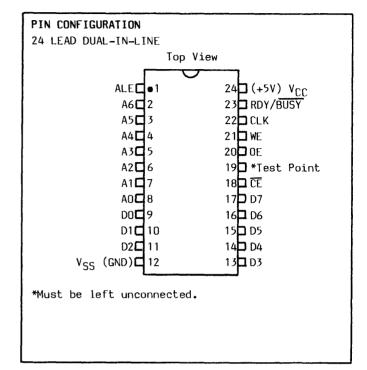
Inputs are driven at 2.4V for an input logic high and 0.45V for an input logic low. Timing measurements are made at 2.0V for a logic high and 0.8V for a logic low.

ON-CHIP DATA PROTECTION

During power-up all modes of operation are inhibited until $V_{\rm CC}$ has reached a level of between 2.8 and 3.5 volts. Furthermore, during power-down the source data protection circuitry acts to inhibit all modes when $V_{\rm CC}$ has fallen below the voltage range of 2.8 to 3.5 volts. NOTE:

Since all modes of operation are enabled when V_{CC} reaches between 2.8 and 3.5 volts, care must be taken to avoid a negative edge on the $\overline{\rm WE}$ line (twee \geq 50ns) during power up. Such a spike may cause a write operation to occur.


WORD ALTERABLE 1024 BIT ELECTRICALLY ERASABLE AND PROGRAMABLE ROM


FEATURES

- 1024 bits, organized 128 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Self-timing
- RC controlled write timing
- RDY/BUSY signal
- Address and data buses may be used separately or multiplexed
- CE and OE inputs to avoid bus contention
- Word Alterable
- Read Access time of less than 300ns
- On-chip data protection
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pin out
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5901I is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5901I can be modified using simple TTL level signals and a single +5V power supply. Writing data into the ER5901I is analogous to writing data in a static

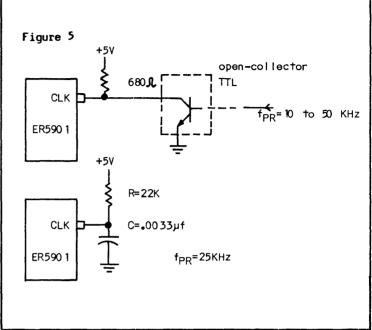
RAM. Since the address and data are internally latched and the RDY/ $\overline{\text{BUSY}}$ signal is available, the ER5901I frees the system for other tasks during the programming cycle. The READ/write logic is designed such that bus contention will be minimized by use of $\overline{\text{OE}}$ and $\overline{\text{CE}}$ inputs.

TRUTH TABLE

Mul	Multiplexed Mode: Address & Data Tied To Data Bus ³										
ĈĒ	ŌĒ	WE	ALE ^{1,2}	RDY/BUSY	MODE	1/0	POWER				
H	Х	X	Х	н	STANDBY	High Z	Standby				
L	L	н	<u>~</u>	н	READ	D _{OUT}	ACTIVE				
L	X	\mathbf{r}	<u>~</u>	L	PROGRAM	DIN	ACTIVE				
L	н	н	X	Н	READ/Write	High Z	ACTIVE				
				L	inhibit						

1. In non-multiplexed mode, connect ALE and WE together.

- 2. In multiplexed mode, address inputs are latched on the falling edge, and data inputs are latched on the rising edge.
- 3. In non-multiplexed mode, address and data bus are separate.


Device Operation

ADDRESSES:

The address inputs select one of the EEPROM 8-bit words. The address latch enable (ALE) is provided so the memory may be used with a multiplexed address and data bus. When this feature is not required, the address bus and data bus are separate and ALE may be tied to \overline{WE} .

CHIP ENABLE (CE):

The chip enable terminal affects the data-in/dataout and write enable (\overline{WE}) terminals. When chip enable is high, the I/O terminals are in the floating or high impedance state.

PIN FUNCTIONS

Symbol	Function	Comments
AL.E	Address Latch Enable	Address inputs latched on negative edge. May be tied to $\overline{\text{WE}}$ when separate address and data lines are used.
A0-A6	7 bit address	
D0-D7	8 bit Data I/O	
۷ _{SS}	Chip Ground Connection	
CE	Chip Enable Input	Used for chip selection.
ŌĒ	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprogramming cycle; input data latched on a positive edge.
CLK	Timing Input	Defines clock frequency for reprogramming. May be RC or external clock.
RDY/BUSY	Status Output	Low when chip is in reprogramming mode and cannot be accessed. High when in read mode.
v _{cc}	+5 Volt power connection	

ER5901I

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

Standard Conditions (unless other noted) $V_{SS} = GND$ $V_{CC} = +5V \pm 10\%$ Operating Temperature Range (T_A): -40°C to +85°C (Industrial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

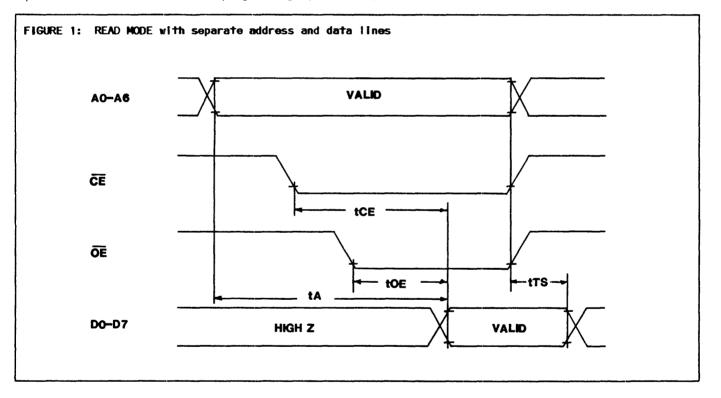
General Instrument makes no warranty. expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software

DC CHARACTERISTICS

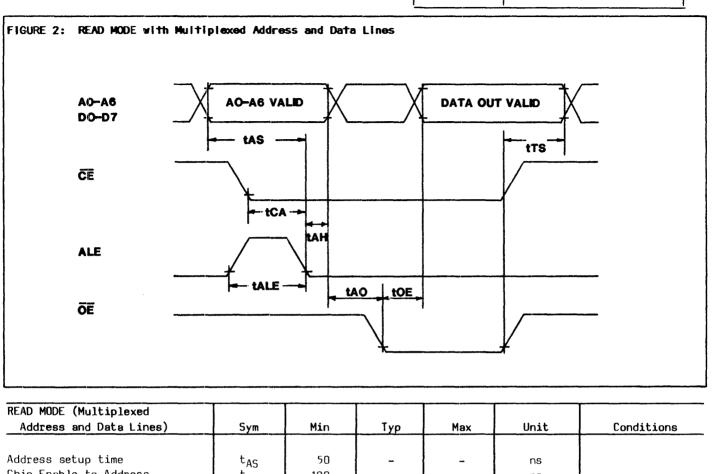
Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	VIH	2.0	-	V _{CC} +1.0	v	
Low Level Input Voltage	VIL	-0.5	-	+0.8	v	
CLK High Level Input Voltage	VTHT	3.5		۷ _{CC} +1.0	v	
CLK Low Level Input Voltage	VILT	-0.5		+0.8	v	
High Level Output Voltage	ν _{oH}	2.4	-	۷ _{CC}	v	Aبر 200 = I _O H
Low Level Output Voltage	V _{OL}	_	_	0.4	v	$I_{0L} = 1.6 \text{ mA}$
Input Leakage Current	IIL	-		+10	Au	$V_{IN} = GND$ to V_{CC}
Output Leakage Current	TOL			+10	ųА	$V_0 U_T = GND \text{ to } V_C C$
POWER SUPPLY REQUIREMENTS						
V _{CC} Supply:						
Chip Selected	I.		(0	00		.5 EV
	¹ CC	-	60	90 70	mA	$V_{\rm CC} = +5.5V$
Chip Deselected (Standby Mode)	¹ CC	-	50	70	mA	$V_{\rm CC} = +5.5V$
Power Dissipation:	_					
Chip Selected	P _D	-	330	495	mW	$V_{CC} = +5.5V$
Chip Deselected (Standby Mode)		- 1	275	385	mW	$V_{CC} = +5.5V$

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance	с ¹	-	-	6	pF	v _{IN} = ov
Output Capacitance	С		-	10	pF	v _{OUT} = ov


GENERAL INSTRUMENT	ER5901 I

MEMORY CHARACTERISTICS


Characteristic	Sym	Max	Тур	Max	Units	Conditions
Erased State	v _E	_	v _{iH} ,v _{OH}	-	v	
Written State	VW	-	VIH, VOL	-	v	
Data Retention Time	+"s	10	-		years	
(powered or unpowered) Number of reprograming cycles per byte	Np	104	-	-	-	See note below
Number of Read Access between refresh	N _{RA}		Unli	mited		

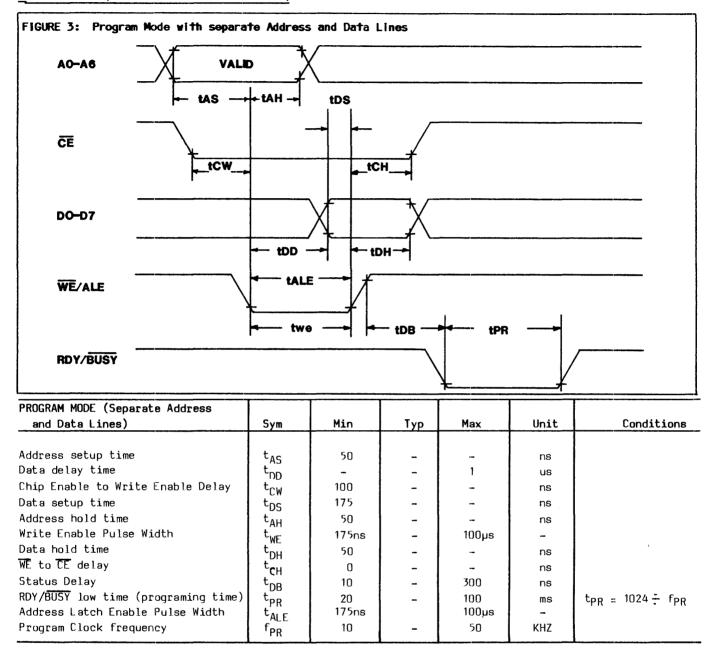
NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

READ MODE (Separate Address and Data Lines)	Sym	Min	Тур	Max	Unit	Conditions
Access time - Address to output delay	† _A		-	300	ns	Load = 1TTL gate + C_L = 100 pF \overline{CE} = \overline{OE} = V_{1L}
CE to output delay OE to output delay Address, CE or OE to output tri-state	† _{СЕ} †оЕ † _{ТS}	- 10 10	- - -	300 175 150	ns ns ns	$\frac{OE}{OE} = V_{1L}$ $\frac{OE}{CE} = V_{1L}$

Address setup time Chip Enable to Address Latch Enable	t _{AS} t _{CA}	50 100	- -		ns ns	
ALE Pulse Width Address Hold time Address float to Output Enable OE to output delay	t _{ALE} t _{AH} t _{AO} t _{OE}	175 50 20 10		- - - 175	ns ns ns ns	$\overline{CE} = V_{IL}$
Address, CE or OE to output tri-state	t _{TS}	10	-	150	ns	ΓL

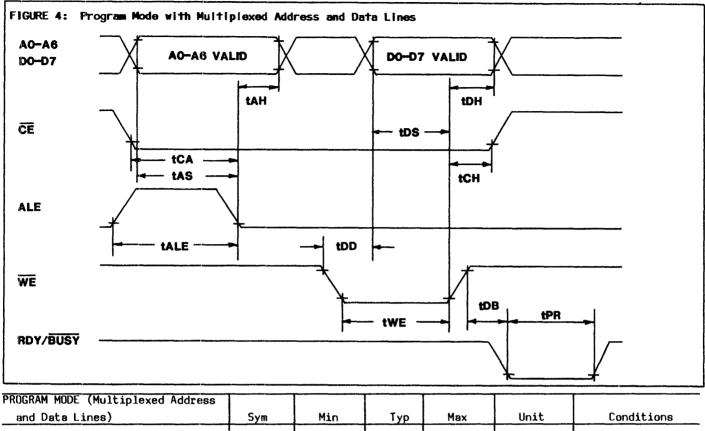
WRITE ENABLE (WE):


WRITE CYCLE:

By virtue of the on-chip reprogramming control and timing of the ER5901I, a mimimum amount of servicing is required from the host microprocessor.

The programming/writing of the ER5901I can be done in the multiplexed address and data mode or separate address and data mode. In the multiplexed mode, the ALE line is pulsed high while the address to be altered is presented to lines AO to A6 of the selected device (see figure 4). The falling edge of ALE latches the address into the ER5901I, and the information on the bus lines is then changed to the data to be written into the EEPROM. We is pulsed low and the data is latched on its rising edge, after a delay t_{DB} the RDY/BUSY output will go low for the the duration of the programming cycle.

In the separate data and address mode, the ALE may be tied to $\overline{\text{WE}}$ (see figure 3). With a stable address and data presented to the respective inputs of a selected device, the $\overline{\text{WE}}$ /ALE line is pulsed low to initiate a program cycle. The falling edge of $\overline{\text{WE}}$ /ALE latches the address inputs and the rising edge latches the data inputs. After a delay t_{DP} , the RDY/BUSY output goes low and remains



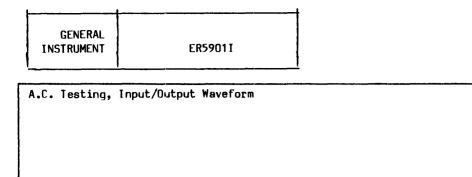
low for the duration of the programming cycle. All inputs to the ER5901I are disabled during a programming cycle.

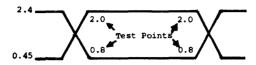
OUTPUT ENABLE (OE): READ

Reading can be accomplished in the multiplexed or separate address and data bus mode as well. When reading in the multiplexed mode, the ALE line is pulsed high while a valid address is presented to the AO to A6 inputs. The address is latched into the ER5901I on the falling edge of ALE. In order to avoid bus contention these lines should be tristated prior to pulsing \overline{OE} low. After a delay, t_{OE} , the selected byte will appear on lines D0 to D7 until either \overline{OE} or \overline{CE} goes high (see figure 2).

When reading in the separate data and address mode, valid address and data must appear on the respective bus and they must remain there for the duration of the READ cycle because ALE doesn't latch the address in this mode (see figure 1). Data will appear on the data bus after a time delay t_{OE} measured from the falling edge of \overline{OE} .

and Data Lines)	Sym	Min	Тур	Max	Unit	Conditions
Address setup time	t _{AS}	50	-	-	ns	
Chip Enable to Address	t _{CA}	100	-	-	ns	
Latch Enable	C.A					
ALE pulse width	t _{ALE}	175ns	-	100µs	-	
Address hold time	t _{AH}	50	-	-	ns	
Data setup time	t _{DS}	175ns	-	100µs	-	
WE pulse width	tWE	175ns		100µs	-	
Data hold time	t _{DH}	20	-	-	ns	
WE to CE delay	t _{CH}	0	-	-	ns	
Status delay	t _{DB}	10	-	300	ns	
Status low time (programing time)	t _{PR}	20	-	100	ms	$t_{PR} = 1024 \div f_{PR}$
Data delay time	t _{DD}	-	-	1	μs	. , ,
Program clock frequency	f _{PR}	10	-	50	кнг	

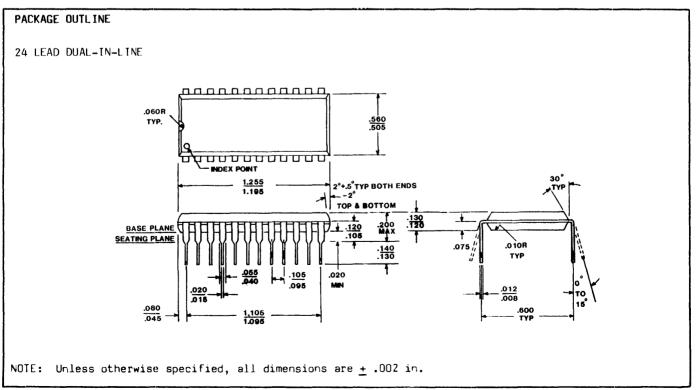

CLOCK CONSIDERATIONS (CLK):


The CLK is a schmitt trigger timing input which defines the clock frequency for the programming cycle. Either an RC combination or an external clock may be used for this input (see figure 5). Typical vales of R and C are 22K and $.0033\mu$ F respectively, with 5% tolerance. As the clock rate increases, the write cycle will be shortened. In applications where data is updated often. the retention time need not be long, Therefore, the

write cycle may be shorter than 20ms. When driving the ER5901I with an external clock, an open collector transistor with a 680 ohm pull-up resistor should be used. (See Figure 5). The logic levels (V_{IHT}, V_{ILT}) that apply to the clock input are defined in the table, "DC CHARACTERISTICS".

POWER-UP

During power-up it is recommended to hold $\overline{\text{OE}}$ high to minimize bus contention.

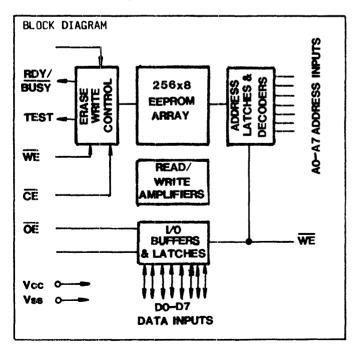

A.C. Testing:

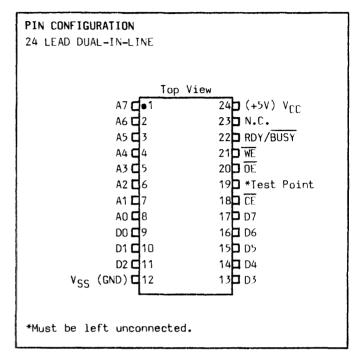
Inputs are driven at 2.4V for an input logic high and 0.45V for an input logic low. Timing measurements are made at 2.0V for a logic high and 0.8V for a logic low.

ON-CHIP DATA PROTECTION

During power-up all modes of operation are inhibited until $V_{\rm CC}$ has reached a level of between 2.8 and 3.5 volts. Furthermore, during power-down the source data protection circuitry acts to inhibit all modes when $V_{\rm CC}$ has fallen below the voltage range of 2.8 to 3.5 volts. NOTE:

Since all modes of operation are enabled when $V_{\rm CC}$ reaches between 2.8 and 3.5 volts, care must be taken to avoid a negative edge on the $\overline{\rm WE}$ line (t_{\rm WE} \geq 50ns) during power up. Such a spike may cause a write operation to occur.


WORD ALTERABLE 2048 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM


FEATURES:

- 2048 bits, organized 256 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Automatic write timeout
- RDY/BUSY signal
- Optional high voltage program and chip erase modes
- $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs to avoid bus contention
- Word alterable
- Read access time of less than 300ns
- Enhanced on-chip data protection
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pinout
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5902 is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5902 can be modified using simple TTL level signals and a single +5V power supply. Writing data into the ER5902 is analogous to writing data in a static

RAM. Since the address and data are internally latched and the RDY/BUSY signal is available, the ER5902 frees the system for other tasks during the programming cycle. The read/write logic is designed such that bus contention will be minimized by use of $\overline{\text{OE}}$ and $\overline{\text{CE}}$ inputs.

TRUTH TABLE

	+5V ONLY OPERATION										
ĈĒ	ŌĒ	WE	RDY/BUSY	MODE	MODE I/O						
н	х	х	Н	STANDBY	High Z	STANDBY					
٤	L	н	н	READ	D _{OUT}	ACTIVE					
L	н	ъ	L	PROGRAM	DIN	ACTIVE					
L	н	н	н	READ/WRITE	High Z	ACTIVE					
				INHIBIT							

	OPTIONAL HIGH VOLTAGE COMPATIBLE MODES										
CE	ŌE	WE	RDY/ BUSY	MODE	1/0	POWER					
	H H 20–22V 22–22V	20–22V 20–22V 20–22V L	L L	BYTE ERASE BYTE ERASE CHIP ERASE CHIP ERASE	D _W =H D _W D _{IN} =H D _{IN} =H	ACTIVE ACTIVE ACTIVE ACTIVE					

MEMORY CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Erased State	۷ _E	-	v _{IH} ,v _{OH}	-	v	
Written State	VW	-	V _{IH} ,V _{OL}	-	v	
Data Retention Time (powered or unpowered) Number of reprogramming	ts	10	-		years	
cycles per byte Number of Read Access	Np	10 ⁴	-	-	-	See note below
between refresh	NRA	-	Unlim	ited		

NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

PIN FUNCTIONS

Symbol	Function	Comments
A0-A7	8 Bit Addres s	The address inputs select one of the EEPROM 8-bit words.
D0-D7	8 Bit Data I/O	
V _{SS}	Chip Ground Connection	
CE	Chip Enable Input	This input enables the chip for all modes of operation. When chip enable is high, the I/O terminals are in the floating or high impedance state.
ŌĒ	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprogramming cycle; input data latched on a positive edge.
RDY/BUSY	Status Output	Low when chip is in reprogramming mode and cannot be accessed. High when in read mode.
v _{CC}	+5 Valt Power Connection	

ELECTRICAL CHARACTERISTICS

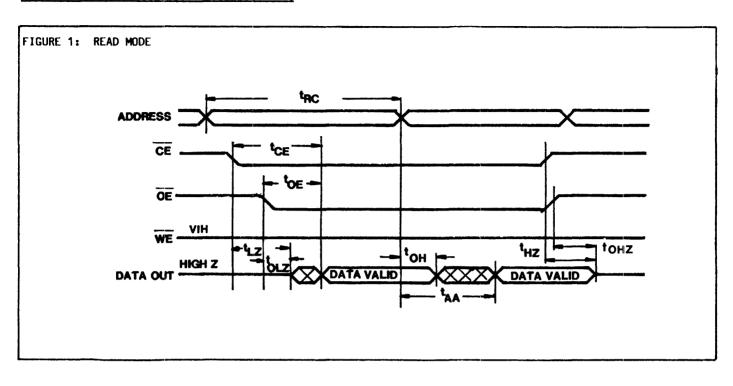
Maximum Ratings*

All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to +150°C
Soldering temperature of leads
(10 seconds)
Standard Conditions (unless other noted)
$V_{cc} = GND$

 V_{SS} = GND V_{CC} = +5V ±10% Operating Temperature Range (T_A): 0°C to +70°C (Commercial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

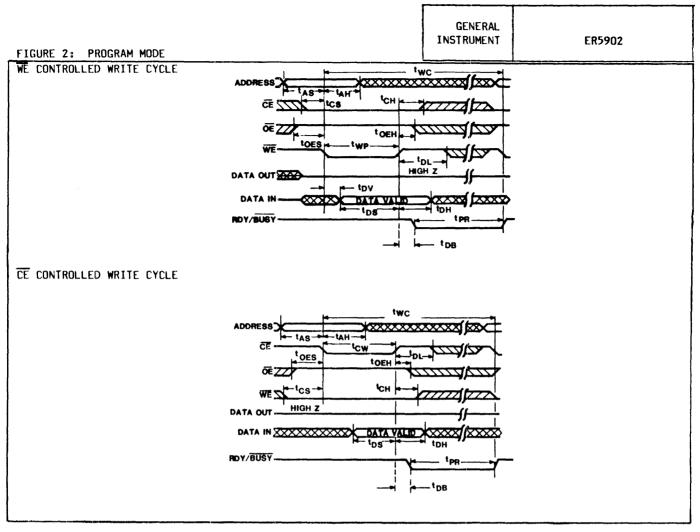
General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software


DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	VIH	2.0	-	V _{CC} +1.0	V	
Low Level Input Voltage	VIL	-1.0	-	+0.8	V	
High Level Output Voltage	VOH	2.4	-	V _{CC}	v	Aىر I _{OH} = -400 A
Low Level Output Voltage	VOL	-	-	0.4	v	$I_{OL} = 2.1 \text{ mA}$
Input Leakage Current	IIL	-		10	Αىر	$V_{IN} = 5.5V$
Output Leakage Current	IOL			10	Au	$V_{IN} = 5.5V$
POWER SUPPLY REQUIREMENTS						
V _{CC} Supply:						
Chip Selected	ICC	-	60	80	mA	$V_{\rm CC} = +5.5V$
Chip Deselected (Standby Mode)	ICC	-	-	50	mA	$V_{CC} = +5.5V$
Power Dissipation:						
Chip Selected	PD	-	330	440	mW	$V_{\rm CC} = +5.5V$
Chip Deselected (Standby Mode)	PD	-	-	275	mW	$V_{CC} = +5.5V$
	U					

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance	c ₁	-	-	6	pF	$v_{IN} = 0v$
Output Capacitance	c ₀	-	-	10	pF	$v_{OUT} = 0v$

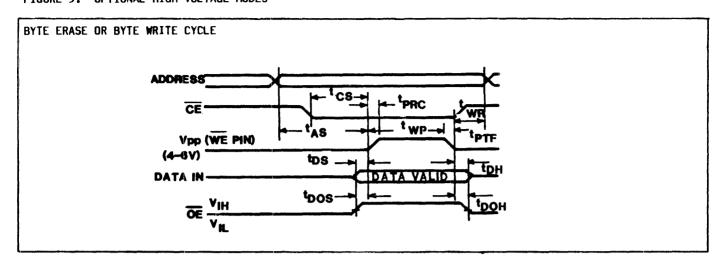


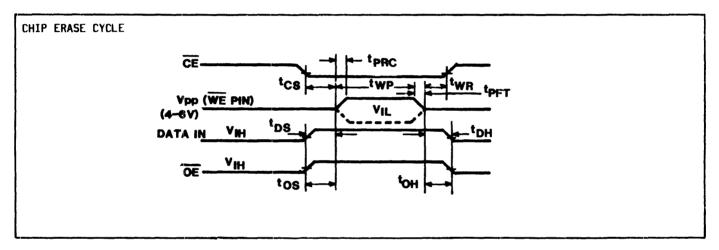
READ MODE	Sym	Min	Тур	Max	Unit	Conditions
Read Cycle Time	t _{RC}	300	1 -	-	ns	
Chip Enable Access Time	t _{CE}	-	-	300	ns	
Address Access Time	t _{AA}	-	-	300	ns	
Output Enable Access Time	t _{OE}	-	- 1	100	ns	
Chip Enable to Output Low Z	tLZ	10	- 1	-	ns	
Chip Disable to Output in High Z	t _{HZ}	10	- 1	100	ns	
Output Enable to Output in Low Z	tolz	50	-	-	កទ	
Output Enable to Output in High Z	toHz	10	-	100	ns	
Output Hold From Address Change	t _{OH}	20	-	-	ns	

READ MODE

To initiate a read cycle, a valid address must appear on the AO to A7 inputs and remain there for the duration of the cycle because the address is not latched in this mode. CE may then be brought low to select the device. The desired memory byte will appear on the data lines DO to D7 after a time delay t_{CE} measured from the falling edge of \overline{OE} . Alternatively, if bus contention is not a problem, \overline{OE} may be tied low. The maximum read access time (t_A) is 300 ns and data will remain valid until a logic level change occurs on \overline{CE} , \overline{OE} or an address line. \overline{WE} is held high.

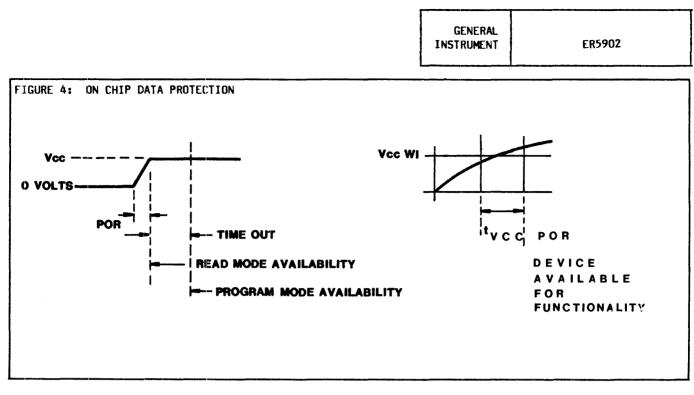
PROGRAM MODE	Sym	Min	Тур	Max	Unit	Conditions
Write Cycle Time	twc	20	-	40	ms	
Address Setup Time	t _{AS}	10	-	-	ns	
Address Hold Time	t _{AH}	70	-		ns	
Write Setup Time	t _{CS}	0	-	-	ns	
Write Hold Time	t _{CH}	0	-	-	ns	
Chip Enable to End of Write Input	t _{CW}	150	-	-	ns	
Output Enable Setup Time	tOES	10	-	-	ns	
Output Enable Hold Time	toeh	10	-	-	ns	
Write Pulse Width	t _{WP}	150	-	-	ns	
Data Latch Time	t _{DL}	50	-	-	ns	
Programming Time	t _{PR}	20	-	40	ms	
Data Setup Time	t_{DS}	50	-	-	ns	
Data Hold Time	t _{DH}	10	-	-	ns	
RDY/BUSY	t_{DB}	-	-	100	ns	


WE CONTROLLED PROGRAM MODE


With a stable address and data word presented to the respective inputs of a selected device and \overline{CE} of that device brought low, the WE line is pulsed low to initiate a program cycle. The falling edge of WE latches the address inputs and the rising edge latches the data inputs. After a delay t_{DB}, the RDY/BUSY output will go low and remain there for the duration of the programming cycle.

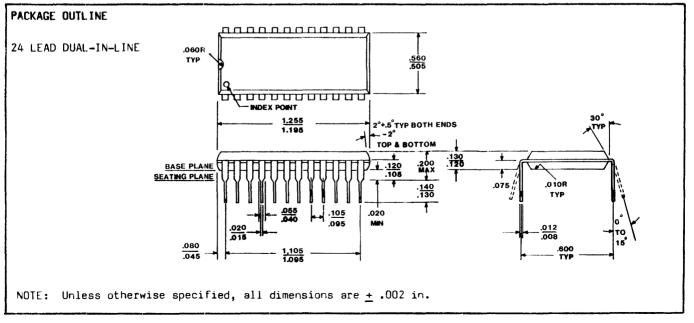
CE CONTROLLED PROGRAM MODE

In this mode, $\overline{\text{WE}}$ is brought low prior to selecting the ER5902. The falling and rising edges of the $\overline{\text{CE}}$ line will then latch the address and data respectively. A delay t_{DB} is timed from the rising edge of the $\overline{\text{WE}}$ line following which the RDY/BUSY output will go low and remain there for the duration of the programming cycle.


GENERAL INSTRUMENT	ER5902				
FIGURE 3: OPT	IONAL HIGH VOLTAGE MODES				

DC CHARACTERISTICS

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Write/Erase Voltage	٧ _{PP}	20	-	22	V	
V _{PP} Current (Byte Erase/Write)	Ipp (w)	-	-	0.01	mA	CE=V _{IL} , V _{PP} =22V
OE Voltage (Chip Erase)	V _{DE}	20	-	22	v	Aبر10=I _{0E}
Vpp Current Inhibit	I _{PP} (i)	-	-	0.01	mA	CE=VIH, Vpp=22V
Vpp Current (Chip Erase)	Ipp (c)	-	-	0.01	mA	$\overline{CE} = V_{IL}, \overline{OE} = V_{OE},$
						V _{PP} =22V
AC CHARACTERISTICS						
OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Add to V _{PP} Setup Time	t _{AS}	10	-	-	ns	
CE to Vpp Setup Time	t _{CS}	10	-	-	ns	
Data to V _{PP} Setup Time	t _{DS}	0	-	-	ns	
Data Hold Time	t _{DH}	50	-	-	ns	Vpp=6V
Write Pulse Width	t _{WP}	150ns	-	15ms		
Write Recovery Time	t _{WR}	50	-	-	ns	Vpp=6V
Chip Erase Setup Time	t _{0S}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
Chip Erase Hold Time	t _{OH}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
V _{PP} RC Time Constant	tPRC	-	-	750	μs	
Vpp Fall Time	tPFT	-	-	100	US	V _{PP} =6V
Byte Erase/Write Setup Time	t _{BOS}	10	-	-	ns	V _{PP} =6V
Byte Erase/Write Hold Time	t _{BOH}	10	-	-	ns	V _{PP} =6V

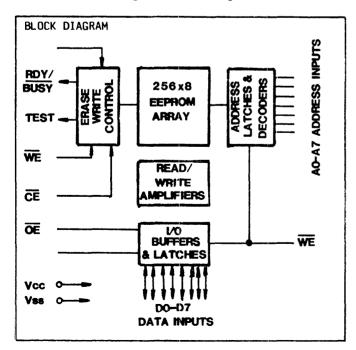

ENHANCED ON--CHIP DATA PROTECTION

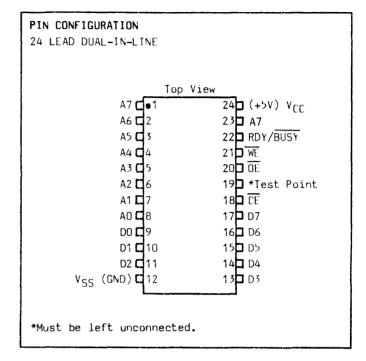
This protection circuitry minimizes the possibility of erronious program/eral cycles during device power up or down. When the power supply voltage, $V_{\rm CC}$ is below 3.5V, $V_{\rm CC}$ WI, (power up or down), the chip is held in a reset mode inhibiting all erase/write circuitry. On power up, after $V_{\rm CC}$ reaches the 3.5V level, a 10ms time out, $t_{\rm VCC}$, will start during which the erase/write circuitry remains inhibited. This allows time for setting of inputs to the correct state. Additionally, a low state on $\overline{\rm OE}$ will inhibit erase/write operations.

Read operations are not inhibited by the 10ms time out and may occur during this period.

OPTIONAL HIGH VOLTAGE PROGRAMMING AND CHIP ERASE FEATURES

Optional high voltage word erase, word write and 10ms chip erase features are available on the ER5902 (in addition to full +5V only operation) for pin-for-pin and operational compatibility with EEPROMs requiring additional high voltage power supplies.


WORD ALTERABLE 2048 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM


FEATURES:

- 2048 bits, organized 256 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Automatic write timeout
- RDY/BUSY signal
- Optional high voltage program and chip erase modes
- CE and OE inputs to avoid bus contention
- Word alterable
- Read access time of less than 300ns
- Enhanced on-chip data protection
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pinout
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5902I is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5902I can be modified using simple TTL level signals and a single +5V power supply. Writing data into the ER5902I is analogous to writing data in a static

RAM. Since the address and data are internally latched and the RDY/ \overline{BUSY} signal is available, the ER5902I frees the system for other tasks during the programming cycle. The read/write logic is designed such that bus contention will be minimized by use of \overline{OE} and \overline{CE} inputs.

TRUTH TABLE

	+5V ONLY OPERATION										
CE	ŌĒ	WE	RDY/BUSY	MODE	I/O	POWER					
н	х	Х	н	STANDBY	High Z	STANDBY					
L	L	Н	н	READ	D _{OUT}	ACTIVE					
L	Н	ບ	L	PROGRAM	DIN	ACTIVE					
L	н	н	н	READ/WRITE	High Z	ACTIVE					
				INHIBIT							

OPTIONAL HIGH VOLTAGE COMPATIBLE MODES						
CE	ŌĒ	WE	RDY/ BUSY	MODE	1/0	POWER
4	H H 20-22V 22-22V	20–22V 20–22V 20–22V L	L L	BYTE ERASE BYTE ERASE CHIP ERASE CHIP ERASE	D _W =H D _W D _{IN} =H D _{IN} =H	ACTIVE ACTIVE ACTIVE ACTIVE

MEMORY CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Erased State	٧ _E	-	v _{IH} ,v _{OH}	-	v	
Written State	VW	-	VIH, VOL	-	v	
Data Retention Time (powered or unpowered) Number of reprogramming	ts	10	-		years	
cycles per byte Number of Read Access	Np	10 ⁴	-	-	-	See note below
between refresh	N _{RA}	-	Unlim:	ited	ſ	

NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

PIN FUNCTIONS

Symbol	Function	Comments
A0-A7	8 Bit Address	The address inputs select one of the EEPROM 8-bit words.
D0-D7	8 Bit Data I/O	
V _{SS}	Chip Ground Connection	
CE	Chip Enable Input	This input enables the chip for all modes of operation. When chip enable is high, the I/O terminals are in the floating or high impedance state.
OE	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprogramming cycle; input data latched on a positive edge.
RDY/BUSY	Status Output	Low when chip is in reprogramming mode and cannot be accessed. High when in read mode.
v _{CC}	+5 Volt Power Connection	

ELECTRICAL CHARACTERISTICS

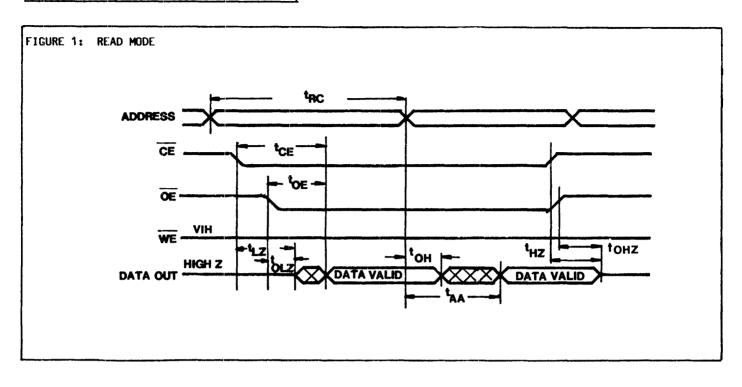
Maximum Ratings*

All inputs and outputs with
respect to ground +7V to -0.3V
Storage temperature (unpowered and
without data retention)65°C to +150°C
Soldering temperature of leads
(10 seconds)+300°C
Standard Conditions (unless other noted)
$V_{SS} = GND$

 $V_{CC} = +5V \pm 10\%$ $V_{CC} = +5V \pm 10\%$ Operating Temperature Range (T_A): -40°C to +85°C (Industrial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

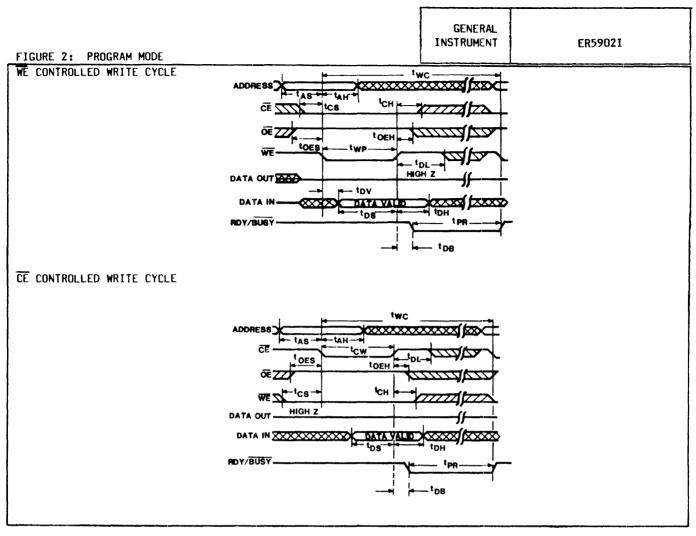
General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software


DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	۷ _{IH}	2.0	_	۷ _{CC} +1.0	v	
Low Level Input Voltage	VIL	-1.0	_	+0.8	v	
High Level Output Voltage	VOH	2.4	_	V _{CC}	v	Aىر I _{OH} = –400 مر
Low Level Output Voltage	VOL	_	-	0.4	v	$I_{01} = 2.1 \text{ mA}$
Input Leakage Current	IIL	-		10	Αىر	$V_{IN} = 5.5V$
Output Leakage Current	IOL			10	Aبر	$V_{IN} = 5.5V$
POWER SUPPLY REQUIREMENTS						
V _{CC} Supply:						
Chip Selected	ICC	-	60	80	mA	$V_{CC} = +5.5V$
Chip Deselected (Standby Mode)	ICC	-	-	50	mA	$V_{CC} = +5.5V$
Power Dissipation:						
Chip Selected	PD	-	330	440	m₩	$V_{CC} = +5.5V$
Chip Deselected (Standby Mode)	PD	-	-	275	mW	$V_{CC} = +5.5V$

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance	с ₁	-	-	6	pF	V _{IN} = OV
Output Capacitance	с0	-	-	10	pF	V _{OUT} = OV



READ MODE	Sym	Min	Тур	Max	Unit	Conditions
Read Cycle Time	t _{RC}	300	-	-	ns	
Chip Enable Access Time	t _{CE}	-	-	300	ns	
Address Access Time	t _{AA}	-	-	300	ns	
Output Enable Access Time	tOE	-	-	100	ns	
Chip Enable to Output Low Z	tLZ	10	-	-	ns	
Chip Disable to Output in High Z	t _{HZ}	10	-	100	ns	
Output Enable to Output in Low Z	tOLZ	50	-	-	ns	
Output Enable to Output in High Z		10	-	100	ns	
Output Hold From Address Change	t _{OH}	20	-	-	ns	

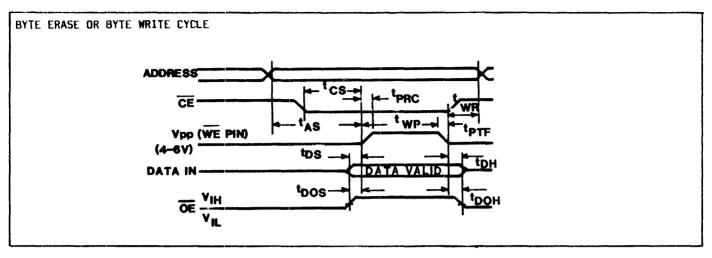
READ MODE

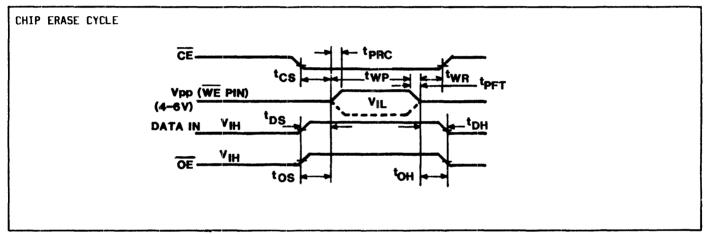
To initiate a read cycle, a valid address must appear on the AO to A7 inputs and remain there for the duration of the cycle because the address is not latched in this mode. $\overrightarrow{\text{CE}}$ may then be brought low to select the device. The desired memory byte will appear on the data lines DO to D7 after a time

delay t_{CE} measured from the falling edge of \overline{OE} . Alternatively, if bus contention is not a problem, \overline{OE} may be tied low. The maximum read access time (t_A) is 300 ns and data will remain valid until a logic level change occurs on \overline{CE} , \overline{OE} or an address line. \overline{WE} is held high.

PROGRAM MODE	Sym	Min	Тур	Max	Unit	Conditions
Write Cycle Time	t _{WC}	20	-	40	ms	
Address Setup Time	t _{AS}	10	-	-	ns	
Address Hold Time	t _{AH}	70	- 1	-	ns	
Write Setup Time	t _{CS}	0		-	ns	
Write Hold Time	t _{CH}	0	- 1	-	ns	
Chip Enable to End of Write Input	t _{CW}	150	-	-	ns	
Output Enable Setup Time	tOES	10	-	-	ns	
Output Enable Hold Time	toen	10	-	-	ns	
Write Pulse Width	t _{WP}	150	-	-	ns	
Data Latch Time	t _{DL}	50	-	-	ns	
Programming Time	t _{PR}	20	- 1	40	ms	
Data Setup Time	t _{DS}	50	-	-	ns	
Data Hold Time	t _{DH}	10	-	-	ns	
RDY/BUSY	t _{DB}	-	-	100	ns	

WE CONTROLLED PROGRAM MODE

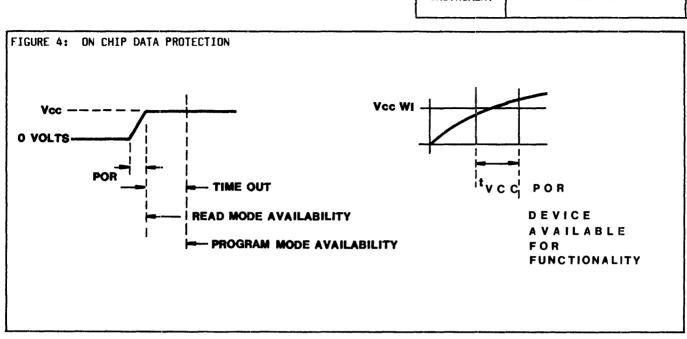

With a stable address and data word presented to the respective inputs of a selected device and \overline{CE} of that device brought low, the \overline{WE} line is pulsed low to initiate a program cycle. The falling edge of \overline{WE} latches the address inputs and the rising edge latches the data inputs. After a delay t_{DB}, the RDY/BUSY output will go low and remain there for the duration of the programming cycle.


CE CONTROLLED PROGRAM MODE

In this mode, $\overline{\text{WE}}$ is brought low prior to selecting the ER5902I. The falling and rising edges of the $\overline{\text{CE}}$ line will then latch the address and data respectively. A delay t_{DB} is timed from the rising edge of the $\overline{\text{WE}}$ line following which the RDY/BUSY output will go low and remain there for the duration of the programming cycle.

GENERAL INSTRUMENT	ER59021

FIGURE 3: OPTIONAL HIGH VOLTAGE MODES

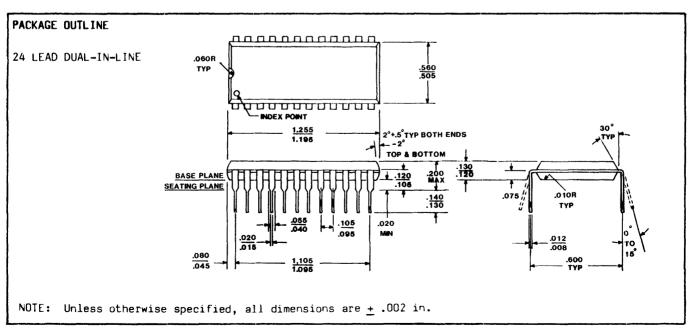


DC CHARACTERISTICS

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Write/Erase Voltage	V _{PP}	20	-	22	v	
Vpp Current (Byte Erase/Write)	Ipp (w)		-	0.01	mA	CE=V _{IL} , V _{PP} =22V
OE Voltage (Chip Erase)	V _{OE}	20	-	22	v	I _{OE} =10µA
V _{PP} Current Inhibit	Ipp (i)	-	-	0.01	mA	CE=V _{IH} , V _{PP} =22V
Vpp Current (Chip Erase)	Ipp (c)	-	-	0.01	mA	CE=V _{IL} , OE=V _{OE} ,
						V _{PP} =22V

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Add to V _{PP} Setup Time	t _{AS}	10	-	-	ns	
CE to Vpp Setup Time	t _{CS}	10	-	-	ns	
Data to V _{PP} Setup Time	t _{DS}	0	-	-	ns	
Data Hold Time	t _{DH}	50	-	-	ns	V _{PP} =6V
Write Pulse Width	t _{WP}	150ns	-	15ms		
Write Recovery Time	t _{WR}	50	-	-	ns	Vpp=6V
Chip Erase Setup Time	tos	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
Chip Erase Hold Time	t _{OH}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
V _{PP} RC Time Constant	tPRC	-	-	750	sبر	
V _{PP} Fall Time	tPFT	-	-	100	US	Vpp=6V
Byte Erase/Write Setup Time	t _{BOS}	10	-	-	ns	V _{PP} =6V
Byte Erase/Write Hold Time	^t вон	10	-	-	ns	V _{PP} =6V

GENERAL INSTRUMENT


ENHANCED ON-CHIP DATA PROTECTION

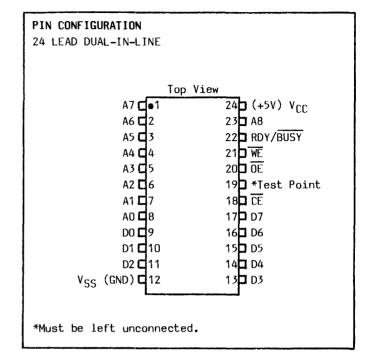
This protection circuitry minimizes the possibility of erronious program/eral cycles during device power up or down. When the power supply voltage, V_{CC} is below 3.5V, V_{CC} WI, (power up or down), the chip is held in a reset mode inhibiting all erase/write circuitry. On power up, after V_{CC} reaches the 3.5V level, a 10ms time out, t_{VCC} will start during which the erase/write circuitry remains inhibited. This allows time for setting of inputs to the correct state. Additionally, a low state on \overline{OE} will inhibit erase/write operations.

Read operations are not inhibited by the 10ms time out and may occur during this period.

OPTIONAL HIGH VOLTAGE PROGRAMMING AND CHIP ERASE FEATURES

Optional high voltage word erase, word write and 10ms chip erase features are available on the ER5902I (in addition to full +5V only operation) for pin-for-pin and operational compatibility with EEPROMs requiring additional high voltage power supplies.

WORD ALTERABLE 4096 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM


FEATURES:

- 4096 bits, organized 512 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Automatic write timeout
- RDY/BUSY signal
- Optional high voltage program and chip erase modes
- $\overline{\text{CE}}$ and $\overline{\text{OE}}$ inputs to avoid bus contention
- Word alterable
- Read access time of less than 300ns
- Enhanced on-chip data protection
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pinout
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5904 is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5904 can be modified using simple TTL level signals and a single +5V power supply. Writing data into the ER5904 is analogous to writing data in a static

RAM. Since the address and data are internally latched and the RDY/BUSY signal is available, the ER5904 frees the system for other tasks during the programming cycle. The read/write logic is designed such that bus contention will be minimized by use of $\overline{\text{OE}}$ and $\overline{\text{CE}}$ inputs.

TRUTH TABLE

	+5V ONLY OPERATION										
ĨĒ	ŌĒ	ŴĒ	RDY/BUSY	MODE	1/0	POWER					
Н	Х	Х	н	STANDBY	High Z	STANDBY					
L	L	н	н	READ	D _{OUT}	ACTIVE					
L	Н	\mathbf{r}	L	PROGRAM	DIN	ACTIVE					
L	н	н	н	READ/WRITE	High Z	ACTIVE					
				INHIBIT							

	OPTIONAL HIGH VOLTAGE COMPATIBLE MODES									
CE	ŌE	WE	RDY/ BUSY	MODE	1/0	POWER				
L L L	H H 20–22V 22–22V	20–22V 20–22V 20–22V L	L L	BYTE ERASE BYTE ERASE CHIP ERASE CHIP ERASE	D _W =H D _W D _{IN} =H D _{IN} =H	ACTIVE ACTIVE ACTIVE ACTIVE				

DS20023A--1

1985 General Instrument Corporation

MEMORY CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Erased State	٧ _E	_	V _{IH} ,V _{OH}	-	v	
Written State	vw	-	V _{IH} ,V _{OL}	_	v	
Data Retention Time (powered or unpowered)	t_{S}	10	-	ļ	years	
Number of reprogramming cycles per byte Number of Read Access	Np	10 ⁴	-	-	-	See note below
between refresh	N _{RA}	-	Unlim	ited		

NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

PIN FUNCTIONS

Symbol	Function	Comments
A0-A8	9 Bit Address	The address inputs select one of the EEPROM 8-bit words.
D0-D7	8 Bit Data I/O	
V _{SS}	Chip Ground Connection	
CE	Chip Enable Input	This input enables the chip for all modes of operation. When chip enable is high, the I/O terminals are in the floating or high impedance state.
ŌE	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprogramming cycle; input data latched on a positive edge.
RDY/BUSY	Status Output	Low when chip is in reprogramming mode and cannot be accessed. High when in read mode.
v _{CC}	+5 Volt Power Connection	

GENERAL INSTRUMENT	ER5904

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

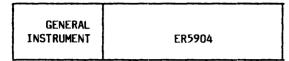
All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to +150°C
Soldering temperature of leads
(10 seconds)+300℃
Standard Conditions (unless other noted)

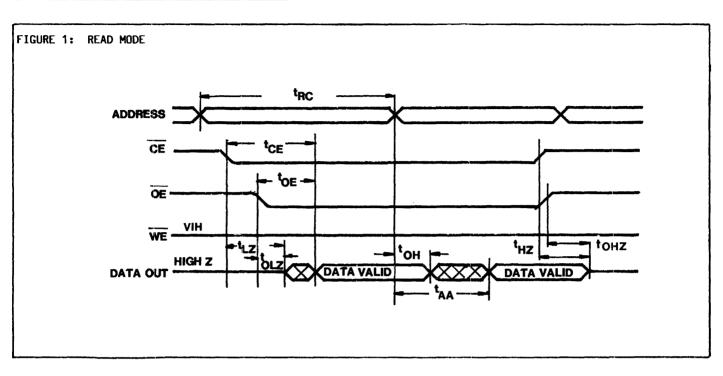
 $V_{SS} = GND$ $V_{CC} = +5V \pm 10\%$ Operating Temperature Range (T_A):

0°C to +70°C (Commercial)

*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

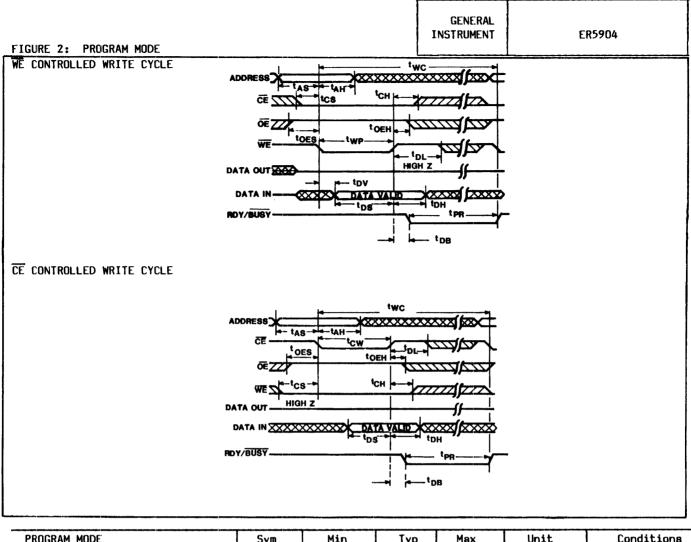

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software


DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage	V _{IH} V _{IL} V _{OH} V _{OL}	2.0 -1.0 2.4 -		V _{CC} +1.0 +0.8 V _{CC} 0.4	V V V V	I _{OH} = -400 µA I _{OL} = 2.1 mA
Input Leakage Current Output Leakage Current POWER SUPPLY REQUIREMENTS	I IL I OL	-		10 10	Aىر Aىر	$V_{IN} = 5.5V$ $V_{IN} = 5.5V$
V _{CC} Supply: Chip Selected Chip Deselected (Standby Mode)	I _{CC}		60 -	80 50	mA mA	$V_{CC} = +5.5V$ $V_{CC} = +5.5V$
Power Dissipation: Chip Selected Chip Deselected (Standby Mode)	P _D P _D	-	330 -	440 275	mW mW	$V_{CC} = +5.5V$ $V_{CC} = +5.5V$

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance Output Capacitance	C _I C ₀	-	-	6 10	рҒ рҒ	V _{IN} = OV V _{OUT} = OV



READ MODE	Sym	Min	Тур	Max	Unit	Conditions
Read Cycle Time	t _{RC}	300	-	-	ns	
Chip Enable Access Time	t _{CE}	- 1	-	300	ns	
Address Access Time	t _{AA}	-	-	300	ns	
Output Enable Access Time	toE	-	-	100	ns	
Chip Enable to Output Low Z	tLZ	10	-	-	ns	
Chip Disable to Output in High Z	t _{HZ}	10	-	100	ns	
Output Enable to Output in Low Z	toLZ	50	-	-	ns	
Output Enable to Output in High Z	t _{OHZ}	10	-	100	ns	
Output Hold From Address Change	t _{OH}	20	-	-	ns	

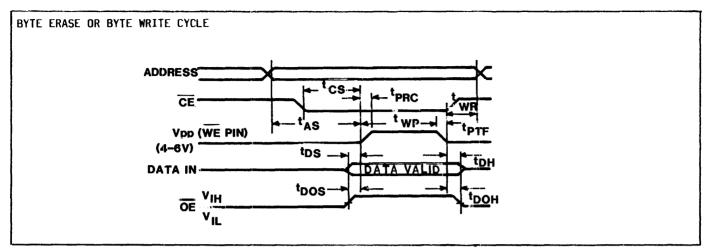
READ MODE

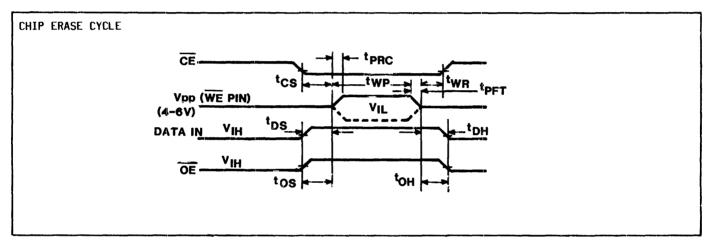
To initiate a read cycle, a valid address must appear on the AO to A8 inputs and remain there for the duration of the cycle because the address is not latched in this mode. $\overrightarrow{\text{CE}}$ may then be brought low to select the device. The desired memory byte will appear on the data lines DO to D7 after a time

delay t_{CE} measured from the falling edge of \overline{OE} . Alternatively, if bus contention is not a problem, \overline{OE} may be tied low. The maximum read access time (t_A) is 300 ns and data will remain valid until a logic level change occurs on \overline{CE} , \overline{OE} or an address line. \overline{WE} is held high.

Sym	Min	Тур	Max	Unit	Conditions
t _{WC}	20	-	40	ms	
t _{AS}	10	-	-	ns	
t _{AH}	70	-	-	ns	
	0	-	-	ns	
	0	-	-	ns	
t _{CW}	150	-	-	ns	
t _{OES}	10	-	-	ns	
	10	-	-	ns	
	150	-	-	ns	
	50	-	-	ns	
	20	-	40	ms	
	50	-		ns	
t _{DH}	10	-	-	ns	
t _{DB}	-	-	100	ns	
	twc tas tah tcs tch tcw toes toeh twp tdl tpr tdn tdn	twc 20 tAS 10 tAH 70 tCS 0 tCH 0 tCW 150 tOES 10 tOEH 10 tWP 150 tDL 50 tPR 20 tDS 50 tDH 10	$\begin{array}{c cccccc} t_{WC} & 20 & - \\ t_{AS} & 10 & - \\ t_{AH} & 70 & - \\ t_{CS} & 0 & - \\ t_{CH} & 0 & - \\ t_{CW} & 150 & - \\ t_{0ES} & 10 & - \\ t_{0EH} & 10 & - \\ t_{0EH} & 10 & - \\ t_{WP} & 150 & - \\ t_{DL} & 50 & - \\ t_{DR} & 20 & - \\ t_{DS} & 50 & - \\ t_{DH} & 10 & - \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

WE CONTROLLED PROGRAM MODE

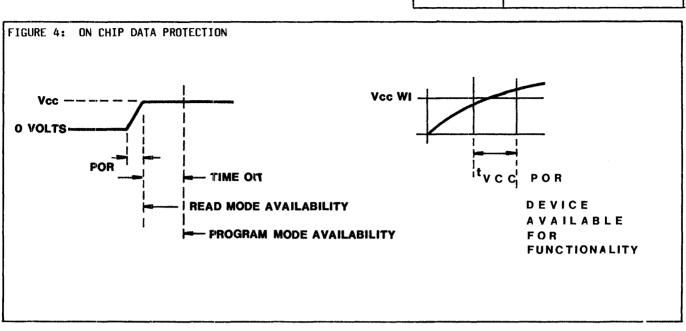

With a stable address and data word presented to the respective inputs of a selected device and \overline{CE} of that device brought low, the \overline{WE} line is pulsed low to initiate a program cycle. The falling edge of \overline{WE} latches the address inputs and the rising edge latches the data inputs. After a delay t_{DB}, the RDY/BUSY output will go low and remain there for the duration of the programming cycle.


CE CONTROLLED PROGRAM MODE

In this mode, $\overline{\text{WE}}$ is brought low prior to selecting the ER5904. The falling and rising edges of the $\overline{\text{CE}}$ line will then latch the address and data respectively. A delay t_{DB} is timed from the rising edge of the $\overline{\text{WE}}$ line following which the RDY/BUSY output will go low and remain there for the duration of the programming cycle.

GENERAL INSTRUMENT	ER5904

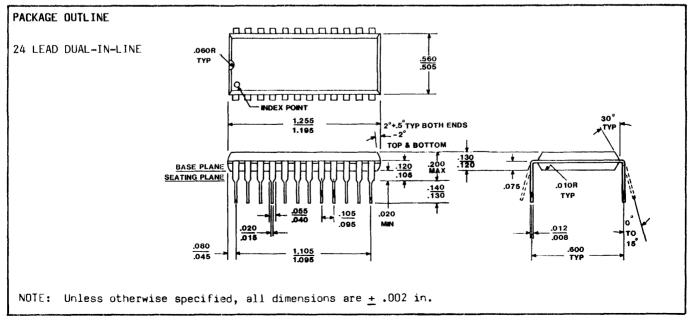
FIGURE 3: OPTIONAL HIGH VOLTAGE MODES



DC CHARACTERISTICS

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Write/Erase Voltage	V _{PP}	20	-	22	v	
V _{PP} Current (Byte Erase/Write)	I _{PP} (w)	-	-	0.01	mA	CE=V _{IL} , V _{PP} =22V
OE Voltage (Chip Erase)	VOE	20	-	22	v	I _{OE} =10μΑ
Vpp Current Inhibit	I _{PP} (i)	-	-	0.01	mA	CE=V _{IH} , V _{PP} =22V
V _{PP} Current (Chip Erase)	Ipp (c)	-	-	0.01	mA	$\overline{CE} = V_{IL}, \overline{OE} = V_{OE},$
					1	V _{PP} =22V

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Add to Vpp Setup Time	t _{AS}	10	-	-	ns	
CE to Vpp Setup Time	t _{CS}	10	-	-	ns	
Data to V _{PP} Setup Time	t _{DS}	0	-	-	ns	
Data Hold Time	t _{DH}	50	-	-	ns	V _{PP} =6V
Write Pulse Width	t _{WP}	150ns	-	15ms		
Write Recovery Time	t _{WR}	50	-	-	ns	Vpp=6V
Chip Erase Setup Time	t _{OS}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
Chip Erase Hold Time	t _{OH}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
V _{PP} RC Time Constant	t _{PRC}	-	-	750	su	
Vpp Fall Time	t _{PFT}	-	-	100	บร	Vpp=6V
Byte Erase/Write Setup Time	t _{BOS}	10	-	-	ns	V _{PP} =6V
Byte Erase/Write Hold Time	t _{BOH}	10	-	-	ns	V _{PP} =6V

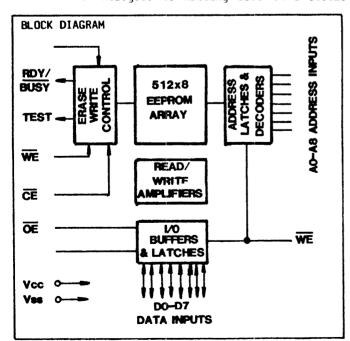

ENHANCED ON-CHIP DATA PROTECTION

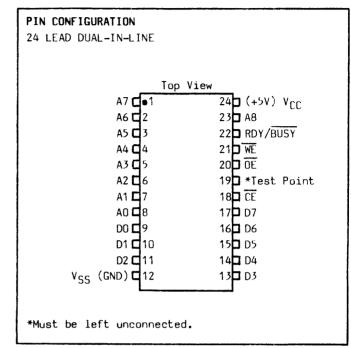
This protection circuitry minimizes the possibility of erronious program/eral cycles during device power up or down. When the power supply voltage, V_{CC} is below 3.5V, V_{CC} WI, (power up or down), the chip is held in a reset mode inhibiting all erase/write circuitry. On power up, after V_{CC} reaches the 3.5V level, a 10ms time out, t_{VCC} , will start during which the erase/write circuitry remains inhibited. This allows time for setting of inputs to the correct state. Additionally, a low state on \overline{OE} will inhibit erase/write operations.

Read operations are not inhibited by the 10ms time out and may occur during this period.

OPTIONAL HIGH VOLTAGE PROGRAMMING AND CHIP ERASE FEATURES

Optional high voltage word erase, word write and 10ms chip erase features are available on the ER5904 (in addition to full +5V only operation) for pin-for-pin and operational compatibility with EEPROMs requiring additional high voltage power supplies.


WORD ALTERABLE 4096 BIT ELECTRICALLY ERASABLE AND PROGRAMMABLE ROM


FEATURES:

- 4096 bits, organized 512 x 8
- Single +5V only operation
- On-chip latching of addresses and data
- Automatic write timeout
- RDY/BUSY signal
- Optional high voltage program and chip erase modes
- \overline{CE} and \overline{OE} inputs to avoid bus contention
- Word alterable
- Read access time of less than 300ns
- Enhanced on-chip data protection
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL STD 883
- JEDEC approved byte-wide pinout
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word

DESCRIPTION

The General Instrument ER5904I is an Electrically Erasable Programmable Read Only Memory (EEPROM) with many ease of use features. The ER5904I can be modified using simple TTL level signals and a single +5V power supply. Writing data into the ER5904I is analogous to writing data in a static

RAM. Since the address and data are internally latched and the RDY/BUSY signal is available, the ER5904I frees the system for other tasks during the programming cycle. The read/write logic is designed such that bus contention will be minimized by use of $\overline{\text{OE}}$ and $\overline{\text{CE}}$ inputs.

TRUTH TABLE

	+5V ONLY OPERATION										
ĈĒ	ŌĒ	WE	RDY/BUSY	MODE	I/O	POWER					
н	х	X	н	STANDBY	High Z	STANDBY					
L	L	н	н	READ	D _{OUT}	ACTIVE					
L	н	ъ	L	PROGRAM	DIN	ACTIVE					
L	н	н	н	READ/WRITE	High Z	ACTIVE					
				INHIBIT							

	OPTIONAL HIGH VOLTAGE COMPATIBLE MODES								
CE	ŌĒ	WE	RDY/ BUSY	MODE	1/0	POWER			
L	н	20 - 22V	L	BYTE ERASE	D _W =H	ACTIVE			
L	н	20 - -22V	L	BYTE ERASE	DW	ACTIVE			
L	20-22V	20 - 22V	L	CHIP ERASE	D _{IN} =H	ACTIVE			
L	22-22V	L	L	CHIP ERASE	D _{IN} =H	ACTIVE			

GENERAL INSTRUMENT	ER5904I
	2

MEMORY CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Erased State	V _{E:}	_	V _{IH} ,V _{OH}	-	v	
Written State	VW	-	VIH, VOL	-	V	
Data Retention Time (powered or unpowered) Number of reprogramming	tg	10	-		years	
cycles per byte Number of Read Access	NP	10 ⁴	-	-	-	See note below
between refresh	N _{RA}	-	Unlimi	ited		

NOTE: There is a tradeoff to be made between the data retention time (t_S) and the number of reprogramming cycles (N_P) performed per address. A gradual reduction in retention time is experienced as the number of reprogramming cycles

increases. The specified limit is merely one point on this curve and does not imply a sudden cutoff or end of life. General Instrument's SNOS EEPROMs are designed so that after 10^4 cycles a typical retention time is 10 years.

PIN FUNCTIONS

Symbol	Function	Comments
A0-A8	9 Bit Address	The address inputs select one of the EEPROM 8-bit words.
D0-D7	8 Bit Data I/O	
V _{SS}	Chip Ground Connection	
CE	Chip Enable Input	This input enables the chip for all modes of operation. When chip enable is high, the I/O terminals are in the floating or high impedance state.
ŌĒ	Output Enable Input	Gates data to output pins during a read cycle.
WE	Write Enable Input	Enables a reprogramming cycle; input data latched on a positive edge.
RDY/BUSY	Status Output	Low when chip is in reprogramming mode and cannot be accessed. High when in read mode.
V _{CC}	+5 Volt Power Connection	

ER59041

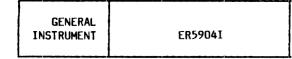
ELECTRICAL CHARACTERISTICS

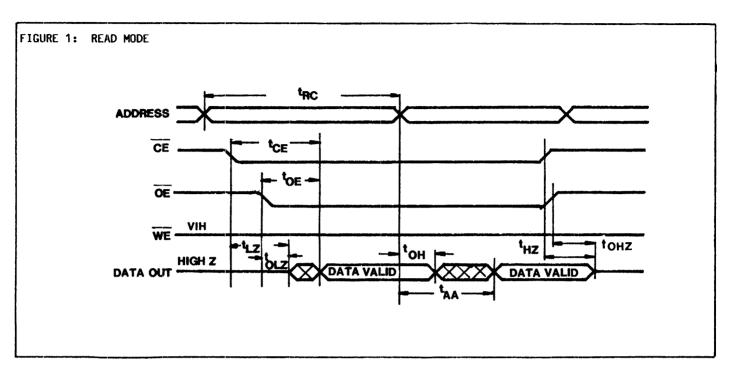
Maximum Ratings*

All inputs and outputs with
respect to ground
Storage temperature (unpowered and
without data retention)65°C to +150°C
Soldering temperature of leads
(10 seconds)+300°C
Standard Conditions (unless other noted)

 $V_{SS} = GND$ $V_{CC} = +5V \pm 10\%$ Operating Temperature Range (T_A): -40°C to +85°C (Industrial) *Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data Labelled "typical" is presented for design guidance only and is not guaranteed.

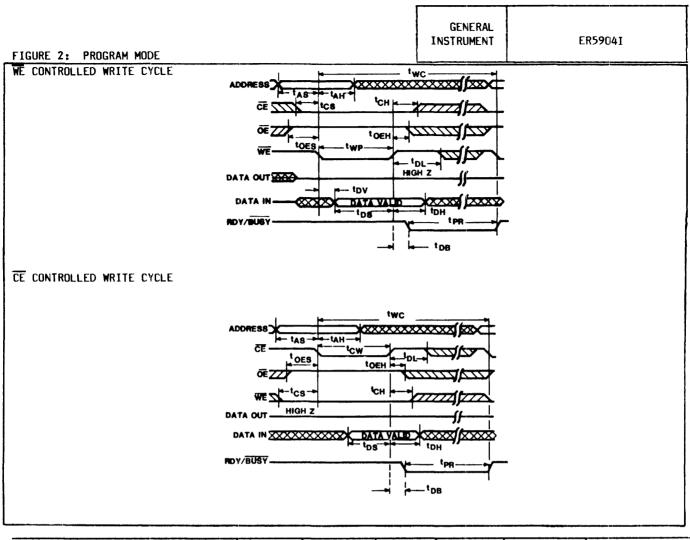

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software


DC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	V	2.0		V	v	
2 1 2	VIH		-	V _{CC} +1.0		
Low Level Input Voltage	VIL	-1.0	-	+0.8	V	
High Level Output Voltage	V _{OH}	2.4	-	۷ _{CC}	V	Aىر I _{OH} = -400 A
Low Level Output Voltage	VOL	-	-	0.4	v	$I_{01} = 2.1 \text{ mA}$
Input Leakage Current	IIL	-		10	Aىر	$V_{IN} = 5.5V$
Output Leakage Current	IOL			10	Aپر	$V_{IN} = 5.5V$
POWER SUPPLY REQUIREMENTS						
V _{CC} Supply:						
Chip Selected	ICC	_	70	_	mA	$V_{CC} = +5.5V$
Chip Deselected (Standby Mode)	ICC		40	_	mA	$V_{\Gamma\Gamma} = +5.5V$
Power Dissipation:	111		40			111 - 19191
Chip Selected	Po	_	385		mW	$V_{CC} = +5.5V$
•	PD	_				
Chip Deselected (Standby Mode)	PD	-	220	-	mW	$V_{CC} = +5.5V$

AC CHARACTERISTICS

Characteristic	Sym	Max	Тур	Max	Units	Conditions
Input Capacitance Output Capacitance	C _I C _O	-	-	6 10	pF pF	V _{IN} = OV V _{DUT} = OV

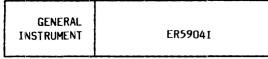


READ MODE	Sym	Min	Тур	Max	Unit	Conditions
Read Cycle Time	t _{RC}	300	-	-	ns	
Chip Enable Access Time	t _{CE}	-	- 1	300	ns	
Address Access Time	t _{AA}	-	-	300	ns	
Output Enable Access Time	t _{OE}	-	-	100	ns	
Chip Enable to Output Low Z	τ _{LZ}	10	-	-	ns	
Chip Disable to Output in High Z	t _{HZ}	10	-	100	ns	
Output Enable to Output in Low Z	tolz	50	-	-	ns	
Output Enable to Output in High Z	t _{OHZ}	10	- 1	100	ns	
Output Hold From Address Change	t _{OH}	20	-	-	ns	

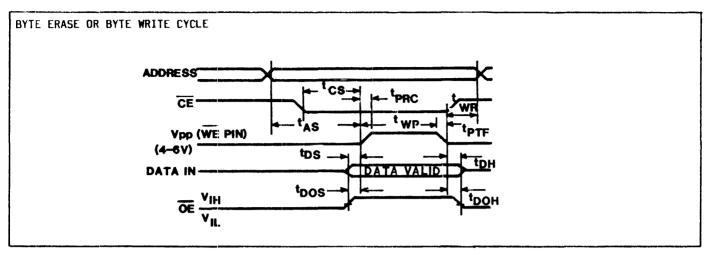
READ MODE

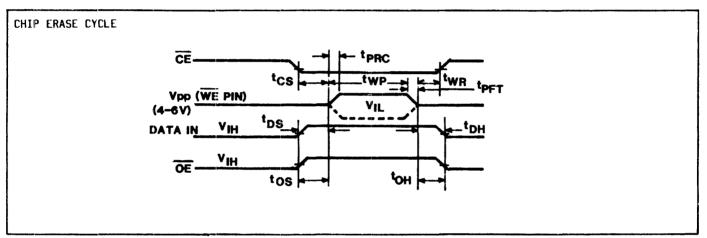
To initiate a read cycle, a valid address must appear on the AO to A8 inputs and remain there for the duration of the cycle because the address is not latched in this mode. $\overrightarrow{\text{CE}}$ may then be brought low to select the device. The desired memory byte will appear on the data lines DO to D7 after a time

delay t_{CE} measured from the falling edge of \overline{OE} . Alternatively, if bus contention is not a problem, \overline{OE} may be tied low. The maximum read access time (t_A) is 300 ns and data will remain valid until a logic level change occurs on \overline{CE} , \overline{OE} or an address line. WE is held high.


PROGRAM MODE	Sym	Min	Тур	Max	Unit	Conditions
Write Cycle Time	t _{WC}	20	-	40	ms	
Address Setup Time	t _{AS}	10	-		ns	
Address Hold Time	t _{AH}	70	-		ns	
Write Setup Time	t _{CS}	0	-		ns	
Write Hold Time	t _{CH}	0	-		ns	
Chip Enable to End of Write Input	t _{CW}	150	-		ns	
Output Enable Setup Time	tOES	10	-		ns	
Output Enable Hold Time	tOEH	10	-		ns	
Write Pulse Width	t _{WP}	150	-		ns	
Data Latch Time	t _{DL}	50	-		ns	
Programming Time	t _{PR}	20	-	40	ms	
Data Setup Time	t _{DS}	50	-		ns	
Data Hold Time	t _{DH}	10	-		ns	
RDY/BUSY	t _{DB}	-	-	100	ns	

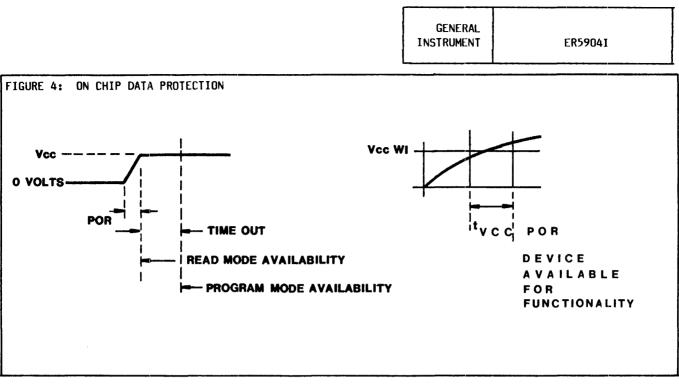
WE CONTROLLED PROGRAM MODE


With a stable address and data word presented to the respective inputs of a selected device and $\overline{\text{CE}}$ of that device brought low, the WE line is pulsed low to initiate a program cycle. The falling edge of WE latches the address inputs and the rising edge latches the data inputs. After a delay t_{DB}, the RDY/BUSY output will go low and remain there for the duration of the programming cycle.


CE CONTROLLED PROGRAM MODE

In this mode, $\overline{\text{WE}}$ is brought low prior to selecting the ER5904. The falling and rising edges of the CE line will then latch the address and data respectively. A delay t_{DB} is timed from the rising edge of the WE line following which the RDY/BUSY output will go low and remain there for the duration of the programming cycle.

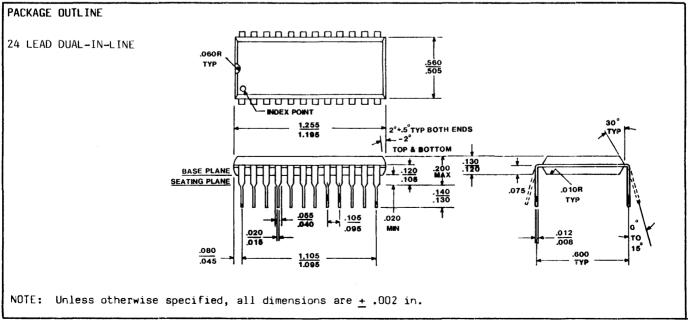
FIGURE 3: OPTIONAL HIGH VOLTAGE MODES



DC CHARACTERISTICS

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Write/Erase Voltage	V _{PP}	20	-	22	v	
Vpp Current (Byte Erase/Write)	I _{PP} (w)	-	-	0.01	mA	CE=V _{IL} , V _{PP} =22V
DE Voltage (Chip Erase)	V _{OE}	20	-	22	v	Aبر10=10A
Vpp Current Inhibit	I _{PP} (i)	-	-	0.01	mA	CE=VIH, Vpp=22V
Vpp Current (Chip Erase)	I _{PP} (c)	-	-	0.01	mA	$\overline{CE} = V_{IL}, \overline{OE} = V_{OE},$
						Vpp=22V

OPTIONAL HIGH VOLTAGE MODES	Sym	Min	Тур	Max	Unit	Conditions
Add to V _{PP} Setup Time	t _{AS}	10	-	-	ns	
CE to V _{PP} Setup Time	t _{CS}	10	-	-	ns	
Data to V _{PP} Setup Time	t _{DS}	0	-	-	ns	
Data Hold Time	t _{DH}	50	-	-	ns	Vpp=6V
Write Pulse Width	t _{WP}	150ns	-	15ms		
Write Recovery Time	t _{WR}	50	-	-	ns	Vpp=6V
Chip Erase Setup Time	tos	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
Chip Erase Hold Time	t _{OH}	10	-	-	ns	V _{PP} =6V, V _{OE} =20V
V _{PP} RC Time Constant	tPRC	-	-	750	ys	
V _{PP} Fall Time	tPFT	-	-	100	us	Vpp=6V
Byte Erase/Write Setup Time	t _{BOS}	10	-	-	ns	۷ _{PP} =6۷
Byte Erase/Write Hold Time	t _{BOH}	10	-	-	ns	۷ _{PP} =6۷

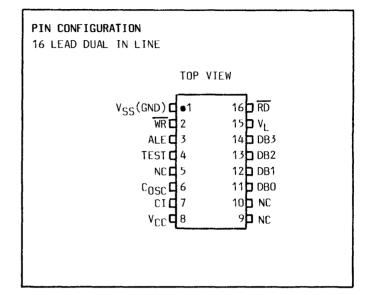

ENHANCED ON-CHIP DATA PROTECTION

This protection circuitry minimizes the possibility of erronious program/eral cycles during device power up or down. When the power supply voltage, V_{CC} is below 3.5V, V_{CC} WI, (power up or down), the chip is held in a reset mode inhibiting all erase/write circuitry. On power up, after V_{CC} reaches the 3.5V level, a 10ms time out, t_{VCC} , will start during which the erase/write circuitry remains inhibited. This allows time for setting of inputs to the correct state. Additionally, a low state on \overline{OE} will inhibit erase/write operations.

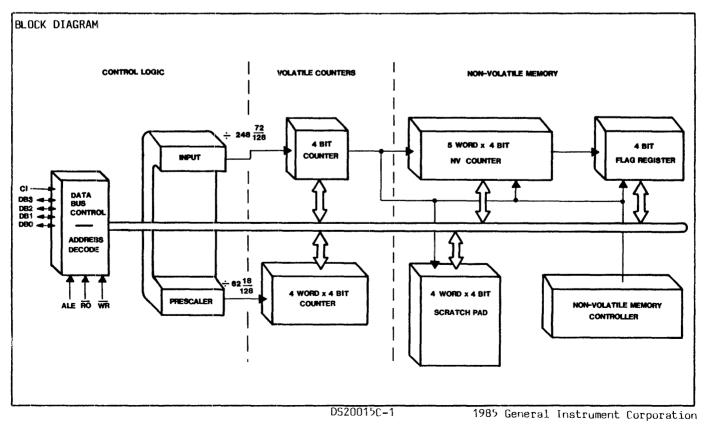
Read operations are not inhibited by the 10ms time out and may occur during this period.

OPTIONAL HIGH VOLTAGE PROGRAMMING AND CHIP ERASE FEATURES

Optional high voltage word erase, word write and 10ms chip erase features are available on the ER5904 (in addition to full +5V only operation) for pin-for-pin and operational compatibility with EEPROMs requiring additional high voltage power supplies.


NON--VOLATILE COUNTER

FEATURES


- Single +5 only operation
- 4-bit volatile counter
- 20-bit non-volatile counter EEPROM
- 16-bit non-volatile scratch pad EEPROM
- Non-volatile tamper flag EEPROM
- 16-bit volatile counter
- Unlimited read accesses
- Fully TTL compatible inputs and outputs
- ESD Protection: Inputs are designed to meet 1.0KV per test method 3015.1, MIL-STD 883
- Highly reliable N-Channel SNOS technology
- Designed for 10 year data retention after 10,000 erase/write cycles per word
- 0°C to +70°C operating ambient temperature range

OVERVIEW

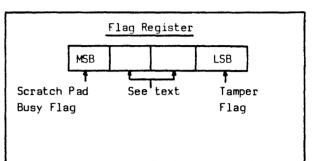
The ER1000 is a low cost, non-volatile counter manufactured in General Instrument's highly reliable SNOS technology. By incorporating both non-volatile status flags, as well as an additional user-defined, non-volatile scratch pad, the ER1000 presents a wide range of applications including RPM monitoring, determining equipment maintenance per-

iods, measuring gas or electricity consumption in utility meters and monitoring machine on-time. The ER1000 accepts both serial (count) and parallel (scratch pad) data for storage in non-volatile memory. All words may be accessed via a 4-bit data bus.

FUNCTIONAL DESCRIPTION

The ER1000 may be broken down into three major subsystems including two binary counter sections and a non-volatile four-word scratch pad (organized as 4-bit words). One section includes a single-word (4-bits) volatile counter, a five-word (EEPROM backed) non-volatile counter and a non-volatile, tamperproof overflow flag (flag register). The other counter section includes a four-word volatile counter. Both counter sections are incremented via either decoded count input (CI) pulses. The nonvolatile, four-word scratch pad may be updated via a 4-bit multiplexed address/data bus (non-volatile scratch pad busy flag is provided). Access to all locations is achieved via this data bus.

<u>Counter Input</u>: Input pulses occur at a rate of O to 1 KHz. The rise time of these transistions is limited externally to a maximum of 1 msec.


Scratch Pad Memory: 16-bits of EEPROM memory, organized 4 x 4, is accessable via the data bus at addresses C, D, E and F.

PIN FUNCTIONS

No.	Name	Comments
1	٧ _{SS}	System ground
2	WR	Write data strobe input
3	ALE	Address latch enable input
4	Test Point	Must be left unconnected for normal operation
5	N.C.	No internal connection
6	c _{osc}	Oscillator external capacitor C=82pf (to GND)
7	CI	Counter input
8	V _{CC}	Supply voltage
9	Test Point	Must be left unconnected for normal operation
10	Test Point	Must be left unconnected for normal operation
11	DBO	Data bus input/output, line O
12	DB1	Data bus input/output, line 1
13	DB2	Data bus input/output, line 2
14	DB3	Data bus input/output, line 3
15	۷ _L	Low voltage detect input
16	RD	Read data strobe input

GENERAL INSTRUMENT	ER1000

<u>Flag Register:</u> The flag register is located at address A. The most significant bit is the scratch pad busy flag, which when high denotes that the scratch pad is performing a non-volatile memory programming function and should not be accessed. When the scratch pad busy flag is set and location A or any other location, B through F, are intentionally accessed the data read out will be (1010) HEX A. The least significant bit of the flag register is the tamper flag, which is set by an overflow from the most significant bit of the 20-bit nonvolatile counter. However, when the scratch pad busy flag is set, the correct state of the tamper flag may not be read, since a read will always return an A as data. The remaining two bits in the flag register are always low, except when the scratch pad busy flag is set as noted below.

	ADDRESS LOCATIONS									
HEX	DB3	DB2	DB1	DBO	Register					
0	0	0	0	0	4-Bit Volatile Counter					
1	0	0	0	1	Word 1 – 20-bit EEPROM Counter					
2	0	0	1	0	Word 2 - 20-bit EEPROM Counter					
3	0	0	1	1	Word 3 – 20-bit EEPROM Counter					
4	0	1	0	0	Word 4 - 20-bit EEPROM Counter					
5	0	1	0	1	Word 5 - 20-bit EEPROM Counter					
6	0	1	1	0	Word 1 - 16-bit Volatile Counter					
7	0	1	1	1	Word 2 - 16-bit Volatile Counter					
8	1	0	0	0	Word 3 - 16-bit Volatile Counter					
9	1	0	0	1	Word 4 - 16-bit Volatile Counter					
A	1	0	1	0	Flag Register - EEPROM					
В	1	0	1	1	Used for counter reset-see text					
C	1	1	0	0	Word 1 - EEPROM Scratch Pad					
Ď	1	1	0	1	Word 2 - EEPROM Scratch Pad					
E	1	1	1	0	Word 3 - EEPROM Scratch Pad					
F	1	1	1	1	Word 4 - EEPROM Scratch Pad					

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

All inputs and outputs with respect to ground
Storage temperature (unpowered
and without data retention)65°C to +150°C
Soldering temperature of
leads (10 seconds)+300°C
Standard Conditions (unless otherwise noted)

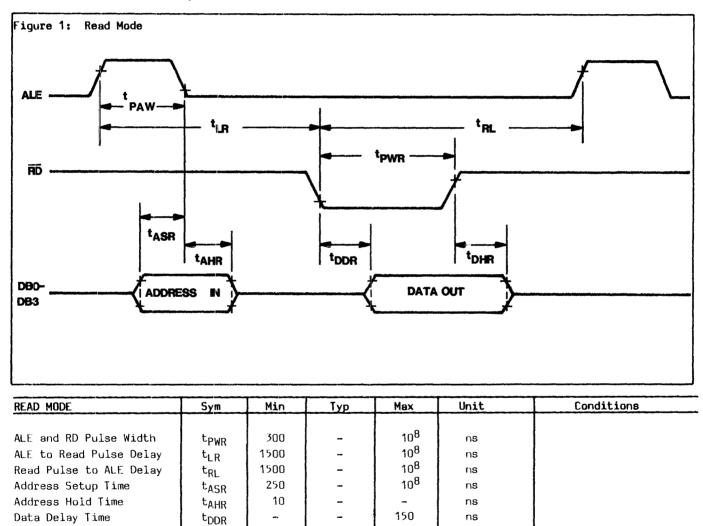
 $V_{SS} = GND$ $V_{CC} = +5V \pm 10\% \quad V_L = +5V \pm 10\%$ $V_{CC} \text{ with no loss of volatile memory:}$ 4.0V to 5.5V $V_{CC} \text{ with no loss of non-volatile memory:}$ 4.2 to 6.0VOperating temperature range (T_A): 0°C to +70°C (Commercial)

DC CHARACTERISTICS

*Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions, or any other conditions outside those indicated in the operational sections of this specification, is not implied.

Data labeled "typical" is presented for design guidance only and is not guaranteed.

General Instrument makes no warranty, expressed or implied, as to the merchantability or fitness for a particular purpose of this device or its software to the customer.


Characteristic	Sym	Min	Тур	Max	Units	Conditions
High Level Input Voltage	VIH	2.0	-	V _{CC} +0.3	V	
Low Level Input Voltage	VIL	0	-	0.8	V	
High Level Output Voltage (open drain)	VOH	۷ _t -0.5	-	۷ _t	v	Requires an external pull-up
Low Level Output Voltage	VOL	- 1	-	0.4	V	I _{D1} = 1.6mA
High Level CI Input Threshold Voltage	VTH	2.4	-	V _{CC} -1.1V	v	Low-to-high Transition
Low Level CI Input Threshold Voltage	V _{TL}	0.8	-	1.8	v	High-to-low Transition
High Level V _L Input Voltage	VLH	4.3	-	V _{CC} +0.3	v	$V_{\rm CC} = 4.5V$
-		5.0	-	V _{CC} +0.3	v	$V_{CC} = 5.5V$
Low Level V _L Input Voltage	VLL	2.5		-	v	
V _{CC} Supply Current	ICC	-	-	4	mA	V _L = OV, Outputs Open
		-	-	10	mA	$V_{L} = 4.3V$, Outputs Open
Input Current V _L Input	ΙL	-	~	200	uA	$V_{L} = 2.0V$
Input Leakage Current DBO-DB3, WR, RD, ALE, CI	IIL	-	-	<u>+</u> 1.0	uA	$V_{IN} = 0$ to 2.4V
High Level Output Leakage Current, HI-Z	^I OZH	-	-	+1.0	υA	$V_{OH} = 2.4V$
Power Dissipation	Р	-	-	55	mW	Output open

AC CHARACTERISTICS

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Input Capacitance	C _{IN}	-	-	10	pf	f _{osc} = 2.0MHz
Oscillator Capacitance	C _{osc}	50	-	100	pf	

GENERAL INSTRUMENT	ER1000

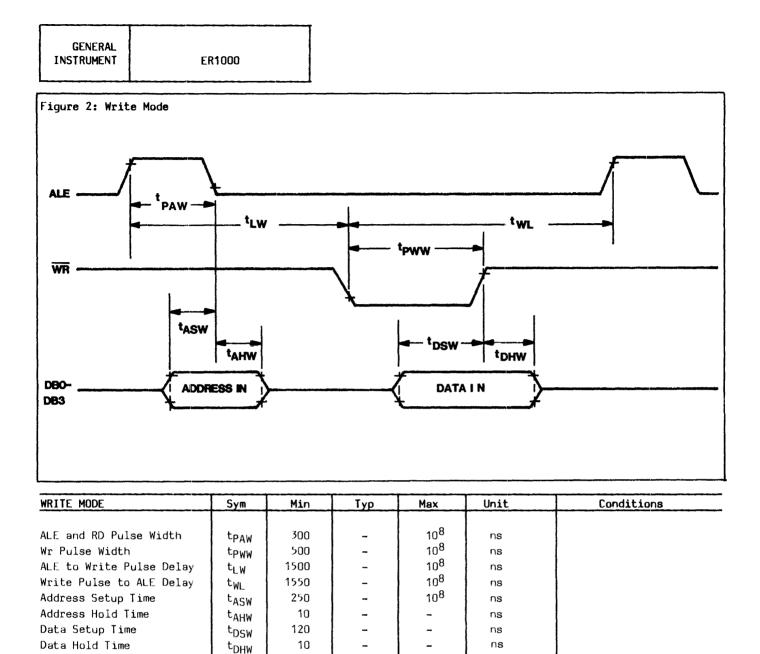
Non-Volatile Counter/ EEPROM Backup: The nonvolatile counter is actually a volatile counter backed up by EEPROM memory. The contents of EEPROM memory backup are updated each time an overflow from the 4-bit volatile counter occurs. This update coincides with each time the stored count changes. In order to increase the device's data stability, updates take the form of a dump from non-volatile memory into the counter, incrementing the counter and then restoring the incremented value to non-volatile memory. Low Voltage Detect Input: Pin 15 (V_L) is an external input which goes low immediately prior to the supply voltage (V_{CC}) falling below its minimum operating voltage of 4.5V. Sufficient external energy storage must be provided to maintain V_{CC} above 4.5V at least 50msec after V_L goes low.

READ MODE PROTOCOL

Data Hold Time

1. Place the address to be read on the data bus and strobe with ALE.

^tDHR

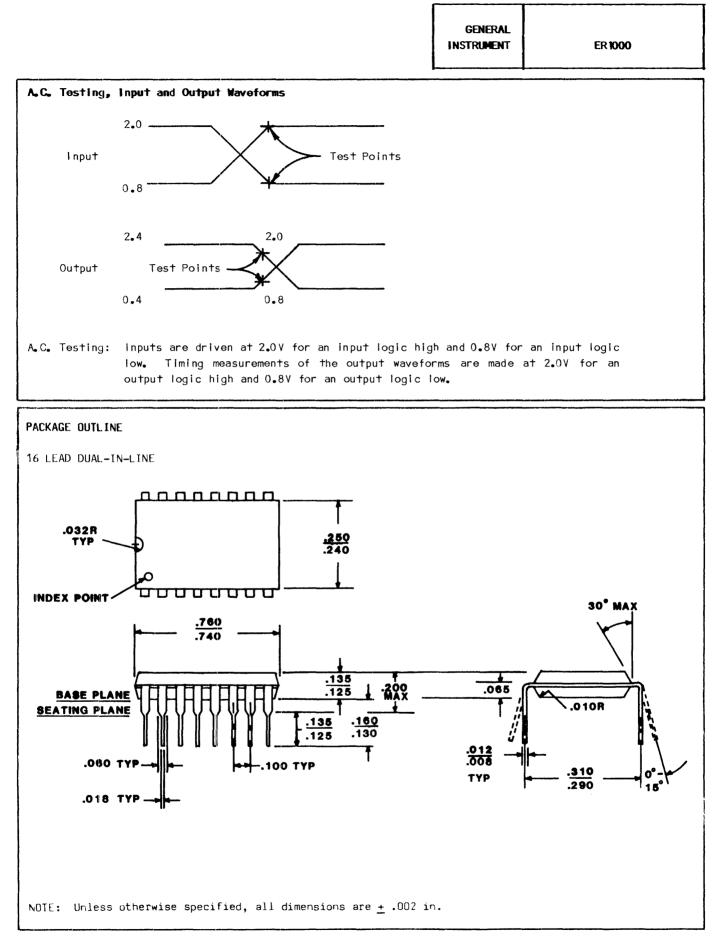


2. Strobe RD (low): Data will be available on the data bus on the rising edge of the RD pulse.

An attempt to read address location, Hex B will return 1011 (Hex B) as data. Also, if location Hex A is read while the scratch pad busy flag is set, 1010 (Hex A) will be returned as data.

50

ns



WRITE CYCLE PROTOCOL

- 1. Address location A: place on the data bus and strobe with ALE.
- 2. Write a 5 to this location: place a 5 on the data bus. This enables the subsequent write and strobe with WR.
- 3. Address the desired location: place the location to be written (A, B, C, D, E or F) on the bus and strobe with ALE.
- 4. Write the desired data: place the desired data on the bus and strobe with WR. The write function is now disabled and must start again at step 1.

Write cycles may only be performed at addresses A through F. If the above sequence is not followed exactly without interruption, the protocol will be terminated. The write function is disabled on power-up.

16-Bit Counter Reset: A reset clears all 16-bits in the volatile counter. This reset is accomplished by following the write protocol and then writing a 4 to address B. If a read operation is performed at address B, a Hex B (1011) will be returned at data.

Top View 7

28 OSC1

27 0SC2 ----

26 MCLR ←

25**□** RC7 ↔

24 🗖 RC6 🔶

23 🗖 RC 5 🔶

22 🗖 RC4 🔶

21 🗖 RC 3 🔶

20 🗖 RC2 🔶

19**□**RC1 ←→ 18**□**RC0 ←→

17**□**RB7 ←→

16□RB6 ←→

15□RB5 ←→

PIN CONFIGURATION

28 Lead Dual In Line

→ TEST CI•1

> V_{DD}□ 2 🗕 RTCC 🗖

V_{SS}C 4

V_{XX}**C** 5

RAOC 6

RA30 9

RBO **ದ**10

RB1 🖸 11

RB2 🗖 12

RB3 **C**13 RB4 **ದ**14

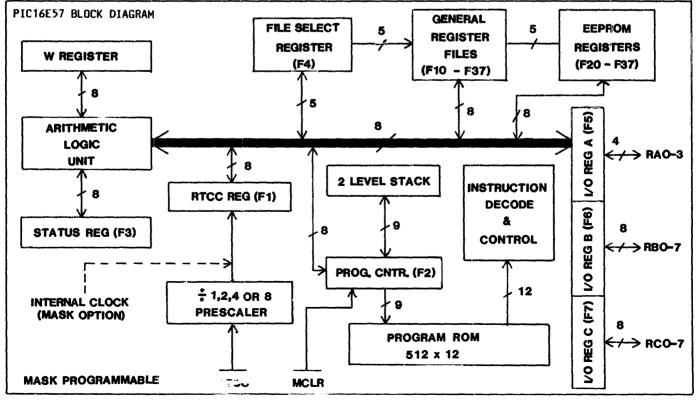
→ RA1 1

🔺 RA2 🗖 8

- 3

7

8 BIT SINGLE CHIP MICROCOMPUTER WITH ON BOARD NON-VOLATILE MEMORY


FEATURES:

- 512 x 12 bit program ROM
- 32 x 8 bit RAM registers
- 32 x 8 bit EEPROM (non-volatile) registers
- EEPROM operations include program (erase/write). erase, bulk erase, write and read
- Unlimited read accesses
- 10 years' data retention over the temperature range of -40°C to +85°C
- Arithmetic logic unit
- Real time clock/counter
- 20 bidirectional I/O lines
- 28 pin package
- 2 level pushdown stack for subroutine nesting
- Jus instruction time
- Open drain option on all I/O lines
- Mask programmable prescaler for RICC
- Self contained oscillator for crystal or ceramic resonator
- Available in 2 temperature ranges: 0° to 70°C, -40° to 85°C

DESCRIPTION

The PIC16E57 microcomputer is an MOS/LSI device containing RAM, I/O and a central processing unit

as well as customer-defined ROM on a single chip. with the added feature of non-volatile data storage. This combination produces a low cost solution for applications which require sensing

GENERAL INSTRUMENT	PIC16E57

individual inputs and controlling individual outputs. Keyboard scanning with memory retention, display driving, and other system control functions can be done at the same time due to the powerful 8-bit CPU.

The internal ROM contains a customer-defined program using the PIC's powerful instruction set to specify the overall functional characteristics of the device. The 8-bit input/output registers provide latched lines for interfacing to a limitless variety of applications.

The PIC16E57 can be used in security applications where the security code may be saved and then changed by the operator. It will also be useful in tuning applications. Favorite stations can be set and changed to suit the consumers needs. In addition, PIC16E57 can be used in automotive applications as electronic odometers or maintenance reminders. The 12-bit instruction word format provides a powerful yet easy to use instruction repetoire emphasizing single bit manipulation as well as logical and arithmetic operations using bytes.

The PIC16E57 is fabricated with N-Channel Silicon Gate Nitride (SNOS) technology resulting in a high performance product with proven reliability and production history. Only a single power supply is required for operation, and an on-chip oscillator provides the operating clock with an external crystal or ceramic resonator to establish the frequency. Inputs and outputs are TTL-compatible.

Extensive hardware and software support is available to aid the user in developing an application program and to verify performance before committing to mask tooling. Programs can be assembled into machine language using PICALB, a powerful macroassembler. PICALB is available in various versions that can be run on many popular computer systems. Once the application program is developed several options are available to insure proper performance. The PIC's operation can be verified in any hardware application by using the PIC16E67. The PIC16E67 is a ROM-less PIC microcomputer with additional pins to connect external PROM or RAM and to accept HALT commands. The PFD3000E Field Demo System is available containing a PIC16E67 with sockets for erasable CMOS PROMs. Finally, the PICES II (PIC In-Circuit Emulation System) provides the user with emulation and debugging capability in either a stand-alone mode or operation as a peripheral to a larger computer system. Easy program debugging and changing is facilitated because the user's program is stored in RAM. With these development tools, the user can quickly and confidently order the masking of the PIC's ROM and bring his application into the market.

A PIC Series Microcomputer Data Manual is available which gives additional detailed data on PIC based system design.

ARCHITECTURAL DESCRIPTION

The firmware architecture of the PIC series microcomputer is based on a register file concept with simple yet powerful commands designed to emphasize bit, byte and register transfer operations. The instruction set also supports computing functions as well as these control and interface functions.

Internally, the PIC is composed of three functional elements connected together by a single bidirectional bus: the Register File (composed of 32 addressable 8-bit registers, and 32 addressable EEPROM registers), an Arithmetic Logic Unit, and a user-defined Program ROM composed of 512 words each 12 bits in width. The Register File is divided into three functional groups: operational registers general registers and general EEPROM regis-The operational registers include, among ters. others, the Real Time Clock Counter Register, the Program Counter (PC), the Status Register, and the I/O Registers. The general purpose registers are used for data and control information under command of the instructions. The Arithmetic Logic Unit contains one temporary working register or accumulator (W Register) and gating to perform Boolean functions between data held in the working register and any file register.

The Program ROM contains the operational program for the rest of the logic within the controller. Sequencing of microinstructions is controlled via the Program Counter (PC) which automatically increments to execute in-line programs. Program control operations can be performed by Bit Test and Skip instructions, Jump instructions, Call instructions, or by loading computed addresses into the PC. In addition, an on-chip two-level stack is employed to provide easy to use subroutine nesting. Activating the MCLR input on power up initializes the ROM program to address 777₈.

GENERAL	
INSTRUMENT	PIC16E57

DATA MEMORY

Resident data memory is organized as 64 8 bit words addressable in 3 banks. The first eight registers FO-F7 are special purpose and are described in the "File Register Arrangement" on page 6. The file registers are designated FO-F37. F10-F37 are general purpose working registers for program data storage and are addressed when ESEL 1 and ESEL 2 both equal 0 or 1.

The 32 EEPROM registers are addressed as 2 banks of 16 (file registers F2O-F37), the first group when ESEL 1 = 1 and ESEL 2 = 0, and the second group when ESEL 1 = 0 and ESEL 2 = 1. Thus FO-F17, which contain the 8 special purpose registers plus 8 general purpose registers, are addressable independent of the ESEL 1 and ESEL 2 bits. This reduces the software "bank switching" to the EEPROM registers when, for example, copying data from general purpose registers to EEPROM registers.

The details of utilizing the 32 non-volatile EEPROM registers are contained in the section titled "Non-Volatile Storage".

NON-VOLATILE STORAGE

Utilization of the 32 non-volatile EEPROM registers has been made as similar as possible to the standard general purpose file registers. What must be done is set the bank select bits to address the EEPROM banks, and then execute the instructions to program (erase/write), erase, write, or read the EEPROM registers. These operations are now described in detail below.

Addressing The EEPROM Registers - There are two EEPROM bank select bits, ESEL 1 and ESEL 2 in the status register, F3. They are bits 3 and 4, respectively. These bits may be read or written to under software control. When both bits are set to 0 or 1, the standard 32 registers are addressed. (See diagram "File Register Arrangement"). When ESEL 1 = 1 and ESEL 2 = 0, the first bank of 16 as EEPROM registers are selected. They are addressed F20-F37. F0-F17, which contain the 8 special purpose registers and 8 general purpose registers, are always directly addressable, independent of the ESEL bits. When ESEL 1 = 0 and ESEL 2 = 1, the second bank of 16 EEPROM registers is specified by addresses F20-F37.

<u>Controlling The EEPROM Registers</u> - The non-volatile registers are different from the standard, volatile registers, in that only a 1 can be written on individual bits. To cause the proper data pattern to be stored, the EEPROM register must first be erased to all Os, and then a 1 be written to the appropriate bits as desired. This can be accomplished in several ways:

Program - A "program" operation is defined as an erase cycle followed by a write (1's) cycle. This is done automatically when one of the two EEPROM banks is selected (see section titled "Addressing the FEPROM Registers) and a MOVWE instruction is executed on F20-F37. Both erasing and writing take approximately 25 ms. each, but this is done both automatically and transparently to the software. The microcomputer can go off and perform other system functions while programming is taking place. While programming is in progress, the BSY bit in the Status Register (F3, B5) is set to 1. This is a "read-only" bit and should be polled by software to make sure programming is complete (BSY = 0) before attempting to do any operation on another EEPROM register. In the event that the user chooses to ignore the BSY bit and initiate another EEPROM operation, the microcomputer will halt and suspend operation until the programming in progress is complete (BSY = 0), at which time operation of the microcomputer will resume and the new EEPROM register operation will begin. Note that the programmer can avoid this suspension of operation by simply reading the BSY bit and only attempting another EEPROM operation when it is O. Also the programmer can get a "software free" delay of the program time (approximately 50 ms.) if he wanted to by immediatetly attempting another program while one is already in progress.

<u>Erase</u> - The EEPROM registers can be erased to all O individually by selecting one of the two EEPROM banks and executing a CLRF instruction on F2O-F37. This operation takes approximately 25 ms.

GENERAL	
INSTRUMENT	PIC16E57

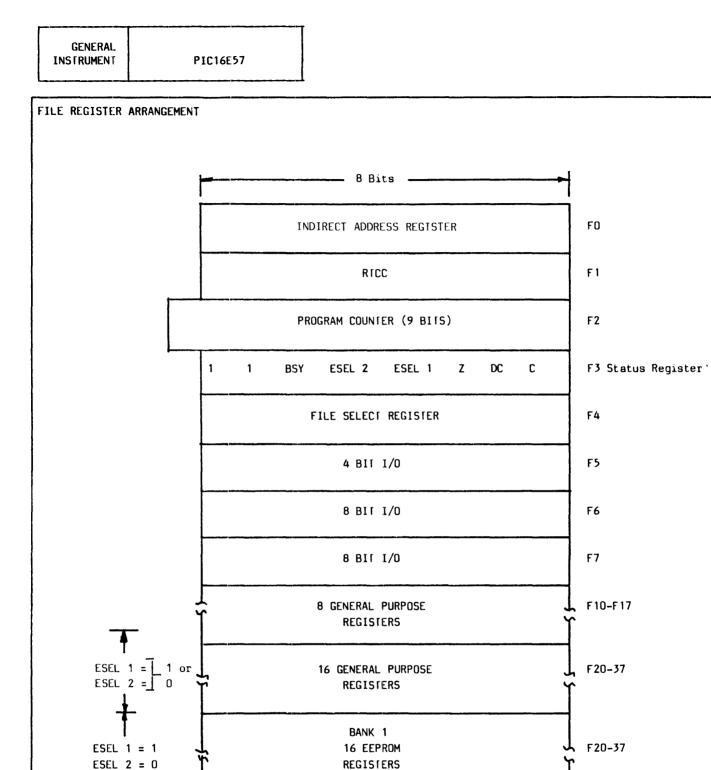
Bulk Erase - Each bank of EEPROM registers can be erased in a single (aproximately 25 ms.) operation by selecting the bank and executing the ERAL instruction (op code 0025). Both banks can be erased simultaneously by setting ESEL 1 and ESEL 2 both to 1's or both O's and executing the ERAL instruction. (Any other register instruction executed when ESEL 1 and ESEL 2 are both 1 will function as though they were both O, resulting in operating on the standard general purpose registers.)

<u>Write</u> - Individual EEPROM registers can be written into by executing an IORWF f,1 instruction on F2O-F37 when an EEPROM bank is selected. If the EEPROM register has been previously erased (to 0) then the data in W will correctly be copied to the EEPROM register. Otherwise, since only a 1 can be written into a EEPROM register, a "write" operation is really an "inclusive or" operation. This operation takes approximately 25 ms. Additionally, a BSF instruction can be used to write (inclusive OR) a 1 to an individual EEPROM register bit.

<u>Read</u> - The EEPROM registers are read by setting the destination designator "d" set to a zero (i.e. MOVF f,o). This is done in one instruction cycle time (t_{CY}) .

NOTES:

- 1. All EEPROM operations (erase, bulk erase, write and read) have the same constraint as the program operation, i.e., if another EEPROM operation is invoked while one is already in progress, the microcomputer will halt and resume when the current EEPROM operation is complete.
- 2. If any instructions other than the valid EEPROM instructions (MOVWF, MOVF, BSF, IORF, CLRF, BTFSC, BTFSS, ERAL or any other read instruction) are executed on an EEPROM register, they will be NOPED.


SIGNAL	FUNCTION
OSC1 (input),	Oscillator pins. These pins are used to derive the internal clock for the chip.
OSC2 (output)	A crystal or ceramic resonator may be used in conjunction with OSC1 and OSC2.
	Additionally, OSC1 may be driven by an external oscillator. The instruction cycle
	frequency is one-eighth the oscillator frequency. $(f_{OSC} = 2.67 \text{ MHz gives})$
	t _{ΓY} ≈ 3μs.)
RTCC (input)	Real Time Clock/Counter. Used by the microprogram to keep track of elapsed time
	between events. The Real Time Clock Counter Register increments on falling edges
	applied to this pin. This register (F1) can be loaded and read by the program.
	This is a Schmitt trigger input except when a prescaler division ratio of 2, 4, or
	8 is selected, in which case the input is TTL compatible. A mask option will
	allow an internal clock signal whose period is equal to the instruction execution
	time to drive the real time clock counter register. In this mode, the prescaler
	is eliminated and transitions in the $\overline{ extsf{RTCC}}$ pin will be disregarded.
RAO-3 (input/output)	User programmable input/output lines. These are controlled by the program to be
	inputs and/or outputs. The 4 MSBs are always read as logic zeroes.
RBO-7 (input/output)	User programmable input/output lines. These are controlled by the program to be
	inputs and/or outputs.
RCO-7 (input/output)	User programmable input/output lines. These are controlled by the program to be
	inputs and/or outputs.
MCLR (input)	Master Clear. Used to initialize the internal ROM program to address 777_8 , set
	the I/O registers high, and clear the ESEL 1, ESEL 2 and BSY bits. This is a
TEST	Schmitt Trigger input. Used for testing purposes only. Must be connected to V_{SS} or left open circuit
1.51	for normal operation.
V _{DD}	Power Supply.
V _{SS}	Ground.
V _{XX}	Output buffer power supply voltage. Used to increase the current sinking
ΛΛ	capability of the I/O pins (for direct LED drive, etc.).

PIN FUNCTIONS

GENERAL	
INSTRUMENT	

REGISTER FILE ARRANGEMENT

File (Octal)				Fu	Inction				<u></u>	
FO	Not a physically implemented register. FO calls for the contents of the File Select Register (low order 5 bits) to be used to select a file register. FO is thus useful as an indirect address pointer. For example, W+FO-W will add the contents of the file register pointed to by the FSR (F4) to W and place the result in W.									
F1	Real Time Clock Counter Register. This register can be loaded and read by the microprogram. The RTCC register keeps counting up after zero is reached. The counter increments on the falling edge of the input $\overline{\text{RTCC}}$. However, if data is being stored in the RTCC register simultaneously with a negative transition on the RTCC pin, the RTCC register will contain the new stored value and the external transition will be ignored by the microcomputer.									
F 2	Program Counter (PC). The PC is automatically incremented during each instruction cycle, and can be written into under program control (MOVWF F2). The PC is nine bits wide, but only its low order 8 bits can be read under program control.									
F3	Status Word Regis clear, or MOVWF F						trol on	ly via bi	t set, bit.	
		(7)	(6)	(5)	(4)	(3)	(2)	(1)	(0)	
		1	1	BSY	ESEL 2	ESEL 1	Z	DC	С	
	C (Carry): For ADD and SUB instructions, this bit is set if there is a carry out from the most significant bit of the resultant. For ROTATE instructions, this bit is loaded with either the high or low order bit of the source.									
	DC (Digit Carry):	DC (Digit Carry): For ADD and SUB instructions, this bit is set if there is a carry out from the 4th low order bit of the resultant.								
	Z (Zero): Set if the result of an arithmetic operation is zero.									
	ESEL 1, ESEL 2:	ESEL 1, ESEL 2: These are the two EEPROM bank select bits. The following table defines their function:								
			<u>ESEI</u> 0 0 1	_ 2	ESEL 1 0 1 0 1	Standa EEPRON EEPRON	ED REGIS ard RAM 1 - Bank 1 - Bank ard RAM	1		
	BSY:									
	Bits: 6-7									
F4	generating effect	File Select Register (FSR). Low order 5 bits only are used. The FSR is used in generating effective file register addresses under program control. When accessed as a directly addressed file, the upper 3 bits are read as ones.								
F5	I/O Register A (AO-A3) (A4-A7 defined as zeros).									
F6	I/O Register B (B	0-B7)								
F 7	1/O Register C (C	0-C7)								
F10-F17	General Purpose R	egisters	3							
F20-F37	General Purpose c	or EEPROM	l Registe	rs (softwa	are select	able).				

BANK 2

16 EEPROM

REGISTERS

ESEL 1 = 0

ESEL 2 = 1

J

F20-37

i		
	GENERAL	
	INSTRUMENT	PIC16E57

BASIC INSTRUCTION SET SUMMARY

BYTE_OPTENTED ETLE

Each PIC instruction is a 12-bit word divided into an OP code which specifies the instruction type and one or more operands which further specify the operation of the instruction. The following PIC instruction summary lists byte-oriented, bitoriented and literal and control operations.

For byte-oriented instructions, "f" represents a file register designator and "d" represents a destination designator. The file register designator specifies which one of the 32 PIC file registers is to be utilized by the instruction. The destination designator specifies where the result of the operation performed by the instruction is to be placed. If "d" is zero, the result is placed in the PIC W register. If "d" is one,

(11-6)

the result is returned to the file register specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator which selects the number of the bit affected by the operation while "f" represents the number of the file in which the bit is located.

For literal and control operations, "k" represents an eight or nine bit constant or literal value.

For an oscillator frequency of 2.67MHz the instruction execution time is 3 usec unless a conditional test is true or the program counter is changed as a result of an instruction. In these two cases, the instruction execution time is 6 µsec.

(6_0)

BYTE-ORIENTED FILE	(11-6)		(4-0)	
REGISTER OPERATIONS (N		the second s	ILE #)	
	For d = 0.f (PICAL accept	s d = 0 or d = W	in the mnemonic)	
	d = 1,f⊷f (if d is omit	ted, assembler a	ssigns d = 1)	
Instruction-Binary (Oct	tal) Name M	nemonic,Operands	Operation	Status Affect
000 000 000 000 000 000 000	No Operation	NOP -	-	None
000 000 1ff fff (0040)	Move W to f (Note 1)	MOVWF f	₩ - ●f	None
000 001 000 000 (0100)	Clear W	CLRW -	0- > W	Z
000 001 1FF FFF (0140)	Clear f	CLRF f	0- ⇒ f	Z
000 010 dff fff (0200)	Subtract W from f	SUBWF f.d	f-₩→d (f+₩+1→d)	C,DC,Z
000 011 dff fff (0300)	Decrement f	DECF f.d	f−1-⇔d	Z
000 100 dff fff (0400)	Inclusive OR W and f	IORWF f,d	WV f-⊷d	Z
000 101 dff fff (0500)	AND W and f	ANDWF f,d	W.f→d	z
000 110 dff fff (0600)	Exclusive OR W and f	XORWF f.d	W+f-⇒d	z
000 111 dff fff (0700)	Add W and f	ADDWF f,d	W+f → d	C,DC,Z
001 000 dff fff (1000)	Move f	MOVF f,d	f-+d	Ζ
001 001 dff fff (1100)	Complement f	COMF f,d	f-⇒d	Z
01 010 dff fff (1200)	Increment f	INCF f,d	f+1 → d	Z
001 011 dff fff (1300)	Decrement f, Skip if Zero	DECFSZ f,d	f-1⇒d, skip of Zero	None
001 100 dff fff (1400)	Rotate Right f	RRF f,d	$f(n) \rightarrow d(n-1), f(0) \rightarrow C, C \rightarrow C$	
001 100 dff fff (1400)	Rotate Left f	•		
001 110 dff fff (1600)		,	f(n)-d(n+1), f(7)-C, C-d(0)	None
DOI 110 dff fff (1808)	Swap halves f	,	f(O-3)⊈f(4-7)→d f+1→d, skip if zero	None
	Increment f, Skip if Zero	INCFSZ f,d		NUNE
BIT-ORIENTED FILE REGISTER OPERATIONS			(4-0) ILE #)	
Instruction-Binary (Oct		nemonic.Operands		Status Affect
010 Obb bff fff (2000)	Bit Clear f	BCF f,b	0—f(b)	None
110 1bb bff fff (2400)	Bit Set f	8SF f,b	1—f(b)	None
111 Obb bff fff (3000)	Bit Test f, Skip if Clear	BIFSC f,b	Bit Test f(b): skip if c	
011 1bb bff fff (3400)	Bit Test f, Skip if Set	BIFSS f,b	Bit Test f(b): skip if s	et None
ITERAL AND CONTROL	(11-8)	(7-1	a)	
PERATIONS	OP CODE	k (LITE		
nstruction-Binary (Oct	tal) Name Ma	nemonic,Operands		Status Affect
00 0kk kkk kkk (4000)	Return & place Literal in		k -W, Stack-PC	None
100 1kk kkk kkk (4400)	Call subroutine (Note 1)	CALL k	PC+1—Stack, K—PC	None
01 kkk kkk kkk (5000)	Go to address (k is 9 bits		k—PC	None
10 0kk kkk kkk (6000)	Move Literal to W	MOVLW k	k	None
10 1kk kkk kkk (6400) 11 0kk kkk kkk (7000)	Inclusive OR Literal and V AND Literal and W	N TORLW K ANDLW K	kVWW	Z. Z.
11 1kk kkk kkk (7400)	Exclusive OR Literal and W		k.W—-W ka⊞WW	Z
	Exclusive on citeral and			. .
BYTE-ORIENTED EEPROM	NS (Operational only when ES	FL bits are enor	opriately set)	
nstruction-Binary (Oct		nemonic,Operands		Status Affect
000 000 1ff fff (0040)	Move W to f	MOVWF f	W - F (EEPROM)	None

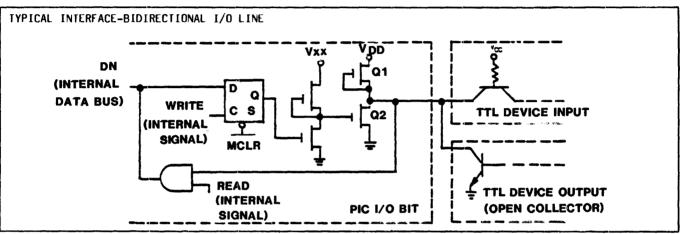
/ E \

TTEE NEUTOTEN OFENNITONO	(operacional only when coc	c orce are uppr	oprideory both	
Instruction-Binary (Octa	1) Name Mn	emonic,Operands	Operation	Status Affected
000 000 1ff fff (0040)	Move W to f	MOVWF f	W -> f (EEPROM)	None
001 000 dff fff (1000)	Move f	MOVF f,d	F (EEPROM 🛶 W)	Z
010 1bb bff fff (2400)	Bit Set f	BSF f,b	1- f(b)	None
011 Obb bff fff (3000)	Bit Test f, skip if clear	BTFSC f,b	Same as normal mode	None
011 1bb bff fff (3400)	Bit Test, skip if set	BTFSS f,b	Same as normal mode	None
000 100 dff fff (0400)	Inclusive or W and f	IORWF f,d	f (EEPROM) VW 🛶 d	Z
000 001 1ff fff (0140)	Clear f	CLRF	O 🛶 f (EEPROM)	Z
000 000 010 101 (0025)	Erase all	ERAL	O ➡EEPROM file bank	None
Notes:				

Notes:
1. The 9th bit of the program counter in the PIC is zero for a CALL and a MOVWF F2. Therefore, sub-routines must be located in program memory locations 0-377g. However, subroutines can be called from anywhere in the program memory since the Stack is 9 bits wide.
2. When an 1/0 register is modified as a function of itself, the value used will be that value present on the program memory and the program between latched high but is driven low by an end of the program between the program betw

When an i/o register is mouther as a function of reserve the value used will be that value present on the output pins. For example, an output pin which has been latched high but is driven low by an external device, will be related in the low state.
 See non-volatile storage section for ESEL EEPROM instructions.
 All instructions, where D=Ø, are legal EEPROM instructions.

SUPPLEMENTAL INSTRUCTION SET SUMMARY


The following supplemental instructions summarized below represent specific applications of the basic PIC instructions. For example, the "CLEAR CARRY" supplemental instruction is equivalent to the basic instruction BCF 3,0 ("Bit Clear, File 3, Bit O"). These instruction mnemonics are recognized by the PIC Cross Assmbler (PICAL).

Instruction-Binary		Mnemonic	Equivalent	Status
(Octal)	Name	Operands	Operation(s)	Affected
010 000 000 011 (2003)	Clear Carry	CLRC	BCF 3,0	-
010 100 000 011 (2403)	Set Carry	SETC	BSF 3,0	-
010 000 100 011 (2043)	Clear Digit Carry	CLRDC	BCF 3,1	-
010 100 100 011 (2443)	Set Digit Carry	SEIDC	BSF 3,1	-
010 001 000 011 (2103)	Clear Zero	CLRZ	BCF 3,2	-
010 101 000 011 (2503)	Set Zero	SETZ	BSF 3,2	-
011 100 000 011 (3403)	Skip on Carry	SKPC	BIFSS 3,0	-
011 000 000 011 (3003)	Skip on No Carry	SKPNC	BIFSC 3,0	-
011 100 100 011 (3443)	Skip on Digit Carry	SKPDC	BIFSS 3,1	-
011 000 100 011 (3043)	Skip on No Digit Carry	SKPNDC	BIFSC 3,1	-
011 101 000 011 (3503)	Skip on Zero	SKPZ	BIFSS 3,2	-
011 001 000 011 (3103)	Skip on No Zero	SKPNZ	BIFSC 3,2	-
001 000 1ff fff (1040)	lest File	ISIF f	MOVE F,1	Z
001 000 Off fff (1000)	Move File to W	MOVFWf	MOVE F,O	Z
001 001 1ff fff (1140)	Negate File	NEGF f,d	COMF f,1	
001 010 dff fff (1200)			INCF f,d	Z
011 000 000 011 (3003)	Add Carry to File	ADDCF f,d	BIFSC 3,0	
001 010 dff fff (1200)			INCF f,d	Z
011 000 000 011 (3003)	Subtract Carry from File	SUBCF f,d	BIFSC 3,0	
000 011 dff fff (0300)			DECF f,d	Z
011 000 100 011 (3043)	Add Digit Carry to File	ADDDCF f,d	BIFSG 3,1	
001 010 dff fff (1200)			INCF f,d	Z
011 000 100 011 (3043)	Subtract Digit Carry from File	SUBDCF f,d	BIFSC 3,1	
000 011 dff fff (0300)			DECF f,d	Z
101 kkk kkk kkk (5000)	Branch	Bk	GOTO k	-
011 000 000 011 (3003)	Branch on Carry	BC k	BIFSC 3,0	
101 kkk kkk kkk (5000)			G010 k	-
011 100 000 011 (3403)	Branch on No Carry	BNC k	BIFSS 3,0	
101 kkk kkk kkk (5000)			G010 k	-
011 100 100 011 (3043)	Branch on Digit Carry	BDC k	BIFSC 3,1	
101 kkk kkk kkk (5000)			GOTO k	-
011 001 000 011 (3443)	Branch on No Digit Carry	BNDC k	BIFSS 3,1	
101 kkk kkk kkk (5000)			GOTO k	-
011 101 000 011 (3103)	Branch on Zero	BZ k	BIFSC 3,2	
101 kkk kkk kkk (5000)			G010 k	-
011 101 000 011 (3503)	Branch on No Zero	BNZ k	BIFSS 3,2	
101 kkk kkk kkk (5000)	1		GDTO k	-

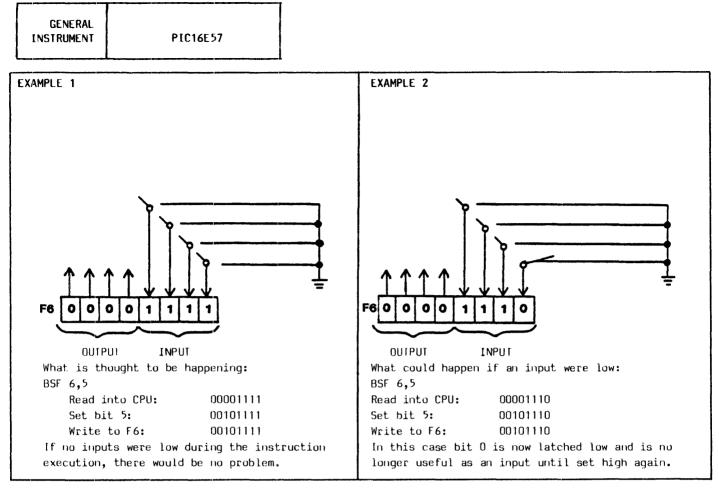
Note: See "Notes" of Non-Volatile Storage for ESEL EEPROM instructions.

I/O INTERFACING

The equivalent circuit for an I/O port bit is shown below as it would interface with either the input of a TIL device (PIC is outputting) or the output of an open collector TIL device (PIC is inputting). Each I/O port bit can be individually time multiplexed between input and output functions under software control. When outputting thru a PIC I/O Port, the data is latched at the port and the pin can be connected directly to a TIL gate input. When inputting data thru an I/O Port, the port latch must first be set to a high level under program control. This turns off Q_2 allowing the TIL open collector device to drive the pad, pulled up by Q_1 , which can source a minimum of 100µA. Care, however, should be exercised when using open collector devices due to the potentially high TIL leakage current which can exist in the high logic state.

PROGRAMMING CAUTIONS

The use of the bidirectional I/O ports are subject to certain rules of operation. These rules must be carefully followed in the instruction sequences written for I/O operation.


Bidirectional I/O Ports

The bidirectional ports may be used for both input and output operations. For input operations these ports are non-latching. Any input must be present until read by an input instruction. The outputs are latched and remain unchanged until the output latch is rewritten. For use as an input port the output latch must be set in the high state. Thus the external device inputs to the PIC circuit by forcing the latched output line to the low state or keeping the latched output high. This principle is the same whether operating on individual bits or the entire port.

Some instructions operate internally as input followed by output operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation, and reoutput the result. Caution must be used when using these instructions. As an example a BSF operation on bit 5 of F6 (port RC) will cause all eight bits of F6 to be read into the CPU. Then the BSF operation takes place on bit 5 and F6 is re-output to the output latches. If another bit of F6 is used as an input (say bit 0) then bit 0 must be latched high. If during the BSF instruction on bit 5 an external device is forcing bit 0 to the low state then the input/output nature of the BSF instruction will leave bit 0 latched low after execution. In this state bit 0 cannot be used as an input until it is again latched high by the programer. Refer to the examples on the next page.

Successive Operations on Bidirectional I/O Ports

Care must be exercised if successive instructions operate on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU (MOVF, BIT SLT, BIT CLEAR, and BIT TEST) is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. This will happen if t_{pd} (See I/O Timing Diagram) is greater than $1/4t_{cy}$ (min). When in doubt, it is better to separate these instructions with a NOP or other instruction.

Real Time Clock Counter

The Real Time Clock Counter can be read from and written to under software control. In addition, it can be used to count external events via the RTCC input. A prescaler counter between the RTCC input and the Real TIme Clock Counter can be mask programed to enable the RTCC register to increment every 1, 2, 4, or 8 negative edges of the RTCC input pin.

This allows the maximum frequency of the $\overline{\text{RTCC}}$ input to be (assume an instruction cycle time of 3μ s):

Prescaler	Maximum Input
Division Ratio	Frequency
1	•3125MHz
2	.6250MHz
4	1.2500MHz
8	2.5000MHz

NOTE: The Schmitt trigger input is valid only when a division ratio of 1 is selected. Otherwise, the input is a normal TTL compatible input.

Self-Contained Oscillator

When a crystal or ceramic resonator is connected between the OSC1 and OSC2 pins, the self-contained oscillator will generate a frequency determined by the external components thus allowing an accurate timing reference, a crystal to be used for time base control with a minimum of external parts.

The output of this oscillator is divided down by 8 to give the instruction cycle time of the microcomputer, thus with a 2.67MHz crystal the instruction cycle time is 3μ s.

ELECTRICAL CHARACTERISTICS

Maximum Ratings*

Ambient Temperature Under Bias	125°C
Storage Temperature55°C to +	150°C
Voltage on any Pin with Respect to V _{SS}	
(except open drain)0.3V to	+9.0V

Voltage on any Pin with Respect to $V_{\rm SS}$

(open drain)	-0.3V to +13V
Power Dissipation (Note 1)	800mW

*Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at conditions these is not implied--operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data labeled "typical" is presented for design quidance only and is not guaranteed.

Standard Conditions (Unless otherwise stated):

DC CHARACTERISTICS: PIC16E57

Operating Temperature $T_A = 0^{\circ}C$ to +70°C

Characteristic	Sym	Min	Typ*	Max	Units	Conditions
Power Supply Voltage	V _{DD}	4.5	-	5.5	V	
Primary Supply Current	IDD	-	-	80	mA	A11 I/O @ V _{DD}
Output Buffer Supply Voltage	V _{XX}	4.5	-	7.0	V	Note 4
Output Buffer Supply Current	IXX	-	-	5	mA	Note 5
Input Low Voltage	V _{IL}	-0.2	_	0.8	v	
Input High Voltage (except	16					
MCLR, RTCC & OSC1)	V _{IH1}	2.4	-	v _{DD}	v	
Input High Voltage	.101			.00		
(MCLR, RTCC, & OSC1)	V _{IH2}	V _{DD} -1	-	V _{DD}	v	
Output High Voltage	V _{OH}	2.4	_	V _{DD}	v	$I_{OH} = -100 uA \text{ provided by}$
ocopae mign forouge	'UH]	100		internal pullups (Note 2)
Output Low Voltage (I/O only)	V-	_		0.45	v	$I_{DL} = 1.6 \text{mA}$ (Note 3),
Suchar Fow Anitage (1/8 only)	VOL	_		0.47	, in the second s	
Input Leakage Current (MCLR, RTCC)		-10		+10	0	$V_{XX} = 4.5V$
	ILC	-10	-	+10	ųА	^V SS ≤ ^V IN ≤ ^V DD
Output Leakage Current	Ţ				•	
(open drain pins)	IOL	-	-	20	μA	$0V \leq V_{PIN} \leq 9V$
Input Low Current (all I/O ports)	IIL	-0.2	-	-1.6	mA	V _{IL} = 0.4V (internal pullup)
Input High Current (all I/O ports)	IIH	-0.1	-0.4	-	mA	$V_{IH} = 2.4V$

*Typical data is at $T_A = 25^{\circ}C$, $V_{DD} = 5.0V$

NOTES:

1. Total power dissipation for the package is calculated as follows:

$$\begin{split} P_{D} &= (V_{DD}) \ (I_{DD}) \ + \sum (V_{DD} - V_{IL}) \ (I_{IL}) \ + \sum (V_{DD} - V_{OH}) \ (I_{OH}) \ + \sum (V_{OL}) \ (I_{OL}). \end{split}$$
2. Positive current indicates current into pin. Negative current indicates current out of pin.

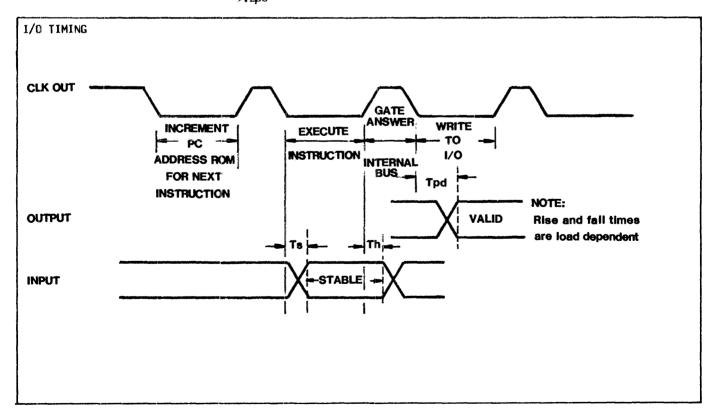
3. Total I_{OL} for all output pins must not exceed 125 mA. Maximum I_{OL} per pin must not exceed 15mA.

4. $V_{\chi\chi}$ supply drives only the I/O ports.

5. The maximum $I_{\chi\chi}$ current will be drawn when all I/O ports are outputting a high.

Standard Conditions (unless otherwise stated):

AC CHARACTERISTICS: PIC16E57


Operating Temperature $T_A = 0^{\circ}C$ to $+70^{\circ}C$

Characteristic	Sym	Min	Тур	Max	Units	Conditions
Instruction Cycle Time	t _{CY}	3		10	us	0.8MHz – 2.6666666MHz external time base (Notes 1 and 2)
RTCC Input						
Period	t _{RT}	t _{CY} +0.2µs	-	-	-	Note 3
High Pulse Width	tRTH	1/2 t _{RT}	-	-	-	
Low Pulse Width	^t rtl	1/2 t _{RT}	-	-	-	

NOTES:

- 1. Instruction cycle period (t_{CY}) equals eight times the input oscillator time base period.
- The oscillator frequency may deviate to 2.72MHz to allow for tolerance of a crystal or ceramic 2. resonator time base element.
- 3. The maximum frequency which may be input to the RTCC pin is calculated as follows:

 $f(\max) = \frac{1}{t_{RT(\min)}} = \frac{1}{t_{CY(\min)} + 0.2\mu s}$ For example: If $t_{CY} = 3\mu s$, $f_{(max)} = \frac{1}{1} = .3125 MHz$

DS30009B-12

GENERAL INSTRUMENT

PIC16E57

MICROELECTRONICS DIVISION/GENERAL INSTRUMENT CORPORATION

WORLDWIDE SALES OFFICES

NORTH AMERICA UNITED STATES: MICROELECTRONICS DIVISION

NORTHEAST -36 Commerce Way Woburn, Massachusetts 01801 Tel: 617-938-5890, TLX: 922540

758 Highway 18, Suite 104 East Brunswick, New Jersey 08816 Tel: 201-254-5024, TWX: 710-480-5469

SOUTHEAST -1616 Forest Drive Annapolis, Maryland 21403 Tel: 310-269-6250, TWX: 710-867-8566

19 West Hargett Street Commerce Bldg., Suite 809E Raleigh, North Carolina 27601 Tel: 919-828-0317

SOUTH CENTRAL -4825 LBJ Frwy., Suite 178 Dallas, Texas 75244 Tel: 214-934-1654, TWX: 910-860-9259

CENTRAL -5511 East 82nd Street, Suite A Indianapolis, Indiana 46250 Tel: 317-841-9328, TWX: 910-333-2885 ELN: 62774221

2355 S. Arlington Hts. Road, Suite 408 Arlington Heights, Illinois 60005 Tel: 312-981-0040

SOUTHWEST -201 Standard Street El Segundo, California 90245 Tel: 213-322-7745, TWX: 910-348-6296

NORTHWEST -3080 Olcott Street, Suite 230C Santa Clara, California 95054 Tel: 408-496-0844, TWX: 910-379-0010

EUROPE

NORTHERN EUROPE Times House, Ruislip, Middlesex, HA4 8LE Tel: (08956), 36141, Telex: 23272

SOUTHERN EUROPE

5-7 Rue De L'Amiral Courbet 94160 Saint Mande, Paris Tel: (1) 374-1133, Telex: 842-213073

Via Mascheroni 19 20145 Milano Tel: (2) 498 73 62

CENTRAL EUROPE

GENERAL INSTRUMENT DEUTSCHLAND GmbH Freischuetzstr. 96 Postfach 810329 8000 Muenchen 81 Tel: (089) 95997-0, Telex: 528054

MICROELECTRONICS DIVISION/GENERAL INSTRUMENT CORPORATION

WORLDWIDE SALES OFFICES (continued)

ASIA HONG KONG: GENERAL INSTRUMENT HONG KONG LTD. Room 1104-1107, Tower B Mandarin Plaza, Science Museun Road Tsimshatsui East, Kowloon Hong Kong Tel: (5) 434360, Telex: 84606+ KOREA: GENERAL INSTRUMENT MICROELECTRONICS Room 1004, Keo Yang Bldg. 51-8, Soosong-Dong Chongro-Ku, Seoul, Korea Tel: (2) 744-8543, TLX: K26880 DAEHO

GENERAL INSTRUMENT HONG KONG LTD.

1 Scotts Road, Singapore 0922

Suite 1914, Shaw Centre

Telex: GIS'PORE RS 24424

Tel: (65) 235-8030,

JAPAN: GENERAL INSTRUMENT INTERNATIONAL CORP. Fukide Bldg., 1-13 Toranomon 4-Chome Minato-ku, Tokyo 105 Tel: (03) 437-0281, Telex: 2423413+

Toyosaki Bldg. 7/F 18-21 Chaya-Machi, Kita-Ku Osaka 530 Japan Tel: (06) 375-0606

TAIWAN: GENERAL INSTRUMENT MICROELECTRONICS TAIWAN 233 Pao Chiao Road, Hsin Tien Taipei, Taiwan Tel: (02) 914-6234, Telex 785-31115

SINGAPORE:

Copyright 1985 - General Instrument Corporation - Printed in U.S.A.-85062.5

The information in this publication, including schematics, is suggestive only. General Instrument Corporation does not warrant, nor will be responsible or liable for, (a) the accuracy of such information, (b) its use or (c) any infringement of patents or other rights of third parties.

