FUJITSU

Wireless Communications Products
Including Power Management
Data Book
1996 Rev. 1.0

Prescalers

Power Management Switches

Application Notes and Articles

Quality and Reliability

Ordering Information
Sales Information

FUIITSU

Wireless Communications Products

Fujitsu Limited
Tokyo, Japan

Fujitsu Microelectronics, Inc.
San Jose, California, U.S.A.
© 1995 Fujitsu Microelectronics, Inc., San Jose, California

All Rights Reserved

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without the prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Product Communications Department, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A 95134-1804

Printed in the U.S.A.

PREFACE

This data book contains the latest product information which is part of the vast line of Fujitsu's Telecommunications Products that supports the rapidly growing markets for Wireless Communications products and services. This edition includes Prescalers, CMOS PLLs, Super PLLs, Super Analog RF Devices, high performance Piezoelectric Bandpass SAW Filters, and Power Management Switches. All of these products are manufactured to meet the high standard of quality and reliability that is found in all of Fujitsu's products.

Fujitsu Microelectronics, Inc. (FMI), is further committing to higher levels of product support and information responsiveness to its valued customers through the establishment of a Customer Response Center (CRC) and a site on the Internet World Wide Web (WWW). The CRC, planned to be operational in Oct, 1995, will give you the convenience of calling one number ($1-800-866-8608$) for support of your product questions and information needs. In addition, the Internet WWW site for FMI (www.fmi.fujitsu.com) is in the process of being registered and will be brought online to give you quick and easy access to the vast array of information covering the large number of product lines supported by FMI. Our goal is to provide all of our customers the best possible support and attention they deserve.
SECTION 1 - Introduction and Quick Selection Guide 1-1
SECTION 2 - Prescalers - At a Glance 2-1
MB501L 1.1 GHz Two Modulus Prescaler 2-3
MB501LV 1.1 GHz Low Voltage/Low Power Two Modulus Prescaler 2-15
MB501SL 1.1 GHz Super Low Power Two Modulus Prescale 2-25
MB504 520 MHz Two Modulus Prescaler 2-3
MB504L 520 MHz Two Modulus Prescaler 2-3
MB504LV 520 MHz Low Voltage/Low Power Two Modulus Prescaler 2-15
MB505-16 1.6 GHz Two Modulus Prescaler 2-35
MB506 2.4 GHz Two Modulus Prescaler 2-39
MB507 1.6 GHz Two Modulus Prescaler 2-43
MB508 2.3 GHz Two Modulus Prescaler 2-51
MB509 1.1 GHz Two Modulus Prescaler 2-59
MB510 2.7 GHz Two Modulus Prescaler 2-67
MB511 1.0 GHz Two Modulus Prescaler 2-73
MB551 1.0 GHz Two Modulus Prescaler 2-81
SECTION 3 - CMOS Phase-Locked Loops (PLLs) - At a Glance 3-1
MB87001A 13 MHz Serial Input PLL Frequency Synthesizer 3-3
MB87006A 17 MHz Serial Input PLL Frequency Synthesizer 3-15
MB87014A 180 MHz Serial Input PLL Frequency Synthesizer 3-27
MB87076 10 MHz Serial Input PLL Frequency Synthesizer with Power Down 3-37
MB87086A 95 MHz Serial Input PLL Frequency Synthesizer 3-49
MB87087 17 MHz Serial Input PLL Frequency Synthesizer 3-59
MB87091 300 MHz Serial Input PLL Frequency Synthesizer 3-71
MB87093A 145 MHz Serial Input PLL Frequency Synthesizer 3-89
MB87094 15 MHz @ 1.1V Serial Input PLL Frequency Synthesizer 3-99
MB87095A 110 MHz Serial Input PLL Frequency Synthesizer 3-89
MB87096A 90 MHz Serial Input PLL Frequency Synthesizer 3-89
SECTION 4 - Super PLLs (Single Chip PLLs/Prescalers) - At a Glance . .4-1
MB15A01
1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-5
MB15B01
MB1501 1.1 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-19
MB1501 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-33
MB1501H 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-33
MB1501L 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-33
MB15A02 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-51
MB1502 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-67
MB1502H 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-67
MB15B03
MB15B03 1.1 GHz, 0.3 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-81
MB15F03 2.0 GHz, 0.5 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-95
MB1503 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-109
MB1504 520 MHz Prescaler/Serial Input PLL Frequency Synthesizer 4-125
MB1504H 520 MHz Prescaler/Serial Input PLL Frequency Synthesizer 4-125
MB1504L 520 MHz Prescaler/Serial Input PLL Frequency Synthesizer 4-125
SECTION 4 - Super PLLs (Single Chip PLLs/Prescalers)
MB15E05 2.0 GHz Low Power Prescaler/Serial Input PLL Frequency Synthesizer 4-143
MB1505 600 MHz Prescaler/Serial Input PLL Frequency Synthesizer 4-157
MB15E06 2.5 GHz Low Power Prescaler/Serial Input PLL Frequency Synthesizer 4-143
MB1506 2.0 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-169
MB1507 2.0 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-185
MB1508 2.5 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-197
MB1509 400 MHz Dual Prescaler/Serial Input PLL. Frequency Synthesizer 4-207MB15U10
MB1510
MB15B11
MB1511
1.1 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-221
1.1 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-231
1.1 GHz 400 MHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-243
1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-257
MB1512MB15B131.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer4-269
1.1 GHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-281
MB1513 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-295
MB1514 400 MHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-309
MB1515 2.5 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-323
MB15A16 1.2 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-337
MB1516A 1.1 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-349
MB1517A 2.0 GHz Prescaler/Serial Input PLL. Frequency Synthesizer 4-365
MB1518 2.5 GHz Prescaler/Serial Input PLL Frequency Synthesizer 4-391
MB15A19 600 MHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-401
MB1519 600 MHz Dual Prescaler/Serial Input PLL Frequency Synthesizer 4-415
MB15Sxx Series 300 MHz Mask Programmable IF Prescaler/PLL 4-429
MB15S02 $284 \mathrm{MHz}, 116 \mathrm{MHz}$ Fixed Divide IF Prescaler/PLL for GSM 4-437
SECTION 5 - Super Analog RF Devices - At a Glance 5-1
MB531 1.1 GHz Tx Mixer 5-3
MB539 1.6 GHz Low Noise Amplifier 5-11
MB54501 1.1 GHz Low Noise Amplifier and Mixer 5-19
MB54502 1.1 GHz Dual Low Noise Amplifiers 5-25
MB54503 1.1 GHz Medium Power PA Driver Amplifier 5-31
M854609 1.0 GHz I/Q Quadrature Modulator (Preliminary) 5-37
MB54619 2.0 GHz I/Q Quadrature Modulator (Preliminary) 5-59
SECTION 6 - BiCMOS LSI RF Integrated Circuits - At a Glance 6-1
MB1520 Series I Semi-Custom LSI RF IC 6-3
MB1530 Series I Semi-Custom LSI RF IC 6-3
MB1540 Series I Semi-Custom LSI RF IC 6-3
MB1550 Series I Semi-Custom LSI RF IC 6-3
MB54500 Series II Semi-Custom LSI RF IC 6-31
MB54600 Series III Semi-Custom LSI RF IC 6-45
MB1560 Series IV Semi-Custom LSI RF IC 6-59
SECTION 7 - Piezoelectric Devices/SAW Filters - At a Glance 7-1
FAR-F5CC-86M50-L2AA AMPS/IS-54/IS-95 SAW Filter 7-7
FAR-F5CC-836M50-L2AZ AMPS/IS-54/IS-95 SAW Filter 7-7
FAR-F5CC-881M50-L2AB AMPS/IS-54/IS-95 SAW Filter 7-7
FAR-F5CC-881M50-L2AY AMPS/IS-54/IS-95 SAW Filter 7-7
FAR-F5CC-933M50-L2BA NTT SAW Filter 7-7
FAR-F5CC-878M50-L2BB NTT SAW Filter 7-7
FAR-F5CC-888M50-L2CA ETACS SAW Filter 7-7
FAR-F5CC-933M50-L2CB ETACS SAW Filter 7-7
FAR-F5CC-911M50-L2DA NTACS SAW Filter 7-7
FAR-F5CC-856M50-L2DB NTACS SAW Filter 7-7
FAR-F5CC-902M50-L2EZ NMT/GSM SAW Filter 7-7
FAR-F5CC-947M50-L2EB NMT/GSM SAW Filter 7-7
FAR-F5CC-947M50-L2EY NMT/GSM SAW Filter 7-7
FAR-F5CC-947M50-L2EX NMT/GSM SAW Filter 7-7
FAR-F5CC-897M50-L2KA E-GSM SAW Filter 7-7
FAR-F5CC-942M50-L2KB E-GSM SAW Filter 7-7
FAR-F5CC-942M50-L2KY E-GSM SAW Filter 7-7
FAR-F5CC-950M00-L2FA PDC SAW Filter 7-7
FAR-F5CC-820M00-L2FB PDC SAW Filter 7-7
FAR-F5CC-915M00-L2JA 900 MHz ISM SAW Filter 7-7
FAR-F5CC-915M00-L2JZ 900 MHz ISM SAW Filter 7-7
FAR-F5CC-935M00-L2LA 2-Way Pager SAW Filter 7-7
FAR-F5CB-836M50-L2AA AMPS/IS-136/IS-95 SAW Filter 7-37
FAR-F5CB-881M50-G201 AMPS/IS-136/IS-95 SAW Filter 7-37
FAR-F5CB-881M50-G211 AMPS/IS-136/IS-95 SAW Filter 7-37
FAR-F5CB-888M50-G201 ETACS SAW Filter 7-37
FAR-F5CB-933M50-G202 ETACS SAW Filter 7-37
FAR-F5CB-933M50-G212 ETACS SAW Filter 7-37
FAR-F5CB-902M50-G201 NMT/GSM SAW Filter 7-37
FAR-F5CB-947M50-G201 NMT/GSM SAW Filter 7-37
FAR-F5CB-947M50-G211 NMT/GSM SAW Filter 7-37
FAR-F5CB-911M50-G201 NTACS SAW Fitter 7-37
FAR-F5CB-933M50-G201 NTT SAW Filter 7-37
FAR-F5CB-878M50-G201 NTT SAW Filter 7-37
FAR-F6CC-1G4410-L2ZA PDC 1.5 GHz SAW Filter 7-65
FAR-F6CC-1G4890-L2ZB PDC 1.5 GHz SAW Filter 7-65
FAR-F6CC-1G6190-L2ZN PDC 1.5 GHz SAW Filter 7-65
FAR-F6CE-1G7475-L2YA DCS 1800 SAW Filter 7-65
FAR-F6CE-1G8425-L2YB DCS 1800 SAW Filter 7-65
FAR-F6CE-1G8800-L2XA PCS (US) SAW Filter 7-65
FAR-F6CE-1G9600-L2XB PCS (US) SAW Filter 7-65
FAR-F6CE-2G4500-L2WA WLAN (US) SAW Filter 7-65
M2 Series (D100) Piezoelectric Device (Voltage Controlled Oscillator) 7-87
M2 Series (D300) Piezoelectric Device (Voltage Controlled Oscillator) 7-95
M3 Series (D001) Piezoelectric Device (Voltage Controlled Oscillator) 7-105
M3 Series (D101) Piezoelectric Modulator 7-109
SECTION 8 - Power Management Switches - At a Glance 8-1
MB3802 Dual .12 Ohm, 1.2 Amp Switches with Zero "Off State" Currrent 8-3
MB3807A Dual . 3 Ohm (12 V port), 6.0 Ohm (5 V port) Switches for Flash 8-17
Memory Cards and Other PCMCIA Applications 8-17
SECTION 9 - Application Notes and Articles - At a Glance 9-1
Fujitsu Prescalers and Phase-Locked Löops for VHF and UHF Frequency Synthesis 9-3
Resonator-Type Low-Loss Filters 9-35
L and S Band Low-Loss Filters using SAW Resonators 9-43
SECTION 10 - Quality and Reliability 10-1
SECTION 11 - Ordering Information 11-1
SECTION 12 - Sales Information 12-1
SECTION 13 - Glossary 13-1

RF/WIRELESS PRODUCTS

Telecommunication Devices

Fujitsu's Telecom IC product offering includes a wide range of leading edge RF/Wireless parts for use in diverse applications such as cellular telephones, cordless telephones, PCS/PCN systems, wireless PBX systems, wireless LAN/WAN systems, pagers, cable television converter boxes and a variety of portable wireless communication devices. The core product families for RF/Wireless applications include Prescalers, Phase-Locked Loops (PLLs), SingleChip PLL/Prescalers (Super PLLs), RF Analog Devices (Super Analog), and Piezoelectric Devices (SAW Filters and VCOs/Modulators). These products are manufactured to meet the high standard of quality and reliability that is found in all Fujitsu products.

- Prescalers

Fujitsu offers a wide range of prescaler devices capable of satisfying the technical requirements of today's applications. Features include devices covering the 200 MHz to 2.7 GHz range, low power consumption, and a multitude of divide ratios.

- PLLs

The Fujitsu family of PLLs offers a wide range of operation frequencies with low supply current and voltages to meet many diverse design requirements. A serial input programming capability is a feature of all Fuijitsu's PLLs.

- Super PLLs

Fujitsu is one of only a few semiconductor manufacturers to offer single-chip PLL/Prescaler devices and was the creator of the industry standard MB1501. These devices are manufactured using an advanced BiCMOS process that combines high speed and low power consumption in a single chip. With the increased emphasis on board space reduction to improve cost, reliability, and overall end product size for portable applications, these single-chip devices are an ideal solution for wireless systems designers.

- Super Analog

Included are a series of highly integrated Analog RF devices such as Low Noise Amplifiers (LNA), Modulators, Demodulators and Mixers that are typically used in the front ends of mobile and portable wireless communication systems. These include single and multi-function devices based on Fujitsu's advanced RF BiCMOS and Bipolar processes which are second to none.

- Piezoelectric Devices

Fujitsu's lithium tantalate piezoelectric bandpass SAW Filters provide sharp roll-off characteristics and excellant stability over temperature in very small $3.8 \mathrm{~mm} \times 3.8 \mathrm{~mm}$ or $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ surface mount packages. Standard transmit and receive frequencies are available for AMPS, NTACS, ETACS, NMT/GSM, NTT, PDC and ISM/USA. This family of devices also includes a series of Voltage Controlled Oscillators (VCOs) and Modulators

RF/WIRELESS PRODUCTS

Quick Selection Guide - Prescaler, Super Analog

RF/WIRELESS PRODUCTS

Quick Selection Guide - CMOS PLLs, Super PLLs

RF/WIRELESS PRODUCTS

Bipolar Prescalers - 200 MHz to 2.7 GHz

Device Part No.	Frequency (Maximum)	Divide Ratio	Icc (Typ.)	$\mathrm{V}_{\text {cc }}$	Package
MB501L	1.1 GHz	64/65, 128/129	10 mA	5 V	8-pin DIP, SOP
MB501LV	1.1 GHz	64/65, 128/129	12 mA	3 V	8 -pin DIP, SOP
MB501SL	1.1 GHz	64/65, 128/129	5 mA	5 V	8-pin DIP, SOP
MB504	520 MHz	32/33, 64/65	10 mA	5 V	8-pin DIP, SOP
MB504L	520 MHz	32/33, 64/65	5 mA	5 V	8 -pin DIP, SOP
MB504LV	520 MHz	32/33, 64/65	6 mA	3 V	8-pin DIP, SOP
MB505-16	1.6 GHz	128, 256	9 mA	5 V	8-pin DIP, SOP
MB506	2.4 GHz	64, 128, 256	18 mA	5 V	8 -pin DIP, SOP
MB507	1.6 GHz	128/129, 256/257	18 mA	5 V	8-pin DIP, SOP
MB508	2.3 GHz	$\begin{aligned} & 128 / 129,256 / 257 \\ & 512 / 514 \end{aligned}$	24 mA	5 V	8-pin DIP, SOP
MB509	1.1 GHz	64/65, 128/129	12 mA	5 V	8-pin DIP, SOP
MB510	2.7 GHz	128/144, 256/272	10 mA	5 V	8-pin DIP, SOP
MB511	1.0 GHz	1,2,8	23 mA	5 V	8-pin DIP, SOP

Prescaler/VCO

Device Part No.	Frequency (Maximum)	Divide Ratio	ICC (Typ.) $^{\text {V }}$ VC	Package	
MB551	1.0 GHz	$128 / 129$	16 mA	5 V	8 -pin SOP

Super Analog Devices

Device Part No.	Frequency (Maximum)	Features	Icc (Typ.)	VCC	Package
MB531	1.1 GHz	Tx Mixer	12.7 mA	5 V	8 -pin SSOP
MB539	1.6 GHz	Low Noise Amp	8 mA	5 V	8 -pin SSOP
MB54501	1.1 GHz	LNA/Mixer	6 mA	3 V	16 -pin SSOP
MB54502	1.1 GHz	Dual LNAs	4 mA	3 V	16 -pin SSOP
MB54503	1.1 GHz	PA Driver Amp	26 mA	3.6 V	16 -pin SSOP
MB54609	1.0 GHz	I/Q Modulator	20 mA	3 V	$20-\mathrm{pin}$ SSOP
MB54619	2.0 GHz	I/Q Modulator	25 mA	3 V	$20-$ pin SSOP

RF/WIRELESS PRODUCTS

Low Power CMOS Phase Locked Loops (PLLs)

Device Part No.		Divide Ratio			$\begin{aligned} & \mathrm{IDD}_{\mathrm{DD}}^{\mathrm{mA}} \\ & \times 3 \mathrm{~V} / 5 \mathrm{~V} \end{aligned}$	V ${ }_{\text {D }}$	Package
		$\begin{gathered} \mathrm{N} \\ \text { Prog. } \\ \text { Ct. } \end{gathered}$	A SwalIow				
MB87001A	10/13	5-1023	0-127	8-2048	2.0/3.0	2.7-5.5V	16-pin DIP, SOP
MB87006A	10/17	5-1023	0-127	Binary 5-16383	2.5/3.5	$3.0-6.0 \mathrm{~V}$	16-pin DIP, SOP
MB87014A	-/180	5-1023	0-63	Binary 5-65535	- 8.0	4.5-5.5V	16-pin DIP, SOP
MB87076	10/10	5-2047	0-127	Binary 5-16383	2.5/3.0	2.7-5.5V	16-pin DIP, SOP
MB87086A	-/95	5-1023	-	Binary 5-65535	-18.0	4.5-5.5 V	16-pin DIP, SOP
MB87087	10/17	5-1023	0-127	Binary 5-16383	2.5/3.5	$3.0-6.0 \mathrm{~V}$	16-pin DIP, SOP
MB87091	300/-	5-4095	0-63	Binary 5-16383	8.0/-	2.7-3.3V	$\begin{aligned} & \text { 16-pin DIP, SOP, } \\ & \text { SSOP } \end{aligned}$
MB87093A	-/145	725	-	64	-10	4.5-5.5V	16-pin SSOP
MB87094	15 @ 1.1V	5-2047	0-127	Binary 5-4095	1 (3) 1.1 V	1.1-1.7 V	16-pin SSOP
MB87095A	-/110	550	-	64	-110	4.5-5.5V	16-pin SSOP
MB87096A	-/90	750	-	128	-110	4.5-5.5V	16-pin SSOP

RF/WIRELESS PRODUCTS

BiCMOS Single-Chip PLL/Prescalers (Super PLLs)

Device Part No.	Prescaler		PLL			Icc (typ)	$V_{c c}$	Package
	$\underset{(\max)}{\mathrm{f}_{\mathbb{N}}}$	Divide Ratio	$\stackrel{N}{\text { Prog. Ct. }}$	A Swallow Ct.	$\stackrel{R}{\text { Refer. Ct. }}$			
MB15A01	1.1 GHz	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	Binary $0-127$	Binary $6-16383$	6.5 mA	3 V	16-pin SSOP
MB15B01**	1.1 GHz	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	Binary 0-127	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	13 mA	3 V	20-pin SSOP
MB1501*	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	15 mA	$3-5 \mathrm{~V}$	16-pin DIP, SOP
MB1501H*	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	15 mA	3-5 V	16-pin SOP
MB1501L*	1.1 GHz	$\begin{array}{\|l\|l} 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	Binary 0-127	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	15 mA	3-5 V	16-pin SOP
MB15A02	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \\ \hline \end{array}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 6-16383 \end{aligned}$	7 mA	5 V	16-pin SSOP
MB1502	1.1 GHz	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	Binary $0-127$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	5 V	16-pin SOP
MB1502H	1.1 GHz	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	Binary $0-127$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	5 V	16-pin SOP
MB15B03**	$\begin{array}{\|l\|l} 1.1 \mathrm{GHz} \\ 0.3 \mathrm{GHz} \end{array}$	64/65, $128 / 129$ $16 / 17$, $32 / 33$	Binary 5-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 6-16383	10 mA	3 V	16-pin SSOP
MB15F03**	$\begin{array}{\|l\|} 2.0 \mathrm{GHz} \\ 0.5 \mathrm{GHz} \end{array}$	64/65, $128 / 129$ $16 / 17$, $32 / 33$	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	Binary $0-127$ $0-127$	Binary 6-16383	9 mA	3 V	16-pin SSOP
MB1503	1.1 GHz	128/129	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	Binary $0-127$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	5 V	16-pin SOP
MB1504*	520 MHz	$\begin{array}{\|l\|l\|} \hline 32 / 33 \\ 64 / 65 \end{array}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	10 mA	3-5 V	16-pin SOP
MB1504H*	520 MHz	$\begin{array}{\|l} 32 / 33 \\ 64 / 65 \\ \hline \end{array}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	10 mA	3-5 V	16-pin SOP
MB1504L*	520 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary 16-2047	Binary 0-127	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	10 mA	3-5 V	16-pin SOP
MB15E05	2.0 MHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 5-2047	Binary 0-255	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	6 mA	3 V	16-pin SSOP
MB1505	600 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-63 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	6 mA	5 V	16-pin SOP
MB15E06	2.5 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 5-2047	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & \text { 8-16383 } \end{aligned}$	7 mA	3 V	16-pin SSOP
MB1506	2.0 GHz	$\begin{array}{\|l\|} \hline 128 / 129 \\ 256 / 257 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & \text { 8-16383 } \end{aligned}$	18 mA	5 V	20-pin SSOP

* Not for New Designs
** Dual PLL/prescaler set

RF/WIRELESS PRODUCTS

BiCMOS Single-Chip PLL/Prescalers (Super PLLs) continued

MB1507	2.0 GHz	$\begin{aligned} & 128 / 129 \\ & 256 / 257 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	18 mA	5 V	16-pin SOP
MB1508	2.5 GHz	$\begin{aligned} & \hline 256 / 272 \\ & 512 / 528 \end{aligned}$	Binary 32-4095	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	$\begin{aligned} & 256 / 512 \\ & 1024 / 2048 \end{aligned}$	16 mA	5 V	20-pin SOP
MB1509**	400 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 0-127 \end{aligned}$	512, 1024	8 mA	3 V	20-pin SOP
MB15U10**	1.1 GHz	NA	Binary 1024131071	NA	$\begin{aligned} & \text { Binary } \\ & 6-4095 \end{aligned}$	7 mA	3 V	20-pin SSOP
MB1510**	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	Binary 0-127	512, 1024	15 mA	3-5 V	20-pin SOP
MB15B11**	$\begin{aligned} & \text { 1.1 GHz } \\ & 0.4 \mathrm{GHz} \end{aligned}$	64/65, $128 / 129$ $32 / 33$, $64 / 65$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	9.5 mA	3 V	20-pin SSOP
MB1511	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	7 mA	3-5 V	20-pin SSOP
MB1512.	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	7 mA	3-5 V	20-pin SSOP
MB15B13**	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	13 mA	3 V	20-pin SSOP
MB1513	1.1 GHz	128/129	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	7 mA	3-5 V	20-pin SSOP
MB1514**	400 MHz	64/65	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	1700	8 mA	3 V	20-pin SOP
MB1515	2.5 GHz	$\begin{aligned} & 256 / 272 \\ & 512 / 528 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 32-4095 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	$\begin{aligned} & 256,512 \\ & 1024,2048 \end{aligned}$	6.5 mA	5 V	20-pin SSOP
MB15A16	1.1 GHz	NA	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	Binary 0-127	$\begin{aligned} & \text { Binary } \\ & 6-16383 \\ & \hline \end{aligned}$	6.5 mA	3 V	16-pin SSOP
MB1516A	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 6-16383 \end{aligned}$	6.5 mA	3 V	16-pin SSOP
MB1517A	2.0 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 6-16383 \end{aligned}$	14 mA	3 V	16-pin SSOP
MB1518	2.5 GHz	512/528	Binary 32-511	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	512	16 mA	5 V	16-pin SOP
MB15A19**	600 MHz	64/65	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	Binary 0-127	256, 2048	11 mA	3 V	20-pin SOP
MB1519**	600 MHz	64/65	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	512, 1024	11 mA	3 V	20-pin SOP
MB15Sxx Series	300 MHz	16/17	$\begin{aligned} & \text { Binary } \\ & 5-4095 \end{aligned}$	Binary 0-31	$\begin{aligned} & \text { Binary } \\ & 5-4095 \end{aligned}$	3.5 mA	3 V	8-pin SSOP
MB15S02	$\begin{aligned} & 284 \mathrm{MHz} \\ & 116 \mathrm{MHz} \end{aligned}$	16/17	Fixed 17 Fixed 7	Fixed12 Fixed 4	Fixed13 Fixed 13	3.5 mA	3 V	8-pin SSOP

[^0]
PIEZOELECTRIC DEVICES

F5CB Series SAW Filters for Mobile Communications

The F5CB series are wide bandpass Surface Acoustic Wave (SAW) filters for use in the 700 MHz to 1 GHz range. The F5CB series uses a single lithium tantalate piezoelectric crystal (LiTaO_{3}) which has a high electromechanical coupling coefficient. The LiTaO_{3} also provides wide bandwidths and exceptional stability. Fujitsu's exclusive mounting technology makes the F5CB series very compact and surface mountable. The F5CB is suitable for use in handheld cellular phones.

- Considerably smaller and lighter than a ceramic filter
- Surface mount package (SMT)
- High stopband attenuation types available
- Wide variety of bandwidths for world-wide systems
- Low insertion loss
- High power rating: 0.2 W guaranteed
- External impedance matching
- Package : 8-pad ceramic LCC ($5.0 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$)

Product Line-up

Part Number	System	Use	Center Frequency (MHz)	Bandwidth (MHz)	Comment
FAR-F5CB-836M50-G201	AMPS/ADC	Tx	836.5	25	
FAR-F5CB-881M50-G201	AMPS/ADC	Rx	881.5	25	
FAR-F5CB-881M50-G211	AMPS/ADC	Rx	881.5	25	High stopband attenuation
FAR-F5CB-888M50-G201	ETACS	Tx	888.5	33	
FAR-F5CB-933M50-G202	ETACS	Rx	933.5	33	
FAR-F5CB-933M50-G212	ETACS	$R x$	933.5	33	High stopband attenuation
FAR-F5CB-902M50-G201	NMT/GSM	Tx	902.5	25	
FAR-F5CB-947M50-G201	NMT/GSM	$R x$	947.5	25	
FAR-F5CB-947M50-G211	NMT/GSM	$R x$	947.5	25	High stopband attenuation
FAR-F5CB-911M50-G201	NTACS	Tx	911.5	27	
FAR-F5CB-933M50-G201	NTT	Tx	933.5	17	
FAR-F5CB-878M50-G201	NTT	$R x$	878.5	17	

Package

(BOTTOM VIEW)

PIEZOELECTRIC DEVICES

F5CC (L2) Series SAW Filters - 50Ω Matched for Mobile Communication

The F5CC series are wide bandpass Surface Acoustic Wave (SAW) filters for use in the 700 MHz to 1 GHz range. The F5CC series uses a single lithium tantalate piezoelectric crystal (LiTaO_{3}) which has a high electromechanical coupling coefficient. The LiTaO_{3} also provides wide bandwidths and exceptional stability. The F5CC(L2) series is ultra compact and surface mountable which makes it suitable for use in hand held cellular phones

- Uitra compact, light weight
- No external matching circuitry necessary
- Lower insertion loss
- SMT Package
- Wide variety of standard products for all the world's major telecommunications systems
- High power rating: 0.2 W
- Package : 6-pad ceramic LCC ($3.8 \mathrm{~mm} \times 3.8 \mathrm{~mm} \times 1.5 \mathrm{~mm}$)

Product Line-up - Standard Version

Part Number	System	Part Symbol	Center Frequency (MHz)	Bandwidth (MHz)
FAR-F5CC-836M50-L2AA	AMPS/ADC (Tx)	AA	836.5	25
FAR-F5CC-881M50-L2AB	AMPS/ADC (Rx)	AB	881.5	25
FAR-F5CC-933M50-L2BA	NTT (Tx)	BA	933.5	17
FAR-F5CC-878M50-L2BB	NTT (Rx)	BB	878.5	17
FAR-F5CC-888M50-L2CA	ETACS (TX)	CA	888.5	33
FAR-F5CC-933M50-L2CB	ETACS (RX)	CB	933.5	33
FAR-F5CC-911M50-L2DA	NTACS (Tx)	DA	911.5	27
FAR-F5CC-856M50-L2DB	NTACS (Rx)	DB	856.5	27
FAR-F5CC-902M50-L2EA	NMT/GSM (Tx)	EA	902.5	25
FAR-F5CC-947M50-L2EB	NMT/GSM (Rx)	EB	947.5	25
FAR-F5CC-897M50-L2KA	E-GSM (Tx)	KA	897.5	35
FAR-F5CC-942M50-L2KB	E-GSM (Rx)	KB	942.5	35
FAR-F5CC-950M00-L2FA	PDC (Tx)	FA	950.0	20
FAR-F5CC-820M00-L2FB	PDC (Rx)	FB	820.0	20
FAR-F5CC-915M00-L2JA	ISM/USA	JA	915.0	26
FAR-F5CC-935M00-L2LA	2-Way Pager	LA	935.0	12

Product Line-up - High Attenuation Version

Part Number	System	Part Symbol	Center Frequency (MHz)	Bandwidth (MHz)
FAR-F5CC-836M50-L2AZ	AMPS/ADC (Tx)	AZ	836.5	25
FAR-F5CC-881M50-L2AY	AMPS/ADC (Rx)	AY	881.5	25
FAR-F5CC-902M50-L2EZ	NMT/GSM (Tx)	EZ	902.5	25
FAR-F5CC-947M50-L2EY	NMT/GSM (Rx)	EY	947.5	25
FAR-F5CC-947M50-L2EX	NMT/GSM (Rx)	EX	947.5	25
FAR-F5CC-942M50-L2KY	E-GSM (Rx)	KY	942.5	35
FAR-F5CC-915M00-L2JZ	ISM/USA	JZ	915.0	26

PIEZOELECTRIC DEVICES

Package

PIEZOELECTRIC DEVICES

F6Cx (L2) Series SAW Filters - 50Ω Matched for Mobile Communication

The F6Cx series are wide bandpass Surface Acoustic Wave (SAW) filters for use in the 1 GHz to 2.5 GHz range. The F6Cx series uses a single lithium tantalate piezoelectric crystal (LiTaO_{3}) which has a high electromechanical coupling coefficient. The LiTaO_{3} also provides wide bandwidths and exceptional stability. The F6Cx(L2) series is ultra compact and surface mountable which makes it suitable for use in hand held cellular and PCS phones. Several new standard devices for PCS/PCN Systems have recently been added to the F6Cx Series SAW Filters.

- Ultra compact, light weight
- No external matching circuitry necessary
- Lower insertion loss
- SMT Package
- Wide variety of standard products for all the world's major telecommunications systems
- High power rating: 0.2 W
- Packages:

F6CC (L2): 6-pad ceramic LCC ($3.8 \mathrm{~mm} \times 3.8 \mathrm{~mm} \times 1.5 \mathrm{~mm}$)
F6CE (L2): 6 -pad ceramic LCC ($3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm} \times 1.2 \mathrm{~mm}$)

Product Line-up - Standard Version

Part Number	System	Part Symbol	Center Frequency (MHz)	Bandwidth (MHz)
FAR-F6CC-1G4410-L2ZA	PDC (Tx)	ZA	1441.0	24
FAR-F6CC-1G4890-L2ZB	PDC (Rx)	ZB	1489.0	24
FAR-F6CC-1G6190-L2ZN	PDC (Lo)	ZN	1619.0	24
FAR-F6CE-1G7475-L2YA	DCS (Tx)	YA	1747.5	75
FAR-F6CE-1G8425-L2YB	DCS (Rx)	YB	1842.5	75
FAR-F6CE-1G8800-L2XA	PCS (Tx)	XA	1880.0	60
FAR-F6CE-1G9600-L2XB	PCS (Rx)	XB	1960.0	60
FAR-F6CE-2G4500-L2WA	ISMWLAN	WA	2450.0	100

Package

6 Pad Ceramic LCC for F6CC (L2) Series

PIEZOELECTRIC DEVICES

M2 Series (D100) General Purpose Voltage Controlled Oscillators

The M2 series (D100) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz . The M 2 series uses a single lithium tantalate piezoelectric crystal $\left(\mathrm{LiTaO}_{3}\right)$ which has a high electromechanical coupling coefficient. The LiTaO_{3} also provides a wide variable frequency range and exceptional stability.

- Wide variable frequency width: $\pm 0.2 \%$
- High precision oscillation frequency, ready for use without adjustment
- High reliability due to hermetically sealed package
- Custom frequencies also available
- Package: 4 pin metal case compatible with 14 pin DIP IC package

Standard Frequencies (MHz)

8.192	13.500	16.934	21.053	27.338
9.408	14.318	17.734	21.477	28.224
11.290	16.000	18.432	22.579	28.322
11.580	16.257	18.816	24.576	26.636
12.288	16.384	20.480	25.175	33.868

Package

Metal Case DIP 14

PIEZOELECTRIC DEVICES

M2 Series (D300) Voltage Controlled Oscillators for Digital Audio

The M2 series (D300) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz . They use a single lithium tantalate piezoelectric crystal (LiTaO_{3}) which has a high electromechanical coupling coefficient. The LiTaO_{3} also provides a wide variable frequency range and exceptional stability. The D300 module contains 3 VCOs for the three sampling frequencies used in digital audio equipment ($32,44.1$, and 48 kHz). The frequencies are selected by external signals.

- Clock replay in response to 3 sampling frequencies ($32,44.1$ and 48 kHz)
- Wider variable frequency width than in quartz crystals: $\pm 0.1 \%$ or more

Standard Combinations of Frequencies

Type A	$\mathrm{f}_{01}(\mathrm{~L})$	8.192 MHz	$32 \mathrm{kHz} \times 256$
	$\mathrm{f}_{02}(\mathrm{M})$	11.290 MHz	$44.1 \mathrm{kHz} \times 256$
	$\mathrm{f}_{03}(\mathrm{H})$	12.288 MHz	$48 \mathrm{kHz} \times 256$
Type B	$\mathrm{f}_{01}(\mathrm{~L})$	12.288 MHz	$32 \mathrm{kHz} \times 384$
	$\mathrm{f}_{02}(\mathrm{M})$	16.934 MHz	$44.1 \mathrm{kHz} \times 384$
	$\mathrm{f}_{03}(\mathrm{H})$	18.432 MHz	$48 \mathrm{kHz} \times 384$
	$\mathrm{f}_{01}(\mathrm{~L})$	16.384 MHz	$32 \mathrm{kHz} \times 512$
	$\mathrm{f}_{02}(\mathrm{M})$	22.579 MHz	$44.1 \mathrm{kHz} \times 512$
	$\mathrm{f}_{03}(\mathrm{H})$	24.576 MHz	$48 \mathrm{kHz} \times 512$

- Excellent stability for signal noise reproduced by high quality of the lithium tantalate
- 100 times more stable than VCOs of LC and TTL IC configuration
- 3 sampling frequencies controlled at CMOS logic level
- Compatible with the Electronic Industry Association of Japan (EIAJ) digital I/O standard type II (consumer digital audio equipment), Level I (high resolution mode and Level II (standard resolution mode)
- Package: 16 pin Single in Line Package for high density mounting

Package

16 Pin SIP Module

PIEZOELECTRIC DEVICES

M3 Series (D001) General Purpose SAW Voltage Controlled Oscillators

The M3 series (D001) voltage controlied oscillators (VCO) operate in the frequency range of 50 to 300 MHz . They use a single lithium tantalate $\left(\mathrm{LiTaO}_{3}\right)$ SAW resonator. The M3 series VCOs oscillate directly in the VHF band up to 300 MHz and have a wide variable frequency range and high temperature stability.

- Direct oscillation at high frequencies: 50 to 300 MHz
- Wider variable frequency range: $800 \mathrm{ppm} / \mathrm{V}$ or more $(0.5$ to 4.5 V)
- Superb temperature characteristics: $\pm 200 \mathrm{ppm}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ or less
- High-precision oscillation frequency, ready for use without adjustment
- High reliability due to hermetically sealed package
- High carrier noise ratio: -90 dB or less (12.5 kHz detuning, 8 kHz band)
- Frequency offset by built-in offset terminal
- Package: 5 pin metal case compatible with 16 pin DIP IC package

Standard Frequencies

Frequency	Application	Part Number
74.25 MHz	Professional HDTV	M3DA-74M250-D001
97.20 MHz	Transmission Standard HDTV	M3DA-97M200-D001
115.52 MHz	Broad-band ISDN	M3DA-155M52-D001

Package

Metal Case DIP 16

(Top)
(Bottom)
$17.78 \pm 0.5(0.700 \pm 0.020)$

(Side)

PIEZOELECTRIC DEVICES

M3 Series (D101) SAW Modulators

The M3 series (D101) SAW modulators contain direct oscillators (50 MHz to 300 MHz). They use a single lithium tantalate $\left(\mathrm{LiTaO}_{3}\right)$ SAW resonator. The M3 series modulators can be used in direct modulation applications requiring high modulation sensitivity and a high signal to noise ratio in the VHF band (up to 300 MHz)

- High frequency direct modulation: 50 to 300 MHz
- High modulation sensitivity: $800 \mathrm{ppm} / \mathrm{Vmin}$. (0.5 to 4.5 V)
- Excellent modulation distortion ratio: 40 dB max. (1 kHz to 1.75 kHz dev.)
- Excellent signal to noise ratio: -50 dB max.
- Excellent temperature characteristic: +200 ppm max. (-20 to $70^{\circ} \mathrm{C}$)
- Highly reliable hermetically sealed package
- Package: 5 pin metal case compatible with 14 pin DIP IC package

Standard Frequency

Standard Frequency	Application	Part Number
145.0 MHz	Mobile Phone	M3DA-145M00-D101

Package

Metal Case DIP 14

(Side)

MB3802 - Power Management Switch

- Enhance PC Notebook Battery Life With This Power-saving Switch

The notebook PC typifies the recent trend in electronic devices towards compact, lightweight, battery-driven products that can be used anywhere, anytime. Use of this IC facilitates the contribution to the "green computer."

A major problem with such battery-driven devices is brief or insufficient battery life. This has focused attention on the issues of reducing power consumption and simultaneously extending battery life. Notebook PCs and other small computers switch off power to peripheral devices (hard or floppy disk drives, PCMCIA Cards, etc.) that are not operating. The circuits that control the switches, however, are either 3 V or 5 V circuits and operate constantly, consuming energy.

To control power lines to peripheral devices, FUJITSU has developed the MB3302 low-voltage input switch ($\mathrm{V}_{\mathbb{N}}>2.2 \mathrm{~V}$ typ.), which consumes no current when the switches are turned off.

MB3807A - Flash Memory Power Management Switch

Fujitsu has specifically developed the MB3807A to efficiently control Flash Memory devices, however it is also ideally suited for power contro! of other battery powered portable applications. The NB3807A consists of two SPDT switches, with each switch consisting of one pole suited for higher current requirements (. 5 Amps) at typically 12 Volts and the other pole suited for lower cureent requirements (. 1 Amps) typically from $3 / 5$ Voit sources.

POWER MANAGEMENT DEVICES

MB3802 - Power Management Switch

- Controls power lines to peripheral devices
- Small Supply Current: ON State $100 \mu \mathrm{~A}$
- Greatly extends use of battery-driven notebook PCs OFF State $0 \mu \mathrm{~A}$
- Operates on low input voltage, ideal for use in 3V systems
- Low On Resistance: $120 \mathrm{~m} \Omega \times 2$ channels

Low Control Voltage : 2.5V ~ 6 V
(Power NMOS FET Included)

- Rush Current Protection
- Small Package : Narrow SOP16
- Low Leak Current : <1 $\mu \mathrm{A}$ (Both Directions)

Product Line-up - Power Management Switches

Part Number	Number of Channels	ON Resistance	Handling DC Current	Handling Voltage	Switch Mode	Applications
MB3802	2	0.12Ω	1.2 A	$<7 \mathrm{~V}$	SPST	Notebooks Laptops Handhelds Portables PCMCIA Cards
MB3807A	2	0.3Ω 6Ω	0.5 A 0.1 A	$<15 \mathrm{~V}$	SPDT	Flash Memory PCMCIA Cards

MB3802 Block Diagram and External Connections

POWER MANAGEMENT DEVICES

MB3807A - Power Management Switch for Flash Memory

- Power Management Switch for Flash Memory
- Compatibility for a PCMCIA Digital Interface
- Controls Two PCMCIA Card Slots
- Low On Resistance : 12V Port 0.3

5 V Port 6Ω

- 5V Port Supports 3.3V and 5V Operation
- Small Package : Narrow SOP16

Product Line-up - Power Management Switches

Part Number	Number of Channels	ON Resistance	Handling DC Current	Handling Voltage	Switch Mode	Applications
MB3802	2	0.12Ω	1.2 A	$<7 \mathrm{~V}$	SPST	Notebooks Laptops Handhelds Portables PCMCIA Cards
MB3807A	2					
		0.3Ω 6Ω	0.5 A 0.1 A	$<15 \mathrm{~V}$	SPDT	Flash Memory PCMCIA Cards

MB3807A Block Diagram and External Connections

POWER MANAGEMENT DEVICES

Fujitsu offers a wide range of prescaler devices capable of satisfying the technical requirements of today's applications. Features include devices covering the 200 MHz to 2.7 GHz range, low power consumption, and a multitude of divide ratios.

Page Number	Device Part Number	$\mathrm{f}_{\mathrm{IN}}(\max)$	Divide Ratio	Icc (typ)	Vcc	Package
2-3	MB501L	1.1 GHz	64/65, 128/129	10 mA	5 V	8-pin, DIP, SOP
2-15	MB501LV	1.1 GHz	64/65, 128/129	12 mA	3 V	8-pin, DIP, SOP
2-25	MB501SL	1.1 GHz	64/65, 128/129	5 mA	5 V	8-pin, DIP, SOP
2-3	MB504	520 MHz	32/33, 64/65	10 mA	5 V	8-pin, DIP, SOP
2-3	MB504L	520 MHz	32/33, 64/65	5 mA	5 V	8-pin, DIP, SOP
2-15	MB504LV	520 MHz	32/33, 64/65	6 mA	3 V	8 -pin, DIP, SOP
2-35	MB505-16	1.6 GHz	128, 256	9 mA	5 V	8 -pin, DIP, SOP
2-39	MB506	2.4 GHz	64, 128, 256	18 mA	5 V	8 -pin, DIP, SOP
2-43	MB507	1.6 GHz	$\begin{aligned} & 128 / 129, \\ & 256 / 257 \end{aligned}$	18 mA	5 V	8 -pin, DIP, SOP
2-51	MB508	2.3 GHz	$\begin{aligned} & 128 / 129, \\ & 256 / 257 \end{aligned}$	24 mA	5 V	8-pin, DIP, SOP
2-59	MB509	1.1 GHz	64/65, 128/129	12 mA	5 V	8-pin, DIP, SOP
2-67	MB510	2.7 GHz	$\begin{aligned} & \text { 128/144, } \\ & 256 / 272 \end{aligned}$	10 mA	5 V	8-pin, DIP, SOP
2-73	MB511	1.0 GHz	1, 2, 8	23 mA	5 V	8-pin, DIP, SOP
2-81	MB551	1.0 GHz	128/129	16 mA	5 V	8-pin, SOP

MB501L/504/504L
 TWO MODULUS PRESCALERS

TWO MODULUS PRESCALERS

The Fujitsu MB501L/504/504L are two modulus prescalers, which are use with a frequency synthesizer to make a PLL (Phase Locked Loop). They will divide the input frequency by the modulus of 64/65 or 128/129 for the MB501L, and $32 / 33$ or $64 / 65$ for the MB504/MB504L. The MB501L and MB504L are low-power versions. The output of 1.6 V peak to peak on ECL level applies to all.

- High Operating Frequency, Low Power Operation:
1.1 GHz at 50 mW typ. (MB501L)

520 MHz at 50 mW typ. (MB504)
520 MHz at 25 mW typ. (MB504L)

- Pulse Swallow Function
- Wide Operation Temperature $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude: $\quad V_{\text {OUT }}=1.6 \mathrm{Vp}-\mathrm{p}$
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or space saving Flat Package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	V_{O}	10	mA
Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occurifthe above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitrytoprotectheinputs againstdamage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Figure 1. Block Diagrams

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	$V_{\text {CC }}$	DC Supply Voltage
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	IN	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	10		1.2		mA
Ambient Temperature	T_{A}		-40		+85
Load Capacitance	C_{L}			12	${ }^{\circ} \mathrm{C}$

MB501L
MB504
MB504L

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter		Symbol	Conditions	Value			Unit	
		Min.		Typ.	Max.			
Power Supply Current	MB501L		Icc	I/O pins are open		10	14*	mA
	MB504				10	14*	mA	
	MB504L				5	7*	mA	
Output Amplitude		v_{0}		1.0	1.6		VP-P	
Input Frequency	MB501L	f_{N}	With input coupling capacitor 1000 pF	10		1100	MHz	
	MB504			10		520	MHz	
	MB504L			10		520	MHz	
Input Signal Amplitude for \mathbb{N}	MB501L	PIN		-4		5.5	dBm	
	MB504			-12		10	dBm	
	MB504L			-12		10	dBm	
High Level Input Voltage for MC		$\mathrm{V}_{\text {IHM }}$		2.0			v	
Low Level Input Voltage for MC		$\mathrm{V}_{\text {ILM }}$				0.8	v	
High Level Input Voltage for SW		$\mathrm{V}_{\mathrm{IHS}}{ }^{*}$		$V_{C C}-0.1$	V_{CC}	$V_{C C C}+0.1$	v	
Low Level Input Voltage for SW		$\mathrm{V}_{\text {ILS }}$		OPEN			v	
High Level Input Current for MC		IIHM	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			0.4	mA	
Low Level Input Current for MC		IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA	
Modulus Set-ud Time MC to OUT	MB501L	${ }_{\text {t }}^{\text {SET }}$			16	26	ns	
	MB504				20	30	ns	
	MB504L				18	28	ns	

Note: $\quad * / \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
*Design Guarantee

MB501L TIMING CHART (2 MODULUS)

Example: Divide Ratio of 64/65

Note: When divide ratio of 65 is selected, positive pulse is applied by one to 33.
The typical set up time is 16 ns (MB501L) from the MC signal input to the timing of change of prescaler divide ratio.

MB504/MB504L TIMING CHART (2 MODULUS)

Example: Divide Ratio of 32/33

Note: When divide ratio of 33 is selected, positive pulse is applied by one to 17.
The typical set up time is 20ns (MB504), 18ns (MB504L) from the MC signal input to the timing of change of prescaler divide ratio.

Figure 2. Test Circuit

MB501L
MB504
MB504L

TYPICAL CHARACTERISTICS CURVES

Figure 3. Input Signal Amplitude vs. Input Frequency

Figure 4. Input Signal Amplitude vs. Input Frequency

TYPICAL CHARACTERISTICS CURVES (Continued)

Figure 5. Input Signal Amplitude vs. Input Frequency

An example of application of MB501L504/504L with PLL Synthesizer IC MB87001A
Figure 6. Typical Application Example

PACKAGE DIMENSIONS

8-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-08P-M01)

Dimensions in inches (millimeters).
© 1988 FUJITSU LIMITED D08006S-2C

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE

 (CASE No.: FPT-08P-M01)

Dimensions in inches (millimeters).

MB501LV/504LV

LOW VOLTAGE/LOW POWER TWO MODULUS PRESCALERS

LOW VOLTAGE/LOW POWER TWO MODULUS PRESCALERS

The Fujitsu MB501LV/504LV are low power and low voltage versions of MB501/504, two modulus prescalers used with a frequency synthesizer to make a Phase Locked Loop (PLL). They will divide the input frequency by the modulus of 64/65 or $128 / 129$ for the MB501LV, and $32 / 33$ or $64 / 65$ for the MB504LV. The output level is 1.1 V peak to peak on ECL level.

- Wide Low Voltage Operation 3.0V typ., +2.7 to 4.5 V
- High Frequency Operation, Low Power Operation $\left(\mathrm{V}_{\mathbb{N}}=-12 \mathrm{dBm}\right.$ min. $)$
1.1 GHz at 36 mW typ. (MB501LV)

520 MHz at 18 mW typ. (MB504LV)

- Pulse Swallow Function
- Wide Operation Temperature $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude $\quad V_{\text {Out }}=1.1 \mathrm{Vp}-\mathrm{p}$ typ.
- Built-in a termination resistor

Stable output amplitude is obtained up to output load capacitance of 8 pF .

- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or space saving Flat Package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
Output Current	10	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permainentdevicedamage mayoccurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This devicecontains circuitrytoprotect the inputsagainst damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit

Fig. 1 - BLOCK DIAGRAMS

SW	MC	Divide Ratio
H	H	1/64
H	L	1/85
L	H	1/128
L	L	1/129

b) MB E04LV

SW MC Divide Ratio H H $1 / 32$ H L $1 / 33$ L H $1 / 64$ L L $1 / 65$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symboi	Value			Unit
		Min	Typ	Max	
Supply Voitage	V_{CC}	2.7	3.0	4.5	V
Output Current	I_{0}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			8	pF

PIN DESCRIPTION

Pin Number	Symbol	Function
1	IN	Input
2	VCC	DC Supply Voltage
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	GND	Output
5	MC	Ground
6	NC	Nodulus Control Input (See Divide Ratio Table)
7	\bar{N}	Complementary Input
8		

ELECTRICAL CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted)

Parameter		Symbol	Condilions	Value			Unit	
		Min.		Typ.	Max.			
Power Supply Current	MB501LV		Icc	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$		12		mA
	MB504LV				6		mA	
Output Amplitude		v_{0}		0.8	1.1		$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	
Input Frequency	MB501LV	f_{N}	With input coupling capacitor 1000pF	10		1100	MHz	
	MB504LV			10		520	MHz	
Input Signal Amplitude		$\mathrm{P}_{\text {IN }}$		-12		5.5	dBm	
High Level Input Voltage for MC Input		$\mathrm{V}_{1} \mathrm{HM}$	$V_{1 H M}=1 / 2 V_{C C}+0.3$	$\mathrm{V}_{\text {IHM }}$			V	
Low Level Input Voltage for MC Input		$\mathrm{V}_{\text {ILM }}$				0.8	v	
High Level Input Voltage for SW Input		$\mathrm{V}_{\mathrm{IHs}}{ }^{*}$		$V_{c c}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V	
Low Level Input Voltage for SW Input		$V_{\text {ILS }}$		OPEN			V	
High Level Input Current for MC Input		IHM	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			0.4	mA	
Low Level Input Current for MC Input		IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA	
Modulus Set-up Time MC to OUT	MB501LV	${ }_{\text {tset }}$			16	26	ns	
	MB504LV				18	28	ns	

Note: * Design Guarantee

MB501LV TIMING CHART (2 MODULUS)

Example: Divide ratio $=64 / 65$

Note: When divide ratio of 65 is selected, positive pulse is applied by one to 33.
The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

MB504LV TIMING CHART (2 MODULUS)

Example: Divide ratio $=32 / 33$

Note: When divide of 33 is selected, positive pulse is applied by one to 17 .
The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 2 - TEST CIRCUIT

TYPICAL CHARACTERISTICS CURVES

MINIMUM INPUT SIGNAL AMPLITUDE (mVp.p)
Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY
MINIMUM INPUT SIGNAL AMPLITUDE (mVP.p)

2-21

Fig. 5 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-08P-M01)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The Information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

MB501SL

SUPER LOW POWER TWO MODULUS PRESCALER

SUPER LOW POWER TWO MODULUS PRESCALER

The Fujitsu MB501SL is a super low power version of the MB501 two modulus prescaler used with a frequency synthesizer to make a Phase Locked Loop (PLL). It divides the input frequency by the modulus of $64 / 65$ or 128/129, respectively. The MB501SL achieves extremely small stray capacitance by the use of Fujitsu's Advanced Process Technology. High speed operation is achieved with low power supply current of 5 mA which is about half of the current value of the MB501L.

- High Frequency Operation:
$f \max =1.1 \mathrm{GH}_{\mathrm{Z}} \max .\left(\mathrm{P}_{\mathrm{IN}}=-14 \mathrm{bBm}\right)$
- Pulse Swallow Function:

64/65, 128/129

- Low Power Supply Current:
5.0mA typ.
- Stable Output Amplitude:
$V_{O}=1.6 \mathrm{Vp}-\mathrm{ptyp}$.
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Plastic 8-pin Dual-In-Line Package
- Plastic 8-pin Mini Flat Package
- Built-in Termination Resistor
- Stable output amplitude is obtained up to output load capacitance of 8 pF .

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to $+\mathrm{V}_{\mathrm{CC}}$	V
Output Vottage	IO	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

[^1]Permanent devicedamage mayoccurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thisdevicecontainscircuitrytoprotect the inputsagainst damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avold application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^2]Fig. 1 - MB501SL BLOCK DIAGRAM

	SW	MC	Divide Ratio
MB501SL	H	H	$1 / 64$
	H	L	$1 / 65$
	L	H	$1 / 128$
	L	L	$1 / 129$

Note: SW: $H=V_{c c,} L=$ open
MC: $H=2.0 \mathrm{~V}$ to Vcc . $\mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	Description
1	IN	Input
2	$V_{c c}$	Power Supply, +5 V
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	$\overline{I N}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Values			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	CL	-	-	8	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Values			Unit
			Min.	Typ.	Max.	
Power Supply Current	lcc	-	-	5.0	7.0	mA
Output Amplitude	V_{0}	Built-in a termination resistor. Load capacitance $=8 \mathrm{pF}$	1.0	1.6	-	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Frequency	fin	With input coupling capacitor 1000pF	10	-	1100	MNz
Input Signal Amplitude	PIN	-	-14	-	0	dBm
High Level Input Voltage for MC	$\mathrm{V}_{\text {IHM }}$	-	2.0	-	-	V
Low Level Input Voltage for MC	$V_{\text {:LM }}$	-	-	-	0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\text {iHs }}{ }^{*}$	-	$v_{C C}-0.1$	V_{cc}	$v_{c c}+0.1$	v
Low Level Input Voltage for SW	'ILS	-	OPEN			v
High Level Input Current for MC	IIHM	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$	-	-	0.4	mA
Low Level input Current for MC	IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2	-	-	mA
Modulus Set-up Time MC to Output	Iset	-	-	16	26	ns

Note: * Design Guarantee

Fig. 2-TEST CIRCUIT

TWO MODULUS OPERATING TIMING CHART
Example. Divide Ratio of $64 / 65$

When divide ratio of 129 is selected, positive pulse is added by one to 65 .
The typical set up time (tser $)$ is 16 ns from MC signal input to the timing of change of prescaler divide ratio

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 5 - POWER SUPPLY CURRENT vs. POWER SUPPLY VOLTAGE

Fig. 6 - POWER SUPPLY CURRENT vs. TEMPERATURE

Fig. 7 - INPUT SIGNAL vs. INPUT FREQUENCY

FIg. 8 -TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)

MB505-16

ULTRA HIGH FREQUENCY PRESCALER

ULTRA HIGH FREQUENCY PRESCALER

The Fujitsu MB505 is a high frequency, up to 1.6 GHz , prescaier used with a frequency synthesizer to form a Phase Locked Loop (PLL). It will divide the input frequency by the modulus of 128 or 256 and the cutput level is 1.6 V peak to peak on ECL level.

Operation in the 1.6 GHz range meets the specification for applications in Direct Broadcasting Satellite Systems (DBS), CATV systems, and UHF Transceivers.

FEATURES

- High Frequency Operation
1.6 GHz max.
- Low Power Dissipation 45mW typ.
- Wide Operation Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude
$V_{\text {OUT }}=1.6 V_{p-p}$
- Complete PLL synthesizer circuit with the Fujitsu MB87006A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	IO	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage mayoccurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - MB 505 BLOCK DIAGRAM

Note: SW: $H=V_{C C}, L=$ open

PIN DESCRIPTION

2-36

Pin Number	Symbol	
1	IN	Input
2	$V_{\text {cc }}$	Power Supply Voltage
3	SW	Divide Ratio Control Input Selecting divide ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	NC	No Connection
7	NC	No Connection
8	$\overline{\text { IN }}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted.)

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Supply Curent	Icc			9		mA
Output Amplitude	V_{0}		1.0	1.6		V_{p-p}
Input Frequency	f_{IN}	with input coupling capacitor 1000pF	100		1600	MHz
Input Signal Amplitude	PIN		-12		5.5	dBm
High Level Input Voltage for SW	$\mathrm{V}_{\text {IHS }}{ }^{*}$		$\mathrm{V}_{\text {cc }}-0.1$	V_{cc}	$V_{C C}+0.1$	V
Low Level Input Voltage for SW	$\mathrm{V}_{\text {ILS }}$		Open			V

Note: *Design Guarantee

Figure 2. Input Signal Amplitude vs. Input Frequency

PACKAGE DIMENSIONS
 (Suffix: -P) (Suffix: -PF)

MB506

ULTRA HIGH FREQUENCY PRESCALER

ULTRA HIGH FREQUENCY PRESCALER

The Fujitsu MB506 is a high frequency, up to 2.4 GHz , prescaler used with a frequency synthesizer to form a Phase Locked Loop (PLL). It will divide the input frequency by the modulus of 128 or 256 and the output level is 1.6 V peak to peak on ECL level.Operation in the 1.6 GHz range meets the specification for applications in Direct Broadcasting Satellite Systems (DBS), CATV systems, and UHF Transceivers.

FEATURES

- High Frequency Operation
2.4 GHz max.
- Power Dissipation

90 mW typ.

- Wide Operation Temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude

$$
V_{\text {OUT }}=1.6 \mathrm{~V}_{p-p}
$$

- Complete PLL synthesizer circuit with the Fujitsu MB87006A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	IO	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage mayoccurifthe above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fieids. However, It is advised that nomal precautions be taken to avoid application of any voltage higher thanmaximum rated voltages to this high impedance circuit.

Fig. 1 - MB 506 BLOCK DIAGRAM

SW1	SW2	Divide Ratio
H	H	$1 / 64$
L	H	$1 / 128$
H	L	$1 / 128$
L	L	$1 / 256$

Note: $H=V_{C C}, L=$ open

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Function
2	Input	
3	SW1	Power Supply Voltage
4	OUT	Output
5	GND	Ground
6	SW2	Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)
7	NC	No Connection
8	\bar{N}	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage		4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Conditions		Value			Unit
				Min.	Typ.	Max.	
Supply Curent	ICC				18		mA
Output Amplitude	V_{O}			1.0	1.6		V_{p-p}
Input Frequency	f_{IN}	with input coupling	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	100		2200	MHz
		$\begin{aligned} & \text { capacitor } \\ & \text { 1000pF } \end{aligned}$	$\begin{gathered} T_{A}=-40^{\circ} \mathrm{C} \\ \text { to } 60^{\circ} \mathrm{C} \end{gathered}$	100		2400	
Input Signal Amplitude	PIN	$\mathrm{f}_{\mathrm{N}}=100 \mathrm{MHz}$ to 1.3 GHz		-16		5.5	dBm
		$\mathrm{f}_{\mathrm{IN}}=1.3 \mathrm{MHz}$ to 2.4 GHz		-4		5.5	
High Level Input Voltage for SW	$\mathrm{V}_{\mathrm{IHS}}{ }^{*}$			$\mathrm{V}_{C C}-0.1$	V_{CC}	$v_{c c}+0.1$	V
Low Level Input Voltage for SW	$\mathrm{V}_{\text {ILS }}$				Open		V

Note: *Design Guarantee

Figure 2. Input Signal Amplitude us. Input Frequency

PACKAGE DIMENSIONS

MB507

1.6GHz TWO MODULUS PRESCALER

1.6GHz TWO MODULUS PRESCALER

The Fujitsu MB507 is a 1.6 GHz two modulus prescaler used with a frequency synthesizer to form a Phase Locked Loop (PLL). It will divide the input frequency by the modulus of $128 / 129$ or 256/257 and has an output level of 1.6 V peak to peak on ECL level.

FEATURES

- High Frequency Operation 1.6 GHz max.
- Power Dissipation

90 mW typ.

- Pulse Swallow Function
- Wide Operation Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude

$$
V_{\text {OUT }}=1.6 \mathrm{~V}_{\text {p-p }}
$$

- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Package

Standard 8-pin Dual-In-Line Package (Suffix: -P)
Standard 8-pin Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I 0	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage may occurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE DIP-08P-M01

PLASTIC PACKAGE FPT-08P-M01

Fig. 1 - MB507 BLOCK DIAGRAM

MB 507	SW	MC	Divide Ratio
	H	H	$1 / 128$
	H	L	$1 / 129$
	L	H	$1 / 256$
	L	L	$1 / 257$

Note: $S W$: $H=V_{C C}, L=$ open
$M C: H=2.0 \mathrm{~V}$ to $V_{C C}, L=G N D$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	$V_{\text {CC }}$	DC Sunction
3	SW	Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	$\overline{I N}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	l_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted.)

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Supply Curent	ICC			18		mA
Output Amplitude	V_{0}		1.0	1.6		V_{p-p}
Input Frequency	fin^{\prime}	with input coupling capacitor 1000pF	100		1600	MHz
Input Signal Amplitude	$\mathrm{PIN}^{\text {I }}$		-4		10	dBm
High Level Input Voltage for MC Input	$\mathrm{V}_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC Input	$\mathrm{V}_{\text {ILM }}$					V
High Level Input Voltage for SW Input	VIHS*		$V_{C C}-0.1$	V_{cc}	$\mathrm{V}_{C C}+0.1$	V
Low Level Input Voltage for SW Input	$V_{\text {ILS }}$		Open			V
High Level Input Current for MC Input	IIHM	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC Input	IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA
Modulus Set-up Time MC to OUT	$\mathrm{t}_{\text {SET }}$	1.6 GHz Operation		18	28	ns

Note: *Design Guarantee

Fig. 2 - TEST CIRCUIT

TIMING CHART (2 MODULUS)
Example: Divide ratio $=128 / 129$

Note: When divide of 129 is selected, positive pulse is applied by one to 65 . The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

(Suffix: P)

PACKAGE DIMENSIONS (Continued)

(Suffix: PF)

MB508

2.3GHz TWO MODULUS PRESCALER

2.3GHz TWO MODULUS PRESCALER

The Fujitsu MB508 is a 2.3 GHz two modulus prescaler used with a frequency synthesizer to form a Phase Locked Loop (PLL) and divides the input frequency by a modulus of $128 / 130,256 / 258$ or $512 / 514$. The output level is 1.6 V peak to peak ECL level. The ultra high frequency operation provides wide application, such as Direct Broadcasting Satellite System, CATV system, UHF Transceiver, etc.

FEATURES

- High Frequency Operation:	$\mathfrak{f}=2.3 \mathrm{GHz} \max .\left(\mathrm{P}_{\mathrm{IN}}=-4 \mathrm{dBm} \min .\right)$
- Input Signal Amplitude:	$\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}\right.$ to 1.8 GHz$)$
- Puise Swallow Function:	$128 / 130,256 / 258,512 / 514$
- Power Dissipation:	120 mW typ.
- Wide Operation Temperature:	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Stable Output Amplitude: $\quad V_{\text {OUT }}=1.6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ typ.
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer system block IC
- Standard Plastic 8-pin Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage mayoccurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that nommal precautions be taken to avoid application of any voltage higherthanmaximumrated voltages to this high impedance circuit.

Fig. 1 - MB508 BLOCK DIAGRAM

SW1	SW2	MC	Divide Ratio
H	H	H	$1 / 128$
H	H	L	$1 / 130$
H	L	H	$1 / 256$
L	H	H	$1 / 256$
H	L	L	$1 / 258$
L	H	L	$1 / 258$
L	L.	H	$1 / 512$
L	L	L	$1 / 514$

Note: SW: $H=V_{\text {CC }}, L=O p e n$
$M C: H=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Values			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted.)

Parameter	Symbol	Condition	Values			Unit
			Min.	Typ.	Max.	
Power Supply Current	ICC			24		mA
Output Amplitude	V_{0}		1.0	1.6		V_{p-p}
Input Frequency	fin	with input coupling capacitor 1000pF	100		2300	MHz
Input Signal Amplitude	Pina	$\begin{gathered} f_{\mathrm{I}} \mathrm{~N}=1800 \mathrm{MHz} \text { to } \\ 2300 \mathrm{MHz} \end{gathered}$	-4		5.5	dBm
	Ping	$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz} \text { to } \\ 1800 \mathrm{MHz} \end{gathered}$	-16		10	
High Level Input Voltage for MC	$\mathrm{V}_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC	$\mathrm{V}_{\text {ILM }}$				0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\text {IHS }}{ }^{*}$		$\mathrm{V}_{\mathrm{CC}}-0.1$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Low Level Input Voltage for SW	$V_{\text {ILS }}$		Open			V
High Level Input Current for MC	IIHM	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC	IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA
High Level Input Current for SW	IIHS	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$			250	$\mu \mathrm{A}$
Modulus Set-up Time MC to Output at 2.3 GHz Operation	tset			18	28	ns

Note: *Design Guarantee

Fig. 2 - TEST CIRCUIT

TIMING CHART (2 MODULUS)
Example: Divide ratio $=128 / 130$

Note: When divide ratio of 130 is selected, positive pulse is applied by two to 66 . The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

(Suffix: -P)

PACKAGE DIMENSIONS (Continued)

(Suffix: -PF)

8-LEAD PLASTIC FLAT PACKAGE
(CASE NO.: FPT-08P-M01)

MB509

TWO MODULUS PRESCALER WITH STAND-BY MODE

TWO MODULUS PRESCALER WITH STAND-BY MODE

The Fujitsu MB509 is a low power, two modulus prescaler equipped with the standby mode. The MB509 is used in conjunction with a frequency synthesizer to form a Phase Locked Loop (PLL) and will divide the input frequency by the modulus of 65/65 or 128/129.

Power consumption is typically 11.5 mA at 5.0 V . under normal operation, with the current reduced to $180 \mu \mathrm{~A}$ in standby mode. By using MB509 with the MB87076, intermittent operating mode can be achieved.

FEATURES

- High Frequency Operation:	$f m a x=1.1 \mathrm{GHz} \max .\left(\mathrm{P}_{\mathrm{IN}}=-4 \mathrm{dBm}\right.$ min. $)$
- Pulse Swallow Function:	$64 / 65,128 / 129$
- Power Supply Consumption:	58 mW typ.
- Stand-by Current:	$180 \mu A$ typ.
- Stable Output Amplitude:	$\mathrm{V}_{\mathrm{O}}=1.6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ typ.

- Complete PLL synthesizer circuit with the Fujitsu MB87076, PLL frequency synthesizer IC
- Plastic 8-pin Dual-In-Iine Package (Suffix: -P)

Plastic 8-pin Mini Flat Package (Suffix: -PF)

- Built-in a Termination Resistor

Stable output amplitude is obtaired up to output load capacitance of 8 pF

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	$\mathrm{l} O$	10	mA
Storage Temporature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device clannage mayoccurifthe above Absolute Maximum Ratings are exceeded. Functional operation: shou'd be restricted to the conditions as detailed in the operational sections cf this data sheet. Exposure to absolute maximum rating conditions tor extended periods may affect device reliability.

PIN ASSIGNMENT

[^3]Fig. 1 - MB509 BLOCK DIAGRAM

PS	SW	MC	Divide Ratio
H	H	H	$1 / 64$
H	H	L	$1 / 65$
H	L	H	$1 / 128$
H	L	L	$1 / 129$
L	-	-	Stand-by mode

Note: \quad SW: $\mathrm{H}=\mathrm{V}_{c c}$, Lmopen
MC: $H=3.0 \mathrm{~V}$ to V_{cc},
PS. $L=G N D$ to 0.8 V
PS: $\mathrm{H}=2.0 \mathrm{~V}$ to V_{cc},

PIN DESCRIPTION

Pin Number	Symbol	Description
1	IN	Input
2	$V_{c c}$	Power Supply, +5 V
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	PS	Stand-by Control Input (See Divide Ratio Table)
8	$\overline{\mathbb{N}}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}	-	-	8	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Power Supply Curent	Icc		-	11.6	-	mA
	IPS	Stand-by mode	-	180	-	$\mu \mathrm{A}$
Output Amplitude	V_{0}	Built-in a Termination Resistor. Load Capacitance=8pF	1.0	1.6	-	V_{p-p}
Input Frequency	$\mathrm{fin}^{\text {d }}$	With input coupling capacitor 1000pF	10	-	1100	MHz
Input Signal Amplitude	P_{IN}	-	-4	-	5.5	dBm
High Level Input Voltage for MC	V_{IH}	-	3.0	-	-	V
Low Level Input Voltage for MC	V_{IL}	-	-	-	0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\mathrm{IHS}}{ }^{*}$		$V_{C C}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
Low Level Input Voltage for SW	$\mathrm{V}_{\text {ILS }}$		Open			V
High Level Input Voltage for PS	V_{IH}	-	2.0	-	-	V
Low Level Input Voltage for PS	V_{IL}	-	-	-	0.4	V
High Level Input Current for MC	$\mathrm{I}_{1 / \mathrm{H}}$	$\mathrm{V}_{1 \mathrm{H}}=3.0 \mathrm{~V}$	-	-	0.4	mA
Low Level Input Current for MC	ILL	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2	-	-	mA
Modulus Set-up Time MC to Output	$\mathrm{t}_{\text {SET }}$	-	-	16	26	ns

Note: *Design Guarantee

Fig. 2 - TEST CIRCUIT

TWO MODULUS OPERATING TIMING CHART (64/65 DIVIDE RATIO)
 to 33.
The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - WAVEFORM OF STAND BY MODE

PS pin Input Signal

OUT pin Output signal (Prescaler output)

50ns/Div.
Note: About 50 ns of set up time is required both power on/off.

Fig. 5 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (continued)

MB510

2.7GHz TWO MODULUS PRESCALER

2.7GHz TWO MODULUS PRESCALER

The Fujitsu MB510 is an ultra high speed, two modulus prescaler that forms a Phase Locked Loop (PLL) when combined with a frequency synthesizer such as the Fujitsu MB87001A. It divides the input frequency by the modulus of 128/144 or $256 / 272$, and operates at a low power supply current of 10 mA at 5.0 V .

Through the use of Fujitsu's Advanced Process Technology, the MB510 achieves extremely small stray capacitance from its internal elements.

FEATURES

- High Frequency Operation: 2.7 GHz max.
- Power Dissipation: 50 mW typ.
- Pulse Swallow Function: 128/144, 256/272
- Wide Operation Temperature: $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude: $\quad \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ typ.
- Built-in Termination Resistor
- Complete PLL synthesizer circuit with the Fujitsu MB87001A PLL synthesizer IC
- Package

Standard 8-pin Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I O	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage mayoccurit theabove Absolute Maximum Retings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^4]

Figure 1. MB510 Block Diagram
PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	V CC	DC Supply Voltage
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	TN	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}		-40		+85
Load Capacitance	C_{L}			${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Supply Curent	Icc			10.0	15.0	mA
Output Amplitude	V_{0}	Built-in a termination resistor. Load capacitance $=8 \mathrm{pF}$	1.0	1.6		V_{p-p}
Input Frequency	${ }^{\text {f }}$ N	With input coupling capacitor 1000pF	10		2700	MHz
Input Signal Amplitude	$\mathrm{P}_{\text {IN }}$	$\mathrm{f}_{\mathrm{IN}}=10$ to 2200 MHz	-10		10	dBm
		$\mathrm{f}_{\mathrm{IN}}=2200$ to 2700 MHz	-4		10	
High Level Input Voltage for MC Input	$\mathrm{V}_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC Input	$\mathrm{V}_{\text {ILM }}$				0.8	V
High Level Input Voltage for SW Input	$\mathrm{V}_{\text {IHS }}{ }^{*}$		$\mathrm{V}_{C C}-0.1$	V cc	$V_{C C}+0.1$	V
Low Level Input Voltage for SW Input	$V_{\text {ILS }}$		Open			V
High Level Input Current for MC Input	I'HM	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC Input	IILM	$\mathrm{V}_{1 \mathrm{LL}}=0.8 \mathrm{~V}$	-0.2			mA
Modulus Set-up Time MC to OUT	${ }_{\text {tSET }}$			16	26	ns

Note: *Design Guarantee

Figure 2. Test Circuit

Figure 3. Input Signal Amplitude vs. Input Frequency

TIMING CHART (2 MODULUS)

Example: Divide ratio $=128 / 144$

Note: When divide of 144 is selected, positive pulse is applied by 16 to 80 .
The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

Figure 4. Typical Application Example

PACKAGE DIMENSIONS

(Suffix: -PF)

8-LEAD PLASTIC FLAT PACKAGE
 (CASE No: FPT-08P-M01)

MB511

1GHz HIGH SPEED PRESCALER

HIGH SPEED PRESCALER

The Fujitsu MB511 is a 1.0 GHz high speed prescaler that forms a Phase Locked Loop (PLL) circuit when combined with a Fujitsu frequency synthesizer.Based on Fujitsu's advanced Bipolar processing, the MB511 maintains a consistent low power consumption of 23 mA © 5 V . In addition, it can detect low amplitude input signals with a sensitivity of -20 dBm min.

The MB511 will divide the input frequency a modulus of 1,2 , or 8 , and is well suited for applications in CATV and electronically tuned TV.

FEATURES

- Wide operating frequency range:
$\mathrm{f}_{\text {in }}=50$ to $1000 \mathrm{MHz}\left(\mathrm{v}_{\text {in }}=-20 \mathrm{dBm}\right)$
- Maximum operating frequency depends upon the divide ratio:
$1 / 1$: $\quad 250 \mathrm{MHz}$ max. (Buffer through)
1/2: $\quad 500 \mathrm{MHz}$ max.
1/8: $\quad 1000 \mathrm{MHz}$ max.
- Low supply current:
- High input sensitivity:
-20 dBm min.
- Stable Output Amplitude: $\quad 800 \mathrm{mVp}-\mathrm{p}\left(\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}\right)$
- Wide temperature range: $\quad T_{A}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 8-pin Dual-In-Line package (Suffix: -P)

Plastic 8-pin Flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	IO	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage mayoccurifthe above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Figure 1. MB511 Block Diagram

FUNCTION TABLE

S1	S2	Divide Ratio	Operating Frequency
L	L	Not used	-
L	H	1	250 MHz
H	L	2	500 MHz
H	H	8	1000 MHz

$\mathrm{H}=\mathrm{V}_{\mathrm{CC}}$
$L=O P E N$

PIN DESCRIPTIONS

Pin Number	Symbol	VO	Descriptions
1	IN	1	Input. The connection with VCO should be an AC connection.
2	VCC	-	Power supply voltage input.
3	NC	-	No connection.
4	OUT	0	Output. Termination resistor is necessary due to emitter follower output.
5	GND	-	Ground.
6	S2	1	Divide ratio control input.
7	S1	1	Divide ratio control input.
8	\mathbb{N}	1	Complementary Input.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$	
Load Capacitance	C_{L}			5	pF	Termination resistor 500Ω

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Note	
		Min.	Typ.	Max.				
Power Supply Current			Icc	15	23	32	mA	Except termination output current.
Output Amplitude		V_{0}	0.4	0.8	1.2	V_{p-p}	500Ω termination, $C_{L}=5 p F$ max.	
Input Frequency	1/1	f_{1}	50		250	MHz	Min. value is measured with coupling capacitor of 1000 pF .	
	1/2	f_{2}	50		500	MHz		
	1/8	f_{3}	50		1000	MHz		
Input Signal Amplitude		PIN	-20		+10	dBm	50Ω	
High Level Input Voltage	S1, S2	V_{IH}	$V_{\text {cc }}-0.7$	VCC	$\mathrm{V}_{C C}+0.5$	V		
Low Level Input Voltage		V_{IL}		OPEN		V		
Low Level Input Current	S1, S2	$\mathrm{IIH}^{\text {H }}$	40		160	$\mu \mathrm{A}$	$V_{C C}=5 \mathrm{~V}$	

Figure 2. Test Circuit

TYPICAL CHARACTERISTICS CURVES

Figure 4. Input Sensitivity Curve (1/2 Divide Ratio) Power Supply Voltage Dependency

Figure 5. Input Sensitivity Curve (1/1 Divide Ratio) Power Supply Voltage Dependency

Figure 6. Power Supply Current vs. Power Supply Voltage

TYPICAL CHARACTERISTICS CURVES (Continued)

Figure 7. Input Sensitivity Curve (1/8 Divide Ratio) Temperature Dependency

Figure 9. Input Sensitivity Curve (1/1 Divide Ratio) Temperature Dependency

Figure 6. Input Sensitivity Curve (1/2 Divide Ratio) Temperature Dependency

Figure 10. Power Supply Current vs. Temperature

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (continued)

MB551 ASSP for DTS BIPOLAR Prescaler with VCO (Dual-Modulus, 1.0 GHz)

DESCRIPTION

The MB551 is a dual-modulus prescaler incoporating a voltage controlled oscillator (VCO) and is used with $900-\mathrm{MHz}$ band frequency synthesizers. The MB551 consists of: a Colpitts oscillator with grounded base capacitor, a buffer amplifier with open collector output, a prescaler interface circuit, and a dual-modulus prescaler operating at frequencies divided by $128 / 129$. The oscillator block accommodates external components such as a capacitor, a dielectric oscillator (resonator), and a variable capacitor. These components combined with the circuitry on the MB551 chip makes up the VCO.
The VCO and the prescaler are connected by an internal circuit. This minimizes the effects of prescaler input load variation on critical VCO characteristics, such as C/N ratio.
The MB551 typically operates at 5 V and draws 16 mA of current.

- FEATURES

- Oscillator frequency: 1 GHz (Max)
- Low power consumption: Icc = 16 mA (Typical)
- Oscillator output power: 0 dBm (Typical)
- C / N ratio: 70 dB (Typical) Measurement conditions: $\Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{BW}=15 \mathrm{kHz}$

65 dB (Typical) Measurement conditions: $\Delta \mathrm{f}=25 \mathrm{kHz}, \mathrm{BW}=15 \mathrm{kHz}$

- S / N ratio: 45 dB (Typical) Measurement conditions: $\mathrm{BW}=0.3$ to $3 \mathrm{kHz}, 3 \mathrm{kHz}$.Dev, 1 kHz Tone
- Stable oscillator output

Supply voltage dependence: $\pm 200 \mathrm{kHz} / \mathrm{V}$ (Typical)
Frequency stability: $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Typical)
(Continued)

PACKAGE

$$
8 \text { pin Plastic SOP }
$$

(FPT-8P-M01)

MB551

(Continued)

- Pulse swallow method: Division-by-128/129 prescaler
- Prescaler output with termination circuit: VI=1.6 Vp-p

PIN ASSIGNMENT

Pin No.	Symbol	Function
1	fvco	VCO signal pin
2	Vcc	Power supply pin
3	M	Module setting pin
4	OUT	Prescaler output pin
5	B	Oscillator transistor base pin
6	C	Oscillator transistor collector pin
7	E	Oscillator transistor emitter pin
8	GND	Ground pin

TIMING DIAGRAM (Example of Dual-modulus, division-by-128/129 type)

- M pin $=$ High: Division by 128

M pin = Low: Division by 129
($\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$ min, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max.)

- Division plus one makes the high-to-low transition longer by one cycle of the frequency-divided signal.
- Setup time (tset) from input of the M signal to change in the divide ratio of the prescaler is 16 ns (typical).
n BLOCK DIAGRAM

MB551

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remarks
Supply voltage	Vcc	-0.5 to +7.0	V	
Oscillator transistor base/ emitter applied voltage	Vb, Ve	-	-	Do not apply external DC voltage to the base or emitter pin.
M/OUT (Pin 3/4) applied voltage	$V_{P 1}$	-0.5 to $\mathrm{Vcc}+0.5$	V	
fvco/C (Pin 1/6) applied voltage	VP2	$\mathrm{Vcc} \leq \mathrm{VP2}^{2}<+7.0$	V	
Applied current	Ip	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Supply voltage	Vcc	4.5	5.0	5.5	V	
External variable capacitor Control voltage	$\mathrm{V} T$	1.5	-	4.5	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	
Prescaler output load	CL	-	-	8	pF	

■ ELECTRICAL CHARACTERISTICS

1. VCO Block

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Oscillator frequency	fosc	-	-	1000	MHz	
Oscillator output	Pout	-	0	-	dBm	
C/N ratio	C/N	-	70	-	dB	$\begin{aligned} & \mathrm{Df}=50 \mathrm{kHz}, \mathrm{BW}= \\ & 15 \mathrm{kHz} \end{aligned}$
			65	-	dB	$\begin{aligned} & \mathrm{Df}=25 \mathrm{kHz}, \mathrm{BW}= \\ & 15 \mathrm{kHz} \end{aligned}$
S/N ratio	S/N	-	45	-	dB	$\mathrm{BW}=0.3$ to 3 kHz , 3 kHz , Dev, Tone 1 kHz
Fundamental/1st harmonic ratio	SP-1	-	-10	-	dB	
Frequency stability	$\Delta \mathrm{ft}$	-	35	-	ppm $/{ }^{\circ} \mathrm{C}$	-40 to $85^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ (Typical)
Supply voltage variation	$\Delta \mathrm{fr}$	-	± 200	-	kHz/V	$5 \mathrm{~V} \pm 10 \%$
Mod Sense	$\Delta \mathrm{fosc}$	-	4	-	MHz/V	$\text { Control range: } 1.0 \text { to }$ $4.0 \mathrm{~V}$

Note: Electrical characteristics depend on external components and mounting conditions. These values are reference values assuming the test circuit examples on pages 6 and 7 .

2. Prescaler Block

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Supply current	Icc	-	16.0	-	mA	
Output amplitude	Vout	1.0	1.6	-	Vp-p	Load capacitance when internal termination pin is used: 8 pF or less
Response frequency	$f_{\text {in }}$	-	-	1000	MHz	
Allowable input power	Pin	-4	-	+10	dBm	
High-level input voltage (MC)	V_{IH}	2.0	-	-	V	
	VIL	-	-	0.8	V	
High-level input current (MC)	lH	-	-	0.4	mA	
	1 L	-0.2	-	-	mA	
Module setup time	tset	-	16	26	ns	

MB551

TEST CIRCUIT EXAMPLE 1

Chip capacitor: UMK316C, UMK212C, UCN103C Series (Taiyo Yuden)
Chip coil: LQN2A Series (Murata Works)
Dielectric oscillator: DRR060UE (Murata Works)
Varicap: ISV164 (NEC)

TEST CIRCUIT EXAMPLE 2

Chip capacitor: UMK316C Series (Taiyo Yuden)
Chip coil: LQN2A Series (Murata Works)
Dielectric oscillator: DRRO60UE (Murata Works)
Varicap: MA333 (Mitsubishi Electric)

MB551

- RECOMMENDED PC BOARD PATTERN

[Mounted component list]

C1: 1 pF (Taiyo Yuden UMK212C)
C2: 2 pF (Taiyo Yuden UCN103C)
C3: 3 pF (Taiyo Yuden UMK212C)
C4: 4 pF (Taiyo Yuden UMK212C)
C5: 2 pF (Taiyo Yuden UMK212C)
C6: 20 pF (Taiyo Yuden UMK316C)
C7: 51 pF (Taiyo Yuden UMK212C)
C8: 20 pF (Taiyo Yuden UMK316C)
C9: 20 pF (Taiyo Yuden UMK316C)
C10: 51 pF (Taiyo Yuden UMK212C)
C11: 20 pF (Taiyo Yuden UMK316C)
C12: 51 pF (Taiyo Yuden UMK212C)
C13: 20 pF (Taiyo Yuden UMK316C)
C14: 51 pF (Taiyo Yuden UMK212C)

C15: $0.01 \mu \mathrm{~F}$ (Film capacitor)
C16: $0.01 \mu \mathrm{~F}$ (Film capacitor)
C17: $0.01 \mu \mathrm{~F}$ (Film capacitor)

R1: 390Ω (Rohm MCR25)

L1: 22 nH (Murata Works LQN2A)
L2: 56 nH (Murata Works LQN2A)
L3: 82 nH (Murata Works LQN2A)

VD: 1 SV164 (NEC)

Dielectric oscillator: (Murata Works DRR060 Series, 1.5 GHz)

MEASUREMENT RESULTS

(1) Supply Current

(2) Oscillation Waveform ($50-\mathrm{kHz}$ span)

Frequency

MB551

MEASUREMENT RESULTS (TEST CIRCUIT 1 ON RECOMMENDED PC BOARD)

(1) Conversion Gain

(2) Supply Voltage Variation

(3) $\mathrm{C} / \mathrm{N}, \mathrm{S} / \mathrm{N}$

- Control Voltage Dependence

- Supply Voltage Dependence

■ MEASUREMENT RESULTS
(1) Prescaler Input Sensitivity Curve

- Supply voltage dependence ($\mathrm{Ta}=+25^{\circ} \mathrm{C}$)

- Temperature dependence (Vcc=5 \mathbf{V})

MEASUREMENT RESULTS (TEST CIRCUIT 2)
(1) Conversion Gain

(2) $\mathrm{C} / \mathrm{N}, \mathrm{S} / \mathrm{N}$

- Control voltage dependence

MB551

SAMPLE APPLICATION CIRCUIT

- ORDERING INFORMATION

Part number	Package	Remarks
MB551PF	8 pin Plastic SOP	
	(FPT-8P-M01)	

2

PACKAGE DIMENSIONS

8 pin Plastic SOP (FPT-8P-M01)

SECTION 3

CMOS Phase-Locked Loops (PLLs) - At a Glance

The Fujitsu family of CMOS PLLs offers a wide range of operating frequencies with low supply current and voltages to meet many diverse design requirements. A serial input programming capability is a feature of all Fujitsu's PLLs.

Page Number	Device Part Number	$\begin{gathered} \mathbf{f}_{\mathbb{N}}(\max) \\ \mathbf{M H z} \end{gathered}$ $@ 3 \mathrm{v} / 5 \mathrm{v}$	Program Counter	A Swallow Counter	R Reference Counter	$\begin{aligned} & \mathrm{IDD} \mathrm{~mA} \\ & \Theta 3 \mathrm{v} / 5 \mathrm{v} \end{aligned}$	$V_{D D}$	Package
3-3	MB87001A	10/13	$\begin{aligned} & \text { Binary } \\ & 5-1023 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 8-2048 \end{aligned}$	2.0/3.0	2.7-5.5V	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-15	M887006A	10/17	$\begin{aligned} & \text { Binary } \\ & 5-1023 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 5-16383	2.5/3.5	$3.0-6.0 \mathrm{~V}$	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-27	MB87014A	-/180	$\begin{aligned} & \text { Binary } \\ & 5-1023 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-63 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 5-65535 \end{aligned}$	-/8.0	4.5-5.5V	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-37	M887076	10/10	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 5-16383 \end{aligned}$	2.5/3.0	2.7-5.5V	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-49	MB87086A	-/95	$\begin{aligned} & \text { Binary } \\ & 5-1023 \end{aligned}$	none	Binary 5-65535	-8.0	4.5-5.5V	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-59	MB87087	10/17	$\begin{array}{\|l\|l\|l\|} \hline \text { Binary } \\ 5-1023 \end{array}$	$\begin{array}{\|l\|} \text { Binary } \\ \text { O-127 } \end{array}$	Binary 5-16383	2.5/3.5	$3.0-6.0 \mathrm{~V}$	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP } \end{aligned}$
3-71	MB87091	300/-	$\begin{aligned} & \text { Binary } \\ & 5-4095 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-63 \end{aligned}$	Binary 5-16383	8.0/-	2.7-3.3V	$\begin{aligned} & \text { 16-pin } \\ & \text { DIP, SOP, } \\ & \text { SSOP } \end{aligned}$
3-89	MB87093A	-145	725	none	64	-/10	4.5-5.5V	$\begin{aligned} & 16 \text {-pin } \\ & \text { SSOP } \end{aligned}$
3-99	MB87094	1501.1V	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 5-4095	1@1.1V	1.1-1.7V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
3-89	MB87095A	-/110	550	none	64	-110	4.5-5.5V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
3-89	MB87096A	-190	750	none	128	-/10	$4.5-5.5 \mathrm{~V}$	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$

MB87001A

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87001A, fabricated in CMOS technology, is a serial input PLL frequency synthesizer.

The MB87001A contains an inverter for connection to an extemal oscillator, a programmable reference divider, a divide factor of programmable reference divider control circuit, a phase detector, a charge pump, a 17-bit shift register, a 17-bit latch, a programmable divider (a binary 7-bit swallow counter, a binary 10-bit programmable counter), and a control generator for an external dual modulus prescaler.

When supplemented with a loop filter and VCO, the MB87001A contains the necessary circuitry to make up a Phase Locked Loop (PLL). Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Single power supply voltage:
$V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
- Wide temperature range: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- 13 MHz typical input capability © 5 V (fin input)
- On-chip inverter for oscillator
- 8 divide factors for programmable reference divider is selected by S_{1},
S_{2} and S_{3} input ($1 / 8,1 / 16,1 / 64$, $1 / 128,1 / 256,1 / 512,1 / 1024,1 / 2048$)
- Programmable 17-bit divider with input amplifier consisting of: Binary 7-bit swallow counter Binary 10 -bit programmable counter
- 2 type of phase detector output On-chip charge pump output Output for extemal charge pump
- Easy interface to Fujitsu dual modulus prescaler

ABSOLUTE MAXIMUM	TINGS	NOTE)	$\left(V_{S S}=0 V\right)$
Rating	Symbol	Value	Unit
Power Supply Voftage	V_{DD}	$V_{S S}-0.5$ to $V_{\text {SS }}+7.0$	V
Input Voltage	V IN	$V_{S S}-0.5$ to $V_{D D}+0.5$	V
Output Voltage	Vout	$V_{S S}-0.5$ to $V_{D D}+0.5$	V
Output Current	lout	± 10	mA
Open-drain Output	VOOP	$\mathrm{V}_{S S^{-}} \mathbf{0 . 5}$ to $\mathrm{V}_{\mathrm{DD}}+3.0$	V
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - MB87001A BLOCK DIAGRAM

PIN DESCRIPTION

FUNCTIONAL DESCRIPTION

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data of binary code is input to the Data pin. These data are loaded into the 17 -bit shift register from the MSB. When the load enable signal (LE) is high, the data stored in the 17-bit shift register is transferred to the 17-bit latch.
The data (1) to (7) set a divide factor of the binary 7 -bit swallow counter and data (8) to (17) set a divide factor of the binary 10-bit programmable counter. In other words, serial data is equivalent to the divide factor of programmable divider.

Fig. 2 - BLOCK DIAGRAM OF PROGRAMMABLE DIVIDER

Binary 7-bit Swallow Counter Data Input

(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
-	-	-	-	-	-	-	-
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows:
Example MB501L.
$S W=H(64 / 65)$: Bit 7 of shift register (7) should be zero

Binary 10-bit Programmable Counter Data Input

(17)	(16)	(15)	(14)	(13)	(12)	(11)	(10)	(9)	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
-	-	-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited Divide factor N: 5 to 1023

PULSE SWALLOW FUNCTION

$$
f_{\mathrm{VCO}}=[(\mathrm{N} \times \mathrm{M})+\mathrm{A}] \times \mathrm{fr}
$$

fVCO: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10 -bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)
A : Preset divide factor of binary 7-bit swallow counter (0 to 127)
fr : Output frequency of the programmable reference divider

Clock: Clock signal input for the 17-bit shift register
Each rising edge of the clock shifts one bit of data into the shift register.
Data : Serial data input for the 17 -bit shift register
LE : Load enable input
When LE is high (high active), the data stored in the 17-bit shift register is transferred to the 17 -bit latch.
The 17-bit data is used for setting a divide factor of the programmable divider.
RECOMMENDED OPERATING CONDITIONS
$\left(V_{S S}=0 V\right)$

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{D D}$	2.7	-	5.5	V
Input Voltage	$V_{I N}$	$V_{S S}$	-	$V_{D D}$	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ}{ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

$$
\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except f_{IN} and $\mathrm{OSC}_{\mathrm{IN}}$		V_{IH}	-	2.1	-	-	V
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	0.9		
Input Sensitivity	f^{\prime}	$\mathrm{Vf}_{\mathrm{IN}}$	Amplitude in AC coupling, sine wave	0.8	-	-	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	
	$\mathrm{OCS}_{\text {IN }}$	Vosc		1.0	-	-		
High-level Input Current	Except $f_{\mathbb{N}}$ and $\mathrm{OSC}_{\mathbb{I}}$	I_{IH}	$V_{\text {IN }}=V_{\text {DD }}$	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		ILL	$V_{\text {IN }}=V_{S S}$	-	-1.0	-		
Input Current	$f i n$	$\mathrm{If}_{\mathrm{IN}}$	$V_{I N}=V_{S S}$ to $V_{D D}$	-	± 30	-	$\mu \mathrm{A}$	
	$\mathrm{OCS}_{\text {IN }}$	losc		-	± 30	-		
High-level Output Voltage	Except ϕP and OSCOUT	V_{OH}	$\mathrm{IOH}=0 \mu \mathrm{~A}$	2.95	-	-	V	
Low-level Output Voitage		VOL	$\mathrm{IOL}=0 \mu \mathrm{~A}$	-	-	0.05		
Low-level Output Voltage	ϕP	Volp	$1 \mathrm{CL}=0.8 \mathrm{~mA}$	-	-	0.8	V	
High-level Output Voltage	OSC ${ }_{\text {OUT }}$	$\mathrm{V}_{\mathrm{OHX}}$	$\mathrm{lOH}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	2.50	-	-		
Low-level Output Voltage		Volx	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	\cdots	0.50		
High-level Output Current	Except $\phi \mathrm{P}$ and OSC Out	${ }^{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.5	-	-	mA	
Low-level Output Current		lol	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	0.5	-	-		
N -channel Open Drain Cut Off Current	ϕP	loff	$V_{O}=V_{D D}+3.0 \mathrm{~V}$	-	1.0	-	$\mu \mathrm{A}$	
Power Supply Current* ${ }^{1}$		IDD	-	-	2.0	-	mA	
Max. Operating Frequency of Programmable Reference Divider		fMAXd	-	13	20	-	MHz	
Max. Operating Frequency of Programmable Divider		fMAXp	-	10	20	-	MHz	

Note: $* 1: \mathrm{f}_{\mathrm{N}}=5.0 \mathrm{MHz}, 12.8 \mathrm{MHz}$ crystal is connected between $\mathrm{OSC}_{\mathbb{N}}$ and OSC ${ }_{\text {OUT }}$. lnputs are connected to ground except for $f_{I N}$ and OSC $_{\operatorname{IN}}$. Outputs are open.

ELECTRICAL CHARACTERISTICS

$$
\left(V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except f_{IN} and $\mathrm{OSC}_{1 /}$		V_{IH}	-	3.5	-	-	V
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	1.5		
Input Sensitivity	$\mathrm{fin}^{\mathrm{N}}$	Vfin	Amplitude in $A C$ coupling, sine wave	1.0	-	-	$V_{\text {P-P }}$	
	$\mathrm{OCS}_{\text {IN }}$	Vosc		1.5	-	-		
High-level Input Current	Except $\mathrm{f}_{\mathbb{N}}$ and $\mathrm{OSC}_{\mathbb{N}}$	I_{H}	$V_{\text {IN }}=V_{D D}$	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		ILL	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	-	-1.0	-		
Input Current	$\mathrm{fin}^{\text {f }}$	Ifin	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ to V_{DO}	-	± 50	-	$\mu \mathrm{A}$	
	OCS ${ }_{\text {IN }}$	losc		-	± 50	-		
High-level Output Voltage	Except ϕ P and OSC ${ }_{\text {Out }}$	VOH	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	4.95	-	-	V	
Low-level Output Voltage		V_{OL}	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.05		
Low-level Output Voltage	ϕP	$V_{\text {OLP }}$	$\mathrm{l}_{\mathrm{OL}}=0.8 \mathrm{~mA}$	-	-	1.0	v	
Hign-level Output Voltage	OSCOUT	$\mathrm{V}_{\text {OHX }}$	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	4.50	-	-		
Low-level Output Voltage		$V_{\text {OLX }}$	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.50		
High-level Output Current	Except ϕ P and OSCOut	$\mathrm{IOH}^{\text {r }}$	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-1.0	-	-	mA	
Low-level Output Current		1 OL	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	1.0	-	-		
N -channel Open Drain Cut Off Current	ϕ P	loff	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}+3.0 \mathrm{~V}$	-	1.0	-	$\mu \mathrm{A}$	
Power Supply Current*1		IDD	-	-	2.0	-	mA	
Max. Operating Frequency of Programmable Reference Divider		fMAXd	-	15	25	-	MHz	
Max. Operating Frequency of Programmable Divider		fMAXp	-	13	25	-	MHz	

 inputs are connected to ground except for $\mathrm{f}_{\mathbb{N}}$ and $\mathrm{OSC}_{\mathfrak{N}}$. Outputs are open.

Fig. 3 -TYPICAL APPLICATION EXAMPLE

TYPICAL CHARACTERISTICS CURVES

Inupt Sensitivity vs. Input Frequency (fin Section)

Power Supply Current vs. Input Frequency

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-16P-M04)

Dimensions in

PACKAGE DIMENSIONS (Continued)

MB87006A Frequency Synthesizer CMOS Serial Input Phase Locked Loop (PLL)

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87006A, fabricated in CMOS technology, is a serial input Phase Locked Loop (PLL) frequency synthesizer.
The MB87006A contains an inverter for connection to an extemal oscillator, programmable reference divider (binary 14-bit programmable reference counter), 14-bit shift register, 14 -bit latch, phase detector, charge pump, 17-bit shift register, 17-bit latch, programmable divider (binary 7 -bit swallow counter, binary 10-bit programmable counter) and control generator for dual modulus prescaler.
When supplemented with a loop filter and VCO, the MB87006A contains the necessary circuitry to make up a Phase Locked Loop (PLL). Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Wide range power supply voltage:
$V_{C C}=3.0$ to 6.0 V
- Wide temp range: $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$
- 17 MHz typical input capability © 5 V (fin input)
- On-chip inverter for oscillator
- Programmable divider with input amplifier consisting of:
- Binary 7-bit swallow counter
- Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of:
- Binary 14-bit programmable reference counter
- Divide factor of programmable divider and programmable reference divider are set by serial data input (The last data bit is a control bit)
- 2-types of phase detector output
- On-chip charge pump output
- Output for external charge pump
- Easy interface with Fuijtsu prescalers
- 16-pin standard dual-in-line package (Suffix: -P)
16-pin standard flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

\%. Rating	Symbol	Value	Unit:
Power Supply Voltage	$V_{D D}$	$V_{S S}-0.5$ to $V_{S S}+7.0$	V
input Voltage	$\mathrm{V}_{\text {IN }}$	$V_{S S}-0.5$ to $V_{D D}+0.5$	V
Output Voltage	Vout	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output Current	lout	± 10	mA
Operating Temperature	Ta	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	PD	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]Fig. 1 - MB87006A BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbol	10	Description
1	OSCin	1	Input pin for erystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) $O C$ coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
3	fv	0	Monitor output of the phase detector. This pin is tied to the programmable divider output.
4	Voo	-	Power supply voltage input.
5	Do	0	Three-state charge pump output of phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency fv as listed below: $\mathrm{fr}>\mathrm{fv}$: Drive mode ($\mathrm{D}_{0}=$ High level) $\mathrm{fr}=\mathrm{fv}$: High impedance $\mathrm{fr}<\mathrm{fv}: \quad$ Sink mode ($\mathrm{D}_{\mathrm{o}}=$ Low levei)
6	Vss	-	Ground.
7	LD	0	Output of phase detector. It is high level when if and fv are equal, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	f fin	1	Clock input for programmable divider. This input contains internal bias circuit and amplifier. The connection with an external dual-modulus prescaler should be an $A C$ connection.
9	Clock	1	Clock signal input for 17 -bit shift register and 14 -bit shift register. Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for programmable divider and programmable reference divider. The last bit of the data is the control bit. Control bit determines which latch is activated. The data stored in the shift register is transferred to the 14 -bit latch when the bit is high, and to 17 -bit latch when low.
11	LE	1	Load enable input with internal pull up resistor. When this pin is high (active high), the data stored in shift register is transferred to 14 -bit latch or 17 -bit latch depending on the control bit data.
12	M	0	Control output for an external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of fin input signal (pin \#8). Pulse swallow function: e.g. MB501L: $M=$ High: Preset modulus factor 64 or 128 $\mathrm{M}=$ Low Preset modulus factor 65 to 129

PIN DESCRIPTION (Continued)

Pin No.	Symbor	40	
13	f	0	Monitors output of phase detector input. This pin is tied to the programmabie reference divider output.
14	REFout	0	Monitor output pin of the reference frequency. This output can be used as system clock for microprocessor, or reference oscillator for another PLL frequency synthesizer.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output for external charge pump. The mode of $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are changed by the combination of programmable reference divider output frequency fr and programmable divider output frequency fy as listed below.

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT TIMING

- Data for programmable reference divider.

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider and progranmable divider. Data is input from MSB, and last bit data is a control bit. Controf bit is set high when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Data is input to internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data stored in shift register is transferred to 14-bit latch, or 17-bit latch depending on the control bit setting.

PULSE SWALLOW FUNCTION

$$
f \text { fvco }=[(N \times M)+A] \times f o s c+R(N>A)
$$

fveo : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10 -bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)

A : Preset divide factor of binary 7-bit programmable counter (0 to 127, A < N)
fosc : Output frequency of external oscillator
R : Preset divide factor of binary 14 -bit programmable reference counter (5 to 16383)

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Serial data consists of 14-bit data, which is used for setting divide factor of programmable reference counter, and 1-bit control data. In this case, control bit is set high level.

The data format is shown below.

BINARY 14-BIT REFERENCE COUNTER DATA INPUT

(14)	(13)	(12)	(11)	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide
0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	0	0	0	0	1	1	1	7
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-		-	-	.	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1	1	16383

Note: Divide factor less than 5 is prohibited. Divide factor: 5 to 16383

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER
Serial data consists of 17 -bit data, which is used for setting divide factor of programmable divider, and 1 -bit control data. In this case, control bit is set low level. The data (1) to(7) set a divide factor of 7 -bit swallow counter and data (8) to (17) set divide factor of 10 -bit programmable counter.

The data format is shown below.

BINARY 7-BIT SWALLOW COUNTER DATA INPUT

(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
\cdot							
0	\cdot						
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows e.g. MB501L ($+65 / 65$)prescaler

SW = H (64/65): Bit 7 to shift register 7) should be zero.

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

(1)	(16)	(15)	(14)	(13)	(12)	(11)	(10)	(9)	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
.	.	-	.	-	-	-	-	-	.	-
-	.	-	-	.	-	-	-	-	-	-
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited.
Divide factor N : 5 to 1023

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.0 \mathrm{~V}, V_{S S}=0 \mathrm{~V}, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

					Value		
\%				Min	Typ	Maz:	
High-level Input Voltage	Except fin and OSCIN	V_{1}		Vodx0.7		Vodx0. 3	V
Low-level Input Voltage		V_{12}					
Input Sensitivity	$f i n$	Vfpp	Amplitude in AC coupling, sine wave	0.5			Vp.p
	$\mathrm{OSC}_{\text {IN }}$	Vsin		0.5			
High-level Input Current	Except fin and OSC ${ }_{\mathbf{N}}$		$V_{\text {IW }}=V_{\text {D }}$		1.0		$\mu \mathrm{A}$
Low-level Input Current		1 l	$V_{\text {IN }}=V_{\text {Ss }}$		-1.0		
Input Current	f f	Ifin	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$		± 30		$\mu \mathrm{A}$
	OSC $_{\text {IN }}$	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {D }}$		± 30		$\mu \mathrm{A}$
	LE	leg	$V_{\text {IN }}=V_{\text {Ss }}$		-40		$\mu \mathrm{A}$
High-level Output Voltage	Except OSCout	Vон	$\mathrm{IOH}^{\text {a }}=0 \mu \mathrm{~A}$	2.95			V
Low-level Output Voltage		VoL	$102=0 \mu \mathrm{~A}$			0.05	
High-level Output Current	Except M and OSCout	1 OH	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-0.5			mA
Low-level Output Current		loc	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	0.5			
High-level Output Current		Іонм	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-0.7			
Low-level Output Current		lom	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.5			
Power Supply Current *'		100			2.5		mA
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	20		MHz
Maximum Operating Frequency of Programmable Divider		f maxp		10	20		MHz

Notes: *1: $\mathrm{fin}=8.0 \mathrm{MHz} 11.5 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\mathbb{N}}$ and $\mathrm{OSC}_{\text {out }}$. inputs are grounded except for fin and OSCin. Output are open.

ELECTRICAL CHARACTERISTICS (continued)

Note: \quad.1. fin $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\mathrm{in}}$ and OSCour Inputs are ground exœept for fin and OSC ${ }_{\text {In. }}$. Outputs are open.

TYPICAL CHARACTERISTICS CURVE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-16P-M06)

MB87014A ASSP

CMOS PLL Frequency Synthesizer

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87014A, fabricated in advanced CMOS technology, is a serial input phase locked loop (PLLL) frequency synthesizer with an on chip 180 MHz dual modulus prescaler.
The MB87014A contains a dual modulus prescaler, inverter for an external oscillator, programmable reference divider, control circuit, phase detectors, charge pump, programmable divider (binary 6 -bit swallow counter and binary 10 -bit programmable counter).
The MB87014A can make up PLL frequency synthesizer operating up to 180 MHz .

- Single Power Supply Voltage: $V_{D D}=4.5 \mathrm{~V}$ to 5.5 V
- Wide Temperature Range: $\mathrm{Ta}=-30$ to $60^{\circ} \mathrm{C}$
- 180 MHz input capability ©5V (fin input)
- On-chip Inverter for oscillator
- Programmable divider with input amplifier consisting of; Binary 6-bit swallow counter Binary 10 -bit programmable counter
- Programmable reference divider with input amplifier consisting of; Binary 16-bit programmable reference counter
- Divide factor of programmable divider and programmable reference divider are set by serial data input. (The last data bit is a control bit.)
- 3-type of phase detector outputs

On-chip charge pump output for active LPF
On-chip charge pump output for passive LPF Output for external charge pump

- 16-pin Standard Dual-in-line Package (Suffix: -P) 16-pin Standard Flat Package (Suffix: -PF)
- Pulse Swallow Function
fvco $=[(N \times M)+A] \times(f o s c+R)(N>A)$
fyco : Output frequency of extemal voltage controlled oscillator (VCO)
$\mathrm{N}^{\text {: Preset divide factor of binary } 10 \text {-bit programmable counter (} 5 \text { to 1023) }}$
M : Preset modulus factor of internal dual modulus prescaler (64/65)
A : Preset divide factor of binary 6 -bit swallow counter (0 to 63)
fosc: Output frequency of the external oscillator
$\mathrm{R}^{\text {: Preset divide factor of binary } 16 \text {-bit programmable reference counter }}$ (5 to 65535)
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value.	
Power Supply Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+6.0$	V
Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Current	IOUT	± 10	mA
Operating Ambient Temperature	Ta	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

NOTE: Permanent device damage may occur if the above Abeolute Maximum Ratinge are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. operation should be restricted to the conditions as detailed in the operational sections of this data
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^6]

PIN DESCRIPTION

Pin No.	Symbor	10	Description
1	OSC $_{1 \times}$	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used, but for large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be left open when an external oscillator is used.
3	fv	0	Monitor pin for the phase detector input. This pin is tied to the programmable divider output.
4	Voo	-	Power supply voltage input.
5	Dop	0	Output pin for low pass filter (Passive type). The mode of D_{op} is changed by the combination of programmabie reference divider output frequency f_{f}, and programmable divider output frequency f_{v} as listed below: $f_{f}>f_{v}: \quad$ Drive mode ($D_{o p}=$ High level $)$ $f_{h}=f_{v}: \quad$ High-impedance f_{1} <fiv: \quad Sink mode (Dop $=$ Low level)
6	Vss	-	Ground.
7	LD	0	Output of phase detector. It is high level when f, and $f v$ are coherent, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	f f	1	Frequency input to an internal prescaler from VCO. The connection with VCO should be AC connection.
9	Clock	1	Clock signal input for shift registers. Each rising edge of the clock makes one bit of the data shift into the shift registers.
10	Data	1	Serial data input for shift registers. The last bit of the data is the controlbit The control data determines which latch is activated.
11	LE	1	Load enable input. When this pin is high, the data from shift register is latched into programmable reference divider or programmable divider depending upon a control bit setting.
12	Doa	0	Output pin for low pass fitter (Active type). The mode of Dox is changed by the combination of programmable reference divider output frequency f_{f}, and programmable divider output frequency f_{v} as listed below: $f_{r}>f_{v}$: Sink mode (Don = Low level) $f_{t}=f_{v}$: High-impedance $\mathrm{f}_{\mathrm{f}}<\mathrm{fv}$: Drive mode ($\mathrm{DOA}_{\mathrm{on}}=$ High level)
13	f	0	Monitor pin for the phase detector input. This pin is tied to the programmable reference divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output pins for low pass filter (differential filter type). Outputs for external charge pump are changed by the combination of programmable reference divider output frequency f_{f}, and programmable divider output frequency f_{v} as listed below.

FUNCTIONAL DESCRIPTIONS

DIVIDE FACTOR OF DIVIDER

Serial data of binary code is input to Data pin. On rising edge of clock shifts one bit of data into the shift registers. Input data consists of 16-bit data and 1-bit of control data. The control data determines which latch is activated. When control bit is high, 16-bit latch is selected. When low, 6-bit latch and 10 -bit latch is selected.

The serial data is input to 16 -bit shift registers and 1-bit control register. When load enable is high, the data from the shift register is latched into the programmable reference divider (binary 16 -bit programmable reference counter) or programmable divider (binary 6 -bit swallow counter and binary 10-bit programmable counter) depending upon a control bit setting.

FUNCTIONAL DESCRIPTIONS (Continued)

BINARY 6-BIT SWALLOW COUNTER DATA INPUT

Divide Factor	(1)	(2)	(3)	4	(5)	6
0	0	0	0	0	0	0
1	1	0	0	0	0	0
2	0	1	0	0	0	0
\cdot						
\cdot						
63	1	1	1	1	1	1

- Divide factor A: 0 to 63

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

Divide Factor	(7)	(8)	(9)	(10)	(1)	(12)	(13)	(14)	(15)	(16)
5	1	0	1	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0	0
-	-	-	$\stackrel{\square}{*}$	\cdot	-	.	.	-	-	-
1023	1	1	1	1	1	1	1	1	1	1

- Divide factor N: 5 to 1023
- Divide factor less than 5 is prohibited.

BINARY 16-BIT PROGRAMMABLE COUNTER DATA INPUT

Divide Factor	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10	(11)	(12)	(13)	(14)	(15)	(16)
5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
\cdot																
\cdot																
65535	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

- Divide factor R: 5 to 65535
- Divide factor less than 5 is prohibited.

STAND-BY MODE

When all zero of 16 -bit serial data is input, the MB87014A goes to stand-by mode. During stand-by mode, internal circuit stops operation and fin and OSCin are forced to high level. Thus, low supply current is achieved. Stand-by down mode is release, when the data except all zero data is input.
SERIAL DATA INPUT TIMING

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider or progranmable divider. Data is input from MSB and last bit data is control bit.
Control bit is high level when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Clock input for 16 -bit shift registers and control register. Data is input into internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data from shift register is latched into programmable reference divider or programmable divider depending upon the control bit setting.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unt
		Min	Typ	Max	
Power Supply Voltage	Vod	4.5	5.0	5.5	V
input Voltage	$V_{\text {IN }}$	Vss		Voo	\checkmark
Operating Temperature	T_{A}	-30		$+60$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(V_{s s}=0 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30\right.$ to $60^{\circ} \mathrm{C}$)

Notes: \quad : $: f_{m}=180 \mathrm{MHz}, 22 \mathrm{MHz}$ cystal is connected between OSCIN and OSCout pins. Inputs are grounded except $f_{\text {in }}$ and OSCin. Outputs are open.
*2 All serial data is set to zero. Input are grounded except in and OSCIn. Output are open.
*3 REF Section :Maximum operating frequency of programmable reference divider. PD Section :Maximum operating frequency of programmable divider.

TYPICAL CHARACTERISTICS CURVES

Input Sensitivity vs. Input Frequency (fin Section)

Power Supply Current vs. Input Frequency

Power Supply Current ldD (mA)

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE

 (CASE No.: FPT-16P-M06)

MB87076

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER WITH POWER DOWN MODE

The Fujitsu MB87076, fabricated in CMOS technology, is a serial input PLL frequency synthesizer that features a power down mode.
The MB87076 contains an inverter for the oscillator, 14 -bit shift register, 18 -bit shift register, 1-bit control register, 14-bit latch, 18-bit latch, programmable divider (binary 11-bit programmable counter and binary 7 -bit swallow counter), programmable reference divider (binary 14-bit programmable reference counter), phase detector, charge pump, control generator for two modulus prescaler, and power down circuit.
The MB87076 selects either operation mode or power down mode, depending on the PS input signal level. When the device begins operation, phase f_{r} and f_{V} are synchronized.

- Single power supply voltage: $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V
- Wide temperature range: $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$
- Low power supply current: 3 mA typ, ($100 \mu \mathrm{~A}$ in power down mode)
- On-chip inverter for oscillator
- Programmable reference divider with input amplifier Programmable divider with input amplifier
- 2 Types of phase detector output
- On-chip charge pump output
- Output for external charge purmp
- On-chip power down circuit
- 16 -pin standard dual-in-line package (Suffix: -P) 16-pin standard flat package (Suffix: -PF)
- Pulse swallow function
fvco $=[(N \times M)+A] \times f o s c \div R$
fyco : VCO (Voltage Controlled Oscillator) output frequency
N : Preset divide factor of binary 11 -bit programmable counter (16 to 2047)
M : Preset modulus factor of external two modulus prescaler (64 in 64/65 mode, 128 in 128/129 mode)
A : Preset divide factor of binary 7 -bit swallow counter (0 to 127)
fosc : Output frequency of an external oscillator
R : Preset divide factor of binary 14-bit programmable reference counter (8 to 16383)
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symboi	Value
Power Supply Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{SS}}+7.0$
Input Voltage	$\mathrm{V}_{I N}$	$\mathrm{~V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$
Output Current	$\mathrm{l}_{\mathrm{OUT}}$	± 10
Open Drain Output	V_{OP}	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{OD}}+3.0$
Operating Temperature	Ta	-40 to +85
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125
Power Dissipation	P_{D}	300
${ }^{\circ} \mathrm{C}$		

[^7] Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voitages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^8]
BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin Name	//O	Description
1	$\mathrm{OSC}_{\mathrm{IN}}$	1	Pin for crystal oscillator The input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as an AC coupling when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCOUT	0	Pin for crystal oscillator The output of the inverting amplifier. This pin should be connected to ground when an external oscillator is used.
3	LC	0	Output pin for loop control signal This pin is at high level when the operation mode is selected. It is at low level when the power down mode is selected.
4	$V_{D D}$	-	Power supply voltage
5	D_{0}	0	Three-state charge pump output The mode of D_{Q} is changed by the combination of the programmable reference divider output frequency (f_{r}) and the programmable divider output frequency (f_{p}) as listed below: $f_{r}>f_{p}: \quad D_{0}=H$ level $f_{r}=f_{p}: \quad D_{\mathrm{O}}=$ High-impedance level $f_{r}<f_{p}: \quad D_{O}=L$ level
6	$V_{S S}$	-	Ground
7	LD	0	Output of phase comparator This pin is at low level when f_{r} and f_{p} are coherent, and then the loop is locked. Otherwise it outputs high level.
8	f_{IN}	1	Input for binary 7 -bit swallow counter and binary 11 -bit programmable counter from VCO This input involves the bias circuit and the amplifier. The connection with the dual modulus prescaler should be an AC connection.
9	Clock	1	Clock signal input for 18-bit shift register and 14-bit shift register Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for shift registers This data is the divide ratio of the divider, which is provided from the corresponding shift register. The last bit of the data is the control bit which specified the destination of the shift register. The data is transferred to the 14 -bit shift register when the bit is at high level, and to the 18 -bit shift register when it is at low level.
11	LE	1	Load enable input When this pin is at high level, the data latched from the shift register is transferred to the programmable reference divider or the programmable divider, depending on the control bit data.
12	M	0	Control output for external dual modulus prescaler The connection should be a DC connection. Pulse swallow function: (Example) MB501: $M=$ High: Preset modules factor 64 or 128 $M=$ Low: Preset modules factor 65 or 129
13	f_{r}	0	Monitors output of the phase comparator input Also monitors the output of the reference divider.
14	PS	1	Power down control input When this pin is at high level, the operation mode is selected. When this pin is at low level, the power down mode is selected.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	ϕP ϕR	0 0	Output for external charge pump

MB87076

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT FOR PROGRAMMABLE DIVIDER

Binary serial data is input to the Data pin. Each rising edge of the clock shifts one bit of the data into the shift registers and the control register. Input data consists of 18-bit data and 1-bit of the control bit data. In this case, the control bit is set at low level. S_{1} to S_{7} is used for setting the divide ratio of the 7 -bit swallow counter and S_{8} to S_{18} is used for setting the divide ratio of the 11 -bit programmable counter.

The data format is shown below.

7-bit Swallow Counter Data Input

Divide Factor A	$\mathrm{~S}_{7}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Note: Divide factor: 0 to 127

11-bit Programmable Divider Data Input

Divide Factor N	$\mathrm{~S}_{18}$	$\mathrm{~S}_{17}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{15}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{8}$
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
\cdot											
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide factor less than 5 is prohibited
Divide factor: 5 to 2047

FUNCTIONAL DESCRIPTION (Continued)

SERIAL DATA INPUT FOR PROGRAMMABLE REFERENCE DIVIDER

Binary serial data is input to the Data pin. Each rising edge of the clock shifts one bit of the data into the shift registers and control register. Inputdata consists of 14-bit data and 1-bit of the control bit data. In this case, the control bit is set at high level.

The data format is shown below.
Control bit

14-bit Programmable Divider Data Input

Divide Factor R	S_{14}	S_{13}	S_{12}	S_{11}	S_{10}	S_{9}	S_{8}	S_{7}	S_{6}	S_{5}	S_{4}	S_{3}	S_{2}	S_{1}
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-		-		-	-	-	-	-	-		-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide factor less than 8 is prohibited
Divide factor: 8 to 16383

Fig. 1 - SERIAL DATA INPUT TIMING

Fig. 2 - PHASE DETECTOR WAVEFORM

Note: LD is set at High level when $f_{r} \neq f_{v}$ (unclock condition). $L D$ is set at Low level when $f_{r}=f_{v}$ (lock condition).

POWER DOWN OPERATION DESCRIPTION

The MB87076 has a power down function which selects the operation mode or power down mode depending on the PS input signal level. When PS is set at low level, the power down mode is selected. During the power down mode, internal dividers stop operation. Thus, very low power supply consumption is achieved and the LC pin is set at Low level.

Then the PS level goes High with the frequency of VCO as almost the same value as that under the condition of phase lock, the following sequence is taken:

1) Programmable divider starts operation
2) f_{V} is output with some delay
3) Programmable reference divider starts operation when it receives fv
4) f_{r} is output
5) LC is forced to set at High level (normal operation mode is selected)

When the f_{f} outputs immediately after f_{p} and goes into the phase detector, the phase lock condition is obtained just after the first clock. When PS is set at Low level again, internal dividers stop the operation. The internal condition is then reset.

Fig. 3 - POWER DOWN MODE

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{D D}$	2.7	5.0	5.5	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	V_{ss}	-	$V_{D D}$	V
Output Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

$$
\left(\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except f_{N} and $\mathrm{OSC}_{1 \mathrm{~N}}$		V_{IH}	-	2.1	-	-	V
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	0.9		
Input Sensitivity	f_{IN}	Vfpp	Amplitude in AC coupling, sine wave	0.5	-	-	$V_{\text {p-p }}$ Sine	
	$\mathrm{OCS}_{\text {in }}$	$\mathrm{V}_{\text {SIN }}$		0.5	-	-		
High-level Input Current	Except $f_{1 / 1}$ and OSC $_{\text {IN }}$	$\mathrm{I}_{\mathbf{H}}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	-	1.0	-		
Low-level Input Current		ILL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-	-1.0	-		
Input Current	${ }_{\text {fin }}$	$\mathrm{If}_{\text {in }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {D }}$	-	± 30	-	$\mu \mathrm{A}$	
	$\mathrm{OCS}_{\text {IN }}$	Ixin		-	± 30	-		
High-level Output Voltage	Except ¢P and OSCOut	V_{OH}	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	2.95	-	-	V	
Low-level Output Voltage		V_{OL}	$\mathrm{l}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.05		
Low-level Output Voltage	¢P	Volv	$\mathrm{l}_{\mathrm{OL}}=0.8 \mathrm{~mA}$	-	-	0.80	V	
High-level Output Voltage	OSCout	$\mathrm{V}_{\mathrm{OHX}}$	$\mathrm{IOH}^{\text {a }}=0 \mu \mathrm{~A}$	2.50	-	-	V	
Low-level Output Voltage		Volx	$\mathrm{l}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.50		
High-level Output Current	Except ϕP and OSCOut $^{\text {O }}$	IOH	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.5	-	-	mA	
Low-level Output Current		lol	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	0.5	-	-		
N-channel Open Drain Cut Off Current		loff	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}+3.0 \mathrm{~V}$	-	1.0	-	$\mu \mathrm{A}$	
Power Supply Current*1		lodop	Operation mode	-	2.50	-	mA	
		ldops	Power down mode	-	-	80	$\mu \mathrm{A}$	
Max. Operating Frequenc Programmable Reference		$f_{\text {max }}{ }^{\text {d }}$	-	10	20	-	MHz	
Max. Operating Frequency	Programmable Divider	$f_{\text {maxp }}$	-	10	20	-	MHz	

Note: $* 1: f_{I N}=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ crystal is connected between OSC ${ }_{I N}$ and OSCOUT.
PS is set at high level; all other inputs are set at low level. Outputs are open.

ELECTRICAL CHARACTERISTICS (Continued)

$\left(V_{S S}=0 V, V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except f_{N} and $\mathrm{OSC}_{\mathbb{I}}$		$\mathrm{V}_{\text {IH }}$	-	3.5	-	-	V
Low-level Input Voitage		$\mathrm{V}_{\text {IL }}$	-	-	-	1.5		
Input Sensitivity	${ }_{\text {IN }}$	Vfin	Amplitude in AC coupling, sine wave	0.8	-	-	$V_{p . p}$$\operatorname{Sin} \theta$	
	$\mathrm{OCS}_{\text {IN }}$	$\mathrm{V}_{\text {SIN }}$		1.0	-	-		
High-level Input Current	Except f_{IN} and $\mathrm{OSC}_{1 \mathrm{~N}}$	$\mathrm{IIH}^{\text {H}}$	$V_{\text {IN }}=V_{\text {D }}$	-	1.0	-		
Low-level Input Current		IL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$	-	-1.0	-		
Input Current	f_{IN}	1 IN	$V_{\text {IN }}=V_{S S}$ to $V_{D D}$	-	± 50	-	$\mu \mathrm{A}$	
	$\mathrm{OCS}_{\text {IN }}$	Ixin		-	± 50	-		
High-level Output Voltage	Except ϕP and OSCout $^{\text {O }}$	V_{OH}	$\mathrm{I}_{\mathrm{O}} \mathrm{H}=0 \mu \mathrm{~A}$	4.95	-	-		
Low-level Output Voltage		V_{OL}	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.05		
Low-level Output Voltage	$\phi \mathrm{P}$	Volv	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$	-	-	0.50	V	
High-level Output Voltage	OSC ${ }_{\text {OUT }}$	$\mathrm{V}_{\mathrm{OHX}}$	$\mathrm{IOH}^{\text {H }}=0 \mu \mathrm{~A}$	4.50	-	-	v	
Low-level Output Voltage		$V_{\text {OLX }}$	$\mathrm{l}^{\mathrm{O}}=0 \mu \mathrm{~A}$	-	-	0.50		
High-level Output Current	Except ϕ P and OSCOut	$\mathrm{IOH}^{\text {a }}$	$\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.0	-	-		
Low-level Output Current		lol	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	1.0	-	-		
N -channel Open Drain Cut Off Current		loff	$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}+3.0 \mathrm{~V}$	-	1.0	-	$\mu \mathrm{A}$	
Power Supply Current* ${ }^{1}$		IDDOP	Operation mode	-	3.0	-	mA	
		IDDPS	Power down mode	-	-	100	$\mu \mathrm{A}$	
Max. Operating Frequenc Programmable Reference		$f_{\text {max }}{ }^{\text {d }}$	-	15	25	-	MHz	
Max. Operating Frequency	Programmable Divider	$\mathrm{f}_{\text {MAXP }}$	-	10	25	-	MHz	

Note: $* 1: f_{\mathrm{I}_{\mathrm{N}}}=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ crystal is connected between $\mathrm{OSC}_{\mathrm{IN}}$ and OSC OUT . PS is set at high level; all other inputs are set at low level. Outputs are open.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

MB87086A

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87086A, fabricated in advanced CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer. The MB87086A contains an inverter for oscillator, programmable reference divider (binary 16-bit programmable reference counter), programmable divider (binary 10-bit programmable counter), phase detector and charge pump.
The MB87086A can make up a PLL synthesizer up to 95 MHz operation.

- Single Power Supply Voltage: $V_{D D}=4.5 \mathrm{~V}$ to 5.5 V
- Wide Temperature Range: $T_{A}=-301060^{\circ} \mathrm{C}$
- On-chip Inverter for oscillator
- Divide factor of programmable divider and programmable divider are set by serial data input. (The last data bit is a control bit.)
- 3-type of phase detector outputs

On-chip charge pump output for active LPF
On-chip charge pump output for passive LPF Output for extemal charge pump

- 16 -pin Standard Dual-in-line Package (Suffix: -P) 16-pin Standard Fiat Package (Suffix: -PF)
- 95MHz input capability @5V (fin input)
- fin, Clock, Data input circuits involve schmitt circuit
- The divide factor is selected according to the following equation:
$\mathrm{ffco}^{2}=\mathrm{N} \times(\mathrm{fosc}+\mathrm{R})$
fvco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of programmable divider (5 to 1023)
fosc : Output frequency of the external oscillator
R : Preset divide factor of binary programmable reference divider (5 to 65535)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	$V_{D D}$	$V_{S S}-0.3$ to $V_{S S}+7.0$	V
Input Voltage	$V_{I N}$	$V_{S S}-0.3$ to $V_{D O}+0.3$	V
Output Voltage	Vout	$V_{S S}-0.3$ to $V_{D 0}+0.3$	V
Output Current	lour	± 10	mA
Operating Ambient Temperature	T_{A}	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

[^9] maximum rating conditions for extended periods may affect device reliability.

[^10]

PIN DESCRIPTION

Pin No.	Symbol	$1 / 0$	Description
1	OSCın 1	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as $A C$ coupled when an external oscillator is used, but for large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCour	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be connected to open when an external oscillator is used.
3	fv	0	Monitor pin for the phase detector input. This pin is tied to the programmable divider output.
4	V_{00}	-	Power supply voltage input.
5	Dop	0	Output pin for low pass filter (Passive type). The mode of $\mathrm{Dop}_{\text {is }}$ is changed by the combination of programmable reference divider output frequency fr, and programmable divider output frequency $f v$ as listed below: fr > fv: Drive mode (Dop - High level) $\mathrm{fr}=\mathrm{fv}: \quad$ High-impedance fr < fv : \quad Sink mode ($\mathrm{D}_{\mathrm{op}}=$ Low level)
6	$\mathrm{V}_{\text {ss }}$	-	Ground.
7	LD	0	Output of phase detector. It is high level when fr and fy are coherent, and when the loop is locked. Otherwise it outputs low pulse signal.
8	fin	1	Frequency input to programmable divider from VCO or prescaler output. (This input has an internal feed back resistor.)
9	Clock	1	Clock signal input for shift registers. Each rising edge of the clock makes one bit of the data shift into the shift registers.
10	Data	1	Serial data input for shift registers. The last bit of the data is the control bit. The control data determines which latch is activated.
11	LE	1	Load enable input. When this pin is high level, the data stored in the shift registers is transferred to 16 -bit latch, or 10 -bit latch depending on the control bit setting.
12	Do^	0	Output pin for low pass filter (Active type). The mode of $D_{o n}$ is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency fv as listed below: $\mathrm{fr}>\mathrm{fv}$: Drive mode (Don - Low level) $\mathrm{fr}=\mathrm{fv}$: High-impedance $\mathrm{fr}<\mathrm{fy}: \quad$ Sink mode ($\mathrm{D}_{\mathrm{OA}}=$ High level)
13	fr	0	Monitor pin for the phase detector input. This pin is tied to the programmable reference divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output pins for low pass filter (differential filter type). Outputs for external charge pump are changed by the combination of programmable reference divider output frequency fr, and programmable divider output frequency fv as listed below.

FUNCTIONAL DESCRIPTIONS

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Serial data of binary code is input to Data pin. Each rising edge of clock makes one bit of the data shift into the shift registers and control register. Input data consists of 16 -bit or 10 -bit data and 1 -bit of control bit data. The 16 -bit data is used for setting the divide factor of programmable reference divider. The 10 -bit data is used for setting the divide factor of programmable divider

The last bit of the data stored in control register is a control bit. Control data determines which latch is activates. When this bit is at high level, 16 -bit latch is selected. when this is at low level. 10 -bit latch is selected.

The data format is shown below

When LE is high level and control bit is high level, the data stored in 16 -bit shift register is translerred 1016 -bit latch. When LE is high level and control bit is at low level, the data stored in 10-bit shift register is transferred to 10 -bit latch

BINARY 10-BIT PROGRAMMABLE DIVIDER DATA INPUT

(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
\cdot										
\cdot	.									
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited. Divide factor N: 5 to 1023

BINARY 16-BIT PROGRAMMABLE REFERENCE DIVIDER DATA INPUT

(16)	(15)	(14)	(13)	(12)	(11)	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
-	-		-	-		-				-	-	-				-
-	-			-	.	.	,			-	-					-
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	65535

Note: Divide factor less than 5 is prohibited. Divide factor R: 5 to 65535

SERIAL DATA INPUT TIMING

Notes:

Data input for programmable reference divider.
() Data input for programmable divider.
Data Serial data input is used for setting divide factor of programmable reference divider or progranmable divider. Data is input from MSB and last bit data is control bit.
Control bit is set high level when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock Clock input for 10 -bit shiftregister, 16 -bit shift register and control register. Data is input into internal shift registers by rising edge of the clock.

LE Load enable input:
When LE is high level, the data stored in shift registers is transferred to 16 -bit latch, or 10 -bit latch depending on the control bit setting.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
			Min	Typ	
Power Supply Voitage	$V_{D 0}$	4.5	5.0	5.5	V
Input Voltage	$V_{I N}$	$V_{s s}$		V_{00}	V
Operating Temperature	T_{A}	-30		+60	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\mathbb{N}}$		V_{H}		3.5			
Low-level Input Voltage		$V_{\text {L }}$				1.5		
Input Sensitivity	fin	Vfpp	Amplitude in AC coupling, Sine wave	1.0			Vap	
	OSCIN 1	Vsin		1.0				
High-level Input Current	Except fin and OSC IN	${ }_{\text {IH }}$	$V_{1 H}=V_{\text {DD }}$		1.0			
Low-level Input Current		In	$V_{\text {IL }}=V_{\text {Ss }}$		-1.0			
Input Current	fin	Ifin	$V_{\text {IN }}=V_{S S}$ to $V_{D D}$		± 50		$\mu \mathrm{A}$	
	OSC $_{\text {w }}$	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DO }}$		± 50			
High-level Output Voltage	Except OSCout	Vor	$\mathrm{IOH}=0 \mu \mathrm{~A}$	4.95			V	
Low-level Output Voltage		Vol	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05		
High-level Output Current	Except OSCout	lor	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	-1.0			mA	
Low-level Output Current		loc	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0				
Power Dissipation* ${ }^{1}$		100			8.0		mA	
Maximum Operating*2 Frequency	REF Section	fmaxd		40	60		MHz	
	PD Section	f maxp		95	130		MHz	

Notes: *1: fin $100 \mathrm{MHz}, 22 \mathrm{MHz}$ cystal is connected between OSC ${ }_{\text {in }}$ and OSCout pins. Inputs are grounded except fin and OSC ${ }_{\text {ws }}$. Outputs are open.
*2 REF Section: Maximum operating frequency of programmable reference divider. PD Section: Maximum operating frequency or programmable divider.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

MB87087

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87087, fabricated in CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer.

The MB87087 contains an inverter for oscillator, programmable reference divider (binary 14 -bit programmable reference counter), 14 -bit shift register, 14 -bit latch, phase detector, charge pump. 17 -bit shift register, 17 -bit latch, programmable divider (binary 7 -bit swallow counter, binary 10 -bit programmable counter) and control generator for dual modulus prescaier.
When supplemented with a loop filter and VCO, the MB87087 contains the necessary circuit to make up PLL trequency synthesizer. Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Wide range power supply voltage:
$V_{c c}=3.0106 .0 \mathrm{~V}$
- Wide temperature range: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- 17 MHz typical input capability @5V (fin input)
- On-chip inverter for oscillator
- Programmable divider with input amplifier consisting of:
- Binary 7-bit swallow counter
- Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of:
- Binary 14 -bit programmable reference counter
- Divide factor of programmable divider and programmable reference divider are set by serial data input (The last data bit is a control bit)
- 2-types of phase detector output
- On-chip charge pump output
- Output for external charge pump
- Easy interface with Fujitsu prescalers
- 16 -pin standard dual-in-line package (MB87087P)
16-pin standard flat package (MB87087PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	$V_{D D}$	$V_{S S}-0.5$ to $V_{S S}+7.0$	V
Input Voltage	V_{IN}	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{D D}+0.5$	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{D D}+0.5$	V
Output Current	lout	± 10	mA
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{C}	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circunry to protect the inputs against damage due to high static volages or electric fields. However. damage due to high static vohages or electric fieds. However.
it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated application of any voltage higher that
voitages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Symbot	10	Description
1	OSCin $_{\text {a }}$	1	Input pin for crystal oscillator. input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
3	iv	0	Monitor output of the phase detector. This pin is tied to the programmable divider output.
4	V_{00}	-	Power supply voltage input.
5	Do	0	Three-state charge pump output of phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency $\boldsymbol{t r}$, and programmable divider output frequency iv as listed below: If $>\mathrm{fv}$: Drive mode ($\mathrm{D}_{0}=$ High level) $\mathrm{fr}=\mathrm{fv}$: High impedance fr < fy: \quad Sink mode ($\mathrm{D}_{\mathrm{o}}=$ Low level)
6	Vss	-	Ground.
7	LD	0	Output of phase detector. It is high level when fr and fv are equal, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	fin	1	Clock input for programmable divider. This input contains internal bias circuit and amplifier. The connection with an external dual-modulus prescaler should be an $A C$ connection.
9	Clock	1	Clock signal input for 17 -bit shift register and 14 -bit shift register. Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for programmable divider and programmable reterence divider. The last bit of the data is the control bit. Control bit determines which latch is activated. The data stored in the shift register is transferred to the 14 -bitlatch when the bit is high, and to 17-bitlatch when low.
11	LE	1	Load enable input with internal pull up resistor. When this pin is high (active high), the data stored in shift register is transferred to 14 -bit latch or 17-bit latch depending on the control bit data.
12	M	0	Control output for an external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of input signal fin (pin \#8). Pulse swallow function: e.g. MB501L: $M=$ High: Preset modulus factor 64 or 128 $\mathrm{M}=$ Low: Preset modulus factor 65 to 129

PIN DESCRIPTION (Continued)

Pln No.	Symbot	10	\because Description
13	fr	0	Monitor output of phase detector input. This pin is tied to the programmable divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \oplus V \\ & O R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output for external charge pump. The mode of $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are changed by the combination of programmable reference divider output trequency fr and programmable divider output frequency fv as listed below.

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT TIMING

* Data for programmable reference divider.

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider and progranmable divider. Data is input from MSB, and last bit data is a control bit.
Control bit is set high when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Data is input to internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data stored in shift register is transferred to 14-bit latch, or 17-bit latch depending on the control bit setting.

PULSE SWALLOW FUNCTION

$$
f \times c o=[(N \times M)+A] \times f o s c+R(N>A)
$$

fvco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10-bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)

A : Preset divide factor of binary 7 -bit programmable counter (0 to 127, $\mathrm{A}<\mathrm{N}$)
fosc : Output frequency of external oscillator
R : Preset divide factor of binary 14-bit programmable reference counter (5 to 16383)

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Serial data consists of 14 -bit data, which is used for setting divide factor of programmable reference counter, and 1-bit control data. In this case, control bit is set high level.

The data format is shown below

BINARY 14-BIT REFERENCE COUNTER DATA INPUT

(14)	(13)	(12)	(11)	$(10$	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	0	0	0	0	1	1	1	7
\cdot														
\cdot														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	16383

Note: Divide factor less than 5 is prohibited. Divide factor : 5 to 16383

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data consists of 17-bit data, which is used for setting divide factor of programmable divider, and 1-bit control data. In this case, control bit is set low level. The data (1) to (7) set a divide factor of 7 -bit swallow counter and data (8) to set divide factor of 10-bit programmable counter

The data format is shown below.

BINARY 7-BIT SWALLOW COUNTER DATA INPUT

(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
\cdot							
0	\cdot						
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows e.g. MB501L. ($+65 / 65$) prescaler

SW = H (64/65): Bit 7 to shift register (7) should be zero.

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

(10)	16	(15)	(14)	(3)	$(12$	(11)	(1)	9	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
\cdot										
\cdot										
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited Divide factor N : 5 to 1023

RECOMMENDED OPERATING CONDITIONS

					$\left(\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}\right)$
Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	Vod	3.0		6.0	v
Input Voltage	V in	$V_{s s}$		Vod	V
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$

MB87087
ELECTRICAL CHARACTERISTICS
$\left(V_{D D}=3.0 \mathrm{~V}, V_{S S}=0 \mathrm{~V}, T_{A}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameler		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\text {In }}$		V_{IH}		V ${ }_{\text {dox }} 0.7$			V
Low-level Input Voltage		V				$V_{\text {DO }} 0.3$		
Input Sensitivity	fin	Vfin	Amplitude in AC coupling, sine wave	0.5			$V_{\text {p.p }}$	
	OSCin	Vosc		0.5				
High-level Input Current	Except fin and OSC IN_{N}		$V_{i N}=V_{D D}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		l	$\mathrm{V}_{\text {S }}=\mathrm{V}_{\text {Ss }}$		-1.0			
Input Current	fin	Ifin	$V_{1 N}=V_{S S}$ to $V_{D O}$		± 30		$\mu \mathrm{A}$	
	OSCIn	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$		± 30		$\mu \mathrm{A}$	
	LE	Le	$V_{\text {IN }}=V_{\text {Ss }}$		-40		$\mu \mathrm{A}$	
High-level Output Voltage	Except OSCout	V_{OH}	$\mathrm{I}_{\mathrm{O}}=0 \mu \mathrm{~A}$	2.95			V	
Low-level Output Voltage		Vol	$\mathrm{los}=0 \mu \mathrm{~A}$			0.05		
High-level Output Current	Except M and OSCout	1 ¢	$\mathrm{VOH}=2.6 \mathrm{~V}$	-0.5			mA	
Low-level Output Current		loa	$\mathrm{VoL}=0.4 \mathrm{~V}$	0.5				
High-level Output Current	M	Іонм	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-0.7			mA	
Low-level Output Current		lom	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.5				
Power Supply Current *'		100			2.5		mA	
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	20		MHz	
Maximum Operating Frequency of Programmable Divider		f maxp		10	20		MHz	

Notes: * $1:$ fin $=8.0 \mathrm{MHz} 11.5 \mathrm{MHz}$ Crystal is connected between OSC $_{\text {IN }}$ and OSCout. Inputs are grounded except fin and OSC Ir. Output are open.

ELECTRICAL CHARACTERISTICS (Continued)

$\left(\mathrm{V}_{\mathrm{Do}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$								
Parameter		Symbot	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\text {In }}$		$V_{\text {H }}$		$V_{00 \times 0.7}$			V
Low-level Input Voltage		VIL				$\mathrm{V}_{\text {Dox }} 0.3$		
Input Sensitivity	$f i n$	Vfin	Amplitude in AC coupling. sine wave	0.5			$V_{\text {p.p }}$	
	OSCIN	Vosc		0.5				
High-level Input Current	Except fin and $\mathrm{OSC}_{\mathrm{in}}$	1 lm	$V_{\text {IN }}=V_{\text {OO }}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		11.	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\text {ss }}$		-1.0			
Input Current	fin	1 fin	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$	
	OSCIN	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DO }}$		± 50		$\mu \mathrm{A}$	
	LE	Le	$V_{\text {IN }}=V_{\text {ss }}$		-60		$\mu \mathrm{A}$	
High-level Output Voltage	Except OSCout	Vor	$\mathrm{IOH}_{\mathrm{H}}=0 \mu \mathrm{~A}$	4.95			V	
Low-level Output Voltage		Vol	$\mathrm{loz}=0 \mu \mathrm{~A}$			0.05		
High-level Output Current	Except M and OSCour	low	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	-1.0			mA	
Low-level Output Current		los	$V_{\text {OL }}=0.4 \mathrm{~V}$	1.0				
High-level Output Current	M	Іонм	$\mathrm{V} \mathrm{OH}=4.6 \mathrm{~V}$	-1.5			mA	
Low-level Output Current		lomm	$\mathrm{VoL}=0.4 \mathrm{~V}$	3.0				
Power Supply Current *'		100			3.5		mA	
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	25		MHz	
Maximum Operating Frequency of Programmable Divider		f maxp		17	25		MHz	

Note: $\quad * 1$. fin $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is connected between OSC $_{\text {IN }}$ and OSCout Inputs are grounded except fin and OSC ${ }_{\text {is }}$. Outputs are open.

MB87087

TYPICAL CHARACTERISTICS CURVE

Input Sevsitivity vs. Input Frequency (fin Section)

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

 (CASE No.: DIP-16P-M04)

MB87087

PACKAGE DIMENSIONS (Continued)

CMOS SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH POWER SAVING FUNCTION

The Fujitsu MB87091 is a CMOS serial input Phase Locked Loop (PLL) frequency synthesizer ideal for use in cordless telephone sets and other radio equipment. It incorporates an inverter for an oscillation circuit, a programmable reference divider (14-bit binary programmable reference counter), a shift register control register, latches, a programmable divider (6-bit binary swallow counter with 12-bit binary programmable counter and dual modulus prescaler: 64/65), a phase comparator, an intermittent mode control circuit, and a constant-current charge pump. The power save control input pin (PS) for the intermittent mode control circuit is used to switch between the stand by and active modes. This is used for phase synchronization at the beginning of operation. The MB87091 permits construction of PLL frequency synthesizers with operating frequencies of up to 300 MHz .

FEATURES

- Single power supply voltage: $\mathrm{VDD}_{\mathrm{D}}=2.7$ to 3.3 V
- Built-in inverter for an oscillator
- Adjustable output current of the charge pump with an external resistor
- Intermittent mode control circuit
- Two phase comparator outputs (for external and internal charge pumps)
- Wide operating temperature range (TA_{A}) $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
- Plastic DIP ackage(Suffix: -P), Plastic SOP package(Suffix: -PF), Plastic SSOP package (Suffix: -PFV)
- Setting the divide ratio Use the below formula to define the parameters for setting the divide ratio

$$
\begin{equation*}
f_{v c o}=(N \times M+A) \times(\text { fosc }+B) \tag{N>A}
\end{equation*}
$$

(fvco) Output frequency of the external VCO
(N) Preset divide ratio of 12-bit binary programmable counter (5 to 4,095)
(M) Preset modulus of the dual modulus prescaler (64)
(A) Preset divide ratio of 6-bit binary swallow counter (0 to 63)
(fosc) Output frequency of the external reference frequency oscillator
(R) Preset divide ratio of 14-bit binary programmable reference counte (5 to 16,383)
ABSOLUTE MAXIMUM RATINGS (See NOTE) (Vss=OV)

Fating	Symbol	Value	Unit
Supply voltage	Vod	Vss-0.5 to Vss +6.0	V
Input voltage	Vin	Vss-0.5 to Vod +0.5	V
Output voltage	Vout	Vss-0.5 to VdD +0.5	V
Output current	lout	± 10	mA
Ambient temperature	TA	-40 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation	PD	300	mW

NOTE: Permanent device damage may occurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM OF MB87091

(This block diagram is for DIP/SOP packages.)

Control Register

PIN ASSIGNMENT

(FPT-20P-M03)

MB87091

PIN DESCRIPTIONS

Pin No.		Pin Name	I/O	Description
$\begin{aligned} & \text { DIP/ } \\ & \text { SOP } \end{aligned}$	SSOP			
1	1	Vod	-	Power supply pin
2	2	Clock	1	Clock input to the shift register Each rising edge of the clock shifts one bit of the data into the shift register. The input portion contains a Schmitt trigger circuit.
-	3	NC	-	No connection
3	4	Data	1	Serial data input for programmable divider and programmable reference divider The input portion contains a Schmitt trigger circuit.
4	5	LE	1	Load Enable signal input pin A high on this pin transfers the contents of the shift register into the latch. The latched data provides the divide ratios of the dividers. The input portion contains a Schmitt trigger circuit.
5	6	$\mathrm{fin}^{\text {N }}$	1	Input to the programmable divider The input portion contains a bias circuit and an amplifier. This pin is connected to an external voltage controlled oscillator (VCO) with an AC coupling.
6	7	PS	1	Power save control input pin A high on this pin places the MB87091 into the active mode and a low into the stand by mode. The PS pin has to be set low at power-on time (see Section 1.1, "Intermittent Operation," in "Functional Descriptions").
-	8	NC	-	No connection
7	9	LD	\bigcirc	Phase comparator output pin The LD pin outputs high when the PLL is locked and low when the PLL is unlocked.
8	10	Do	\bigcirc	Phase comparator output pin The output current of this charge pump is adjustable with external resistor Rac. The Do output may be inverted by the FC input. The relationships between the programmable reference divider output (fr) and the programmable divider output (fp) are shown below:
9	11	RC	-	Connect pin with an external resistor Rac (see Section 1.4, "Phase Comparator" in "Functional Descriptions")
10	12	\$R	\bigcirc	Phase comparator output pin (for external charge pump) The relationships between the programmable reference divider output (fr) and the programmable divider output (f) are shown below:
-	13	NC	-	No connection

PIN DESCRIPTIONS (Continued)

Pin No.		Pin Name	I/O	Description
$\begin{aligned} & \text { DIP/ } \\ & \text { SOP } \end{aligned}$	SSOP			
11	14	¢P	\bigcirc	Phase comparator output pin (for external charge pump) $\phi \mathrm{P}$ is an N -channel, open-drain output. The relationships between the programmable reference divider output (fr) and the programmable divider output (fp) are shown below: ```When FC = "L"``` ```When FC = "H" fr>fp: \phiP = High impedance```
12	15	FC	1	Phase comparator input selector pin (see Section 1.4, "Phase Comparator" in "Functional Descriptions")
13	16	TEST	1	This is used to enable test mode A high on this pin places the MB87091 into the test mode. As this pin is provided with a pull-down resistor, it should be left open as a rule. The pin is used for shipping tests and not used for normal operation.
14	17	OSC ${ }_{\text {OUT }}$	0	Crystal oscillator connect pin
-	18	NC	-	No connection
15	19	$\mathrm{OSC}_{\text {IN }}$	1	Crystal oscillator connect pin A crystal oscillator is connected between the OSCIn and OSCout pins. It can clock input to OSCIn from the external. In this case, the OSCIn pin must be AC coupled and the OSCour pin must be left open.
16	20	$\mathrm{v}_{\text {SS }}$	-	Ground pin

FUNCTIONAL DESCRIPTIONS

1. Circuit Description

1.1 Intermittent Operation

The intermittent operation of the M887091 refers to the process of activating and deactivating its internal circuit as necessary thus saving power dissipation otherwise consumed by the circuit. If the circuit is simply restarted from the stand by state, however, the phase relationship between the reference frequency (fr) and the programmable frequency (fp), which are the input to the phase comparator, is not stable even when they are of the same value. This may cause the phase comparator to generate an excessively large error signal, resulting in an out-of-synch lock frequency.

To preclude the occurrence of this problem, the MB87091 has an intermittent mode control circuit which forces the frequencies into phase synchronization with each other when the MB87091 is reactivated, thus minimizing the error signal and resultant lock frequency fluctuations. The intermittent mode control circuit is controlled by the PS pin. Setting the PS pin high provides the normal operation mode and setting the pin low provides the standby mode and places the MB87091 into the standby state. The MB87091 behavior in the active and standby modes is summarized below:

- Active mode ($\mathrm{PS}=$ " $\mathrm{H}^{\prime \prime}$)

All MB87091 circuits are active and provide the normal PLL operation.

- Standby mode (PS = "L")

The circuits that consume power heavily, and cause little inconvenience when deactivated, run down and the MB87091 enters the low power dissipation state. The Do, $\phi R, \phi$, and LD pins take the same state as when the PLL is locked. The Do pin becomes high-impedance state and the input voltage to the voltage controlled oscillator (VCO) is maintained at the same level as in the active mode (lock state) according to a time constant of a low pass filter (LPF). Consequently, the output frequency from the VCO (fvco) is maintained at approximately the lock frequency.

The MB87091 continues the intermittent mode operation by alternating the active and standby modes. When it switches from standby to active mode, it forces the phase of fr and fp to correspond to minimize the error signal. In this way, the MB87091 can keep the power dissipation of its entire circuitry at the minimum.

The MB87091 must be placed into the standby mode ($\mathrm{PS}=$ " L ") when it is powered on.

1.2 Programmable Divider

The fvco input through the $f_{\mathbb{N}}$ pin is divided by the programmable divider and then output to the phase comparator as fp . It consists of a dual modulus prescaler, a 6-bit binary swallow counter, a 12 -bit binary programmable counter, and a controller which controls the divide ratio of the prescaler.

Divide ratio range:

- Prescaler: $M=64, M+1=65$
- Swallow counter: $\mathrm{A}=0$ to 63
- Programmable counter: $N=5$ to 4095

The MB87091 uses the puise swallow method; consequently, the divide ratios of the swallow and programmable counters must satisfy the relationship $N>A$.

The total divide ratio of the programmable divider is calculated as follows:
Total divide ratio $=(M+1) \times A+M x(N-A)=M \times N+A=64 \times N+A$
When N is set within $5 \leq N \leq 63$, the possible divide ratio A of the swallow counter can take values $0 \leq A \leq N-1$ because N must be greater than A. For example, $0 \leq A \leq 19$ is allowed when $N=20$, but $20 \leq A \leq 63$ is not allowed in that case. Consequently, $N \geq 64$ must be satisfied for the total divisor to be set within $0 \leq A \leq 63$.

The $f p$ and $f_{I N}$ pins have the following relationship:
$f p=f_{\mathcal{I}} \div(64 \times N+A)$

1.3 Programmable Reference Divider

The programmable reference divider divides the reference oscillation frequency (fosc) from the crystal oscillator connected between the OSCIN and OSCout pins or from the external oscillator input taken in directly through the OSCIN pin. It then sends the resultant fr to the phase comparator. It consists of a 14-bit binary programmable reference counter. When the output from the external oscillator is to be input directly to OSCIN, the pin connection must be AC coupled and the OSCout pin is left open. Also, to prevent OSCout from malfunctioning, its traces on the printed circuit board must be kept minimal or eliminated entirely; whenever possible, it must be free of any form of load.
The following divisor is used:

- Programmable reference counter: $N=5$ to 16383

The fr and fosc have the following relationship:

- $\mathrm{fr}=\mathrm{fosc} \div \mathrm{R}$

1.4 Phase Comparator

The phase comparator detects the phase difference between the outputs fr and fp from the dividers and generates an error signal that is proportional to the phase difference. The outputs from the phase comparator include 1) Do which takes on one of the three states, " L " (low), " H " (high), or " Z " (high impedance), and is sent to the LPF, 2) $\phi R, 3$) ϕP, and 4) LD which indicates the PLL lock or unlock state.

1.4.1 Phase Comparator

The phase comparator detects the phase difference between fr and fp and generates an error signal that is proportional to the phase difference. The roles of the fr and $f p$ supplied to the phase comparator may be reversed by switching the logical input level on the FC pin; this inverts the logical level on the Do output. The logical level on the Do output may be selected according to the characteristics of the external LPF and the VCO. (Refer to Table 1.)

Table 1. Phase Comparator Inputs/Output Relationships

Phase OutputRelationship	FC="L"			FC=" ${ }^{\text {" }}$		
	Do	¢R	$\phi \mathbf{P}$	Do	¢R	ϕ P
$\mathrm{fr}>\mathrm{fp}$	H	L	L	L	H	Z
$f r=f p$	Z	L	Z	Z	L	Z
fr < fp	L	H	Z	H	L	L

1.4.2 Charge Pump

The charge pump is available in two forms: internal and external.

- Internal constant-current charge pump output (Do)
- External charge pump outputs ($\phi R, \phi P$)

The output current at the Do pin from the internal constant-current charge pump is controlled by varying the external resistance (RRC) connected between RC and GND, as shown in Figure 1.

MB87091

1.4.3 Phase Comparator Input/Output Waveforms

The phase comparator outputs the logic levels summarized in Table 1, according to the phase difference between the fr and fp phase differences. Note that $\phi \mathrm{P}$ is an N -channel open drain output. The pulse width of the phase comparator outputs are identical and equal to the phase difference between fr and fp , as shown in Figure 2.

Figure 2. Phase Comparator Input/Output Waveforms (Charge Pump)

High Z :High impedance state
$\phi P \quad$:N-channel open drain output

MB87091

1.4.4 Lock Detector

The lock detector detects the lock and unlock states of the PLL. The lock detector outputs " H " when the PLL enters the lock state and outputs " L " when the PLL enters the unlock state, as shown in Figure 3. When PS = " L ", the lock detector outputs " H " compulsorily.

2. Setting the Divide Ratio

2.1 Serial Data Format

The format of the serial data is shown in Figure 4. The serial data is composed of a control bit and divide ratio setting data. The control bit selects the programmable divider or programmable reference divider.
In case of the programmable divider, serial data consists of 18 bits (6 bits for the swallow counter and 12 bits for the programmable counter) and 1 control bit, as shown in Figure 4.1. In case of the programmable reference divider, the serial data consists of 14 divisor bits and 1 control bit, as shown in Figure 4.2.
The control bit is set to 0 to identify the serial data for the programmable divider and to 1 to select the serial data for the programmable reference divider.

Figure 4. Serial Data Format

Figure 4.1 Divide ratio for the programmable divider

Figure 4.2 Divide ratio for the programmable reference divider

MB87091

2.2 The Flow of Serial Data

Serial data is received via the data pin in synchronization with the Clock input and loaded into the shift register which contains the divide ratio setting data and into the control register which contains the control bit. The logical product (through the AND gate in Figure 5) of LE and the control register output (i.e., control bit) is fed to the Enable input of the latches. Accordingly, when LE is set high, the latch for the divider identified by the control bit is enabled and the divide ratio data from the shift register is loaded into the selected counter(s).

Figure 5. The Flow of Serial Data

* : Control Register

2.3 Setting the Divide Ratio for the Programmable Divider

Columns A0 to A5 of Table 2.1 represent the divide ratio of the swallow counter and columns N0 to N11 of Table 2.2 represent the divide ratio of the programmable counter. The control bit is set to 0 .

Table 2. Divide Ratio for the Divider

Table 2.1 Swallow Counter Divisor A

Divide Ratio \mathbf{A}	\mathbf{A} $\mathbf{0}$	\mathbf{A} $\mathbf{1}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{5}$
0	0	0	0	0	0	0
$\mathbf{1}$	1	0	0	0	0	0
\bullet						
\bullet						
63	1	1	1	1	1	1

Table 2.2 Programmable Counter Divisor N

Divide Ratio \mathbf{N}	\mathbf{N} $\mathbf{0}$	\mathbf{N} $\mathbf{1}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{1 1}$
5	1	0	1	0	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0
\bullet												
\bullet												
4095	1	1	1	1	1	1	1	1	1	1	1	1

2.4 Setting the Divide Ratio for the Programmable Reference Divider

Columns R0-R13 of Table 3 represent the divide ratio of the programmable reference counter. The control bit is set to 1 .
Table 3. Divide Ratio for the Reference Divider

Divide Ratio \mathbf{R}	\mathbf{R} $\mathbf{0}$	\mathbf{R} $\mathbf{1}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{1 0}$	\mathbf{R} $\mathbf{1 1}$	\mathbf{R} $\mathbf{1 2}$	\mathbf{R} $\mathbf{1 3}$
5	1	0	1	0	0	0	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0	0	0
\bullet														
\bullet														
16383	1	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1	1	1	1	1	1

2.5 Serial Data Input Timing

The MB87091 uses 19 bits of serial data for the programmable divider and 15 bits for the programmable reference divider. When more bits of serial data than are defined for the target divider are received, only the last valid serial data bits are effective.
To set the divide ratio for the MB87091 dividers, it is necessary to supply the Data, Clock, and LE signals at the timing shown in Figure 6.
t1 ($\geq 1 \mu \mathrm{~s}$) : Data setup time
t2 $(\geq 1 \mu s)$: Data hold time
t3 $(\geq 1 \mu \mathrm{~s})$: Clock pulse width
$t 4(\geq 1 \mu \mathrm{~s})$: LE setup time to the fall edge of last clock
t5 ($\geq 1 \mu \mathrm{~s}$): LE pulse width
Figure 6. Serial Data Input Timing

MB87091

Since the divide ratios are unpredictable when the MB87091 is turned on, it is necessary to initialize the divide ratio for both dividers at power-on time. As shown in Figure 7, after setting the divide ratio for one divider (e.g., programmable reference divider), set LE to the " H " level before setting the divide ratio for the other divider (e.g., programmable divider). To change the divide ratio of one divider after initialization, input the serial data only for that divider (the divide ratio for the other divider is preserved).

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Supply Voltage	Vod	2.7 to 3.3	V
Input Voltage	VIN	Vss to Vod	V
Ambient Temperature	TA	-40 to +60	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

$$
\left(\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+60^{\circ} \mathrm{C}\right)
$$

Parameter			Symbol	Conditions	Value			Unit	
			Min		Typ	Max			
Input Voltage	Except $f_{\text {IN }}$ and OSC $_{\text {IN }}$	H Level		V_{IH}	-	2.1	-	-	V
		L Level	$V_{1 /}$	-	-	-	0.9		
Input Sensitivity	f_{N}		Vf fP	AC coupling amplitude	1.0	-	-	$V_{\text {P-p }}$ Sine	
	$\mathrm{OCS}_{\text {IN }}$		$V_{\text {SIN }}$	AC coupling amplitude	1.0	-	-		
Input Current	Except $f_{i N}$, OSC $_{\text {IN }} \&$ TEST	H Level	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{OD}}$	-	1.0	-	$\mu \mathrm{A}$	
		L Level	ItL	$V_{\text {IN }}=V_{S S}$	-	-1.0	-		
	f_{IN}		If_{I}	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DO }}$	-	± 30	-	$\mu \mathrm{A}$	
	$\mathrm{OCS}_{\text {IN }}$		losc	$V_{I N}=V_{S S}$ to $V_{D D}$	-	± 30	-		
	TEST		$I_{\text {TEST }}$	$V_{I N}=V_{D D}$	-	50	-		
Output Voltage	Except OSCOUT	H Level	VOH	$\mathrm{IOH}=0 \mu \mathrm{~A}$	2.95	-	-	V	
		L Level	V OL	$\mathrm{l}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.05		
	OSCOUT	H Level	VOH	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	2.50	-	-	V	
		L Level	VOL	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.50		
Output Current	Except OSCOUT, Do \& ϕ P	H Level	IOH	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	-0.5	-	-	mA	
		L Level	lOL	$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	0.5	-	-		
	Do Only	H Level	OH	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V} \quad * 1$	-	-2.0	-	mA	
		L Level	lOL	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V} \quad * 1$	-	2.0	-		
Cutoff Current	¢P Only		loff 1	$V_{\text {OUT }}=V_{\text {SS }}$ to $V_{\text {DD }}$	-1.0	-	1.0	$\mu \mathrm{A}$	
	Do Only		loff ${ }^{2}$	$V_{O U T}=V_{D D}$	-	-	1.0		
Supply Current	Active Mode		IDDOP	*2	-	8	16	mA	
	Standby Mode		IDOS	* 3	-	10	-	$\mu \mathrm{A}$	
Maximum Operating Frequency		REF Section	$f_{\text {max }}$	Programmable Reference Divider	40	-	-	MHz	
		PD Section	$\mathrm{f}_{\text {MAXP }}$	Programmable Divider	300	-	-		

*1: \quad Rac $=5 \mathrm{k} \Omega$
*2: $f_{\mathrm{N}}=300 \mathrm{MHz}, 12.8 \mathrm{MHz}$ crystal is connected between OSCIN and OSCout pins, Rrc $=5 \mathrm{k} \Omega$ inputs are connected to GND, except fin, OSCIN, and TEST. Outputs are open.
*3: Current consumption at PS = "L". Inputs are connected to GND, except fin, OSCin, and TEST pins.
Outputs and the RC pin are open.

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS (CONTINUED)

PACKAGE DIMENSIONS (CONTINUED)

MB87093A/MB87095A/MB87096A
CMOS PLL FREQUENCY SYNTHESIZER

CMOS PLL FREQUENCY SYNTHESIZER WITH POWER SAVING FUNCTION

The Fujitsu MB87093A/MB87095A/MB87096A are CMOS Phase Locked Loop (PLL) frequency synthesizers, and are suitable for mobile telephone sets or portable telephone sets. They incorporate an N -divider (10-bit counter), a reference divider (R-divider)(6-bit reference counter), a phase comparator, a charge pump, analog switches, and an intermittent mode control circuit.

A power save control input pin (PS) for the intermittent mode control circuit is used to switch between the standby and active modes. This function reduces a system's total power dissipation. On-chip analog switches enable the switching of the time constants of low-pass filters (LPF). The MB87093AMB87095AMB87096A have different divide ratios of R-dividers and N -dividers from each other. Other functions and characteristics are common.

FEATURES

- Single power supply voltage: $\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V
- Intermittent mode control circuit
- Wide ambient temperature range: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- On-chip two analog switches
- Plastic 16-pin SSOP package (Suffix: -PFV)
- fin $=($ Rin $/$ B $) \times N$
(fin) Output frequency of an external voltage controlled oscillator (VCO)
(Rin) Reference frequency
(B) Divide ratio of R-divider
(N) Divide ration of N -divider

Part No.	Divide ratio R	Divide ratio N
MB87093A	64	725
MB87095A	64	550
MB87096A	128	750

ABSOLUTE MAXIMUM RATINGS (see Note)

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	$\mathrm{V}_{\text {SS }}-0.5$ to $\mathrm{V}_{\mathrm{SS}}+6.0$	V
Input voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {SS }}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output current	$\mathrm{I}_{\mathrm{OUT}}$	$\pm \pm 10$	mA
Ambient temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation	P_{D}	300	mW

Note : Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Symbol	$1 / 0$	Pin Description
1	$V_{\text {SS }}$	-	Ground pin
2	TEST	1	Test mode pin. Leave this pin open for ordinary operation, because pull-down resistor is included.
3	NC	-	No connection
4	fin	1	N -divider input pin, and has a bias circuit and an amplifier. Connection with an external oscillator should be AC coupling.
5	$V_{\text {Ss }}$	-	Ground pin
6	CTRL	1	Control signal input pin for the analog switches.
7	Rin	1	Reference divider input pin, and has a bias circuit and an amplifier. Connection with an extemal oscillator should be AC coupling.
8	LD	0	Lock signal output pin. This pin is high when a loop is locked. This pin is low when the loop is out of lock.
9	PS	1	Power save control pin. When PS is high, an active mode is selected. When PS is low, a standty mode is selected. ${ }^{1}$
10	ASW2	-	Analog switch 2.
11	COMM	-	Common pin of the analog switches.
12	ASW1	-	Analog switch 1.
13	Do	0	Tristate output pin of the charge pump. The charge pump output level is changed according to combination of the R -divider output trequency t and the N -divider output frequency iv .
14	NC	-	No connection
15	STBY	0	This pin outputs low when the standby mode is selected. When a signal is input to Rin pin after the active mode is selected, this pin outputs high.
16	$V_{D D}$	-	Power supply pin.

Note: $\quad{ }^{1}$ Refer to an intermittent operation in functional description in page 4.

FUNCTIONAL DESCRIPTIONS

1 Intermittent Operation

The intermittent operation of every MB87093AMB87095AMB87096A refers to the process of activating and deactivating its internal circuit for saving power dissipation. If the circuit is simply restarted from the standby state, however, an excessively large error signal might be generated, resulting in an out-of-synch lock frequency. Because the phase relationship between the reference frequency (fr) and the frequency (fv) is not stable even when they are of the same value.

To preclude this problem, every MB87093AMB87095AMB87096A has an intermittent mode control circuit which forces the frequencies ir and it into the same phase other than when the MB87093AMB87095AMB87096A are reactivated, this minimizing the error signal and resultant lock frequency fiuctuations. The intermittent mode control circuit is controlled by the PS pin. Setting the PS pin high provides the active mode, and setting the PS pin low provides the standby mode and places the MB87093AMB87095A MB87096A into the standby state.

The MB87093AMB87095AMB87096A must be placed in the standby mode (PS = "L") when power is impressed.

2 Input sensor

The STBY pin outputs in the standby mode, and outputs high after receiving a signal via Rin pin when the mode switches from the standby mode into the active mode.

For example, it is possible to control a VCO by this function.

3 N -divider

The fvco of an external VCO output signal input through fin is divided by the N -divider and then output to the phase comparator as fv. It consists of a binary 10 -bit N-counter. The divide ratio N of the N-divider for each MB87093AMB87095AMB87096A is shown in Table 1.

Table 1. \mathbf{N}-divider's Divide Ratio \mathbf{N}

Part Number	Divide Ratio N
MB87093A	725
MB87095A	550
MB87096A	750

4 R-divider

The R-divider divides the reference oscillation frequency (fosc) from an external reference oscillator (TCXO), and output ir to the phase comparator. It consists of a binary 6-bit R-counter. Table 2 shows the R-divider's divide ratio.

Table 2. R-divider's Divide Ratio R

Part Number	Divide Ratio R
MB87093A	64
MB87095A	64
MB87096A	128

5 Phase Comparator

The phase comparator detects the phase difference between the outputs fr and fv and generates an error signal that is proportional to the phase difference. The outputs from the phase comparator include 1) Do which takes one of the three states; namely, "L" (Low), " H " (high), and "Z" (high-impedance), 2) LD which indicates the PLL lock or unlock state.

5.1 Phase Comparator

The phase comparator detects the phase difference between fr and fv and generates an error signal that is proportional to the phase difference. Table 3 shows logical levels of Do and LD according to the phase relationship between fr and fv .

Table 3. Phase Comparator Inputs/Output Relationships

Phase Relationship	Output	
	Do	LD
$\boldsymbol{H}>\boldsymbol{N}$	H	L
$\boldsymbol{H}=\mathrm{F}$	High-Impedance	H
$\boldsymbol{H}<\boldsymbol{W}$	L	L

5.2 Phase Comparator Input/Output Waveforms

The phase comparator outputs logical leveis summarized in Table 3. The pulse width of the phase comparator outputs are identical and equal to the phase difference between fr and fv as shown in Figure 1.

Figure 1. Phase Comparator Input/Output Waveforms (Charge Pump)

5.3 Lock Detector

The lock detector detects the lock and unlock states of the PLL. The lock detector outputs high when the PLLL enters the lock state and outputs low when the PLL enters the unlock state as shown in Figure 2. When pulse width of the error signal is kept zero for four (4) clocks, the lock detector outputs high as a lock signal. When it detects phase difference after the PLL is locked, low is output at once. When PS is low, the lock detector outputs high compulsorily.

Figure 2. Phase Comparator Input/Output Waveforms (Lock Detector)

6 Anslog Switch

The analog switch can be controlled by the CTRL pin. When the CTRL pin is high, each analog switch closes. When low, each analog switch opens. For example, a LPF's time constant can be changed by using a connect, as in Figure 3.

Figure 3. Application Example for Analog Switch

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Power Supply Voltage	$V_{D D}$	4.5 to 5.5	V
Input Voltage	$V_{I N}$	$V_{S S}$ to $V_{D D}$	V
Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter			Symbol	Conditions	Value			Unit	
			Min		Typ	Max			
Input Vohage	$\begin{array}{\|l} \text { Except fin } \\ \text { \& Rin } \end{array}$	H Level		$\mathrm{V}_{1 \mathrm{H}}$		$0.7 \times V_{D D}$	-	-	V
		LLevel	$\mathrm{V}_{1 \mathrm{~L}}$		-	-	$0.3 \times V_{D D}$		
Input Sensitivity	IN		VVin	AC Coupling Amplitude	0.5	-	-	$\begin{aligned} & \text { Vp-p } \\ & \text { Sine } \end{aligned}$	
	$\mathrm{R}_{\text {IN }}$		VRin	AC Coupling Amplitude	0.5	-	-		
Input Current	Except Fin, Rin \& Test	H Level	IIH	$V_{\text {IN }}=V_{D D}$	-	-	1.0	$\mu \mathrm{A}$	
		LLevel	112	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-	-	-1.0		
	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { fin } \\ \text { Rin } \end{array}\right. \end{array}$	H Level	$\mathrm{I}_{\mathbf{H}}$	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{DD}}$	-	30	-	$\mu \mathrm{A}$	
		LLevel	IN	$V_{1 N}=V_{D D}$	-	-30	-		
Output Voltage	All outputs	H Level	VOH	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	$V_{D D}-0.05$	-	-	\checkmark	
		LLevel	V_{OL}	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$	-	-	0.05		
Output Current	All outputs	H Level	IOH	$V_{O H}=V_{D D}-0.5 \mathrm{~V}$	-1.0	-	-	mA	
		L Level	loL	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	1.0	-	-		
Cutofl Current		Do	IZH	$V_{\text {OUT }}=V_{\text {DD }}$	-	1.0	-	$\mu \mathrm{A}$	
			IZL	$V_{\text {OUT }}=V_{\text {SS }}$	-	-1.0	-		
Supply Current		Active Mode	lodop	${ }^{*} 1$	-	10	-	mA	
		Standby Mode	Idos	${ }^{2}$	-	10	-	$\mu \mathrm{A}$	
Maximum Operating Frequency		REF Section	fmaxd	R-Divider	16	-	-	MHz	
	MB87093A	PD Section	fmaxp	N-Divider	145	-	-		
	MB87095A	PD Section	fmaxp	N -Divider	110	-	-		
	MB87096A	PD Section	Imaxp	N-Divider	90	-	-		

Notes:

[^11]
TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

MB87094 ASSP

Serial Input PLL Frequency Synthesizer

CMOS SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH POWER SAVING FUNCTION

The Fujitsu MB87094 is a CMOS serial input Phase Locked Loop (PLL) frequency synthesizer. It incorporates an input amplifier, a programmable divider (binary 11-bit programmable counter and binary 7-bit swallow counter), a phase comparator, a charge pump, an oscillator circuit, a programmable reference divider (binary 12 -bit programmable reference counter), a shift register/control register, a data latch, an intermittent mode control circuit. A power save control input pin (PS) for the intermittent mode control circuit is used to switch between the stand-by and active modes. This is used for phase synchronization at the beginning of operation from a stand-by mode. The MB87094 permits construction of PLL frequency synthesizers with operating frequencies of up to 15 MHz .

FEATURES

- Low power supply voltage: $\begin{aligned} \mathrm{VDD} & =1.1 \text { to } 1.7 \mathrm{~V} \\ \mathrm{VooH} & =2.6 \text { to } 3.3 \mathrm{~V}\end{aligned}$
- Intermittent mode control circuit
- Ambient temperature range : $\mathrm{TA}=-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
- Plastic 16-pin SSOP package (Suffix: -PFV)
- Setting the divide ratio Use the below formula to define the parameters for setting the divide ratio
$\mathrm{fVCO}=(\mathrm{N} \times \mathrm{M}+\mathrm{A}) \times(\mathrm{fOSC}+\mathrm{B})$
(IVCO) Output frequency of the extemal VCO
(N) Preset divide ratio of binary11-bit programmable counter (5 to 2047)
(M) Preset modulus of external dual modulus prescaler ($\mathrm{M} / \mathrm{M}+1$)
(A) Preset divide ratio of binary 7 -bit swallow counter value (0 to 127)
(fOSC) Reference oscillator frequency
(B) Preset divide ratio of binary 12-bit programmable reference counter (5 to 4035)

[^12][^13]
PIN ASSIGNMENT

 (TOP VIEW)| VDD | 1 | 16 | GND |
| :---: | :---: | :---: | :---: |
| fin | 2 | 15 | Rin |
| Clock | 3 | 14 | fv |
| Data | 4 | 13 | f |
| LE | 5 | 12 | Test |
| VodH | 6 | 11 | M |
| Do | 7 | 10 | FC |
| PS | 8 | 9 | LD |

ABSOLUTE MAXIMUM RATINGS (See NOTE)
($\mathrm{GND}=0 \mathrm{~V}$)

Rating	Symbol	Value	Unit
Supply Voltage	Vod	-0.5 to +5.0	V
	VooH	-0.5 to +5.0	V
Input Voltage	Vin	-0.5 to VDD +0.5	V
	VinH	-0.5 to $\mathrm{VDoH}+0.5$	V
Output Voltage	Vout	-0.5 to VDD +0.5	V
	Vouth	-0.5 to $\mathrm{VodH}+0.5$	V
Output Current	lout	± 10	mA
Ambient Temperature	TA	-10 to +50	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	Po	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin No	Pin Name	$1 / 0$	Interface ${ }^{1}$	Description
1	Vod	-	1 V	Power supply pin
2	fin	1	1 V	Programmable divider input pin This pin has a bias circuit and an amplifier. Connection with an external voltage controlled oscillator (VCO) should be AC coupling.
3	Clock	1	3 V	Clock input pin for the shift register Data are loaded at the rising edge of the clock. A Schmitt trigger circuit is used.
4	Data	1	3 V	Serial data input pin for setting divide ratio of dividers A Schmitt trigger is used.
5	LE	1	3 V	Load enable signal input pin When LE is set to high, the data in the shift register is sent to the latch. A Schmitt trigger is used.
6	VodH	-	3 V	Power supply pin
7	Do	0	3 V	Tri-state charge pump output pin A constant-current feed charge pump is used and its output current can be controlled by the external resistor Rrc. The Do output level is inverted by FC. The charge pump output level is changed according to the combination of the programmable reference divider output frequency (fr) and the programmable divider output frequency (fv).
8	PS	1	3 V	Power save control pin When PS is set to " H ", an active mode is selected. When PS is set to " L ", a standby mode is selected. *2
9	LD	0	3 V	Phase comparator output pin When a PLL is locked, this pin outputs " H ". When the PLL is unlocked, it outputs " L ".
10	FC	1	3 V	Phase comparator input switch pin *3
11	M	0	3 V	Control output for external dual modulus prescaler This output level is synchronized with the falling edge of the $\boldsymbol{f}_{\mathrm{IN}}$ input signal Pulse swallow function: $M=$ " H " : Preset modulus factor M of an external prescaler $M=$ " L ": Preset modulus factor $M+1$ of an external prescaler
12	Test	1	1 V	Test mode pin The test mode is selected by setting this pin to " H ". Leave this pin open for ordinary operation, because a pull-down resistor is used.
13	$f r$	0	1V	Monitoring pin for the programmable reference divider output
14	fv	0	1 V	Monitoring pin for the programmable divider output
15	Rin	1	IV	Connect pin with external reference oscillator (TCXO, etc.). A bias circuit and an amplifier are used. Connection with TCXO should be an AC coupling.
16	GND	-	-	Ground pin

Note:
*1 : In consideration of the interface with external circuits like a microcontroller, each pin is set to either 3 V interface or 1V interface.
*2 : When power is impressed, the PS pin has to be set to "L". Refer to an intermittent operation in the functional description.

* 3 : Refer to the phase comparator in the functional description.

MB87094
BLOCK DIAGRAM

FUNCTIONAL DESCRIPTIONS

1. Circuit Description

1.1 Intermittent Operation

The intermittent operation of the MB87094 refers to the process of activating and deactivating its internal circuit as necessary thus saving electric energy otherwise consumed by the circuit. If the circuit is simply restarted from the standby state, however, the phase relationship between the reference frequency (fr) and the programmable frequency (fv), which are the input to the phase comparator, is not stable even when they are of the same value. This may cause the phase comparator to generate an excessively large error signal, resulting in an out-of-synch lock frequency.

To preclude the occurrence of this problem, the MB87094 has an intermittent mode control circuit which forces the frequencies into phase with each other when the MB87094 is reactivated, thus minimizing the error signal and resultant lock frequency fluctuations. The intermittent mode control circuit is controlled by the PS pin. Setting the PS pin high provides the normal operation mode and setting the pin low provides the standby mode and places the MB87094 into the standby state. The MB87094 behavior in the active and standby modes is summarized below.

- Active mode ($\mathrm{PS}=$ " H ")

All MB87094 circuits are active and provide the normal PLL operation.

- Standby mode (PS = "L")

The MB87094 stops every circuit that consumes power heavily and that causes little inconvenience when deactivated and enters the low-power dissipation state. The Do and LD pins take the same state as when the PLL is locked. The Do pin becomes a high-impedance state and the input voltage to the voltage control oscillator (VCO) is maintained at the same level as in the active mode (that is, lock state) according to a time constant of a low pass filter (LPF). Consequently, the output frequency from the VCO (fvco) is maintained at approximately the lock frequency.

The MB87094 continues the intermittent mode operation by alternating the active and standby modes. When it switches from standby to active modes, it forces the phase of fr and fp to correspond and minimize the error signal. In this way, the MB87094 can keep the power consumption of its entire circuitry at the minimum.

The MB87094 must be placed in the standby mode ($P S=$ " L ") when power is impressed.

1.2 Programmable Divider

The fvco of an external VCO output signal or the fPSC of a prescaler output signal, input through fiN, are divided by the programmable divider and then output to the phase comparator as fv. It consists of a binary 7-bit swallow counter, binary 11-bit programmable counter, and a controller which controls the divide ratio of the prescaler.

The following are their divide ratios:

- Swallow counter: $A=0$ to 127
- Programmable counter: $N=5$ to 2047

The MB87094 uses the pulse swallow method; consequently, the divide ratios of the swallow and programmable counters must satisfy the relationship $N>A$.

On the supposition that the divide ratio of a prescaler is $M / M+1(M=128)$, the total divide ratio of the programmable divider is calculated as follows:

Total divide ratio $=(M+1) \times A+M x(N-A)=M \times N+A=128 \times N+A$
When N is set within $5 \leq N \leq 127$, the divide ratio A of the swallow counter can take values $0 \leq A \leq N-1$ because N must be greater than A. For example, $0 \leq A \leq 19$ is allowed when $N=20$ but $20 \leq A \leq 127$ is not allowed in that case. Consequently, $N \geq 128$ must be satisfied for the total divide ratio to be set within $0 \leq A \leq 127$.

MB87094

1.3 Programmable Reference divider

The programmable reference divider divides the reference oscillation frequency (fosc) from an external reference oscillator (TCXO) connected with AC coupling, and outputs fr to the phase comparator. It consists of a 12-bit binary programmable reference counter. The following divide ratio is used:

- Programmable reference counter: $\mathrm{R}=5$ to 4095

The fr and fosc have the following relationship:

- $\mathrm{fr}=\mathrm{f} \mathrm{fSC} \div \mathrm{R}$

1.4 Phase Comparator

The phase comparator detects the phase difference between the outputs fr and fv and generates an error signal that is proportional to the phase difference. The outputs from the phase comparator include 1) DO which takes on one of the three states, "L" (low), " H " (high), or " Z " (high impedance), and 2) LD which indicates the PLL lock or unlock state.

1.4.1 Phase Comparator

The phase comparator detects the phase difference between fr and fv and generates an error signal that is proportional to the phase difference. The roles of the fr and fp supplied to the phase comparator may be reversed by switching the logical input level of the FC pin. This inverts the logical level of the DO output. The logical level of DO may be selected according to the characteristics of the external LPF and the VCO. (Refer to Table 1.)

Table 1. Phase Comparator Inputs/Output Relationships

Phase Relationship	FC="L"	FC=" $\mathrm{H} "$
	DO	DO
$\mathrm{fr}>\mathrm{fv}$	L	H
$\mathrm{fr}=\mathrm{fv}$	High-Impedance	
$\mathrm{fr}<\mathrm{fv}$	H	L

1.4.2 Phase Comparator Input/Output Waveforms

The phase comparator outputs logic levels summarized in Table 1, according to the phase difference between fr and fv phase differences. The pulse width of the phase comparator outputs are identical and equal to the phase difference between fr and fv as shown in Figure 1.

High Z : High impedance state
Figure 1. Phase Comparator Input/Output Waveforms (Charge Pump)

1.4.3 Lock Detector

The lock detector detects the lock and unlock states of the PLL. The lock detector outputs "H" when the PLL enters the lock state and outputs "L" when the PLL enters the unlock state as shown in Figure 2. When the pulse width of the error signal is kept zero for four (4) clocks, the lock detector outputs " H " as a lock signal. When it detects a phase difference after the PLL is locked, "L" is output at once.

Figure 2. Phase Comparator Input/Output Waveform (Lock Detector)

2. Setting the Divide Ratio

2.1 Serial Data Format

The format of the serial data is shown in Figure 3. The serial data is composed of a control bit and divide ratio setting data. The control bit selects the programmable divider or the programmable reference divider.
In the case of the programmable reference divider, serial data consists of 12 bits for the programmable reference counter and 1 control bit, as shown in Figure 3.1. In the case of the programmable divider, the serial data consists of 18 bits (7 bits for the swallow counter and 11 bits for the programmable counter) and 1 control bit, as shown in Figure 3.2.
The control bit is set to 0 to select the serial data for the programmable divider and to 1 to select the serial data for the programmable reference divider.

Control Bit
Figure 3.1 Divide Ratio for the Programmable Reference Divider

Figure 3. Serial Data Format

2.2 The Flow of Serial Data

Serial data is received via the data pin in synchronization with the Clock input and is loaded into the shift register which contains the divide ratio setting data and into the control register which contains the control bit. The logical product (through the AND gate in Figure 4) of LE and the control register output (i.e., control bit) is fed to the Enable input of the latches. Accordingly, when LE is set high, the latch for the divider identified by the control bit is enabled and the divide ratio data from the shift register is loaded into the selected counter.

Figure 4. The Flow of Serial Data

2.3 Setting the Divide Ratio for the Programmable Divider

Columns A0 to A6 of Table 2.1 represent the divide ratio of the swallow counter and columns NO to N10 of Table 2.2 represent the divide ratio of the programmable counter. The control bit is set to 0 .

Table 2. Divide Ratio for the Programmable Divider
Table 2.1 Swallow Counter Divide ratio A

Divide Ratio \mathbf{A}	\mathbf{A} $\mathbf{0}$	\mathbf{A} $\mathbf{1}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{5}$	\mathbf{A} $\mathbf{6}$
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
\bullet							
\bullet							
127	1	1	1	1	1	$\mathbf{1}$	1

Table 2.2 Programmable Counter Divide ratio N

Divide Ratio \mathbf{N}	\mathbf{N} $\mathbf{0}$	\mathbf{N} $\mathbf{1}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{1 0}$
$\mathbf{5}$	$\mathbf{1}$	0	1	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0
\bullet											
\bullet											
2047	1	1	1	1	$\mathbf{1}$	1	1	1	1	1	1

2.4 Setting the Divide Ratio for the Programmable Reference Divider

Columns R0-R11 of Table 3 represent the divide ratio of the programmable reference counter. The control bit is set to 1 .
Table 3. Divide Ratio for the Programmable Reference Divider

Divide Ratio \mathbf{R}	\mathbf{R} $\mathbf{0}$	\mathbf{R} $\mathbf{1}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{1 0}$	\mathbf{R} $\mathbf{1 1}$
5	1	0	1	0	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0
\bullet												
\bullet												
4095	1	1	1	$\mathbf{1}$	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1

2.5 Monitor Mode

Setting both the PS pin and TEST pin high, the monitor mode is available. The fr and fv pins typically output low. In the monitor mode, the fr pin outputs signals from the programmable reference divider, and the fv pin outputs signals from the programmable divider.

2.6 Serial Data Input Timing

The MB87094 uses 19 bits of serial data for the programmable divider and 13 bits for the programmable reference divider. When more bits of serial data than are defined for the target divider are received, only the last valid serial data bits are effective.
To set the divide ratio for the MB87094 dividers, it is necessary to supply the Data, Clock, and LE signals at the timing shown in Figure 5.
t1 ($\geq 1 \mu \mathrm{~s}$) :Data setup time
t2 $(\geq 1 \mu \mathrm{~s})$: Data hold time
t3 $(\geq 1 \mu \mathrm{~s})$: Clock pulse width
$t 4(\geq 1 \mu \mathrm{~s}) \quad: L E$ setup time to the falling edge of the last clock
t5 ($\geq 1 \mu \mathrm{~s}$): LE pulse width

Figure 5. Serial Data Input Timing

MB87094

Since the divide ratios are unpredictable when the MB87094 is turned on, it is necessary to initialize the divide ratio for both dividers. As shown in Figure 6, after setting the divide ratio for one divider (e.g., programmable reference divider), set LE to the " H " level before setting the divide ratio for the other divider (e.g., programmable divider). To change the divide ratio of one divider after initialization, input the serial data only for that divider (the divide ratio for the other divider is preserved).

Figure 6. Serial Data Setting Procedure

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	UNIT
Power Supply Voltage	Vod	1.1 to 1.7	V
	VooH	2.6 to 3.3	V
Input Voltage	Vin	GND to Vod	V
	Vinh	GND to VDoH	V
Ambient Temperature	$\mathrm{T}_{\text {A }}$	-10 to +50	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter			Symbol	Conditions	Value			Unit	
			Min		Typ.	Max			
Input Voltage	TEST	H Level		V_{H}	-	0.77	-	-	v
		L Level	Vil	-	-	-	0.33		
	CLK, Data, LE, PS, FC	H Level	$\mathrm{V}_{\text {H }}$	-	2.10	-	-	v	
		L Level	VIL	-	-	-	0.90		
Input Sensitivity	fin		Vfpp	AC Coupling Amplitude	0.5	-	-	$\begin{aligned} & V_{p-p} \\ & \text { Sine } \end{aligned}$	
	Rin		VSIN	AC Coupling Amplitude	0.5	-	-		
Input Current	CLK, Data, LE, PS, FC	H Level	${ }_{1 / 4}$	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\text {DOH }}$	-	1.0	-	$\mu \mathrm{A}$	
		L Level	11.	$\mathrm{V}_{\mathrm{L}}=\mathrm{GND}$	-	-1.0	-		
	fin		Ifin	$V_{1}=$ GND to $V_{D D}$	-	± 30.0	-	$\mu \mathrm{A}$	
	Rin		losc	$V_{1}=$ GND to $V_{\text {Do }}$	-	± 30.0	-	$\mu \mathrm{A}$	
	TEST (pull down pin)		Itest	$\mathrm{V}_{1 H}=\mathrm{V}_{\text {do }}$	-	50.0	-	$\mu \mathrm{A}$	
Output Voltage	fr, fv	H Level	Vон	$\mathrm{loH}=0 \mu \mathrm{~A}$	1.05	-	-	v	
		L Level	Vol	$1 \mathrm{~L}=0 \mu \mathrm{~A}$	-	-	0.05		
	Do, LD, M	H Level	Vон	$\mathrm{loH}=0 \mu \mathrm{~A}$	2.95	-	-	V	
		L Level	Vol	$l \mathrm{loL}=0 \mu \mathrm{~A}$	-	-	0.05		
Output Current	fr, fv	H Level	IOH	$\mathrm{V}_{\mathrm{OH}}=0.6 \mathrm{~V}$	-0.2	-	-	mA	
		LLevel	lor	$\mathrm{VOL}=0.5 \mathrm{~V}$	0.2	-	-		
	Do, LD, M	H Level	1 OH	$\mathrm{V} \mathrm{OH}=2.5 \mathrm{~V}$	-0.4	-	-	mA	
		L Level	10	$\mathrm{VoL}=0.5 \mathrm{~V}$	0.4	-	-		
Cutoff Current		Do	IOFFH	$\mathrm{VOH}=\mathrm{V}_{\text {DOH }}$	-	-	100	nA	
		IOFFL	Vot $=$ GND	-	-	100	nA		
Supply Current			Active Mode	lop	*1	-	-	1.0	mA
		Stand-by Mode	Iss	*2	-	-	20.0	$\mu \mathrm{A}$	
Maximum Operating Frequency		REF Section	fMAXd	Programmable	15	-	-	MHz	
		PD Section	fmaxp	Programmable Divider	15	-	-		

Note;
*1: $\mathrm{fin}_{\mathrm{I}}=\operatorname{RiN}=15 \mathrm{MHz}(0.5 \mathrm{Vpp}), \operatorname{lop}=\operatorname{loD}(1.4 \mathrm{~V})+\operatorname{lodH}(3 \mathrm{~V}) \times 3.3$
*2: Conditions for measuring the standby current (Iss) are the same as the case of the active mode (lop).

MB87094

SECTION 4

Super PLLs (Single Chip PLLs/Prescalers) - At a Glance

Fujitsu is one of only a few semiconductor manufacturers to offer single-chip PLU/Prescaler devices and was the creator of the industry standard MB1501. These devices are manufactured using an advanced BiCMOS process that combines high speed and low power consumption in a single chip. With the increased emphasis on board space reduction to improve cost, reliability, and overall end product size for portable applications, these single-chip devices are ideal solutions for wireless systems designers.

		Prescaler		PLL					
Page Number	Device Part Number	$\mathrm{f}_{\text {IN }}$ (max)	Divide Ratio	Program Counter	A Swallow Counter	R Reference Counter	$\begin{gathered} \mathrm{lcc} \\ \text { (typ) } \end{gathered}$	$\mathrm{V}_{\text {cc }}$	Package
4-5	MB15A01	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 5-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & \text { O-127 } \end{aligned}$	Binary 6-16383	6.5 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-19	MB15B01**	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	$\begin{array}{\|l\|l\|l} & \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	13 mA	3 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-33	MB1501*	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{array}{\|l\|l\|} \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	15 mA	3-5V	$\begin{array}{\|l\|} \text { 16-pin } \\ \text { DIP, SOP } \end{array}$
$4 \cdot 33$	MB1501H*	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{array}{\|l} \hline \text { Binary } \\ 16-2047 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	15 mA	3-5V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-33	MB1501L*	1.1 GHz	$\begin{aligned} & \text { 64/65 } \\ & 128 / 129 \end{aligned}$	$\begin{array}{\|l} \hline \text { Binary } \\ 16-2047 \end{array}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	15 mA	3-5V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-51	MB15A02	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{array}{\|c} \text { Binary } \\ 0-127 \end{array}$	Binary 6-16383	7 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-67	MB1502	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-67	MB1502H	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	$\begin{gathered} \text { Binary } \\ 0-127 \end{gathered}$	Binary $8-16383$	8 mA	5 V	SOP
4-81	MB15B03**	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 5-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 6-16383	10 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
		0.3 GHz	$\begin{aligned} & 16 / 17 \\ & 32 / 33 \end{aligned}$						
4-95	MB15F03**	2.0 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{array}{l\|} \hline \text { Binary } \\ 5-2047 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 6-16383	9 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
		0.5 GHz	$\begin{aligned} & 16 / 17 \\ & 32 / 33 \end{aligned}$						
4-109	MB1503	1.1 GHz	128/129	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-125	MB1504*	520 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{array}{\|l} \text { Binary } \\ 0-127 \end{array}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 8-16383 \end{array}$	10 mA	3-5 V	16-pin DIP, SOP
4-125	MB1504H*	520 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary $16-2047$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	10 mA	$3-5 \mathrm{~V}$	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-125	MB1504L*	520 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary $16-2047$	$\begin{array}{\|l\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary $8-16383$	10 mA	$3-5 \mathrm{~V}$	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$

* Not for new designs
** Dual PLLs/Prescalers

Super PLLs (Single Chip PLLs/Prescalers) - At a Glance (Cont.)

		Prescaler		PLL					
Page Number	Device Part Number	$\mathrm{f}_{\mathbf{N}}($ max $)$	Divide Ratio	$\quad \mathrm{N}$ Program Counter	A Counter	R Reference Counter	$\begin{aligned} & \text { lcc } \\ & \text { (typ) } \end{aligned}$	$\mathrm{V}_{\mathbf{c c}}$	Package
4-143	MB15E05	2.0 GHz	$\begin{array}{\|l} 64 / 65 \\ 128 / 129 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Binary } \\ 5-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	Binary 8-16383	6 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-157	MB1505	600 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	$\begin{array}{\|l\|} \text { Binary } \\ 16-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-63 \end{aligned}$	Binary 8-16383	6 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-143	MB15E06	2.5 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 5-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	7 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-169	MB1506	2.0 GHz	$\begin{array}{\|l\|} \hline 128 / 129 \\ 256 / 257 \end{array}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 5-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	18 mA	5 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-185	MB1507	2.0 GHz	$\begin{aligned} & 128 / 129 \\ & 256 / 257 \end{aligned}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	Binary 8-16383	18 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \\ & \hline \end{aligned}$
4-197	MB1508	2.5 GHz	$\begin{array}{\|l} 256 / 272 \\ 512 / 528 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 32-4095 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	$\begin{array}{\|l} 256,512 \\ 1024, \\ 2048 \end{array}$	16 mA	5 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SOP } \end{aligned}$
4-207	MB1509**	400 MHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary 16-2047	$\begin{gathered} \text { Binary } \\ 0-127 \end{gathered}$	512, 1024	8 mA	3 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SOP } \end{aligned}$
4-221	MB15U10**	1.1 GHz	NA	Binary 1024131071	NA	$\begin{array}{\|l\|l\|l} \text { Binary } \\ 6-4095 \end{array}$	7 mA	3 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-231	MB1510**	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 16-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	512, 1024	15 mA	3-5V	$\begin{aligned} & \text { 20-pin } \\ & \text { SOP } \end{aligned}$
4-243	MB15B11**	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	9.5 mA	3 V	$\begin{aligned} & 20-\text { pin } \\ & \text { SSOP } \end{aligned}$
		0.4 GHz	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$						
4-257	MB1511	1.1 GHz	$\begin{array}{\|l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	$\begin{array}{\|l\|} \hline \text { Binary } \\ 16-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	7 mA	3-5 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-269	MB1512	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	5 V	$\begin{aligned} & 20-\mathrm{pin} \\ & \text { SSOP } \end{aligned}$
4-281	MB15B13**	1.1 GHz	$\begin{array}{l\|} \hline 64 / 65 \\ 128 / 129 \end{array}$	Binary 16-2047	$\begin{array}{\|l\|} \hline \text { Binary } \\ 0-127 \end{array}$	Binary 8-16383	13 mA	3 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-295	MB1513	1.1 GHz	128/129	$\begin{array}{\|l\|} \hline \text { Binary } \\ 16-2047 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	5 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SSOP } \end{aligned}$
4-309	MB1514**	400 MHz	64/65	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	1700	8 mA	3 V	$\begin{aligned} & \text { 20-pin } \\ & \text { SOP } \end{aligned}$
4-323	MB1515	2.5 GHz	$\begin{aligned} & 256 / 272 \\ & 512 / 528 \end{aligned}$	$\begin{array}{\|l\|} \text { Binary } \\ 32-4095 \end{array}$	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	$\begin{aligned} & 256,512 \\ & 1024, \\ & 2048 \end{aligned}$	16 mA	5 V	$\begin{aligned} & 20-\mathrm{pin} \\ & \text { SSOP } \end{aligned}$

** Dual PLLs/Prescalers

SECTION 4

Super PLLs (Single Chip PLLs/Prescalers) - At a Glance (Cont.)

		Prescaler		PLL					
Page Number	Device Part Number	$\mathrm{f}_{\mathbf{N}}$ (max)	Divide Ratio	N Program Counter	$\underset{\text { Swallow }}{\text { A }}$ Counter	R Reference Counter	$\begin{gathered} \text { lcc } \\ \text { (typ) } \end{gathered}$	V_{cc}	Package
4-337	MB15A16	1.2 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 5-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 6-16383	6.5 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-349	MB1516A	1.1 GHz	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary 5-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 6-16383	6.5 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-365	MB1517A	2.0 GHz	$\begin{array}{\|l\|} 64 / 65 \\ 128 / 129 \end{array}$	Binary 5-2047	$\begin{gathered} \text { Binary } \\ 0-127 \end{gathered}$	Binary 6-16383	14 mA	3 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SSOP } \end{aligned}$
4-391	MB1518	2.5 GHz	512/528	$\begin{array}{\|l\|} \hline \text { Binary } \\ 32-511 \end{array}$	$\left\lvert\, \begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}\right.$	512	16 mA	5 V	$\begin{aligned} & \text { 16-pin } \\ & \text { SOP } \end{aligned}$
4-401	MB15A19**	600 MHz	64/65	Binary 16-2047	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	256, 2048	11 mA	3-5V	$\begin{aligned} & 20-\text { pin } \\ & \text { SOP } \end{aligned}$
4-415	MB1519**	600 MHz	64/65	Binary 16-2047	$\left\lvert\, \begin{array}{\|l\|} \text { Binary } \\ 0-127 \end{array}\right.$	512, 1024	11 mA	3-5V	$\begin{aligned} & \text { 20-pin } \\ & \text { SOP } \end{aligned}$
4-429	MB15Sxx Series	300 MHz	16/17	Binary 5-4095	$\begin{array}{\|l} \hline \text { Binary } \\ 0-31 \end{array}$	Binary $5-4095$	3.5 mA	3 V	SSOP
4-437	MB15S02	$\begin{array}{\|c} 284 \mathrm{MHz} \\ 116 \mathrm{MHz} \end{array}$	16/17	Fixed 17 Fixed 7	Fixed 12 Fixed 4	Fixed 13 Fixed 13	3.5 mA	3 V	$\begin{aligned} & \text { 8-pin } \\ & \text { SSOP } \end{aligned}$

** Dual PLLs/Prescalers

MB15A01 ASSP

1.1GHz PLL FREQUENCY SYNTHESIZER

Low power serial input PLL frequency synthesizer with 1.1 GHz prescaler

The Fujitsu MB15A01, utilizing Bi-CMOS technology, is a single chip serial input PLL frequency synthesizer with pulse swallow function.
The MB15A01 contains a 1.1 GHz two modulus prescaler that can select either a $64 / 65$ or 128/129 divide ratio.
The MB15A01 can operate from a single +3 V supply. Fujitsu's advanced technology achieves an Icc of 6.5 mA (typical).

Furictions

- High operating frequency
: $\mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz} \max .\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function

Dual-modules prescaler with selectable 64/65 and 128/129 divide ratios

- Low power supply current $: I_{C C}=6.5 \mathrm{~mA}$ typ. at 3 V
- Serial input, 18 -bit programmable divider consisting of:

Binary 7-bit swallow counter : 0 to 127
Binary 11-bit programmable counter: 5 to 2,047

- Serial input 15-bit programmable reference divider consisting of: Binary 14-bit programmable reference counter: 6 to 16,383
1-bit switch counter sets prescaler divide ratio
- Two types of phase comparator output selectable

On-chip charge pump output
Output for an external charge pump

- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 16 -pin SSOP package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Ratings	Symboll	Value	Unit	Remark
	V_{CC}	-0.5 to +5.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 8.0	V	
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Open drain voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 6.0	V	$\Phi \mathrm{P}$
Output current	l_{O}	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised thatnormal precautions be maximum rated voltages to this high impedance circuit

[^14]
BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	VO	Description
1	$\mathrm{OSC}_{1 \mathrm{~N}}$	1	Programmable reference divider input Oscillator input Connection for external crystal or TCXO.
2	OSCOUT	0	Oscillator output Connection for external crystal.
3	V_{P}	-	Power supply input for charge pump When the internal charge pump is not used, V_{p} pin needs to be connected to $V_{C C}$.
4	V_{CC}	-	Power supply
5	Do	0	Charge pump output
6	GND	-	Ground
7	LD	0	Lock detector output The output level is usually high. Only when there is a phase error between fr and fp , LD becomes low for the period corresponding to the error.
8	f_{IN}	1	Prescaler input Connection with an external VCO should be done with AC coupled.
9	Clock	1	Clock input for 19-bit shift register Data is shifted into the shift register on the rising edge of the clock.
10	Data	I	Serial data input using binary code The last bit of data is a control bit. When the control bit is high, data is transmitted to the 15-bit latch. When it is low, data is transmitted to the 18-bit latch.
11	LE	1	Load enable signal input (with internal pull up resistor) When LE is high, data of the shift register is transferred to a latch, depending on a control bit in serial data.
12	FC	1	Phase switch input for phase comparator (with internal pull-up resistor) When FC is low, the characteristics of phase comparator is reversed. The FC input signal is also used to control fout pin (test pin) output (fr or fp).
13	NC	-	No connection
14	fout	0	Monitor pin of phase comparator input When FC is high, fout outputs programmable reference divider output(fr). When FC is low, fout outputs programmable divider output(fp).
15	ФP	0	Phase comparator output for an extemal charge pump Phase of the output is reversed depending on FC input. ΦP pin is a N-ch open drain output.
16	ФR	0	Phase comparator output for an external charge pump Phase of the output is reversed depending on FC input. Φ R pin is a C-MOS output.

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{V C O}=[(P \times N)+A] \times f_{O S C}+R \quad(A<N)$
$\mathrm{f}_{\mathrm{VCO}}$: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11 -bit programmable counter (5 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14 -bit programmable reference counter (6 to 16,383)
P : Preset divide ratio of modules prescaler (64 or 128)

Serial data input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the 15-bit programmable reference divider and 18 -bit programmable divider separately.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shift register on the rising edge of clock. When the load enable pin is high or open, stored data is latched depending on the control data as follows:

Control data	Destination of serial data
H	15 bit latch
L	18 bit latch

(a) Programmable reference divider

The programmable reference divider consists of a 16 -bit shift register, a 15-bit latch and a 14-bit reference counter. The serial 16-bit data format is shown below:

- 14-bit programmable reference counter divide ratio

Dlvide ratio R	S $\mathbf{1 4}$	\mathbf{S}												
$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	4	3	2	\mathbf{S}				
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: 1. Divide ratios less than 6 are prohibited.
(Divide ratio $=6$ to 16,383)
2. SW:This bit selects the divide ratio of the prescaler.

Low: 128 or 129
High: 64 or 65
3. S1 to S14: These bits select the divide ratio of the programmable reference counter (6 to 16,383).
4. C: Control bit: Set high.
5. Start data input with MSB first .
(b) Programmable divider divide

The programmable divider consists of a 19-bit shift register, a 18-bit latch, a 7 -bit swallow counter, and a 11-bit programmable counter. The serial 19-bit data format is shown below:

- 7-bit swallow counter divide ratio

Divide ratio \mathbf{A}	\mathbf{S}	$\mathbf{7}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{5}$	$\mathbf{4}$	\mathbf{S}	2	1			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio N	s 18	s 17	s 16	\mathbf{s}							
15	\mathbf{s}	\mathbf{s}	\mathbf{s}	\mathbf{s}	\mathbf{s}	s	s				
$\mathbf{1 2}$	11	10	9	8							
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=5$ to 2,047)

Notes: 1. Divide ratios less than 5 are prohibited for 11 -bit programmable counter.
2. S1 to S7: These bits select the divide ratio of swallow counter (0 to 127).
3. S 8 to S 18 : These bits select the divide ratio of programmable counter (5 to 2,047).
4. C: Control bit: (Set low)
5. Start data input with MSB first.

Serial data input timing

- $t_{1}(\geq 100 \mathrm{~ns})$: Data setup time $\quad t_{2}(\geq 1000 \mathrm{~ns})$: Data hold time $t_{3}(\geq 300 \mathrm{~ns})$: Clock pulse width $t_{4}(\geq 100 \mathrm{~ns}):$ LE setup time to the rising edge of last clock t_{5} ($\geq 800 \mathrm{~ns}$): LE pulse width

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Relation between the FC input and phase characteristics

The FC pin changes the phase characteristics of the phase comparator. Both the internal charge pump output level (D_{O}) and the phase comparator output ($\Phi \mathrm{R}, \Phi \mathrm{P}$) are reversed depending on the FC pin input level. Also, the monitor pin (fout) output is controlled by the FC pin. The relationship between the FC input level and each of $D_{\mathrm{O}}, \Phi \mathrm{R}$, and $\Phi \mathrm{P}$ is shown below:

	$\mathrm{FC}=$ High or open				$\mathrm{FC}=$ Low				
	Do	ΦR	ΦP	four	$D 0$	ΦR	ΦP	four	
$\mathrm{fr}>\mathrm{fp}$	H	L	L	(fr)	L	H	$\mathrm{Z}(* 1)$	(fp)	
$\mathrm{fr}<\mathrm{fp}$	L	H	$\mathrm{Z}(* 1)$	(fr)	H	L	L	(fp)	
$\mathrm{fr}=\mathrm{fp}$	$\mathrm{Z}(* 1)$	L	$\mathrm{Z}(* 1)$	(fr)	$\mathrm{Z}(* 1)$	L	$\mathrm{Z}(* 1)$	(fp)	

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.
*: When the LPF and VCO characteristics are similar to (1), set FC high or open.
*: When the VCO characteristics are similar to (2), set FC low.

Phase comparator output waveforms

Note: Phase difference detection range: -2π to $+2 \pi$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min	Typ	Max		
Supply voltage	V_{Cc}	2.7	3.0	3.5	V	
	Vp	Vcc	-	6.0	V	
Input voltage	V_{1}	GND	-	V_{Cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Supply current			Icc	-	6.5	-	mA	$\mathrm{f}_{\mathrm{iN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}}=12$ $\mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$. In locked state.
Operating frequency	fin^{\prime}	f_{N}	10	-	1100	MHz	AC coupling. The minimum operating frequency is measured with a 1000 pF capacitor connected.	
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	12	23	MHz		
Input sensitivity	fin	$\mathrm{P}_{\mathrm{fin}}$	-10	-	6	dBm	50Ω	
	$\mathrm{OSC}_{\text {IN }}$	Vosc	0.5	-	-	Vp-p		
High-level input voltage	Clock, Data, LE	V_{IH}	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-	V		
Low-level input voltage		$V_{\text {IL }}$	-	-	$V_{C C} \times 0.3$	V		
High-level input current	Data, Clock	I_{H}	-	-	1.0	$\mu \mathrm{A}$		
Low-level input current		IIL	-	-	-1.0	$\mu \mathrm{A}$		
input current	$\mathrm{OSC}_{\text {IN }}$	losc	-	± 50	-	$\mu \mathrm{A}$		
	FC, LE	ILE	-	-60	-	$\mu \mathrm{A}$		
High-level output voltage	¢R, LD	V_{OH}	2.1	-	-	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	
Low-level output voltage	Φ /P, LD	V_{OL}	-	-	0.4	V	$\mathrm{VCC}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$	
High-impedance Cut off current	$\mathrm{D}_{0},{ }^{\text {, }}$ P	lofr	-	-	1.1	$\mu \mathrm{A}$	$\begin{gathered} V_{P}=V_{C C} \text { to } 6.0 \mathrm{~V} \\ V_{O O P}=G N D \text { to } 6.0 \mathrm{~V} \end{gathered}$	
Output current	ФR, LD	IOH	-1.0	-	-	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	
	Φ /P, LD	${ }^{\mathrm{IOL}}$	-	-	1.0	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	

TEST CIRCUIT

(FOR MEASURING INPUT SENSITIVITY fin/OSCin)

APPLICATION EXAMPLE

[^15]
PACKAGE DIMENSION

MB15B01 ASSP

DUAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB15B01 is a 1.1 GHz dual serial input PLL (Phase Locked Loop) frequency synthesizer designed for cellular phones, cordless phones and other radio applications.
The MB15B01 has two PLL circuits on a single chip: PLL1 and PLL2. An analog switch is provided for each PLL circuit to decrease lock up time. Separate power supply pins are provided for each PLL circuit.
Two 1.1 GHz dual modulus prescalers are included inside and enables a pulse swallow function. It operates with a supply voltage of 3.0 V typ. and dissipates 13 mA typ. of current realized through the use of Fujitsu's unique Bi-CMOS technology.

FEATURES

- High operating frequency: $\mathrm{fin}=1.1 \mathrm{GHz}$ ($\mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{Vcc}=3 \mathrm{~V}$)
- Pulse swallow function: 64/65 or 128/429
- Serial input 14-bit programmable reference divider: $R=8$ to 16,383
- Serial input 18-bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2,047

Each programmable counter can be controlled independently.

- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.5 V
- Low power supply current: $\mathrm{I}_{\mathrm{Cc}}($ total $)=13 \mathrm{~mA}$ typ. $(\mathrm{Vcc}=3 \mathrm{~V})$
- Power saving function : $I_{c c 1}=I_{c c 2}=100 \mu A$ typ $(V c c=3 V)$
- On-chip analog switches achieve fast lock up time
- Digital lock detector
- Wide operating temperature: $\mathrm{Ta}=-30$ to $80^{\circ} \mathrm{C}$
- Plastic 20-pin SSOP package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Parameter	Symbol	Femark.	Value	Unit.
Power Supply Voltage	Vcc		-0.5 to 5.0	V
Output Voltage	Vout		-0.5 to Vcc +0.5	V
Open Drain Voltage	Voop	fr, fp	-0.5 to +5.0	V
Output Current	lout		± 10	mA
Storage Temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed ir the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^16]
MB15B01

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Pin Name	vo	Descriptions
1	GND	-	Ground.
$\frac{2}{3}$	$\begin{aligned} & \text { OSCIN } \\ & \text { OSCOUT } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input pin. Oscillator output pin. A crystal is connected between OSCIN pin and OSCout pin.
4	fin1	1	Prescaler input pin of PLL1 section. The connection with VCO should be AC.
5	Vcc1	-	Power supply voltage input pin of PLL1 section. When power is OFF, latched data of PLL1 section is cancelled.
6	π	0	Monitor pin for programmable reference divider output. (Open drain output)
7	LD1	0	Lock detect signal output pin of PLL. 1 section.
8	BSC1	1	Analog switch control pin of PLL1 section.
9	Do1	0	Charge pump output pin of PLL1 section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.
10	BS1	0	Analog switch output pin of PLL1 section, and controlled by BSC1.
11	BS2	0	Analog switch output pin of PLL2 section, and controlled by BSC2.
12	Do2	0	Charge pump output pin of PLL2 section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.
13	BSC2	1	Analog switch control pin of PLL2 section.
14	LD2	0	Lock detection signal output pin of PLL2 section.
15	¢p	0	Monitor pin for programmable divider output. (Open drain output) This pin outputs divided frequency of PLL1 section or PLL2 section depending upon FP bit setting.

PIN DESCRIPTIONS (Continued)

Pin No.	Pin Name	U/O	Descriptions
16	Vcc2	-	Power supply voltage input pin for PLL2 section, programmable reference divider, shift register, and crystal oscillator. When power is OFF, latched data of PLL2 section and reference counter is cancelled.
17	fin2	1	Prescaler input pin of PLL2 section. The connection with VCO should be AC.
18	LE	I	Load enable input pin. This pin is followed by a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch depending on a control data.
19	Data	I	Serial data input pin of 23-bit shift register. This pin is followed by a schmitt trigger circuit. The stored data in the shift register is transferred to one of PLL1 programmable counter, PLL2 programmable counter and programmable reference counter depending upon control data settings.
20	Clock	I	Clock input pin of 23-bit shift register. This pin is followed by a schmitt trigger circuit. On rising edge of the clock, one bit of data is transferred into the shitt register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$\{v c o=\{(P \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
P: Preset divide ratio of dual modulus prescaler (64 or 128)
$\mathrm{N}: \quad$ Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A: Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to $\mathbf{1 6 , 3 8 3}$)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable counters of PLL1 section and PLL2 section, and programmable reference counter are controlled individually.
Serial data of binary data is entered via Data pin.
On rising edge of clock, one bit of serial data is transferred into the shift register. When load enable signal is high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Control bits		Destination of serial data
CN1	CN2	
L	L	Reference counter
L	H	Programmable counter of PLL1
H	H	Programmable counter of PLL2

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

R1 to R14 : Divide ratio setting bit for the programmable counter (8 to 16,383)
FP : Test purpose bit (monitor output fp1/fp2 selection)
CN1, 2 : Control bit

Programmable Counter

N1 to N11 : Divide ratio setting bit for the programmable counter (16 to 2,047)
A1 to A7 : Divide ratio setting bit for the swallow counter (0 to 127)
FC : Phase control bit for the phase detector
PRE : Divide ratio setting bit for the prescaler (64/65, 128/129)
PS : Power saving control bit
CN1, 2 : Control bit

BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratio (R)	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\begin{gathered} \mathbf{R} \\ \mathbf{1 3} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \text { R } \\ 11 \end{gathered}$	$\begin{gathered} \text { R } \\ 10 \end{gathered}$	$\begin{aligned} & \text { R } \\ & 9 \end{aligned}$	$\begin{gathered} R \\ 8 \end{gathered}$	$\begin{aligned} & \mathbf{R} \\ & 7 \end{aligned}$	$\begin{aligned} & R \\ & 6 \end{aligned}$	$\begin{gathered} R \\ 5 \end{gathered}$	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{3} \end{aligned}$	$\begin{aligned} & R \\ & \mathbf{2} \end{aligned}$	$\begin{gathered} R \\ 1 \end{gathered}$
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	\cdot	-	-	-	-	-	-	-	\cdot	\cdot	-	\cdot	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 8 is prohibited.

- Divide ratio (R) range = 8 to 16383

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (\mathbf{N})	\mathbf{N} $\mathbf{1 1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
.	\cdot	\cdot	\cdot	-	\cdot	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

Note: - Divide ratio less than 16 is prohibited. - Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
-	-	\cdot	-	\cdot	-	\cdot	\cdot
127	1	1	1	1	1	1	1

PRESCALER DATA SETTING

Divide Ratio	PRE
$64 / 65$	1
$128 / 129$	0

Note: - Divide ratio for each PLL1 and PLL2 is set by the serial data at that time of divide ratio setting for each programmable divider.

PHASE COMPARATOR PHASE CONTROL DATA SETTING

	$F C=H$	$F C=L$
$f r>f p$	H	L
$f r=f p$	Z	Z
$f r<f p$	L	H
VCO Polarity	(1)	(2)

Note: - Z = High-impedance

- Depending upon the VCO polarity, FC bit should be set.
- Phase characteristic for each PLL. 1 and PLL2 is set by the serial data at that time of divide ratio setting for each programmable divider.
vco Output
Frequency
VCO Input Voltage \longrightarrow

POWER SAVING FUNCTION CONTROL (INTERMITTENT OPERATION)

	PS	
	H	L
PLL''s section	ON	OFF
PLL2's section and common section	ON	OFF

Note: - Power saving mode for each PLL1 and PLL2 is selected by the serial data at that time of divide ratio setting for each programmable divider.

- Common section ; Crystal oscillator circuit, reference counter
- Just after powering up, please set PS bit to "L" at first.

Intermittent operation limits power consumption by shutting down or start the internal circuits case by case. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{f}) and the comparison frequency (f_{p}) and frequency lock is lost. To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting phase of both frequencies to limit the error signal output.

SERIAL DATA INPUT TIMING

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is twL or less and continues to be so for three cysles or more.
- twl and twl depend on OSCin input frequency.
twu $\geqq 8$ /fosc ($\theta . \mathrm{g}$. twu $\geqq 625 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)
twl $\leqq 16 /$ fosc (e. g. twL $\leqq 1250 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
			Min	Typ		
Power Supply Voltage		2.7	3.0	3.5	V	Vcc1 = Vcc2
Input Voltage	Vin	GND	-	Vcc	V	
Operating Temperature	Ta	-30	-	+80	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unlt	
		M11		Typ	Max			
Power Supply Current			Icc1	PLL1 section	-	$6.0(0.1)^{* 1}$	-	mA
		Icc2	PLL2 \& common sections	-	$7.0(0.1)^{* 1}$	-		
Operating Frequency	fin	fin		100	-	1100	MHz	
	OSCIN	fosc		-	12.8	20.0		
Input Sensitivity	f fin	Pfin	50Ω	-10	-	0	dBm	
	OSCIN	Vosc		0.5	-	-	Vp-p	
High-level Input Voltage	Data, Clock LE, BSC	VIH		Vccx0.7+0.4	-	-	V	
Low-level Input Voltage		VIL		-	-	Vccx0.3-0.4		
High-level Input Current	Data, Clock LE, BSC	liH		- -	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL		-	-1.0	-		
Input Current	OSCIN	losc		-	± 50	-		
High-level Output Voltage	LD	VoH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V	
L.ow-level Output Voltage		Vol	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	0.4		
High-impedance Cutoff Current	Do, BS	loff		-	-	1.1	$\mu \mathrm{A}$	
Output Current	LD	IOH		-1.0	-	-	mA	
		loL		-	-	1.0		
	Do1, 2	IOH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-2.5	-	mA	
		10.	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	5.0	-		
Analog Switch ON Resistance		Ron		-	50	-	Ω	

* 1 : The value in () is power supply current in power saving mode.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

Note: C1, C2
: depends on a crystal oscillator.
Clock, Data, LE : involves a schmitt circuit.
When input pins are open, please insert the pull down/up resistor individually to prevent oscillation.

PACKAGE DIMENSION

MB1501/MB1501H/MB1501L
 SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB1501/MB1501H/MB1501L, utilizing BI-CMOS technology, is a single chip serial input PLL frequency synthesizer with pulse-swallow function.
The MB1501 series contain a 1.1 GHz two modulus prescaler that can select either 64/65 or 128/129 divide ratio; control signal generator; 16-bit shift register; 15-bit latch; programmable reference divider (binary 14-bit programmable reference counter); 1-bit switch counter; phase comparator with phase inverse function; charge pump; crystal oscillator; 19-bit shift register; 18-bit latch; programmable divider (binary 7 -bit swallow counter and binary 11-bit programmable counter).
The MB1501 operates on a low supply voltage (3 V typ) and consumes low power (45 mW at 1.1 GHz).

MB1501 Product Line

	V_{P} Voltage	Voop Voltage	Lock up time	Output Out Width	Cigh-level Output Current	Low-level Output Current
MB1501	8 V max	8.5 V max	Middle speed	Middle	Middle	Middle
MB1501H	10 V max	10.0 V max	High speed	Low	High	Low
MB1501L	8 V max	8.5 V max	Low speed	High	Low	High

- High operating frequency: $\boldsymbol{f}_{\mathrm{IN}} \mathrm{MAX}=1.1 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN} \mathrm{MIN}}=0.20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)$
- On-chip prescaler
- Low power supply voltage: 2.7 V to 5.5 V (3.0V typ)
- Low power supply consumption: 45 mW ($3.0 \mathrm{~V}, 1.1 \mathrm{GHz}$ operation)
- Serial input 18-bit programmable divider consisting of:
- Binary 7-bit swallow counter (Divide ratio: 0 to 127)
- Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Serial input 15-bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter (Divide ratio: 8 to 16383) - 1-bit switch counter (SW) Sets divide ratio of prescaler
- 2types of phase detector output
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Condition	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {cc }}$		-0.5 to +7.0	V
	V_{PH}	MB1501H	$V_{C C}$ to 12.0	V
	$\mathrm{V}_{\mathrm{P}} \mathrm{V}_{\mathrm{PL}}$	MB1501/1501L	$V_{\text {cc }}$ to 10.0	
Output Voltage	V OUT		-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
Open-drain Output	$\mathrm{V}_{\text {OOPH }}$	MB1501H	-0.5 to 11.0	V
	$\mathrm{V}_{\text {OOR }} \mathrm{V}_{\text {OOPL }}$	MB1501/1501L	-0.5 to 9.0	
Output Current	Iout		± 10	mA
Storage Temperature	TSTE		-55 to +125	${ }^{\circ} \mathrm{C}$

[^17][^18]

PIN ASSIGNMENT

PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Descriptions
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OSC $_{\mathbb{N}}$ OSC ${ }_{\text {OUt }}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC IN and OSC OUT.
3	V_{P}	-	Power supply input for charge pump.
4	$V_{C C}$	-	Power supply voltage input.
5	D_{0}	0	Charge pump output. Phase characteristic can be inversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. This pin outputs high when the phase is locked. While the phase difference of f_{r} and f_{p} exists, the output level goes low.
8	$f_{\text {in }}$	1	Prescaler input. The connection with an external VCO should be an AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. Each rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Serial data of binary code input. The last bit of the data is a control bit. The last data bit specifies which latch is activated. When the last bit is high level and LE is high-level, data is transferred to 15-bit latch. When the last bit is low level and LE is high level, data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high level (or open), data stored in the shift register is transferred to latch depending on the control data.
12	FC	0	Phase selecting input of phase comparator (with internal pull up resistor). When FC is low level, charge pump and phase detector characteristics can be inversed.
13	f_{r}	0	Monitor pin of phase comparator input. It is the same as programmable reference divider output.
14	f_{p}	0	Monitor pin of phase comparator input. It is the same as programmable divider output.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \emptyset P \\ & \emptyset R \end{aligned}$	0	Outputs for external charge pump. Phase characteristics can be inversed depending on FC input. ØP pin is an N -channel open-drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is input using Data pin, Clock pin and LE pin, The 15-bit programmable reference divider and 18 -bit programmable divider are controlled respectively.

On rising edge of the clock shifts one bit of the data into the internal shift registers.
When load enable (LE) is high level (or open), data stored in shift resisters is transferred to 15-bit latch or 18 -bit latch depending upon the control bit level.

Control data " H " ; Data is transferred into 15 -bit latch.
Control data " L " ; Data is transferred into 18-bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

SW: Divide ratio of prescaler setting bit.
SW="H" : 64
SW="L": 128
S_{1} to S_{14} : Divide ratio of programmable reference counter setting bits (8 to 16383)
C: Control bit (Control bit is set to high.)

FUNCTIONAL DESCRIPTIONS

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19-bit data format is shown below.

(O) 7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide ratio A	S	S	S	S	S	S	S
0	0	0	0	0	0	0	0
0	3	2	1				
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

Divide ratio A : 0 to 127
(O) 11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S	S
9	8										
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Divide ratio less than 16 is prohibited. Divide ratio N : 16 to 2047

[^19]
SERIAL DATA INPUT TIMING

On the rising edge of the clock shifts one bit of the data into the shift registers.
Parenthsis data is used for setting the divide ratio of the programmable reference divider.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS
FC pin (pin 12) is provided to inverse the phase comparator characteristics. The characteristics of internal charge pump output (D_{O}), phase detector outputs ($\emptyset \mathrm{R}, \emptyset \mathrm{P}$) can be inversed depending upon FC input data. Outputs are shown below.

	$F C=H$ (or open)			$F C=L$		
	D_{O}	$\emptyset R$	$\emptyset P$	D_{0}	$\emptyset R$	$\emptyset P$
$f_{r}>f_{p}$	H	L	L	L	H	Z
$f_{r}<f_{p}$	L	H	Z	H	L	L
$f_{r}=f_{p}$	Z	L	Z	Z	L	Z

Note: $Z=$ (High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set high or open circuit;
When VCO characteristics are like (2), FC should be set Low.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value			Unit
			Min	Typ	Max	
Power Supply Voltage	$V_{C C}$		2.7	3.0	5.5	V
	V_{PH}	MB1501H	$V_{C c}$		10.0	V
	$\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{PL}}$	$\begin{aligned} & \text { MB1501 } \\ & \text { MB1501L } \\ & \hline \end{aligned}$	$V_{\text {cc }}$		8.5	
Open-drain Output	$\mathrm{V}_{\text {OOPH }}$	MB1501H	$\mathrm{V}_{\text {cc }}$		10.0	V
	$V_{\text {OOR }} V_{\text {OOPL }}$	$\begin{aligned} & \hline \text { MB1501 } \\ & \text { MB1501L } \\ & \hline \end{aligned}$	V_{cc}		8.5	
Input Voltage	$V_{\text {IN }}$		GND		V_{cc}	V
Operating temperature	$\mathrm{T}_{\text {A }}$		-40		+85	${ }^{\circ} \mathrm{C}$

MB1501
MB1501H
MB1501L

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Pin Name	Symbol	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	V_{CC}	ICC	*1		-	15	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	fin	*2		10	-	1100	MHz
	OSC ${ }_{\text {IN }}$	fosc			-	12	20	MHz
Input Sensitivity	$f_{\text {in }}$	$P_{\text {fin1 }}$	$\mathrm{V}_{C C}=2.7$	to 4.0V	-10	-	6	dBm
		$P_{\text {fin2 }}$	$\mathrm{V}_{\mathrm{CC}}=4.0$	10 5.5 V	-4	-	6	dBm
	$\mathrm{OSC}_{\text {IN }}$	V_{IN}			0.5	-	-	V_{P-P}
Hign-level Input Voltage	$\begin{aligned} & \text { Except } \\ & f_{\text {in and }} \\ & \mathrm{OSC}_{\text {IN }} \end{aligned}$	V_{IH}			0.7 xV Cd	-	-	V
Low-level Input Voliage		V_{IL}			-	-	$0.3 x V_{c o}$	V
High-level Input Current	Data, Clock	I_{H}			-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		11.			-	-1.0	-	$\mu \mathrm{A}$
Input Current	$\mathrm{OSC}_{\text {IN }}$	IN			-	± 50	-	$\mu \mathrm{A}$
	LE, FC	le			-	-60	-	$\mu \mathrm{A}$
High-level Output Voltage	Except Do and OSCOUT	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$		2.4	-	-	V
Low-level Output Voltage		V_{OL}			-	-	0.4	V
N-channel Open-drain Cutoff Current	\varnothing ¢	loff	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}}$	$\leq 8 \mathrm{~V}$	-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	Except	IOH			-1.0	-	-	mA
Low-level Output Current	OSCOUT	1 OL			1.0	-	-	mA
High-level Output Current	D_{0}	'DOHH	MB1501H	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=12 V, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-2.2	-4.5	-	mA
		${ }^{\text {DOOH }}$	MB1501	$V_{C C}=3 \mathrm{~V}$	-0.5	-2.0	-	mA
		$\mathrm{I}_{\text {DOHL }}$	MB1501L	${ }^{\circ} \mathrm{C}$	-0.5	-1.1	-2.2	mA
Low-level Output Current		IDOLH	MB1501H	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{P}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2.2	6.0	-	mA
		1 DOL	MB1501	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=6 V, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	6.0	-	mA
		IDOLL	MB1501L		4.5	12.0	-	mA
Leakage Current	$\mathrm{D}_{\mathrm{O}}, \varnothing \mathrm{P}$	IDOZ	MB1501H MB1501 MB1501L	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=12 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{A}=25^{\circ} \mathrm{C}} \\ & \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=9 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-		1.0	$\mu \mathrm{A}$

Note: *1 $V_{C C}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz}, \mathrm{f}_{\mathrm{OSC}}=12 \mathrm{MHz}$ crystal.
Inputs are grounded except $f_{\mathcal{N}}$, and outputs are open.
*2 Input coupling capacitor 1000pF is connected.

TYPICAL CHARACTERISTICS CURVES

LOCK UP TIME MEASUREMENT

DO PIN OUTPUT CURRENT CURVES (TYPICAL)

Do PIN OUTPUT WAVEFORM AT LOCK CONDITION

Output Waveform

MB1501

MB1501H

MB1501L

PHASE CHARACTERISTICS ($\Delta \mathrm{f}$ vs. D_{O} OUTPUT ENERGY)

INPUT SENSITIVITY

Input Sensitivity vs. Input Frequency (Supply Voltage Dependence)

Input Sensitivity vs. Input Frequency (Temperature Dependence)

INPUT IMPEDANCE

TEST CIRCUIT
D_{O} Pin Output Current ($\mathrm{IOH}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$) Measurement

Lock up Time Measurement

Phase Characteristics Measurement

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (Case No.: DIP-16P-M04)

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE

(Case No.: FPT-16P-M06)

MB15A02 ASSP

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 1.1GHZ PRESCALER

The Fujitsu MB15A02, utilizing Bi-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.
The MB15A02 contains a 1.1 GHz two modulus prescaler that can select either a $64 / 65$ or $128 / 129$ divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase reverse function, charge pump, crystal oscillator, 19 -bit shift register, 18 -bit latch, and programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter). It operates supply voltage of 5 V typ. and achieves very low supply current of 7 mA typ. realized through the use of Fujitsu Advanced Process Technology.

- High operating frequency: fin max=1.1GHz (PIN MIN=-10dBm)
- Pulse swallow function: 64/65 or 128/129
- Low supply current: lcc=7mA typ.
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2,047
- Serial input 15-bit programmable reference divider consisting of:
- Binary 14-bit programmable reference counter: 6 to 16,383
- 1-bit switch counter (SW) sets divide ratio of prescaler
- Two types of phase detector output
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic SOP Package 16-pin and 20-pin Plastic SSOP Packages
ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Rating	Unit	Remark
Power Supply Voltage	$\mathrm{Vcc}_{\mathrm{cc}}$	-0.5 to +7.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	Vcc to 8.0	V	
Output Voltage	Vout	-0.5 to $\mathrm{Vcc}+0.5$	V	$\varnothing \mathrm{P}$ pin
Open-drain Voltage	Voop	-0.5 to 6.0	V	
Output Current	lout	± 10	mA	
Storage Temperature	TsTG	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^20]
MB15A02

PIN ASSIGNMENT

(FPT-16P-M06) (FPT-16P-M05)

(FPT-20P-M03)

BLOCK DIAGRAM

Note : Pin numbers are based on SOP/SSOP 16-pin packages.

PIN DESCRIPTION

Pin No.		Pin Name	VO	Description
$\begin{array}{\|l\|} \hline \text { SOP-16P } \\ \text { SSOP-16P } \end{array}$	SSOP-20P			
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \text { OSCIN } \\ & \text { OSCout } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSCIN and OSCout.
3	4	Vp	-	Power supply pin for charge pump. When the internal charge pump is not used, V_{P} pin needs to be connected to V_{CC}.
4	5	Vcc	-	Power supply pin.
5	6	Do	0	Charge pump output.
6	7	GND	-	Ground.
7	8	LD	0	Phase comparator output. Normally this pin outputs high level. When there is a phase error between fr and $f p$, LD becomes low for the period corresponding to the error.
8	10	fin	1	Prescaler input. The connection with an external VCO should be AC connection.
9	11	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into shift register.
10	13	Data	1	Binary serial data input. The last bit of data is a control bit. When this bit is high level, the data stored in shift register is transferred to 15-bit latch. When this bit is low level and LE is high level, the data is transferred to 18-bit latch.
11	14	LE	1	Load enable input (with internal pull up resistor). When LE is high, the data stored in shift register is transferred into latch according to the control bit.
12	15	FC	1	Phse select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of phase comparator is reversed. FC input signal is also used to select fout pin (test pin) output, fr or fp.
13	2,9,12,16,19	NC	-	No connection
14	17	fout	0	Minitor pin of phase comparator input. fout pin outputs either programmable reference divider output (fr) or programmable divider output (fp) according to FC pin input level. $\mathrm{FC}=\mathrm{H}$: It is the same as fr output level. FC=L: It is the same as $\mathrm{f} p$ output level.
15	18	$\varnothing \mathrm{P}$	0	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.
16	20	\varnothing R	0	Outputs for external charge pump. \varnothing R pin is CMOS output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift register and when load enable pin is high level or open, stored data is transferred into latch according to the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16-bit shift register, 15-bit latch and 14-bit programmable reference counter. Serial 16-bit data format is shown below.

1 Divide ratio of programmable reference counter setting bit

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S 13	S	S	S	S	S	S	S	S	S	S	S	S
\mathbf{S}	9	8	S	6	5	4	3	2	1					
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 6 is prohibited.
Divide ratio: 6 to 16,383
SW: This bit selects divide ratio of prescaler.
SW=H: 64/65
$S W=L: 128 / 129$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets at high level).
Start data input with MSB first.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter.
Serial 19-bit data format is shown following page.

MB15A02

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S	S	S	S	S	S
0	0	0	0	0	0	0	0
0	2	1					
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S	S
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2,047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. C: Control bit (sets at low level).
Data input with MSB first.

PULSE SWALLOW FUNCTION

$f v c o=[(P \times N)+A] \times f o s c+R$
fvco:Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
fosc:Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (6 to16,383)
P: Preset modulus of external dual modulus prescaler (64 or 128)

Serial data input timing

- $t_{1}(\geq 100 \mathrm{~ns})$: Data setup time
t_{2} ($\geq 1000 \mathrm{~ns}$): Data hold time
t_{3} ($\geq 300 \mathrm{~ns}$) : Clock pulse width
t_{4} ($\geq 100 \mathrm{~ns}$): LE setup time to the rising edge of last clock

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (Do), phase comparator output level ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level. The relation between outputs (Do, $\varnothing \mathrm{R}, \varnothing \mathrm{P}$) and FC input level are shown below.

	FC=H or open				FC=L			
	DO	\varnothing R	$\varnothing \mathrm{P}$	fout	DO	$\varnothing R$	$\varnothing \mathbf{P}$	fout
f fip	H	L	L	(fr)	L	H	z	(fp)
fr<ip	L	H	Z	(fr)	H	L	L	(fp)
$f r=f p$	Z	L	z	(fr)	z	L	Z	(fp)

Note: $\quad \mathrm{Z}=$ (High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit;
When VCO characteristics are like (2), FC should be set Low.

OUTPUT WAVEFORM

NOTE: Phase error detection range: -2π to $+2 \pi$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	Vcc	4.5	5.0	5.5	V
	Vp	Vcc	-	6.0	V
Input Voltage	V	GND	-	Vcc	V
Operating Temperature	Ta	-40	-	85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Power Supply Current			Icc	-	7.0	-	mA	*1
Operating Frequency	fin	fin	10	-	1100	MHz	*2	
	OSCIN	fosc	-	12	20	MHz		
Input Sensitivity	fin	Pfin	-10	-	6	dBm	50Ω system	
	OSCIN	$\mathrm{V}_{\text {OSC }}$	0.5	-	-	VPP		
High-level Input Voltage	Clock, Data, LE	V_{IH}	Vccx0.7	-	-	V		
Low-level Input Voltage		$V_{\text {IL }}$	-	-	Vccx0.3	V		
High-level Input Current	Data Clock	I_{H}	-	-	1.0	$\mu \mathrm{A}$		
Low-level Input Current		I/L	-	-	-1.0	$\mu \mathrm{A}$		
Input Current	OSCIN	losc	-	± 50	-	$\mu \mathrm{A}$		
	LE, FC	LLE	-	-60	-	$\mu \mathrm{A}$		
High-level Output Voltage	ØR, LD	V_{OH}	4.4	-	-	V	$\begin{aligned} & \mathrm{VcC}=5 \mathrm{~V}, \\ & \mathrm{loH}=-1.0 \mathrm{~mA} \end{aligned}$	
Low-level Output Voltage	$\varnothing \mathrm{R}, \varnothing \mathrm{P}, \mathrm{LD}$	V_{OL}	-	-	0.4	V	$\begin{aligned} & \mathrm{Vcc}=5 \mathrm{~V}, \\ & \mathrm{lot}=1.0 \mathrm{~mA} \end{aligned}$	
High impedance Cutoff Current	Do, \varnothing P	IOFF	-	-	1.1	$\mu \mathrm{A}$	$\mathrm{V} P=\mathrm{Vcc}$ to 6 V Voop $=G N D$ to 6 V	
Output Current	\varnothing R, LD	IOH	-1.0	-	-	mA	$\mathrm{Vcc}=5 \mathrm{~V}$	
	$\varnothing \mathrm{R}, \varnothing \mathrm{P}, \mathrm{LD}$	$\mathrm{IOL}^{\text {a }}$	-	-	1.0	mA	$\mathrm{Vcc}=5 \mathrm{~V}$	

*1: fin=1.1GHz, OSCIN=12MHz, Vcc=5V. In locked state.
*2: AC coupiing. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT
 (FOR MEASURING INPUT SENSITIVITY fin/OSCin)

Note: Pin numbers are based on SOP/SSOP 16-pin packages.

TYPICAL APPLICATION EXAMPLE

ORDERING INFORMATION

Part Number	Package
MB15A02PF	Plastic SOP, 16-pin FTP-16P-M06
MB15A02PFVi	Plastic SSOP, 16-pin FTP-16P-M05
MB15A02PFV2	Plastic SSOP, 20-pin FTP-20P-M03

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-16P-M06)

PACKAGE DIMENSIONS (Continued)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The Information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The Information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fuijitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

MB1502/MB1502H
 SERIAL INPUT PLL FREQUENCY SYNTHESIZER

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 1.1 GHz PRESCALER

The Fujitsu MB1502/MB1502H, utilizing Bi-CMOS technology, are single chip serial input PLL synthesizers with pulse-swallow function. Each MB1502/MB1502H contains a 1.1 GHz two modulus prescaler that can select of either 64/65 or 128/129 divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14 -bit programmable reference counter), 1 -bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18-bit latch, programmable divider (binary 7 -bit swallow counter and binary 11-bit programmable counter) and analog switch to speed up lock up time.
They operate at a supply voltage of 5 V typ. and achieves a very low supply current of 8 mA typ. realized through the use of Fujitsu Advanced Process Technology.

FEATURES

- High operating frequency: $\mathrm{fIN}_{\mathrm{INAX}}=1.1 \mathrm{GHz}$ ($\mathrm{PIN}_{\mathrm{MIN}}=10 \mathrm{dBm}$)
- Pulse swallow function: 64/65 or 128/129
- Low supply current: Icc=8mA typ.
- Serial input 18-bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of:
- Binary 14-bit programmable reference counter: 8 to 16383
- 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2 types of phase detector output
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic DIP Package (Suffix: —P)

16-pin Plastic Flat Package (Suffix: —PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {OOP }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded.Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^21]

PIN DESCRIPTION

Pin No.	Pin Name	VO	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC }_{\text {OUT }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\text {IN }}$ and OSC $_{\text {OUT }}$.
3	V_{p}	-	Power supply input for charge pump and analog switch.
4	V_{CC}	-	Power supply voltage input.
5	Do	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
6	GND	-	Ground
7	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f_{r}, and f_{p} exists, this pin outputs low level.
8	${ }^{\prime} \mathrm{N}$	1	Prescaler input. The connection with an external VCO should be AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shitt register. On rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
12	FC	1	Phase select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control fout pin (test pin) output level for f_{r} or f_{p}.
13	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
14	fout	0	Monitor pin of phase comparator input. $f_{\text {Out }}$ pin outputs either programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \emptyset P \\ & \varnothing R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18-bit programmable divider, respectively.

Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data "L" data is transferred into 18-bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16-bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	$\begin{gathered} \mathrm{S} \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 13 \end{gathered}$	s 12	$\begin{gathered} S \\ 11 \end{gathered}$	S 10	S	S	S 7	S 6	5	S	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	\bullet	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
$\mathrm{SW}=\mathrm{H}: 64$
$S W=L: 128$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18-bit latch, 7 -bit swallow counter and 11-bit programmable counter.
Serial 19-bit data format is shown on following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S	S 6	5	S	S	S	S
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	$\begin{aligned} & S \\ & 1 \\ & 8 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline S \\ & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline S \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 2 \end{aligned}$	S	$\begin{aligned} & S \\ & 1 \\ & 0 \end{aligned}$	S	S
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
-	-	-	-	-	-	\bullet	-	\bullet	\bullet	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

$f_{\text {vco }}=[(P \times N)+A] \times f_{\text {osc }}+R$
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
$f_{\text {osc }}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14 -bit programmable reference counter (8 to 16383)
P: Preset modulus of external dual modulus prescaler (64 or 128)

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{o}), phase comparator output level ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (tout) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($\mathrm{D}_{\mathrm{O}}, \varnothing \mathrm{R}, \varnothing \mathrm{P}$) and FC input level are shown below.

	FC=H or open				FC=L			
	D_{0}	\varnothing R	$\otimes \mathbf{P}$	$\begin{gathered} \mathbf{f}_{\mathbf{O U}} \\ \mathrm{T} \end{gathered}$	D_{0}	\varnothing R	$\varnothing \mathbf{P}$	${ }^{\text {fou }}$
$f_{r}>f_{p}$	H	L	L	$\left(f_{r}\right)$	L	H	z	(t_{p})
$\mathrm{f}_{\mathrm{r}}<\mathrm{f}_{\mathrm{p}}$	L	H	z	$\left(f_{r}\right)$	H	L	L	(f_{p})
$t_{r}=t_{p}$	Z	L	Z	$\left(t_{r}\right)$	z	L	z	$\left(f_{p}\right)$

Note: $\quad \mathbf{Z}=$ (High impedance)

VCO CHARACTERISTICS
Depending upon VCO characteristics, FC pin should be set accordingly:

- When VCO characteristics are like1, FC should be set High or open circuit;
- When VCO characteristics are like 2, FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band.
When $f_{p}>f_{p}$ or $f_{p}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{O}) to be connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\mathrm{LE}=\mathrm{H}$ (Changing the divide ratio of internal prescaler) : Analog switch=ON
LE=L (Normal operating mode): Analog switch=OFF
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC}	V_{P}	8.0	V
Input Voltage	V_{I}	GND		V_{CC}	V
Operating Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

(Vcc=4.5 to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter		Symbol	Condition		Value			Unit	
		Min			Typ	Max			
Power Supply Current			lcc	Note 1			8.0	12.0	mA
Operating Frequency	$f_{\text {in }}$	$\mathrm{fin}^{\text {in }}$	Note2		10		1100	MHz	
	$\mathrm{OSC}_{\text {IN }}$	fosc				12	20	MHz	
Input Sensitivity	$\mathrm{f}_{\text {in }}$	$P_{\text {fin }}$			-10		6	dBm	
	$\mathrm{OSC}_{\text {IN }}$	$V_{\text {Osc }}$			0.5			VPP	
High-level Input Voltage	Except $\mathrm{f}_{\text {in }}$ and $\mathrm{OSC}_{1 \mathrm{~N}}$	V_{IH}			$\mathrm{V}_{\mathrm{cc}} 0.7$			V	
Low-level Input Voltage		V_{IL}					$\mathrm{V}_{\text {ccx }} 0.3$	V	
High-level Input Current	Data Clock	${ }_{1 / H}$				1.0		$\mu \mathrm{A}$	
Low-level Input Current		ILL				-1.0		$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc				± 50		$\mu \mathrm{A}$	
	LE, FC	ILE				-60		$\mu \mathrm{A}$	
High-level Output Vohage	$\begin{aligned} & \text { Except Do } \\ & \text { and } \\ & \text { OSCout } \end{aligned}$	VOH	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$		4.4			V	
Low-level Output Voltage		V_{OL}					0.4	V	
N -channel Open Drain Cutoff Current	$\mathrm{D}_{0}, \varnothing \mathrm{P}$	loff	$\begin{gathered} V_{p}=V_{C C} \text { to } 8 V \\ V_{O O P}=G N D \text { to } 8 V \end{gathered}$				1.1	$\mu \mathrm{A}$	
Output Current	$\begin{aligned} & \text { Except Do } \\ & \text { and } \\ & \text { OSCout } \end{aligned}$	IOH			-1.0			mA	
		lob			1.0			mA	
High-level Output Current	$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	IDDH	MB1502	$\begin{aligned} & V_{C C}=5 V, \\ & V_{P}=8 V \\ & T_{A}=255^{\circ} C \end{aligned}$	-0.8	-1.5		mA	
Low-level Output Current		IDOL			11	22		mA	
High-level Output Current		IDOLH	MB1502H		-1.4	-2.4		mA	
Low-level Output Current		IDOLH			4.5	10		mA	
Analog Switch On Resistor		RON				25		Ω	

NOTE: 1: $f_{\text {in }}=1 . i \mathrm{GHz}, \mathrm{OSC}_{\mathbb{N}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$. Inputs are grounded and outputs are open. 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TYPICAL CHARACTERISTICS CURVES

INPUT SENSITIVITY CHARACTERISTICS

DO PIN OUTPUT CURRENTCURVES (TYPICAL)

INPUT IMPEDANCE CHARACTERISTICS

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

三MB15B03

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

On-chip 1.1GHz \& 300MHz PRESCALER

The Fujitsu MB15B03 is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 1.1 GHz and a 300 MHz prescalers. A $64 / 65$ or a $128 / 129$ for the 1.1 GHz prescaler, and a $16 / 17$ or a $32 / 33$ for 300 MHz prescaler can be selected that enables pulse swallow operation.
Furthermore, a super charger circuit is included to provide a fast tuning as well as low noise periormance. As a result of this, MB15B03 is ideally suitable for digital mobile communications, such as GSM.

FEATURES

- High frequency operation RF synthesizer: 1.1 GHz max. IF synthesizer : 300 MHz max.
- Low power supply voltage: $\mathrm{V}_{c c}=2.7$ to 3.6 V
- Very Low power supply current : $\mathrm{Icc}=10 \mathrm{~mA}$ typ. $(\mathrm{Vcc}=3 \mathrm{~V})$
- Power saving function : $l_{\text {Ps } 1}=l_{\text {Ps } 2}=100 \mu \mathrm{~A}$ typ. $(\mathrm{VCc}=3 \mathrm{~V})$
- Serial input 14-bit programmable reference counter: $R=6$ to 16,383
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 5 to 2,047
- On-chip high performance charge pump circuit and phase comparator, achieving high-speed lock-up and low phase noise
- Wide operating temperature: $T_{1}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 16 -pin SSOP package (FPT-16P-M05)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Fatling	Symbot	Remark	Value	Unit
Power Supply Voltage	$V_{\text {cc }}$		-0.5 to 5.0	V
Output Voltage	Vo		-0.5 to $V_{c c}+0.5$	\checkmark
Output Current	10		± 10	mA
Storage Temperature	Tste		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No .	Pin Name	10	Descriptions
1	GND ${ }_{\text {s }}$	-	Ground for RF-PLL section.
2	OSCin	1	The programmable reference divider input. TCXO should be connected with a coupling capacitor.
3	GND.1F	-	Ground for the IF section.
4	fin*	1	Prescaler input pin for the IF-PLL. The connection with VCO should be AC coupling.
5	Vccr	-	Power supply voltage input pin for the IF-PLL section. When power is OFF, latched data of the IF-PLL is cancelled.
6	LDNout	\bigcirc	Lock detect signal output (LD) / phase comparator monitoring output (fout) The output signal is selected by a LDS bit in a serial data. LDS bit $=$ " ${ }^{\prime}$ " ; outputs fout signal LDS bit = "L" ; outputs LD signal
7	$\mathrm{PS}_{\text {IF }}$	1	Power saving mode control for the IF-PLL section. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS PSIf = "L" ; Power saving mode
8	Doif	\bigcirc	Charge pump output for the IF-PLL section. Phase characteristics of the phase comparator can be reversed by the FC-bit.
9	Doar	\bigcirc	Charge pump output for the RF-PLL section. Phase characteristics of the phase comparator can be reversed by the FC-bit.
10	$\mathrm{PS}_{\text {RF }}$	1	Power saving mode control for the RF-PLL section. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS ${ }_{\text {sf }}=$ " $\mathrm{H}^{\prime \prime}$: Normal mode PS ${ }_{\text {RF }}=$ "L" ; Power saving mode
11	Xfingr	1	Prescaler complimentary input for the RF-PLL section. This pin should be grounded via a capacitor.
12	VcCaf	-	Power supply voltage input pin for the RF-PLL section, the shift register and the oscillator input buffer. When power is OFF, latched data of RF-PLL is cancelled.
13	finap	1	Prescaler input pin for the RF-PLL. The connection with VCO should be AC coupling.
14	LE	1	Load enable signal input (with the schmitt trigger circuit.) When LE is " H ", data in the shift register is transterred to the corresponding latch according to the control bit in a serial data.
15	Data	1	Serial data input (with the schmitt trigger circuit.) A data is transferred to the corresponding latch (IF-ref counter, IF-Prog. counter, RF-ref. counter, RF-prog. counter) according to the control bit in a serial data.
16	Clock	1	Clock input for the 23 -bit shift register (with the schmitt trigger circuit.) One bit data is shifted into the shift register on a riging edge of the clock.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f v c o=\{(P \times N)+A) \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
P: Preset divide ratio of dual modulus prescaler (16 or 32 for IF-PLL, 64 or 128 for RF-PLL)
N: Preset divide ratio of binary 11 -bit programmable counter (5 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (6 to 16,383)

SERIAL DATA INPUT

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL sections, programmable reference dividers of IF/RF PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On rising edge of clock, one bit of serial data is transferred into the shift register. When load enable signal is high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Table1. CONTROL BIT

Control blts		Destination of serial data
CN1	CN2	
L	L	The programmable reference counter for the IF-PLL.
H	L	The programmable reference counter for the RF-PLL.
L	H	The programmable counter and the swallow counter for the IF-PLL
H	H	The programmable counter and the swallow counter for the RF-PLL

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

CNT1. 2 : Control bit
R1 to R14 : Divide ratio setting bits for the programmable reference counter (6 to 16,383)
T1, 2 : Test purpose bit
[Table. 1]
[Table. 2]
[Table. 3]

FUNCTIONAL DESCRIPTIONS

Programmable Counter

$$
\text { CN1, } 2 \text { : Control bit }
$$

N1 to N11 : Divide ratio setting bits for the programmable counter (5 to 2047)
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
SW : Divide ratio setting bit for the prescaler
(16/17 or $32 / 33$ for the IF-PLL. $64 / 65$ or $128 / 129$ for the RF-PLL)
FC : Phase control bit for the phase detector
LDS : LDfout signal select bit
[Table. 1]
[Table. 4]
[Table. 5]
[Table. 6]
[Table. 7]
[Table. 8]

Table2. BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratlo (R)	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\begin{aligned} & R \\ & 13 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \mathbf{R} \\ 11 \end{gathered}$	$\begin{gathered} R \\ 10 \end{gathered}$	$\begin{gathered} R \\ 9 \end{gathered}$	$\begin{gathered} R \\ 8 \end{gathered}$	$\begin{aligned} & R \\ & 7 \end{aligned}$	$\begin{aligned} & R \\ & 6 \end{aligned}$	$\begin{gathered} 8 \\ 5 \end{gathered}$	$\begin{gathered} R \\ 4 \end{gathered}$	$\begin{gathered} R \\ 3 \end{gathered}$	$\begin{aligned} & R \\ & 2 \end{aligned}$	R 1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
.		
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: - Divide ratio less than 6 is prohibited.

Table. 3 TEST PURPOSE BIT SETTING

T	T	LD/fout pin state
L	L	Outputs frif.
H	L	Outputs fraf.
L	H	Outputs fipif.
H	H	Outputs $\mathrm{p}_{\mathrm{paF}}$.

Table. 4 BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	$\stackrel{N}{n}$	N 10	N 9	N 8	N 7	N 6	N 5	$\stackrel{N}{N}$	N 3	N 2	N
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
.
2047	1	1	1	1	1	1	1	1	1	1	1

Note:॰ Divide ratio less than 5 is prohibited.

Table. 5 BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (N)	$\stackrel{4}{4}$	A 6	4 5	4 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
	.			.			
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

Table. 6 PRESCALER DATA SETTING

		SW = "H"	SW = "L"
Prescaler Pivide Datio	IF-PLL	$16 / 17$	$32 / 33$
	RF-PLL	$64 / 65$	$128 / 129$

Table. 7 PHASE COMPARATOR PHASE SWITCHING DATA SETTING

	$\mathrm{FC}=\mathrm{H}$	$F C=L$
$\mathrm{fr}>\mathrm{fp}$	H	L
$f \mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO Polarity	(1)	(2)

Note: $\cdot \mathrm{Z}=$ High-impedance

- Depending upon the VCO and LPF polarity. FC bit should be set.

Table. 8 LD/fout OUTPUT SELECT DATA SETTING

LDS	LD/fout output signal
H	
L	LD signal

SERIAL DATA INPUT TIMING

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- Pulses on Dorfm signals are output to prevent dead zone.
- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is tw or less and continues to be so for three cycles or more.
- twu and t_{m} depend on OSCin input frequency as follows.
$t_{w u} \geq 8$ fosc: i.e. $\mathrm{t}_{\mathrm{wu}} \geq 625 \mathrm{~ns}$ when foscin $=12.8 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{wL}} \leq 16 / \mathrm{fosc}$: i.e. $\mathrm{twl}^{\leq} \leq 1250 \mathrm{~ns}$ when $\mathrm{foscin}=12.8 \mathrm{MHz}$

POWER SAVING MODE (INTERMITTENT MODE CONTROL CIRCUIT)

Setting a PSIf(A) pin to Low, IF-PLL(RF-PLL) enters into power saving mode resultatly current sonsumption can be limited to 100μ A (typ.). Setting PS pin to High, power saving mode is released so that the device works normally.
In addition, the intermittent operation control circuit is included which helps smooth start up from stand by mode. In general, the power consumption can be saved by the intermittent operation that powering down or waking up the synthesizer. Such case, it the PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (f_{r}) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the toop.
To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.
PS pin must be set "L" at Power-ON.
During the power saving mode, the corresponding section except for indispensable circuit for the power saving function stops working, then current consumption is reduced to $100 \mu \mathrm{~A}$ per one PLL section.
At that time, the Do and LD become the same state as when a loop is locking. That is, the Do becomes high impedance. A VCO control voltage is naturally kept at the locking voltage which defined by a LPF"s time constant. As a result of this, VCO's frequency is kept at the locking frequency.

PSir	$\mathrm{PS}_{\text {ar }}$	IF-PLL counters	RF-PLL counters	OSC input buffer
L	L	OFF	OFF	OFF
H	L	ON	OFF	ON
L	H	OFF	ON	ON
H	H	ON	ON	ON

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol.	Value			UnIt	Note
		Min	Typ	Max		
Power Supply Voltage	Vcc	2.7	3.0	3.6	V	$V C_{\text {if }}=V_{C c_{\text {rF }}}$
Input Voltage	Vi	GND	-	Vcc	V	
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unlt	
		Min		Typ	Max			
Power Supply Current *1			$\mathrm{ICCGF}_{\text {IF }}$	$\begin{aligned} & \text { fin }_{1 \mathrm{~F}}=300 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz} \end{aligned}$	-	3.5	-	mA
		$\mathrm{ICCam}_{\text {f }}$	$\begin{aligned} & \operatorname{fin}_{\mathrm{RF}}=1100 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz}, \end{aligned}$	-	6.5	-		
Power Saving Current ${ }^{*} 2$		lpsif	Vccif current at PS ${ }_{\text {IF }}=\underline{ }{ }^{\text {L }}$ "	-	100	-	$\mu \mathrm{A}$	
		IpS ${ }_{\text {gF }}$		-	100	-		
Operating Frequency	$\mathrm{fin}_{\text {, }}$	fin_{17}	IF-PLL	50	-	300	MHz	
	$\mathrm{fin}_{\text {RF }}$	$\mathrm{fin}_{\text {fF }}$	RF-PLL	100	-	1100		
	OSCin	fosc	min. $500 \mathrm{mVp}-\mathrm{p}$	-	12.8	23		
Input Sensitivity	$\mathrm{fin}_{1 \mathrm{f}}$	Pfinı	IF-PLL, 50Ω termination (Refer to the test circuit.)	-10	-	+2	dBm	
	$\mathrm{fin}_{\text {RF }}$	Pfinas	RF-PLL, 50Ω termination (Refer to the test circuit.)	-10	-	+2	dBm	
	OSCin	Vosc		500	-	-	$m \vee p-p$	

*1: Conditions ; $V C_{\text {iffre }}=3 V, T a=25^{\circ} \mathrm{C}$, in locking state.
*2. Conditions; V cGifraf $=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in power saving state.

ELECTRICAL CHARACTERISTICS

Parameter	Parameter	Symbol	Condition	Value			Unit
				Min	Typ	Max	
Input Voltage	Data, Clock LE, PS	$V_{\text {IH }}$		$V \operatorname{cox} 0.7+0.4$	-	-	V
		V_{12}		-	-	Vocx0.3-0.4	
Input Current	Data, Clock LE, PS	$1 / \mathrm{m}$		-	-	+1.0	$\mu \mathrm{A}$
		$1 /$		-1.0	-	-	
	OSCin	OSCin		-100	-	+100	
Output Vohage	LD	Von	$V \mathrm{Cc}=3.0 \mathrm{~V}, \mathrm{t}_{\text {or }}=-1.0 \mathrm{~mA}$	2.2	-	-	V
		Va	$\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{l}_{\mathrm{a}}=1.0 \mathrm{~mA}$	-	-	0.4	
High impedance cutoff current	Do	loff		-	-	0.3	$\mu \mathrm{A}$
Output Current	LD	IOH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-1.0	-	-	mA
		los	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	1.0	
	Do	loom	$\begin{aligned} & \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DOH}}=2.0 \mathrm{~V}, \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-12	-	-3.5	mA
		1001	$\begin{aligned} & \mathrm{VCC}=3.0 \mathrm{~V} . \mathrm{V}_{\text {ool }}=1.0 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	6	-	18	

TEST CIRCUIT (PRESCALER INPUT / PROGRAMMABLE REFERENCE DIVIDER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

Note: Clock, Data, LE : involves a schmitt circuit.
(When inputs are open, pull up/down resistor is necessary to prevent self-oscillation.)

PACKAGE DIMENSION

ミMB15F03

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

On-chip 2.0GHz \& 500MHz PRESCALER

The Fujitsu MB15F03 is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 2.0 GHz and a 500 MHz prescalers. A $64 / 65$ or a $128 / 129$ for the 2.0 GHz prescaler, and a $16 / 17$ or a $32 / 33$ for 500 MHz prescaler can be selected that enables pulse swallow operation.
The latest BiCMOS process technology is used, resulting in a low supply current of 9.0 mA typ. at a supply voltage of 3.0 V .
Furthermore, a super charger circuit is included to provide a fast tuning as well as low noise performance. As a result of this, MB15F03 is ideally suitable for digital mobile communications, such as PHS (Personal Handy System), PCN (Personal Communication Network) and PCS (Personal Communication Service).

FEATURES

- High frequency operation RF synthesizer : 2.0 GHz max.
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V
- Very Low power supply current : Icc $=9.0 \mathrm{~mA}$ typ. (Vcc $=3 \mathrm{~V}$)
- Power saving function : $\mathrm{I}_{\mathrm{PS} 1}=\mathrm{I}_{\mathrm{PS} 2}=10 \mu \mathrm{~A}$ max. $(\mathrm{Vcc}=3 \mathrm{~V})$
- Serial input 14-bit programmable reference divider: $R=5$ to 16,383
- Serial input 18-bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 5 to 2,047
- On-chip high performance charge pump circuit and phase comparator, achieving high-speed lock-up and low phase noise
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 16-pin SSOP package (FPT-16P-M05)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Remark	Value	Unit
Power Supply Voltage	V_{CC}		-0.5 to 4.0	V
Input Voltage	V_{I}		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Voltage	V_{O}		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB15F03

BLOCK DIAGRAM

PIN DESCRIPTIONS

Prano.	Pin Namo	vo.	Descriptions
1	GND ${ }_{\text {pr }}$	-	Ground for RF-PLL section.
2	OSCin	1	The programmable reference divider input. TCXO should be connected with a coupling capacitor.
3	GND ${ }_{\text {if }}$	-	Ground for the If section.
4	fin_{*}	1	Prescaler input pin for the IF-PLL. The connection with VCO should be AC coupling.
5	Vccr	-	Power supply voltage input pin for the IF-PLL section. When power is OFF, latched data of IF-PLL is cancelled.
6	LDNout	\bigcirc	Lock detect signal output (LD) / phase comparator monitoring output (fout) The output signal is selected by a LDS bit in a serial data. LDS bit $=$ " H^{\prime}; outputs fout signal LDS bit = "L" ; outputs LD signal
7	$\mathrm{PS}_{\text {IF }}$	1	Power saving mode control for the IF-PLL section. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS ${ }_{\text {IF }}=$ " H " ; Normal mode PS ${ }_{\text {If }}=$ " "L" ; Power saving mode
8	Doif	0	Charge pump output for the IF-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
9	Dors	\bigcirc	Charge pump output for the RF-PLL section. Phase characteristics of the phase detector can be reversed by FC-bit.
10	$\mathrm{PS}_{\text {sF }}$	1	Power saving mode control for the RF-PLL section. This pin must be set at "L" at Power-ON. (Open is prohibited.) $\mathrm{PS}_{\mathrm{af}}=$ " $\mathrm{H}^{\text {" }}$; Normal mode $P S_{\text {Rf }}=$ "L" ; Power saving mode
11	Xfings	1	Prescaier complimentary input for the RF-PLL section. This pin should be grounded via a capacitor.
12	VcCar	-	Power supply voltage input pin for the RF-PLL section, the shift register and the oscillator input buffer. When power is OFF, latched data of RF-PLL is cancelled.
13	finar	1	Prescaler input pin for the RF-PLL. The connection with VCO should be AC coupling.
14	LE	1	Load enable signal input (with the schmitt trigger circuit.) When LE is " H ", data in the shift register is transferred to the corresponding latch according to the control bit in a serial data.
15	Data	1	Serial data input (with the schmitt trigger circuit.) A data is transferred to the corresponding latch (IF-ref counter, IF-Prog. counter, RF-ref. counter, RF-prog. counter) according to the control bit in a serial data.
16	Clock	1	Clock input for the 23 -bit shift register (with the schmitt trigger circuit.) One bit data is shifted into the shift register on a riging edge of the clock.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f v c o=\{(P \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
P: Preset divide ratio of dual modulus prescaler (16 or 32 for IF-PLL, 64 or 128 for RF-PLL)
N: Preset divide ratio of binary 11-bit programmable counter (5 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (5 to 16,383)

SERIAL DATA INPUT

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL sections, programmable reference dividers of IF/RF PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On rising edge of clock, one bit of serial data is transferred into the shift register. When load enable signal is high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Table1. CONTROL BIT

Control bils		Destination of serial data
CNI	CN2	
L	L	The programmable reference counter for the IF-PLL.
H	L	The programmable reference counter for the RF-PLL.
L	H	The programmable counter and the swallow counter for the IF-PLL
H	H	The programmable counter and the swallow counter for the RF-PLL

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

CNT1, 2 : Control bit
[Table. 1]
R1 to R14 : Divide ratio setting bits for the programmable reference counter (5 to 16,383)
T1,2 : Test purpose bit
[Table. 2]
[Table. 3]

FUNCTIONAL DESCRIPTIONS

Programmable Counter

CN1, 2 : Control bit
N1 to N11 : Divide ratio setting bits for the programmable counter (5 to 2047)
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
SW : Divide ratio setting bit for the prescaler
($16 / 17$ or $32 / 33$ for the IF-PLL, $64 / 65$ or $128 / 129$ for the RF-PLL)
FC : Phase control bit for the phase detector
LDS : LDfout signal select bit
[Table. 1]
[Table. 4]
[Table. 5]
[Table. 6]
[Table. 7]
[Table. 8]

Table2. BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratlo: (R)	H\%	F\%	R	R 11	R 10	R	$\begin{aligned} & R \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & 7 \end{aligned}$	$\begin{aligned} & R \\ & 6 \end{aligned}$	$\begin{gathered} R \\ 5 \end{gathered}$	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & R \\ & 2 \end{aligned}$	R
5	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
.	
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: - Divide ratio less than 5 is prohibited.

Table. 3 TEST PURPOSE BIT SETTING

\$	\%	LDifout pin state
L	L	Outputs frif.
H	L	Outputs fraf.
L	H	Outputs fip.
H	H	Outputs $\mathrm{p}_{\mathrm{faf}}$.

Table. 4 BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Fatio $\mathrm{N})$	N wn	N\%	N $\%$	N 8	N	N 6	N 5	N 4	N 3	N.	N 1
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
.
2047	1	1	1	1	1	1	1	1	1	1	1

Note:• Divide ratio less than 5 is prohibited.

Table. 5 BINARY 7-BIT SWALLOW COUNTER DATA SETTING

DVIde Ratlo (N)	\#	4 6.	4	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
.
127	1	1	1	1	1	1	1

Note:- Divide ratio (A) range $=0$ to 127

Table. 6 PRESCALER DATA SETTING

		$\mathrm{SW}=\mathrm{SH}^{\prime \prime}$	SW = "L"
Prescaler Divide ratio	IF-PLL	16/17	32/33
	RF-PLL	64/65	128/129

Table. 7 PHASE COMPARATOR PHASE SWITCHING DATA SETTING

	$\mathrm{HC}=\mathrm{H}$	$\mathrm{FC}=\mathrm{L}$
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$f r<f p$	L	H
VCO Polarity	(1)	(2)

Note: - Z = High-impedance

- Depending upon the VCO and LPF polarity, FC bit should be set.

Table. 8 LD/fout OUTPUT SELECT DATA SETTING

LDS	idimut outputsignal
H	fout (ftifme, $\mathrm{f}_{\text {Prfraf }}$) signals
L	LD signal

SERIAL DATA INPUT TIMING

MB15F03

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- Pulses on Doifrif signals are output to prevent dead zone.
- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is twl or less and continues to be so for three cycles or more.
- Iwu and im depend on OSCin input frequency as follows.
$t_{w u} \geq 8 / f o s c:$ i.e. $t_{w u} \geq 625 \mathrm{~ns}$ when foscin $=12.8 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{wL}} \leq 16 / \mathrm{fosc}$: i.e. $\mathrm{t}_{\mathrm{wL}} \leq 1250 \mathrm{~ns}$ when foscin $=12.8 \mathrm{MHz}$

POWER SAVING MODE (INTERMITTENT MODE CONTROL CIRCUIT)

Setting a PS Ifran pin to Low, IF-PLL(RF-PLL) enters into power saving mode resultatly current sonsumption can be limited to $10 \mu \mathrm{~A}$ (typ.). Setting PS pin to High, power saving mode is released so that the device works normally. In addition, the intermittent operation control circuit is included which helps smooth start up from stand by mode. In general, the power consumption can be saved by the intermittent operation that powering down or waking up the synthesizer. Such case, if the PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (f_{r}) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop.
To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.
PS pin must be set "L" at Power-ON.
During the power saving mode, the corresponding section except for indispensable circuit for the power saving function stops working, then current consumption is reduced to $10 \mu \mathrm{~A}$ per one PLL section.
At that time, the Do and LD become the same state as when a loop is locking. That is, the Do becomes high impedance. A VCO control voltage is naturally kept at the locking voltage which defined by a LPF"s time constant. As a result of this, VCO's frequency is kept at the locking frequency.

Ps:	PS\%	IFPPIMcounters	RFPFU counters	Oscimput bufirs
L	L	OFF	OFF	OFF
H	L	ON	OFF	ON
L	H	OFF	ON	ON
H	H	ON	ON	ON

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	Vcc	2.7	3.0	3.6	V	$V c_{\text {IF }}=V_{c c}{ }_{\text {RF }}$
Input Voltage	Vi	GND	-	Vcc	V	
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always tum the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit:	
		Min		Typ	Max			
Power Supply Current *1			$\mathrm{ICC}_{\text {IF }}$	$\begin{aligned} & \mathrm{fin}_{\text {IF }}=500 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz} \end{aligned}$	-	3.0	-	mA
		${ }^{\prime} C_{\text {chF }}$	$\begin{aligned} & \mathrm{fin}_{\mathrm{RF}}=2000 \mathrm{MHz}, \\ & \mathrm{fosc}=12 \mathrm{MHz} \end{aligned}$	-	6.0	-		
Power Saving Current *2		$\mathrm{lps}_{\text {IF }}$	Vccill ${ }_{\text {current }}$ at $P S_{\text {IF }}={ }^{\prime \prime} L^{\prime \prime}$	-	-	10	$\mu \mathrm{A}$	
		$\mathrm{lps}_{\text {RF }}$	VCC ${ }_{\text {RF }}$ current at $\mathrm{PS}_{\text {IF/RF }}={ }^{\prime \prime} L^{\prime \prime}$	-	-	10		
Operating Frequency	$\mathrm{fin}_{1 \mathrm{~F}}$	$\mathrm{fin}_{\mathrm{l}} \mathrm{F}$	IF-PLL	50	-	500	MHz	
	$\mathrm{fin}_{\text {RF }}$	$\mathrm{fin}_{\text {RF }}$	RF-PLL	100	-	2000		
	OSCin	fosc	$\mathrm{min} .500 \mathrm{mVp}-\mathrm{p}$	-	12.8	23		
Input Sensitivity	$\mathrm{fin}_{1 F}$	Pfin ${ }_{\text {IF }}$	IF-PLL, 50Ω termination	-10	-	+2	dBm	
	$\mathrm{fin}_{\mathrm{RF}}$	$\mathrm{Pfin}_{\text {RF }}$	RF-PLL, 50Ω termination	-10	-	+2	dBm	
	OSCin	$\mathrm{V}_{\text {OSC }}$		500	-	Vcc	mVp-p	

*1: Conditions ; Vcc|F/RF $=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in locking state.
${ }^{*}$ 2: Conditions ; $\mathrm{VCC} \mathrm{I}_{\mathrm{IF} / \mathrm{RF}}=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in power saving state.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Yalue			Unlt	
		Min.		Typ.	Max			
Input Voltage	Data, Clock. LE		$\mathrm{V}_{\text {IH }}$	Schmitt trigger input	$\mathrm{Vccx} 0.7+0.4$	-	-	V
		V_{15}	Schmitt trigger input	-	-	Vccx $0.3-0.4$		
	$\mathrm{PS}_{\text {If }}, \mathrm{PS}_{\text {af }}$	$V_{\text {i }}$		Vcex0. 7	-	-	V	
		$V_{1 L}$		-	-	Vccx0. 3		
Input Current	Data, Clock, LE, PS ${ }_{\text {IF }}$, $P^{\text {PF }}$	l_{H}		-1.0	-	+1.0	$\mu \mathrm{A}$	
		11.		-1.0	-	+1.0		
	OSCin	114		0	-	+100	μA	
				-100	-	0		
Output Voltage	LD/fout	V OH		Vec-0.4	-	-	V	
		VoL		-	-	0.4		
	$\mathrm{DO}_{\text {If, }}$ Dorf	$V_{\text {DOH }}$		Vcc-0.4	-	-	V	
		$V_{\text {ool }}$		-	-	0.4		
High impedance cutoff current	Doif, Dorf	loff		-	-	1.1	$\mu \mathrm{A}$	
Output Current	LDfout	lor	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	-1.0	mA	
		lat	$\mathrm{Vcc}=3.0 \mathrm{~V}$	1.0	-	-		
	Doif, Dorf	look	$V C C=3.0 \mathrm{~V}, \mathrm{~V}_{\text {DOH }}=2.0 \mathrm{~V}$	-	-6.0*1	-	mA	
		loa	$\mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {DOL }}=1.0 \mathrm{~V}$	-	10.0*1	-		

-1: Condition ; $\mathrm{Ta}=25^{\circ} \mathrm{C}$

TEST CIRCUIT (PRESCALER INPUT / PROGRAMMABLE REFERENCE DIVIDER INPUT SENSITIVITY TEST)

PACKAGE DIMENSION

MB1503

LOW-POWER PLL FREQUENCY SYNTHESIZER WITH POWER SAVE FUNCTION (1.1GHZ)

The Fujitsu MB1503 is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function. A stand-by mode is provided to limit power consumption during intermittent operation.
The MB1503 is configured of a 1.1 GHz dual-modulus prescaler with $128 / 129$ divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18-bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter), analog switches, and an intermittent operation control circuit that selects the operating or stand-by mode depending on the power-save control input state (PS). The MB1503 operates from a single +5 V supply. Fujitsu's advanced technology achieves an Icc of 8 mA , typical. The stand-by mode current consumption is just $100 \mu \mathrm{~A}$.

Features

- High operating frequency
$: f_{\mathrm{IN}}=1.1 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function
- Low supply current
: High-speed dual-modulus prescaler with 128/129 divide ratio
. Icc $=8 \mathrm{~mA}$ typ. at 5 V
- Power-saving stand-by mode : $100 \mu \mathrm{~A}$
- Serial input, 18-bit programmable divider consisting of:
- Binary 7-bit swallow counter : 0 to 127
- Binary 11-bit programmable counter: 16 to 2,047
- Serial input 15 -bit programmable reference divider consisting of:
- Binary 15-bit programmable reference counter: 8 to 16,383
- 1-bit switch counter sets prescaler divide ratio
- On-chip analog switch for fast lock-up
- On-chip charge pump
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 16 -pin dual inline package (Suffix : -P)

Plastic 16-pin small outline package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Ratings	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
	V_{P}	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 10.0$	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	lout	± 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^22][^23](TOP VIEW)

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin Name	vo	Description
1	$\mathrm{OSC}_{\text {IN }}$	1	Programmable reference divider input Oscillator input An external crystal is connected to this pin.
2	$\mathrm{OSC}_{\text {out }}$	\bigcirc	Oscillator output An external crystal is connected to this pin.
3	V_{p}	-	Power supply input for charge pump and analog switch
4	V_{cc}	-	Power supply
5	D_{0}	\bigcirc	Charge pump output The phase of the charge pump is reversed depending on the FC input.
6	GND	-	Ground
7	LD	\bigcirc	Phase comparator output The output level is high when LD is locked. The output level is low when LD is unlocked.
8	${ }^{\text {fin }}$	1	Prescaler input Connection with an external VCO should be done by AC coupling.
9	Clock	1	Clock input for 19 -bit and 16 -bit shift registers Data is shifted into the shift register on the rising edge of the clock. The Schmitt trigger is contained.
10	Data	1	Serial data input using binary code The last bit of the data is a control bit. When the control bit is high, data is transmitted to the 15 -bit latch. When it is low, data is transmitted to the 18 -bit latch. The Schmitt trigger input is involved.
11	LE	1	Load enable signal input When LE is high, the data of the shift register are transferred to a latch, depending on the control bit in the serial data. At the same time, an internal analog switch turns on and the output of the internal charge pump is connected to the BiSW pin. The Schmitt trigger input is involved.
12	FC	1	Phase select input of phase comparator (with internal pull-up resistor) When FC is low, the characteristics of the charge pump and phase comparator are reversed. The FC input signal is also used to control the fout pin (test pin) of f_{R} or f_{p}.
13	BiSW	\bigcirc	Analog switch output BiSW is usually in the high-impedance state. When the switch is turned on (LE is high), the state of the internal charge pump is output.
14	f_{p}	0	Monitor pin of programmable counter output
15	f_{R}	0	Monitor pin of reference counter output
16	PS	1	Power save signal input Set PS low while the system is powered (never use pin 16 as it is opened) $\text { PS }=\text { High : Operation mode }$ PS = Low : Stand-by mode

FUNCTIONAL DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{\text {VCO }}=[(M \times N)+A] \times f_{O S C} \div R \quad(A<N)$
f_{VCO} : Output frequency of external voitage controlled oscillator (VCO)
N : Preset divide ratio of binary 11 -bit programmable counter (16 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
$f_{\text {Osc }}$: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (8 to 16,383)
M : Preset divide ratio of modules prescaler (128)

Serial data input

Serial data is input using the Data, Clock, and LE pins. Serial data controls the 15 -bit programmable reference divider and 18 -bit programmable divider separately.
Binary serial data is input to the Data pin.
One bit of data is shifted into the internal shift registers on the rising edge of the clock. When the load enable pin is high or open, stored data is latched depending on the control data as follows:

Control data	Destination of serial data
H	15 -bit latch
L	18 -bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 15 -bit latch and a 14-bit reference counter. The serial 16 -bit data format is shown below:

- 14-bit programmable reference counter divide ratio

Divide ratio R	$\begin{gathered} \mathrm{S} \\ 14 \end{gathered}$	$\begin{gathered} S \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ 12 \end{gathered}$	$\begin{gathered} S \\ 11 \end{gathered}$	S 10	S	S	S	S	5	S	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=8$ to 16,383)
Notes: 1. Divide ratios less than 8 are prohibited
2. SW: This bit selects the divide ratio of the prescaler SW Low: 128 or 129 (SW must be always be low)
3. S1 to S14: These bits select the divide ratio of the programmable reference counter (8 to 16,383)
4. C: Control bit: Set high
5. input MSB data first
(b) Programmable divider divide ratio

The programmable divider consists of a 19 -bit shift register, 18-bit latch, 7 -bit swallow counter, and 11-bit programmable counter. The serial 19-bit data format is shown below:

- 7-bit swallow counter divide ratio

Divide ratio A	\mathbf{S}	$\mathbf{7}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{5}$	$\mathbf{4}$	3	2	1			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio \mathbf{N}	\mathbf{S} $\mathbf{1 8}$	\mathbf{s} 17	\mathbf{s} 16	\mathbf{s}							
$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$						
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=16$ to 2,047)

Notes: 1. Divide ratios less than 16 are prohibited for the 11 -bit programmable counter
2. S 1 to S : These bits select the divide ratio of the swallow counter (0 to 127)
3. S 8 to S 18 : These bits select the divide ratio of the programmable counter (16 to 2,047)
4. C: Control bit: (Set low)
5. Input MSB data first

Serial data input timing

- $t_{1}(\geq 1 \mu s)$: Data setup time
$t_{2}(\geq 1 \mu \mathrm{~s})$: Data hold time
$t_{3}(\geq 1 \mu s):$ Clock pulse width $t_{4}(\geq 1 \mu \mathrm{~s})$: LE setup time to the rising edge of last clock $t_{5}(\geq 1 \mu \mathrm{~s})$: LE pulse width

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Intermittent operation

Intermittent operation limits power consumption by shutting down or starting the internal circuits according to their necessity. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{R}) and the comparison frequency (f_{p}) and frequency lock is lost.
To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting the phase of both frequencies to limit the error signal output. This is done by the PS control circuit. If PS is set high, the circuit enters the operating mode. If PS is set low, operation stops and the device enters the stand-by mode. Each mode is explained below:

- Operating mode ($\mathrm{PS}=$ =High Level)

All circuits are operating, and PLL operation is normal.

- Stand-by mode ($\mathrm{PS}=$ Low level)

Circuits that do not affect operation are powered down to limit current consumption.
The current in the power save state is typically $100 \mu \mathrm{~A}$.
At this time, the levels of D_{O} and LD are the same as when the PLL is locked.
Since D_{O} is placed in the high-impedance state and the input voltage of the voltage controlled oscillator (VCO) is set to the voltage in the operating mode (when locked) by the time constant of the low-pass filter, the frequency output from the VCO (fvco) is kept at the locking frequency.

The operating and stand-by modes alternate repeatedly. This intermittent operation limits the error signal by forcibly correcting the phase of the reference and comparison frequencies to limit power consumption.
The device must be set in the stand-by mode ($\mathrm{PS}=$ low) when it is powered up.

Relationship between the FC input and phase characteristics

The FC pin changes the phase characteristics of the phase comparator. The internal charge pump output level (D_{O}) is reversed, depending on the FC pin input level. The relationship between the FC input level and D_{O} is shown below:

	FC = High or open	FC = Low
$f_{R}>f_{p}$	H	L
$f_{R}<f_{p}$	L	H
$f_{R}=f_{p}$	$Z(* 1)$	$Z(* 1)$

[^24]When designing a synthesizer, the FC pin setting depends on the VCO characteristics.

Phase comparator output waveform (FC = High)

Notes: 1. Phase difference detection range: -2π to $+2 \pi$
2. Spike appearance depends on the charge pump characteristics. Also, the spike is output to diminish dead band.
3. When $f_{R}>f_{P}$ or $f_{R}<f_{R}$ a spike might not appear depending on the charge pump characteristics.
4. LD is low when the phase difference is tw or more. LD is high when the phase difference is tw or less for three or more cycles (when foscin $=12.8 \mathrm{MHz}, \mathrm{tw}=625$ to $1,250 \mathrm{~ns}$).

Analog switch

The LE signal turns the analog switch on or off. When the analog switch is turned on, the charge pump output (D_{O}) is output through the BiSW pin. When it is turned off, the BiSW pin is in the high-impedance state.

When LE = high (when the divide ratio of the internal divider is changed): Analog switch = on
When LE = low (normal operating mode): Analog switch = off
The LPF time constant can be decreased by inserting an analog switch between LPF1 and LPF2. This decreases the lock-up time when the PLL channel is changed.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	V_{Cc}	4.5	5.0	5.5	V
	V_{P}	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 8.0$			v
Input Voltage	V_{1}	GND	-	$V_{\text {CC }}$	V
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device a socket.
- Protect leads with conductive sheet, as treatment (transport) a board mounted the device.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Supply Current			Icc	-	8.0	12.0	mA	With $\mathrm{f}_{\mathrm{iN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}_{\mathrm{N}}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. Inputs are V_{cc} and outputs are open.
Stand-by Current		IPS	-	100	-	$\mu \mathrm{A}$	With $\mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}^{\prime}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$. The PS pin is grounded, remaining inputs are at V_{Cc}, and outputs are open.	
Operating Frequency	f_{N}	$\mathrm{fin}^{\text {IN }}$	10	-	1100	MHz	AC coupling. The minimum operating frequency is measured with a 100 pF capacitor connected.	
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	12	20	MHz	-	
Input Sensitivity	${ }^{\text {fin }}$	P_{ff}	-10	-	6	dBm	-	
	OSC $_{\text {N }}$	vosc	0.5	-	-	Vp-p	-	
High-level Input Voltage	Except $f_{i N}$ and OSC $_{\text {IN }}$	V_{H}	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	-	v	-	
Low-level Input Voltage		V_{IL}	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$	v	-	
High-level Input Current	Data, Clock,	I_{H}	-	1.0	-	$\mu \mathrm{A}$	-	
Low-level Input Current		ILL	-	-1.0	-	$\mu \mathrm{A}$	-	
	FC	IfC	-	-60	-	$\mu \mathrm{A}$	-	
Input Current	OSC $_{\text {IN }}$	losc	-	± 50	-	$\mu \mathrm{A}$	-	
High-level Output Voltage	Except D_{0} and OSCout	V_{OH}	4.4	-	-	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	
Low-level Output Voltage		V OL	-	-	0.4	v	-	
High-impedance Cut off Current	Do	Ioff	-	-	1.1	$\mu \mathrm{A}$	$\begin{gathered} \mathrm{V}_{\mathrm{DO}}=\mathrm{GND} \text { to } 8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 8 \mathrm{~V} \end{gathered}$	
Output Current	Except D_{0} and OSCOUT	IOH	-1.0	-	-	mA	-	
		lol	1.0	-	-	mA	-	
Analog Switch ON Resistance		Ron	-	25	-	Ω	-	

TEST CIRCUIT
 (FOR MEASURING PRESCALER INPUT SENSITIVITY)

APPLICATION EXAMPLE

$V_{\mathrm{F}} \mathrm{V}_{\mathrm{PX}}$: Maximum 8 V
C_{1}, C_{2} : Depends on the crystal parameters

PACKAGE DIMENSIONS

MB1504/MB1504H/MB1504L

ASSP SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 520MHz PRESCALER

The Fujitsu MB1504/MB1504H/MB1504L, utilizing BI-CMOS technology, is a single chip serial input PLL frequency synthesizer with pulse-swallow function.
The MB1504 series contains a 520 MHz two modulus prescaler that can select either $32 / 33$ or 64/65 divide ratio; control signal generator; 16 -bit shift register; 15-bit latch; programmable reference divider (binary 14-bit programmable reference counter); 1 -bit switch counter; phase comparator with phase inverse function; charge pump; crystal oscillator; 19-bit shift register; 18 -bit latch; and a programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter).
The MB1504 operates from a low supply voltage (3 V typ) and consumes low power (30 mW at 520 MHz).

MB1504 Product Line

	Vp Voitage	Voop Voltage	Lock up Time	DoOutput Width	High-level Output Current	Low-level Output Current
MB1504	$8 \mathrm{~V} \max$	8.5 V max	Middle speed	Middle	Middle	Middle
MB1504H	$10 \mathrm{~V} \max$	$10.0 \mathrm{~V} \max$	High speed	Low	High	Low
MB1504L	$8 \mathrm{~V} \max$	8.5 V max	Low speed	High	Low	High

FEATURES

- High operating frequency: $f_{\text {IN MAX }}=520 \mathrm{MHz}\left(\mathrm{V}_{\mathrm{IN} \text { MIN }}=0.20 \mathrm{~V}_{\text {P.p }}\right)$
- On-chip prescaler
- Low power supply voltage: 2.7 V to 5.5 V (3.0 V typ)
- Low power supply consumption: $30 \mathrm{~mW}(3.0 \mathrm{~V}, 520 \mathrm{MHz}$ operation)
- Serial input 18 -bit programmable divider consisting of:
-Binary 7 -bit swallow counter (Divide ratio: 0 to 127)
-Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Serial input 15 -bit programmable reference divider consisting of: -Binary 14-bit programmable reference counter (Divide ratio: 8 to 16383) -1 -bit switch counter (SW) Sets divide ratio of prescaler
- 2 types of phase detector output
-On-chip charge pump (Bipolar type)
-Output for external charge pump
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric hields. How ever, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Condition	Value	Unit
Power Supply Voltage	$V_{\text {cc }}$	-	-0.5 to +7.0	V
	$V_{\text {PH }}$	MB1504H	\checkmark ce to 12.0	V
	$V_{P} V_{P L}$	MB1504/1504L	$V_{C C}$ to 10.0	
Output Voltage	Vout	-	-0.5 to $V_{C C}+0.5$	V
Open-drain Output	$\mathrm{V}_{\text {OOPH }}$	MB1504H	-0.5 to 11.0	V
	$\mathrm{V}_{00 \mathrm{~B}} \mathrm{~V}_{00 \mathrm{PL}}$	MB1504/1504L	-0.5 to 9.0	
Output Current	lout	-	+10	mA
Storage Temperature	TSTG	-	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB1504
MB1504H
MB1504L
PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Descriptions
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OSC $_{\text {IN }}$ OSC	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input Oscillator output A crystal is placed between OSC IN and OSC OUt .
3	V_{p}	-	Power supply input for charge pump
4	V_{cc}	-	Power supply voltage input
5	Do	0	Charge pump output The phase characteristics can be inversed depending upon the FC input.
6	GND	-	Ground
7	LD	0	Phase comparator output This pin outputs high when the phase is locked. While the phase difference of f_{r} and f_{p} exists, the output level goes low.
8	fiN^{\prime}	1	Prescaler input The connection with an external VCO should be an AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register Each rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Serial data of binary code input The last bit of the data is a control bit. The last data bit specifies which latch is activated. When the last bit is high level and LE is high-level, data is transferred to the 15-bit latch. When the last bit is low level and LE is high level, data is transferred to the 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor) When LE is high level (or open), data stored in the shift register is transferred to the latch depending on the control data.
12	FC	0	Phase selecting input of phase comparator (with internal pulf up resistor) When FC is low level, the charge pump and phase detector characteristics can be inversed.
13	f_{r}	0	Monitor pin of phase comparator input It is the same as the programmable reference divider output.
14	f_{p}	0	Monitor pin of phase comparator input It is the same as the programmable divider output.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \emptyset P \\ & \emptyset R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump The phase characteristics can be inversed depending on the FC input. The $\varnothing \mathrm{P}$ pin is an N -channel open-drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is input using the Data pin, Clock pin and LE pin. The 15-bit programmable reference divider and 18-bit programmable divider are controlled, respectively.

On rising edge of the clock, one bit of the data shifts into the internal shift registers.
When load enable (LE) is high level (or open), data stored in the shift registers is transferred to the 15-bit latch or 18-bit latch depending upon the control bit level.

Control data " H ": Data is transferred into the 15-bit latch.
Control data " L " : Data is transferred into the 18-bit latch.
PROGRAMMABLE REFERENCE DIVIDER

The programmable reference divider consists of a 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

SW: Divide ratio of prescaler setting bit
$S W=" H H^{n}: 32$
SW="L": 64
S_{1} to S_{14} : Divide ratio of programmable reference counter setting bits (8 to 16383)
C : Control bit (control bit is set to high)

FUNCTIONAL DESCRIPTIONS

PROGRAMMABLE DIVIDER

The programmable divider consists of a 19-bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19-bit data format is shown below.
(O) 7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide ratio A	7	S	S	S	S	S	S
6	5	4	3	2	1		
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
63	0	1	1	1	1	1	1

Divide ratio A: 0 to 63
(O) 11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	S 8
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

Divide ratio less than 16 is prohibited
Divide ratio N : 16 to 2047
S_{8} to S_{18} : Divide ratio of programmable counter setting bits (16 to 2047)
S_{1} to S_{7} : Divide ratio of swallow counter setting bits (0 to 127)
C: Control bit (control bit is set to low)
Data is input from the MSB.

On the rising edge of the clock, one bit of the data shifts into the shift registers.
Data in () is used for setting the divide ratio of the programmable reference divider.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS

The FC pin (pin 12) is provided to inverse the phase comparator characteristics. The characteristics of the internal charge pump output (D_{O}), and phase detector outputs (ØR, ØP) can be inversed depending upon the FC input data. Outputs are shown below.

	$F C=H$ (or open)			$F C=L$		
	D_{0}	$\varnothing R$	$\varnothing P$	D_{0}	$\varnothing R$	$\varnothing P$
$f_{r}>f_{p}$	H	L	L	L	H	Z
$f_{r}<f_{p}$	L	H	Z	H	L	L
$f_{r}=f_{p}$	Z	L	Z	Z	L	Z

Note: $\quad Z=($ High impedance $)$
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1) , FC should be set high or open circuit; When VCO characteristics are like (2), FC should be set Low.

MB1504
MB1504H
MB1504L

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value			Unit
			Min	Typ	Max	
Power Supply Voltage	$V_{C C}$	-	2.7	3.0	5.5	V
	$\mathrm{V}_{\text {PH }}$	MB1504H	V_{Cc}	-	10.0	v
	$V_{\text {P }}, V_{P L}$	$\begin{aligned} & \text { MB1504 } \\ & \text { MB1504L } \end{aligned}$	V_{cc}	-	8.5	
Open-drain Output	V OOPH	MB1504H	$V_{C C}$	-	10.0	V
	$V_{\text {OOR }} V_{\text {OOPL }}$	$\begin{aligned} & \hline \text { MB1504 } \\ & \text { MB1504L } \end{aligned}$	V_{CC}	-	8.5	
Input Voltage	$\mathrm{V}_{\text {IN }}$	-	GND	-	V_{CC}	V
Operating Temperature	T_{A}	-	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB1504
MB1504H
MB1504L

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Pin Name	Symbol	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	V_{cc}	Icc	*1		-	10	16	mA
Operating Frequency	$\mathrm{fin}^{\text {N }}$	f_{N}	*2		10	-	520	MHz
	OSC $_{\text {IN }}$	fosc			-	12	20	MHz
Input Sensitivity	f_{N}	$\mathrm{Pf}_{\mathbf{1} 1}{ }^{1}$	$\mathrm{V}_{C C}=2.7$ to 4.0 V		-10	-	6	dBm
		$\mathrm{Pt}_{\mathrm{IN}}{ }^{2}$	$\mathrm{V}_{C C}=4.0$ to 5.5 V		-4	-	6	dBm
	OSC $_{\text {IN }}$	V_{IN}	-		0.5	-	-	$\mathrm{V}_{\mathrm{P} . \mathrm{P}}$
High-level Input Voltage	$\begin{aligned} & \text { Except } \\ & f_{\mathbb{N}} \text { and } \\ & \mathrm{OSC}_{\mathbf{I N}} \end{aligned}$	V_{IH}	-		$0.7 \times V_{c c}$	-	-	V
Low-level Input Voltage		V_{IL}	-		-	-	0.3 xV cc	V
High-level Input Current	Data, Clock	$\mathrm{IIH}^{\text {H}}$		-	-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		ILI.		-	-	-1.0	-	$\mu \mathrm{A}$
Input Current	OSC $_{\text {IN }}$	IN		-	-	± 50	-	$\mu \mathrm{A}$
	LE, FC	LE		-	-	-60	-	$\mu \mathrm{A}$
High-level Output Voltage	Except D_{0} and OSCOUT	V_{OH}	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		2.4	-	-	V
Low-level Output Voltage		VoL			-	-	0.4	V
N -channel Open-drain Cutoff Current	ØР	loff	$\mathrm{V}_{C C} \leq \mathrm{V}_{\mathrm{P}} \leq 8 \mathrm{~V}$		-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	Except D_{O} and OSCOUT	IOH	-		-1.0	-	-	mA
Low-level Output Current		1 OL	-		1.0	-	-	mA
High-level Output Current	Do	ІОонн	MB1504H	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=12 V, T_{A}=+25^{\circ} C \end{aligned}$	-2.2	-4.5	-	mA
		IDOH	MB1504	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	-0.5	-2.0	-	mA
		IDOHL	MB1504L	$V_{P}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	-1.1	-2.2	mA
Low-level Output Current		IDOLH	MB1504H	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=12 V, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	2.2	6.0	-	mA
		IDOL	MB1504	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=6 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	1.5	6.0	-	mA
		IDOLL	MB1504L		4.5	12.0	-	mA
Leakage Current	$\mathrm{D}_{0}, \varnothing \mathrm{P}$	ldoz	$\begin{aligned} & V C C=3 V \\ & V_{P}=12 V, T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$		-		1.0	$\mu \mathrm{A}$

Note: $\quad{ }^{*} \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=520 \mathrm{MHz}$, fosc $=12 \mathrm{MHz}$ crystal.
Inputs are grounded except $f_{i N}$, and outputs are open.
*2 Input coupling capacitor 1000 pF is connected.

MB1504
MB1504H
MB1504L
TYPICAL CHARACTERISTICS CURVES
CHARGE PUMP CHARACTERISTICS

LOCK UP TIME MEASUREMENT

DO PIN OUTPUT CURRENT CURVES (TYPICAL)

Output Waveform

MB1504

MB1504H

MB1504L

PHASE CHARACTERISTICS ($\Delta \mathrm{f}$ vs. Do OUTPUT ENERGY)

Time $\Delta f(n s)$

MB1504
 MB1504H
 MB1504L

INPUTIMPEDANCE

TEST CIRCUIT
D_{O} Pin Output Current ($\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{LL}}$) Measurement

Phase Characteristics Measurement

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

(Case No.: DIP-16P-M04)

16-LEAD PLASTIC FLAT PACKAGE
(Case No.: FPT-16P-M06)

On-chip 2.0GHz/2.5GHz PRESCALER

The Fujitsu MB15E05/E06 are serial input Phase Locked Loop (PLL) frequency synthesizers with a 2.0 GHz (MB15E05) and a 2.5 GHz (MB15E06) prescalers. A 64/65 or a 128/129 can be selected for the prescaler that enables pulse swallow operation.
The latest BiCMOS process technology is used, resulting in a supply current of 6mA typ. (MB15E05) and 7mA typ. (MB15E06). They operate with a supply voltage of 3.0 V (typ.).
Furthermore, a super charger circuit is included to get a fast tuning as well as low noise performance. As a result of this, MB15E05/E06 are ideally suitable for digital mobile communications, such as PCN(Personal Communication Network), PCS(Personal Communication Service), Wireless LAN etc.

FEATURES

- High frequency operation MB15E05:2.0GHz max. MB15E06 : 2.5 GHz max.
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V
- Very Low power supply current: MB15E05: Icc $=6.0 \mathrm{~mA}$ typ. (Vcc $=3 \mathrm{~V}$)

MB15E06: $\mathrm{I}_{\mathrm{CC}}=7.0 \mathrm{~mA}$ typ. $(\mathrm{Vcc}=3 \mathrm{~V})$

- Power saving function: $I_{\mathrm{PS}}=10 \mu \mathrm{~A}$ max. (Vcc $=3 \mathrm{~V}$)
- Pulse swallow function: 64/65 or 128/129
- Serial input 14!-bit programmable reference divider: $\mathbf{R}=5$ to 16383
- Serial inpừ 18-bit programmable divider consisting of:
- Binary 7-bit sweillow counter: 0 to 127
- Binary 11-bit programmable counter: 5 to 2047
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 16-pin SSOP package (FPT-16P-M05)

ABSOLUTE MAXIMUM RATINGS (SEE NOTE)

\%. Ratings	Symbol	Value	Unit	Remark
Supply voltage	V_{Cc}	-0.5 to +4.0	V	
	V_{P}	$V_{\text {cc }}$ to +6.0	V	
Input voltage	V_{1}	-0.5 to $V_{C C}+0.5$	V	
Output voltage	Vo	-0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricter to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	140	Description
1	OSC $_{\text {IN }}$	1	Programmable reference divider input. Oscillator input. Connection for an crystal or a TCXO.
2	OSCout	0	Oscillator output. Connection for an external crystal.
3	$V_{\text {P }}$	-	Power supply input for the charge pump.
4	$V_{c c}$	-	Power supply input.
5	D。	0	Charge pump output. Phase of the charge pump can be reversed by FC input.
6	GND	-	Ground.
7	Xfin	1	Prescaler complementary input, and should be grounded via a capacitor.
8	fin	I	Prescaler input. Connection with an external VCO should be done with AC coupling.
9	Clock	1	Clock input for the 19 -bit shift register. Data is shifted into the shift register on the rising edge of the clock. (Open is prohibited.)
10	Data	1	Serial data input using binary code. The last bit of the data is a control bit. (Open is prohibited.) Control bit = "H" ; Data is transmitted to the programmable reference counter. Control bit = "L" ; Data is transmitted to the programmable counter.
11	LE	1	Load enable signal input (Open is prohibited.) When LE is high, the data in the shift register is transferred to a latch, according to the control bit in the serial data.
12	PS	1	Power saving control input. This pin should be set at "L" at Power-ON. (Open is prohibited.) PS = "H" ; Normal mode PS = "L" ; Power saving mode
13	ZC	1	Forced high-impedance control for the charge pump (with internal pull up resistor.) ZC = "H" ; Normal Do output. $Z C=$ "L" ; Do becomes high impedance.
14	LDfout	0	Lock detector output(LD)/Monitor pin of the phase comparator(fout). A LDS bit in a serial data switchs LDAfout pin's output. LDS = "H" ; outputs fout (fr/fp monitoring output) LDS = "L" ; outputs LD ("H" at locking, "L" at unlocking.)
15	ФР	0	Phase comparator output for an external charge pump.
16	$\Phi \mathrm{R}$	0	Phase comparator output for an external charge pump.

FUNCTION DESCRIPTIONS

PULSE SWALLOW FUNCTION

The divide ratio can be calculated using the following equation:
$f_{v c o}=[(M \times N)+A] \times f_{\text {osc }}+R \quad(A<N)$
fvco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (5 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc : Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14 -bit programmable reference counter (5 to 16,383)
M : Preset divide ratio of modules prescaler (64 or 128)

SERIAL DATA INPUT

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider and the programmable divider separately.
Binary serial data is entered through the Data pin.
One bit of data is shifted into the shift register on the rising edge of the clock. When the load enable pin is high, stored data is latched according to the control bit data as follows:
Table. 1 CONTROL BIT

Control bit (CNT)	Destination ot serial data
H	17 bit latch (for the programmable reference divider)
L	18 bit latch (for the programmable divider)

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

CNT : Control bit
R1 to R14 : Divide ratio setting bit for the programmable reference counter (5 to 16,383)
SW : Divide ratio setting bit for the prescaler (64/65 or 128/129)
FC : Phase control bit for the phase comparator
LDS : LDfout signal select bit
[Table. 1]
[Table. 2]
[Table. 5]
[Table. 7]
[Table. 6]

Note: Start data input with MSB first.

Programmable Counter

CNT
N1 to N11 : Divide ratio setting bits for the programmable counter (5 to 2,047) A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
[Table. 1]
[Table. 3]
[Table. 4]

Note: Start data input with MSB first.

Table2. BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratio (R)	$\begin{gathered} \text { H } \\ 14 \end{gathered}$	$\begin{aligned} & \mathrm{H} \\ & 13 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$		${\underset{10}{10}}^{2}$	A.	$\begin{aligned} & R \\ & 8 \end{aligned}$	$\begin{aligned} & n \\ & 7 \end{aligned}$	R	$\begin{gathered} R \\ 5 \end{gathered}$	$\begin{aligned} & \text { R } \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ 2 \end{gathered}$	R
5	0	0	0	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
.
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 5 is prohibited.

Table. 3 BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	$\begin{gathered} \mathrm{N} \\ 11 \end{gathered}$	N 10	N 9	N 8	$\begin{aligned} & \mathrm{N} \\ & 7 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{N} \\ 5 \end{gathered}$	$\frac{N}{4}$	$\begin{gathered} N \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & 2 \end{aligned}$	N 1
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
.
2047	1	1	1	1	1	1	1	1	1	1	1

Note:• Divide ratio less than 5 is prohibited.

- Divide ratio (N) range $=5$ to 2,047

Table. 4 BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divod. Ratio (N)	A	A 6	A	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
.
127	1	1	1	1	1	1	1

Note:• Divide ratio (A) range $=0$ to 127

Table. 5 PRESCALER DATA SETTING

SW	Prescaler Divide ratio
H	64/65
L	128/129

Table. 6 LD/fout OUTPUT SELECT DATA SETTING

L.DS	LDifout output signal
H	fout signal
L	LD signal

Relation between the FC input and phase characteristics
The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (D_{0}) and the phase comparator output (Φ R, ΦP) are reversed according to the FC bit. Also, the monitor pin (four) output is controlled by the FC bit. The relationship between the FC bit and each of $D_{0}, \Phi R$, and ΦP is shown below.

Table. 7 FC BIT DATA SETTING (LDS = "H")

	FC= High				FC=Low			
	Do.	¢R	ΦP	LDifout	Do	ФR	ФP	İAout
$f_{1}>f_{p}$	H	L	L	(fr)	L	H	Z*	(fp)
$\mathrm{f}_{\text {c }}<\mathrm{f}_{\mathrm{p}}$	L	H	Z*	(fr)	H	L	L	(fp)
$f_{f}=f_{p}$	Z*	L	Z*	(fr)	Z*	L	Z*	(fp)

\because High impedance

When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

POWER SAVING MODE (INTERMITTENT MODE CONTROL CIRCUIT)

Setting a PS pin to Low, the IC enters into power saving mode resultatly current sonsumption can be limited to $10 \mu \mathrm{~A}$ (max.).
Setting PS pin to High, power saving mode is released so that the IC works normally.
In addition, the intermittent operation control circuit is included which helps smooth start up from the power saving mode. In general, the power consumption can be saved by the intermittent operation that powering down or waking up the synthesizer. Such case, it the PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency ($\mathrm{fr}_{\text {r }}$) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop.
To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.

During the power saving mode, the corresponding section except for indispensable circuit for the power saving function stops working, then current consumption is reduced to $10 \mu \mathrm{~A}$ per one PLL section.
At that time, the Do and LD become the same state as when a loop is locking. That is, the Do becomes high impedance. A VCO control voltage is naturally kept at the locking voltage which defined by a LPF"s time constant. As a result of this, VCO's frequency is kept at the locking frequency.

Note; • While the power saving mode is executed, ZC pin should be set at " H " or open. If $Z C$ is set at " L "during power saving mode, approximately 10,4 current flows.

- PS pin must be set "L" at Power-ON.

Table. 8 PS PIN SETTING

ps pin	Status
H	Normal mode
L	Power saving mode

Table. 9 ZC PIN SETTING

zCopln	Do output
H	Normal output
L	High impedance

SERIAL DATA INPUT TIMING

On rising edge of the clock, one bit of the data is transferred into the shift register.

Paramete\%	Mins.	Typ.	Max.	Unit
t1	20	-	-	ns
t2	20	-	-	ns
t3	30	-	-	ns
14	20	-	-	ns

Parameter	Min.	Typ.	Max.	Unil
15	30	-	-	ns
16	100	-	-	ns
17	100	-	-	ns

PHASE COMPARATOR OUTPUT WAVEFORM

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min	Typ	Max		
Supply voltage	V_{CC}	2.7	3.0	3.6	V	
	Vp	Vcc	-	6.0	V	
Input voltage	V_{1}	GND	-	V_{CC}	V	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit
				Min	Typ	Max	
Power Supply Current *1	MB15E05	Icc	$\begin{aligned} & \text { fin }_{\text {IF }}=2000 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz} \end{aligned}$	-	6.0	-	mA
	MB15E06	Icc	$\begin{aligned} & \mathrm{fin}_{\mathrm{RF}}=2500 \mathrm{MHz}, \\ & \text { fosc }=12 \mathrm{MHz} \end{aligned}$	-	7.0	-	
Power Saving Current *2		Ips	Vcc current at PS =" and $\mathrm{ZC}={ }^{n} \mathrm{H}^{n "}$	-	-	10	$\mu \mathrm{A}$
Operating Frequency	MB15E05	fin		100	-	2000	MHz
	MB15E06	fin		100	-	2500	
Crystal Oscillator Operating Frequency		fosc	min. $500 \mathrm{mVp}-\mathrm{p}$	3	-	40	
Input Sensitivity	fin	Pfin	50Ω termination (Refer to the test circuit.)	-10	-	+2	dBm
	OSCin	Vosc		500	-	Vcc	mVp-p

[^25]MB15E05
MB15E06

ELECTRICAL CHARACTERISTICS

	Parameter	Symbol	Condition	Value			Unll
				Min	Typ	Max:	
Input Voltage	Data, Clock LE, PS, ZC	$V_{\text {IH }}$		Vccx0.7	-	-	V
		Vit		-	-	Vccx0.3	
Input Current	Data, Clock LE, PS	l_{1}		-1.0	-	+1.0	$\mu \mathrm{A}$
		Im		-1.0	-	$+1.0$	
	ZC	114		-1.0	-	+1.0	$\mu \mathrm{A}$
		$1 / 2$	Pull up input	-100	-	0	
	OSCin			0	-	+100	$\mu \mathrm{A}$
		$1 / 1$		-100	-	0	
Output Voltage	ФP	Vos	Open drain output	-	-	0.4	V
	ФR, LDHout	$V_{\text {о }}$		Vcc-0.4	-	-	V
		Vat		-	-	0.4	
	Do	$V_{\text {don }}$		Vcc-0.4	-	-	V
		$V_{\text {Dol }}$		-	-	0.4	
High Impedance Cutoff Current	Do	lofs		-	-	1.1	$\mu \mathrm{A}$
Output Current	ФP	lot	Open drain output	1.0	-	-	mA
	ФR, LDfout	$\mathrm{IOH}^{\text {r }}$		-	-	-1.0	mA
		lot		1.0	-	-	
	Do	loon	$\begin{aligned} & \mathrm{VCC}=3.0 \mathrm{~V}, \mathrm{VP}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OOH }}=4.0 \mathrm{~V} \end{aligned}$	-	$-10.0 * 1$	-	mA
		look	$\begin{aligned} & V_{c c}=3.0 \mathrm{~V}, V p=5 \mathrm{~V}, \\ & V_{\text {ool }}=1.0 \mathrm{~V} \end{aligned}$	-	10.0*1	-	

[^26]
TEST CIRCUIT (FOR MEASURING INPUT SENSITIVITY fin/OSCin)

APPLICATION EXAMPLE

Vpx : Maximum 6 V
C_{1}, C_{2} : Depend on the crystal parameters

PACKAGE DIMENSION

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 600 MHz PRESCALER

The Fujitsu MB1505, utilizing BI-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function. The MB1505 contains a 600 MHz two modulus prescaler that can select of either $32 / 33$ or $64 / 65$ divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19 -bit shift register, 18-bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter) and analog switch to speed up lock up time.
It operates supply voltage of 5 V typ. and achieves very low supply current of 6 mA typ. realized through the use of Fujitsu Advanced Process Technology.

FEATURES

- High operating frequency: $\boldsymbol{f}_{\text {IN }} \max =600 \mathrm{MHz}$ ($\mathrm{P}_{\mathrm{IN}} \operatorname{MIN}=-4 \mathrm{dBm}$)
- Pulse swallow function: $32 / 33$ or $64 / 65$
- Low supply current: ICC 6 mA typ.
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 63
-Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of:
- Binary 14-bit programmable reference counter: 8 to 16383
- 1 -bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2 types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16 -pin Plastic DIP Package (Suffix: -P) 16-pin Plastic Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

RatIng	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded.Functional operation should be restricted to the condltions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating condifions for extended periods may affect device reliability.

[^27]

PIN DESCRIPTION

Pin No.	Pin Name	VO	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC OUT }^{\text {O}} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between $\mathrm{OSC}_{\mathrm{IN}_{\mathrm{N}}}$ and OSC $_{\text {OUt }}$.
3	V_{p}	-	Power supply input for charge pump and analog switch.
4	V_{cc}	-	Power supply voltage input.
5	Do	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
6	GND	-	Ground
7	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f_{r}, and f_{p} exists, this pin outputs low level.
8	${ }^{\text {f }}$	1	Prescaier input. The connection with an external VCO should be AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because intemal analog switch becomes ON state.
12	FC	1	Phase select input of phase comparator (with intemal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control fout pin (test pin) output level for $f_{\text {r }}$ or f_{p}.
13	BISW	0	Anaiog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
14	fout	0	Monitor pin of phase comparator input. fout pin outputs either programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\underset{\varnothing R}{\varnothing P}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18-bit programmable divider, respectively.

Binary serial data is input to Data pin.
On rising edge of clock shitts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.

Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

\longleftrightarrow Divide ratio of programmable reference counter setting bit $\longrightarrow \mid$

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	$\begin{gathered} S \\ 14 \end{gathered}$	s 13	$\begin{gathered} S \\ 12 \end{gathered}$	S 11	$\begin{gathered} S \\ 10 \end{gathered}$	S	S	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	S 6	S	S 4	S	S	S 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
SW $=\mathrm{H}: 32 / 33$
$\mathrm{SW}=\mathrm{L}: 64 / 65$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18 -bit latch, 7 -bit swallow counter and 11-bit programmable counter.
Serial 19-bit data format is shown on following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S	S 6	S 5	S	3	2	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 63
S7 should be set to zero

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 1 8	$\begin{aligned} & \hline s \\ & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline S \\ & 1 \\ & 5 \end{aligned}$	S $\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & S \\ & t \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & S \\ & 1 \\ & 0 \end{aligned}$	S	S
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	t	0	0	0	1
-	\bullet	-	-	-	-	-	-	-	-	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 63)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

$f_{\mathrm{vco}}=[(\mathrm{PXN})+\mathrm{A}] \times$ fosc $\div \mathrm{R}$
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 63, A<N$)
$f_{\text {osc: }}$: Output frequency of the external reference frequency oscillator
R: \quad Preset divide ratio of binary 14 -bit programmable reference counter (8 to 16383)
P: Preset modulus of external dual modulus prescaler (32 or 64)

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{o}), phase comparator output level ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($D_{0}, \varnothing R, \varnothing P$) and $F C$ input level are shown below.

	$\mathrm{FC}=\mathrm{H}$ or open				FC=L			
	D_{0}	\varnothing R	$\otimes \mathbf{P}$	fou	D_{0}	$\emptyset R$	$\varnothing \mathbf{P}$	$\begin{gathered} \text { fou } \\ \mathbf{T} \end{gathered}$
$t_{r}>f_{p}$	H	L	L	$\left(f_{r}\right)$	L	H	z	$\left(f_{p}\right)$
$f_{r}<f_{p}$	L	H	Z	$\left(f_{r}\right)$	H	L	L	$\left(f_{p}\right)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	Z	L	Z	(f_{r})	Z	L	z	$\left(f_{p}\right)$

Note: $\quad Z=$ (High impedance)

VCO CHARACTERISTICS
Depending upon VCO characteristics,
FC pin should be set accordingly:

- When VCO characteristics are like 1 , FC should be set High or open circuit;
- When VCO characteristics are like 2, FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band.
When $\xi_{r}>t_{p}$ or $f_{r}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{O}) to be connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\mathrm{LE}=\mathrm{H}$ (Changing the divide ratio of internal prescaler) : Analog switch=ON
LE=L (Normal operating mode): Analog switch=OFF
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value			
		Max				
Power Supply Voltage	V_{CC}		4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC}	V_{P}	8.0	V	
Input Voltage	V_{I}	GND		V_{CC}	V	
Operating Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$	

MB1505

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			Icc	Note 1		6.0		mA
Operating Frequency	$f_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note2	10		600	MHz	
	$\mathrm{OSC}_{\text {IN }}$	f fosc			12	20	MHz	
Input Sensitivity	$\mathrm{fin}^{\text {in }}$	$P_{\text {fin }}$		-4		6	dBm	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		0.5			$V_{\text {PP }}$	
High-level Input Voltage	Except $f_{\text {In }}$ and $\mathrm{OSC}_{\mathbb{N}}$	$\mathrm{V}_{\text {IN }}$		$\mathrm{V}_{\mathrm{cc}} 00.7$			V	
Low-level Input Voltage		V_{1}				$\mathrm{V}_{\mathrm{CC}} 0.3$	v	
High-level Input Current	Data Clock	1 IH			1.0		$\mu \mathrm{A}$	
Low-level Input Current		ILIL			-1.0		$\mu \mathrm{A}$	
Input Current	OSC $_{\text {IN }}$	lose			± 50		$\mu \mathrm{A}$	
	LE, FC	Le			-60		$\mu \mathrm{A}$	
High-level Output Current	Except Do and OSCOUT	V_{OH}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.4			\checkmark	
Low-level Output Current		V_{OL}				0.4	V	
N -channel Open Drain Cutoff Current	$D_{0}, \varnothing P$	loff	$\begin{gathered} V_{P}=V_{C c} \text { to } 8 V \\ V_{O O P}=G N D \text { to } 8 V \end{gathered}$			1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCOUT	IOH		-1.0			mA	
		lol		1.0			mA	
Analog Switch On Resistor		RON			25		Ω	

NOTE: 1: $f_{\text {in }}=600 \mathrm{MHz}, O S C_{\mid N}=12 \mathrm{MHz}, V_{c c}=5 \mathrm{~V}$. Inputs are grounded and outputs are open.
2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-Lead Plastic Dual In-Line Package

(Case No.: DIP-16P-M04)

PACKAGE DIMENSIONS

MB1506 ASSP for DTS bi-Cmos (For 2.0 GHz band) PLL Frequency Synthesizer with Built-in Prescaler

DESCRIPTION

The Fujitsu MB1506 is a PLL (phase-locked loop) frequency synthesizer, ideally suited for DBS tuner, MCA radio and similar wireless communications devices.

The MB1506 features a 2.0 GHz , two-modulus prescaler to enable pulse-swallow type processing, as well as analog switches for faster lock up time.

Fujitsu's Bi-CMOS process is used for low power consumption of Icc $=18 \mathrm{~mA}$ (typ.).

- FEATURES

- High speed operation: $\mathrm{fin}=2.0 \mathrm{GHz}$
- Low power consumption: Icc $=18 \mathrm{~mA}$ (typ.)
- Wide operating temperature range: $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Two types of phase comparator output (built-in charge pump, external charge pump)
- Built-in functions:

16-bit shift register
15-bit latch
Reference frequency divider
Binary 14-bit programmable reference counter (divide ratio: 8 to 16383)
1-bit switch counter
19-bit shift register
19-bit latch
(Continued)

PACKAGE

Plastic SSOP, 20-pin

(FPT-20P-M03)

(Continued)

Comparison dividers
Binary 8-bit swallow counter (divide ratio: 0 to 255)
Binary 11-bit programmabie counter (divide ratio: 16 to 2047)
Phase comparator with phase conversion function
2.0 GHz band two-modulus prescaler (divide ratios: 128/129, 256/257)

Control signal generator circuit
Crystal oscillator circuit
Monitor frequency switching circuit
Charge pump
1-bit control latch
Analog switch

- PIN ASSIGNMENT

- PIN DESCRIPTION

Pin No.	Pin name	I/O		riptions
1	OSCIN	1	Crystal oscillator connection pin for reference divider (OSCIN $=$ oscillator circuit input pin, and OSCout = oscillator circuit output pin)	
3	OSCout	0		
4	V_{P}	-	Power supply pin for charge pump output and analog switch output	
5	Vcc	-	Power supply pin	
6	Do	0	On-chip charge pump output pin Phase characteristics may be inverted according to the setting of the FC pin.	
7	GND	-	GND pin	
8	LD	0	Phase comparator output pin Normal setting is $L D=$ " H " with an output signal $\mathrm{LD}=$ " L " equivalent to the duration of the phase error between fr and fp.	
10	fin	1	Prescaler input pin Use in an AC coupled state.	
11	Clock	1	Clock signal input pin for 19 -bit shift register and 16 -bit shift register Data is read on the rising edge of the clock pulse.	
13	Data	1	Serial data input pin for binary coded data The final data bit is the control bit.	
			Control data	Serial data transfer destination
			H	15-bit latch
			L	19-bit latch
14	LE	1	Load enable signal input pin (with pull-up resistor) When $L E=$ "H" or $L E=$ "OPEN", the contents of the shift register is transferred to one of the latches according to the combination of serial data control bit settings. Also, when the internal analog switch is "on" at this time, the signal output from the internal charge pump is sent to the BiSW pin.	
15	FC	1	Phase comparator phase switching pin (with pull-up resistor) Enables inversion of the polarity of the phase comparator output, according to the polarity of externally connected LPF or VCO. When FC = "L" the charge pump and phase comparator characteristics are inverted. Also switches the output of the fout pin, either fr or $\mathrm{f} p$.	
16	BiSW	0	Analog switch output pin Normally in high-impedance state, outputs the status of the internal charge pump only when the switch is turned on ($\mathrm{LE}=$ " H ").	
17	fout	\bigcirc	Phase comparator input monitor pin According to the FC pin input level, this pin outputs either the output signal from the reference divider (fr) or the comparison divider (fp).	
			FC	Output signal
			H	fr output equivalent
				fp output equivalent

MB1506

(Continued)

Pin No.	Pin name	I/O	
18	ϕP	O	Phase comparator output signal pin for external charge pump Phase characteristics may be inverted according to the $F C$ pin setting.
20	ϕR	O	The ϕP pin is N channel open-drain output.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

1. Divide Ratio Settings

Setting values should be determined according to the following formula:

$$
f v c o=[(M \times N)+A] \times f o s c \div R(A<N)
$$

fvco: Externally connected VCO output frequency
M: Prescaler frequency division ratio (128 or 256)
N: Binary 11-bit programmable counter setting (16 to 2047)
A: Binary 8 -bit swallow counter setting ($0 \leq A \leq 255$)
fosc: Reference oscillator frequency
R: Binary 14-bit programmable reference counter setting (8 to 16383)

2. Serial Data Input Methods

Serial data input uses three pins, the Data pin, Clock pin and LE pin, and is used to separately control the 15 -bit reference divider and 19-bit comparison divider.
Serial data should be input in binary form at the Data pin.
Serial data is read sequentially by the shift register at the rise edge of the clock signal, and is transferred to a latch together with the appropriate control data when the load enable signal goes to " H " level (or open).

Control data	Serial data transfer destination
H	15-bit latch
L	19-bit latch

(1) Divide Ratios in the Reference Divider

The reference divider is configured with a 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. The serial data configuration has 16 bits, as shown below.

- 14-bit programmable reference counter divide ratios

Divide ratio R	S 14	S 13	\mathbf{S}	$\mathbf{1 2}$	\mathbf{S}	S	S	S	S	S	S	S	S	S
$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	\mathbf{S}	5	4	3	2	1						
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio of less than 8 are prohibited.
(Setting value range: 8 to 16383)

Data shouid be input with the MSB first.
SW: Prescaler divide ratio setting bit.

SW	Prescaler divide ratio setting bit
H	$128 / 129$
L	$256 / 257$

S1 to S14: Divide ratio setting bit (8 to 16383)
C: Control bit (set to "H")

(2) Divide Ratios in the Comparison Divider

The comparison divider is configured with a 19 -bit shift register, 19-bit latch, 8 -bit swallow counter and 11-bit programmable counter. The serial data configuration has 19 bits, as shown below.

-7-bit swallow counter divide ratios

Divide ratio A	$\mathbf{8}$	$\mathbf{8}$	7	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
5	$\mathbf{4}$	3	2	1				
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
255	1	1	1	1	1	1	1	1

(Setting value range: 0 to 255)

- 11-bit prgrammable counter divide ratios

Divide ratio N	S 19	\mathbf{S}	18	\mathbf{S}	S	S	S	S	S	S	S
16	15	14	13	12	11	10	9				
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Frequency divide ratios of less than 16 are prohibited. (setting value range: 16 to 2047)

Data should be input with the MSB first.
S1 to S8: Swallow counter divide ratio setting bits (0 to 255)
S9 to S18: Programmable counter divide ratio setting bits (16 to 2047)
C: Control bit (set to "L")
3. Serial Data Input Timing

4. FC Pin Input and Phase Characteristics

The FC pin is used for switching of phase relation in the phase comparator. This pin controls the inversion of phase characteristics in the internal charge pump output (Do) and phase comparator output ($\phi \mathrm{R}, \phi \mathrm{P}$).
In addition, the output from the phase comparator input monitor pin (fout) can be controlled from the FC pin. The following table shows the relation between FC pin settings and the Do, $\phi R, \phi P$, and fout settings.

	FC: "H" or open				FC: "L"			
	Do	¢R	¢P	fout	Do	\$R	$\phi \mathbf{P}$	fout
fr $>$ fp	H	L	L	(fr)	L	H	Z	(fp)
$\mathrm{fr}=\mathrm{fp}$	Z	L	Z	(fr)	Z	L	Z	(fp)
$\mathrm{fr}<\mathrm{fp}$	L	H	Z	(fr)	H	L	L	(fp)

Z: High impedance
In phase locked loop design, the FC pin should be controlled by VCO polarity.

When VCO polarity is represented by line (1), FC value is " H " or open.

When VCO polarity is represented by line (2), FC value is "L".

The following diagram illustrates the phase comparator output waveform ($\mathrm{FC}=$ " H ").

- The phase error detection range is -2π to $+2 \pi$.
- Differences in charge pump characteristics may cause slight variation in spikes. The spike is output in order to eliminate dead zones.
- Depending on charge pump characteristics, the spike may not be output when $\mathrm{fr}>\mathrm{fp}$, or when $\mathrm{fr}<\mathrm{fp}$.

5. Analog Switch

The analog switch is turned on/off by the LE signal. When the switch is on, the output signal from the internal charge pump (Do) is output to the BiSW pin (when off, the pin remains in high impedance state).

LE	Analog switch
H (when internal dividers' setting is changed.)	On
L	Off

As illustrated below, the analog switch can be inserted between the LPF (LPF1 + LPF2) so as to reduce the LPF time constant during PLL channel switching, thereby resulting in faster lock up time.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value		Unit
		Min.	Max.	
Power supply voltage	Vcc	-0.5	7.0	V
	V_{p}	Vcc	10.0	V
Output voltage	Vout	-0.5	$\mathrm{Vcc}+0.5$	V
Open drain voltage	Voop	-0.5	8.0	V
Output current	lout	-10	10	mA
Storage temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$

- RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Power supply voltage	Vcc	4.5	5.0	5.5	V
	V_{p}	Vcc	-	8.0	V
Input voltage	Vin	GND	-	Vcc	V
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

Note: Protection against damage from static electricity has been provided by the addition of anti-static elements and precautionary measures in circuit design, however the following precautions are advised when handling:

- Always place the MB1506 in a conductive case for storage and transporting.
- Before handling, ensure that all operators, fixtures and tools are protected from electrification (grounded), and provide a grounded conductive sheet on the operating floor.
- Always ensure that power is switched off before inserting the device into or removing the device from any socket.
- When handling (or transporting) any circuit board containing an MB1506 device, all leads should be protected with electro-conductive sheeting.

- ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Vcc}=4.5 \mathrm{~V}\right.$ to $5.5, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter		Symbol	Value			Unit	
		Min.	Typ.	Max.			
Power supply current *1			Icc	-	18.0	-	mA
Operating frequency	$\mathrm{fin}^{* 2}$	fin	10	-	2000	MHz	
	OSCIN	fosc	-	12	20	MHz	
Input sensitivity	$\mathrm{fin}^{* 3}$	Pfin	-4	-	6	dBm	
	OSCIN	Vosc	0.5	-	-	VP-P	
H level input voltage	Except fin, OSCin	VIH	$\mathrm{Vcc} \times 0.7$	-	-	V	
L level input voltage		V_{H}	-	-	$V \mathrm{Cc} \times 0.3$	V	
H level input current	Data, Clock	liH	-	1.0	-	$\mu \mathrm{A}$	
L level input current		IIL	-	-1.0	-	$\mu \mathrm{A}$	
Input current	OSCI	losc	-	± 50	-	$\mu \mathrm{A}$	
	LE, FC	ILE	-	-60	-	$\mu \mathrm{A}$	
H level output voltage	$\begin{aligned} & \text { Except Do*4, } \\ & \text { OSCout } \end{aligned}$	VOH	4.4	-	-	V	
L level output voltage		VOL	-	-	0.4	V	
High impedance cutoff current	Do*5, ϕ P	loff	-	-	1.1	$\mu \mathrm{A}$	
Output current	Except Do, OSCout	IOH	-1.0	-	-	mA	
		loL	1.0	-	-	mA	
Analog switch on resistance		Ron	-	25	-	Ω	

*1: Power supply current measurement conditions: Connection to a crystal with $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{fi} \mathrm{N}=2.0 \mathrm{GHz}$, fosc $=12$ MHz .
*2: AC coupled. Minimum operating frequency is measured with a coupling of 1000 pF .
*3: 50Ω system
*4: At Vcc $=5 \mathrm{~V}$
*5: $V P=V c c$ to $8 \mathrm{~V}, \mathrm{Voop}=\mathrm{GND}$ to 8 V

■ MEASUREMENT CIRCUIT (Prescaler Input Sensitivity Measurement)

APPLICATION EXAMPLE

ORDERING INFORMATION

Part number	Package	Remarks
MB1506PFV	20-pin Plastic SSOP (FPT-20P-M03)	

PACKAGE DIMENSION

Plastic SSOP, 20 pin (FPT-20P-M03)

Note: Items with asterisk (*) do not include resin residue.
© 194 FUITSU LMMITED F2012S-2C.4 Dimentions in mm (inches)

MB1507

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH $2.0 \mathrm{GH}_{\mathrm{z}}$ PRESCALER

The Fujitsu MB1507 is a single chip serial input PLL frequency synthesizer designed for Broadcast Satelite tuner and cellular telephone applications.
It contains a $2.0 \mathrm{GHz}_{\mathrm{z}}$ dual modulus prescaler which enables pulse swallow function, and an analog switch to speed up lock up time.
It operates supply voltage of 5.0 V typ. and dissipates 18 mA typ. of current realized through the use of Fuijtsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: $f_{\mathrm{IN}}^{\mathrm{NAX}}=2.0 \mathrm{GH}_{\mathrm{Z}}$ ($\mathrm{P}_{\mathrm{IN} \text { MIN }}=-4 \mathrm{dBm}$)
- Pulse swallow function: 128/129 or 256/257
- Low supply current: lcc=18mA typ.
- Serial input 19-bit programmable divider consisting of: - Binary 8 -bit swallow counter: 0 to 255 - Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter: 8 to 16383 - 1-bit switch counter (SW) Sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 8.0	V
Output Current	$\mathrm{l}_{\mathrm{OUT}}$	+10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MB1507

MB1507 BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin Name	vo	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OSC $_{\text {IN }}$ OSCout	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC ${ }_{I N}$ and OSC $_{\text {OUu }}$.
3	v_{p}	-	Power supply input for charge pump and analog switch.
4	$V_{C c}$	-	Power supply voltage input.
5	Do	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. Normally the output level is high level. While the phase difference of i_{r} and f_{p} exists, the output becomes low level.
8	fin	1	Prescaler input. The connection with VCO should be AC connection.
9	Clock	1	Clock input for 20 -bit shitt register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shitt register is transiered to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 19-bit latch.
11	LE	1	Load enable input (with pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
12	FC	1	Phase select input of phase comparator (with pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC pin input signal controls $f_{\text {out }}$ pin (test pin) output level, f_{r} or f_{p}.
13	BiSW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump output.
14	fout	0	Monitor pin of phase comparator input. $f_{\text {out }}$ pin outputs programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level. $\mathrm{FC}=\mathrm{H}$: it is the same as i_{r} output level. $F C=L$: It is the same as f_{p} output level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\varnothing \mathbf{~}$ ØR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. ϕ p pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 19-bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data "H" data is transferred into 15-bit latch.
Control data "L" data is transferred into 19-bit latch.

THE DIVIDE RATIO SETTING

fvco $=[(M \times N)+A] \times f$ Osc $^{\div} \div R$
Ivco: Output trequency of external voliage controlled oscillator (VCO)
M: Preset modulus of external dual modulus prescaler (128 or 256)
$\mathrm{N}: \quad$ Preset divide ratio of binary 11 -bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 8 -bit swallow counter ($0 \leq A \leq 255, A<N$)
tosc: Output fequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shitt register, 15 -bit latch and 14-bit reference counter. Serial 16-bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S 13	S 12	S 11	S	S	S	S	S	S	S	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
SW=H : 128/129
SW=L : $256 / 257$
S1 to S14: These bits select divide ratio of programmable reference divider. C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 20-bit shift register, 19-bit latch, 8-bit swallow counter and 11-bit programmable counter.
Serial 20-bit data format is shown below.

1 Divide ratio of swallow counter setting bit
 Divide ratio of programmable counter setting bit

Divide Ratio A	8	S	S	S	S	S	S	S
C	S	5	4	3	2	1		
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
255	1	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 255

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 19	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S8: Swallow counter divide ratio setting bit. (0 to 255)
S9 to S19: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets to low level).
Data is input from MSB side.

SERIAL DATA INPUT TIMING

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shitts one bit of data into the shift register.

PHASE CHARACTERISTICS

VCO POLARITY
FC pin is provided to change phase polarity of phase comparator. Characteristics of internal charge pump output level (D_{O}), phase comparator output level (ØR, ØP) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level.

	FC=H or open				FC=L			
	Do	$\emptyset \mathrm{R}$	ØP	$\mathrm{t}_{\text {out }}$	Do	ØR	ØP	foun
$h_{i}>i_{p}$	H	L	L	(4)	L	H	z	(f_{p})
$t_{4}=t_{p}$	z	L	z	(f_{r})	z	L	2	(f_{p})
$t_{1}<t_{p}$	L	H	z	(t)	H	L	L	(i_{p})

Note: $\quad Z=($ High impedance)

Depending upon VCO polarity, FC pin should be set accordingly:
When VCO polarity are like (1) . FC should be set High or open circuit;
When VCO polarity are like (2) , FC should be set Low.

PHASE DETECTOR OUTPUT WAVEFORM (FC=High)

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $t_{T}>i_{p}$ or $i_{T}<i_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{O}) is connected to BISW pin. When the analog switch is OFF, BI-SW pin is set to high-impedance state.

LE	Analog Switch
H(Changing the divide ratio of internal prescater)	ON
L(Normal operating mode)	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			
		MIn	Typ	Max	
Power Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
	V_{P}	$V_{C C}$	-	8.0	V
Input Voltage	V_{1}	$G N D$	-	$V_{C C}$	V
Operating Temperature	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

HANDLNG PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device trom is socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condilion	Value			Unit	
		Min		Typ	Max			
Power Supply Current			lcc	Note 1	-	18.0	-	mA
Operating Frequency	$\mathrm{fin}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note 2	10	-	2000	MHz	
	OSC $_{\text {IN }}$	fosc	-	-	12	20	MHz	
Input Sensitivity	$\mathrm{f}_{\text {in }}$	$P_{\text {fin }}$	50Ω	-4	-	6	dBm	
	OSC $_{\text {IN }}$	Vosc	-	0.5	-	-	V_{PP}	
High-level Input Voltage	Except $f_{\text {in }}$ and $\mathrm{OSC}_{\mathrm{IN}}$	V_{IH}	-	$\mathrm{V}_{\mathrm{cc}} \mathrm{x} 0.7$	-	-	V	
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	$\mathrm{vcc}_{\text {c }} 0.3$	V	
High-level Input Current	Data Clock	${ }_{1 / 4}$	-	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL	-	-	-1.0	-	$\mu \mathrm{A}$	
Input Current	OSC $_{\text {IN }}$	losc	-	-	± 50	-	$\mu \mathrm{A}$	
	LE, FC	le	-	-	-60	-	$\mu \mathrm{A}$	
High-level Output Current	Except Do and OSCOUT	VOH	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Current		V_{OL}		-	-	0.4	V	
High impedance Cutoff Current	$\mathrm{D}_{\mathrm{O}}, \emptyset \mathrm{P}$	loff	$V_{p}=V_{c c}$ to 8 V $V_{\text {OOP }}=G N D$ to 8 V	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCour	IOH	-	-1.0	-	-	mA	
		lol	-	1.0	-	-	mA	
Analog Switch On Resistance		R_{ON}	-	-	25	-	Ω	

NOTE 1: $f_{\text {in }}=2.0 \mathrm{GHz}$, fosc $=12 \mathrm{MHz} X^{\prime}$ tal $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Inputs are grounded and outputs are open.
NOTE 2: AC coupling. Minimum operating frequency is measured with a capacitor 1000 pF .

TEST CIRCUIT (Prescaler Input Sensitivity)

TYPICAL APPLICATION EXAMPLE

MB1507

PACKAGE DIMENSIONS

MB1508
SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL
 FREQUENCY SYNTHESIZER ON CHIP 2.5 GHz PRESCALER

DESCRIPTION

The Fujitsu MB1508 with an on chip 2.5 GHz dual modulus prescaler is a serial input PLL (Phase Locked Loop) frequency synthesizer with pulse swallow function. It is well suited for BS tuner, CATV system, and TV tuner applications.
It operates with a supply voltage of 5.0 V typ. and dissipates 16 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

FEATURES

- Power supply voltage: $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-4 \mathrm{dBm}\right)$
- 2.5 GHz dual modulus prescaler: $P=256 / 272,512 / 528$
- Low supply current: ICC = 16mA typ.
- Programmable reference divider consisting of:

Binary 2-bit programmable reference counter ($R=256,512,1024,2048$)

- Programmable divider consisting of:

Binary 5-bit swallow counter ($\mathrm{A}=0$ to 31)
Binary 12-bit programmable counter ($\mathrm{N}=32$ to 4095)

- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Plastic 20-pin Flat Package (Suffix: —PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Output Voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{cC}}+0.5$	V
Output Current	I_{O}	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded.Functional operation should be restricted to the condlitions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment

(TOP VIEW)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MB1508 BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Pin Name	vo	Descriptions
1	FC	1	Phase select input pin of the phase detector. This pin involves an internal pull up resistor. When this pin is low, characteristics of the charge pump and phase detector can be reversed. This input also selects four pin output level, either fr or tp. Please see on page 6.
2	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch.
3	Data	1	Serial data of binary code input pin. This pin involves a schmitt trigger circuit.
4	Clock	1	Clock input pin of the 24-bit shift register. This pin involves a schmitt trigger circuit. On rising edge of the clock shifts one bit of the data into the shift register.
5	V_{cc}	-	PLL power supply voltage input pin.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSCout } \end{aligned}$	1	Oscillator input pin. Oscillator output pin. A crystal is connected between OSC ${ }_{\text {In }}$ pin and OSCout pin.
8	GND1	-	PLL ground pin.
$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & D_{o 1}{ }_{01} \\ & D_{02} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Charge pump output pins. Phase characteristics can be reversed depending upon FC pin input level.
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{BC} 4 \\ & \mathrm{BC} 3 \\ & \mathrm{BC} 2 \\ & \mathrm{BC} 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Band switching output pins. (Open-collector output) Output is controlled by a band bit data, individually. BCX -bit=H: BCX output transistor is ON . BCX-bit=L: BCX output transistor is OFF. $(x=1 \text { to } 4)$
15	$\overline{F_{\text {in }}}$	1	Complementary input pin of f_{n}. Please connect to GND through a capacitor.
16	GND2	-	Prescaler ground pin.
17	f fin	1	Prescaler input pin. This signal is AC coupled.
18	Vcc2	-	Prescaler power supply voltage input pin.
19	fout	0	Monitor pin of the phase detector input. fout pin outputs either of the programmable reterence divider output frequency fr or programmable divider output trequency fp depending upon the FC pin input level.
20	LD	0	Phase detector output pin. Normally this pin outputs high. While the phase difference between fr and fpexists. this pin outputs low.

MB1508

FUNCTIONAL DESCRIPTIONS

DIVIDE RATIO SETTING

Divide ratio can be set using the following equation:
$f_{\text {vco }}=\{(P \times N)+(16 \times A)\} \times$ fosc $+R$
fvco: Output frequency of an external voitage controlled oscillator (VCO)
P: Preset divide ratio of an internal dual modulus prescaler (256 or 512)
N: Preset divide ratio of binary 12 -bit programmable counter (32 to 4095)
A: Preset divide ratio of binary 5 -bit swallow counter (0 to 31)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter $(256,512,1024,2048)$

SERIAL DATA I NPUT

On rising edge of the clock shifts one bit of the data into the shift register. When the load enable is high, the data stored in the shift register is transferred to the latch.

24 bit of serial data formit is shown below.

5-bit swallow counter divide ratio (A1 to A5)

Divide ratio	A	A	A	A	A
A	5	4	3	2	1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$
31	1	1	1	1	1

12-bit programmable counter divide ratio (N1 to N12)

Divide ratio	N											
	12	11	10	9	8	7	6	5	4	3	2	1
32	0	0	0	0	0	0	1	0	0	0	0	0
33	0	0	0	0	0	0	1	0	0	0	0	1
34	0	0	0	0	0	0	1	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	\vdots
4095	1	1	1	1	1	1	1	1	1	1	1	1

FUNCTIONAL DESCRIPTIONS

Reference counter divide ratio (R1 to R2)

Divide ratio R	R 2	R 1
256	0	0
512	0	1
1024	1	0
2048	1	1

Prescaler divide ratio (SW)
When divide ratio of prescaler setting bit is high, divide ratio of $256 / 272$ is selected. When divide ratio of prescaler setting bit is low, divide ratio of $512 / 528$ is selected.

Band Switch Setting (BC1 to BC4)
When band switch setting bit is high, output is ON.
When band switch setting bit is low, output is OFF.

SERIAL DATA INPUT TIMING

Note: On rising edge of the clock shifts one bit of the data into the shift register.
When LE is high, the data stored the shift register is transferred into the latch.

PHASE DETECTOR CHARACTERISTICS
FC pin selects the phase of the phase detector. Phase characteristics (chage pump output) can be reversed depending upon the FC pin input level. Monitor pin (fout) output level is selected by the FC pin input level as well.

	$F C=H$ (or open)		$F C=L$	
	Do1, D_{0}	fout	D_{01}, D_{02}	fout
fr $>$ ip	H	Outputs programmable reference divider output frequency fr.	L	Outputs programmable divider output frequency tp.
$\mathrm{fr}=\mathrm{fp}$	Z		z	
$\mathrm{fr}<\mathrm{tp}$	L		H	

Note:

Z: High-impedance
Depending upon the VCO polarity, FC pin should be set accordingly.

When VCO polarity is like 1 ,
FC should be set high or open.
When VCO polarity is like 2 .
FC should be set low.
VCO POLARITY

PHASE DETECTOR WAVEFORM

($\mathrm{FC}=\mathrm{H}$)
D_{01}, D_{∞}

($\mathrm{FC}=\mathrm{L}$)
D01, D02

$\mathrm{fr}<\mathrm{fp}$

Note: Phase difference detection range : -2π to $+2 \pi$
Spike shape depends on the charge pump characteristics
The spike is output to diminish the dead band.

TEST CIRCUIT (FOR PRESCALER INPUT SENSITIVITY)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unll
Parameter		Min	Typ	Max	
Power Supply Voltage	Vcc	4.5	5.0	5.5	V
Input Voltage	V_{1}	GND	-	Vec	V
Operating Temperature	TA	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Min	Typ	Max	Unit
Power Supply Current		Icc	Note 1	-	16.0	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note2	10	-	2500	MHz
	$\mathrm{OSC}_{1 \mathrm{~N}}$	fosc	-	-	4	10	
Input Sensitivity	$\mathrm{f}_{\text {in }}$	Pfin	2300 to 2500MHz	-4	-	6	dBm
			1900 to 2300MHz	-7	-	6	
			10 to 1900 MHz	-10	-	6	
	$\mathrm{OSC}_{1 \times}$	Vosc	-	0.5	-	-	Vpp
High-level Input Voltage	Except fin and $\mathrm{OSC}_{\mathrm{IN}}$	$\mathrm{V}_{\mathbf{H}}$	-	$v_{c c} \times 0.7+0.4$	-	-	V
Low-level Input Voltage		V_{IL}	-	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3-0.4$	
High-level Input Current	Data Clock LE	$\mathrm{IIH}^{\text {H }}$	-	-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		ILL	-	-	-1.0	-	
	FC	Illfc	-	-	-60	-	
Input Current	OSC $_{\text {iN }}$	losc	-	-	+50	-	
High-level Output Voltage	$\begin{aligned} & \text { Except Do } \\ & \text { and } \\ & \text { and to } \mathrm{BC} \end{aligned}$	$\mathrm{VOH}_{\mathrm{O}}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	4.4	-	-	V
Low-level Output Vohage		V_{OL}		-	-	0.4	
High Impedance Cutoff Current	$\mathrm{D}_{01}, \mathrm{D}_{0}$ BC 1 to BC 4	loff	-	-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	$\begin{aligned} & \text { Except Do } \\ & \text { and } \\ & \text { BCi to BC4 } \end{aligned}$	IOH	-	-1.0	-	-	mA
Low-level Output Current		1 OL	-	1.0	-	-	
Withstand Output Voltage	BC1 to BC4	V_{B}	-	-	-	12	V

NOTE: 1: $f_{\text {in }}=2.5 \mathrm{GHz}, O S C_{\mathbb{N}}=4.0 \mathrm{MHz}, V_{c c}=5.0 \mathrm{~V}$. Inputs are grounded and outputs are open. 2: AC coupling. Minimum operating frequency is measured with a capacitor 1000 pF .

MB1508 APPLICATION CIRCUIT

C_{1}, C_{2} : depends on the crystal oscillator.
FC : with internal pull up resistor.

PACKAGE DIMENSIONS

MB1509

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 400MHz PRESCALER

The Fujitsu MB1509 is a 400MHz dual serial input PLL (Phase Locked) frequency synthesizer designed for cordless telephone application.

The MB1509 has two PLL circuits on a single chip: one for transmit and the other for reception. Separate power supply pins are provided for the transmit and reception PLL circuits. Transmit PLL contains a low sensitivity charge pump for ease of modulation and reception PLL contains a high sensitivity charge pump for faster lock up time.

The MB1509 incorporates two 400 MHz dual modulus prescalers to enable implemention of a pulse swallow function.

It operates supply voltage of 3.0 V typ. and dissipates 8 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: fin $=400 \mathrm{MHz}$
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
- Low power supply current: Icc $=8 \mathrm{~mA}$ typ, ©3V.
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Two charge pumps

Low sensitivity charge pump for transmit High sensitivity charge pump for reception

- Plastic 20 -pin dual in line package (Suffix: -P) Plastic 20-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{Cc}	-0.5 to 7.0	V
	V_{p}	$V_{\text {cc }}$ to 10.0	
Output Voltage	$V_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Outpur Current	lout	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings

 are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DESCRIPTIONS

TRANSMIT/RECEPTION BLOCK

- 20-bit latch
- Programmable divider consisting of: -Binary 7-bit swallow counter (Divide ratio: 0 to 127)
-Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Phase detector with phase polarity change function
- 400 MHz dual modulus prescaler (Divide ratio: $32 / 33,64 / 65$)
- Charge pump

COMMON BLOCK

- 23-bit shift register
- Programmable divider consisting of:
-Reference counter (Divide ratio: 512, 1024)
- (Divide frequency $=25 \mathrm{kHz}, 12.5 \mathrm{kHz}$ (Crystal oscillator frequency $=12.8 \mathrm{MHz}$)
- Crystal oscillator
- fp monitor output selector
- Latch selector
- Schmitt circuits
- Analog switches

MB1509

PIN DESCRIPTIONS

PIN DESCRIPTIONS (Continued)

Pin No.	Pin Name	1/0	Descriptions
16	$\mathrm{V}_{\mathrm{CC2}}$	-	Power supply voltage input pin for reception section, programmable reference divider, shift register, and crystal oscillator When the power is OFF, the latched data of the reception section and the reference counter is cancelled.
17	fin_{2}	1	Prescaler input pin of reception section The connection with VCO should be an AC connection.
18	LE	1	Load enable input pin This pin involves a Schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch depending on the control data. At this moment, the charge pump output signal is output from the BS pin since the internal analog switch changes to ON .
19	Data	1	Serial data input pin of 23 -bit shift register This pin involves a Schmitt trigger circuit. The stored data in the shift register is transferred to either the transmit section or the reception section depending upon the control data.
20	Clock	1	Clock input pin of 23 -bit shift register This pin involves a Schmitt trigger circuit. On the rising edge of the clock, one bit of data shifts into the shift register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f_{\text {VCO }}=\{(M \times N)+A\} \times f_{O S C} \div R(A<N)$
f_{Vco} : Output frequency of external voltage controlled ocillator (VCO)
M: Preset divide ratio of dual modulus prescaler (32 or 64)
$\mathrm{N}: \quad$ Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter $(0 \leq A \leq 127)$
f_{OSC} : Reference oscillator frequency
R: Preset divide ratio of reference counter (512 or 1024)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT
Serial data is input using three pins, Data pin, Clock pin, and LE pin. The programmable divider of the transmit section and the programmable divider of the reception section are controlled individually.
Serial data of binary data is input into the Data pin.
On the rising edge of the clock, one bit of serial data shifts into the shift register. When the load enable signal is high, the data stored in the shift register is transferred to either the latch of the transmit section or the latch of the reception section, depending upon the control bit data setting.

Control Data	Destination of Serial Data
H	Latch of transmit section
L	Latch of reception section

SHIFT REGISTER CONFIGURATION

Control bit

N1 to N11 : Divide ratio of the programmable counter setting bit (16 to 2047)
A1 to A7 : Divide ratio of the swallow counter setting bit (0 to 127)
FC : Phase control bit of the phase detector
PRE : Divide ratio of the prescaler setting bit ($32 / 33$ or $64 / 65$)
FP : Output of the programmable divider control bit (fp1 or fp2)
REF : Divide ratio of the reference counter setting bit (512 to 1024)
CNT : Control bit

SERIAL DATA INPUT TIMING

On the rising edge of the clock, one bit of the data shifts into the shift register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\cdot	-	-	-	-	\cdot	-	-	-	\cdot	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 16 is prohibited Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

PRE : DIVIDE RATIO (P) OF THE PRESCALER SETTING BIT
$H=32 / 33$
$L=64 / 65$
REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT
$H=512(\mathrm{fr}=25.0 \mathrm{kHz})$
$\mathrm{L}=1024(\mathrm{fr}=12.5 \mathrm{kHz})$
FP : OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT
$H=f p$ pin (15 pin) outputs programmable divider output frequency (fp1) of transmit section $\mathrm{L}=\mathrm{fp} \mathrm{pin}$ (15 pin) outputs programmable divider output frequency (fp 2) of reception section

FC : PHASE CONTROL BIT OF THE PHASE DETECTOR
Output of charge pump is selected by FC pin

	$F C=H$	$F C=L$
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO Polarity	(1)	(2)

Note: Z = High-impedance
Depending upon the VCO polarity, the FC bit should be set.
vco Output
Frequency
vco Input Voltage \longrightarrow (2)

PHASE DETECTOR OUTPUT WAVEFORM

(FC bit = High)

(FC bit = Low)

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when the phase difference is tw or more

LD output becomes high when the phase difference less than tw is repeated 3 times or more
(e. g. $\mathrm{t}_{\mathrm{w}}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$).

- Spike appearance depends on the charge pump characteristics. The spike is output to diminish the dead band.
- When $\mathrm{fr}>\mathrm{fp}$ or $\mathrm{fr}<\mathrm{fp}$, a spike might not generate depending upon the VCO characteristics.

ANALOG SWITCH

ON/OFF of the analog switch is controlled by the combination of the control data and LE signal. When the analog switch is ON, the BS1 and BS2 pins output the charge pump output ($\mathrm{D}_{01}, \mathrm{D}_{02}$). When the analog switch is OFF, the BS pin is set to high impedance.

	Control Data = H Divide ratio of transmit section is set		Control Data $=L$ Divide ratio of reception section is set	
	$L E=H$	$L E=L$	$L E=H$	$L E=L$
Analog switch of transmit section	ON	OFF	OFF	OFF
Analog switch of reception section	OFF	OFF	ON	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce the LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	$V_{\text {cc }}$	2.7	3.0	5.5	V	$\mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{cc} 2}$
	V_{P}	$\mathrm{V}_{\text {cc }}$	-	8.0	V	-
Input Voitage	$V_{\text {IN }}$	GND	-	V_{cc}	V	-
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$	-

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB1509

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condilion	Value			Unit
				Min	Typ	Max	
Power Supply Current*		lcCl_{1}	Reception section is active.	-	4.0	-	mA
		Icc2	Transmit/reception section are active.	-	8.0	12.0	
Operating Frequency**	fin	fin1	$\mathrm{P}=64 / 65$	10	-	400	MHz
		$f i n 2$	$\mathrm{P}=32 / 33$	10	-	200	
	$\mathrm{OSC}_{\text {IN }}$	fosc		-	12.8	20	
Input Sensitivity	fin	Pfin	$\mathrm{V}_{\mathrm{CC}}=2.7$ to 4.0V, 50Ω	-10	-	0	dBm
			$\mathrm{V}_{C C}=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$	-4	-	2	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		0.5	-	-	VPP
High-level Input Voltage	Except fin and $\mathrm{OSC}_{\mathbb{N}}$	V_{IH}		$\mathrm{V}_{\mathrm{cc} \times 0.7}+0.4$	-	-	V
Low-level Input Voltage		V_{IL}		-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3-0.4$	
High-level Input Current	Data, Clock LE	${ }_{1 / 4}$		-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		ILL		-	-1.0	-	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc		-	± 50	-	
High-level Output Vohage	Except Do and OSC OUT	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	2.2	-	-	V
Low-level Output Voltage		V_{OL}		-	-	0.4	
High-impedance Cutoff Current	D_{0}	loff	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{Cc}}$ to 8.0 V	-	-	1.1	$\mu \mathrm{A}$
Output Current	Except D_{0} and OSCOUT	IOH		-1.0	-	-	mA
		1 OL		1.0	-	-	
	Do1	IOH	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-1	-	
		Iol	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-	12	-	
	$\mathrm{D}_{\mathrm{O} 2}$	$\mathrm{IOH}^{\text {l }}$	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-3	-	
		1 l	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-	6	-	
Analog Switch ON Resistance		Ron		-	50	-	Ω

Notes: \quad : : fin $=400 \mathrm{MHz}, \mathrm{OSC}_{\mathbb{N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=3.0 \mathrm{~V}$. The remaining input pins are grounded and output pins are open.
**: AC coupling. Minimum operating frequency is measured with capacitor 1000 pF .

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

Note: $\mathrm{V}_{\mathrm{P}_{1}}, \mathrm{~V}_{\mathrm{P} 2} \quad$. $8 \mathrm{~V} \max$
C1, C2 : depends on the crystal oscillator
Clock, Data, LE
: involve the Schmitt circuit
When input pins are open, please insert the pull down/up resistor individually to prevent the oscillation.
X'tal $: 12.8 \mathrm{MHz}$

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

三MB15U10

1.1GHz DUAL PLL FREQUENCY SYNTHESIZER

INTRODUCTION

The Fujitsu MB15U10 is a dual serial input phase-locked loop (PLL) frequency synthesizer and is ideally suitable for mobile communications such as cellular phones. The MB15U10 has two PLL frequency synthesizer circuits on a single chip: one for transmission and the other for reception (PLL1 and PLL2). It can operate from a +2.6 V to 5.5 V supply. Fujitsu's advanced technology achieves an lcc of 7 mA (typical) as well as $10 \mu \mathrm{~A}$ (max.) at power saving mode.

FEATURES

- Two PLLs' for transmission/reception
- Low current consumption : $\mathrm{lcc}_{\mathrm{c}}=7 \mathrm{~mA}$ typ. at 3 V
- Power saving funtion $\quad: \mathrm{I}_{\mathrm{ps}}=10 \mu \mathrm{~A}$ max.
- Divide ratio setting with serial data input :

Binary 12-bit reference counter : 6 to 4095
Binary 17-bit main counter : 1024 to 131,071
*Main counters can be programmed individually each other.

- On-chip constant current source charge pumps
- Adjustable charge pump output current with an external resistor
- Lock detection function
- Phase matching circuit helps fast intermittent operation
- Plastic 20-pin SSOP (shrink small outline) package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameters	Symbol	Value	Unil	Remark
Supply voltage	$V_{\text {DDI, } 2}$	-0.3 to +4.0	V	
	V_{P}	$V_{\text {Do }}$ to 6.0	V	
Output voltage	Vo	-0.3 to $V_{00}+0.3$	V	
Output current	10	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

PIN DESCRIPTION

PR No.	Pln Hame	§. Descrintion
1	P1/f1	Data output / fp1 monitoring output (Open drain output)
2	P2/ip2	Data output / fp2 monitoring output (Open drain output)
3	Do1	Charge pump output (PLL1)
4	Vodi	Power supply for digital blocks (PLL1)
5	PS	Power saving mode control (input "L" : power saving mode)
6	fin:	RF input (PLL1)
7	DGND	Ground for digital blocks
8	OSCin	Crystal oscillator or TCXO input
9	P3/it2	Data output / fr2 monitoring output (Open drain output)
10	OSCout	Crystal oscillator output
11	Clock	Clock input
12	Data	Data input
13	LE	Load enable of serial input data (input " H^{\prime} : Data is shifted into a latch.)
14	V002	Power supply for digital blocks (PLL2)
15	$f i n 2$	RF input (PLL2)
16	AGND	Ground for the charge pumps
17	Do2	Charge pump output (PLL2)
18	V_{P}	Power supply for charge pump
19	POAD	Data output / lock detector output (Open drain output) Output is selected by "OLA" and "OLB" bits in a serial data
20	Iset	Charge pump output current adjustment (A resistor is connected.)

FUNCTION DESCRIPTIONS

Serlal data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the programmable reference divider, programmable divider (PLL1) and programmable divider (PLL2) separately by means of address setting.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shift register on the rising edge of the clock. When the load enable pin is high, stored data is latched.
a)Serlal data input format

b)Data setting description

- Table 1 : MA0 to MA16 : Divide ratio of the binary 17-bit main counter (PLL1)

	$\begin{aligned} & \text { MA } \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{aligned} & M A \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{MA} \\ & 14 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { MA } \\ & 12 \end{aligned}$	$\frac{M A}{1}$	$\begin{aligned} & \text { MA } \\ & \text { Yo } \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { gn } \end{aligned}$	MA 8 8	$\begin{aligned} & \text { Mit } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { MA } \\ & \text { His } \end{aligned}$	$\begin{aligned} & M A \\ & 5 \\ & 5 \end{aligned}$	M4, 4	MA 3 3	Ms	Mis §\%	M $\%$ 0 \square
1024	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1025	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: Divide ratios less than 1024 are prohibited. (Divide ratio $=1024$ to 131,071)

- Table 2 : MB0 to MB16 : Divide ratio of the binary 17-bit main counter (PLL2)

Divide ratio A.	$\begin{aligned} & \text { MB } \\ & \text { y } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { MB } \\ & 15 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { MB } \\ & 14 \end{aligned}$	$\begin{aligned} & M 8 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { MB } \\ & 12 \\ & 1, \end{aligned}$	$\begin{aligned} & \text { Ms } \\ & 11 \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { MB } \\ & \text { yon } \end{aligned}$	$\begin{aligned} & \text { MB } \\ & \% \\ & \% \end{aligned}$	$\begin{aligned} & \text { MB } \\ & \text { \% } \end{aligned}$	MB		MB	MB \%	M8 3\%	MB \%	MB \%	MB \%
1024	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1025	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
\bullet	-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	\bullet

Notes: Divide ratios less than 1024 are prohibited. (Divide ratio $=1024$ to 131,071)

- Table 3 : R1 to R11: Divide ratio of the binary 12-bit reference counter

Divide ratio R		\% 10	R 9	A	A.	\% 8 8	R.	A	R \%	R	\#	R 0
6	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	1	1	1
-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: Divide ratios less than 6 are prohibited. (Divide ratio $=6$ to 4095)

- Table 4 : Divide ratio select bit of reference frequency (PLL1 and PLL2)

SR	Divide ratio of reterence frequency (PLL1)	Divide ratio ol reference trequency (PLL 2 2)
0	R	R
1	R	2R

Notes: $R=$ Programmed value with R0 to R11 bits

- Table 5 : P0 to P3; P0 to P3 outputs control

px bly	px oulput (19, 1, 2, 9 pins)
0	ON ("L")
1	OFF ("Z")

Notes: $X=0$ to 3

- Table 6 : OLA, OLB ; 19-pin output selection

014.	OLB	19.pin mutput
0	0	P0 signal
0	1	Lock detect signal (PLL2)
1	0	Lock detect signal (PLL1)
1	1	Lock detect signal (PLL1 and PLL2)

- Table 7 : CR1, CR2 ; Charge pump output current selection

CR1.2	Charge pump output current
0	100
1	2100

Notes: PLL1 and PL2 can be controlled individually.

- Table 8 : PS ; Power saving control

PSt.2.	Charge pump output current
0	Power saving mode
1	Operation

Notes: PLL1 and PL2 can be controlled individually.

- Table 9 : TS ; Test bit (Set to "0" at ordinary use.)

TS	/1-pin	2-pin	9-pin
0	Output P1 signal	Outputs P2 signal	outputs P3 signal
1	outputs fp1	outputs fp2	outputs fr2

Notes: Reference frequency and comparison frequency can be monitored via P1 to P3 pins.

Serial data input timing

- $t_{1}(\geq 20 \mathrm{~ns})$.
$t_{2}(\geq 20 n s)$,
$t_{3}(\geq 50 n s)$,
t. $(\geq 50 n s)$,
ts ($\geq 20 \mathrm{~ns}$),
to ($\geq 1000 \mathrm{~ns}$)

Note: One bit of data is shifted into the shift register on the rising edge of the clock.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unl!	Remarla
		Mins	typ.	Max:		
Supply Voltage	V_{001}, V_{002}	2.6	-	5.5	V	
	V_{p}	V_{00}	-	6.0	V	
Input voltage	V_{1}	GND	-	V_{00}	V	
Operating temperature	T_{A}	-30	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

$\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter		Symbol		Value		Unit	Condition	
		Min	Typ	Max				
Supply current $\left(I_{D D 1}+I_{D D 2}\right)$			IDD	-	7.0	9.0	mA	*1
		-		11.0	-	mA	*2	
Stand by current	$\mathrm{V}_{\mathrm{DD1} 1} 2$	Ips	-	-	10	$\mu \mathrm{A}$		
Operating frequency	$\mathrm{f}_{\text {IN1,2 }}$	f_{I}	90	-	1100	MHz		
	OSC $_{\text {IN }}$	fosc	3	12.8	35	MHz		
Input sensitivity	$\mathrm{f}_{\mathrm{IN} 1,2}$	$\mathrm{P}_{\mathrm{flN}}$	-13	-	+1	dBm	50Ω, Vcc=2.6 to 3.5 V	
	$\mathrm{f}_{\mathrm{IN} 1,2}$	$\mathrm{Pfin}^{\text {f }}$	-7	-	+1	dBm	50Ω, Vcc $=3.5$ to 5.5 V	
	OSC $_{\text {IN }}$	Vosc	0.5	-	-	Vp-p		
High-level input voltage	Data, Clock, LE, PS	V_{IH}	$V_{D D} \times 0.7$	-	-	V		
Low-level input voltage		V_{IL}	-	-	$V_{D D} \times 0.3$	V		
High-level input current		IIH	-	-	1.0	$\mu \mathrm{A}$		
Low-level input current	LE, PS	IIL	-1.0	-	-	$\mu \mathrm{A}$		
Input current	OSC $_{\text {IN }}$	losc	-100	-	100	$\mu \mathrm{A}$		
Low-level output voltage	P0 to P3	V_{OL}	-	-	0.4	V	Open drain output	
Set output voltage	$I_{\text {SET }}$	$\mathrm{V}_{\text {SET }}$	-	1.2	-	V	$\mathrm{R}_{\text {SET }}=5 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$	
High-impedance Cut off current	Do, P0 to P3	loff	-	-	1.1	$\mu \mathrm{A}$		
Output current	$\mathrm{D}_{01,2}$	$\mathrm{I}_{\mathrm{DOH}}$	1.4	1.9	2.4	mA	$\mathrm{R}_{\mathrm{SET}}=7 \mathrm{k} \Omega$ connected. CR1, 2 bits $=$ " 1 " $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{P}}=5.0 \mathrm{~V}$	
		IDOL1	1.4	1.9	2.4	mA		
	$\mathrm{D}_{01,2}$	IDOHO	0.7	0.96	1.2	mA	$\mathrm{R}_{\text {SET }}=7 \mathrm{k} \Omega$ connected. CR1, 2 bits = " 0 " $V_{D D}=3.0 \mathrm{~V}, V_{P}=5.0 \mathrm{~V}$	
		IDOLO	0.7	0.96	1.2	mA		
	P0 to P3	loL	1.0	-	-	mA	Open drain	

Note: *1; $f_{\mathbb{N}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathbb{N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$. In locked state.
*2; $f_{I N}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathbb{I N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$. In locked state.

PACKAGE AND DIMENSIONS

MB1510
DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

DESCRIPTION

The Fujitsu MB1510 is a 1.1 GHz dual serial input PLL (Phase Locked Loop) frequency synthesizer designed for cellular telephone and cordless telephone applications.
The MB1510 has two PLL circuits on a single chip: PLL1 and PLL2. An analog switch is provided for each PLL circuit decrease lock up time. Separate power supply pins are provided for each PLL circuit as well.
1.1 GHz dual modulus prescalers are on chip and enables a pulse swallow function. It operates from a supply voltage of 3.0 V typ. and dissipates 15 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

FEATURES

- High operating frequency: $f_{\text {in }}=1.1 \mathrm{GHz}\left(P_{\text {in }}=-10 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}\right)$
- Pulse swallow function: 64/65 or 128/129
- Low power supply current: ICC $=15 \mathrm{~mA}$ typ, @3V.
- Serial input reference divider: $R=512$ or 1024
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047
- Tx and Rx programmable counters may be controlled separately.
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
- On-chip analog switches achieve fast lockup time
- Fast lock up by bipolar charge pumps
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 20-pin fiat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	IOUT	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment
(TOP VIEW)

Pin Assignment might be changed to improve the characteristics without notice.

[^28]

PIN DESCRIPTIONS

Pln No.	Pin Name	I/O	Descriptions	
1	GND	-	Ground	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\mathrm{OSC}_{\mathbb{I N}}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input pin Oscillator output pin A crystal is connected between $\mathrm{OSC}_{\mathbb{N}}$ pin and $\mathrm{OS}_{\text {OUT }}$ pin.	
4	fin_{1}	1	Prescaler input pin of PLL1 section. The connection with VCO should be AC connection.	
5	$\mathrm{V}_{\mathrm{cc},}$	-	Power supply voltage input pin of PLL1 section. When power is OFF, latched data of PLL1 section is cancelled.	
6	$\mathrm{f}_{\text {f }}$	\bigcirc	Monitor pin for programmable reference divider output	
7	LD1	\bigcirc	Lock detect signal output pin of PLL1 section.	
			Condition	LD pin output level
			Lock	H
			Unlock	L
8	BSC1	1	Analog switch control pin of PLL1 section.	
			BSC1	BS1 pin output
			L	High-impedance
			H	Charge pump output
9	Do1	0	Charge pump output pin of PLL1 section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.	
10	BS1	0	Analog switch output pin of PLL1 section, and controlled by BSC1.	
11	BS2	\bigcirc	Analog switch output pin of PLL2 section, and controlled by BSC2.	
12	Do2	\bigcirc	Charge pump output pin of PLL2 section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.	
13	BSC2	I	Analog switch control pin of PLL2 section.	
			BSC2	BS2 pin output
			L	High-impedance
			H	Charge pump output
14	LD2	\bigcirc	Lock detect signal output pin of PLL2 section.	
			Condition	LD pin output level
			Lock	H
			Unlock	L
15	t_{p}	\bigcirc	Monitor pin for programmable divider output. This pin output divided frequency of PLL1 section or PLL2 section depending upon FP bit setting.	
			Condition	LD pin output level
			Lock	H
			Unlock	L

PIN DESCRIPTIONS (continued)

Pin No.	Pin Name	I/O	Descriptions
16	$\mathrm{V}_{\mathrm{CC} 2}$	-	Power supply voltage input pin for PLL2 section, programmable reference divider, shift register, and crystal oscillator. When power is OFF, latched data of PLL2 section and reference counter is cancelled.
17	$\mathrm{f}_{\text {in2 }}$	1	Prescaler input pin of PLL2 section. The connection with VCO should be AC connection.
18	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch depending on a control data. At this moment, charge pump output signal is output from BS pin since internal analog switch becomes ON.
19	Data	1	Serial data input pin of 23 -bit shift register. This pin involves a schmitt trigger circuit. The stored data in the shift register is transferred to either PLL1 section or PLL2 section depending upon a control data.
20	Clock	1	Clock input pin of 23-bit shift register. This pin involves a schmitt trigger circuit. On rising edge of the clock shifts one bit of data into the shitt register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:

$$
f_{v c o}=\{(M \times N)+A\} \times f_{o s c}+R \quad(A<N)
$$

$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
M: Preset divide ratio of dual modulus prescaler (64 or 128)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: \quad Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
$f_{\text {osc }}$: Reference oscillation frequency
R: Preset divide ratio of reference counter (512 or 1024)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is input using three pins, Data pin, Clock pin, and LE pin. Programmable divider of PLL1 section and programmable divider of PLL2 section are controlled individually.

Serial data of binary data is input into Data pin.
On rising edge of clock shifts one bit of serial data into the shift register. When load enable signal is high. the data stored in the shift register is transferred to either the latch of PLL1 section or the latch of PLL2 section depending upon the control bit data setting.

Control data	Destination of serial data
H	Latch of PLL1 section
L	Latch of PLL2 section

SHIFT REGISTER CONFIGURATION

Control bit

SERIAL DATA INPUT TIMING

On rising edge of the dock shifts one bit of the data into the shift register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	11	1	1	1	1	1

Note: Divide ratio loss than 16 is prohibited.
Divide ratio (H) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

PRE: DIVIDE RATIO (P) OF THE PRESCALER SETTING BIT
$H=64 / 65$
$L=128 / 129$
REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT
$\mathrm{H}=\mathrm{S} 12$ ($\mathrm{fr}=25.0 \mathrm{kHz}$)
$\mathrm{L}=1024$ ($\mathrm{fr}=12.5 \mathrm{kHz}$)
FP: OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT
$H=f p$ pin (15 pin) outputs programmable~ divider output frequency (fp1) of PLL1 section. $L=$ fp pin (15 pin) outputs programmable divider output frequency (fp2) of PLL2 section ${ }_{5}$
FC: PHASE CONTROL BIT OF THE PHASE DETECTOR
Output of charge pump is selected by FC pin.

	$F C=H$	$F C=L$
$f r>f p$	H	L
$f r=f p$	Z	Z
$f r<f p$	L	H
VCO Polarity	(1)	(2)

Note: $\quad Z=$ High-impedance Depending upon the VCO polarity, FC should be bit set.

PHASE DETECTOR OUTPUT WAVEFORM

(FC bit = Low)

Note:

- Phase difference detection range $=-2 \pi$ to $+2 \pi$
- LD output becomes low when phase difference is tW or more.

LD output becomes high when phase difference less than IW is repeated 3 times or more.
(e. g. $\mathrm{tW}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$)

- Spike appearance depends on the charge pump characteristics. The spike is output to diminish the dead band.
- When $\mathrm{fr}>\mathrm{fp}$ or $\mathrm{fr}<\mathrm{fp}$, spike might not generate depending on the charge pump characteristics.

ANALOG SWITCH

ON/OFF of the analog switch is controlled by BSC input signal. BSC1 controls the analog switch of the PLL1 circuit, BSC2 controls the analog switch of PLL2. When the analog switch is ON, BS pin output the charge pump output (D01, D02). When analog switch is OFF, BS pin is set to high-impedance.

	BCS1 (2)	
	H	L
Analog switch of PLLI1 (2) section	ON	OFF
BS1 (2) output	Charge pump output Do1 (2)	High-impedance

When an analog switch is inserted between LPF-1 and LPF-2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	V_{CC}	2.7	3.0	5.5	V	$\mathrm{~V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}$
Input Voltage	V_{IN}	GHD	-	V_{CC}	V	
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded.
- Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket
- Protects leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit
Power Supply Current		lcCl_{1}	PLL2 current	-	8.0	-	mA
		$\mathrm{ICC2}$	(PLL1 + PLL2) current	-	15.0	-	
Operating Frequency	$f_{\text {in }}$	$\mathrm{fin1}^{\text {in }}$	* 1	10	-	1100	MHz
		fin	*2	10			
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{f}_{\text {osc }}$		-	12.8	20.0	
Input Sensitivity	$f_{\text {in }}$	$P_{\text {fin }}$	$\mathrm{V}_{\mathrm{CC}}=2.7$ to $4.0 \mathrm{~V}, 50 \Omega$	-10	-	0	dBm
			$\mathrm{V}_{\mathrm{CC}}=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$	-4	-	2	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		0.5	-	-	Vp-p
High-level Input Voltage	Except $\mathrm{f}_{\text {in }}$ and $\mathrm{OSC}_{\mathrm{in}}$	V_{HH}		$\mathrm{V}_{\mathrm{CC}} \times 0.7+0.4$	-	-	V
Low-levei Input Voitage		$\mathrm{V}_{\text {IL }}$		-	-	$\mathrm{V}^{C C} \times 0.3-0.4$	
High-level Input Current	Data, Clock LE	${ }_{1} \mathrm{H}$		-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		$1 / L$		-	-1.0	-	
	FC	IfC		-	-60	-	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc			± 50	-	
High-leve! Output Voltage	Except D_{0} and OSCOUT	V_{OH}	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.2	-	-	V
Low-level Output Voltage		VOL		-	-	0.4	
High-Impedance Cutoff Current	$\begin{aligned} & D_{0}, \\ & \varphi P \end{aligned}$	loff	$\begin{aligned} & V_{P}=V_{C C} \text { to } 8.0 \mathrm{~V} \\ & V_{O O P}=G N D \text { to } 8.0 \mathrm{~V} \end{aligned}$	-	-	1.1	$\mu \mathrm{A}$
Output Current	Except D_{0} and OSCOUT	IOH		-1.0	-	-	mA
		10 L		1.0	-	-	
Analog Switch ON Resistance		RoN		-	50	-	Ω

[^29]
TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

Note: $\quad X^{\prime}$ tal: $\quad 12.8 \mathrm{MHz}$
C1, C2: depends on the crystal oscillator.
Clock, Data, LE: involve the schmitt circuit
When input pins are open, please insert the pull down/up resistor individually to prevent the oscillation.

PACKAGE DIMENSIONS

MB15B11

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

On-chip 1.1GHz \& 400MHz PRESCALER'S

The Fujitsu MB15B11 is a serial input Phase Locked Loop (PLL) frequency synthesizer with pulse swallow operation. Two synthesizers; 400 MHz system has a low sensitivity charge pump for transmit modulation, 1.1 GHz system has a high sensitivity charge pump for fast lock up of receive frequency. An analog switch is provided for each PLL circuit for faster lock up.
These various features help compact system designing important in mobile radio applications. Typical applications are cellular phones, cordless phones and other radio applications where IF modulation is adopted.
It operates with a supply voltage of 3.0 V typ. and dissipates totally 9.5 mA typ. of current realized through the use of Fujitsu's Bi-CMOS technology. The power saving function maintains current reduction.

FEATURES

- Dual PLL frequency synthesizers; 400 MHz (PLL1) \& 1.1 GHz (PLL2)
- Low power supply current: $\mathrm{I}_{\mathrm{CC}}($ total $)=9.5 \mathrm{~mA}$ typ. $(\mathrm{Vcc}=3 \mathrm{~V})$
- Power saving function : $\mathrm{I}_{\mathrm{CC} 1}=\mathrm{I}_{\mathrm{CC} 2}=100 \mu \mathrm{~A}$ typ $(\mathrm{Vcc}=3 \mathrm{~V})$
- Pulse swallow function;
- 1.1 GHz Prescaler: $64 / 65$ or $128 / 129$
- 400MHz Prescaler: $32 / 33$ or 64/65
- Serial input 14-bit programmable reference counter: $R=8$ to 16383
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047

PLL1 and PLL2 programmable counters can be controlled independently.

- Functionally tuned up charge pumps
- Transmit (PLL1): Low sensitivity charge pump (for modulation)
- Receive (PLL2): High sensitivity charge pump (for fast lock up)
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.5 V
- On-chip analog switches achieve fast lock up time
- Wide operating temperature: $T_{A}=-30$ to $80^{\circ} \mathrm{C}$
- Plastic 20-pin SSOP package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Remark	Value	Unt
Power Supply Voltage	Vcc		-0.5 to 5.0	V
	VP		V_{Cc} to 7.0	V
Output Voltage	Vout		-0.5 to $\mathrm{Vcc}+0.5$	V
Output Current	lout		± 10	mA
Storage Temperature	TsTG		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB15B11

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Pin Name	vo	Descriptions
1	GND	-	Ground.
2 3	OSCIN OSCOUT	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input pin. Oscillator output pin. A crystal is connected between OSCIN pin and OSCOUT pin.
4	fin1	1	Prescaler input pin of PLL1 section. The connection with VCO should be AC.
5	Vcc1	-	Power supply voltage input pin of PLL1 section. When power is OFF, latched data of PLL1 section is cancelled.
6	fr	0	Monitor pin for programmable reference divider output. (Open drain output)
7	LD1	0	Lock detect signal output pin of PLL1 section.
8	Vp1	-	Power supply pin for PLL.1's charge pump and analog switch
9	Do1	0	Charge pump output pin of PLL1 section. Phase characteristics of the phase detector can be reversed according to FC-bit setting.
10	BS1	0	Analog switch output pin of PLL1 section.
11	BS2	0	Analog switch output pin of PLL2 section.
12	Do2	0	Charge pump output pin of PLL2 section. Phase characteristics of the phase detector can be reversed according to FC-bit setting.
13	Vp2	-	Power supply pin for PLL2's charge pump and analog switch
14	LD2	0	Lock detection signal output pin of PLL2 section.
15	ip	0	Monitor pin for programmable divider output. (Open drain output) This pin outputs divided frequency of PLL1 section or PLL2 section according to FP bit setting.

PIN DESCRIPTIONS (Continued)

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
f fco $=\{(P \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controiled ocillator (VCO)
P: Preset divide ratio of dual modulus prescaler (32 or 64 for PLL1, 64 or 128 for PLL2)
$\mathrm{N}: \quad$ Preset divide ratio of binary 11 -bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable divider of PLL1 section, programmable divider of PLL2 section and programmable reference divider are controlled individually. Serial data of binary data is entered into Data pin.
On rising edge of clock, one bit of serial data is transferred into the shift register. When load enable signal is high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Control blts		Destination of serial data
CNT1	CNT2	
L	L	Programmabie reference counter
L	H	Programmable counter of PLL1
H	H	Programmable counter of PLL2

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

R1 to R14 : Divide ratio setting bit for the reference programmable counter (8 to 16383)
FP : Test purpose bit (monitor output fp1/fp2 selection)
CN1, 2 : Control bit

Programmable Counter

LSB Data Flow \rightarrow M																						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
C	C	P	P	F	A	A	A	A	A	A	A	N	N	N	N	N	N	N	N	N	N	N
N	N	S	R	C	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11
1	2		E																			

N1 to N11 : Divide ratio setting bit for the programmable counter (16 to 2047)
A1 to A7 : Divide ratio setting bit for the swallow counter (0 to 127)
FC : Phase control bit for the phase detector
PRE : Divide ratio setting bit for the prescaler (64/65, 128/129)
PS : Power saving control bit
CN1, 2 : Control bit

BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratio (R)	R $\mathbf{1 4}$	R $\mathbf{1 3}$	R $\mathbf{1 2}$	R $\mathbf{1 1}$	R $\mathbf{1 0}$	R $\mathbf{9}$	R $\mathbf{8}$	R $\mathbf{7}$	R $\mathbf{6}$	R $\mathbf{5}$	R $\mathbf{4}$	R $\mathbf{3}$	R $\mathbf{2}$	R $\mathbf{1}$
$\mathbf{8}$	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
V	V	V	V	V	V	V	V	V	V	V	V	V	V	V
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 8 is prohibited.

- Divide ratio (R) range $=8$ to 16383

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (\mathbf{N})	N $\mathbf{1 1}$	N $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	N $\mathbf{6}$	N $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	N $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	N $\mathbf{1}$
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
V	V	V	V	V	V	V	V	V	V	V	V
2047	1	1	1	1	1	1	1	1	1	1	1

Note: - Divide ratio less than 16 is prohibited.

- Divide ratio (N) range =16 to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A $\mathbf{7}$	A $\mathbf{6}$	A 5	A $\mathbf{4}$	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
V	V	V	V	V	V	V	V
127	1	1	1	1	1	1	1

Note:- Divide ratio (A) range $=0$ to 127

PRESCALER DATA SETTING

		PRE $=$ "H"	PRE $=" L "$
Prescaler Divide ratio	PLL1	$32 / 33$	$64 / 65$
	PLLL2	$64 / 65$	$128 / 129$

Note: - Divide ratio for each PLL1 and PLL2 is set by the serial data at that time of divide ratio setting for each programmable divider.

POWER SAVING FUNCTION CONTROL

	PS	
	H	L
PLL1's section	ON	OFF
PLLL's section and common section	ON	OFF

Note: • Power saving mode for each PLL1 and PLL2 is selected by the serial data at that time of divide ratio setting for each programmable divider.

- Common section ; Crystal oscillator circuit, programmable reference counter

PHASE COMPARATOR PHASE CONTROL DATA SETTING

	FC $=\mathbf{H}$	FC = L
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO Polarity	$?$	1

Note: \mathbf{Z} = High-impedance

- Depending upon the VCO polarity, FC bit should be set.
- Phase characteristic for each PLL1 and PLL2 is set by the serial data at that time of divide ratio setting for each programmable divider.

SERIAL DATA INPUT TIMING

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase difference is tw or more.
- LD output becomes high when phase difference is tw or less and continues to be so for three cysles or more.
- tw depends on OSCin input frequency.
(e.g. tw635ns to 1250 ns when foscin $=12.8 \mathrm{MHz}$)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	Vcc	2.7	3.0	3.5	V	$\mathrm{Vcc1}=\mathrm{Vcc} 2$
	Vcc	Vcc	-	6.0	V	
Input Voltage	Vin	GND	-	Vcc	v	
Operating Temperature	TA	-30	-	+80	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB15B11

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit
				Min	TyP	Max	
Power Supply Current		Icc1	PLL. 1 section	-	3.5(0.1) ${ }^{*}$	-	mA
		Icce 2	PLL2 section	-	6.0(0.1)	-	
Operating Frequency	fin1	$f i n 1$		100	-	400	MHz
	fin2	fin2		100	-	1100	
	OSCIN	fosc		-	12.8	20.0	
Input Sensitivity	fin1	Pfin1	PLL1, 50Ω system	-10	-	4	dBm
	fin2	Pfin2	PLL2, 50Ω system	-10	-	4	dBm
	OSCIN	Vosc		0.5	-	-	Vp-p
High-level Input Voltage	Except fin and OSCin	VIH		Vccx0.7+0.4	-	-	V
Low-level Input Voltage		VIL		-	-	Vccx0.3-0.4	
High-level Input Current	Data, Clock LE	IIH		-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		IIL.		-	-1.0	-	
Input Current	OSCIN	losc		-	± 50	-	
High-level Output Voltage	Except Do and OSCout	Vон	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V
Low-level Output Voltage		Vol		-	-	0.4	
High-impedance Cutoff Current	Do, Φ P	loff	$\begin{aligned} & \mathrm{Vp}=\mathrm{Vcc} \text { to } 8.0 \mathrm{~V}, \\ & \mathrm{Voop}=\mathrm{GND} \text { to } 8.0 \mathrm{~V} \end{aligned}$	-	-	1.1	$\mu \mathrm{A}$
Output Current	Except Do and OSCout	IOH		-1.0	-	-	mA
		loL		1.0	-	-	
	Do1	IOH	$\mathrm{VP}=6.0 \mathrm{~V}$	-	-1	-	mA
		10.	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	12	-	
	Do2	IOH	$\mathrm{VP}=6.0 \mathrm{~V}$	-	-3	-	mA
		IoL	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	6	-	
Analog Switch ON Resistance		Ron		-	50	-	Ω

Notes: *1 : The value in () is power supply current in power saving mode.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

$\overline{\overline{\text { APPLICATION EXAMPLE }}}$

PACKAGE INFORMATION

MB1511 ASSP

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DESCRIPTION

The Fujitsu MB1511 is a single chip serial input PLL frequency synthesizer designed for VHF tuner and cellular telephone applications.
It contains a 1.1 GHz dual modulus prescaler which enables pulse swallow function, and an analog switch to speed up lock up time.
It operates supply voltage of 3.0 V typ. and dissipates 7 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

FEATURES

- Low power supply voltage: $\mathrm{VcC}=2.7$ to 5.5 V
- High operating frequency: fin max $=1.1 \mathrm{GHz}(\operatorname{PIN} \operatorname{MIN}=-10 d B m)$
- Pulse swallow function: $64 / 65$ or $128 / 129$
- Low supply current: ICC = 7 mA typ.
- Serial input 18 -bit programmable divider consisting of:

Binary 7-bit swallow counter: 0 to 127
Binary 11-bit programmable counter: 16 to 2047

- Serial input 15-bit programmable reference divider consisting of: Binary 14-bit programmable reference counter: 8 to 16383 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2 types of phase detector output

On-chip charge pump (Bipolar type)
Output for external charge pump

- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 20-pin Plastic Shrink Small Outline Package (Suffix: -PFV)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Units
Power Supply voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 8.0	V
Output current	IOUT	± 10	mA
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of theis data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB1511 BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin Name	VO	Description
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC }_{\text {out }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\mathbb{N}}$ and OSC $_{\text {our }}$.
4	V_{p}	-	Power supply input for charge pump and analog switch.
5	$V_{c c}$	-	Power supply voltage input.
6	D	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
7	GND	-	Ground.
8	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f_{r} and f_{p} exists, this pin outputs low level.
10	f_{N}	1	Prescaler input. The connection with an external VCO should be AC connection.
11	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
13	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
14	LE	1	L.oad enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output is connected to BISW pin because internal analog switch becomes ON state.
15	FC	1	Phase select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal controls $f_{\text {wut }}$ pin (test pin) output level, $f_{\text {t }}$ or f_{p}.
16	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump output.
17	fout	0	Minitor pin of phase comparator input. $f_{\text {out }}$ pin outputs either programmable reference divider output ($f_{\text {f }}$) or programmable divider output (f_{p}) depending upon FC pin input level. $\mathrm{FC}=\mathrm{H}$: It is the same as f , output level. FC=L: It is the same as f_{p} output level.
$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \varnothing \mathrm{P} \\ & \varnothing \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.
$\begin{gathered} 2,9 \\ 12,19 \end{gathered}$	NC	-	No connection.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18-bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shitts one bit of serial data into the internal shitt registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data "L" data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S	S											
S	S	12	11	S	S	S	S	S	S	S	S	S	S	
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW:This bit selects divide ratio of prescaler.
SW=H : 64/65
$S W=L: 128 / 129$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18 -bit latch, 7 -bit swaliow counter and 11 -bit programmable counter.
Serial 19-bit data format is shown following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S	S	S	S	S	S
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1
1	\bullet	1					
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9	S 8
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited. Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047) C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

The divide ratio is set using the following equation.
$\left.f_{\text {vco }}=[M \times N)+A\right] \times f_{o s c}+R$
$f_{\text {vco: O }}$ Output frequency of external voltage controlled oscillator (VCO)
M: Preset modulus of external dual modulus prescaler (64 or 128)
N: Preset divide ratio of binary 11 -bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
$\mathrm{f}_{\text {osc }}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)

SERIAL DATA INPUT TIMING

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{0}), phase comparator output level (\varnothing R, $\odot P$) are reversed depending upon FC pin input level. Also, monitor pin ($f_{\text {out }}$) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($\mathrm{D}_{\mathrm{o}}, \otimes \mathrm{R}, \otimes \mathrm{P}$) and FC input level are shown below.

	FC=H or open				$F C=L$			
	D	-R	${ }_{\bullet P}$	$\mathrm{f}_{\text {out }}$	D。	-R	${ }_{\text {®P }}$	$\mathrm{f}_{\text {out }}$
$i_{1}>t_{p}$	H	L	L	(f_{1})	L	H	Z	$\left(i_{p}\right)$
$\mathrm{f}_{1}<\mathrm{f}_{\mathrm{p}}$	L	H	Z	$\left(\mathrm{f}_{\mathrm{r}}\right.$)	H	L	L	$\left(f_{p}\right)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	Z	L	Z	$\left(f_{1}\right)$	Z	L	Z	$\left(t_{p}\right)$

Note: $\mathbf{Z}=$ (High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit;
When VCO characteristics are like (2), FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{1}>f_{p}$ or $f_{1}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{0}) is connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.

LE	Analog Switch
H (Changing the divide ratio of intermal prescaler)	ON
L (Normal operating mode)	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up times is achieved to reduce LPF time constant during PLL channal switching.

MB1511
RECOMMENDED OPERATING CONDITIONS

P Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{c c}$	2.7	3.0	5.5	V
	V_{p}	$V_{c c}$		-	8.0
	V_{1}	GND	-	$V_{c c}$	V
Operating Temperature	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off befer inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handing or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{VCC}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Value			Unit	
		Min	Typ	Max			
Power supply current"			$\mathrm{I}_{\text {cc }}$	-	7.0	-	mA
Operating frequency	fin^{-2}	f_{IN}	10	-	1100	MHz	
	OSCIN	fosc	-	12	20	MHz	
Input sensitivity	fin $-1 / 3$	Pfin1	-4	-	6	dBm	
	fin-2.4	Pfin2	-10	-	6	dBm	
	OSCIN	Vosc	0.5	-	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$	
High-level input voltage	Except fin and OSC IN	V_{IH}	vcc×0.7	-	-	V	
Low-level input voltage		V_{IL}	-	-	vccx0.3	v	
High-level input current	Data clock	I_{H}	-	1.0	-	$\mu \mathrm{A}$	
Low-level input current		ILL	-	-1.0	-	$\mu \mathrm{A}$	
Input current	$\mathrm{OSC}_{\text {IN }}$	losc	-	+50	-	$\mu \mathrm{A}$	
	LE, FC	LEE	-	-60	-	$\mu \mathrm{A}$	
High-level output current	Except DO and OSCout	$\mathrm{V}_{\mathrm{OH}}{ }^{\text {5 }}$	2.2	-	-	V	
Low-level output current		$\mathrm{V}_{\text {OL }}$	-	-	0.4	V	
N -channel open drain cutoff current	DO, \varnothing p ${ }^{*} 6$	loff	-	-	1.1	$\mu \mathrm{A}$	
Output current	Except DO and OSCout	$\mathrm{IOH}^{\text {O}}$	-1.0	-	-	$\mu \mathrm{A}$	
		la	1.0	-	-	$\mu \mathrm{A}$	
Analog switch on resistance		Ron	-	50	-	Ω	

Notes:

1. fin $=1.1 \mathrm{GHz}, \mathrm{OSCIN}=12 \mathrm{MHz}, \mathrm{VCC}=3 \mathrm{~V}$. Inputs are grounded and outputs are open.
2. AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF .
3. $V C C=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$
4. $V^{\prime} C C=2.7$ to $4.0 \mathrm{~V}, 50 \Omega$
5. $V C C=3 V$
6. $V P=V C C$ to $8 V, V O O P=G N D$ to $8 V$

MB1511
TEST CIRCUIT

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

MB1512

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB1512, utilizing BI-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.
The MB1512 contains a $1.1 \mathrm{GH}_{\mathrm{Z}}$ two modulus prescaler that can select of either $64 / 65$ or $128 / 129$ divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18-bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter) and analog switch to speed up lock up time.
It operates with a supply voltage of 5 V typ. and achieves very low supply current of 8mA typ. realized through the use of Fujitsu Advanced Process Technology.

- High operating frequency: $\mathrm{f}_{\mathrm{IN}} \mathrm{MAX}=1.1 \mathrm{GH}_{\mathrm{Z}}$ ($\left.\mathrm{P}_{\mathrm{IN} \text { MIN }}=-10 \mathrm{dBm}\right)$
- Pulse swallow function: $64 / 65$ or $128 / 129$
- Power supply voltage: $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
- Low supply current: $I_{C C=8 m A ~ t y p . ~}^{\text {. }}$
- Serial input 18 -bit programmable divider consisting of:

Binary 7-bit swallow counter: 0 to 127
Binary 11-bit programmable counter: 16 to 2047

- Serial input 15 -bit programmable reference divider consisting of:

Binary 14-bit programmable reference counter: 8 to 16383
1 -bit switch counter (SW) sets divide ratio of prescaler

- On-chip analog switch achieves fast lock up time
- 2types of phase detector output

On-chip charge pump (Bipolar type)
Output for external charge pump

- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 20-pin Plastic Shrink Small Outline Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {OOP }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^30]

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Pin Name	vo	Description
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC }_{\text {OUT }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\mathbb{I N}}$ and OSC $_{\text {OUT }}$.
4	V_{P}	-	Power supply input for charge pump and analog switch.
5	$V_{C C}$	-	Power supply voltage input.
6	Do	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
7	GND	-	Ground.
8	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f_{r} and f_{p} exists, this pin outputs low level.
9	NC	-	No connection.
10	f_{N}	1	Prescaler input. The connection with an external VCO should be AC connection.
11	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
12	NC	-	No connection.
13	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18-bit latch.
14	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
15	FC	1	Phse select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control $f_{\text {out }}$ pin (test pin) output level, f_{r} or f_{p}.
16	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
17	fout	0	Minitor pin of phase comparator input. $f_{\text {out }}$ pin outputs either programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level. $\mathrm{FC}=\mathrm{H}$: It is the same as f_{r} output level. $F C=L$: It is the same as f_{p} output level.
$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ØP } \\ & \emptyset R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.
$\begin{array}{r} 2 \\ 19 \end{array}$	NC	-	No connection.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S												
13	S	S	S	S	S	S	S	S	S	S	S	S		
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
9	\bullet	6	5	4	3	2	1							
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
SW=H:64/65
$S W=L: 128 / 129$
S 1 to S 14 : These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter.
Serial 19-bit data format is shown following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S 6	S 5	S 4	S	S	S
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S	S
16	0	0	0	0	0	0	1	0	0	0	\varnothing
17	0	0	0	0	0	0	1	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

$\mathrm{fvco}^{2}=[(\mathrm{PxN})+\mathrm{A}] \times \mathrm{ff}_{\mathrm{OS}}+\mathrm{R}$
f_{VCO} :Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
$f_{\text {OSC }}$:Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to16383)
P : Preset modulus of external dual modulus prescaler (64 or 128)

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS
VCO CHARACTERISTICS
FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{0}), phase comparator output level (ØR, ØP) are reversed depending upon FC pin input level. Also, monitor pin ($f_{\text {out }}$) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($\mathrm{D}_{\mathrm{O}}, \varnothing \mathrm{Q}, \varnothing \mathrm{Q}$) and FC input level are shown below.

	FC=H or open				$F C=L$			
	Do	0 R	ØP	$f_{\text {out }}$	D_{0}	$\emptyset \mathrm{R}$	$\emptyset \mathrm{P}$	$\mathrm{f}_{\text {out }}$
$f_{r}>{ }_{p}$	H	L	L	$\left(t_{r}\right)$	L	H	z	$\left(\mathrm{f}_{\mathrm{p}}\right)$
$f_{r}<t_{p}$	L	H	z	(t_{r})	H	L	L	$\left(f_{p}\right)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	z	L	z	(f_{r})	z	L	z	(f_{p})

Note: $\quad \mathbf{Z}=$ (High impedance)

Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1). FC should be set high or open circuit; When VCO characteristics are like (2) , FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{r}>f_{p}$ or $f_{r}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{O}) to be connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\mathrm{LE}=\mathrm{H}$ (Changing the divide ratio of internal prescaler) : Analog switch=ON
LE=L (Normal operating mode)
: Analog switch=OFF
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
	V_{P}	$V_{C C}$	-	8.0	V
	V_{1}	$G N D$	-	$V_{C C}$	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			ICC	Note 1	-	8.0	12.0	mA
Operating Frequency	$\mathrm{fin}^{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note 2	10	-	1100	MHz	
	OSC ${ }_{\text {IN }}$	fosc		-	12	20	MHz	
Input Sensitivity	$\mathrm{fin}^{\text {in }}$	$\mathrm{Pf}_{\mathrm{in}}$		-10	-	6	dBm	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		0.5	-	-	$V_{P P}$	
High-level Input Voltage	Except $\mathrm{fin}_{\mathrm{n}}$ and OSC ${ }_{\text {IN }}$	$\mathrm{V}_{\mathbf{I H}}$		$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-	V	
Low-level Input Voltage		$V_{\text {IL }}$		-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V	
High-level Input Current	Data Clock	$\mathrm{IIH}^{\text {H }}$		-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		ILL		-	-1.0	-	$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\mathbb{N}}$	losc		-	± 50	-	$\mu \mathrm{A}$	
	LE, FC	ILE		-	-60	-	$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and OSCOUT	V_{OH}	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Current		V_{OL}		-	-	0.4	V	
N -channel Open Drain Cutoff Current	$\mathrm{D}_{0}, \varnothing \mathrm{P}$	Ioff	$\mathrm{V}_{\mathrm{Cc}} \leq \mathrm{V}_{\mathrm{P}} \leq 8 \mathrm{~V}$	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except D_{O} and OSCOUT	IOH^{\prime}		-1.0	-	-	mA	
		lol		1.0	-	-	mA	
Analog Switch On Resistor		RON		-	25	-	Ω	

NOTE 1: $f_{i n}=1.1 \mathrm{GHz}, \mathrm{OSC}_{1 \mathrm{~N}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Inputs are grounded and outpuis are open.
NOTE 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

MB15B13
 DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB15B13 is a 1.1 GHz dual serial input PLL (Phase Locked Loop) frequency synthesizer designed for cellular phones, cordless phones and other radio applications. The MB15B13 has two PLL circuits on a single chip: PLL1 and PLL2. An analog switch is provided for each PLL circuit to decrease lock uptime. Separate power supply pins are provided for each PLL circuit as well.
Two 1.1 GHz dual modulus prescalers are included inside and enables a pulse swallow function. It operates with a supply voltage of 3.0 V typ. and dissipates 13 mA typ. of current realized through the use of Fujitsu's unique $\mathrm{Bi}-\mathrm{CMOS}$ technology.

FEATURES

- High operating frequency: fin $=1.1 \mathrm{GHz}(\mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{Vcc}=3 \mathrm{~V})$
- Pulse swallow function: $64 / 65$ or 128/129
- Serial input 14-bit programmable reference divider: $R=8$ to 16383
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047

Tx and Rx programmable counters can be controlled independently.

- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.5 V
- Low power supply current: $I_{C C}($ total $)=13 \mathrm{~mA}$ typ. $(\mathrm{Vcc}=3 \mathrm{~V})$
- Power saving function : $\mathrm{I}_{\mathrm{cC} 1}=\mathrm{I}_{\mathrm{CC} 2}=100 \mu \mathrm{~A}$ typ $(\mathrm{Vcc}=3 \mathrm{~V})$
- On-chip analog switch to achieve fast lock up time for PLL1
- On-chip programmable switche controlled by PLL2 programming sequence
- Digital lock detector
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-30$ to $80^{\circ} \mathrm{C}$
- Plastic 20-pin SSOP package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Remark	Value	Unit
Power Supply Voltage	Vcc		-0.5 to 5.0	V
Output Voltage	Vout		-0.5 to Vcc +0.5	V
Open Drain Voltage	Voop	fr, fp	-0.5 to +5.0	V
Output Current	Iout		± 10	mA
Storage Temperature	Tsta		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^31]
BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Pin Name	VO	Descriptions
1	GND	-	Ground.
2	OSCIN OSCout	1	Oscillator input pin. Oscillator output pin. A crystal is connected between OSCIN pin and OSCOUT pin.
4	fin1	1	Prescaler input pin of PLL1 section. The connection with VCO should be AC.
5	Vcc 1	-	Power supply voltage input pin of PLL 1 section. When power is OFF, latched data of PLL1 section is cancelled.
6	f	0	Monitor pin for programmable reference divider output. (Open drain output)
7	LD1	0	Lock detect signal output pin of PLL 1 section.
8	GND	-	Ground
9	D01	0	Charge pump output pin of PLL1 section.
10	BS 1	\bigcirc	Analog switch output pin of PLL1 section, and controlled by BSC bit.
11	BS2A	1/0	Analog switch I/O pin of PLL2 section
12	Do2	0	Charge pump output pin of PLL2 section.
13	BS2B	1/0	Analog switch 1/O pin of PLL2 section
14	LD2	0	Lock detection signal output pin of PLL2 section.
15	fp	0	Monitor pin for programmable divider output. (Open drain output) This pin outputs divided frequency of PLL1 section or PLL2 section depending upon FP bit setting.

PIN DESCRIPTIONS (Continued)

Pin No.	Pin Name	vo	Descriptions
16	Vcc2	-	Power supply voltage input pin for PLL2 section, programmable reference divider, shift register, and crystal oscillator. When power is OFF, latched data of PLL2 section and reference counter is cancelled.
17	fin2	1	Prescaler input pin of PLL2 section. The connection with VCO should be AC.
18	LE	1	Load enable input pin. This pin is followed by a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch depending on a control data.
19	Data	1	Serial data input pin of 23 -bit shift register. This pin is followed by a schmitt trigger circuit. The stored data in the shift register is transferred to one of PLL1 section, PLL2 section and programmable counter depending upon control data settings.
20	Clock	1	Clock input pin of $\mathbf{2 3}$-bit shift register. This pin is followed by a schmitt trigger circuit. On rising edge of the clock, one bit of data is transferred into the shift register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f \vee c o=\{(P \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
P: Preset divide ratio of dual modulus prescaler (64 or 128)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT
Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable divider of PLL1 section, programmable divider of PLL2 section and programmabie reference divider are controlled individually.
Serial data of binary data is entered into Data pin.
On rising edge of clock, one bit of serial data is transferred into the shift register. When ioad enable signal is high, the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Control bits		Destination of serlal data	
CNT1	CNT2		
L	L	Peference counter	
L	H	Programmable counter of PLL1	
H	H	Programmable counter of PLL2	

SHIFT REGISTER CONFIGURATION

Programmable Reference Counter

R1 to R14 : Divide ratio setting bit for the programmable counter (8 to 16383)
FP : Test purpose bit (monitor output fp1/fp2 selection)
CNT1, 2 : Control bit

Programmable Counter

LSE	Data Flow \longrightarrow																					$\begin{gathered} \text { MSB } \\ \downarrow \end{gathered}$
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
C	C	P	P	B	A	A	A	A	A	A	A	N	N	N	N	N	N	N	N	N	N	N
N	N	S	R	S	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11
T	T 2		E	C																		

N1 to N11 : Divide ratio setting bit for the programmable counter (16 to 2047)
A1 to A7 : Divide ratio setting bit for the swallow counter (0 to 127)
BSC : Analog switch control bit
PRE : Divide ratio setting bit for the prescaler (64/65, 128/129)
PS : Power saving control bit
CNT1, 2 : Control bit

BINARY 14-BIT PROGRAMMABLE REFERENCE COUNTER DATA SETTING

Divide Ratio (R)	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\begin{gathered} R \\ 13 \end{gathered}$	$\begin{aligned} & \text { R } \\ & 12 \end{aligned}$	$\begin{gathered} \mathbf{R} \\ \mathbf{1 1} \end{gathered}$	$\begin{gathered} R \\ 10 \end{gathered}$	R 9	$\begin{gathered} \text { R } \\ \mathbf{8} \end{gathered}$	R 7	$\begin{aligned} & R \\ & 6 \end{aligned}$	$\begin{gathered} R \\ \mathbf{R} \end{gathered}$	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{3} \end{aligned}$	R 2	R 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
.	.	-	-	\cdot	-	\cdot	-	-	-	-	-	-	.	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: - Divide ratio less than 8 is prohibited.

- Divide ratio (R) range $=8$ to 16383

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (\mathbf{N})	N $\mathbf{1 1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	N $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
V	V	V	V	V	V	V	V	V	V	V	V
2047	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 16 is prohibited.

- Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A $\mathbf{6}$	A 5	A $\mathbf{4}$	A 3	A $\mathbf{2}$	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
V	V	V	V	V	V	V	V
127	1	1	1	1	1	1	1

PRESCALER DATA SETTING

Divide Ratio	PRE
$64 / 65$	1
$128 / 129$	0

Note: - Divide ratio for each PLL1 and PLL2 is set by the serial data at that time of divide ratio setting for each programmable divider.

ANALOG SWITCH CONTROL DATA SETTING

BSC	Analog SW (PLLL1)	Analog SW (PLL2)
L	High impedance	High impedance
H	Charge pump output	BS2A and BS2B connected

Note:- Selection of PLL1 or PLL2 is done by the control bits of CNT1 and CNT2. And each analog switch can be controlled individually.

POWER SAVING FUNCTION CONTROL (INTERMITTENT OPERATION)

	PS	
	H	L
PLL'1's section	ON	OFF
PLL2's section and common section	ON	OFF

Note: - Power saving mode for each PLL1 and PLL2 is selected by the serial data at that time of divide ratio setting for each programmable divider.

- Common section ; Crystal oscilator circuit, reference counter

Intermittent operation limits power consumption by shutting down or start the internal circuits case by case. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{R}) and the comparison frequency (f_{p}) and frequency lock is lost. To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting phase of both frequencies to limit the error signal output. This is done by the PS control circuit. If PS is set high, the circuit enter the operating mode. If PS is set low, operation stops and the device enters the stand-by mode.

The operating and stand-by modes alternate repeatedly. This intermittent operation limits the error signal by forcibly correcting the phase of the reference and comparison frequencies to limit power consumption.

SERIAL DATA INPUT TIMING

PHASE COMPARATOR OUTPUT WAVEFORM

Relation between phase comparator and charge pump output

	Do output
$\mathrm{fr}>\mathrm{fp}$	H
$\mathrm{fr}=\mathrm{fp}$	Z
$\mathrm{fr}<\mathrm{fp}$	L

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase difference is twu or more.
- LD output becomes high when phase difference is twl or less and continues to be so for three cysles or more.
- twl and twl depend on OSCin input frequency.
$\mathrm{twu} \geqq 8 / f \mathrm{fosc}$ (θ. g. twu $\geqq 625 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)
twl $\leqq 16 /$ fosc (e. g. twl $\leqq 1250 \mathrm{~ns}$, foscin $=12.8 \mathrm{MHz}$)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage		2.7	3.0	3.5	V	Vcc1 = Vcc2
Input Voltage	VIN	GND	-	Vcc	V	
Operating Temperature	TA	-30	-	+80	${ }^{\circ} \mathrm{C}$	
Analog Switch BS2 Current	Iss	-6	-	+6	mA	Vcc $=3.0 \mathrm{~V}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbot	Condition	Value			Unit
	.			Min	TyP	Max	
Power Supply Current		Iccl	PLL1 section	-	6.0 (0.1) ${ }^{\text {+1 }}$	-	mA
		Icc2	PLL2 \& common sections	-	7.0 (0.1)	-	
Operating Frequency	fin	fin		100	-	1100	MHz
	OSCIN	fosc		-	12.8	20.0	
Input Sensitivity	fin	Pfin	50Ω	-10	-	0	dBm
	OSCIN	Vosc		0.5	-	-	Vp-p
High-level Input Voltage	Data, Clock LE	VIH		Vccx0.7+0.4	-	-	V
Low-level Input Voltage		VIL		-	-	Vccx0.3-0.4	
High-level Input Current	Data, Clock LE	IIH		-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		11.		-	-1.0	-	
Input Current	OSCIN	losc		-	± 50	-	
High-level Output Voltage	LD	Vor	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V
Low-level Output Voltage		VoL	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	0.4	
High-impedance Cutoff Current	Do, BS	IoFF		-	-	1.1	$\mu \mathrm{A}$
Output Current	LD	IOH		-1.0	-	-	mA
		10.		-	-	1.0	
	Do1, 2	1 OH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	$-0.6{ }^{\circ}$	-	mA
		10 L	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	$6.0{ }^{*}$	-	
Analog Switch ON Resistance		Ron		-	50	-	Ω

Notes: *1 : The value in () is power supply current in power saving mode.
*2 : L type charge pump which is similar to MB15A31's is used.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY)

APPLICATION EXAMPLE

$\begin{array}{lll}\text { Note: } & \text { C1, C2 } & \text { : depends on a crystal oscillator. } \\ & \text { Clock, Data, LE } & \text { : involves a schmitt circuit }\end{array}$
Clock, Data, LE : involves a schmitt circuit.
When input pins are open, please insert the pull down/up resistor individually to prevent oscillation.

PACKAGE INFORMATION

20-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-20P-MO3)

$\because *$:This dimension does not include resin protruction.

MB1513

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH POWER SAVING FUNCTIONS (1.1GHz)

The Fujitsu MB1513 is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function. A stand-by mode is provided to limit power consumption during intermittent operation.
The MB1513 is contigured of a 1.1 GHz dual-modulus prescaler with selectable 128/129 divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1 -bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18 -bit latch, programmable divider (binary 7 -bit swallow counter and binary 11-bit programmable counter), analog switches, and an intermittent operation control circuit that selects the stand-by or operating mode depending on the power-save control input state (PS).
The MB1513 operates from a single +5 V supply. Fujitsu's advanced process technology achieves an ICC of 8 mA , typical. The stand-by mode current consumption is just $100 \mu \mathrm{~A}$.

FEATURES

- High operating frequency
- Pulse-swallow function
- Low supply current
$: f_{\mathbb{I N}}=1.1 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)$
: High-speed dual-modulus prescaler with selectable 128/129 divider ratio
- Power-saving stand-by mode : $100 \mu \mathrm{~A}$ typ.
- Serial input, 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter : 0 to 127
-Binary 11-bit programmable counter: 16 to 2,047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter: 8 to 16,383
- 1 -bit switch counter sets prescaler divide ratio
- On-chip analog switch for fast lockup
- On-chip charge pump minimizes system component count
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 20-pin shrink small outline package (Suffix: PFV)

PIN ASSIGNMENT

ABSOSUTE MAXIMUM RATINGS(See NOTE)

Ratings	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 10.0$	V
Output Voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	I_{O}	± 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

MB1513

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
1	$\mathrm{OSC}_{\mathbb{1}}$	1	Programmable reference divider input Oscillator input An external crystal is connected to this pin.
2	NC	-	No connection
3	$\mathrm{OSC}_{\text {OUT }}$	0	Oscillator output An external crystal is connected to this pin.
4	V_{P}	-	Power supply input for charge pump and analog switch
5	V_{CC}	-	Power supply
6	Do	0	Charge pump output The phase of the charge pump is reversed depending on the FC input.
7	GND	-	Ground
8	LD	0	Phase comparator output The output level is high when LD is locked. The output level is low when LD is unlocked.
9	NC	-	No connection
10	fin	1	Prescaler input An external VCO is AC-coupled to this pin.
11	Clock	1	Clock input for 19 -bit and 16 -bit shift registers One bit of data is shifted into the registers on the rising edge of the clock. A Schmitt trigger circuit is involved.
12	NC	-	No connection
13	Data	1	Binary serial data input The last bit of the data is a control bit. When the control bit is high, data is transmitted to the 15 -bit latch. When the control bit is low, data is transmitted to the 18 -bit latch. A Schmitt trigger circuit is involved.
14	LE	1	Load enable signal input When LE is high, the contents of the shift register are transferred to a latch, depending on the control bit in the serial data. At the same time, an internal analog switch turns on and the output of the internal charge pump is connected to the BiSW pin. A Schmitt trigger circuit is involved.
15	FC	1	Phase select input of phase comparator (with internal pull-up resistor) When FC is low, the characteristics of the charge pump and the phase comparator are reversed. The FC input signal is also used to control the fOUT pin (test pin) of f_{R} or f_{p}
16	Bisw	0	Analog switch output Usually, BiSW is in the high-impedance state. When the switch is on (LE is high), the charge pump is connected to the BiSW pin.
17	f_{p}	0	Programmable counter output monitor pins
18	f_{R}	0	Reference counter output monitor pin
19	NC	-	No connection
20	PS	1	Power save signal input Set low when the system is operating (never use pin 20 as it is opened) PS $=$ High : Operation mode PS $=$ Low : Stand-by mode

FUNCTIONAL DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{\mathrm{VCO}}=[(\mathrm{M} \times \mathrm{N})+\mathrm{A}] \times \mathrm{f}_{\mathrm{OSC}} \div \mathrm{R} \quad(\mathrm{A}<\mathrm{N})$
$\mathrm{f}_{\mathrm{VCO}}$: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
$f_{\text {OSC }}$: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (8 to 16,383)
M : Preset divide ratio of prescaler (128)

Serial data input

Serial data is input using the Data, Clock, and LE pins. Serial data controls the 15-bit programmable reference divider and 18-bit programmable divider separately.
Binary serial data is input to the Data pin.
One bit of data is shifted into the internal shift registers on the rising edge of the clock. When the load enable pin is high or open, stored data is latched, depending on the control as follows:

Control Data	Destination of Serial Data
H	15 -bit latch
L	18 -bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 15 -bit latch and a 14 -bit reference counter. The 16 -bit serial data format is shown below:

- 14-bit programmable reference counter divide ratio

Divide Ratio \mathbf{R}	\mathbf{S} $\mathbf{1 4}$	\mathbf{S} 13	\mathbf{S} $\mathbf{1 2}$	\mathbf{S} 11	\mathbf{S} $\mathbf{1 0}$	\mathbf{S} $\mathbf{9}$	\mathbf{S} 8	\mathbf{S} $\mathbf{7}$	\mathbf{S} $\mathbf{6}$	\mathbf{S} $\mathbf{5}$	\mathbf{S} $\mathbf{4}$	\mathbf{S} $\mathbf{3}$	\mathbf{S} $\mathbf{2}$	\mathbf{S} $\mathbf{1}$
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=8$ to 16,383)
Notes: 1. Divide ratios less than 8 are prohibited
2. SW: This bit selects the divide ratio of the prescaler

SW Low: 128 or 129
(SW must be always be low.)
3. S1 to S14: These bits select the divide ratio of the programmable reference counter (8 to 16,383)
4. C: Control bit: Set high
5. Data is input from the MSB.
(b) Programmable divider divide ratio

The programmable divider consists of a 19-bit shift register, 18-bit latch, 7 -bit swallow counter, and an 11-bit programmable counter. The 19 -bit serial data format is shown below:

- 7-bit swallow counter divide ratio

Divide ratio A	\mathbf{S} $\mathbf{7}$	\mathbf{S} $\mathbf{6}$	\mathbf{S} $\mathbf{5}$	\mathbf{S} $\mathbf{4}$	\mathbf{S}	$\mathbf{3}$	\mathbf{S}
$\mathbf{2}$	\mathbf{S}						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio \mathbf{N}	\mathbf{S} $\mathbf{1 8}$	\mathbf{S}	$\mathbf{1 7}$	\mathbf{S}							
$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\mathbf{S}	$\mathbf{8}$					
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=16$ to 2,047)

Notes: 1. Divide ratios less than 16 are prohibited for 11 -bit programmable counters
2. S1 to S7: These bits select the divide ratio of swallow counter (0 to 127)
3. S 8 to $\mathrm{S18}$: These bits select the divide ratio of programmable counter (16 to 2,047)
4. C: Control bit: (Set low)
5. Data is input from the MSB.

Serial data input timing

- $t_{1}(\geq 1 \mu \mathrm{~s})$: Data setup time $\quad \mathrm{t}_{2}(\geq 1 \mu \mathrm{~s})$: Data hold time $\quad \mathrm{t}_{3}(\geq 1 \mu \mathrm{~s})$: Clock pulse width $t_{4}(\geq 1 \mu \mathrm{~s}):$ LE setup time to the rising edge of last clock $\mathrm{t}_{5}(\geq 1 \mu \mathrm{~s})$: LE pulse width

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Intermittent operation

Intermittent operation limits power consumption by shutting down or starting the internal circuits according to their necessity. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{R}) and the comparison frequency (f_{p}) and frequency lock is lost. To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting the phase of both frequencies to limit the error signal output. This is done by the PS control circuit. If PS is set high, the circuit enters the operating mode. If PS is set low, operation stops and the device enters the stand-by mode. Each mode is explained below:

- Operating mode ($\mathrm{PS}=$ High)

All circuits are operating, and PLL operation is normal.

- Stand-by mode ($\mathrm{PS}=$ Low)

Circuits that do not affect operation are powered-down to save power.
The current in the power save state is typically $100 \mu \mathrm{~A}$.
At this time, the levels of D_{O} and LD are the same as when the PLLL is locked.
Since D_{O} is placed in the high-impedance state and the input voltage of the voltage-controlled oscillator (VCO) is set to the voltage in the operating mode (when locked) by the time constant of the low-pass filter, the frequency output from the VCO (f_{VCO}) is kept at the locking frequency.

The operating and stand-by modes alternate repeatedly. This intermittent operation limits the error signal by forcibly correcting the phase of the reference and comparison frequencies to limit power consumption.
The device must be set in the stand-by mode ($\mathrm{PS}=$ low) when it is powered up.

Relationship between FC input and phase characteristics

The FC pin controls the phase characteristics of the phase comparator. The internal charge pump output level (D_{O}) is reversed depending on the FC pin input level. The relationship between the FC input level and D_{O} is shown below:

	FC = High or open	$F C=$ Low
$f_{R}>f_{P}$	H	L
$f_{R}<f_{P}$	L	H
$f_{R}=f_{P}$	$Z(* 1)$	$Z(* 1)$

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO characteristics.
*: When the VCO characteristics are similar to (1) , set FC high or open.
*: When the VCO characteristics are similar to (2), set FC low.

Phase comparator output waveform (FC=High)

Notes: 1. Phase difference detection range: -2π to $+2 \pi$
2. Spike appearance depends on the charge pump characteristics. The spike is output to diminish dead band.
3. When $f_{R}>f_{p}$ or $f_{R}<f_{R}$ a spike might not appear, depending on the charge pump characteristics.
4. LD is low when the phase difference is tw or more. LD is high when the phase difference is tw or less for three or more continuous cycles (when $\mathrm{f}_{\mathrm{OSCIN}}=12.8 \mathrm{MHz}, \mathrm{tw}=625$ to $1,250 \mathrm{~ns}$).

Analog switch

The LE signal turns the analog switch on or off. When the analog switch is turned on, the charge pump output (D_{O}) is output through the BiSW pin. When it is turned off, the BiSW pin is in the high-impedance state.

> When $L E=$ high (when the divide ratio of the internal divider is changed): Analog switch $=$ on When $L E=$ low (normal operating mode): Analog switch $=$ off

The LPF time constant can be decreased by inserting an analog switch between LPF1 and LPF2. This decreases the lock-up time when the PLL channel is changed.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
	V_{P}	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 8.0$			V
Input Voltage	V_{1}	GND	-	V_{CC}	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Conditions	
		Min	Typ	Max				
Supply Current			Icc	-	8.0	-	mA	$\begin{aligned} & \text { With } f_{I N}=1.1 \mathrm{GHz}, \mathrm{OSC}_{I N}= \\ & 12 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$
Stand-by Current		IPS	-	100	-	$\mu \mathrm{A}$	-	
Operating Frequency	f_{N}	f_{N}	10	-	1100	MHz	$A C$ coupling. The minimum operating frequency is measured with a 1000 pF capacitor connected	
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	12	20	MHz	-	
Input Sensitivity	f_{IN}	$\mathrm{P}_{\mathrm{fIN}}$	-10	-	6	dBm	-	
	$\mathrm{OSC}_{\text {IN }}$	Vosc	0.5	-	-	Vp-p	-	
High-level Input Voltage	Except $f_{I N}$ and OSC $_{\text {IN }}$	$\mathrm{V}_{1 \mathrm{H}}$	$v_{\text {cc }} \times 0.7+0.4$	-	-	V	-	
Low-level Input Voitage		$V_{\text {IL }}$	-	-	$V_{C C} \times 0.3-0.4$	V	-	
High-level Input Current	Data Clock LE	$\mathrm{IIH}^{\text {H }}$	-	1.0	-	$\mu \mathrm{A}$	-	
Low-level Input Current		ILL	-	-1.0	-	$\mu \mathrm{A}$	-	
	FC	$I_{\text {FC }}$	-	-60	-	$\mu \mathrm{A}$	-	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc	-	± 50	-	$\mu \mathrm{A}$	-	
High-level Output Voltagd	Except D_{O} and	V_{OH}	4.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	
Low-level Output Voltage	OSCOUT	V_{OL}	-	-	0.4	V	-	
High-impedance Cut off Current	D_{0}	loff	-	-	1.1	$\mu \mathrm{A}$	$\begin{gathered} V_{D O}=G N D \text { to } 8 V \\ V_{C C} \leq V_{P} \leq 8 V \end{gathered}$	
Output Current	Except D_{O} and OSC OUT	${ }^{\mathrm{IOH}}$	-1.0	-	-	mA	-	
		loL	1.0	-	-	mA	-	
Analog Switch ON Resistance		R_{ON}	-	25	-	Ω	-	

TEST CIRCUIT

(FOR MEASURING PRESCALER INPUT SENSITIVITY)

APPLICATION EXAMPLE

$V_{R} V_{P X}$: Maximum $8 V$
C_{1}, C_{2} : Depend on the crystal parameters

PACKAGE DIMENSIONS

\qquad

MB1514

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 400MHz PRESCALER

The Fujitsu MB1514 is a dual serial input PLL (phase locked loop) frequency synthesizer designed for cordless telephone applications.
The MB1514 has two PLL circuits on a single chip; one for transmission (PLL-1) and the other for reception (PLL-2). Separate power supply pins are provided for each PLL circuit. Transmission PLL contains a low sensitivity charge pump for modulation, and reception PLL contains a high sensitivity charge pump for fast lock-up time. 400 MHz dual modulus prescalers are provided and enables a pulse swallow function.

MB1514 operates at 3.0 V typ. power supply voltage and dissipates 8 mA typ. of current realized through the use of Bi-CMOS technology.

FEATURES

- Low voltage operation: $\mathrm{Vcc}=2.2 \mathrm{~V}$ to 4.2 V
- High operating frequency: $\mathrm{fin}=400 \mathrm{MHz}(\mathrm{Pin}=-10 \mathrm{dBm}, \mathrm{Vcc}=3.0 \mathrm{~V})$
- Low current consumption : Icc $=8 \mathrm{~mA}$ typ. ($\mathrm{Vcc}=3 \mathrm{~V}$)
- Power saving function
- Two charge pumps

Low sensitivity charge pump for transmission (PLL-1)
High sensitivity charge pump for reception (PLL-2)

- Plastic 20-pin DIP package (Suffix: -P)

Plastic 20-pin SOP package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS

Ratings		Symbol	Value	Unit
Supply Voltage		Vcc	-0.5 to +6.0	V
Output Voltage	OSCout, Do, BS	Vo1	-0.5 to Vcc+0.5	V
	LD, LFo	Vo2	-0.5 to +6.0	V
Output Current		10	± 10	mA
Storage Temperature		Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static vollages or eiectric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^32]
BLOCK DIAGRAM

BLOCK DESCRIPTIONS

TRANSMISSION/RECEPTION BLOCK

- 20-bit latch
- Programmable divider;

Binary 7-bit swallow counter (Divide ratio: 0 to 127)
Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
The programmable dividers for transmission and reception are able to be controlled independently.

- Phase detectors with phase polarity change function
- 400 MHz dual modulus prescalers (Divide ratio: $64 / 65$)
- Charge pumps
- Transistors for LPFs
- Analog swithes

COMMON BLOCK

- 23-bit shift register
- Reference divider;

Reference counter (Divide ratio: 1700)
(Divide frequency $=12.5 \mathrm{kHz}$ (Crystal oscillator frequency $=12.8 \mathrm{kHz}$))

- Crystal oscillation circuit
- Latch selector
- Shmitt circuits
- LD/ft/fp output selector

PIN DESCRIPTIONS

Pin No.	Symbol	10	Pin Descriptions
1	GND	-	Ground.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OSCIN } \\ & \text { OSCout } \end{aligned}$	0	Input and output of a reference divider and a crystal is externally connected between these pins.
4	fin_{1}	1	Input of a prescaler of PLL-1 (Transmission section). Connection with a VCO should be AC (capacitor) coupling.
5	$\mathrm{V}_{\mathrm{cc} 1}$	-	Power supply for PLL-1 block. When power is cut off, PLL-1 block's latched data is cancelled.
6	LD	0	Output of lock detectors, a reference divider, and programmable dividers. Output data is selected by data setting of LD bits in the serial data. This is open-drain output.
7	LFor	0	Output of the transistor, used for transmission LPF.
8	LFi1	1	Input of the transistor, used for transmission LPF.
9	Do1	0	Output of the charge pump(PLL-1). Phase polarity is inverted by FC bit setting in the serial data.
10	BS 1	0	Output of the analog switch(PLL-1). Usually this pin is high-impedance state. When LE is set to high, the state of the internal charge pump is output.
11	BS ${ }_{2}$	0	Output of the analog switch(PLL-2: reception section). Usually this pin is high-impedance state. When LE is set to high, the state of the internal charge pump is output.
12	Do2	0	Output of the charge pump(PLL-2). Phase polarity is inverted by FC bit setting in the serial data.
13	LFI2	1	Input of the transistor which is used for reception LPF.
14	LFor	0	Output of the transistor which is used for reception LPF.
15	PS	1	Power saving control for PLL-2 circuits.

PIN DESCRIPTIONS

PIn No.	Symbol	1/0	Pin Descriptions
16	V cc2	-	Power supply for PLL-2 circuits, a reference counter, a shitt register, and a crystal oscillation circuit. When power is cut off, PLL-2 block's and reference counter's latched data are cancelled.
17	fin2	1	Input of a prescaler of PLL-2. Connection with a VCO should be AC (capacitor) coupling.
18	LE	1	Load enable signal input. This pin involves a schmitt trigger circuit. When this pin is high ($\mathrm{LE}=\mathrm{=} \mathrm{H} \mathrm{H}$), the data stored in a shift register is transferred into the latch according to the control bit in the serial data. And at the moment, internal analog switch is closed(ON), then each charge pump output signal is output through the BS pin.
19	Data	1	Serial data input. This pin involves a schmitt trigger circuit. The stored data in the shift register is transferred to either transmission or reception sections depending upon the control bit as follows.
20	Clock	1	Clock input pin of 23-bit shift register. This pin involves a schmitt trigger circuit. Each rising edge of the clock shifts one bit of data into the shift register.

FUNCTIONAL DESCRIPTIONS

Divide ratio can be set using the following equation:
fvco $=\{(M \times N)+A\} \times$ fosc $\div R(A<N)$
fvco: Output frequency of an external voltage controlled oscillator (VCO)
M: Preset divide ratio of an internal dual modulus prescaler (64)
N: Preset divide ratio of binary 12-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 5 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of reference counter (1700)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is input using three pins; Data, Clock, and LE pins. Programmable dividers of PLL-1 and PLL-2 are controlled individually.
Serial data of binary data is input to the Data pin.
On rising edge of the clock shifts one bit of the data into the shift register.
When the load enable (LE) is high, the data stored in the shift register is transferred to either the latch of the transmission or the reception sections, depending upon the control bit setting.

Control bit data	The destination of data
H	Latch of PLL-1 (transmission)
L	Latch of PLL-2 (reception)

SHIFT REGISTER COSTITUTION

N1 to N11: Divide ratio of the programmable counter setting bit (16 to 2047)
A1 to A7 : Divide ratio of the swallow counter setting bit (0 to 127)
FC : Phase control bit of the phase detector
DMY : Dummy bit (set to "L" as a rule)
LD2 : Select bit of LD output (LD, fr, fp1, fp2)
LD1 : Select bit of LD output (LD, fr, fp1, fp2)
CNT : Control bit

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

11 -bit programmable counter divide ratio (N1 to N11)

Divide ratio	\mathbf{N}										
	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	2	1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
2047	1	1	1	1	1	1	1	1	1	1	1

NOTE: Divide ratio less than 16 is prohibited.

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

7-bit swallow counter divide ratio (A1 to A7)

Divide ratio	\mathbf{A}						
\mathbf{A}	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	2	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
127	1	1	1	1	1	1	1

LD1, LD2 : LD OUTPUT SELECT

LD1	LD2	LD Output
1	1	Reference frequency (fr)
1	0	PLL-1 programmable frequency (fp1)
0	1	PLL-2 programmable frequency (fp2)
0	0	Lock detector output

DMY: DUMMY BIT
Set to "L" as a rule

SERIAL DATA INPUT TIMING

$t_{1}(\geq 1 \mu s)$: Data setup time $\quad t 2(\geq 1 \mu s)$: Data hold time
ts $(21 \mu s)$: Clock puise width
$t_{4}(\geq 1 \mu \mathrm{~s})$: LE setup time to the rising edge of the last clock
ts $(\geq 1 \mu \mathrm{~s})$: LE pulse width

NOTE: On rising edge of the clock shifts one bit of the data into the shift register.
When LE is high, the data stored in the shift register is transferred into the latch.

PHASE DETECTOR CHARACTERISTICS

FC bit selects the phase of the phase detector. Phase characteristics (chage pump output) can be reversed depending upon the FC bit of the serial data. The phases of the charge pump outputs through LD pin are reversed depending upon the FC bit as well.

	FC= "H"	$F C=$ " ${ }^{\text {c }}$
	D01, Do2, LD(fp1 \& fp2) output	Do1, D02, LD(tp1 \& fp2) output
fr > ip	H	L
$\pi=\mathrm{fp}$	Z*	Z*
tr < fip	L	H

*Z: High-impedance
Depending upon the VCO polarity, FC pin should be set accordingly.

When VCO polarity is like (1) , the FC bit should be set at high.
When VCO polarity is like(2), the FC bit should be set at low.
VCO POLARITY

PHASE DETECTOR WAVEFORM

Note: Phase difference detection range : -2π to $+2 \pi$
Spike shape depends on the charge pump characteristics. The spike is output to diminish the dead band. LD output is " L " when the phase diference between the fr and fp is tw or more. When the phase difference is tw or less for three or more cycles, LD outputs " H ". (When foscin is 21.25 MHz , tw is 376 ns to 753 ns .)

STAND-BY MODE \& LOCK DETECTOR

(LD)
Setting the power saving control pin input level, the crystal oscillation circuit and PLL-2 circuits become inactive, then MB1514 enters lower current consumption state.

	PS pin	PLL-1	PLL-2	LD output
Transmit/Receive active mode	H	Lock	Lock	H
		Lock	Un-Lock	L
		Un-Lock	Lock	L
Receive active mode		Stand-by$\mathrm{VCc}_{1}=\mathrm{OFF}$	Lock	H
			Un-Lock	L
Stand-by mode	L*	Stand-by $V_{C C_{1}}=O F F$	Stand-by	L

NOTE:When PS is "L", the charge pump (Do2) of the PLL-2 becomes high-impedance state.

ANALOG SWITCH

ON/OFF of the analog switch is controlled by the combination of the control data and LE signal. When the analog switch is ON, BS1, BS2 pins output the charge pump output (Do1, Do2). When the analog switch is OFF, BS pins are set to high-impedance state.

	Control data $=\mathrm{H}$ When the divide ratio of the PLL- 1 is set.		Control data $=\mathrm{L}$ When the divide ratio of the PLL-2 is set.	
	$L E=H$	$L E=L$	$L E=H$	$L E=1$.
Analog Switch of transmit section	ON	OFF	OFF	OFF
Analog Switch of receive section	OFF	OFF	ON	OFF

When an analog switch is inserted between LPF-1 and LPF-2, fast lock up is achieved by reducing LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	Vcc*	2.2	3.0	4.2	V
Input Voltage	Vin	GND	-	Vcc	V
Ambient Temperature	Ta	-10		+70	${ }^{\circ} \mathrm{C}$

*: Vcc1 $=\mathrm{Vcc}_{2}$

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VcC1}=\mathrm{Vcc2}=2.2 \mathrm{~V}\right.$ to 4.2V, $\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$								
Parameter		Symbol	Condition	Value			Unit	
		/. Min		Typ	Max			
Power Supply Current			Icci	PLL-2 Current	-	4.0	-	mA
		Icce2	PLL-1 + PLL-2 Current	-	8.0	-	mA	
Operating Frequency	fin	fin_{1}		10	-	400	MHz	
	OSCIN	fosc		-	21.25	-		
Input Sensitivity	fin	Pfin	50Ω system	-10	-	0	dBm	
	OSCIN	Vosc		0.5	-	-	Vp-p	
High-level Input Voltage	Except fin and OSCIN	VIH		Vccx0.7+0. 4	-	-	V	
Low-level Input Voltage		VIL		-	-	Vccx0.3-0.4		
High-level Input Current	Data, Clock, LE, PS	liH		-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL		-	-1.0	-		
Input Current	OSCIN	losc			± 50			
	LFi	ILF				4.1		
High-level Output Voltage	Except Do, OSCout	Vosc	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V	
Low-level Output Voltage		VoH		-	-	0.4		
High-impedance Cutoff Current	Do, LFo	loff		-	-	1.1	$\mu \mathrm{A}$	
	LD			-	-	10.0		
Output Current	Except Do, OSCout	Іон		-1.0	-	-	mA	
		loL		1.0	-	-		

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Output Current	Doı		IOH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-0.5	-	mA
		10 L	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	12	-	mA	
		foH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-1.5	-	mA	
		los	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	6	-	mA	
Analog Switch ON Resistance		Ron		-	50	-	Ω	

TEST CIRCUIT (FOR PRESCALER INPUT SENSITIVITY)

HANDLING PRECAUTION

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover work-benches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC bords with devices.

APPLICATION EXAMPLE

NOTE;

C1, C2 : depends on the crystal oscillator.
Clock, Data, LE : Using shmitt trigger circuits (When inputs are left open, pult-down or pull-up resistors are necessary to prevent oscillation.)
Crystal : 21.25 MHz
LD : Open drain

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

MB1515 ASSP
 BiCMOS 2.5GHz PLL FREQUENCY SYNTHESIZER WITH BUILT-IN PRESCALER

DESCRIPTION

The MB1515 is a serial input PLL (Phase-Locked Loop) frequency synthesizer with a built-in prescaler allowing for a pulse swallow system in the two modulus 2.5 GHz band. It is suitable for BS and TV tuners and CATV systems.
The synthesizer is powered by 5 V (typical). Using the latest proprietary process, current consumption has been reduced to ICC $=16 \mathrm{~mA}$ (typical).

FEATURES

- Supply voltage: Vcc $=5 \mathrm{~V}$
- High-speed operation capability: $\mathrm{fin}=2.5 \mathrm{GHz}($ Pin $=-4 \mathrm{dBm})$
- Low current consumption: Icc $=16 \mathrm{~mA}$ (typical)
- Broad operating temperature range: $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Integrated Functions

24-bit shift register
24-bit latch
Reference divider
Binary 2-bit programmable reference counter (Divide ratios: 256, 512, 1024, and 2048)
Comparison Divider
Binary 5-bit swallow counter (Divide ratios: 0 to 31)
Binary 12-bit bit programmable counter (Divide ratios: 32 to 4095)
Phase comparator with phase conversion feature
Two modulus prescaler for 2.5 GHz band (Divide ratios: 256/272 and 512/528)
4-bit band switching signals
Control signal generator
Crystal oscillator
Charge pump

MAXIMUM RATINGS

Parameter	Symbol	Value	Units
Supply voltage	V_{CC}	-0.5 to +7.0	V
Output voltage	V_{O}	-0.5 to $\mathrm{Vcc}+0.5$	V
Output current	IO_{O}	± 10	mA
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Value				
			Typ.	Max	Unit
Supply voltage		4.5	5.0	5.5	V
Input voltage	V_{I}	GND	-	V_{CC}	V
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTES:

1. To prevent damage caused by static electricity, an antistatic element is added and antistatic enhancement is also built into the circuit. However, the following handling cautions must be observed:

- Contain the device in a conductive case when storing or transporting it.
- Before handling, verify that the person handling the device, fixtures, and tools are not charged (grounded). Use a grounded conductive sheet as the work surface.
- Turn off power before connecting or disconnecting the device to or from the socket.
- Protect the lead with a conductive sheet when handling (such as transporting) a board on which this device is mounted.

[^33]
PIN ASSIGNMENT

PIN DESCRIPTION

Pin No.	Pin name	vo	Descriprion		
1	FC	1	Phase switch input pin to the phase comparator (with pull up resistor). This pin allows for inverting the polarity of phase comparator output, according to the polarity of the externally connected LPF and VCO. When FC is at "L" level, charge pump and phase comparator characteristics are reversed. This pin also toggles the output of the fout pin (test pin) between fr and fp .		
2	LE	1	Load enable signal input pin (with Schmitt trigger circuit). The pin sends shift register contents to the latch when LE is at " H " (or open).		
3	Data	1	Serial data input pin using binary codes (with Schmitt trigger circuit).		
4	Clock	1	24-bit shift register clock input pin (with Schmitt trigger circuit). Data is read at the rising edge of the clock pulse.		
5	$\mathrm{V}_{\mathrm{CC1}}$	-	Power supply pin (for PLL).		
6	OSCin	1	Cystal oscillator connect pin and reference divider input pin. (OSCin: Oscillator input pin, OSCout: Oscillator output pin)		
7	OSCout	0			
8	GND1	-	Grounding pin (for PLL)		
9	DO1	0	Charge pump output pin. Phase characteristics invert with FC pin settings.		
10	DO2	0			
11	BC4	0	Band switch output pin (open collector output). Output is controlled by the serial data band bit setting. When BCX bit is " H ", the BCX output transistor turns ON . When BCX bit is " H ", the BCX output transistor turns OFF. (X: 1 to 4)		
12	BC3	0			
13	BC2	0			
14	BC1	0			
15	fin	1	fin's complementary input pin. Connect to ground via a capacitor.		
16	GND2	-	Ground pin (for prescaler).		
17	fin	1	Prescaler input pin. Input using ac coupling.		
18	$\mathrm{V}_{\text {cc2 }}$	-	Power supply pin (for prescaler).		
19	fout	0	Phase comparator input monitor pin. Produces either the reference divider output (fr)or the comparison divider output (fp) signal depending on the FC pin's input level.	FC	Output Signal
				" ${ }^{\text {" }}$	f
				"L"	$f p$
20	LD	0	Phase comparator output pin. LD is usually " H ", and is set to " L " for the duration equivalent to the phase error between fr and fp.		

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Units	
		Min.		Typ.	Max.			
Power supply current			Isc	When input at fin $=2.5 \mathrm{GHz}$ and OSCin $=4 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Other input pins are GND and output pins are open.	-	16.0	-	mA
Operating frequency	fin	fin	Must be AC-coupled. The minimum operating frequency when coupled at 1000 pF.	100	-	2500	MHz	
	OSCin	fosc	-	-	4	10	MHz	
Permissible input voltage	fin	Pfin1	2300 to 2500 MHz	-4	-	6	dBm	
		Pfin2	1900 to 2300 MHz	-7	-	6	dBm	
		Pfin3	1000 to 1900 MHz	-10	-	6	dBm	
		Pfin4	100 to 1000 MHz	-20	-	6	dBm	
	OSCin	$\mathrm{V}_{\text {OSC }}$	-	0.5	-	-	VP.p	
High level input voltage	Other the fin and OSCin	V_{1}		$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \times 0.7 \\ +0.4 \end{gathered}$			V	
Low level input voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	$\mathrm{V}_{-0.4} \times 0.3$	V	
High level input current	Data, Clock, LE	I_{H}	-	-	1.0	-	$\mu \mathrm{A}$	
		$1 / 2$	-	-	-1.0	-	$\mu \mathrm{A}$	
Low level input current	FC	ILIFC	-	-	-60	-	$\mu \mathrm{A}$	
Input current	OSCin	liosc	-	-	± 50	-	$\mu \mathrm{A}$	
High level output voltage	Excluding Do and BC	V_{OH}	When $\mathrm{V}_{C C}=5 \mathrm{~V}$	4.4	-	-	V	
Low level output voltage		V_{OL}	-	-	-	0.4	V	
High impedance cutoff current	$\begin{aligned} & \text { Do } 1,2 \mathrm{BC} \\ & 1 \text { to } 4 \end{aligned}$	loff	-	-	-	1.1	$\mu \mathrm{A}$	
Output current	Excluding Do and BC	l^{OH}	-	-1.0	-	-	mA	
		loL	-	1.0	-	-	mA	
Output voltage breakdown	BC1 to 4	V_{B}	-	-	-	12	V	

FUNCTIONAL DESCRIPTIONS

1. Formula for calculation of divide ratio

Set divider's divide ratio according to the following formula:

fvco where	$=[(P \times N)+(16 \times A)] \times$ fosc $+R$	
fvco	\vdots	Externally connected VCO output frequency
P	\vdots	Prescaler divide ratio (256 or 512)
N	\vdots	Binary 12-bit programmable counter setting (32 to 4095)
A	\vdots	Binary 5-bit swallow counter setting $(0$ to 31$)$
fOSC	\vdots	Reference oscillation frequency
R	$:$	Reference counter setting $(256,512,1024,2048)$

2. Serial data input procedure

Serial data is input from three inputs, Data pin, Clock pin and LE pin, allowing for control of the 4-bit band switch setting, the 3-bit reference divider and the 17 -bit comparison divider respectively. The data is sequentially fetched into the internal shift register at the rising edge of the clock and transferred to the latch when load enable is at the " H " level.
The 24-bit shift register is configured as follows:

- Band switch setting (BC1 to BC4)

When data set in the band bits is at " H ," output is turned ON . When data is at " L ," output is turned OFF.

- Prescaler divide ratio (SW)

Divided by $256 / 272$ when data set in the SW bit is at "H." Divided by $512 / 528$ when data is at "L."

- Divide ratios for 5-bit swallow counter (A1 to A5)

Divide ratio A	A5	A4	A3	A2	A1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	0	0
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
31	1	1	1	1	1

- Reference counter divide ratios (R1 and R2)

Divide ratio \mathbf{R}	R2	R1
256	0	0
512	0	1
1024	1	0
2048	1	1

- Divide ratios for 12-bit programmable counter (N1 to N12)

Divide ratio8	N12	N11	N10	N9	N8	N7	N6	N5	N4	N3	N2	N1
0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	1
2	0	0	0	0	0	0	1	0	0	0	1	0
$!$	\bullet											
4095	1	1	1	1	1	1	1	1	1	1	1	1

MB1515

3. Serial data input timings

When designing the synthesizer, control the FC pin according to the VCO polarity.

*: Fetches data at the rising edge of the clock.
*: Fetches data when LE is at " H " level.

4. FC pin input in relation to phase characteristics

The FC pin switches the phase of the phase comparator. Phase characteristics (charge pump output) are inverted by controlling this pin. Output from the phase comparator input monitor pin (fout) is also controlled by this FC pin. The relation of FC pin input with Do and fout is as follows:

Z: high impedance

When designing the synthesizer, control the FC pin according to the VCO polarity.

- When the VCO polarity is (1) in the figure, the FC pin is either at " H " or open.
- When the VCO polarity is (2) in the figure, the FC pin is at " L ".

PHASE COMPARATOR OUTPUT WAVEFORMS

Notes:

1. The phase error is detected in a range of -2π to $+2 \pi$.
2. Output of a "glitch" varies slightly with charge pump characteristics. This "glitch" is output to eliminate an dead band.

EXAMPLE MEASUREMENT CIRCUIT (PRESCALER INPUT SENSITIVITY)

EQUIVALENT CIRCUIT DIAGRAM

- LE, Data, clock

- OSCin, OSCOut

- $\overline{\text { fin }}$, fin

- BC1, BC2, BC3, BC4

EXAMPLE APPLICATION

C1, C2: Determined by the crystal oscillator
FC: with pull up resistor

ORDERING INFORMATION

Parts Number	Package	Notes
MB1515PFV	Plastic SSOP, 20 pins (FPT-20P-M03)	

EXTERNAL DIMENSIONS

©1992 FUJITSU LIMITED F20012S-2C
Dimensions in inches (millimeters)

MB15A16

1.2GHz HIGH-SPEED TUNING PLL FREQUENCY SYNTHESIZER

The Fujitsu MB15A16 is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function, and is very suitable for the digital radio applications such as GSM. MB15A16 achieves the low noise performance as well as the high-speed lock-up which is required for digital cellular phones.
The MB15A16 can operate from a single +3 V supply and has an Icc of 7.0 mA (typical).

FEATURES

- High operating frequency
$: f_{I N}=1.2 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function
- Low supply current
: High-speed dual-modules prescaler with selectable 64/65 and 128/129 divide ratios
- Power saving funtion \quad I $\mathrm{I}_{\mathrm{PS}}=100 \mu \mathrm{~A}$ typ. (Controlled with PS pin)
- Serial input, 18 -bit programmable divider consisting of:
Binary 7 -bit swallow counter
: 0 to 127

Binary 11-bit programmable counter: 5 to 2,047

- Serial input $\mathbf{1 7}$-bit programmable reference divider consisting of:

Binary 14-bit programmable reference counter: 6 to 16,383
1-bit for setting a prescaler divide ratio (SW bit)
1-bit for switching a phase polarity (FC bit)
1-bit for selecting LD/fout (LDS bit)

- On-chip high performance charge pump circuit and phase comparator, achieving high-speed lock-up and low phase noise
- Two types of phase comparator outputs selectable

On-chip charge pump output
Output for an external charge pump

- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic $16-\mathrm{pin}$ SSOP (shrink small outline) package (Suffix : -PFV)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Ratings	Symbol	Value	Unit	Remark
Supply voltage	V_{CC}	-0.5 to +5.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 5.5	V	
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Open drain voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 6.0	V	$\Phi \mathrm{P}$
Output current	I_{O}	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this hign impedance circuit.

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	vo	Description
1	$\mathrm{OSC}_{\text {IN }}$	1	Programmable reference divider input. Oscillator input. Connection for external a crystal or a TCXO.
2	$\mathrm{OSC}_{\text {out }}$	0	Oscillator output. Connection for an external crystal.
3	V_{P}	-	Power supply input for the charge pump.
4	V_{CC}	-	Power supply input.
5	Do	0	Charge pump output. Phase of the charge pump can be reversed according FC input.
6	GND	-	Ground.
7	Xfin	1	Prescaler complementary input, and should be grounded via a capacitor.
8	fin	1	Prescaler input. Connection with an external VCO should be done AC coupled.
9	Clock	1	Clock input for 19 -bit shift register. Data is shifted into the shift register on the rising edge of the clock. (Open is prohibited.)
10	Data	1	Serial data input using binary code. The last bit of the data is a control bit. (Open is prohibited.) Control bit = "H" ; Data is transmitted to the 17-bit latch. Control bit $=$ " $\mathrm{L} "$; Data is transmitted to the 18 -bit latch.
11	LE	1	Load enable signal input (Open is prohibited.) When LE is high, the data of the shift register are transierred to a latch, according to the control bit in the serial data.
12	PS	1	Power saving control input. This pin must be set at "L" at Power-ON. (Open is prohibited.) PS $=$ " H " ; Normal mode $P S={ }^{2} L^{n}$; Power saving mode
13	NC	-	No connection.
14	LD/fout	0	Lock detector output(LD)/Monitor pin of the phase comparator(fout). A LDS bit in a serial data switchs LD/fout pin's output. LDS = "H" ; outputs fout LDS = "L" ; outputs LD
15	Φ P	0	Phase comparator output for an external charge pump. Phase of the output is reversed according to FC input. $\Phi \mathrm{P}$ pin is a N -ch open drain output.
16	Φ R	0	Phase comparator output for an external charge pump. Phase of the output is reversed according to FC input. ΦR pin is a C-MOS output.

MB15A16

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{v C O}=[(M \times N)+A] \times f_{O S C}+R \quad(A<N)$
fvco: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (5 to 2,047)
A : Preset divide ratio of binary 7 -bit swaliow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (6 to 16,383)
M : Preset divide ratio of modules prescaler (64 or 128)

Serial data input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the 16-bit programmable reference divider and 18-bit programmable divider separately.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shift register on the rising edge of the clock. When the load enable pin is high or open, stored data is latched depending on the control data as follows:

Control data	Destination of serial data
H	17 bit latch
L	18 bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 17-bit latch and a 14-bit reference counter. The serial 18-bit data format is shown below:

- 14-bit programmable reference counter divide ratio

Divide ratio R	\mathbf{S}													
13	12	11	10	9	8	7	6	5	4	3	2	1		
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=6$ to 16,383)
Notes: 1. Divide ratios less than 6 are prohibited.
2. SW:This bit selects the divide ratio of the prescaler.

Low: 128 or 129
High: 64 or 65
3. LDS: This bit selects LD/fout pin output

High: outputs phase comparator monitoring signal(fout).
Low: outputs lock detect signal(LD)
4. FC: This bit selects phase characteristics.
5. S1 to S14: These bits select the divide ratio of the programmable reference counter (6 to 16,383).
6. C: Control bit: Set high.
7. Start data input with MSB first .
(b) Programmable divider divide ratio

The programmable divider consists of a 19-bit shift register, a 18-bit latch, a 7-bit swallow counter, and a 11-bit programmable counter. The serial 19-bit data format is shown below:

MB15A16

- 7-bit swallow counter divide ratio

Divide ratio \mathbf{A}	\mathbf{S}	$\mathbf{7}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{5}$	\mathbf{S}	$\mathbf{3}$	2	1			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio N	\mathbf{S} 18	\mathbf{S}	\mathbf{S}	\mathbf{S}	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	\mathbf{S}	8							
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=5$ to 2,047)

Notes: 1. Divide ratios less than 5 are prohibited for 11-bit programmable counter.
2. S1 to S7: These bits select the divide ratio of swallow counter (0 to 127).
3. S 8 to S 18 : These bits select the divide ratio of programmable counter (5 to 2,047).
4. C: Control bit: (Set low)
5. Start data input with MSB first.

Serial data input timing

- t_{1} ($\geq 100 \mathrm{~ns}$): Data setup time t_{2} ($\geq 1000 \mathrm{~ns}$): Data hold time L_{4} ($\geq 100 \mathrm{~ns}$): LE setup time to the rising edge of last clock
t_{3} ($\geq 300 \mathrm{~ns}$): Clock pulse width t_{5} (\geq 790ns) : LE pulse width

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Power saving mode (Intermittent operation control circuit)

Setting PS pin to Low, M815A16 enters into power saving mode resultatly current sonsumption can be limited to $100 \mu \mathrm{~A}$ (typ.). Setting PS pin to High, power saving mode is released so that the device works normally.
In addition, the intermittent operation control circuit is included which helps smooth start up from stand by mode. The power consumption can be reduced by the intermittent operation that powering down or waking up parts of the PLL circuitry. If a PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (f_{f}) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop. To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.
PS pin must be set "L" at Power-ON.

Relation between the FC input and phase characteristics

The FC bit changes the phase characteristics of the phase comparator. Both the internal charge pump output level (D_{O}) and the phase comparator output (Φ R, ΦP) are reversed according to the FC bit. Also, the monitor pin (fout) output is controlled by the FC bit. The relationship between the FC bit and each of $D_{0}, \Phi R$, and ΦP is shown below:

	$F C=$ High				$F C=$ Low			
	$D 0$	ΦR	ΦP	fout	$D 0$	ΦR	ΦP	fout
$f_{r}>f_{p}$	H	L	L	$(f r)$	L	H	$Z(* 1)$	$(f p)$
$f_{r}<f_{p}$	L	H	$Z(* 1)$	$(f r)$	H	L	L	$(f p)$
$f_{r}=f_{p}$	$Z(* 1)$	L	$Z(* 1)$	(fr)	$Z(* 1)$	L	$Z(* 1)$	$(f p)$

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.

Phase comparator output waveforms

[$\mathrm{FC}=$ " $^{\mathrm{H}}$ "]
$\Phi \mathbf{P}$

Φ R

Do

[$\mathrm{FC}=$ = "L"]

$\boldsymbol{\Phi} \mathbf{R}$

Do

Notes: 1. Phase difference detection range: -2π to $+2 \pi$
2. LD output becomes low when phase is twu or more. LD output becomes high when phase error is twh or less and continues to be so for three cysles or more.
3. twu and tw depend on OSCin input frequency.

$$
\begin{aligned}
& \text { twu } \leq 8 / \text { fosc }(e . \mathrm{g} . \text { twu } \leq 625 \mathrm{~ns}, \text { foscin }=12.8 \mathrm{MHz}) \\
& \text { twl } \geq 16 / \mathrm{osc}(e . \mathrm{g} . \text { twl } \geq 1250 \mathrm{~ns}, \text { foscin }=12.8 \mathrm{MHz})
\end{aligned}
$$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min	Typ	Max		
Supply voltage	V_{Cc}	2.7	3.0	3.6	V	
	Vp	Vcc	-	5.0	V	
nput voltage	V_{1}	GND	-	V_{Cc}	\checkmark	
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Supply current (Power saving current)				-	$\stackrel{7}{7}_{(0.1)}$	-	mA	With $\mathrm{f}_{\mathrm{IN}}=1.2 \mathrm{GHz}, \mathrm{OSC}_{\text {IN }}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$. In locked state.
Operating frequency	$\mathrm{fin}^{\text {N}}$	$\mathrm{f}^{\mathbf{N}}$	300	-	1200	MHz	AC coupling with a 1000 pF capacitor connected.	
	OSC $_{\text {IN }}$	fosc	-	12	23	MHz		
Input sensitivity	${ }^{\text {fin }}$	$\mathrm{V}_{\mathrm{f} \text { IN }}$	-10	-	6	dBm	50Ω (refer to the test circuit.)	
	$O_{\text {OSC }}^{\text {IN }}$	Vosc	0.5	-	-	$V p-p$		
High-level input voltage	Data, Clock, LE, PS	$\mathrm{V}_{1} \mathrm{H}$	$V_{\text {cc }} \times 0.7$	-	-	V		
Low-level input voltage		$V_{\text {iL }}$	-	-	$V_{C C} \times 0.3$	V		
High-level input current	Data, Clock, LE, PS	$\mathrm{I}_{\mathbf{I}}$	-	-	1.0	$\mu \mathrm{A}$		
Low-level input current		IIL	-1.0	-	-	$\mu \mathrm{A}$		
Input current	$\mathrm{OSC}_{1 \mathrm{~N}}$	losc	-100	-	100	$\mu \mathrm{A}$		
High-level output voltage	ФR, LD	V_{OH}	2.1	-	-	V	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	
Low-level output voltage	$\Phi \mathrm{R}, \Phi \mathrm{P}, \mathrm{LD}$	Vol	-	-	0.4	V	$\mathrm{VCc}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$	
High-impedance Cut off current	D_{0}, , Φ P	loff	-	-	0.3	$\mu \mathrm{A}$	$\begin{aligned} & V_{P}=V c c \text { to } 3.6 \mathrm{~V} \\ & V_{O O P}=G N D \text { to } 6 V \end{aligned}$	
Output current$\begin{aligned} & \mathrm{V}_{\mathrm{DOH}}=4.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DOL}}=1.0 \mathrm{~V} \end{aligned}$	ФR, LD	IOH	-1.0	-	-	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	
	Φ, ¢ $^{\text {P, LD }}$	lOL	-	-	1.0	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	
	Do	I OOH	-15	-	-5	mA	$\mathrm{Vcc}=3 \mathrm{~V}, \quad \mathrm{Vp}=5.0 \mathrm{~V}$,	
		Idol	6	-	10	mA	$V \mathrm{cc}=3 \mathrm{~V}, \quad \mathrm{Vp}=5.0 \mathrm{~V}$,	

TEST CIRCUIT

(FOR MEASURING INPUT SENSITIVITY fin/OSCin)

APPLICATION EXAMPLE

MB1516A ASSP

1.1GHz High-Speed Tuning PLL Frequency Synthesizer

DESCRIPTION

The Fujitsu MB1516A is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function. MB1516A achieves the low noise performance as well as the high-speed lock-up which is required for digital mobile communications.
The MB1516A can operate from a single +3 V supply. Fujitsu's advanced technology achieves an Icc of 6.5 mA (typical).

FUNCTION

- High operating frequency
- Pulse-swallow function
- Low supply current
- Power saving funtion
- Serial input, 18 -bit programmable divider consisting of:

Binary 7-bit swallow counter

$$
: \mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)
$$

Binary 11-bit programmable counter: 5 to 2,047

- Serial input 16 -bit programmable reference divider consisting of: Binary 14-bit programmable reference counter: 6 to 16,383
1-bit switch counter sets prescaler divide ratio
1-bit power saving function control
- On-chip high performance charge pump circuit and phase comparator, achieving high-speed lock-up and low phase noise
- Two types of phase comparator outputs selectable On-chip charge pump output
Output for an external charge pump
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 16-pin SSOP (shrink small outline) package (Suffix : -PFV)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameter	Symbol	Rating	Unit	Remark
	V_{CC}	-0.5 to +5.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 5.5	V	
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Open drain voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 6.0	V	$\Phi \mathrm{P}$, fout
Output current	I_{O}	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB1516A

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	UO	Description
1	$\mathrm{OSC}_{\text {IN }}$	1	Programmable reference divider input Oscillator input Connection for external crystal or TCXO.
2	OSC $_{\text {out }}$	\bigcirc	Oscillator output Connection for external crystal.
3	V_{P}	-	Power supply input for charge pump
4	V_{cc}	-	Power supply
5	Do	0	Charge pump output Phase of charge pump can be reversed based on FC input.
6	GND	-	Ground
7	LD	\bigcirc	Lock detector output The output level is usually high. Only when there is a phase error between fr and ip, LD becomes low for the period corresponding to the error.
8	f_{N}	1	Prescaler input Connection with an external VCO should be done AC coupled.
9	Clock	1	Clock input for 19 -bit shift register Data is shifted into the shift register on the rising edge of the clock.
10	Data	1	Serial data input using binary code The last bit of the data is a control bit. When the control bit is high, data is transmitted to the 16 -bit latch. When it is low, data is transmitted to the 18 -bit latch.
11	LE	1	Load enable signal input (with internal pull up resistor) When LE is high, the data of the shift register are transferred to a latch, depending on the control bit in the serial data.
12	FC	1	Phase switch input for phase comparator (with internal pull-up resistor) When FC is low, the characteristics of the charge pump and phase comparator are reversed The FC input signal is also used to control the fout pin (test pin) output (f_{R} or f_{p}).
13	NC	-	No connection
14	fout	0	Monitor pin of phase comparator When FC is high, fout outputs programmable reference divider output(ffr). When FC is low, fout outputs programmable divider output(fp).
15	ФP	0	Phase comparator output for an external charge pump Phase of the output is reversed depending on FC input. ΦP pin is a N -ch open drain output.
16	Φ ¢	0	Phase comparator output for an external charge pump Phase of the output is reversed depending on FC input. ΦR pin is a C-MOS output.

MB1516A

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{\text {vco }}=((M \times N)+A] \times$ fosc $+R \quad(A<N)$
flvco: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (5 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14 -bit programmable reference counter (6 to 16,383)
M : Preset divide ratio of modules prescaler (64 or 128)

Serial data input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the 16 -bit programmable reference divider and 18-bit programmable divider separately.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shift register on the rising edge of the clock. When the load enable pin is high or open, stored data is latched depending on the control data as follows:

Control data	Destination of serial data
H	16 bit latch
L	18 bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 16 -bit latch and a 14 -bit reference counter. The serial 17 -bit data format is shown below:

- 14-bit programmable reference counter divide ratio

Divide ratio R	\mathbf{S}													
$\mathbf{1 4}$	\mathbf{S}													
13	\mathbf{S}	\mathbf{S}	$\mathbf{1 1}$	\mathbf{S}										
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=6$ to 16,383)
Notes: 1. Divide ratios less than 6 are prohibited.
2. SW:This bit selects the divide ratio of the prescaler.

Low: 128 or 129
High: 64 or 65
3. S1 to S14: These bits select the divide ratio of the programmable reference counter (6 to 16,383).
4. C: Control bit: Set high.
5. PS: This bit controls stand by mode.

High : Nomal mode
Low : Stand by mode
6. Start data input with MSB first .
(b) Programmable divider divide ratio

The programmable divider consists of a 19-bit shift register, a 18-bit latch, a 7 -bit swallow counter, and a 11-bit programmable counter. The serial 19 -bit data format is shown below:

MB1516A

- 7-bit swallow counter divide ratio

Divide ratio \mathbf{A}	\mathbf{S} $\mathbf{7}$	\mathbf{S}	$\mathbf{6}$	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{S}
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$				
0	0	0	0	0	0	0	0
$\mathbf{1}$	0	0	0	0	0	0	1
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio \mathbf{N}	\mathbf{S} 18	\mathbf{S}									
$\mathbf{1 5}$	$\mathbf{1 4}$	13	12	11	10	9	8				
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=5$ to 2,047)

Notes: 1. Divide ratios less than 5 are prohibited for 11 -bit programmable counter.
2. S 1 to S : These bits select the divide ratio of swallow counter (0 to 127).
3. S8 to S18: These bits select the divide ratio of programmable counter (5 to 2,047).
4. C: Control bit: (Set low)
5. Start data input with MSB first.

Serial data input timing

Notes: One bit of data is shifted into the shift registor on the rising edge of the clock.

Power saving mode (Intermittent operation control circuit)

Setting PS bit to Low, MB1516A enters into power saving mode resultatly current sonsumption can be limited to $100 \mu \mathrm{~A}$ (typ.). Setting PS bit to High, power saving mode is released so that the device works normally. In addition, the intermittent operation control circuit is included which helps smooth start up from stand by mode. The power consumption can be reduced by the intermittent operation that powering down or waking up parts of the PLL circuitry. If a PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (fR_{R}) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop. To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.

Relation between the FC input and phase characteristics

The FC pin changes the phase characteristics of the phase comparator. Both the internal charge pump output level (D_{O}) and the phase comparator output ($\Phi R, \Phi P$) are reversed depending on the FC pin input level. Also, the monitor pin (fout) output is controlled by the FC pin. The relationship between the FC input level and each of $D_{0}, \Phi R$, and ΦP is shown below:

	FC $=$ High or open				FC = Low			
	Do	ФR	ФР	fout	Do	ФR	ΦP	fout
$f_{R}>f_{P}$	H	L	L	(fr)	L	H	Z $(* 1)$	(fp)
$f_{R}<f_{P}$	L	H	Z $(* 1)$	(fr)	H	L	L	(fp)
$\mathrm{f}_{\mathrm{R}}=\mathrm{f}_{\mathrm{P}}$	Z(*1)	L	Z (*1)	(fr)	Z(*1)	L	$Z(* 1)$	(fp)

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.
*: When the LPF and VCO characteristics are similar to (1), set FC high or open.
*: When the VCO characteristics are similar to (2), set FC low.

Phase comparator output waveforms

[$\mathrm{FC}=$ = ${ }^{\mathrm{H}}{ }^{\text {"] }}$

[FC = "L"]

©R

Do

Notes: 1. Phase difference detection range: -2π to $+2 \pi$
2. LD output becomes low when phase is twu or more. LD output becomes high when phase error is twi or less and continues to be so for three cysles or more.
3. twu and twi depend on OSCin input frequency.

$$
\begin{aligned}
& \mathrm{twu} \geq 8 / \text { fosc (e.g. twu } \geq 625 \mathrm{~ns}, \text { foscin }=12.8 \mathrm{MHz} \text {) } \\
& \text { twL } \leq 16 / \text { fosc (e.g. } \mathrm{twL} \leq 1250 \mathrm{~ns}, \text { foscin }=12.8 \mathrm{MHz} \text {) }
\end{aligned}
$$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min	Typ	Max		
Supply voltage	$V_{c c}$	2.7	3.0	3.6	V	
	Vp	Vcc	-	5.0	V	
Input voltage	V_{1}	GND	-	$V_{\text {cc }}$	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

MB1516A

ELECTRICAL CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Supply current			Icc	-	6.5	-	mA	$\begin{aligned} & \text { With } f_{\mathrm{IN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}} \\ & =12 \mathrm{MHz}, \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V} . \\ & \text { In locked state. } \end{aligned}$
Operating frequency	fin	f_{N}	300	-	1100	MHz	AC coupling. The minimum operating frequency is measured with a 1000 pF capacitor connected.	
	OSC $_{\text {IN }}$	fosc	-	12	23	MHz		
Input sensitivity	f_{IN}	$P_{\text {fin }}$	-10	-	6	dBm	50Ω	
	$\mathrm{OSC}_{\text {IN }}$	Vosc	0.5	-	-	$\mathrm{Vp}-\mathrm{p}$		
High-level input voltage	Except $f_{\mathbb{N}}$ and OSC ${ }_{\text {IN }}$	$\mathrm{V}_{\mathbf{I H}}$	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-	V		
Low-level input voltage		V_{IL}	-	-	$V_{C C} \times 0.3$	V		
High-level input current	Data, Clock	$\mathrm{I}_{\mathbf{H}}$	-	-	1.0	$\mu \mathrm{A}$		
Low-level input current		ILL	-	-	-1.0	$\mu \mathrm{A}$		
Input current	OSC ${ }_{\text {IN }}$	losc	-	± 50	-	$\mu \mathrm{A}$		
	FC, LE	ILE	-	-60	-	$\mu \mathrm{A}$		
High-level output voltage	Except D_{O} and OSC OUT	$\mathrm{VOH}_{\mathrm{OH}}$	2.1	-	-	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	
Low-level output voltage		V_{OL}	-	-	0.4	V	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{l} \mathrm{OL}=1.0 \mathrm{~mA}$	
High-impedance Cut off current	D_{0}, fout, Φ P	Ioff	-	-	1.1	$\mu \mathrm{A}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{P}} & =5 \mathrm{~V} \end{aligned}$	
Output current	Except D_{O} and OSCOUT	IOH	-1.0	-	-	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	
		loL	-	-	1.0	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	

TEST CIRCUIT (FOR MEASURING INPUT SENSITIVITY fin/OSCin)

TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES (Continued)

Prescaler Input
Impedance Characteristics
MB1516A fin $[\mathrm{MHz}]$

APPLICATION EXAMPLE

REFERENCE INFORMATION

Typical plots measured with the test circuit shown on the right of this description are shown below. Each plot shows lock up time, phase noise with various span.

MB1516A

PACKAGE AND DIMENSION

MB1517A ASSP

2.0 GHz High-Speed Tuning PLL Frequency Synthesizer

The Fujitsu MB1517A is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function. MB1517A achieves the low noise performance as well as the high-speed lock-up which is required for digital mobile communications. The MB1517A can operate from a single +3 V supply. Fujitsu's advanced technology achieves an Icc of 12 mA (typical) as well as $100 \mu \mathrm{~A}$ (typical) at power down mode.

FEATURES

- High operating frequency
: $\mathrm{f}_{\mathrm{IN}}=2.0 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function
: High-speed two-modulus prescaler with selectable 64/65 and 128/129 divide ratios
- Low supply current
: $\mathrm{I}_{\mathrm{CC}}=12 \mathrm{~mA}$ typ. at 3 V
- Power saving funtion
: IPS $=100 \mu \mathrm{~A}$ typ.
- Serial input, 18 -bit programmable divider consisting of: Binary 7-bit swallow counter

$$
\text { : } 0 \text { to } 127
$$

Binary 11-bit programmable counter: 5 to 2,047

- Serial input 17-bit programmable reference divider consisting of: Binary 14-bit programmable reference counter: 6 to 16,383 1-bit switch counter sets prescaler divide ratio 1-bit power saving function control 1-bit LD/font switch
- On-chip high performance charge pump circuit and phase comparator, achieving high-speed lock-up and low phase noise
- Two types of phase comparator outputs selectable On-chip charge pump output
Output for an external charge pump
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 16 -pin SSOP (shrink small outline) package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameters	Symbol	Rating	Unit	Remark.
	V_{CC}	-0.5 to +5.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 5.5	V	
Output voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	
Open drain voltage	$\mathrm{V}_{\mathrm{OOP}}$	-0.5 to 6.0	V	ΦP, LD/fout
Output current	l_{O}	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

[^34]
MB1517A

BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	PIn name	10	Description
1	$\mathrm{OSC}_{\mathbf{N}}$	1	Programmable reference divider input Oscillator input Connection for external crystal or TCXO.
2	$\mathrm{OSC}_{\text {OUt }}$	0	Oscillator output Connection for external crystal.
3	V_{p}	-	Power supply input for the internal charge pump
4	$V_{\text {cc }}$	-	Power supply
5	Do	0	Charge pump output Phase characteristics of the charge pump can be reversed by FC input.
6	GND	-	Ground
7	Xfin	1	Complementary input of the prescaler Xin pin should be grounded via a capacitor.
8	$f^{\text {in }}$	1	Prescaler input Connection with an external VCO should be done AC coupled.
9	Clock	1	Clock input for 19-bit shift register Data is shifted into the shift register on the rising edge of the clock.
10	Data	1	Serial data input using binary code The last bit of the data is a control bit. When the control bit is high, data is transmitted to the 17-bit latch. When it is low, data is transmitted to the 18 -bit latch.
11	LE	1	Load enable signal input When LE is high, the data of the shift register are transferred to a latch, according to the control bit in the serial data.
12	FC	1	Phase switch input for phase comparator When FC is low, the characteristics of the charge pump and phase comparator are reversed The FC input signal is also used to control the fout pin (test pin) output (f_{f} or f_{f}).
13	NC	-	No connection
14	LDḰout	0	Lock detector output / Phase comparator monitoring output This is a N -ch open drain output. Either of the outputs is selected by LDS bit of the serial data. a) Lock detector output : at lock state $\mathrm{LD}={ }^{n} \mathrm{H}^{\mathrm{n}}$ at unlock stae. . LD $={ }^{n} \mathrm{~L}^{*}$ b) Monitoring output : Phase comparator input signals (t, f f) can be monitored.
15	ΦP	0	Phase comparator output for an external charge pump Phase of the output is reversed according to FC input. ΦP pin is a N -ch open drain output.
16	¢R	0	Phase comparator output for an external charge pump Phase of the output is reversed depending on FC input.

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{V C O}=[(P \times N)+A] \times$ fosc $^{\circ} \div R \quad(A<N)$
$f_{\text {vco }}$: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11 -bit programmable counter (5 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14 -bit programmable reference counter (6 to 16,383)
P : Preset divide ratio of modules prescaler (64 or 128)

Serlal data Input

Serial data is processed using the Data, Clock, and LE pins. Serial data controls the 17 -bit programmable reference divider and 18 -bit programmable divider separately.
Binary serial data is entered via the Data pin.
One bit of data is shifted into the internal shitt register on the rising edge of the clock. When the load enable pin is high, stored data is latched according to the control data as follows:

Control data... Destination ot serial data a H	
H	17 bit latch
L	18 bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 18 -bit shift register, a 17 -bit latch and a 14 -bit reference counter. The serial 18-bit data format is shown below:

MB1517A

- 14-bit programmable reference counter divide ratio

Divide ratio A	$\begin{gathered} \mathbf{R} \\ 14 \end{gathered}$	$\begin{aligned} & R \\ & 13 \end{aligned}$	$\begin{gathered} R \\ 12 \end{gathered}$	$\begin{gathered} \mathbf{H} \\ 11 \end{gathered}$	$\begin{aligned} & 7 \\ & 10 \end{aligned}$	$\begin{gathered} \text { R } \\ 9 \end{gathered}$	$\begin{aligned} & \text { H } \\ & 8 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{T} \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & 6 \end{aligned}$	$\begin{aligned} & \text { R } \\ & 5 \end{aligned}$	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{3} \end{aligned}$	R 2	R 1
6	0	0	0	0	0	0	0	0	0	0	0	1	1	0
7	0	0	0	0	0	0	0	0	0	0	0	1	1	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=6$ to 16,383)
Notes: 1. Divide ratios less than 6 are prohibited.
2. SW :This bit selects the divide ratio of the prescaler.

Low: 128 or 129
High: 64 or 65
3. R1 to R14: These bits select the divide ratio of the programmable reference counter (6 to 16,383).
4. C: Control bit: Set high.
5. PS: This bit controls power saving mode.

High : Nomal operation
Low : Power saving mode
6. LDS: This bit controls LD/fout output signal

High : fout signal (f or ff) is selected and output via LD/fout pin.
Low : Lock detect signal is selected and output via LD/fout pin.
7. Start data input with MSB first .
(b) Programmable divider divide ratio

The programmable divider consists of a 19-bit shift register, a 18-bit latch, a 7 -bit swallow counter, and a 11 -bit programmable counter. The serial 19-bit data format is shown below:

- 7-bit swallow counter divide ratio

Divide ratio A.	5	$\frac{s}{0}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	5	3	S	5
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
-	-	-	-	-	-	-	-
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio N	$\begin{gathered} N \\ 11 \end{gathered}$	$\frac{N}{10}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~g} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 6 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 5 \end{gathered}$	N 4	N 3	$\begin{gathered} \mathrm{N} \\ 2 \end{gathered}$	N
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
-	-	-	-	-	-	-	-	-	-	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=5$ to 2,047)

Nọtes: 1. Divide ratios less than 5 are prohibited for the 11-bit programmable counter.
2. S1 to S7: These bits select the divide ratio of the swaliow counter (0 to 127).
3. N1 to N11: These bits select the divide ratio of the programmable counter (5 to 2,047).
4. C: Control bit: (Set low)
5. Start data input with MSB first.

Serial data input timing

$t_{1}, t_{2}, t_{3}, t_{4} \geq 30 n s, t_{5}, t_{6} \geq 100 \mathrm{~ns}, t_{7}, t_{8} \geq 200 \mathrm{~ns}$

Note: One bit of data is shifted into the shift register on the rising edge of the clock.

MB1517A

Power saving mode (Intermittent operation control circuit)

Setting PS bit to Low, MB1517A enters into power saving mode resultatly current sonsumption can be limited to $100 \mu \mathrm{~A}$ (typ.). Setting PS bit to High, power saving mode is released so that the device works normally. In addition, the intermittent operation control circuit is included which helps smooth start up from power saving mode. The power consumption can be reduced by the intermittent operation that powering down or waking up parts of the PLL circuitry. If a PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between reference frequency (f f) and comparison frequency (f_{p}) and may in the worst case take longer time for lock up of the loop. To prevent this, the intermittent operation control circuit enforces a limited error signal output of the phase detector during power up, thus keeping the loop locked.

Relation between the FC input and phase characteristics

The FC pin changes the phase characteristics of the phase comparator. Both the intemal charge pump output level (D_{O}) and the phase comparator output ($\Phi R, \Phi P$) are reversed depending on the FC pin input level. Also, the monitor pin (fout) output is controlled by the FC pin. The relationship between the FC input level and each of $D_{0}, \Phi R$, and ΦP is shown below:

	$\mathrm{FC}=\mathrm{Hlgh}$				FC = Low			
	Do	¢ ${ }^{\text {R }}$	$\Phi^{\text {P }}$	fout	Do	¢R	ϕ^{+}	fout
$f_{\text {R }}>\mathrm{f}_{\mathrm{p}}$	H	L	L	(fa)	L	H	Z(*1)	(tr)
$f_{\text {R }}<f_{p}$	L	H	Z(*1)	(fa)	H	L	L	(fp)
$\mathrm{f}_{\mathrm{R}}=\mathrm{f}_{\mathrm{P}}$	Z(*)	L	Z (*1)	(fa)	Z(*1)	L	Z(*1)	(ff)

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO and LPF characteristics.
*: When the LPF and VCO characteristics are similar to (1), set FC high.
*: When the VCO characteristics are similar to (2), set FC low.

Phase comparator output waveforms

RECOMMENDED OPERATING CONDITIONS

Parmmeter	Symbol	Value			Unit	Remark
		Whn	Typ	Max		
Supply voltage	v_{cc}	2.7	3.0	3.6	v	
	Vp	Vcc	-	5.0	v	
Input voltage	V_{1}	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

MB1517A

ELECTRICAL CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Value			Unit	Condition	
		Min	Typ	Max				
Supply current			$\mathrm{I} C \mathrm{C}$	-	12	-	mA	With $f_{I N}=2.0 \mathrm{GHz}, \mathrm{OSC}_{\text {IN }}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$. In locked state.
Stand by current		Ips	-	100	-	$\mu \mathrm{A}$	PS bit $={ }^{\prime} L^{\prime \prime}$	
Operating frequency	fin	f_{N}	1000	-	2000	MHz	AC coupling. The minimum operating frequency is measured with a 1000 pF capacitor connected.	
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	12	23	MHz		
Input sensitivity	$f_{1 N}$	$\mathrm{P}_{\mathrm{fin}}$	-10	-	6	dBm	50Ω System	
	OSC $_{\text {IN }}$	Vosc	0.5	-	-	Vp-p		
High-level input voltage	Except $\mathrm{fin}_{\mathrm{N}}$ and OSC $_{\text {IN }}$	V_{IH}	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-	V		
Low-level input voltage		V_{IL}	-	-	$\mathrm{V}_{\mathrm{Cc}} \times 0.3$	V		
High-level input current	Data, Clock, LE, FC	${ }_{\text {IH }}$	-	-	1.0	$\mu \mathrm{A}$		
Low-level input current		ILL	-1.0	-	-	$\mu \mathrm{A}$		
Input current	$\mathrm{OSC}_{\text {IN }}$	losc	-100		+100	$\mu \mathrm{A}$		
High-level output voltage	Except D_{0} and OSCOUT	V_{OH}	2.1	-	-	V	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	
Low-level output voltage		V OL	-	-	0.4	V	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{IOL}^{\text {a }} 1.0 \mathrm{~mA}$	
High-impedance Cut off current	Do, LD/fout, $\Phi \mathbf{P}$	loff	-	-	1.1	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=3.6 \mathrm{~V}, V_{P}=5.0 \mathrm{~V} \\ & V_{O O P}=G N D \text { to } 6.0 \mathrm{~V} \end{aligned}$	
Output current	Except Do and OSCout	IOH	-1.0	-	-	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	
		IOL	-	-	1.0	mA	$\mathrm{Vcc}=3 \mathrm{~V}$	

TEST CIRCUIT
(for Measuring Input Sensitivity fin/OSCin)

TYPICAL CHARACTERISTIC CURVES

Charge pump current vs. Do voltage

Charge pump current vs. Do voltage

Input sensitivity vs. Input frequency

$\mathrm{Vcc}=2.7 \quad 3 \quad 3.6$
$M H z=x 0 \square$

TYPICAL CHARACTERISTIC CURVES (Continued)

TYPICAL APPLICATION EXAMPLE

$\mathrm{V}_{\mathrm{PX}} \quad$: Maximum 6 V
$\mathrm{C}_{1}, \mathrm{C}_{2}$: Depend on the crystal oscillatar
$\boldsymbol{\Phi P}$, LDfout : N -ch open drain output
Φ : \quad C-MOS output

REFERENCE INFORMATION

Typical plots measured with the test circuit are shown below.
Each plot shows lock up time, phase noise, and reference leakage.

ORDERING INFORMATION

\%. Perlinumber	Prackage	Remarks
MB1517APFV1	Plastic - SSOP, 16-pin (FPT-16P-M05)	

PACKAGE DIMENSION

MB1517A Test Data

February 1995

ANALOG LSI DESIGN DEPARTMENT

Digital Cordless Telephone

Block Diagram of DECT RF part

PLL Serial Data Setting (fr=1.728MHz)

$$
\text { Pulse Swallow Function; fvco }=\{(M \times N)+A\} \times \text { fr } \quad A<N
$$

PLL Hopping Time

1897.344MHz $\rightarrow 1771.200 \mathrm{MHz}$, within $\pm 50 \mathrm{KHz}$.
$T \times 0 \rightarrow R \times 9$ $T \times 0 \rightarrow R \times 9 \quad 160 \mu \mathrm{~s}$

Spurious Level
Phase Noise / Loop Band Width

PLL Characteristics of DECT Application $\mathrm{fr}=1.728 \mathrm{MHz} / \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Vp}=\mathrm{Vvco}=3.0 \mathrm{~V}$

Parameter		Measured Value	Conditions
Hopping Time	R× $9 \rightarrow 7 \times 0$	$144 \mu \mathrm{~s}$	$1771.200 \mathrm{MHz} \rightarrow 1897.344 \mathrm{MHz}$ within $\pm 50 \mathrm{KHz}$
	$T \times 0 \rightarrow R \times 9$	$160 \mu \mathrm{~s}$	$1897.344 \mathrm{MHz} \rightarrow 1771.200 \mathrm{MHz}$ within $\pm 50 \mathrm{KHz}$
Spurious Level		72 dBc	$\pm 1.728 \mathrm{MHz}$ offset at 1771.200 MHz
Phase Noise		$78 \mathrm{dBc} / \mathrm{Hz}$	within Loop Bandwidth at 1771.200 MHz

Loop filter scamatics

VCO; Kv=87MHz/V
(muRata MQE030-1835)

Do

APPLICATION EXAMPLE

VCO Operating Range

MB1517A Test Data

(PCN Application)
April 1995

ANALOG LSI DESIGN DEPARTMENT

APPLICATION EXAMPLE

PLL Hopping Time

$1797.600 \mathrm{MHz} \rightarrow 1872.400 \mathrm{MHz}$, within $\pm 1 \mathrm{KHz}$
Lch $\rightarrow \mathrm{Hch} \quad 500 \mu \mathrm{~s}$

$1872.400 \mathrm{MHz}->1797.600 \mathrm{MHz}$, within $\pm 1 \mathrm{KHz}$

Spurious Level

Phase Noise / Loop Band Width

VCO Operating Range(muRata MQE030-1835)

PLL Serial Data Setting (fr=200kHz)

[^35]PLL Characteristics of PCN Application $\mathrm{fr}=200 \mathrm{kHz} \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Vp}=\mathrm{Vvco}=3.0 \mathrm{~V}$

Parameter		Measured Value	Conditions
Hopping Time	Lch $\rightarrow \mathrm{Hch}$	$500 \mu \mathrm{~s}$	$1797.600 \mathrm{MHz}>1872.400 \mathrm{MHz}$, within $\pm 1 \mathrm{KHz}$
	Hch $>$ Lch	$500 \mu \mathrm{~s}$	$1872.400 \mathrm{MHz}->1797.600 \mathrm{MHz}$, within $\pm 1 \mathrm{KHz}$
Spurious Level		61 dBc	$\pm 200 \mathrm{kHz}$ offset at 1835.000 MHz
Phase Noise		$70 \mathrm{dBc} / \mathrm{Hz}$	within Loop Bandwidth at 1835.000 MHz

Loop filter scamatics

VCO; Kv=87MHz/V
(muRata MQE030-1835)
Do

MB1518
 Serial Input PLL Frequency Synthesizer With On-Chip 2.5GHz Prescaler

The Fujitsu MB1518 with an on chip 2.5 GHz dual modulus prescaler is a serial input PLL (Phase Locked Loop) frequency synthesizer with pulse swallow function. It is well suited for BS tuner, CATV system applications.

It operates supply voltage of 5.0 V typ. and dissipates 16 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- Power supply voltage: $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\text {in }}=2.5 \mathrm{GHz}\left(\mathrm{P}_{\text {in }}=-4 \mathrm{dBm}\right)$
- 2.5 GHz dual modulus prescaler: $\mathrm{P}=512 / 528$
- Low power supply current: $\mathrm{I}_{\mathrm{CC}}=16 \mathrm{~mA}$ typ.
- Programmable reference divider : $R=512$
- Programmable divider consisting of:

Binary 5-bit swallow counter ($\mathrm{A}=0$ to 31)
Binary 9-bit programmable counter ($\mathrm{N}=32$ to 511)

- Wide operating temperature: $\mathrm{T}_{\mathrm{a}}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 16 -pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{cc}	-0.5 to 7.0	v
Output Voltage	V_{0}	0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Output Current	10	± 10	mA
Storage Temperature	TSTG	-55 to +125	${ }^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No.	Pin Name	/10	Descriptions
1	LE	1	Load enable input pin This pin involves a Schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch.
2	Data	1	Serial data of binary code input pin This pin involves a Schmitt trigger circuit.
3	Clock	1	Clock input pin of the 14-bit shift register This pin involves a schmitt trigger circuit. On the rising edge of the clock. one bit of the data shifts into the shift register.
4	$\mathrm{V}_{\mathrm{CC1}}$	-	PLL power supply voltage input pin
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSCOUT } \end{aligned}$	1	Oscillator input pin Oscillator output pin A crystal is connected between the OSC $_{\mathbb{I N}}$ pin and the OSC OUT pin.
7	GND1		PLL ground pin
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{O} 1} \\ & \mathrm{D}_{\mathrm{O} 2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Charge pump output pins The phase characteristics can be reversed depending upon the FC pin input level.
10	FC	1	Phase select input pin of the phase detector This pin involves an internal pull up resistor. When this pin is low, characteristics of the charge pump and phase detector can be reversed. This input also selects fout pin output level, either fr or fp. Please see page 6.
11	$\overline{f_{1}}$	1	Complementary input pin of f_{IN} Please connect to GND through a capacitor.
12	GND2	-	Prescaler ground pin
13	fin	1	Prescaler input pin This signal is input with an $A C$ connection.
14	$\mathrm{V}_{\mathrm{CC2}}$	-	Prescaler power supply voltage input pin
15	fout	0	Monitor pin of the phase detector input The fout pin outputs either the programmable reference divider output frequency fr or programmable divider output frequency fp , depending upon the FC pin input level.
16	LD	0	Phase detector output pin Normally this pin outputs high. While the phase difference between fr and fp exists, this pin outputs low.

FUNCTIONAL DESCRIPTIONS

divide ratio setting
Divide ratio can be set using the following equation:
$f_{V C O}=\{(P \times N)+(16 \times A)\} \times f_{O S C} \div R$
f_{VCO} : Output frequency of an external voltage controlled oscillator (VCO)
P: Preset divide ratio of an internal dual modulus prescaler (512)
N: Preset divide ratio of binary 9-bit programmable counter (32 to 511)
A: Preset divide ratio of binary 5 -bit swallow counter (0 to 31)
$f_{0 S c}$: Reference oscillator frequency
R: Preset divide ratio of reference counter (512)

SERIAL DATA I NPUT

On the rising edge of the clock, one bit of the data shifts into the shift register. When the load enable is high, the data stored in the shift register is transferred to the latch.
14-bit serial data format is shown below.

5-bit swallow counter divide ratio (A1 to A5)

Divide Ratio	A	A	A	A	A
A	5	4	3	2	1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$
31	1	1	1	1	1

9-bit programmable counter divide ratio (N1 to N9)

Divide Ratio	N	N	N	N	N	N	N	N	N
N	9	8	7	6	5	4	3	2	1
32	0	0	0	1	0	0	0	0	0
33	0	0	0	1	0	0	0	0	1
34	0	0	0	1	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
511	1	1	1	1	1	1	1	1	1

SERIAL DATA INPUT TIMING

[^36]
PHASE DETECTOR CHARACTERISTICS

The FC pin selects the phase of the phase detector. The phase characteristics (charge pump output) can be reversed depending upon the FC pin input level. The monitor pin (fOUT) output level is selected by the FC pin input level as well.

	$\mathrm{FC}=\mathrm{H}$ (or open)		$F C=L$	
	$\mathrm{D}_{01}, \mathrm{D}_{02}$	fout	$\mathrm{D}_{01}, \mathrm{D}_{02}$	fout
fr > fip	H	Outputs programmable reference divider output frequency (fr)	L	Outputs programmable divider output frequency (fp)
$\mathrm{fr}=\mathrm{fp}$	z		Z	
$\mathrm{fr}<\mathrm{fp}$	L		H	

Note:

Z: High-impedance
Depending upon the VCO polarity, the FC pin should be set accordingly.

When VCO polarity is like (1), FC should be set high or open. When VCO polarity is like (2). FC should be set low.

PHASE DETECTOR WAVEFORM

($\mathrm{FC}=\mathrm{H}$)

,
D_{01}, D_{02}

($\mathrm{FC}=\mathrm{L}$)
D_{01}, D_{02}

$f r>f p \quad f r=f p$
$\mathrm{fr}<\mathrm{fp}$
$\mathrm{fr}<\mathrm{fp}$
$f r<f p$

Note: Phase difference detection range : -2π to $+2 \pi$
Spike shape depends on the charge pump characteristics.
The spike is output to diminish the dead band.

TEST CIRCUIT (FOR PRESCALER INPUT SENSITIVITY)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage		4.5	5.0		V
Input Voltage	V_{I}	GND	-	V_{CC}	V
Operating Temperature	T_{a}	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	condition	Value			Unht	
		Min		TyP.	Max			
Power Supply Current			Icc	Note1	-	16.0	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$f_{\text {in }}$	Note2	10	-	2500	MHz	
	$\mathrm{OSC}_{1 \mathrm{~N}}$	fosc	-	-	4	10		
Input Sensitivity	f in	Pfin	2300 to 2500 MHz	-4	-	6	dBm	
			1900 to 2300 MHz	-7	-	6		
			10 to 1900MHz	-10	-	6		
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {osc }}$	-	0.5	-	-	$V_{P P}$	
High-level Input Voltage	Except $f_{\text {in }}$ and $\mathrm{OSC}_{\mathbb{I N}}$	$\mathrm{V}_{1 \mathrm{H}}$	-	$V_{\text {cc }} \times 0.7+0.4$	-	-	V	
Low-level Input Voltage		V_{1}	-	-	-	$V_{C C} \times 0.3-0.4$		
High-level Input Current	Data, Clock, LE	I_{H}	-	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IL	-	-	-1.0	-		
	FC	MLLFC	-	-	-60	-		
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc	-	-	± 50	-		
High-level Output Voltage	Except Do	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Voltage		VoL	-	-	-	0.4		
High-impedance Cutoff Current	D_{01}, D_{02}	loff	-	-	-	1.1	$\mu \mathrm{A}$	
High-level Output Current	Except Do	IOH	-	-1.0	-	-	mA	
Low-level Output Current		loL	-	1.0	-	-		

Note1: $f_{\text {in }}=2.5 \mathrm{GHz}, O S C_{\mathbb{I N}}=4.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. Input pins are grounded and output pins are open.
Note2: AC coupling. Minimum operating frequency is measured with a capacitor 1000pF.

MB1518 APPLICATION CIRCUIT

PACKAGE DIMENSIONS

MB15A19
DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 600MHz PRESCALER

The Fujitsu MB15A19 is a 600 MHz dual serial input PLL (Phase Locked) trequency synthesizer designed for cellular telephone and cordess telephone applications.

The MB15A19 has iwo PLL circuits on a single chip: one for transmit and the other for reception. Separate power supply pins are provided for the transmit and reception PLL circuits. Transmit PLL contains a low sensitivity charge pump for ease of modulation and reception PLL contains a high sensitivity charge pump for faster lock up time.

600 MHz dual modulus prescalers are on chip and enables a pulse swallow function.
It operates supply voltage of 3.0 V typ. and dissipates 11 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: fin $=600 \mathrm{MHz}$
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
- Low power supply current: Icc = 11mA typ, @3V.
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Two charge pumps

Low sensitivity charge pump for transmit
High sensitivity charge pump for reception

- Plastic 20-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

	Symbol	ऑ【..Value	Unlt
Power Supply Voltage	$V_{c c}$	-0.5 to 7.0	V
	V_{p}	$V_{\text {cc }}$ to 10.0	
Output Voltage	Vout	-0.5 to $\mathrm{Vcc}_{\text {ce }}+0.5$	V
Ouput Current	lout	± 10	mA
Storage Temperature	Tsto	-55 to +125	${ }^{\circ} \mathrm{C}$

[^37][^38]

BLOCK DESCRIPTIONS

TRANSMIT/RECEPTION BLOCK

- 20-bit latch
- Programmable divider consisting of: Binary 7-bit swallow counter (Divide ratio: 0 to 127)
Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Phase detector with phase polarity change function
- 600 MHz dual modulus prescaler (Divide ratio: 64/65)
- Charge pump

COMMON BLOCK

- 22-bit shift register
- Programmable divider consisting of:

Reference counter (Divide ratio: 256, 2048)
(Divide frequency $=50 \mathrm{kHz}, 6.25 \mathrm{kHz}$ (Crystal oscillator frequency $=12.8 \mathrm{MHz}$)

- Crystal oscillator
- ip monitor output selector
- Latch selector
- Schmitt circuits
- Analog switches

PIN DESCRIPTIONS

Pin No.	Pla Naino	10	,	,	Descriptions \% \% \%
1	GND	-	Ground.		
${ }_{3}$	OSC $_{\mathbb{N}}$ OSC out	1	Oscillator input pin. Oscillator output pin. A crystal is connected between OSC $_{\mathbb{N}}$ pin and OSCout pin.		
4	fin_{1}	1	Prescaler input pin of transmit section. The connection with VCO should be AC connection.		
5	$V_{\text {ccl }}$	-	Power supply voltage input pin of transmit section. When power is OFF, latched data of transmit section is cancelled.		
6	4	0	Monitor pin for programmable reference divider output.		
7	LD1	0	Lock detect signal output pin of transmit section.		
			Condition	LD pin output level	
			Lock	H	
			Unlock	L	
8	$V_{\text {P1 }}$	-	Power supply voltage input for charge pump and analog switch of transmit section.		
9	Dot	0	Charge pump output pin of transmit section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.		
10	BS1	0	Analog switch output pin of transmit section. Usually this pin is high-impedance state. During SW is ON (LE = high), charge pump output is connected to this pin.		
11	BS2	0	Analog switch output pin of reception section. Usually this pin is high-impedance state. During SW is ON (LE m high), charge pump output is connected to this pin.		
12	Do2	0	Charge pump output pin of reception section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.		
13	$V_{\text {P2 }}$	-	Power supply voltage input for charge pump and analog switch of reception section.		
14	LD2	0	Lock detect signal output pin of reception section.		
			Condition	LD pin output level	
			Lock	H	
			Unlock	L	
15	fp	0	Monitor pin for programmable divider output. This pin outputs divided trequency of transmit section or reception section depending upon FP bit setting.		
			FP bit		
			H	smit section (ip1)	
			L	eption section (fp2)	

PIN DESCRIPTIONS (Continued)

Pin No.	Pin Name	vo:	
16	$v_{C C 2}$	-	Power supply voltage input pin for reception section, programmable reference divider, shitt register, and crystal oscillator. When power is OFF, latched data of reception section and reference counter is cancelled.
17	fin_{2}	1	Prescaler input pin of reception section. The connection with VCO should be AC conneciton.
18	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit When this pin is high, the data stored in the shift register is transferred into the latch depending on a control data. At this moment, charge pump output signal is output from BS pin since internal analog swith becomes ON.
19	Data	1	Serial data input pin of 22-bit shit register. This pin involves a schmitt trigger circuit The stored data in the shit register is transferred to either transmit section or reception section depending upon a control data.
20	Clock	1	Clock input pin of 22 -bit shitt register. This pin involves a schmitt tigger circuit On rising edge of the clock shitts one bit of data into the shift register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f_{\text {fco }}=\{(M \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
M: Preset divide ratio of dual modulus prescaler (64)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter (256 or 2048)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is input using three pins, Data pin, Clock pin, and LE pin. Programmable divider of transmit section and programmable divider of reception section are controlled individually.
Serial data of binary data is input into Data pin.
On rising edge of clock shits one bit of serial data into the shitt register. When load enable signal is high, the data stored in the shift register is transferred to either the latch of transmit section or the latch of reception section depending upon the control bit data setting.

Control data	Destination of serial data
H	Latch of transmit section
L	Latch of reception section

SHIFT REGISTER CONFIGURATION

Control bit

N1 to N11 : Divide ratio of the programmable counter setting bit (16 to 2047)
Al to A7 : Divide ratio of the swallow counter setting bit (0 to 127)
FC : Phase control bit of the phase detector
FP : Output of the programmable divider control bit (fp1 or fp2)
REF : Divide ratio of the reference counter setting bit (256 to 2048)
CNT :Control bit

SERIAL DATA INPUT TIMING

On rising edge of the clock shits one bit of the data into the shit register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
-	-	-	-	-	0	-	-	-	-	0	-
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 16 is prohibited.
Divide ratio (N) range = 16 to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
-	-	-	-	-	\cdot	-	-
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT
$H=256(\mathrm{fr}=50.0 \mathrm{kHz})$
$L=2048(\mathrm{fr}=6.25 \mathrm{kHz})$
FP : OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT
$H=$ tp pin (15 pin) outputs programmable divider output frequency (fp1) of transmit section. L = $\mathrm{f} p \mathrm{pin}$ (15 pin) outputs programmable divider output frequency (f 2) of reception section.
FC : PHASE CONTROL BIT OF THE PHASE DETECTOR Output of charge pump is selected by FC pin.

	$F C=H$	$F C=L$
$t>f p$	H	L
$t=f p$	Z	Z
$t<f p$	L	H
VCO Polarity	(1)	(3)

Note: $Z=$ High-impedance
Depending upon the VCO poratity, FC bit should be set.

vco Output | Frequency |
| :---: |
| vcoinput Voltage \longrightarrow (2) |

PHASE DETECTOR OUTPUT WAVEFORM

(FC bit = High)

(FC bit = Low)

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase difference is iw or more.

LD output becomes high when phase difference less than iw is reperated 3 times or more.
(e. g. $\mathrm{f}_{\mathrm{w}}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$)

- Spike apperance depends on the charge pump characteristics. The spike is output to diminish the dead band.
- When $f r>f$ fp or $f r$ < f, spike might not generate depending up the VCO characteristics.

ANALOG SWITCH

ONOFF of the analog switch is controlled by the combination of the control data and LE signal. When the analog switch is ON, BS1, BS2 pin output the charge pump output (D_{01}, D_{02}). When analog switch is OFF, BS pin is set to high impedance.

	Control data = H Divide ratio of transmit section is set		Control data $=L$ Divide ratio of reception section is set	
	LE =H	$L E=L$	$L E=H$	$L E=L$
	ON	OFF	OFF	OFF
Analog switch of reception section	OFF	OFF	ON	OFF

When a analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value				Note
		Min	Typ	Max		
Power Supply Voltage	$V_{C C}$	2.7	3.0	5.5	V	$V_{C C 1}=V_{C C}$
	V_{p}	V_{cc}	-	8.0	V	
Input Voltage	$V_{\text {IN }}$	GND	-	$V_{C C}$	V	
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-stetic containers.
- This is a static-sensitive device: take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off belore inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min\#\#\#,		\% Typ\%	\% Max, \%			
Power Supply Current*			${ }_{l} \mathrm{CO}$	Reception section is active.	-	5.5	-	mA
		laCl_{2}	Transmitreception section are active.	-	11.0	-		
Operating Frequency**	fin	fin		10	-	600	MHz	
	OSC $_{\text {w }}$	fosc		-	12.8	20		
Input Sensitivity	fin	$\mathrm{P}_{\mathrm{fIN}}$	$V_{\text {cc }}=2.7104 .0 \mathrm{~V}, 50 \Omega$	-8	-	0	dBm	
			$V_{C C}=4.0$ to 5.5V, 50Ω	-4	-	2		
	OSC $_{\text {w }}$	Vose		0.5	-	-	$V_{p p}$	
High-level Input Voltage	Except fin and OSC ${ }_{\mathbb{N}}$	$V_{\text {H }}$		$V_{C C} \times 0.7+0.4$	-	-	V	
Low-level Input Voltage		$V_{\text {L }}$		-	-	$V_{\text {cc }} \times 0.3-0.4$		
High-level Input Current	Data, Clock LE	$\mathrm{IOH}^{\text {H }}$		-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		In		-	-1.0	-		
Input Current	$O S C O_{n}$	losc		-	± 50	-		
High-level Output Voltage	ExcepiDo and OSCOUT	V OH	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	2.2	-	-	V	
Low-level Output Voltage		VOL		-	-	0.4		
High-impedance Cutoft Current	Do	loff	$V_{p}=V_{C c}$ to 8.0 V	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCour	IOH		-1.0	-	-	mA	
		10.		1.0	-	-		
	Dor	loH	$V_{p}=6 \mathrm{~V}$	-	-1	-		
		10	$V_{\text {cc }}=3 \mathrm{~V}$	-	12	-		
	D_{02}	$\mathrm{IOH}^{\text {}}$	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-3	-		
		$l a$	$V_{C C}=3 V$	-	6	-		
Analog Switch ON Resistance		Ron		-	25	-	Ω	

Notes: *: fin $=600 \mathrm{MHz}, \mathrm{OSC}_{\mathrm{N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC2}}=3.0 \mathrm{~V}$. The remaining input pins are grounded and output pins are open.
**: AC coupling. Minimum operating trequency is measured when a capacitor 1000pF is connected.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

Note: $V_{P_{1}}, V_{p 2} \quad: 8 V_{\text {max }}$.
C1, C2 :depends on the crystal oscillator.
Clock, Data, LE :involve the schmitt circuit.
When input pins are open, please insert the pull down/up resistor individually to prevent the oscillation.
X^{\prime} tal
: 12.8 MHz

PACKAGE DIMENSIONS

MB1519 ASSP

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 600MHz PRESCALER

The Fujitsu MB1519 is a 600 MHz dual serial input PLL (Phase Locked) frequency synthesizer designed for cellular telephone and cordless telephone applications.

The MB1519 has two PLL circuits on a single chip: one for transmit and the other for reception. Separate power supply pins are provided for the transmit and reception PLL circuits. Transmit PLL contains a low sensitivity charge pump for ease of modulation and reception PLL contains a high sensitivity charge pump for faster lock up time.

600 MHz dual modulus prescalers are on chip and enables a pulse swallow function.
It operates supply voltage of 3.0 V typ. and dissipates 11 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: fin $=600 \mathrm{MHz}$
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V
- Low power supply current: $\mathrm{I}_{\mathrm{CC}}=11 \mathrm{~mA}$ typ, ©3V.
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Two charge pumps

Low sensitivity charge pump for transmit High sensitivity charge pump for reception

- Plastic 20-pin dual in line package (Suffix: -P) Plastic 20 -pin flat package (Suffix: -PF)
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	
	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	IOUT	± 10	mA
Storage Temperature	T $_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DESCRIPTIONS

TRANSMIT/RECEPTION BLOCK

- 20-bit latch
- Programmable divider consisting of: Binary 7-bit swallow counter (Divide ratio: 0 to 127)
Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Phase detector with phase polarity change function
- 600MHz dual modulus prescaler (Divide ratio: 64/65)
- Charge pump

COMMON BLOCK

- 23-bit shift register
- Programmable divider consisting of:

Reference counter (Divide ratio: 512,1024)
(Divide frequency $=25 \mathrm{kHz}, 12.5 \mathrm{kHz}$ (Crystal osciliator frequency $=12.8 \mathrm{MHz}$)

- Crystal oscillator
- fp monitor output selector
- Latch selector
- Schmitt circuits
- Analog switches

PIN DESCRIPTIONS

Fin No.	Pin Hame	50	Deacripitone	
1	GND	-	Ground.	
2 3	OSC $_{1 \mathrm{~N}}$ OSCout	1	Oscillator input pin. Oscillator output pin. A crystal is connected between OSCIN pin and OSCour pin.	
4	lin_{1}	1	Prescaler inpul pin of transmit section. The connection with VCO should be AC connection.	
5	$V_{C C 1}$	-	Power supply voltage input pin of transmit section. When power is OFF, latched data of transmit section is cancelled.	
6	4	0	Monitor pin for programmable reference divider output.	
7	LD1	0	Lock detect signal output pin of transmit section.	
			Condition	LD pin output level
			Lock	H
			Unlock	L
8	$\mathrm{V}_{\text {P1 }}$	-	Power supply voltage input for charge pump and analog switch of transmit section.	
9	D01	0	Charge pump output pin of transmit section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.	
10	BS1	0	Analog switch output pin of transmit section. Usually this pin is high-impedance state. During SW is ON (LE = high), charge pump output is cont nected to this pin.	
11	BS2	0	Analog switch output pin of reception section. Usually this pin is high-impedance stale. During SW is ON (LE = high), charge pump output is connected to this pin.	
12	D_{02}	0	Charge pump output pin of reception section. Phase characteristics of the phase detector can be reversed depending upon FC-bit setting.	
13	$V_{P 2}$	-	Power supply voltage input for charge pump and analog switch of reception section.	
14	LD2	0	Lock detect signal output pin of reception section.	
			Condition	LO pin output level
			Lock	H
			Unlock	L
45	¢	0	Monitor pin for programmable divider output. This pin outputs divided trequency of transmit section or reception section depending upon FP bit setting.	
			FP bit	
			H	smit section (tp1)
			L	eption section (tp2)

PIN DESCRIPTIONS (Continued)

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f_{v c o}=\{(M \times N)+A\} \times$ fosc $\div R \quad(A<N)$
fvco:Output frequency of external voltage controlled ocillator (VCO)
M: Preset divide ratio of dual modulus prescaler (64)
N : Preset divide ratio of binary 11 -bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq \mathrm{A} \leq 127$)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter ($\mathbf{5 1 2}$ or 1024)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serialdata is input using three pins, Data pin, Clock pin, and LE pin. Programmable divider of transmit section and programmable divider of reception section are controlled individually.
Serial data of binary data is input into Data pin.
On rising edge of clock shifts one bit of serial data into the shitt register. When load enable signal is high, the data stored in the shift register is transfierred to either the latch of transmit section or the latch of reception section depending upon the control bit data setting.

Control data	Destination of serial data
H	Latch of transmit section
L	Latch of reception section

SHIFT REGISTER CONFIGURATION

Control bit

N1 to N11 : Divide ratio of the programmable counter setting bit (16 to 2047)
A1 to A7 : Divide ratio of the swallow counter setting bit (0 to 127)
FC : Phase control bit of the phase detector
DMY : Dummy bit (sets to low)
FP : Output of the programmable divider control bit (p1 or tp2)
REF : Divide ratio of the relerence counter setting bit (512 to 1024)
CNT : Control bit

SERIAL DATA INPUT TIMING

On rising edge of the clock shifts one bit of the data into the shift register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Oinide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\cdot	-	-	-	-	-	-	-	-	0	0	-
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 16 is prohibited.
Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

DMY : DUMMY BIT INPUT
This bit is set to low in operation.
REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT

$$
H=512(\mathrm{fr}=25.0 \mathrm{kHz})
$$

$L=1024(\mathrm{H}=12.5 \mathrm{kHz})$
FP : OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT $H=\frac{\mathrm{f}}{\mathrm{p}} \mathrm{p}$ pin (15 pin) outputs programmable divider output trequency (p 1) of transmit section. $L=\uparrow p$ in (15 pin) outputs programmable divider output frequency (fpe) of reception section.

FC : PHASE CONTROL BIT OF THE PHASE DETECTOR Output of charge pump is selected by FC pin.

	$F C=H$	$F C=L$
$r>t p$	H	L
$\boldsymbol{r}=\boldsymbol{m} p$	Z	Z
$\boldsymbol{f r}<\boldsymbol{p} p$	L	H
VCO Polarity	(1)	(2)

Note: Z = High-impedance
Depending upon the VCO poratity, FC bit should be set.

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD ouput becomes low when phese difference is fw or more.

LD auput becomes high when phase difference less than iw is reperated 3 times or more.
(e. 9. $\mathrm{hw}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$)

- Spike apperance depends on the cherge pump characteristics. The spike is output to diminish the dead band.
- When $t>\boldsymbol{p} \boldsymbol{p} \boldsymbol{o r} \boldsymbol{t} \boldsymbol{<} \boldsymbol{p}$, spike might not generate depending up the VCO characteristics.

ANALOG SWITCH

ONOFF of the analog switch is controllod by the combination of the control data and LE signal. When the analog switch is ON, BS1, BS2 pin output the charge pump output ($\mathrm{D}_{01}, \mathrm{D}_{02}$). When analog switch is OFF, BS pin is set to high impedance.

	Control data $=\mathrm{H}$ Divide ratio of transmil section is set		Control data $=\mathrm{L}$ Divide ratio of reception section is set	
	$L E=H$	$L E=L$	$L E=H$	$L E=L$
Analog switch of transmit section	ON	OFF	OFF	OFF
Analog switch of reception section	OFF	OFF	ON	OFF

When a analog switch is insented between LP1 and LP2, taster lock 4 p time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unk	Note
		Min	IfP	Max		
Power Supply Voltage	$V_{c c}$	2.7	3.0	5.5	v	$V_{C C 1}=V_{C C 2}$
	V_{p}	V_{cc}	-	8.0	\checkmark	
Input Voltage	$\mathrm{V}_{\mathbb{N}}$	GND	-	Vcc	\checkmark	
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off belore inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB1519

ELECTRICAL CHARACTERISTICS

Permmatar		8ymbol	condmon	Value			Unh	
		Mn		Typ	Max			
Power Supply Current*			Icci	Reception section is active.	-	5.5	8.0	mA
		1 cc 2	Transmitreception section are active.	-	11.0	16.0		
Operating Frequency**	fin	fin		10	-	600	MHz	
	$\mathrm{OSC}_{1 \times}$	bosc		-	12.8	20		
Input Sensitivity	fin	$\mathrm{P}_{\text {fin }}$	$\mathrm{V}_{\mathrm{CC}}=2.7104 .0 \mathrm{~V}, 50 \Omega$	-8	-	0	d8m	
			$V_{C C}=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$	-4	-	4		
	OSCIN	Vosc		0.5	-	-	$\mathrm{V} P \mathrm{P}$	
High-tevel Input Voliage	Except fin and OSC ${ }_{I N}$	V_{IH}		$V_{c c} \times 0.7+0.4$	-	-	V	
Low-level hput Vottage		V_{IL}		-	-	$v_{c c} \times 0.3-0.4$		
High-level hnput Current	Data, Clock LE	$\mathrm{I}_{1 / \mathrm{H}}$		-	1.0	-	$\mu \mathrm{A}$	
Low-lovel Input Current		$11 /$		-	-1.0	-		
mput Current	OSC $_{\text {IN }}$	losc		-	± 50	-		
High-level Output Voltage	Except Do and OSCour	VOH	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	2.2	-	-	v	
Low-level Output Vottage		VOL		-	-	0.4		
High-impedance Cutoff Current	Do	baf	$\begin{aligned} & V_{P}=V_{C C} \text { to } 8.0 \mathrm{~V} \\ & V_{O O P}=G N D \text { to } 8.0 \mathrm{~V} \end{aligned}$	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCorr	IOH		-1.0	-	-	mA	
		la		1.0	-	-		
	Do1	IOH	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-1	-		
		10.	$V_{c c}=3 V$	-	12	-		
	D_{02}	lor	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-3	-		
		loL	$V_{c c}=3 V$	-	6	-		
Analog Switch ON Resistance		RON		-	25	-	Ω	

Notes: *: fin $=600 \mathrm{MHz}$, OSG $_{1 \mathrm{~N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=3.0 \mathrm{~V}$. The remaining inpux pins are grounded and output pins are open. **: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

4

APPLICATION EXAMPLE

Note: $\mathrm{V}_{\mathrm{P} 1}, \mathrm{~V}_{\mathrm{P} 2} \quad: 8 \mathrm{~V}$ max.
C1, C2 :depends on the crystal oscillator.
Clock, Data, LE :involve the schmitt circuit.
When input pins are open, please insert the pull down/up resistor individualty to prevent the oscillation.
X'tal
:12.8MHz

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC FLAT PACKAGE

 (CASE No.: FPT-20P-M01)

O1991 FWITSU LIMITED F20003s-5C
Dimensions in inches (millimeters)

ミMB15S series

IF BAND PLL FREQUENCY SYNTHESIZER

Small package and IF band MASK ROM PLL (SIMPLL Series)

The Fujitsu MB15S series is an exclusive Intermediate Frequency (IF) band Phase Locked Loop (PLL) frequency synthesizer with pulse swallow operation. It can operate at a maximum of 300 MHz .

The reference divider and comparison divider have fixed divide ratios, so that it is not required to set the divide ratios by a μ controller externally. Since the dividers are designed by means of a MASK ROM method, a customer can choose them optionaliy. SOP and SSOP 8-pin plastic packages are available.

It operates with a supply voltage of 3.0 V typ. and dissipates 3.5 mA typ. of current realized through the use of Fujitsu's Bi-CMOS technology.

FEATURES

- Operating frequency: 300 MHIz max.
- Low power supply current: I_{Cc} (total) $=3.5 \mathrm{~mA}$ typ. (Vcc $=3 \mathrm{~V}$)
- Pulse swallow function; 300 MHz Prescaler: 16/17 or 32/گ3
- MASK ROM optional the comparison and reference dividers:
- Main counter ; 5 to 4095
- Swallow counter; 0 to 31
- Reference counter ; 5 to 4095
- Charge pump options:
- Analog cellular phones ; Low sensitivity charge pump for direct modulation.
- Digital cellular phones ; Super charger circuit for High speed tuning.
- Low power supply voltage: $\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.5 V
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 8-pin SOP and 8-pin SSOP packages

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to 5.0	V
Input voltage	V 1	-0.5 to $V_{C C}+0.5$	V
Output Voltage	Vout	-0.5 to $\mathrm{Vcc}+0.5$	V
Output Current	lout	0 to 5	mA
Storage Temperature	Tsta	-55 to +125	${ }^{\circ} \mathrm{C}$

SOP-8P-M01

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB15S series

PIN ASSIGNMENT

PIN DESCRIPTIONS

P1/nNo.	Plo Name	
1	Vcc	Power supply voltage input.
2	Do	Charge pump output
3	GND	Ground
4	fin	Prescaler input. Connection should be with AC coupling.
5	Div	Divide ratio switching input. Two kinds of divide ratios are selectable by Div input "H" or "L".
6	fout	Test purpose output. This pin is an open drain output so that should be left open usually.
7	LD	Lock detector output.
8	OSCin	Reference counter input. Connection should be with AC coupling.

BLOCK DIAGRAM

MB15S series

FUNCTIONAL DESCRIPTIONS

Divide ratios of the internal counters can be set optionally according to customer requirements. Two different frequencies can be selected by Div input " H " or "L".
The divide ratio can be calculated using the following equation:
$f v c o=\{(P \times N)+A\} \times$ fosc $+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO: up to 300 MHz)
P: Preset divide ratio of dual modulus prescaler (16/17 or $32 / 33$)
$\mathrm{N}: \quad$ Divide ratio of the main counter (5 to 4095)
A: Divide ratio of the swallow counter (0 to 31)
fosc: Reference oscillation frequency (up to 23 MHz)
R: Divide ratio of the reference counter (5 to 4095)

PHASE DETECTOR TIME CHART

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- Spikes on Do pulse during locking state are output to prevent dead zone.
- LD output becomes low when phase difference is iw or more.
- LD output becomes high when phase difference is tw or less and continues to be so for three cysles or more.
- w depends on OSCin input frequency.
(e.g. tW635ns to 1250 ns when foscin $=12.8 \mathrm{MHz}$)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	Vcc	2.7	3.0	3.5	V	
Input Voltage	Vin	GND	-	Vcc	V	
Operating Temperature	TA	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Recommended operating conditions unless otherwise noted.

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power supply current	lcc	PLL is locked. Vcc = $3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-	3.5	5.0	mA
Operating frequency	fin	AC coupling by 1000pF capacitor	10	-	300	MHz
Oscillator input frequency	fosc	AC coupling by 1000 pF capacitor	-	12	23	MHz
Input sensitivity	Pin	AC coupling by 1000pF capacitor	-10	-	+2	dBm
Oscillator input sensivity	VOSCin	AC coupling by 1000 pF capacitor	0.5	-	-	Vpp
Input voltage (Div)	V_{H}		Vcc $\times 0.7$	-	-	V
	VIL		-	-	$\operatorname{Vcc} \times 0.3$	V
Input current (Div)	IIH		-	-	1.0	$\mu \mathrm{A}$
	IIL		-1.0	-	-	$\mu \mathrm{A}$
Input current (OSCin)	losc		-100		100	$\mu \mathrm{A}$
Output voltage	Vон	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.6	-	-	V
	Va	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	0.4	V
High impedance cut off current (Do)	loff	$\mathrm{VDo} \leqq 3.3 \mathrm{~V}$	-	-	1.1	$\mu \mathrm{A}$

CUSTOMER REQUESTING SPECIFICATIONS

		Parameter	Option	Requirements
freo		VCO output frequency	$f v c o=\{(P \times N)+A\} \times f r$	
fosc		Reference oscillation frequency	$\begin{gathered} \sim 23 \mathrm{MHz} \\ \mathrm{fosc}=R \mathrm{ffr} \end{gathered}$	
Comparison divider	N	Main counter divide ratio	5 to 4095	
	A	Swallow counte divide ratio	0 to 31	
Reference divider	R	Reference counter divide ratio	5 to 4095	
	fr	Reference frequency	Option	
P		Prescaler divide ratio	16/17 or 32/33	
Charge pump type			Low sensitivity type or super charger	
Package			SSOP 8-pin or SOP 8-pin	
ES request date/qty.			Typically 6 weeks from spec. fix to the first ES.	
CS request date/qty.			-	
MP request date/qty.			- .	
Target price			-	

Customer comments

PACKAGE D'MENTIONS

三MB15S02

IF BAND PLL FREQUENCY SYNTHESIZER

Small package and IF band MASK ROM PLL (SIMPLL Series)

The Fujitsu MB15S02 is an exclusive Intermediate Frequency (IF) band Phase Locked Loop (PLL) frequency synthesizer with pulse swallow operation. The reference divider and comparison divider have fixed divide ratios, so that it is not required to set the divide ratios by a microcontroller externally.
It operates with a supply voltage of 3.0 V typ. and dissipates 3.5 mA typ. of current realized through the use of Fujitsu's Bi-CMOS technology.
The RF synthesizer block of a digital cellular phone can be easily realized with an MB15S02 and MB1516A (1.1 GHz PLL, SSOP-16), both designed with GSM systems in mind.

FEATURES

- Prescaler operating frequency : 300 MHz max.

- Pulse swallow function; Prescaler: 16/17
- Setting frequency (Selectable by Div input.) - fosc $=13.0 \mathrm{MHz}$, fIF $=284.0 \mathrm{MHz}\left(\mathrm{Div}^{2}={ }^{\prime} \mathrm{H}^{\prime}\right)$
- fosc $=13.0 \mathrm{MHz}$, flF $=116.0 \mathrm{MHz}$ (Div $={ }^{\circ} \mathrm{L}^{*}$)
- Rapid synchronization at powering up

Fujitsu's original charge pump "super charger circuit" is included, that enables rapid synchronization at powering up.

- Lock detector
- Low power supply voltage: $\mathrm{V}_{c c}=2.7$ to 3.5 V
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- Plastic 8-pin SSOP packages

ABSOLUTE MAXIMUM RATINGS (see NOTE)

\%.mating	Symbol	§ॉ..yalue	Unll
Power Supply Voltage	Vcc	-0.5 to 5.0	V
Input Voltage	V_{1}	-0.5 to $V_{c c}+0.5$	V
Output Voltage	Vout	-0.5 to Vcc +0.5	V
Output Current	but	0 to 5	mA
Storage Temperature	Tsta	-55 to +125	${ }^{\circ} \mathrm{C}$

SOP-8P-M03

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

PIN DESCRIPTIONS

Pin No.	Pin Name	
1	Vcc	Power supply voltage input (2.7 V to 3.5 V).
2	Do	Charge pump output
3	GND	Ground
4	fin.	Prescaler input. Connection should be with AC coupling.
5	Div	Divide ratio switching input. Two kinds of divide ratios are selectable by Div input "H" or "L".
6	fout	Test purpose output. This pin is an open drain output so that should be left open usually.
7	LD	Lock detector output.
8	OSCin	Reference counter input. Connection should be with AC coupling.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTIONS

Two different frequencies can be selected by Div input " H " or " L ". The divide ratios are calculated using the following equation:
$f v c o=\{(P \times N)+A\} \times f o s c+R \quad(A<N)$

		D1\%	
fveo	Output frequency of external VCO	284.0 MHz	116.00 MHz
fosc	Reference oscillation frequency	13.0 MHz	13.0 MHz
N	Divide ratio of the main counter	17	7
A	Divide ratio of the swallow counter	12	4
P	Preset divide ratio of dual modulus prescaler	16/17	16/17
R	Divide ratio of the reference counter	13 (fr = 1 MHz)	13 (fr = 1 MHz)

PHASE DETECTOR TIME CHART

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- Spikes on Do pulse during locking state are output to prevent dead zone.
- LD output becomes low when phase difference is iw or more.
- LD output becomes high when phase difference is tw or less and continues to be so for three cysles or more.
- iw depends on OSCin input frequency.
(e.g. tW 635 ns to 1250 ns when foscin $=12.8 \mathrm{MHz}$)

RECOMMENDED OPERATING CONDITIONS

Paramity	Symbol	Yalue			Unil	Note
		Min\#	TyP	Max		
Power Supply Voltage	Vcc	2.7	3.0	3.5	V	
Input Voltage	V_{N}	GND	-	Vcc	V	
Operating Temperature	TA	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Recommended operating conditions unless otherwise noted.

Parameter	Syinbols	Condition	y, \%ess			Uni\#\#,
			Mithen	\#		
Power supply current	lcc	PLL is locked. Vcc = $3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-	3.5	5.0	mA
Operating frequency	fin	AC coupling by 1000 pF capacitor	80	-	300	MHz
Oscillator input frequency	fosc	AC coupling by 1000 pF capacitor	-	12	23	MHz
Input sensitivity	Pin	AC coupling by 1000 pF capacitor	-10	-	+2	dBm
Oscillator input sensitivity	VosCin	AC coupling by 1000 pF capacitor	500	-	-	mVpp
Input voltage (Div)	VIH		$V c c \times 0.7$	-	-	V
	Vil		-	-	Vcc $\times 0.3$	V
Input current (Div)	liH		-	-	1.0	$\mu \mathrm{A}$
	ILL		-1.0	-	-	$\mu \mathrm{A}$
Input current (OSCin)	losc		-100		100	$\mu \mathrm{A}$
Output voltage	Vor	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.6	-	-	\checkmark
	Vol	$\mathrm{Vcc}=3.0 \mathrm{~V}$	-	-	0.4	V
High impedance cut off current (Do)	loff	VDo $\leq 3.6 \mathrm{~V}$	-	-	1.1	$\mu \mathrm{A}$

MB15S02

APPLICATION EXAMPLES

PACKAGE DIMENSION

SECTION 5

Super Analog RF Devices - At a Glance

Introduced are a series of highly integrated Analog RF devices such as Low Noise Amplifiers (LNA), Modulators, Demodulators and Mixers that are typically used in the front ends of mobile and portable wireless communication systems. These include single and multi-function devices based on Fujitsu's advanced RF BiCMOS and Bipolar processes which are second to none.

Page Number	Device Part Number	Frequency (max)	Features	Icc (typ)	VCc	Package
$5-3$	MB531	1.1 GHz	TX Mixer	12.7 mA	5 V	8 -pin SSOP
$5-11$	MB539	1.6 GHz	LNA	8 mA	5 V	8 -pin SSOP
$5-19$	MB54501	1.1 GHz	LNAMixer	6 mA	3 V	16 -pin SSOP
$5-25$	MB54502	1.1 GHz	Dual LNAs	4 mA	3 V	16 -pin SSOP
$5-31$	MB54503	1.1 GHz	PA Driver Amp	26 mA	3.6 V	$16-\mathrm{pin}$ SSOP
$5-37$	MB54609	1.0 GHz	Quadrature Modulator	20 mA	3 V	$20-\mathrm{pin}$ SSOP
$5-59$	MB54619	2.0 GHz	Quadrature Modulator	25 mA	3 V	$20-\mathrm{pin}$ SSOP

MB531 ASSP BIPOLAR
Up Conversion Mixer (1.1 GHz)

DESCRIPTION

The MB531 is a Up Conversion Mixer ideally suited for car telephones operating on AMPS, TACS and similar frequency bands.

Features include local buffer amp, double balanced mixer and emitter-follower circuit for high conversion gain and high isolation between Lo and RF inputs.
The latest silicon process technology is used to achieve a low power supply current of 13 mA .

- FEATURES

- Wide input frequency range: up to 1.1 GHz (max)
- High conversion gain: 3.5 dB (typ) Lo: $110 \mathrm{MHz},-5 \mathrm{dBm}$

RF: 800 MHz , IF output: 910 MHz

- High isolation: RF-Lo: -28 dB (typ): RF-IF: -13 dB (typ)

Lo-RF: -37 dB (typ): Lo-IF: -23 dB (typ)

PACKAGE

\square

MB531

- PIN ASSIGNMENT

Pin No.	Symbol	Pin description
1	Vmix	Power supply (for mixer circuit)
2	IF	IF output
3	GND	Ground
4	Lo	Lo signal input
5	GND	Ground
6	GND	Ground
7	Vbias	Power supply (for bias circuit)
8	RF	RF signal input

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power supply voltage	Vcc	-0.5 to +7.0	V
Input voltage	VIN	Vcc-3.5 to Vcc-2.5	V
Output current	lovT	10	mA
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Power supply voltage	Vcc	+4.5 to +5.0	V
Operating temperature	Ta	-40 to +85	${ }^{\circ} \mathrm{C}$

■ ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Value			Unit
			Min.	Typ.	Max.	
Power supply current	Icc	$V_{\text {mix }}+V_{\text {bias }}$	9.0	13.0	18.5	mA
Response frequency	$f \mathrm{fa}$	-	-	800	1100	MHz
	flo	$L_{0}=-10$ to 0 dBm	-	110	1100	MHz
Output frequency	fif	-	-	910	1100	MHz
Conversion gain	Gc	*	-	3.5	-	dB
Maximum output power	Pout		-	-7.0	-	dBm
Noise figure	NF	DSB measurement value *	-	13.5	-	dB
Third order intercept point	IP3	Input level *	-	-4	-	dBm
1 dB compression point	1dBCP	Output level *	-	-12	-	dBm
Crosstalk attenuation	Xrf \rightarrow Lo	*	-	-28	-	dB
	$X_{\text {LO }} \mathrm{P}^{\text {RF }}$		-	-37	-	dB
	$X_{\text {RF }}$ /FF		-	-13	-	dB
	XLOMF		-	-23	-	dB
Open end voltage	Vrf	At $\mathrm{Vcc}=5 \mathrm{~V}$. Pin function verification test (not a condition for operation)	1.5	2.0	2.5	V
	VLo		1.5	2.0	2.5	V
	VIF		2.7	3.2	3.7	V

*: Measurement conditions: $\mathrm{RF}=800 \mathrm{MHz}, \mathrm{Lo}=110 \mathrm{MHz},-5 \mathrm{dBm}, \mathrm{IF}=910 \mathrm{MHz}, \mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$

- MEASUREMENT CIRCUIT

- ORDERING INFORMATION

Part Number	Package	Remarks
MB531PF	8-pin Plastic SOP (FPT-8P-M01)	

PACKAGE DIMENSIONS

8-pin Plastic SOP
(FPT-8P-M01)

©1992 FUJITSU LIMITED F08002S-4C

MB539 ASSP BIPOLAR
 Low-Noise AMP for High-Frequency Bands (to 1.6 GHz)

- DESCRIPTION

The MB539 is a low-noise amplifier IC (integrated circuit) for high-frequency bands, designed for use in mobile communications systems including portable phones.
The low-noise, high-gain features of the MB539 provide exceptional stability. The IC is capable of operating at frequencies as high as 1.6 GHz .

The latest FUJITSU process technology is used to achieve low power consumption of 9.0 mA (typ).

FEATURES

- Operating voltage $: 5 \mathrm{~V}$ (typ.)
- Current consumption : 9.0 mA (typ.)
- Operating frequency $: 1.6 \mathrm{GHz}$ (max.)
- Gain $: 11 \mathrm{~dB}$
- Noise figure $: 4 \mathrm{~dB}$
- Maximum output power : -2 dBm
- 1 dB compression point :-17 dBm (input) $\}$ at faf $=1.6 \mathrm{GHz}$
. Third order intercept point: -5 dBm (input)
: 6 dBm (output)
- PACKAGE

(FPT-8P-M03)

PIN ASSIGNMENT

Pin No.	Symbol	Pin description
1	GND	GND
2	Vcc	Power supply
3	GND	GND
4	RFIN	RF AMP input
5	Vcc	Power supply
6	Vcc	Power supply
7	GND	GND
8	RFour	RF AMP output

(Total 9.0 mA)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	Remarks
Power supply voltage	Vcc	-0.5 to +7.0	V	
Output voltage	Vo	-0.5 to $\mathrm{Vcc}+0.5$	V	
Input voltage	V_{1}	-0.5 to $\mathrm{Vcc}+0.5$	V	
Output current	10	0 to 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Power supply voltage	Vcc	4.5	5.0	5.5	V	
Input voitage	V	GND	-	Vcc	V	
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Note: The user should take full precautions to prevent accidental damage from static electricity.

- For storage or transport, place in a conductive case.
- Before handling, verify that all operators, fixtures and tools are free from electrification (grounded), and use an operating platform of grounded conductive sheeting.
- Always switch off the power before this device is inserted into or removed from sockets.
- When handling or transporting circuit boards in which this device is mounted, leads must be protected by conductive sheeting.

n ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Value				Unit
		Min.	Typ.	Max.		
Power supply voltage		4.5	5.0	5.5	V	
Power supply current	Icc	-	9.0	12.0	mA	$\mathrm{Vcc}=5.0 \mathrm{~V}$
Operating frequency	fmax	-	1100	1600	MHz	

1. $f R F=1100 \mathrm{MHz}$
$\left(\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Gain	Gain	-	16.0	-	dB	
Noise figure	NF	-	2.5	-	dB	
Maximum output power	Pout	-	0.0	-	dBm	
1 dB compression point	1 dB CP	-	-19.0	-	dBm	Input
		-	-3.0	-	dBm	Output
Intercept point	IP_{3}	-	-8.0	-	dBm	Input
		-	8.0	-	dBm	Output
In-Out isolation	Iso	-	-25.0	-	dB	

2. $f R F=1600 \mathrm{MHz}$

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Gain	Gain	-	11.0	-	dB	
Noise figure	NF	-	4.0	-	dB	
Maximum output power	Pout	-	-2.0	-	dBm	
1 dB compression point	1 dB CP	-	-17.0	-	dBm	Input
		-	-7.0	-	dBm	Output
Intercept point	$1 \mathrm{P}_{3}$	-	-5.0	-	dBm	Input
		-	6.0	-	dBm	Output
In-Out isolation	Iso	-	-20.0	-	dB	

[^39]- The above characteristics represent data obtained with the "■ MEASUREMENT CIRCUIT."

■ MEASUREMENT CIRCUIT

C ORDERING INFORMATION

Part Number	Package	Remarks
MB539PFV	8-pin Plastic SSOP	
	(FPT-8P-MO3)	

- PACKAGE DIMENSION

MB54501
FRONT-END UP/DOWN CONVERTER

INTRODUCTION

The Fujitsu MB54501 includes a low-noise amplifier and a mixer, which are used for front end of mobile telecommunication systems.
Using Fujitsu's advanced technology, MB54501 achieves an Icc of 6.0 mA (typ.).

ELECTRICAL CHARACTERISTICS

	Amplifier	Mixer
- Supply voltage	3V (typ.)	3 V (typ.)
- Current consumption	3mA (typ.)	3mA (typ.)
- Input frequency	1.1GHz(max.)	1.1GHz(max.)
- Gain	14dB (typ.) *1	15dB (typ.) *2
- Noise figure	2.2dB (typ.) *1	5dB (SSB, typ.) *2
- 1 dB compression point	-1dBm (typ.) *1	
- Input return loss	8 dB (typ.) *1	
- Output return loss	10dB (typ.) *1	

*1 : Measured by the circuit of "measurement circuit example". ($\mathrm{fin}=878 \mathrm{MHz}$)
*2 : Measured by the circuit of "measurement circuit example".
(IF = 90MHz)

PACKAGE

- 16-pin Plastic Shrink Small Outline Package (Suffix: -PFV)

ABSOLUTE MAXIMUM RATINGS

Parameters	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to 7.0	V
Output Voltage	Vo	-0.5 to Vcc+0.5	V
Output Current	lo	0 to 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

EQUIVALENT CIRCUIT

PIN DESCRIPTIONS

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	RFout	Amplifier output	9	MIXout	Mixer output
2	GND	Ground	10	GND	Ground
3	GND	Ground	11	RE	Emitter of a transistor for mixer
4	Vcc	Power supply	12		
5	NC	No connection	13	NC	No connection
6	GND	Ground	14	Rext	Emitter of a transistor for amplifier
7	GND	Ground	15	RFin	Amplifier input
8	MIXin	Mixer input	16	Lext	Amplifier load connection

RECOMMENDED OPERATING CONDITIONS

Parameter	Vymbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage		2.7	3.0	5.5	V
Input Voltage	V	GND	-	Vcc	V
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

AMPLIFIER
$\left(\mathrm{Vcc}=+3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Target Value			Unit
			Min.	Typ.	Max.	
Supply Voltage	Vcc		2.7	3.0	5.5	V
Supply Current	Icc		-	3.0		mA
Operating Frequency	RFin		-	878	1100	MHz
Gain	Gain		-	14	-	dB
Noise Figure	NF		-	2.2	-	dB
1dB Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$	Output	-	-1	-	dBm
Input Return Loss	RLin		-	8	-	dB
Output Return Loss	RLout		-	10	-	dB

Remark: Electrical characterisics depend on external circuits (elements) or status of mounting. The above characteristics are measured by the test circuit in the next page.

MIXER
$\left(\mathrm{VCC}=+3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

					get Va		
\% Paraman	Symbar			Min.	Typ.	Max.	
Supply Voltage	Vcc			2.7	3.0	5.5	V
Current Consumption	Icc			-	3.0	-	mA
Operating Frequency	MIX ${ }_{\text {IN }}$			-	878	1100	MHz
Gain	S 21	Amplifier characteristics		-	9	-	dB
Conversion Gain	Gc	Mixer characteristics $\mathrm{IF}=90 \mathrm{MHz}$		-	15	-	dB
Noise Figure	NF		SSB	-	5	-	dB

Remark: Electrical characterisics depend on external circuits (elements) or status of mounting.
The above characteristics are measured by the test circuit in the next page.

MEASUREMENT CIRCUIT (EXAMPLE)

PACKAGE DIMENSIONS

MB54502

LOW NOISE AMPLIFIER (2 CIRCUITS)

LOW NOISE AND CURRENT AMPLIFIER

INTRODUCTION

The Fujitsu MB54502 includes two independent amplifiers which are used for mobile telecommunication applications such as handy phones and car phones. Both of the amplifiers achieve low current consumption as well as the low noise performance. Using Fujitsu's advanced technology, MB54502 achieves an Icc of 2mA typ. respectively (total 4mA typ.).

ELECTRICAL CHARACTERISTICS

- Supply voltage

3V (typ.)

- Current consumption
- Input frequency
- Gain
- Noise figure
- 1 dB compression point
- Amplitude tolerance
- Input return loss
- Output retum loss

2mA (typ.)
1.1 GHz (max.)

14dB (typ.) *1
2.2 dB (typ.) ${ }^{* 1}$
-6 dBm (typ.)*1
2.5 dB (typ.) *1

8 dB (typ.) *1
8 dB (typ.) *1

PIN ASSIGNMENT

[^40]
ABSOLUTE MAXIMUM RATINGS

Parameters	Symbol	Value	Unlt
Supply Voltage	Vcc	-0.5 to 7.0	V
Output Voltage	Vo	-0.5 to Vcc+0.5	V
Output Current	10	0 to 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

EQUIVALENT CIRCUIT

PIN DESCRIPTIONS

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	Rext1	Emitter (amplifier 1)	9	RFin2	Input (amplifier 2)
2	Lext1	Load connection (amplifier 1)	10	GND	Ground
3	RFout1	Output (amplifier 1)	11	GND	Ground
4	GND	Ground	12	Vcc2	Power supply (amplifier 2)
5	NC	No connection	13	NC	No connection
6	RFout2	Output (amplifier 2)	14	Vcc1	Power supply (amplifier 1)
7	Lext2	Load connection (amplifier 2)	15	GND	Ground
8	Rext2	Emitter (amplifier 2)	16	RFin1	Input (amplifier 1)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage		2.7	3.0	5.5	V
Input Voltage	V		-	Vcc	V
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS

			(Vcc1 $=+3.0 \mathrm{~V}, \mathrm{Vcc} 2=0.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ or $\mathrm{Vcc} 1=0.0 \mathrm{~V}, \mathrm{Vcc} 2=+3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)			
Parameter	Symbol	Conditions	Target Value			Unit
			Min.	Typ.	Max.	
Supply Voltage	Vcc		2.7	3.0	5.5	V
Supply Current	Icc	1 amplifier active	-	2.0	-	mA
Operating Frequency	fin		-	820	1100	MHz
Gain	Gain		-	14	-	dB
Noise Figure	NF		-	2.2	-	dB
1dB Compression Point	P1هB	Output	-	-6	-	dBm
Amplitude Tolerance	-	$820 \pm 50 \mathrm{MHz}$	-	2.5	-	dB
Input Return Loss	RLin		-	8	-	dB
Output Return Loss	RLout		-	8	-	dB

Remark: Electrical characterisics depend on external circuits (elements) or status of mounting. The above characteristics are measured by the test circuit in the next page.

MEASUREMENT CIRCUIT (EXAMPLE)

PACKAGE DIMENSIONS

MB54503

HIGH-POWER AMPLIFIER

INTRODUCTION

The Fujitsu MB54503 is a high-power amplifier which is used for mobile telecommunication systems such as handy phones and car phones. This device is ideally suitable for power amplifier driver.
Using Fujitsu's advanced technology, MB54503 achieves an Icc of 26.0 mA (typ.).

ELECTRICAL CHARACTERISTICS

- Supply voltage
- Current consumption
- Input frequency
- Gain
- Output level (($\mathrm{Pin}=-8 \mathrm{dBm}$)
- Input return loss
- Output retum loss
*1 : Measured by the circuit of "measurement circuit example".
(fin $=933 \mathrm{MHz}$)

PACKAGE

- 16-pin Plastic Shrink Small Ooutline Package (Suffix: -PFV)

ABSOLUTE MAXIMUM RATINGS

Parameters	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to 7.0	V
Output Voltage	Vo	-0.5 to Vcc+0.5	V
Output Current	lo	0 to 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

EQUIVALENT CIRCUIT

PIN DESCRIPTIONS

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	RFin1	The first amplier input	9	GND	Ground
2	GND	Ground	10	GND	Ground
3	Rext1	Emitter for the first amplifier	11	Rext2	Emitter for the second amplifier
4	GND	Ground	12	RFin2	The second amplier input
5	NC	No connection	13	NC	No connection
6	Vcc	Power supply	14	RFout1	The first amplifier output
7	GND	Ground	15	Lext	Load connecting for the first ampli- fier
8	RFout2	The second amplifier output	16	GND	Ground

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage	Vcc	2.7	3.6	5.0	V
Input Voltage	V_{1}	GND	-	Vcc	V
Operating Temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

Notes: To protect against damage by electrostatic discharge, note the following handing precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device into or from a socket.
- Protect leads with conductive sheet, when transporting a board mounted device.

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{Vcc}=+3.6 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Target Value			Unit
Supply Voltage	Vcc		Min.	Typ.	Max.	
Supply Current	Icc		2.7	3.6	5.0	V
Operating Frequency	fin		-	26	-	mA
Gain	Gain		-	933	1100	MHz
Output Power	Pout	Pin $=-8 \mathrm{dBm}$	-	25	-	dB
Input Return Loss	RLin		-	+13	-	dBm
Output Return Loss	RLour		-	14	-	dB

Remark: Electrical characterisics depend on external circuits (elements) or status of mounting. The above characteristics are measured by the test circuit in the next page.

MEASUREMENT CIRCUIT (EXAMPLE)

PACKAGE DIMENSIONS

MB54609 ASSP for Telephone

Quadrature Modulator IC (With 1.0 GHz Up-Converter)

DESCRIPTION

The MB54609 is an intermediate-frequency (IF) quadrature modulator IC incorsorkang a $1.0-\mathrm{GHz}$ up-converter optimized for use in digital mobile telecommunication systems such as GSMamapoc wersonal Digital Cellular).
The MB54609 incorporates a quadrature modulator for IF modulation, a trànstus siop up-convert mixer, and a F/F type phase shifter as well, capable of handing IFs in a broad band.
In addition, the MB54609 operates at a low power supply voltage gis.0 Yand low power supply current of 18 mA (both as typical values), contributing to saving the power consumptien of the device.

FEATURES

- Incorporating a high-performance transmission mixereovering the entire frequency band of up to 800 MHz used for PDC services (Maximum output fegquerey ors!.1 GHz)
Maximum output frequency: 1.1 GHz , Output level: -9 dBm (typical)
- Externally connecting the quadrature modufesis' with the transmission mixer, allowing a bandpass filter (BPF) to be inserted in between
The quadrature modulator ouspentearigerve a 50Ω load.
(Continued)
PACKAGE

(Continued)
- Flip-flop phase shifter capable of handling intermediate frequencies in the broad band (100 to 800 MHz)
- Operation at low voltage: 2.7 to 3.0 to 3.3 V
- Low current consumption

During operating: 18.0 mA (typical)
In power save mode: 0.6 mA (typical)

- Operating temperature range: $\mathrm{Ta}=-20$ to $+85^{\circ} \mathrm{C}$

PIN ASSIGNMENT

- PIN DESCRIPTION

Pin no.	Pin name	
1	RFout	Up-converter output pin
2	GND	GND pin
3	LO2	LO input pin for mixer
4	GND	GND pin
5	XIF	IF input complementary pin for mixer
6	IF	IF input pin for mixer
7	LO1	LO input pin for quadrature modulator
8	XLO1	LO input complementary pin for quadrature modulator
9	GND	GND pin
10	Vcc	Power supply pin
11	VcC	Power supply pin
12	GND	GND pin
13	I	Baseband input (I) pin
14	XI	Baseband input (I) complementary poltage must be applied to both pins.
15	QMOD	Quadrature modulator IF output pin
16	XQMOD	Quadrature modulator IF output complementary pin
17	XQ	Baseband input (Q) complementary pin
18	Q	Baseband input (Q) pin
19	GND	GND pin
20	PS	Power save mode control pin

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remarks
Power supply voltage	Vcc	-0.5 to 5.0	V	
Output voltage	Vo	-0.5 to $\mathrm{Vcc}+0.5$	V	
Input voltage	V_{1}	-0.5 to $\mathrm{Vcc}+0.5$	V	
Open collector applied voltage	Voc	$\mathrm{Vcc} \pm 0.3$ $(-0.5$ to 5.0$)$	V	RFout pin Do not leave this pin open.
Output current	lo	± 10	mA	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: Although the MB54609 contains an antistatic element to prevent electrostatic breakdown and the circuitry has been improved in electrostatic protection, observe the following precautions when handling the device:

- When storing or carrying the device, put it in a conductive case.
- Before handling the device, check that the jigs and tools to be used have been uncharged (grounded) as well as yourself. Use a conductive sheet on the working bench.
- Before fitting the device into or removing it from the socket, turn the power supply off.
- When handling (such as transporting) the MB54609 mounted board, protect the leads with a conductive sheet.

Precaution: Exceeding any of the above absolute maximum ratings may cause permanent damage to the LSI. For normal operation, the device should be used under the recommended operating conditions. Exceeding any of the recommended conditions may adversely affect LSI reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Power supply voltage	Vcc	2.7	3.0	3.3	V	
Input voltage	V	GND	-	Vcc	V	
Open collector applied voltage	Voc	$\mathrm{Vcc}-0.2$	-	$\mathrm{Vcc}_{\mathrm{cc}}+0.2$	V	RFout pin. Do not leave this pin open.
Operating temperature	Ta	-20	-	+85	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Remarks	
		Min.	Typ.	Max.				
Power supply current			Icc	-	18.0	23.5	mA	DC current (Input with no AC signal)
Power supply current in power save mode		IccPS	-	0.6	0.9	mA	DC current (Input with no AC signal)	
Shifter input LO1	Operating band	flor	100	400	800	MHz		
	Input level	Plot	-15	-	-5	dBm		
Baseband input	Operating band	f_{B}	DC	-	10	MHz		
	Input amplitude	Vвв	-	-	1.2	Vpp		
	Offset voltage	Vos	1.5	1.6	1.7	V	External offset voltage value	
	Offset current	los	-	3.0	-	$\mu \mathrm{A}$	Input Imp. converted value = $533 \mathrm{k} \Omega$	
Mixer input LO2	Operating Бand	floz	-	750	1100	MHz		
	Input level	Plo2	-	-	0	dBm		
Mixer output RFout	Operating band	fra	-	950	1100	MHz		
	Output level	Prf	-	-9	-	dBm	$1.01=400 \mathrm{MHz}(-15 \mathrm{dBm})$	
Modulation precision	Amplitude deviation	Aerr	-	1.3	-	\%	RMS value $\quad \mathrm{tioz}=750 \mathrm{MHz}(-5 \mathrm{dBm})$	
	Phase deviation	Perr	-	0.82	-	deg.		
	Vector error	Verr	-	1.9	-	\%	RMS value $V_{\text {B8 }}=1 \mathrm{Vpp}$	
Carrier suppression		CS	-	-40	-30	dBc	With external offset unadjusted	

EVALUATION BOARD (Reference Example)

- Material: BT resin BT-HL870 (Dielectric constant [1 MHz] = 3.4 to 3.6)
- Thickness: 4 layers, 1.6 mm (Copper thickness: External layer $=18 \mu \mathrm{~m}$, Internal layer $=70 \mu \mathrm{~m}$)
- Plating: electroless gold plating

```
Layer 1
(front surface)
```


Layer 2

(Continued)

- Layer 3

MEASUREMENT DATA (Reference Values)

* Application-common characteristics
- DC characteristics (test circuit 1) @ Input with no AC signal

- Input impedance (Only IC: test circuit 4)

@ Impedance from IC pin end

- LO1

CH1 S 11 IUFS
CH2 S $11 \quad \log$ MAG

C2

START 100.000000 NHZ

- LO2

- Output impedance (Only IC: test circuit 4) @ Impedance from IC pin end
- RFout

800-MHz PDC APPLICATION MEASUREMENT DATA (Reference Values)

Parameter	Symbol	Measurement result	Unit	Condition	Test circuit
Baseband input signal	$f \mathrm{fB}$	42	kbps	$\pi / 4 \mathrm{DQPSK}$, Root-Nyquist filter ($\alpha=0.5$)	-
	$\mathrm{V}_{\text {вв }}$	1.0	Vpp	Single-end input	-
Shifter input signal LO1	flot	400	MHz	-	-
	PLO1	-15	dBm	-	-
Mixer input signal LO2	fioz	750	MHz	-	-
	PLO2	-5	dBm	-	-
Mixer output signal RFout	frf	950	MHz	$f \mathrm{fRF}=\mathrm{fLO} 2+\mathrm{fLO} 1 / 2$	-
	Prf	-8.4	dBm	SSB value	1
Return loss	RLLo1	-17	dB	$\mathrm{fLO}^{\text {O }}=400 \mathrm{MHz}$	3
	RLLo2	-2	dB	$\mathrm{fLO}=750 \mathrm{MHz}$	
	RLbF	-12	dB	ffF $=950 \mathrm{MHz}$	
Modulation precision	Aerr	1.3	\%	RMS Magnitude Error	2
	Perr	0.82	deg.	RMS Phase Error	
	Verr	1.9	\%	RMS Vector Error	
Carrier suppression	CS	-34.5	dBC	-	2

- External circuit constants (with the IC mounted on the evaluation board)

- Modulation precision and output spectrum (test circuit 2)

$$
\text { @ Baseband signal: } \pi / 4 \text { DQPSK, } 42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, \text { PN 15, Root-Nyquist filter } \alpha=0.5
$$

Input signals: $L O 1=400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO} 2=750 \mathrm{MHz},-5 \mathrm{dBm}$
Output signal: RFout $=\mathbf{9 5 0} \mathbf{~ M H z}$

- Modulation precision

VG: 5.0000-01 V/Div
Basobend Fiter: RINya (0.5000) Recrangle Len $=64$ OSR $=4.761805$

- Output spectrum

CENTER $=950 \mathrm{MHz}$
SPAN $=200 \mathrm{kHz}$
$R B W=3 \mathrm{kHz} \quad$ VBW $=100 \mathrm{~Hz} \quad S W P=3 \mathrm{~s}$
$A T T=10 \mathrm{~dB}$
$R E F=0 \mathrm{dBm} \quad 10 \mathrm{~dB} / \mathrm{div}$.

- Spectrum (test circuit 2)
@ Baseband signal: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, 0000$, Root-Nyquist filter $\alpha=0.5$
Input signals: $L O 1=400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO}=750 \mathrm{MHz},-5 \mathrm{dBm}$
Output signal: RFout $\mathbf{=} \mathbf{9 5 0} \mathbf{~ M H z}$
- Span = 240 kHz

- Span = 700 MHz

CENTER $=750 \mathrm{MHz}$
SPAN $=700 \mathrm{MHz}$
RBW $=1 \mathrm{MHz} \quad$ VBW $=3 \mathrm{kHz} \quad$ SWP $=1.1 \mathrm{~s}$
$A T T=10 \mathrm{~dB}$
$R E F=10 \mathrm{dBm} 10 \mathrm{~dB} / \mathrm{div}$.

- RF output level dependent on baseband amplitude (Prf: test circuit 1, Modulation precision: test circult 2) @ Baseband signal of test circuit 2: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, \mathrm{PN} 15$, Root-Nyquist filter $\alpha=0.5$ Input signals of test circuits 1 and 2: LO1 $=400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO2}=750 \mathrm{MHz},-5 \mathrm{dBm}$ Output signals of test circuits 1 and 2: RFout $=950 \mathrm{MHz}$

- RF output level dependent on LO1 and LO2 input levels (Paf: test circuit 1, Modulation precision: test circult 2) @ Baseband signal of test circult 2: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, \mathrm{PN} 15$, Root-Nyquist filter $\alpha=0.5$ Input signals of test circuits 1 and 2: $\mathrm{LO1}=400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO2}=750 \mathrm{MHz},-5 \mathrm{dBm}$ Output signals of test circuits 1 and 2: RFout $=950 \mathrm{MHz}$
- RF output level dependent on LO1 input level (@PLO2 = $\mathbf{- 5 d B m}$)

- RF output level dependent on LO2 input level (@PLO1 = -15 dBm)

- RF output level dependent on temperature (Paf: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, \mathrm{PN} 15$, Root-Nyquist filter $\alpha=0.5$ Input signals of test circuits 1 and 2: LO1 = $400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO}=750 \mathrm{MHz},-5 \mathrm{dBm}$ Output signals of test circuits 1 and 2: RFout $=\mathbf{9 5 0} \mathbf{~ M H z}$

- Carrier suppression dependent on temperature (test circuit 2)
@ Baseband signal: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, 0000$, Root-Nyquist filter $\alpha=0.5$
Input signals: $L O 1=400 \mathrm{MHz},-15 \mathrm{dBm} ; \mathrm{LO2}=750 \mathrm{MHz},-5 \mathrm{dBm}$
Output signal: RFout $=\mathbf{9 5 0} \mathbf{~ M H z}$

- Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board
- L01
- LO2
$\mathrm{CHI} \mathrm{S}_{11} 1 \mathrm{UFS} \quad 1: 48.992 \Omega \quad-2.7891 \Omega \quad 570.64 \mathrm{pF}$
Cor 11 年
IUFS

CH2

cor
STOP 1100.000000 MHz
CH2 $\mathrm{S}_{11} \log \mathrm{MAG}$
Cor

START 100.000000 MHZ

$$
\text { STOP } 1100.000000 \mathrm{MHz}
$$

- Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board
- RFout

START 100.000000 MHz
STOP 1100.000000 MHz

- 1.5-GHz PDC APPLICATION MEASUREMENT DATA (Reference Values)
- Measurement results

Parameter	Symbol	Measurement result	Unit	Condition	Test circuit
Baseband input signal	fв	42	kbps	$\pi / 4$ DQPSK, Root-Nyquist filter ($\alpha=0.5$)	-
	Vвв	1.0	Vpp	Single-end input	-
Shifter input signal LO1	flor	356	MHz	-	-
	PLO1	-5	dBm	-	-
Mixer input signal LO2	floz	1619	MHz	-	-
	PLO2	-5	dBm	-	-
Mixer output signal RFout	fra	1441	MHz	$\mathrm{fRF}=\mathrm{fLO2}+\mathrm{fLO} 1 / 2$	-
	Prf	-13.4	dBm	SSB value	1
Return loss	RLior	-18	dB	$\mathrm{fLO}^{\text {c }}=356 \mathrm{MHz}$	3
	RLLor	-6	dB	floz $=1619 \mathrm{MHz}$	
	RLRF	-14	dB	$\mathrm{frF}^{\text {= }} \mathbf{1 4 4 1 ~ M H z}$	
Modulation precision	Aerr	1.6	\%	RMS magnitude error	2
	Perr	0.90	deg.	RMS phase error	
	Verr	2.2	\%	RMS vector error	
Carrier suppression	CS	-39.0	dBc	-	2

- External circuit constants (with the IC mounted on the evaluation board)

Modulation precision and output spectrum (test circuit 2)

 @ Baseband signal: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}$, PN 15, Root-Nyquist filter $\alpha=0.5$ Input signals: LO1 = $356 \mathrm{MHz},-5 \mathrm{dBm} ; \mathrm{LO2}=1619 \mathrm{MHz},-5 \mathrm{dBm}$ Output signal: RFout $=1441 \mathrm{MHz}$- Modulation precision

VG: 7.0000-02 V/Div
Basebund Fiter: RitNya (0.500) Rectangle Len - 64 OSR - 4.781905

- Output spectrum

CENTER $=1441 \mathrm{MHz}$
SPAN $=200 \mathrm{kHz}$
$R B W=3 \mathrm{kHz} \quad V B W=3 \mathrm{kHz} \quad S W P=100 \mathrm{~ms} \quad A V G=128$
$A T T=10 \mathrm{~dB}$
$R E F=-10 \mathrm{dBm} \quad 10 \mathrm{~dB} / \mathrm{div}$.

- Spectrum (test circuit 2)

@ Baseband signal: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, 0000$, Root-Nyquist filter $\alpha=0.5$
Input signals: LO1 = 356 MHz, -5 dBm ; LO2 $=1619 \mathrm{MHz},-5 \mathrm{dBm}$
Output signal: RFout = 1441 MHz

- Span = $\mathbf{2 6 . 2} \mathbf{~ k H z}$

CENTER $=1441 \mathrm{MHz}$
SPAN $=26.2 \mathrm{kHz}$
RBW $=300 \mathrm{~Hz} \quad$ VBW $=100 \mathrm{~Hz} \quad$ SWP $=4 \mathrm{~s}$
$A T T=10 \mathrm{~dB}$
$R E F=-10 \mathrm{dBm} \quad 10 \mathrm{~dB} / \mathrm{div}$.

CENTER $=1619 \mathrm{MHz}$
SPAN $=500 \mathrm{MHz}$
$R B W=1 \mathrm{MHz} \quad V B W=1 \mathrm{kHz} \quad S W P=3 \mathrm{~s}$
$A T T=10 \mathrm{~dB}$
$R E F=-10 \mathrm{dBm} \quad 10 \mathrm{~dB} / \mathrm{div}$.

- RF output level dependent on baseband amplitude (PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}, \mathrm{PN} 15$, Root-Nyquist filter $\alpha=0.5$ input signals of test circuits 1 and 2: LO1 = $356 \mathrm{MHz},-5 \mathrm{dBm} ; \mathrm{LO}=1619 \mathrm{MHz},-5 \mathrm{dBm}$ Output signals of test circults 1 and 2: RFout $=1441 \mathrm{MHz}$

- RF output level dependent on LO1 and LO2 input levels (PrF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: $\pi / 4$ DQPSK, $42 \mathrm{kbps}, 1.0 \mathrm{Vpp}$, PN 15, Root-Nyquist filter $\alpha=0.5$ Input signals of test circuits 1 and 2: LO1 $=356 \mathrm{MHz},-5 \mathrm{dBm} ; \mathrm{LO}=1619 \mathrm{MHz},-5 \mathrm{dBm}$ Output signals of test circuits 1 and 2: RFout $=1441 \mathrm{MHz}$
- RF output level dependent on LO1 input level (@PLO2 = -5 dBm)

- RF output level dependent on LO2 input level $\left(@ \mathrm{PLO}_{1}=-5 \mathrm{dBm}\right)$

- Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board
- LO1

CH1 S 11 UFS \quad 1:48.992 Ω
CH2 S $11 \quad \log$ MAG
cor

START 100.000000 MHz

- LO2
$\mathrm{CHTS} 11 \quad 1 \mathrm{UFS}$

Cor

CH2 S $11 \quad \log$ MMG
10 deRREF 0 dB
4: -6.5380 dB

STOP 2100.000000 MHz

- Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board
- RFout

START 100.000000 MHz
STOP 2100.000000 MHz

- TEST CIRCUITS (Reference Examples)

(Continued)
- Test circuit 3 (for impedance measurement with components mounted)

- Test circuit 4 (for measurement of impedance of only IC)

- ORDERING INFORMATION

Part number	Package	Remarks
MB54609PFV	20-pin Plastic SSOP (FPT-20P-M03)	

- PACKAGE DIMENSION

三MB54619

 FUjiltsu
QUADRATURE MODULATOR (2.0GHz BAND UP CONVERTER BUILT IN)

INTRODUCTION

MB54619 is a quadrature modulator IC for IF modulation. The power consumption is as low as 25 mA typ. because of Fujitsu's advanced technology. There is a 2.0 GHz band up converter on chip that makes the MB54619 ideally suitable for high frequency mobile communications such as DECT, PCN, GSM and so on. The phase shifter is F/F type and allows a wide IF bandwidth to be achieved.

FEATURES

- High performance transmit mixer Output frequency : 2.0 GHz max. Output level
: -14 dBm typ.
- Quadrature modulator and transmit mixer have external pinouts and allows for a BPF to be inserted between them. Quadrature modulator output can drive a 50Ω load.
- F/F type phase shitter allows wide IF band operation Operating IF band : 100 MHz to 800 MHz
- Low power supply voitage : Vcc=2.7 V to 3.3 V
- Low supply current

Operating : 25.0 mA typ.
Power down mode : 0.6 mA typ.

- Operating temperature : $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
- Package : Plastic SSOP 20-pin (FPT-20P-M03)

BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

Pin No.	Symbol:	Description	PinNo.	Symbol	
1	RFout	Up converter output	11	Vcc	Power supply
2	GND	Ground	12	GND	Ground
3	LO2	Mixer LO input	13	1	Baseband input (1)
4	GND	Ground	14	XI	Baseband complementary input (1)
5	XIF	Mixer IF complementary input	15	QMOD	Q-modulator IF output
6	IF	Mixer IF input	16	XOMOD	Q-modulator IF complementary output
7	XLO1	O-modulator LO complementary input	17	XQ	Baseband complementary input (Q)
8	LO1	Q-modulator LO input	18	Q	Baseband input (Q)
9	GND	Ground	19	GND	Ground
10	Vcc	Power supply	20	PS	Power down control

ELECTRICAL CHARACTERISTICS

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Target Value			Unit	Note		
		Min.	Typ.	Max.					
Power supply voltage			Vcc	2.7	3.0	3.3	V		
Power supply current		icc		25.0		mA	DC current		
Power down current		lccPs		0.6		mA	DC current		
Shifter input LOt	Operating band	flor	100		800	MHz			
	Input level	PLot	-15		0	dBm			
Baseband input LO2	Operating band	$f 88$	DC		1	MHz			
	Input amplitude	Vbe			1.2	Vpp			
Mixer input LO2	Operating band	for			1900	MHz			
	Input level	PLO2			-5	dBm			
Mixer output RFout	Operating band	f_{f}			2000	MHz	$f \mathrm{fF}=\mathrm{fLO} / 2 / 2+\mathrm{fLO}$		
	Output level	Prf		-14		dBm		Q-MOD \& Mixer direct connection, $\mathrm{BB}=1 \mathrm{Vpp}$	
Modulation precision	Amplitude error	Aers			2	\%	RMS value		
	Phase error	Perr			1	deg.	RMS value		
	Vector error	Verr			3	\%	RMS value		
Carrier suppression		CS			-30	dBc	External offset, no offset adjustment		

Note; fLO1 $=500 \mathrm{MHz}(-10 \mathrm{dBm}), \mathrm{fLO} 2=1650 \mathrm{MHz}(-10 \mathrm{dBm}), f R F=1900 \mathrm{MHz}$ output

PERIPHERAL CONNECTION EXAMPLE

FPT-20P-M03

SECTION 6

Semi-Custom BiCMOS LSI RF Integrated Circuits - At a Glance

Fujitsu has an answer for those customers who wish to pursue a semi-custom solution tailored to their design needs for high volume, cost and size critical applications. Fujitsu's advanced Semi-Custom BiCMOS LSI RF IC technology is an array-based methodology used to develop both custom devices and standard devices. This means that many of the standard parts in the SuperPLL and Super Analog product lines have equivalent macros already developed for implementation in a semi-custom solution. This provides a low risk integration path from discrete solutions using standard devices for prototyping or first generation designs to complete, highly integrated solutions. Please contact your nearest Fujitsu representative for further details and engagement requirements.

Page Number	Part Number	Series Number	Frame Number
$6-3$	MB1520	I	FRAME I
$6-3$	MB1530	1	FRAME II
$6-3$	MB1540	I	FRAME III
$6-3$	MB1550	I	FRAME IV
$6-31$	MB54500	II	FRAME I
$6-45$	MB54600	III	FRAME III
$6-59$	MB1560	IV	FRAME I

MB1520/MB1530/MB1540/MB1550 SERIES Bi-CMOS LSI RF IC SPECIFICATION

ADVANCED SEMICUSTOM TECHNOLOGY OF SUPER PLL WITH RF SYSTEM ON LSI

The Fujitsu MB1520/1530/1540/1550 series are semicustom LSI IC's based on a master slice method. Super PLL (PLL and Prescaler) macros and high frequency analog macros, such as VCO's. IF amplifiers, RF amplifiers and mixers can be realized on a single chip in accordance with customer requests. This is achieved by means of predefined blocks (Super PLL's and analog macros) laid out on the respective frames in a number of different combinations. The performance of each block is custom specified.

The MB1520/1530/1540/1550 series makes it possible to compose single chip silicon front ends for mobile communication systems. Due to the design process used, development cycles and cost are greatly reduced over standard full custom LSI designs, resulting in lower system cost solutions and reduced time-to-market.

Features

- Super PLL's as well as high frequency analog circuits, such as VCO's, mixers, RF and IF amplifiers.
- Four available frame sizes, offering various combinations of Super PLL's and analog macros.
- Choice of a wide variety of existing Super PLL's and analog functions, as well as custom specifications of the same.
- Choice of power supply voltages between 2.7V and 5.5V. (Minimum 2.0V with some restrictions available.)
- Available high speed lock up circuit for digital mobile communications such as DECT, GSM, PDC, and so on.
- A number of standard features, such as power saving modes, phase shifter circuit, analog switches, charge pumps, depending on the frame size.
- Development cycle is typically 14 weeks.

Application Examples

- MB1520 series: BS tuner, car navigation systems
- MB1530 series: MCA wireless for business use, analog cordless phones
- MB1540 series: Analog cellular phones, trunked radios
- MB1550 series: Digital cellular and digital cordless phones

This device contains circuitry to prolect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Bi-CMOS LSI RF IC SERIES

Master-slice methodology is that wafers of a particular frame are prefabricated as much as having finished diffusion processes, forming the basic elements, such as transistors, resistors and capacitors. The remaining contact and wiring process steps then determine and configure the function and value of each element according to cases.

This series is based on a master-slice method for which predefined blocks are laid out. Four series, MB1520/1530/1540/1550 are available in accordance with combinations of the predefined blocks. (Please refer to "Chip Layout".) Table 1 shows representative blocks an features of each series.

Table 1. SERIES

Series Name	Prescaler	PLL	Analog Macro	Operating Frequency (max.)	Package		
MB1520	1 circuit	1 circuit	2 circuits	2.4 GHz	20 -pin	-	-
MB1530	2 circuits	2 circuits	4 circuits	1.9 GHz	34 -pin	-	-
MB1540	2 circuits	2 circuits	6 circuits	2.4 GHz	-	48 -pin	48 -pin
MB1550	3 circuits*	3 circuits	8 circuits	2.4 GHz	-	48 -pin	64 -pin

[^41]
CHIP LAYOUT

MB1520 Series
1 Prescaler
1 PLL
2 Analog Macros

MB1530 Series

2 Prescaler 2 PLL
4 Analog Macros

CHIP LAYOUT (Continued)

MB1540 Series 2 Prescaler 2 PLL 6 Analog Macros								

MB1550 Series

2 Prescaler
3 PLL
8 Analog Macros 1 Prescaler or 90° phase shifter

CHIP LAYOUT (Continued)

ABSOLUTE MAXIMUM RATINGS
(Reference voltage is GND.)

Parameter	Symbol	Value	Unit
Power Supply Voltage	$V_{\text {CC }}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Voitage	IOUT	± 10	mA
Ambient Temperature	TSTG	-50 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS
(Reierence voltage is GND.)

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	V_{CC}	2.7*		5.5	V
	GND		0		V
Ambient Temperature	TA	-40		+85	${ }^{\circ} \mathrm{C}$

* The minimum operating voltage is at 2.0 V , but some restriction may be required.

MACRO CELLS DESCRIPTIONS

1. Super PLL (PLL and Prescaler)

1.1 Functional Descriptions

In designing "super PLL block", some functions may be restricted depending on kind of series (MB1520/1530/1540/1550). Availability of main functions is summarized in Table 2.

1. Phase comparator

Phase difference detection range is -2π (pi) to $+2 \pi$ (pi). In order to minimize the dead zone area, the phase comparator is designed to deliver a minimum signal to the charge pump even when the phase difference is zero. Also, it is possible to choose the characteristics of the phase comparator to meet polarity of VCO.
2. Counter (Reference Counter and Programmable Counter)

Two types of counters are available for PLL1 and PLL2 of all series : programmable and fixed Regarding PLL3, one type of counter is available
: Fixed
3. Charge pump

All charge pumps are based on bipolar technology. Their voltage levels at " H " depend on the power supply voltage chosen. It is possible to optimize charge pump characteristics individually according to customer needs.

- High speed lock up circuit

This circuit is an option to further increase the lock up time of the PLL, and is available for PLL1 and PLL2 (except PLL3). It will mainly be required in the new emerging digital communication standards.
4. Prescaler

Divide ratio can be chosen freely, so can two modulus type and fixed type. However, regarding PLL3, only fixed type is available and the divide ratio can be chosen from $1 / 2,1 / 4$, and $1 / 8$.

Table 2. SUPER PLL FUNCTION TABLE

		Prescaler	Programmable Counter	Reference Counter	High Speed Lock Up Function	Power Save Mode
MB1520	PLL1	T	P/F	P/F	x	X
MB1530	PLL1	T	P/F	P/F*	X	X
	PLL2	T	P/F		-	-
MB1540	PLL1	T	P/F	P/F	X	x
	PLL2	T	P/F	P/F	-	x
MB1550	PLL1	T	P/F	P/F	X	X
	PLL2	T	P/F	P/F	X	X
	PLL3	S	F	F	-	X

NOTE: T: Two Modulus S: Single Modulus (1/2, 1/4, or 1/8) P/F: Programmable or Fixed F: Fixed X: Available *: Common for PLL1 and 2
5. Analog switch

This switch is controlled by the LE signal. When LE is at " H ", the analog switch is closed (ON). In this mode, the charge pump output (D_{0}) is fed in parallel to the pin BS. This decreases the time constant of the loop filter and reduces the charge pump load. The result is an increased lock up speed.

6. Intermittent operation control circuit

The intermittent operation reduces the power consumption by powering down or waking up parts of the PLL circuitry. All the transmission, the reception and IF block PLL may be controlled by this circuit.
If a PLL is powered up uncontrolled, the resulting phase comparator output signal is unpredictable due to an undefined phase relation between the reference frequency (fn) and the comparison frequency (fp) and may in the worst case take longer time for lock up of the loop.
To prevent this, the intermittent operation control circuit forces a limited error signal output of the phase detector during power up, thus keeping the loop locked.
The circuit can be controlled externally or internally, depending on customer requirements. If controlled externally, the circuit is activated by an external signal to the PS pin. If controlled internally, the intermittent control circuit follows the power state set by the analog cells. When the power supply for the analog cells is shut down, the stand by state is automatically selected. When the analog cells are supplied with power, the active state is selected.
The charge pump output is in a high impedance state during stand by, so that the VCO control voltage is being clamped at the active state level.
During the stand by state, the latches store the data which they hold at the time of power down. The shift register data, on the contrary, may be renewed during stand by.
NOTE: Powering up for the digital blocks (VCCRD, Vccto), (after they are disconnected) has to be done in stand by mode.

Table 3. STANDARD STAND BY STATE OF PLL BLOCK

		Circuit State	
		Active Mode	Stand By Mode
Rx	Reception circuits	X	PD
	Oscillator circuit	X	X*
	Reference counter	X	-
Tx	Transmission circuits	X	PD
	Oscillator circuit	X	X
	Reference counter	X	-
IF	IF circuits	X	PD
	Oscillator circuit	X	X
	Reference counter	X	-

NOTE: X: Active state PD: Power down mode --: Stop working *: Oscillator circuit can be stopped in accordance with PK's PD signal.
7. Lock detector circuit

LD output is selected by setting the "T" bit. (See 1.2 Serial data format.)
When the phase difference is equal or higher than tw (see diagram below), LD goes into " L ". When the phase "ifference is tw or less and continues to be so for three cycles or more, the LD goes into " H ". For example, in case of a 12.8 MHz oscillator frequency t w, is 625 ns to 1250 ns . The relation between LD and PLL circuit is shown in Table 4.

Table 4. RELATIONSHIP BETWEEN LD SIGNAL AND THE CIRCUIT STATE

Operation Mode	PLL circuit	LD Output
Stand-by	Stand-by	L
Active	Unlock	L

1.2 Serial Data Format

The PLL operation is controlled by serial data inputs. The parameters of the serial data are shown below. The data input starts with the MSB bit. The data length may vary between 22 and 37 bits. The actual data format is being worked out with the customer.

Table 5. SERIAL DATA FORMAT

Name	Function	Typical Bit Number
Control Bit (CNT bit)	Selects direction of data transfer (Rx or Tx)	1 to 2
LD Select Bit (T bit)	Selects the LD output	1 to 2
FC Bit (F bit)	Switches phase of the comparator	1
Programmable Counter Bit (N bit)	Sets programmable counter's divide ratio	11
Swallow Counter Bit (A bit)	Sets swallow counter's divide ratio	7
Reference Counter Bit (R bit)	Fixed	Sets reference counter's divide ratio

1.3 Serial Data Input Timing

Binary data is entered using the Data, Clock, and LE pins. The serial data separately controls the programmable reference divider as well as the programmable divider.
Each data bit is shifted into the internal shift register at the rising edge of each clock pulse. When the LE pin is "H", stored data is transferred from the shift register into the latch, chosen by the control bit. A schmitt trigger at each input improves noise immunity.
NOTE: 1. One clock pulse always shifts one data bit into the shift register, even during stand by state.
2. Input voltages (Data, Clock, and LE pins) should always be lower than Vcc.

2. Mixer, IF Amplifier

Some basic examples for achievable circuits are shown below. However, concerning circuitry and performance, it is possible to configu each analog macro cell to customer requirements.

2.1 Basic Construction

Mixer circuit can either be of DBM (Doubled Balanced Mixer) or SBM (Single Balanced Mixer) type. LO and RF inputs can be connected with the internal bias circuit, if necessary. The mixer output is connected with its own power supply (Vmix) via a load resistor, then connected with the following IF amplifier.
The IF amplifier consists of a differential amplifier and NPN transistor, which forms the emitter follower output.
Basic Equivalent Circuit (1)

Basic Equivalent Circuit (2)

3. RF Amplifier

3.1 Basic Construction

The output signal from the common emitter circuit will be supplied though an emitter follower.

Basic Equivalent Circuit

4. VCO

4.1 Basic Construction

The VCO circuit consists of an output buffer transistor and an oscillation transistor, which construct a base grounded colpitts circuit. Resonator and varicap can't be integrated in the chip, so they need to be connected externally.

Basic Equivalent Circuit

EXAMPLES OF AN ANALOG CIRCUIT'S BASIC CHARACTERISTICS
VCO

Parameter	Value			Unit	Conditions
	Min.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Operating Frequency			400	MHz	
C / N		70		dB	Offset frequency $=25 \mathrm{kHz}, \mathrm{BW}=15 \mathrm{kHz}$
S / N		50		dB	
Output Power		-5		dBm	
Mod Sense		3		$\mathrm{MHz} / \mathrm{V}$	

Mixer

Parameter	Value			Unit	Conditions
	Min.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Gain		13		dB	
Maximum Output Power		-5		dBm	
1 dB Compresssion Point		-10		dBm	Output level
Intercept Point		-16		dBm	Input level
Noise Figure		10		dB	DSB measurement
RF-Lo Isolation		20		dB	

Amplifier

Parameter	Value			Unit	Conditions
	Min.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Operating Frequency		400		MHz	
Gain		20		dB	$\mathrm{f}=400 \mathrm{MHz}$ (small signal input)
Maximum Output Power		-3		dBm	$\mathrm{f}=400 \mathrm{MHz}$
1 dB Compresssion Point		-10		dBm	$\mathrm{f}=400 \mathrm{MHz}$, Output level
Intercept Point		-19		dBm	$\mathrm{f}=400 \mathrm{MHz}, 400.1 \mathrm{MHz}$, Input level
Noise Figure		3		dB	$\mathrm{f}=400 \mathrm{MHz}$

MB1540 APPLICATION CIRCUIT EXAMPLE

DEVELOPMENT PROCEDURE

1. Study about product development

(1) The customer submits technical and commercial requests to Fujitsu. Fujitsu reviews the customer requirements, if necessary simulation is done.
[Technical request]
Function: Functional descriptional material, I/O signal descriptional material, Block diagram, etc.
Specifications: Prescaler, PLL, VCO, Mixer, Amplifier, etc.
[Commercial request]
Delivery and price: Development schedule, development assignment plan, demand, NRE, target price, etc.
(2) Fujitsu submits a counter proposal. And the final target specification evolves from the discussions about proposal/counter proposals between the customer and Fujitsu.
(3) Detailed circuit and test specifications are studied. Then all of the specifications are decided. After that development schedule, NRE, quotation are estimated formally.
(4) After the customer and Fujitsu agree to develop the device, the final specification (data sheet) is submitted to the customer to confirm the specification.

2. Development of IC

(1) Design and layout of the chip starts. First engineering samples become available approximately 14 weeks after the final target data sheet is issued.
(2) ES is evaluated by the customer and Fujitsu.
(3) The final specification sheet of finished product is submitted to the customer from Fujitsu when the customer is satisfied with evaluation result. Then, preparation for mass production is started. Typically 3 months are necessary for the first shipment from when the final specification sheet (for finished products) is issued.

TARGET SPECIFICATION BLANK

MB1520 Series

Parameter		Symbol	Request Value			Unit	Note	
		Min.	Typ.	Max.				
Power Supply Current			ICCD				mA	Digital section
		ICCA				mA	Analog section	
Power Supply Voltage		$\mathrm{V}_{\text {cco }}$				V	Digital section (PLL, Prescaler)	
		$\mathrm{V}_{\text {CCA }}$				V	Analog section (VCO)	
VCO	Operating Frequency Range	fvco				MHz		
	Output Power	Pout				dBm		
	C/N Ratio	C / N				dB	Detuning Δf \qquad kHz Bandwidth: \qquad kHz	
	S/N Ratio	S/N				dB	Reference deviation: \qquad $\mathrm{kHz} / \mathrm{dev}$ Bandwidth: \qquad kHz to \qquad kHz	
	Mod Sense	Δ fvco				MHz/V	Control voltage V_{T} ___ ${ }^{\text {to }}$	
RF-Amp	Operating Frequency Range	$\mathrm{f}_{\text {AMP }}$				MHz		
	Gain	Gain				dB		
	Noise Figure	NF				dB		
	Intercept Point	IP_{3}				dBm	Input level	
	1 dB Compression Point	CP				dBm	Output level	
	In-out Isolation	Iso				dB		

MB1520 Series (Continued)

Parameter		Symbol	Request Value			Unit	Note	
		Min.	Typ.	Max.				
Mixer	Operating Frequency		f_{RF}				MHz	
		${ }_{\text {LO }}$				MHz		
		$\mathrm{f}_{\text {IF }}$				MHz	Output frequency	
	Gain	GAIN				dB		
	Noise Figure	NF				dB	Measurement method; SSB or DSB measurement value	
	Intercept Point	IP_{3}				dBm	Input level	
	1 dB Compression Point	CP				dBm	Output level	
	LO-RF Isolation	Iso				dB		
PLL	Oscillation Frequency	fosc				MHz	Comparison frequency: $\mathrm{f}_{\mathrm{r}}=\ldots \mathrm{kHz}$	
	Lock-up Time	TLA				ms	Step frequency: $\Delta \mathrm{f}=\ldots \ldots \mathrm{kHz}$	

Memo:

* If you have any questions, please fill in the above "Memo" column.

Customer name:

Application:

ES request day:

CS request day:

Planning quantity:

TARGET SPECIFICATION BLANK
 MB1530/MB1540 Series

Parameter		Symbol	Request Value			Unit	Note	
		Min.	Typ.	Max.				
Power Supply Current			ICCR				mA	Reception section
		ICCT				mA	Transmission section	
Power Supply Voltage		$\mathrm{V}_{\text {CCD }}$				V	Digital section (PLL, Prescaler)	
		$\mathrm{V}_{\text {CCA }}$				V	Analog section (VCO)	
TX-VCO	Operating Frequency Range	fvco				MHz		
	Output Power	Pout				dBm		
	C/N Ratio	C / N				dB	Detuning $\Delta \mathrm{f}$: \qquad kHz Bandwidth: \qquad kHz	
	S/N Ratio	S/N				dB	Reference deviation: \qquad $\mathrm{kHz} / \mathrm{dev}$ Bandwidth: \qquad kHz to \qquad kHz	
	Mod Sense	Δ fvco				MHz/N	Control voltage V_{T}.___ to C	
RX-VCO	Operating Frequency Range	fvco				MHz		
	Output Power	Pout				dBm		
	C/N Ratio	C / N				dB	$\begin{array}{\|l} \text { Detuning } \Delta \mathrm{f}:=\mathrm{kHz} \\ \text { Bandwidth: } \end{array}$	
	S/N Ratio	S / N				dB	Reference deviation: \qquad kHz/dev Bandwidth: \qquad kHz to \qquad kHz	
	Mod Sense	$\Delta \mathrm{f}_{\mathrm{VCO}}$				MHzN	Control voltage V_{T} ___ to C	
RF-Amp	Operating Frequency Range	$\mathrm{f}_{\text {AMP }}$				MHz		
	Gain	Gain				dB		
	Noise Figure	NF				dB		
	Intercept Point	IP_{3}				dBm	Input level	
	1 dB Compression Point	CP				dBm	Output level	
	In-out Isolation	Iso				dB		

MB1530/MB1540 Series (Continued)

Parameter		Symbol	Request Value			Unit	Note		
		Min.	Typ.	Max.					
Mixer	Operating Frequency		f_{RF}				MHz		
		f_{L}				MHz	Output frequency		
		$\mathrm{f}_{\text {IF }}$				MHz			
	Gain	GAIN				dB			
	Noise Figure	NF				dB	Measurement method; SSB or DSB measurement value		
	Intercept Point	IP_{3}				dBm	Input level		
	1 dB Compression Point	CP				dBm	Output level		
	LO-RF Isolation	Iso				dB			
PLL	Oscillation Frequency	fosc				MHz	Comparison frequency: $\mathrm{f}_{\mathrm{r}}=\ldots \ldots \mathrm{kHz}$		
	Lock-up Time	TLR				ms	Reception	Step frequency;$\Delta f=\quad \mathrm{kHz}$	
		$\mathrm{T}_{\text {LT }}$				ms	Transmission		

Memo:

* If you have any questions, please fill in the above "Memo" column.

Customer name:

Application:

ES request day:

CS request day:

Planning quantity:

PACKAGE DIMENSIONS

MB1520 Series

PACKAGE DIMENSIONS (Continued)

MB1530 Series

PACKAGE DIMENSIONS (Continued)

MB1530 Series

34-LEAD PLASTIC FLAT PACKAGE

(CASE No.: FPT-34P-M03)
34 pin Plastic SSOP (FPT-34P-MO3)

* : This dimension does not include resin protraction.

PACKAGE DIMENSIONS (Continued)

MB1540 Series

MB1550 Series

PACKAGE DIMENSIONS (Continued)

MB1540 Series

PACKAGE DIMENSIONS (Continued)

MB1550 Series

All Rights Reserved.

Circuit diagrams using Fujitsu products are included as a means of illustrating typical semiconductor applications. Information sufficient for construction purposes is not necessarily given.
The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.
Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

MB54500 SERIES

Bi-CMOS LSI RF IC

ADVANCED SEMICUSTOM TECHNOLOGY FOR RF SYSTEM INTEGRATION ON LSI

This FUJITSU Series is a semicustom LSI IC based on a master slice method, and is ideally suitable for high frequency analog circuits such as VCO, MB54500 series involves two analog macros, such as VCO's, IF amplifiers, RF amplifiers, and mixers can be realized on a single chip in accordance with customer requests. This is achieved by means of predefined blocks (analog macros) laid out on the frame. The performance of each block is custom specified.
The MB54500 achieves low power dissipation by Fujitsu's advanced technology. Very small flat packages, smallest I/O 8-pin SSOP, are available for this LSI.

FEATURES

- High frequency analog circuits for front-end section, such as VCO's, mixers, RF and IF amplifiers can be realized.
- Choice of a wide variety of exsisting and analog functions, as well as custom specifications of the same.
- Maximum operating frequency is at 2 GHz .
- Choice of power supply voltages between 2.7V and 5.5V .
- Development cycle is typical 12 weeks.
- Very samll package is available, SSOP 8-pin.
- Power saving circuit can be involved.

ABSOLUTE MAXIMUM RATINGS

(Reference voltage level is GND.)

Parameter,	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	VIN	-0.5 to $\mathrm{Vcc}+0.5$	V
Output Current	lout	± 10	mA
Ambient Temperature	TSTG	-50 to +125	${ }^{\circ} \mathrm{C}$

[^42]CHIP LAYOUT

Analog cell

MACRO CELLS DESCRIPTIONS

1.High frequency analog cells

1.1 Mixer

Double balanced mixer of active type.

1.2 IF amplifier

IF amplifier consist of a differential amplifier and NPN transistor. Differential amplifier outpt is emitter follower type.

1.3 RF amplifier

Output signal of grounded emitter circuit is emitter follower output. RF input can be connected internal bias circuit.

1.4 VCO

The VCO consists of an output buffer's transistor and an oscillation's transistor which constructs an oscillator circuit of base grounded colpitts. Resonator, varicap and so on are connected externally.

Note;
Circuit design and so on can be optimized in accordance with customer needs.

RECOMMENDED OPERATING CONDITIONS

(Reference voltage level is GND.)

Parameter	Symbol	Values			Unit
		Min.	Typ.	Max.	
Power Supply Voltage	$\mathrm{V} \times$	2.7		5.5	V
	GND		0		V
Ambient Temperature	TA	-40		+85	${ }^{\circ} \mathrm{C}$

ANALOG CIRCUITS BASIC CHARACTERISTICS EXAMPLE
1.VCO

Parameter	Value			Unit	Conditions
	Min.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Operating Frequency			400	MHz	
C / N		70		d8	Offset frequency $=25 \mathrm{kHz}, \mathrm{BW}=15 \mathrm{kHz}$
. S/N		50		dB	
Output Power		-5		dBm	
Mod Sense		3		$\mathrm{MHz} N$	

2.Mixer

Parameter	Value			Unit	Condilions
	Min.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Gain		13		dB	
Maximum Output Power		-5		dBm	
1dB Compression Point		-10		dBm	Output Level
Intercept Point		-16		dBm	Input Level
Noise Figure		10		dB	
RF-Lo Isolation		20		dB	

3.Amplifier

Parameter	Value			Unit	Condflons
	Mİ.	Typ.	Max.		
Supply Voltage	4.5		5.5	V	
Current Consumption		6		mA	
Operating Frequency		400		MHz	
Gain		20		dB	$\mathrm{f}=400 \mathrm{MHz}(-30 \mathrm{dBm}$ in $)$
Maximum Output Power		-3		dBm	$f=400 \mathrm{MHz}$
1dB Compression Point		-10		dBm	$f=400 \mathrm{MHz}$, Output level
Intercept Point		-19		dBm	$f=400 \mathrm{MHz}, 400.1 \mathrm{MHz}$, input level
Noise Figure		3		dB	$\mathrm{f}=400 \mathrm{MHz}(-300 \mathrm{Bm}$ in $)$

BASIC EQUIVALENT CIRCUIT OF ANALOG CIRCUITS

1.MIxer and IF amplifier

The mixer is a DBM (Double-Balanced Mixer) of active type. LO and RF inputs can be connected with internal bias circuit. The mixer output is connected with its own power supply (Vmix) via a bad resistor, then connected with next IF amplifier.
The IF amplifier consists of a differential amplifier and NPN transistors, and the differential amplifier's ouput is output through an emitter follower.

2.RF Amplifier

Output signal from common emitter circuit is output through emitter follower. It is possible to connect RF input with internal bias circuit.

3. VCO

The VCO consists of an output buffer's transistor and an oscillation's transistor which constructs a base grounded colpitts circuit. Resonator, varicap and so on are connected externally.

DEVELOPMENT PROCEDURE

1.Examination about product development

(1)Examination about specifications, and development conditions.

A customer submit target specifications of his idea to Fujitsu. Fujitsu reviews the specifications to judge technological feasibility, by means of simulation if necessay, and cost estimation.
[Products Information]
Functional Information : Functional descriptional material, I/O signal descriptional material, Block diagram, etc. Specificational information : Prescaler, PLL, VCO, Mixer, Amplifier, etc.
[Development Information]
Delivery related Intormation : Development schedule, development assignment plan, etc.
Quotation related information : Demand, NRE, target price, etc.
(2) Examination about product development

Fujitsu and the customer examine go/no-go of the product develpment in together, based on result of the review.
(3)Examination about product development

Circuits' functions and charateristics are examined in detail so that detailed specifications and test specifications are examined. After the specification is finalized, development schedule, NRE, formal quotation are done.
(4)Confirmation of the final specification (data sheet)

After the customer and Fujitsu agree to develop the device, the final specification (data sheet) is submitted to the customer to confirm the specifications.

2.Development of IC

(1)IC designing and manufacturing by way of trial

Fujitsu designs the device and manufacture it by way of trial based on the final specifications. It takes about 12 weeks (typ.) from when the final specification sheet is issued to when the first ES (Engineering Sample) are manufactured.
(2) Evaluation of ES

ES is evaluated by both the customer and Fujitsu based on the final specifications.
(3)The final confirmation

A specification sheet of finished product is submitted to the customer from Fujitsu when the customer
satisfied with evaluation result, so that preparation for mass production is started by Fujitsu. Typically 3 months are necessary for the first shipment from when the specification sheet (for finished products) is issued.

APPLICATION CIRCUIT EXAMPLE

PACKAGE DIMENSIONS

8-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-8P-M01)

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)

PACKAGE DIMENSIONS (Continued)

MB54600 SERIES

Bi-CMOS LSI RF IC

ADVANCED SEMICUSTOM TECHNOLOGY FOR RF SYSTEM INTEGRATION ON LSI

This FUJITSU Series is a semicustom LSI IC based on a master slice method, and is ideally suitable for high frequency analog circuits such as VCO.
MB54600 series involves one prescaler circuit and six analog macros, such as VCO's, IF amplifiers, RF amplifiers, and mixers can be realized on a single chip in accordance with customer requests. This is achieved by means of predefined blocks (prescaler macro and analog macros) laid out on the frame. The performance of each block is custom specified.
The MB54600 Series achieves low power dissipation by Fujitsu's advanced technology. Very small flat packages are available for this LSI.

FEATURES

- High frequency analog circuits for front-end section, such as VCO's, mixers, RF and IF amplifiers can be realized.
- Choice of a wide variety of exsisting and analog functions, as well as custom specifications of the same.
- Maximum operating frequency is at 2 GHz .
- Choice of power supply voltages;

3 V type : 2.7V to 3.3 V
2 V type : 2.0 V to 2.4 V

- Development cycle is typical 12 weeks.
- Very samil package is available, SSOP 20-pin/34-pin.
- Power saving circuit can be involved.

ABSOLUTE MAXIMUM RATINGS

(Reference voltage level is GND.)

Parameter	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +5.0	V
Input Voltage	Vin 2	-0.5 to Voc +0.5	V
Output Current	lout	± 10	mA
Ambient Temperature	TSTG	-50 to +125	${ }^{\circ} \mathrm{C}$

[^43]

[^44]
CHIP LAYOUT

Analog cell

MACRO CELLS DESCRIPTIONS

1.High frequency analog cells

1.1 Mixer

Double balanced mixer of active type.

1.2 IF amplifier

IF amplifier consist of a differential amplifier and NPN transistor. Differential amplifier outpt is emitter follower type.

1.3 RF amplifier

Output signal of grounded emitter circuit is emitter follower output. RF input can be connected internal bias circuit.
1.4 VCO

The VCO consists of an output buffer's transistor and an oscillation's transistor which constructs an oscillator circuit of base grounded colpitts. Resonator, varicap and so on are connected externally.

Note;
Circuit design and so on can be optimized in accordance with customer needs.

RECOMMENDED OPERATING CONDITIONS

3V type
(Reference voltage level is GND.)

2V type
(Reference voltage level is GND.)

ANALOG CIRCUITS BASIC CHARACTERISTICS EXAMPLE

1.VCO

Parameter	Value:			Unit	Conditons
	Min.	7yp:	Max.		
Supply Voltage	2.7	3.0	3.3	V	
Current Consumption		11		mA	
Operating Frequency			900	MHz	
C/N		77		dB	Offset frequency $=25 \mathrm{kHz}, \mathrm{BW}=16 \mathrm{kHz}$
S/N		44		dB	$\mathrm{BW}=0.3 \sim 3 \mathrm{kHz}, 3 \mathrm{kHz} / \mathrm{Dev}$
Output Power		-2		dBm	
Mod Sense		6		$\mathrm{MHz} N$	

2.Mixer

Parameter			Value			
		Min.	Typ.	Max.		, \% . ${ }^{\text {a }}$,
Supply Voltage		2.7	3.0	3.3	\checkmark	
Current Consumption			15		mA	
Operating Frequency	RF		800		MHz	
	Lo		110		MHz	
	IF		910		MHz	
Gain			7		dB	
Maximum Output Power			-9		dBm	
1dB Compression Point			-12		dBm	Output Level
Intercept Point			-9		dBm	Input Level
Noise Figure			11		dB	DSB output
RF-Lo Isolation			20		dB	

MB54600 SERIES

3.Amplifier

Parameter	Value			Unit	Conditions
	Min.	Typ.	Max.		
Supply Voltage	2.7	3.0	3.3	V	
Current Consumption		7.5		mA	
Operating Frequency		900		MHz	
Gain		13		dB	$f=900 \mathrm{MHz}(-300 \mathrm{Bm}$ in $)$
Maximum Output Power		1		dBm	$t=900 \mathrm{MHz}$
1dB Compression Point		-5		dBm	$\mathrm{f}=900 \mathrm{MHz}$, Output level
Intercept Point		-9		dBm	$f=900 \mathrm{MHz}, 900.1 \mathrm{MHz}$, Input level
Noise Figure		2.5		dB	$f=900 \mathrm{MHz}$

BASIC EQUIVALENT CIRCUIT OF ANALOG CIRCUITS

1.MIxer and IF amplifier

The mixer is a DBM (Double-Balanced Mixer) of active type. LO and RF inputs can be connected with internal bias circuit. The mixer output is connected with its own power supply (VMIX) via a load resistor, then connected with next IF amplifier.
The IF amplifier consists of a differential amplifier and NPN transistors, and the differential amplifier's ouput is output through an emitter follower.

2.RF Amplifier

Output signal from common emitter circuit is output through emitter follower. It is possible to connect RF input with internal bias circuit.

MB54600 SERIES

3. VCO

The VCO consists of an output buffer's transistor and an oscillation's transistor which constructs a base grounded colpitts circuit. Resonator, varicap and so on are connected externally.

DEVELOPMENT PROCEDURE

1.Examination about product development

(1)Examination about specifications, and development conditions.

A customer submit target specifications of his idea to Fujitsu. Fujitsu reviews the specifications to judge technological feasibility, by means of simulation if necessay, and cost estimation.
[Products Information]
Functional Information : Functional descriptional material, $1 / O$ signal descriptional material, Block diagram, etc. Specificational information : Prescaler, PLL, VCO, Mixer, Amplifier, etc.
[Development Information]
Delivery related Information : Development schedule, development assignment plan, etc.
Quotation related information : Demand, NRE, target price, etc.
(2) Examination about product development

Fujitsu and the customer examine go/no-go of the product develpment in together, based on result of the review.
(3) Examination about product development

Circuits' functions and charateristics are examined in detail so that detailed specifications and test specifications are examined. After the specification is finalized, development schedule, NRE, formal quotation are done.
(4)Confirmation of the final specification (data sheet)

After the customer and Fujitsu agree to develop the device, the final specification (data sheet) is submitted to the customer to confirm the specifications.

MB54600 SERIES

2.Development of IC

(1)IC designing and manufacturing by way of trial

Fujitsu designs the device and manufacture it by way of trial based on the final specifications. It takes about 12 weeks (typ.) from when the final specification sheet is issued to when the first ES (Engineering Sample) are manufactured.
(2) Evaluation of ES

ES is evaluated by both the customer and Fujitsu based on the final specifications.
(3) The final confirmation

A specitication sheet of finished product is submitted to the customer from Fujitsu when the customer
satisfied with evaluation result, so that preparation for mass production is started by Fujitsu. Typically 3 months are necessary for the first shipment from when the specification sheet (for finished products) is issued.

APPLICATION CIRCUIT EXAMPLE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

* : This dimension does not include resin protraction. (FPT-34P-M03)

MB1560 Semicustom (For PLL Frequency Synthesizers) Bi-CMOS LSI RF IC Specification

- DESCRIPTION

This FUJITSU Series is a master-slice type semi-custom LSI ideal for use in high-frequency front-end circuits in VCO, amplifier, mixer and orthogonal modulator devices.

The MB1560 series features an analog circuit unit that is a more highly integrated version of the MB1520MB1550 series featuring two analog cell circuits, plus a digital circuit unit with a power-saving prescaler circuit and a PLL1 circuit with pulse-swallow capability.

The PLL, prescaler and high-frequency analog circuits can be designed to users' specifications using FUJITSU's standard macro cell technology.
This LSI series uses FUJITSU's latest wafer process technology for power-saving operation and master-slice semi-custom design to reduce lead times and lower costs. In addition, the ultra-compact flat package helps maintain circuit confidentiality, and contributes to lighter, more compact design by reducing the number of components.
The MB1560 series is ideal for high-frequency applications, particularly mobile communication devices operating on digital specifications such as PCN, DECT, PHS and so on.

- FEATURES

- PLL circuits can be customized for operating frequency, logical circuits, etc.
- High frequency analog circuits with adjustable resistance levels
- High speed operating capacity to 3.0 GHz
- On-chip low-current consumption and power-saving circuits
- On-chip high-speed lockup function
- Supply voltage: 2.7 V to 3.3 V (minimum operating voltage to 2.0 V min.)
- Development time (standard): approx. 10 weeks

LINEUP

Series	Prescaler	PLL	Analog circuits	Operating frequency	Package			Remarks
					SSOP	QFP	SQFP	
MB1560	1 circuit	1 circuit	2 circuits	3.0 GHz	$\begin{aligned} & 20 \\ & 34 \end{aligned}$	-	-	For single PLL frequency synthesizers

[^45]- PACKAGE

(FPT-20P-M03)
(FPT-34P-MO3)

CHIP LAYOUT

- MB1560 Series

- Analog Cell

6

MACRO CELL DESCRIPTIONS

1. Prescaler

Divides the reference frequency by any given value and outputs the resulting frequency. Choice of two-modulus or fixed output mode.

2. PLL

- Phase comparator

The phase comparator has a phase detection range of -2π to $+2 \pi$, and is designed to eliminate blind spots in phase comparison by output of a margin-of-error signal to the charge pump even when the phase difference is zero. Phase comparator characteristics can also be tuned to the polarity of VCO.

- Counters

The divide ratios of the comparator-side counter and reference-side counter can be either programmable or fixed.

- Charge pump

The " H " level output voltage from the charge pump is determined by power supply voltage. Charge pump characteristics for the sending and receiving systems can be optimized for each specific application.
For example, when FM modulation is applied directly to the VCO signal, charge pump characteristics can be adjusted for lower speeds in order to reduce the sensitivity of the synthesizer loop so that output does not track the modulation.

- Analog switch

When switching frequencies, the analog switch can be used to switch the capacitance of the low pass filter, to reduce the time constant in the filter and the load on the charge pump. This enables higher lock-up speed.
Switch control is synchronous with the LE signal, to that the analog switch is on when the LE signal is "high".

- High speed lock-up circuit

This circuit is specially designed for faster lock-up speeds.

- Intermittent operation control circuit

This on-chip power-saving function reduces circuit current flow in standby status, enabling devices to operate with less power demand. A special circuit is built in to prevent excessive error signal from increasing lock-up delay during the transition from power-saving mode to operating mode.

- List of standard macro cells

Type	Vcc	Icc	Operating frequency	Prescaler divide ratio (M)	Comparator counter divide ratio (N)	Swallow counter divide ratio (A)	Reference counter divide ratio (R)
PLL1	3 V	4 mA	1.1 GHz	64/65	16 to 2047	0 to 127	8 to 16383
PLL2		6 mA	2.0 GHz				

Crystal oscillator input frequency: Up to 32 MHz
Standby mode current demand: $100 \mu \mathrm{~A}$

3. High Frequency Analog Cells

- Mixer

Active type double-balanced mixer

- IF amplifier

The IF amplifier is configured from a differential amplifier plus an NPN transistor using emitter-follower output from the differential amplifier.

- RF amplifier

Provides emitter-follower output of the output signal from the emitter-ground circuit. The RF input side can be connected to an internal bias circuit.

- VCO

Configured from an oscillator transistor in a base-ground Colpitts type oscillator circuit, plus a transistor acting as output buffer. Can be connected to external devices such as varicap or resonator.

- Orthogonal modulator

An orthogonal modulator is used for IF frequency modulation. In addition, a flip-flop type 90° phase shift circuit can be included in the configuration.

Note: Circuit format and other details can be adjusted to meet customer requirements.

CIRCUIT OPERATING DESCRIPTIONS

1. Intermittent Operation Control Circuit

The intermittent operation control circuit operates the LSI circuits during communication operations and at all other times places the chip in standby status to reduce power demand.
(1) Circuit operation in operating mode

All circuits are in operating status, and the chip performs normal PLL operations.
(2) Circuit operation in standby mode

All circuits that can be stopped without interfering with operation are shut down, and the chip goes into low-power operating mode.

Latch data: Saves immediately preceding data
Shift register: Data input enabled
Charge pump output: High impedance
VCO input voltage: Saves voltage level stored in low-pass filter during the last operating mode
<Caution> The digital system power supply must still be applied in standby mode.

2. Phase Lock Detection Circuit

To detect phase lock condition from the LD signal pin output, the T-bit should be selected. When the phase difference is greater than tw, the LD pin will output an L level signal, and when the difference is less than tw for 3 or more cycles, the output will change to H level. The length of the tw time interval can be set in the range of 625 ns to 1250 ns by connection to the crystal oscillator.

- LD Signal operating status

Operating status	PLL circuit	LD output
Standby mode	Standby	H
Operating mode	Un-lock	L

3. High Speed Tuning Circuit

The following high speed tuning circuits are available for use according to specific applications.

- High speed tuning circuits for ASTRO MASTER IV

Function	Operation	Optimum applications
Analog switch	Circuit temporarily reduces LPF time constant at lock-up.	Analog portable phone devices (receiving system)
Turbo circuits	For broad-band steps, circuit forcibly switches charge pump on/off	PHS devices
Supercharger circuit	Circuit increases charge pump drive capacity	PHS devices
Hypercharger circuit	Circuit further enhances the drive capacity of the supercharger circuit	PDC, GSM etc.

SERIAL DATA

1. Data Bit Configuration

PLL operating settings are made through serial data input. The standard serial data format is shown in the table below. Serial data is entered MSB-first, and the data length is in the range of 22 to 37 bits.

- Standard format for serial data

Bit name (abbreviation)	Functional description	Standard bit count
Control bit (CNT bit)	Selects transfer destination (sending or receiving system)	1 to 2
LD select bit (T-bit)	Selects LD output	1 to 2
FC bit (F-bit)	Switches the phase of phase comparator	1
Programmable counter bit (N-bit)	Sets the programmable counter's divide ratio	11
Swallow counter bit (A-bit)	Sets the swallow counter's divide ratio	7
Reference counter bit (R-bit)	Fixed	Sets the reference counter's divide ratio

2. Serial Data Input Timing

After the serial data is stored in the shift register, it can be transferred to the latch circuit by means of the LE signal.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min.	Max.	
Supply voltage *	Vcc	-0.5	+4.0	V
Input voltage ${ }^{*}$	VIN	-0.5	$\mathrm{Vcc}+0.5$	V
Output current	lout	-10	10	mA
Storage temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$

*: Voltage values are based on GND $=0 \mathrm{~V}$.
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply voltage*1	Vcc	$2.7^{* 2}$	-	3.3	V
	GND	-	0	-	V
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$

*1: Voltage values are based on GND $=0 \mathrm{~V}$
*2: Operation is assured to the minimum operating voltage level of 2.0 V min.

ANALOG CIRCUIT CHARACTERISTICS

Circuit	Parameter		Conditions	Value (typ.)	Unit
VCO	Supply voltage		-	3.0	V
	Current demand		-	11	mA
	Operating frequency		-	900	MHz
	C/N ratio		Offset frequency $=25 \mathrm{kHz}$, Band Width $=16 \mathrm{kHz}$	77	dB
	S/N ratio		BW $=0.3$ to $3 \mathrm{kHz}, 3 \mathrm{kHz} / \mathrm{Dev}$	44	dB
	Output power		-	-2	dBm
	Mod Sense		-	6	MHz/V
Mixer	Supply voltage		-	3.0	\checkmark
	Current demand		-	12	mA
	Operating frequency	IF	-	800	MHz
		LO	$P \mathrm{LO}=-10 \mathrm{dBm}$	110	MHz
		RF	$\mathrm{frFF}^{\text {f }} \mathrm{fLO}+\mathrm{fiF}$	910	MHz
	Conversion gain		-	6	dB
	Maximum output power		-	-11	dBm
	1 dB compression point		Output level	-15	dBm
	Intercept point		Input level	-8	dBm
	NF		DSB measurement	12	dB
Amplifier	Supply voltage		-	3.0	V
	Current demand		-	6	mA
	Operating frequency		-	900	MHz
	Gain		$\mathrm{f}=900 \mathrm{MHz}(-30 \mathrm{dBm}$ in)	14	dB
	Maximum output power		$f=900 \mathrm{MHz}$	-3	dBm
	1 dB compression point		$f=900 \mathrm{MHz}$, output level	-8	dBm
	Intercept point		$f=900 \mathrm{MHz}, 900.1 \mathrm{MHz}$, input level	-12	dBm
	NF		$f=900 \mathrm{MHz}$	2.2	dB

(Continued)
(Continued)

Circuit	Parameter		Conditions	Value (typ.)	Unit
Orthogonal modulator	Supply voltage		-	3.0	V
	Current demand		-	25	mA
	Operating frequency	LO1	$\mathrm{PLO1}=-5 \mathrm{dBm}$	500	MHz
		LO2	$\mathrm{PLO} 2=-5 \mathrm{dBm}$	1650	MHz
		RF	$\mathrm{ffF}^{\text {f }}=\mathrm{fLO2}+\mathrm{fLO} / 2$	1900	MHz
	Output level		-	-14	dBm
	Modulator precision	Amplitude deviation	RMS Magnitude Error	1.9	\%
		Phase deviation	RMS Phase Error	0.9	deg.
		Vector error	RMS Vector Error	2.4	\%
	Carrier leak		-	-31	dBc

ANALOG SYSTEM: BASIC EQUIVALENT CIRCUITS

1. Mixer, IF Amplifier

The MB1560 series features an active-type double-balanced mixer. The LO and RF output can I $;$ connected to an internal bias circuit. The mixer output is connected through on-chip load resistor to the ch.is s power supply, and then to the next-stage IF amplifier. The IF amplifier is configured from a differential amplifier and NPN transistor, and provides emitter-follower differential amplifier output.

2. RF Amplifier

The emitter-ground circuit output signal is output as an emitter-follower signal. The RF input can be grounded to an internal bias circuit.

3. VCO Amplifier

The VCO amplifier is configured from an oscillator transistor in a base-ground Colpitts type oscillator circuit, plus a transistor acting as output buffer. The VCO amplifier can be connected to external devices such as varicap or resonator.

■ DEVELOPMENT PROCESSES

Each product in the MB1560 Series is developed through the following processes, based on requirement and specifications supplied by the customer.

1. Feasibility Study

(1) Product specifications and development process study

FUJITSU conducts simulations based on documentation provided by the customer, in order to evaluate the technical and economic feasibility of each proposed design.

Product Documentation
Technical documentation: Functional descriptions, I/O signal descriptions, block diagrams.
Characteristics documentation: For prescalers, PLL, VCO, mixers, amplifiers, etc.
Development Documentation
Delivery schedule documentation: Development schedule, division of responsibilities, etc.
Cost estimates: Volume requirements, development costs, target prices
(2) Product feasibility evaluation

Based on the foregoing studies, FUJITSU and the customer meet to evaluate feasibility.
(3) Development of planned specifications

Circuit functions and characteristics are studied in detail, and circuit specifications and testing specifications are developed. After specifications have been determined, final estimates of the development schedule, timing and cost, and the product price can be produced.
(4) Approval of provisional delivery specifications

After FUJITSU and the customer have determined the feasibility of product development, a provisional delivery schedule is agreed upon.

2. LSI Development

(1) LSI design, prototype development

Based on the provisional delivery specifications agreed by the customer and FUJITSU, chip design and prototype work begins. The standard time required for an ES prototype is approximately 10 weeks from the approval of provisional delivery specifications.
(2) ES (engineering sample) evaluation

Both the customer and FUJITSU evaluate the ES prototype based on the provisional delivery specifications.

(3) Final approval

If there are no problems with the evaluation, FUJITSU and the customer agree on final delivery specifications and end development, moving to the mass production stage. The standard lead time for delivery of mass production products is approximately three months.

MB1560

- ORDERING INFORMATION

Part number	Package	Remarks
MB156XPFV	20 pin Plastic SSOP (FPT-20P-M03)	
MB156XPFV	34 pin Plastic SSOP (FPT-34P-M03)	

■ PACKAGE DIMENSIONS

20 pin Plastic SSOP

(FPT-20P-M03)

(Continued)

SECTION 7

Piezoelectric Devices/SAW Filters - At a Glance

SECTION 7

F5CC (L2) Series SAW Filters - At a Glance

The F5CC (L2) product family is based upon Fujitsu's advanced LiTaO3 technology which provides very shap roll-off characteristics and excellent temperature stability, with the addition of a 50Ω impedance matching network integrated into the filter. This is a very popular and cost effective feature, as it reduces the number of external components. In addition to its superior performance compared to other technologies, the F5CC series comes in a smaller $3.8 \times 3.8 \mathrm{~mm}$ surface mount package for those size and weight sensitive applications.
See Page 7-7. (*New devices - Data not included in this edition.)

Part Number	Standard	Use	$\begin{aligned} & \text { Center } \\ & \text { Frequency } \\ & (\mathrm{MHz}) \end{aligned}$	Passband Width (MHz)	Comment
FAR-F5CC-836M50-L2AA	AMPS/ IS-136/IS-95	Tx	836.5	25	
FAR-F5CC-836M50-L2AZ	AMPS/ IS-136/IS-95	Tx	836.5	25	High stopband attenuation
FAR-F5CC-881M50-L2AB	AMPS/ IS-136/IS-95	$R x$	881.5	25	
FAR-F5CC-881M50-L2AY	AMPS/ IS-136/IS-95	Rx	881.5	25	High stopband attenuation
FAR-F5CC-933M50-L2BA	NTT	Tx	933.5	17	
FAR-F5CC-878M50-L2BB	NTT	Rx	878.5	17	
FAR-F5CC-888M50-L2CA	ETACS	Tx	888.5	33	
FAR-F5CC-933M50-L2CB	ETACS	Rx	933.5	33	
FAR-F5CC-911M50-L_2DA	NTACS	Tx	911.5	27	
FAR-F5CC-856M50-L2DB	NTACS	Rx	856.5	27	
FAR-F5CC-902M50-L.2EA	NMT/GSM	Tx	902.5	25	
FAR-F5CC-902M50-L2EZ	NMT/GSM	TX	902.5	25	High stopband attenuation
FAR-F5CC-947M50-L2EB	NMT/GSM	Rx	947.5	25	
FAR-F5CC-947M50-L2EY FAR-F5CC-947M50-L2EX*	NMT/GSM	Rx	947.5	25	High stopband attenuation
FAR-F5CC-897M50-L2KA*	E-GSM	Tx	897.5	35	
FAR-F5CC-942M50-L2KB*	E-GSM	Rx	942.5	35	
FAR-F5CC-942M50-L_2KY*	E-GSM	Rx	942.5	35	High stopband attenuation
FAR-F5CC-950M00-L2FA	PDC	Tx	950.0	20	
FAR-F5CC-820M00-L2FB	PDC	Rx	820.0	20	
FAR-F5CC-915M00-L2JA*	900 MHz ISM	Tx/Rx	915.0	26	
FAR-F5CC-915M00-L2JZ*	900 MHz ISM	Tx/Rx	915.0	26	High stopband attenuation
FAR-F5CC-935M00-L2LA*	2-Way Pager	Tx/Rx	915.0	12	

F5CB Series SAW Filters - At a Glance

The F5CB series of LiTaO_{3} SAW Filters were Fujitsu's initial entry into the high performance SAW Filter market covering many of the major cellular standards under 1 GHz . The F5CB series requires external 50Ω impedance matching and are supplied in $5 \times 5 \mathrm{~mm}$ surface mount packages.

See Page 7-37.

Part Number	Standard	Use	Center Frequency (MHz)	Passband Width (MHz)	Comment
FAR-F5CB-836M50-G201	AMPS/ S-136/S-95	Tx	836.5	25	
FAR-F5CB-881M50-G201	AMPS/ IS-136/S-95	Rx	881.5	25	
FAR-F5CB-881M50-G211	AMPS/ IS-136/S-95	Rx	881.5	25	High stopband attenuation
FAR-F5CB-888M50-G201	ETACS	Tx	888.5	33	
FAR-F5CB-933M50-G202	ETACS	Rx	933.5	33	
FAR-F5CB-933M50-G212	ETACS	Rx	933.5	33	High stopband attenuation
FAR-F5CB-902M50-G201	NMT/GSM	Tx	902.5	25	
FAR-F5CB-947M50-G201	NMT/GSM	Rx	947.5	25	
FAR-F5CB-947M50-G211	NMT/GSM	Rx	947.5	25	High stopband attenuation
FAR-F5CB-911M50-G201	NTACS	Tx	911.5	27	
FAR-F5CB-933M50-G201	NTT	Tx	933.5	17	
FAR-F5CB-878M50-G201	NTT	$R x$	878.5	17	

SECTION 7

F6Cx (L2) Series SAW Filters - At a Glance

The F6Cx series is similar to the F5CC series in that both have the 50Ω impedance matching integrated onto the filter. The F6Cx series of SAW Filters is targeted for applications between 1 GHz and 2.5 GHz . Presently available products support Japan's Personal Digital Cellular (PDC) standard (the F6CC series) and Fujitsu has recently added several new standard devices (the F6CE series) to this product line to meet the needs of the emerging PCS standards in the 1.8 GHz to 2 GHz range and of Wireless LAN applications in the 2.4 GHz ISM Band in the US. The F6CC products are available in $3.8 \times 3.8 \mathrm{~mm}$ surface mount packages and the F6CE products are housed in very small $3 \times 3 \mathrm{~mm}$ surface mount packages to meet the demands of future communication handsets for small size and light weight.

See Page 7-65

Part Number	Standard	Use	Center Frequency (MHz)	Passband Width (MHz)	Comment
FAR-F6CC-1G4410-L2ZA	PDC 1.5 GHz	Tx	1441.0	24	$3.8 \times 3.8 \mathrm{~mm}$
FAR-F6CC-1G4890-L2ZB	PDC 1.5 GHz	Rx	1489.0	24	$3.8 \times 3.8 \mathrm{~mm}$
FAR-F6CC-1G6190-L2ZN	PDC 1.5 GHz	Lo	1619.0	24	$3.8 \times 3.8 \mathrm{~mm}$
FAR-F6CE-1G7475-L2YA	DCS 1800	Tx	1747.5	75	$3 \times 3 \mathrm{~mm}$
FAR-F6CE-1G8425-L2YB	DCS 1800	$R x$	1842.5	75	$3 \times 3 \mathrm{~mm}$
FAR-F6CE-1G8800-L2XA	PCS (US)	Tx	1880.0	60	$3 \times 3 \mathrm{~mm}$
FAR-F6CE-1G9600-L2XB	PCS (US)	$R x$	1960.0	60	$3 \times 3 \mathrm{~mm}$
FAR-F6CE-2G4500-L2WA	WLAN (US)		2450.0	100	$3 \times 3 \mathrm{~mm}$

SECTION 7

M2, M3 Series (Resonators, Modulators, VCOs) - At a Glance

The M2 and M3 Series of devices are exclusively distributed and supported by PAL-TECH Electronics, Inc. Please contact PAL-TECH with any inquiries regarding these products at:

PAL-TECH Electronics, Inc.
510 N. First Street, Suite 208
San Jose, CA 95112
Phone: (408) 293-2290
Fax: (408) 293-2291

Page Number	Part Number
$7-87$	M2 Series (D100)
$7-95$	M2 Series (D300)
$7-105$	M3 Series (D001)
$7-109$	M3 Series (D101)

F5 SERIES (L2 Type) ASSP PIEZOELECTRIC SAW BPF

SAW BANDPASS FILTER ($\mathbf{7 0 0}$ to $\mathbf{1 0 0 0} \mathbf{~ M H z)}$

DESCRIPTION

F5 series are wideband bandpass filters for use in the 700 MHz to 1000 MHz of frequency range.
F5 series uses a single lithium tantalate piezoelectric crystal $\left(\mathrm{LiTaO}_{3}\right)$ that has large electromechanical coupling coefficient. This provides wide bandwidths and exceptional stability.
Our exclusive mounting technology makes F5 series very compact and surface mountable.

The F5 series is most suitable for use in handheld phones of both analog and digital systems.

FEATURES

- Ultra compact and light ($0.02 \mathrm{cc}, 0.1 \mathrm{~g}$)
- Outside matching circuit is unnecessary.
- Surface mount package (SMT)
- Wide variety of bandwidths for worldwide system (AMPS, ADC, ETACS, NMT, GSM, NTT, NTACS, PDC)
- Low insertion loss
- High power rating : 0.2 W garanteed

PACKAGE

PIN ASSIGNMENT

(Bottom view)

Pin No.	Pin name	Description
1	GND	Ground Pin
2	IN	Input Pin
3	GND	Ground Pin
4	GND	Ground Pin
5	OUT	Output Pin
6	GND	Ground Pin

MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Operating temperature	Ta	-30 to $+70{ }^{\star}{ }^{\star 1}$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +100	
Maximum input level	Pin	mW	
Frequency range	-	700 to 1000	MHz

*1 This is also the Recommended Operating Conditions.

STANDARD FREQUENCIES

STANDARD VERSION

Center frequency (MHz)	Bandwidths (MHz)	System	Part Symbol	Part number
836.5	25	AMPS/ADC (Tx)	A A	FAR-F5CC-836M50-L2AA
881.5	25	AMPS/ADC (Rx)	A B	FAR-F5CC-881M50-L2AB
933.5	17	NTT (Tx)	B A	FAR-F5CC-933M50-L2BA
878.5	17	NTT (Rx)	B B	FAR-F5CC-878M50-L2BB
888.5	33	ETACS (Tx)	C A	FAR-F5CC-888M50-L2CA
933.5	33	ETACS (Rx)	C B	FAR-F5CC-933M50-L2CB
911.5	27	NTACS (Tx)	D A	FAR-F5CC-911M50-L2DA
856.5	27	NTACS (Rx)	D B	FAR-F5CC-856M50-L2DB
902.5	25	NMT/GSM (Tx)	EA	FAR-F5CC-902M50-L2EA
947.5	25	NMT/GSM (Rx)	E B	FAR-F5CC-947M50-L2EB
950.0	20	PDC (Tx)	FA	FAR-F5CC-950M00-L2FA
820.0	20	PDC (Rx)	F B	FAR-F5CC-820M00-L2FB

HIGH ATTENUATION VERSION

Center frequency (MHz)	Bandwidths (MHz)	System	Part Symbol	Part number
836.5	25	AMPS/ADC (Tx)	AZ	FAR-F5CC-836M50-L2AZ
881.5	25	AMPS/ADC (Rx)	AY	FAR-F5CC-881M50-L2AY
902.5	25	NMT/GSM (Tx)	EZ	FAR-F5CC-902M50-L2EZ
947.5	25	NMT/GSM (Rx)	EY	FAR-F5CC-947M50-L2EY

F5 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

1. AMPS / ADC system (Tx)		Part number : FAR-F5CC-836M50-L2AA				($\mathrm{Ta}=-30$ to $70^{\circ} \mathrm{C}$)	
Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	824 to 849 MHz	-	2.0	3.5	dB	
In-band ripple	-	824 to 849 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	-	-	-	-	dB	
	-	869 to 894 MHz	20	27	-	dB	
	-	-	-	-	-	dB	
In-band VSWR	-	824 to 849 MHz	-	1.8	2.0	-	

2. AMPS / ADC system (Rx)		Part number : FAR-F5CC-881M50-L2AB				($\mathrm{Ta}=-30$ to $70^{\circ} \mathrm{C}$)	
Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	869 to 894 MHz	-	2.5	3.5	dB	
In-band ripple	-	869 to 894 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	DC to 824 MHz	20	23	-	dB	
	-	824 to 849 MHz	20	28	-	dB	
	-	914 to 939 MHz	20	27	-	dB	
	-	939 to 1049 MHz	25	28	-	dB	
	-	1049 to 2000 MHz	20	21	-	dB	
In-band VSWR	-	869 to 894 MHz	-	1.8	2.0	-	

F5 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

3. ETACS system (Tx)
 Part number: FAR-F5CC-888M50-L2CA

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	872 to 905 MHz	-	3.0	5.0	dB	
In-band ripple	-	872 to 905 MHz	-	1.5	-	dB	
Absolute stopband attenuation	-	-	-	-	-	dB	
	-	917 to 950 MHz	10	15	-	dB	
	-	-	-	-	-	dB	
In-band VSWR	-	872 to 905 MHz	-	2.1	2.5	-	

4. ETACS system (Rx)

Part number: FAR-F5CC-933M50-L2CB

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	917 to 950 MHz	-	3.5	5.5	dB	
In-band ripple	-	917 to 950 MHz	-	2.0	-	dB	
Absolute stopband attenuation	-	DC to 872 MHz	20	32	-	dB	
	-	872 to 900 MHz	25	32	-	dB	
	-	900 to 905 MHz	10	15	-	dB	
	-	1007 to 1040 MHz	30	38	-	dB	
	-	1040 to 2000 MHz	20	26	-	dB	
In-band VSWR	-	917 to 950 MHz	-	2.0	2.5	-	

F5 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

5. NTACS system (Tx)

Part number: FAR-F5CC-911M50-L2DA

Item	Symbol	Conditions	Rating			$\left(\mathrm{Ta}=-30\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	
						Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	898 to 925 MHz	-	2.5	3.5	dB	
In-band ripple	-	898 to 925 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	-	-	-	-	-	
	-	843 to 870 MHz	25	29	-	dB	
	-	-	-	-	-	-	
In-band VSWR	-	898 to 925 MHz	-	1.8	2.0	-	

6. NTACS system (Rx)

Part number: FAR-F5CC-856M50-L2DB

F5 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

7. NMT / GSM system (Tx) Part number: FAR-F5CC-902M50-L2EA

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	890 to 915 MHz	-	2.0	3.5	dB	
In-band ripple	-	890 to 915 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	-	-	-	-	dB	
	-	835 to 960 MHz	20	27	-	dB	
	-	-	-	-	-	dB	
In-band VSWR	-	890 to 915 MHz	-	1.8	2.0	-	

8. NMT / GSM system (Rx)

Part number: FAR-F5CC-947M50-L2EB

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	935 to 960 MHz	-	2.5	3.5	dB	
In-band ripple	-	935 to 960 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	DC to 800 MHz	20	25	-	dB	
	-	890 to 915 MHz	20	28	-	dB	
	-	980 to 1025 MHz	15	28	-	dB	
	-	1025 to 1070 MHz	35	40	-	dB	
	-	1070 to 1105 MHz	30	35	-	dB	
	-	1105 to 1600 MHz	20	25	-	dB	
	-	1600 to 2000 MHz	15	20	-	dB	
In-band VSWR	-	935 to 960 MHz	-	1.9	2.5	-	

F5 SERIES (L2 Type)
ELECTRICAL CHARACTERISTICS (STANDARD VERSION)
9. PDC system (Tx) Part number: FAR-F5CC-950M00-L2FA

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	940 to 960 MHz	-	2.0	3.0	dB	
In-band ripple	-	940 to 960 MHz	-	0.6	1.5	dB	
Absolute stopband attenuation	-	-	-	-	-	dB	
	-	810 to 830 MHz	20	25	-	dB	
	-	-	-	-	-	dB	
In-band VSWR	-	940 to 960 MHz	-	1.8	2.0	-	

10. PDC system (Rx) Part number: FAR-F5CC-820M00-L2FB

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	810 to 830 MHz	-	3.0	4.0	dB	
In--band ripple	-	810 to 830 MHz	-	0.5	1.5	dB	
Absolute stopband attenuation	-	DC to 740 MHz	20	25	-	dB	
	-	940 to 960 MHz	25	28	-	dB	
	-	1040 to 1060 MHz	25	30	-	dB	
	-	1060 to 2000 MHz	20	26	-	dB	
In-band VSWR	-	810 to 830 MHz	-	1.8	2.0	-	

ELECTRICAL CHARACTERISTICS (HIGH ATTENUATION VERSION)

11. AMPS / ADC system (Tx) Part number : FAR-F5CC-836M50-L2AZ

						($\mathrm{Ta}=-30$ to $70^{\circ} \mathrm{C}$	
Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Tур.	Max.		
Insertion loss	IL	824 to 849 MHz	-	3.0	4.0	dB	
In-band ripple	-	824 to 849 MHz	-	1.0	2.0	dB	
Absolute stopband attenuation	-	D.C. to 800 MHz	25	28	-	dB	
	-	869 to 894 MHz	30	40	-	dB	
	-	894 to 1049 MHz	30	35	-	dB	
	-	1049 to 2000 MHz	20	26	-	dB	
In-band VSWR	-	824 to 849 MHz	-	2.0	2.5	-	

12. AMPS / ADC system (Rx) Part number: FAR-F5CC-881M50-L2AY

Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	12	869 to 894 MHz	-	2.8	4.0	dB	
In-band ripple	-	869 to 894 MHz	-	1.0	2.0	dB	
Absolute stopband attenuation	-	DC to 779 MHz	25	31	-	dB	
	-	779 to 804 MHz	35	40	-	dB	
	-	804 to 824 MHz	25	31	-	dB	
	-	824 to 849 MHz	20	31	-	dB	
	-	914 to 939 MHz	20	30	-	dB	
	-	939 to 1049 MHz	35	40	-	dB	
	-	1049 to 2000 MHz	20	26	-	dB	
In-band VSWR	-	869 to 894 MHz	-	2.0	2.5	-	

F5 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

1. AMPS / ADC system (Tx) Part number: FAR-F5CC-836M50-L2AA

						$\left(\mathrm{Ta}=-30\right.$ to $\left.70^{\circ} \mathrm{C}\right)$	
Item	Symbol	Conditions	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	824 to 849 MHz	-	2.0	3.5	dB	
In-band ripple	-	824 to 849 MHz	-	0.6	2.0	dB	
Absolute stopband attenuation	-	-	-	-	-	dB	
	-	869 to 894 MHz	20	27	-	dB	
	-	-	-	-	-	dB	
In-band VSWR	-	824 to 849 MHz	-	1.8	2.0	-	

2. AMPS / ADC system (Rx) Part number: FAR-F5CC-881M50-L2AB

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

1. AMPS / ADC system (Tx)

Part number: FAR-F5CC-836M50-L2AA

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

Part number : FAR-F5CC-881M50-L2AB

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

3. ETACS system (Tx)
 Part number : FAR-F5CC-888M50-L2CA

F5 SERIES (L2 Type)

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

4. ETACS system (Rx)
Part number: FAR-F5CC-933M50-L2CB

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

5. NTACS system (Tx)
 Part number : FAR-F5CC-911M50-L2DA

F5 SERIES (L2 Type)
CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

6. NTACS system (Rx)
 Part number : FAR-F5CC-856M50-L2DB

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

7. NMT / GSM system (Tx)

Part number : FAR-F5CC-902M50-L2EA

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)
8. NMT / GSM system (Rx)

Part number : FAR-F5CC-947M50-L2EB

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

9. JDC system (Tx)
Part number: FAR-F5CC-950M00-L2FA

CHARACTERISTIC DATA EXAMPLES (STANDARD VERSION)

```
10.JDC system (Rx) Part number: FAR-F5CC-820M00-L2FB
```


CHARACTERISTIC DATA EXAMPLES (HIGH ATTENUATION VERSION)

11. AMPS / ADC system (Tx)
 Part number: FAR-F5CC-836M50-L2AZ

F5 SERIES (L2 Type)
CHARACTERISTIC DATA EXAMPLES (HIGH ATTENUATION VERSION)
12. AMPS / ADC system (Rx)

Part number : FAR-F5CC-881M50-L2AY

CHARACTERISTIC DATA EXAMPLES (HIGH ATTENUATION VERSION)

13. NMT / GSM system (Tx) Part number : FAR-F5CC-902M50-L2EZ

F5 SERIES (L2 Type)

CHARACTERISTIC DATA EXAMPLES (HIGH ATTENUATION VERSION)

14. NMT / GSM system (Rx) Part number: FAR-F5CC-947M50-L2EY

MEASURING CIRCUIT

PART NUMBER DESIGNATION

[Designation example]

(1) Frequency designation : Specify the nominal frequency in six alphanumeric characters.

Enter M (for MHz) at the decimal point.
Refer to STANDARD FREQUENCIES.
(2) Serial number. : Specify a number from AA to ZZ .
(3) Packaging (Reeled tape)
$\begin{array}{ll}: T \\ \mathrm{R} \longrightarrow & 1 \mathrm{~K} p \mathrm{pcs} / \mathrm{ree} \\ 3 \mathrm{~K} p \mathrm{p} / \text { reel }\end{array}$

MARKING

F5 SERIES (L2 Type)

DIMENSIONS

PACKING : Reel type

1. Reel dimension

2. Packing style

3. Tape dimension

Unit : mm

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The Information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information please contact:

```
Japan
FUJITSU LIMITED
Electronic Devices
International Operations Department
KAWASAKI PLANT, }1015\mathrm{ Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211, Japan
Tel: (044) 754-3753
FAX: (044) 754-3332
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
FAX: (408) 432-9044/9045
```


Europe

```
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10,
63303 Dreieich-Buchschiag,
Germany
Tel: (06103) 690-0
FAX: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LIMITED
No. 51 Bras Basah Road,
Plaza By The Park, \#06-04 to \#06-07
Singapore 0718
Tel: 336-1600
FAX: 336-1609
```


F5CB-*** $M^{* *}-G^{* * *}$
 F5 Series Piezoelectric SAW Filters SAW-BPF, 700 MHz to 1000 MHz

The F5 series are wideband bandpass filters for use in the 700 MHz to 1000 MHz range. The F 5 series uses a single lithium tantalate piezoelectric crystal $\left(\mathrm{LiTaO}_{3}\right)$ with a large electromechanical coupling coefficient that provides wide bandwidths and exceptional stability. Our exclusive mounting technique makes the F5 series very compact and surface mountable. The F5 series is most suitable for use in handheld phones.

- Considerably smaller and lighter than the dielectric filter (volume and weight are reduced by $1 / 30$)
- Surface mount package (SMT)
- Wide variety of bandwidths for worldwide cellular systems (AMPS, ADC, ETACS, NMT, GSM, NTT, NTACS)
- Low insertion loss
- High power rating: 0.2 W guaranteed
- High stopband attenuation type available for AMPS/ADC, ETACS, NMT/GSM-Rx
- Package and ordering information: - See page 24

F5CB-*** $\mathrm{M}_{* *-} \mathrm{G}_{* * * * * *}$

PIN ASSIGNMENT

MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Operating temperature	T_{a}	-30 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	T_{mo}	-40 to 100	${ }^{\circ} \mathrm{C}$
Maximum input level	$\mathrm{P}_{\text {in }}$	200	mW
Frequency range		700 to 1000	MHz

RECOMMENDED OPERATING CONDITIONS

Item	Symbol	Rating	Unit
Operating temperature	t_{a}	-30 to 70	${ }^{\circ} \mathrm{C}$

PART NUMBERS

Tx: Transmitter
Rx: Receiver
Lo: Local Ocillator

No.	Part Number	System	Use	Center Frequency (MHz)	Bandwidth (MHz)	Remarks
1	F5CB-836M50-G201	AMPS/ADC	Tx	836.5	25	
2	F5CB-881M50-G201	AMPS/ADC	Rx	881.5	25	
3	F5CB-881M50-G211	AMPS/ADC	Rx	881.5	25	High stopband attenuation
4	F5CB-888M50-G201	ETACS	Tx	888.5	33	High stopband attenuation
5	F5CB-933M50-G202	ETACS	Rx	933.5	33	
6	F5CB-933M50-G212	ETACS	Rx	933.5	33	High stopband attenuation
7	F5CB-902M50-G201	NMT/GSM	Tx	902.5	25	
8	F5CB-947M50-G201	NMT/GSM	Rx	947.5	25	
9	F5CB-947M50-G211	NMT/GSM	Rx	947.5	25	High stopband attenuation
10	F5CB-911M50-G201	NTACS	Tx	911.5	27	
11	F5CB-856M50-G201	NTACS	Rx	856.5	27	
12	F5CB-933M50-G201	NTT	Tx	933.5	17	
13	F5CB-878M50-G201	NTT	Rx	878.5	17	

F5CB-*** $\mathbf{M}_{* *}$ G $_{* * * *-* * ~}^{*}$

ELECTRIC CHARACTERISTICS

1. AMPS/ADC type (Tx)

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	824 to 849 MHz	-	3.5	4.2	dB	
In-band ripple		824 to 849 MHz	-	1.0	1.5	dB	
Stopband attenuation		DC to 800 MHz	20	25	-	dB	
		869 to 894 MHz	20	25	-	dB	
		894 to 3000 MHz	15	20	-	dB	
In-band VSWR		824 to 849 MHz	-	1.7	2.0		
Matching constants	C_{1}			7		pF	
	L_{1}			9		nH	
	C_{2}			6		pF	
	L_{2}			11		nH	

2. AMPS/ADC type (Rx)

Part number: F5CB-881M50-G201
$\mathrm{T}=-30 \sim 70^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	869 to 894 MHz	-	-	4.5	dB	
In-band ripple		824 to 849 MHz	-	-	1.5	dB	
Stopband attenuation		DC to 824 MHz	20	-	-	dB	
		824 to 849 MHz	20	-	-	dB	
		917 to 939MHz	18	-	-	dB	
		947 to 1049 MHz	30	-	-	dB	
		1049 to 3000 MHz	15	-	-	dB	
In-band VSWR		869 to 894 MHz	-	1.8	2.0		
Matching constants	C_{1}			6		pF	
	L_{1}			7		nH	
	C_{2}			7		pF	
	L_{2}			9		nH	

[^46]F5CB-*** $\mathbf{M}_{* *}$ G $_{* * * * * * *}$
3. AMPS/ADC type (Rx)

Part number: F5CB-881M50-G211						$\mathrm{Ta}_{2}=-30 \sim 70^{\circ} \mathrm{C}$	
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	869 to 894MHz	-	4.8	5.3	dB	
In-band ripple		869 to 894MHz	-	1.7	2.0	dB	
Stopband attenuation		DC to 824 MHz	35	38	-	dB	
		824 to 849 MHz	29	35	-	dB	
		914 to 939MHz	20	25	-	dB	
		947 to 1049 MHz	40	45	-	dB	
		1049 to 3000 MHz	15	-	-	dB	
In-band VSWR		869 to 894MHz	-	1.6	2.0		
Matching constants	C_{1}			6		pF	
	L_{1}			8		nH	
	C_{2}			6		pF	
	L_{2}			8		nH	

4. ETACS type (Tx)

Part number: F5CB-888M50-G201							$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$
Item	Symbol	Condition		Rating		Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	872 to 900 MHz	-	4.5	5.0	dB	
		900 to 905 MHz	-	5.5	6.5	dB	
In-band ripple		872 to 905 MHz	-	-	2.5	dB	
Stopband attenuation		DC to 847 MHz	20	25	-	dB	
		847 to 860 MHz	8	12	-	dB	
		917 to 920 MHz	10	13	-	dB	
		920 to 922 MHz	13	15	-	dB	
		922 to 950 MHz	20	23	-	dB	
		962 to 995 MHz	30	33	-	dB	
		995 to 3000 MHz	15	20	-	dB	
In-band VSWR		872 to 905 MHz	-	2.0	2.5		
Matching constants	C_{1}			7		pF	
	L_{1}			7		nH	
	C_{2}			6		pF	
	L_{2}			9		nH	

F5CB-*** M $_{* *}-\mathbf{G}_{* * *-* *}$
5. ETACS type (Rx)

Part number: F5CB-933M50-G202
$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			UnIt	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	917 to 947 MHz	-	4.5	5.0	dB	
		947 to 950MHz	-	5.5	6.5	dB	
In-band ripple		917 to 950 MHz	-	1.0	2.5	dB	
Stopband attenuation		DC to 872 MHz	20	25	-	dB	
		872 to 900 MHz	15	18	-	dB	
		900 to 902 MHz	13	15	-	dB	
		902 to 905 MHz	8	13	-	dB	
		962 to 965 MHz	10	15	-	dB	
		965 to 970 MHz	15	18	-	dB	
		970 to 995 MHz	20	25	-	dB	
		1005 to 1040 MHz	30	33	-		
		1040 to 3000 MHz	15	20	-		
In-band VSWR		917 to 950 MHz	-	2.3	2.5		
Matching constants	C_{1}			6		pF	
	L_{1}			6		$n \mathrm{H}$	
	C_{2}			7		pF	
	L_{2}			8		$n \mathrm{H}$	

6. ETACS type (Rx)

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	917 to 950MHz	-	5.5	6.0	dB	
In-band ripple		917 to 950MHz	-	2.0	2.5	dB	
Stopband attenuation		DC to 872 MHz	35	40	-	dB	
		872 to 894 MHz	35	38	-	dB	
		894 to 905 MHz	15	20	-	dB	
		962 to 964 MHz	10	15	-	dB	
		964 to 970 MHz	15	20	-	dB	
		970 to 995 MHz	20	25	二	dB	
		1005 to 1150 MHz	40	45	-	dB	
		1150 to 3000 MHz	15	-	-	dB	
In-band VSWR		917 to 950MHz	-	2.3	2.5		
Matching constants	C_{1}			6		pF	
	L_{1}			8		nH	
	C_{2}			6		pF	
	L_{2}			8		nH	

F5CB-*** M $_{* *}-\mathrm{G}_{* * * * * * ~}^{*}$
7. NMT type (Tx)

Item	Symbol	Condition	Rating			Unit	$\begin{gathered} \mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C} \\ \text { Remarks } \end{gathered}$
			Min.	Typ.	Max.		
insertion loss	IL	890 to 915 MHz	-	4.0	4.5	dB	
In-band ripple		890 to 915 MHz	-	1.3	2.0	dB	
Stopband attenuation		DC to 850 MHz	20	25	-	dB	
		850 to 870 MHz	15	22	-	dB	
		935 to 960 MHz	20	28	-	dB	
		1012 to 1058 MHz	30	33	-	dB	
		1058 to 3000 MHz	15	20	-	dB	
In-band VSWR		890 to 915 MHz	-	1.5	2.0		
Matching constants	C_{1}			5		pF	
	L_{1}			6		nH	
	C_{2}			6		pF	
	L_{2}			9		nH	

8. NMT type (Rx)

Part number: F5CB-947M50-G201
$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	935 to 960 MHz	-	4.0	4.5	dB	
In-band ripple		935 to 960 MHz	-	1.3	2.0	dB	
Stopband attenuation		DC to 890 MHz	20	25	-	dB	
		890 to 915 MHz	18	22	-	dB	
		980 to 1005 MHz	18	30	-	dB	
		1012 to 1058 MHz	28	32	-	dB	
		1089 to 1115 MHz	30	32	-	dB	
		1115 to 3000 MHz	15	20	-	dB	
In-band VSWR		935 to 960 MHz	-	1.5	2.0		
Matching constants	C_{1}			5		pF	
	L_{1}			6		nH	
	C_{2}			6		pF	
	L_{2}			9		nH	

F5CB-*** $\mathbf{M}_{* *-} \mathbf{G}_{* * *-* *}$
9. NMT type (Rx)

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	935 to 960 MHz	-	4.7	5.0	dB	
In-band ripple		935 to 960 MHz	-	1.5	2.0	dB	
Stopband attenuation		DC to 845 MHz	40	45	-	dB	
		845 to 890 MHz	30	35	-	dB	
		890 to 915 MHz	30	33	-	dB	
		976 to 980 MHz	15	20	-	dB	
		980 to 1005 MHz	20	23	-	dB	
		1012 to 1058 MHz	40	45	-	dB	
		1089 to 1140 MHz	40	45	-	dB	
		1140 to 3000 MHz	15	-	-	dB	
In-band VSWR		935 to 960 MHz	-	2.0	2.5		
Matching constants	C_{1}			6		pF	
	L_{1}			8		nH	
	C_{2}			6		pF	
	L_{2}			8		nH	

10. NTACS type (Tx)

Part number: F5CB-911M50-G201							$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	898 to 925 MHz	-	4.0	4.5	dB	
In-band ripple		898 to 925MHz	-	1.5	2.0	dB	
Stopband attenuation		DC to 815 MHz	25	27	-	dB	
		815 to 870 MHz	22	25	-	dB	
		1008 to 1100 MHz	30	33	-	dB	
		1100 to 3000 MHz	15	20	-	dB	
In-band VSWR		898 to 925 MHz	-	1.8	2.0		
Matching constants	C_{1}			6		pF	
	L_{1}			7		nH	
	C_{2}			5		pF	
	L_{2}			10		nH	

11. NTACS type (Rx)

Part number: F5CB-856M50-G201

Part number: F5CB-856M50-G201						$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$	
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	843 to 870 MHz	-	4.0	4.5	dB	
In-band ripple		843 to 870 MHz	-	1.5	2.0	dB	
Stopband attenuation		DC to 814 MHz	22	25	-	dB	
		898 to 935 MHz	22	25	-	dB	
		935 to 1100 MHz	30	33	-	dB	
		1100 to 3000 MHz	15	20	-	dB	
In-band VSWR		843 to 870 MHz	-	1.8	2.0		
Matching constants	C_{1}			7		pF	
	L_{1}			8		nH	
	C_{2}			7		pF	
	L_{2}			9		nH	

12. NTT type (Tx)

Part number: F5CB-933M50-G201						$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$	
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	925 to 942 MHz	-	3.5	4.2	dB	
In-band ripple		925 to 942 MHz	-	1.0	1.5	dB	
Stopband attenuation		DC to 780 MHz	20	25	-	dB	
		780 to 797 MHz	25	30	-	dB	
		797 to 870 MHz	20	25	-	dB	
		870 to 887 MHz	25	28	-	dB	
		970 to 1070 MHz	20	30	-	dB	
		1070 to 1087 MHz	25	30	-	dB	
		1087 to 3000 MHz	15	20	-	dB	
In-band VSWR		925 to 942 MHz	-	1.8	2.0		
Matching constants	C 1			5		pF	
	L_{1}			7		nH	
	C_{2}			-			
	L_{2}			-			

F5CB-*** $\mathbf{M}_{* *}-\mathrm{G}_{* * * * * *}$
13. NTT type (Rx)

Part number: F5CB-878M50-G201						$\mathrm{T}_{\mathrm{a}}=-30 \sim 70^{\circ} \mathrm{C}$	
Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	IL	870 to 887 MHz	-	3.5	4.2	dB	
In-band ripple		870 to 887 MHz	-	1.0	1.5	dB	
Stopband attenuation		DC to 690 MHz	20	25	-	dB	
		690 to 707 MHz	30	33	-	dB	
		707 to 846 MHz	20	25	-	dB	
		925 to 942 MHz	25	28	-	dB	
		942 to 3000 MHz	15	20	-	dB	
In-band VSWR		870 to 887 MHz	-	1.8	2.0		
Matching constants	C_{1}			5		pF	
	L_{1}			8		nH	
	C_{2}			7		pF	
	L_{2}			10		nH	

CHARACTERISTIC DATA EXAMPLE

1. AMPS/ADC type (Tx)

Part number: F5CB-836M50-G201

F5CB-***M**-G***-**
2. AMPS/ADC type (Rx)

Part number: F5CB-881M50-G201

3. AMPS/ADC type (Rx)

Part number: F5CB-881M50-G211

F5CB-*** $\mathrm{M}_{* *}-\mathrm{G}_{* * *-* *}$
4. ETACS type (Tx)

Part number: F5CB-888M50-G201

F5CB-*** $\mathbf{M}_{* *}$ G $_{* * *-* *}$
5. ETACS type (Rx)

Part number: F5CB-933M50-G202

6. ETACS type (Rx)

Part number: F5CB-933M50-G212

7. NMT/GSM type (Tx)

Part number: F5CB-902M50-G201

F5CB-*** M $_{* *}-\mathrm{G}_{* * * * * *}$
8. $N M T / G S M$ type ($R \mathrm{x}$)

Part number: F5CB-947M50-G201

9. $N M T / G S M$ type ($R x$)

Part number: F5CB-947M50-G211

F5CB-*** $\mathbf{M}_{* *}-\mathrm{G}_{* * * * * *}$
10. NTACS type (Tx)

Part number: F5CB-911M50-G201

11. NTACS type (Rx)

Part number: F5CB-856M50-G201

F5CB-*** $\mathbf{M}_{* *}-\mathrm{G}_{* * * * * *}$
12. NTT type (Tx)

Part number: F5CB-933M50-G201

13. NTT type (Rx)

Part number: F5CB-878M50-G201

TEST CIRCUIT

*Each value is changed according to specification

PART NUMBER DESIGNATION

Designation example
F5CB- ㅁㅁㅁㅁㅁ-Gㅁㅁ-ㅁ
(1)
(2) (3)
(1) Frequency designation: Specity the nominal frequency in six alphanumeric characters. Enter M (for MHz) at the decimal point. Refer to "PART NUMBERS".
Example: For an 836.5 MHz device, designate as 836 M 50 .
(2) Serial number : Specity a number from 201 to 299
(3) Packaging (Reeled tape) :

Designation	Contents
T	$1 \mathrm{Kpcs} / \mathrm{reel}$
R	$3 \mathrm{Kpcs} / \mathrm{ree}$

DIMENSIONS

PACKAGING: Reel type

1. Reel dimension

2. Package style

F5CB-***M**-G $_{* * *-* * ~}^{*}$
3. Tape dimension

F6 SERIES (L2 Type) ASSP PIEZOELECTRIC SAW BPF

DESCRIPTION

The F6 series are wideband bandpass filters for use in the 1000 MHz to 2500 MHz range.
The F6 series uses a single lithium tantalate piezoelectric crystal $\left(\mathrm{LiTaO}_{3}\right)$ that has large electromechanical coupling coefficient. This provides wide bandwidths and exceptional stability.
Our exclusive mounting technology makes the F6 series very compact and surface mountable.
Insertion loss is much lower than other filters and impedance is realized at 50Ω in passband.
L2 type can be handled without outside matching circuit.
The F6 series is most suitable for use in handheld phones for digital systems.

FEATURES

- Ultra compact and light ($0.02 \mathrm{cc}, 0.1 \mathrm{~g}$)
- Outside matching circuit is unnecessary.
- Surface mount package (SMT)
- Low insertion loss
- High power rating : 0.2 W guaranteed for F6CC Series
0.1 W guaranteed for F6CE Series

PACKAGE

\square

F 6 SERIES (L2)
-PIN ASSIGNMENT

(BOTTOM VIEW)

-DESCRIPTION

Pin No.	Pin name	Description
1	GND	Ground Pin
2	IN	Input Pin
3	GND	Ground Pin
4	GND	Ground Pin
5	OUT	Output Pin
6	GND	Ground Pin

F 6 SERIES (L 2)

-MAXIMUM RATINGS

It em	Symbol	Rating	Unit
Operating temperature	T_{a}	$-30 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\mathrm{sts}}$	$-40 \sim 100$	${ }^{\circ} \mathrm{C}$
Frequecy range		$1000 \sim 2500$	MHz
Maximum input level	P_{IN}	Refer to electrical characteristics	mW

Recommended Operating Conditions

Item	Symbol	Rating	Unit
Operating temperature	T_{a}	$-30 \sim 85^{*}$	${ }^{\circ} \mathrm{C}$

*Standard Rating for Wireless LAN is $0 \sim 60^{\circ} \mathrm{C}$
STANDARD FREQUENCIES

Center freq. (MHz)	BW (MHz)	System	Part Symbol	Part number	Package Size
1441.0	24	PDC 1.5 G (Tx)	ZA	FAR-F6CC-1G4410-L2ZA	C
1489.0	24	PDC 1.5 G (Rx)	Z B	FAR-F6CC-1G4890-L22B	C
1619.0	24	PDC 1.5 G (Lo)	ZN	FAR-F6CC-1G6190-L2ZN	C
1747.5	75	DC S 1800 (Tx)	A	FAR-F6CE-1G7475-L2YA	E
1842.5	75	DC S 1800 (Rx)	B	FAR-F6CE-1G8425-L2YB	E
1880.0	60	PC S (Tx)	C	FAR-F6CE-1G8800-L2XA	E
1960.0	60	PC S (Rx)	D	FAR-F6CE-1G9600-L2XB	E
2450.0	100	Wireless LAN .	E	FAR-F6CE-2G4500-L2WA	E

F6 SERIES (L2 Type)

- ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

1. PDC1.5G system (Tx)

Part number : FAR-F6CC-1G4410-L2ZA \quad Ta $=-30 \sim 85^{\circ} \mathrm{C}$

Item	Symbol	Condition		Rating			Unit	Remarks
				Min.	Typ.	Max.		
Insertion loss	I L	1429	$\sim 1453 \mathrm{MHz}$	-	2.5	3.5	dB	
In-band ripple		1429	$\sim 1453 \mathrm{MHz}$	-	1.0	1.8	dB	
Absolute stopband attenuation		DC	$\sim 1200 \mathrm{MHz}$	20	26	-	dB	
		1200	$\sim 1260 \mathrm{MHz}$	25	30	-	dB	
		1260	$\sim 1287 \mathrm{MHz}$	30	34	-	dB	
		1287	$\sim 1380 \mathrm{MHz}$	25	29	-	dB	
		1477	$\sim 1513 \mathrm{MHz}$	10	14	-	dB	
		1513	$\sim 1607 \mathrm{MHz}$	33	39	-	dB	
		1607	$\sim 1631 \mathrm{MHz}$	35	39	-	dB	
		1631	$\sim 1900 \mathrm{MHz}$	30	38	-	dB	
		1900	$\sim 2906 \mathrm{MHz}$	18	20	-	dB	
In-band VSWR		1429 ~	$\sim 1453 \mathrm{MHz}$	-	1.3	2.0	-	
Max. input power	Pin	1429	$\sim 1453 \mathrm{MHz}$	-	-	200	m H	

```
F6 SERIES (L2 Type)
```


ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

2. PDC1.5 G system (Rx)

Part number : FAR-F6CC-1G4890-L2ZB $\quad T_{s}=-30 \sim 85^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	1 L	$1477 \sim 1501 \mathrm{MHz}$	-	2.9	3.2	dB	
In-band ripple		$1477 \sim 1501 \mathrm{MHz}$	-	1.2	1.7	dB	
Absolute stopband attenuation		DC $\sim 130 \mathrm{MHz}$	30	38	-	dB	
		$130 \sim 958 \mathrm{MHz}$	20	26	-	dB	
		$958 \sim 1216 \mathrm{MHz}$	25	27	-	dB	
		$1216 \sim 1241 \mathrm{MHz}$	30	32	-	dB	
		$1241 \sim 1429 \mathrm{MHz}$	26	28	-	dB	
		$1429 \sim 1453 \mathrm{MHz}$	10	17	-	dB	
		$1542 \sim 1566 \mathrm{MHz}$	20	40	-	dB	
		$1566 \sim 1607 \mathrm{MHz}$	30	40	-	dB	
		$1607 \sim 1631 \mathrm{MHz}$	35	40	-	dB	
		$1631 \sim 1737 \mathrm{MHz}$	30	40	-	dB	
		$1737 \sim 1761 \mathrm{MHz}$	35	40	-	dB	
		$1761 \sim 1900 \mathrm{MHz}$	30	37	-	dB	
		$1900 \sim 3000 \mathrm{MHz}$	15	20	-	dB	
In-band VSWR		$1477 \sim 1501 \mathrm{MHz}$	-	1.4	2.0	-	
Max. input power	Pin	$1477 \sim 1501 \mathrm{MHz}$	-	-	200	mW	

F6 SERIES (L2 Type)

- ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

3. PDC 1.5 G system (Lo)

Part number : FAR-F6CC-1G6190-L2ZN T. $=-30 \sim 85^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	I L	$1607 \sim 1631 \mathrm{MHz}$	-	3.0	4.0	dB	
In-band deviation		$1607 \sim 1631 \mathrm{MHz}$	-	1.5	2.0	dB	
Absolute stopband attenuation		DC $\sim 130 \mathrm{MHz}$	30	38	-	dB	
		$130 \sim 1501 \mathrm{MHz}$	25	28	-	dB	
		$1737 \sim 1809 \mathrm{MHz}$	30	35	-	dB	
		$1809 \sim 2500 \mathrm{MHz}$	20	29	- -	dB	
		$3214 \quad \mathrm{MHz}$	15	25	-	dB	
In-band VSWR		$1607 \sim 1631 \mathrm{MHz}$	-	1.6	2.0	-	
Max. input power	Pin	1607 ~1631 MHz	-	-	200	mW	

```
F6 SERIES
（L2 Type）
```

ELECTRICAL CHARACTERISTICS（STANDARD VERSION）
4．DCS 1800 system（ $\mathrm{T} x$ ）Preliminary
Part number ：FAR－F6CE－1G7475－L2YA T』＝－30～E ここ

Item	Symbol	Condition	Rating			Unit	Rema－is
			Min．	Typ．	Max．		
Insertion loss	I L	$1710 \sim 1785 \mathrm{MHz}$	－	3.5	4.5	dB	
In－band ripple		$1710 \sim 1785 \mathrm{MHz}$	－	2.0	3.0	dB	
Absolute stopband attenuation		DC $\sim 1500 \mathrm{MHz}$	15	17	－	dB	
		$1500 \sim 1670 \mathrm{MHz}$	20	22	－	dB	
		$1805 \sim 1880 \mathrm{MHz}$	5	10	－	dB	
		$1880 \sim 2200 \mathrm{MHz}$	22	24	－	dB	
		$3420 \sim 3570 \mathrm{MHz}$	25	27	－	dB	
		$5130 \sim 5355 \mathrm{MHz}$	10	20	－	dB	
In－band VSWR		$1710 \sim 1785 \mathrm{MHz}$	－	2.0	3.0	－	
Max．input power	Pin	$1710 \sim 1785 \mathrm{MHz}$	－	－	100	mW	

5．DCS 1800 system（ $\mathrm{R} x$ ）Preliminary
Part number ：FAR－F6CE－1G8425－L2YB $\mathrm{T}_{2}=-3: \sim$ ミミ

Item	Symbol	Condition	Rating			Unit	Remares
			Min．	Typ．	Max．		
Insertion loss	I L	$1805 \sim 1880 \mathrm{MHz}$	－	3.9	4.8	dB	
In－band ripple		$1805 \sim 1880 \mathrm{MHz}$	－	2.0	2.5	dB	
Absolute stopband attenuation		DC $\sim 1500 \mathrm{MHz}$	21	23	－	dB	
		$1600 \sim 1710 . \mathrm{MHz}$	26	28	－	dB	
		$1710 \sim 1785 \mathrm{MHz}$	8	24	－	dB	
		$1920 \sim 2400 \mathrm{MHz}$	22	24	－	dB	
		$3610 \sim 3760 \mathrm{MHz}$	22	25	－	dB	
In－band VSWR		$1805 \sim 1880 \mathrm{MHz}$	－	2.0	3.0	－	
Max．input power	Pin	$1805 \sim 1880 \mathrm{MHz}$	－	－	100	mW	

F6 SERIES (L2 Type)

ELECTRICAL CHARACTERISTICS (STANDARD VERSION)
6. PCS system (Tx)

Preliminary
Part number: FAR-F6CE-1G8800-L2XA T. $=-30 \sim 85^{\circ} \mathrm{C}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	I L	$1850 \sim 1910 \mathrm{MHz}$	-	3.5	4.5	dB	
In-band deviation		$1850 \sim 1910 \mathrm{MHz}$	-	1.5	2.5	dB	
Absolute stopband attenuation		DC $\sim 1500 \mathrm{MHz}$	22	24	-	dB	
		$1500 \sim 1800 \mathrm{MHz}$	25	28	-	dB	
		$1930 \sim 1990 \mathrm{MHz}$	5	8	-	dB	
		$3700 \sim 3820 \mathrm{MHz}$	20	24	-	dB	
		$5550 \sim 5730 \mathrm{MHz}$	4	5	-	dB	
In-band VSWR		$1850 \sim 1910 \mathrm{MHz}$	-	1.8	2.5	-	
Max. input power	Pin	$1850 \sim 1910 \mathrm{MHz}$	-	-	100	mW	

7. PCS system (Rx) Preliminary

Part number : FAR-F6CE-1G9600-L2XB
$\mathrm{T}_{2}=-30 \sim 85^{\circ} \mathrm{C}{ }^{\prime}$

Item	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	I L	$1930 \sim 1990 \mathrm{MHz}$	-	4.0	4.8	dB	
In-band deviation		$1930 \sim 1990 \mathrm{MHz}$	-	2.0	2.8	dB	
Absolute stopband attenuation		$\mathrm{DC} \sim 1500 \mathrm{MHz}$	22	24	-	dB	
		$1500 \sim 1850 \mathrm{MHz}$	25	28	-	dB	
		$1850 \sim 1910 \mathrm{MHz}$	10	25	-	dB	
		$3920 \sim 4040 \mathrm{MHz}$	20	23	-	dB	
In-band VSWR		$1930 \sim 1990 \mathrm{MHz}$	-	1.8	2.5	-	
Max. input power	Pin	$1930 \sim 1990 \mathrm{MHz}$	-	-	100	mW	

- ELECTRICAL CHARACTERISTICS (STANDARD VERSION)

8. Wireles s-LAN system Preliminary

I tem	Symbol	Condition	Rating			Unit	Remarks
			Min.	Typ.	Max.		
Insertion loss	I L	$2400 \sim 2500 \mathrm{MHz}$	-	4.5	5.5	dB	
In-band ripple		$2400 \sim 2500 \mathrm{MHz}$	-	2.3	3.5	dB	
Absolute stopband attenuation		DC $\sim 1700 \mathrm{MHz}$	20	25	-	dB	
		$1800 \sim 2200 \mathrm{MHz}$	25	28	-	dB	
		$2700 \sim 3100 \mathrm{MHz}$	30	34	-	dB	
		$4800 \sim 5000 \mathrm{MHz}$	15	18	-	dB	
In-band VSWR		$2400 \sim 2500 \mathrm{MHz}$	-	2.0	3.0	-	
Max. input power	Pin	$2400 \sim 2500 \mathrm{MHz}$	-	-		mW	

TYPICAL CHARACTERISTICS (STANDARD VERSION)

1. PDC 1.5 G system $(T \times$)

Part number : FAR-F6CC-1G4410-L2ZA

F6 SERIES (L2 Type)
-TYPICAL CHARACTERISTICS (STANDARD VERSION)
2. PDC 1.5 G system $(R x)$

Part number : FAR-F6CC-1G4890-L2ZB

F6 SERIES (L2 Type)
TYPICAL CHARACTERISTICS (STANDARD VERSION)
3. PDC 1.5 G system ($\mathrm{L} \circ$)

Part number : FAR-F6CC-1G6190-L2ZN

F6 SERIES
 (L2 Type)

TYPICAL CHARACTERISTICS (STANDARD VERSION)
4. DCS1800 system (Tx) Preliminary

Part number : FAR-F6CE-1G7475-L2YA

F6 SERIES (L2 Type)
-TYPICAL CHARACTERISTICS (STANDARD VERSION)
5. DCS 1800 system $(R x)$
Preliminary
Part number : FAR-F6CE-1G8425-L2YB

F6 SERIES (L2 Type)

-TYPICAL CHARACTERISTICS (STANDARD VERSION)
6. PCS system ($T \times$) Preliminary Part number: FAR-F6CE-1G8800-L2XA

-TYPICAL CHARACTERISTICS (STANDARD VERSION)
7. PCS system ($\mathrm{R} x$) Preliminary Part number: FAR-F6CE-1G9600-L2XB


```
F6 SERIES (L2 Type)
```


TYPICAL CHARACTERISTICS (STANDARD VERSION)

8. Wireless-LAN system

Preliminary
Part number: FAR-F6CE-2G4500-L2WA


```
F6 SERIES (L 2)
```

-MEASURING CIRCUIT

-PART NUMBER DESIGNATION

[Designation example]
FAR-F6C $\square \square \square \square \square-\mathrm{L} 2 \square \square-\square$
(1)
(2)
(3) (4)
(1)Package designation: $C: 3.8 \mathrm{~mm}^{\text {a }} \times 1.6 \mathrm{~mm}$ $E: 3.0 \mathrm{~mm}^{\mathrm{a}} \times 1.2 \mathrm{~mm}$

Refer to " standard frequencies.
(2) Prequency Specif̣y the nominal frequency in six alphanumeric designation: characters. Enter $G(f o r ~ G H z) ~ a t ~ t h e ~ d e c i m a l ~ p o i n t . ~$ Refer to standard friquencies.
[Example] $1.4410 \mathrm{GHz} \Rightarrow 1 \mathrm{G} 4410$
(3)Serial number: Specify a number from WA to $Z 2$.

Refer to standard friquencies.
(4) Packing:

T: 1 K pcs/reel
(Reeled tape)

$$
\mathrm{R}: 3 \mathrm{~K} \quad \mathrm{pcs} / \mathrm{ree} \mathrm{l}
$$

F 6 SERIES (L 2)

DIMENSIONS

MARKING

$$
<C-S I Z E>
$$

$$
<\mathrm{E}-\mathrm{SIZE}>
$$

LOGO

DATE CODE


```
F 6 SERIES (L 2 )
```


■PACKING:Reel type

(1)Reel dimension

(2)Packing style

(3)Tape dimension

Package	ℓ	W	K
C	4.2 ± 0.1	4.2 ± 0.1	1.8
E	3.4 ± 0.1	3.4 ± 0.1	1.5

Unit:mm

M2 Series (D100)
 PIEZOELECTRIC DEVICE
 VOLTAGE CONTROLLED OSCILLATOR

DESCRIPTION

The M2 series (D100) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz .

The M2 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient for stable and wide variable frequency width.

FEATURES

- Wider variable frequency width than quartz crystals: $\pm 0.2 \%$ or more
- High stability (100 times more stable than LC configuration)
- Excellent carrier noise ratio
- Hermetically sealed in a metal case for high reliability in severe environmental conditions
- Compatible with 14-pin DIP IC packages

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	V_{IN}	-0.5 to 10	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 25	mA
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Oscillation Frequency Range		4 to 30	MHz

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	4.75 to 5.25	V
Input Control Voltage	V_{I}	0.5 to 5.0	V
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuliry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any vollage higher than maximum rated voltages to this high impedance circuit.

STANDARD FREQUENCIES

8.192 MHz	14.318 MHz	17.734 MHz	21.053 MHz	25.175 MHz
9.408 MHz	16.000 MHz	18.432 MHz	21.477 MHz	27.338 MHz
11.290 MHz	16.257 MHz	18.816 MHz	22.579 MHz	28.224 MHz
11.580 MHz	16.384 MHz	20.480 MHz	24.576 MHz	28.636 MHz
12.288 MHz	16.934 MHz			

ELECTRICAL CHARACTERISTICS

DC Characteristics

Item	Symbol	Condition	Ratings		Unit
			Minimum	Maximum	
Output Level	$V_{\text {OUT }}$	See the measuring circuit diagram	0.5	-	$V_{\text {P-P }}$
Power Supply Current	${ }^{\prime} \mathrm{CC}$	Load open	-	15	mA

Measuring Circuit Diagram

(CL is the value including the measurement probe and the Jig capacitance.)

AC Characteristics

Item	Symbol	Condition	Ratings		Unit	Remarks
			Minimum	Maximum		
Oscillation Frequency	fosc	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$	-0.05	+0.05	\%	Nominal Frequency reference$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
	f_{H}	$\mathrm{V}_{1 \mathrm{~N}}=4.5 \mathrm{~V}$	+0.15	-	\%	
	f_{L}	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-	-0.15	\%	
Frequency Voltage Stability	$\Delta f, V_{c c}$	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$	-200	200	ppm	5 V reference, $\mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}$
Frequency Temperature Stability	$\Delta \mathrm{f}, \mathrm{T}_{\mathrm{a}}$	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V} \\ & V_{I N}=4.5 \mathrm{~V} \end{aligned}$	-500	500	ppm	$\begin{aligned} & 25^{\circ} \mathrm{C} \text { reference }-10^{\circ} \text { to } 70^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$

STANDARD CHARACTERISTICS:

Part Number: M2DA-8M1920-D100

Control Voltage and Oscillation Frequency

Power Supply Voltage Characteristics

STANDARD CHARACTERISTICS:

Part Number: M2DA-28M636-D100

Control Voltage and Oscillation Frequency

Temperature Characteristics
Control Voltage (V)

Power Supply Voltage Characteristics

STANDARD CHARACTERISTICS:

Part Number: M2DA-12M288-D100

Control Voltage and Oscillation Frequency

Power Supply Voltage Characteristics

Oscillation Spectrum

APPLICATION CIRCUIT EXAMPLES

Example 1. Connection to CMOS

Example 2. Connection to LS TTL (or CMOS)

PART NUMBERING SYSTEM

Part Number Example
M2DA - בםם - בםםםם
(1)
(1) Frequency Designation:Designate the nominal frequency in six alphanumeric characters. M indicates the decimal point in MHz .

Frequency	Designation
8.192 MHz	8 M 1920
9.408 MHz	9 M 4080
11.290 MHz	11 M 290
11.580 MHz	11 M 580
12.288 MHz	12 M 288
14.318 MHz	14 M 318
16.000 MHz	16 M 000
16.257 MHz	16 M 257
16.384 MHz	16 M 384
16.934 MHz	16 M 934
17.734 MHz	17 M 734

Frequency	Designation
18.432 MHz	18 M 432
18.816 MHz	18 M 816
20.480 MHz	20 M 480
21.053 MHz	21 M 053
21.477 MHz	21 M 477
22.579 MHz	22 M 579
24.576 MHz	24 M 576
25.175 MHz	25 M 175
27.338 MHz	27 M 338
28.224 MHz	28 M 224
28.636 MHz	28 M 636

(2) Serial Number (of the Series):Standard: 100

Non-Standard porducts: 001 to 099

MARKING

DIMENSIONS

M2 Series (D300) Piezoelectric Device (Voltage Controlled Oscillator)

DESCRIPTION

The M2 series (D300) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz . The M 2 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient for stable and wide variable frequency width.
This module incorporates three VCOs for the three sampling frequencies used in digital audio equipment ($32,44.1$, and 48 kHz). The frequencies are selected by external signals.

FEATURES

- Clock replay in response to three sampling frequencies ($32,44.1$ and 48 kHz), is contained in one module
- Wider variable frequency width than in quartz crystals: $\pm 0.1 \%$ or more
- Excellent stability for signal noise reproduced by high quality of the lithium tantalate
- 100 times more stable than VCOs of LC and TTL-IC configuration
- Three sampling frequencies controlled at CMOS logic level
- SIP packaged for high-density mounting of devices
- Compatible with the Electronic Industry Association of Japan (EIAJ) digital YO Standard Type II (consumer digital audio equipment), Level I (high-resolution mode) and Level III (standard resolution mode)

ABSOLUTE MAXIMUM RATINGS (See Note)

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	V_{IN}	-0.5 to 10	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 25	mA
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Negative value of current means that the current flows from the device.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	4.75 to 5.25	V
Input Control Voltage	$\mathrm{V}_{\mathbb{N}}$	0.5 to 5.0	V
Operating Temperature	T_{a}	-20 to +70	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1 The GND terminal and the $V_{c c}$ terminals are not connected inside the module. So be sure to route them on the PC board.
2 The F1 and FO bits switch the oscillation frequencies. The F1 and FO bits are equivalent to bits 25 and 24 of the EIAJ Digital I/O Standard.
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

STANDARD COMBINATION OF FREQUENCIES

Type $\mathrm{A}(\mathrm{n}=256)$	$\mathrm{f}_{01}(\mathrm{~L})$	8.192 MHz	$32 \mathrm{kHz} \times 256$
	$\mathrm{f}_{02}(\mathrm{M})$	11.290 MHz	$44.1 \mathrm{kHz} \times 256$
	$\mathrm{f}_{03}(\mathrm{H})$	12.288 MHz	$48 \mathrm{kHz} \times 256$
Type $\mathrm{B}(\mathrm{n}=384)$	$\mathrm{f}_{01}(\mathrm{~L})$	12.288 MHz	$32 \mathrm{kHz} \times 384$
	$\mathrm{f}_{02}(\mathrm{M})$	16.934 MHz	$44.1 \mathrm{kHz} \times 384$
	$\mathrm{f}_{03}(\mathrm{H})$	18.432 MHz	$48 \mathrm{kHz} \times 384$
Type $\mathrm{C}(\mathrm{n}=512)$	$\mathrm{f}_{01}(\mathrm{~L})$	16.384 MHz	$32 \mathrm{kHz} \times 512$
	$\mathrm{f}_{02}(\mathrm{M})$	22.579 MHz	$44.1 \mathrm{kHz} \times 512$
	$\mathrm{f}_{03}(\mathrm{H})$	24.576 MHz	$48 \mathrm{kHz} \times 512$

SWITCHING BIT DESIGNATION

$F 1$	$F 0$	Oscillation Frequency
H	H	$f_{01}(L): 32 \mathrm{kHz} \times n$
L	L	$f_{02}(M): 44.1 \mathrm{kHz} \times n$
H	L	$f_{03}(H): 48 \mathrm{kHz} \times n$
L	H	Stop

Note: $n=256,384,512$

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

DC Characteristics

Item		Symbol	Condition	Ratings			Unit	
		Minimum		Normal	Maximum			
Output Voltage	H		V_{OH}	$\mathrm{lOH}=-20 \mu \mathrm{~A}$	$V_{C C}-0.5$	5.0	-	V
	L	V_{OL}	$l a=20 \mu \mathrm{~A}$	-	0.0	0.5	V	
Power Supply Current		$l_{\text {cc }}$	Not Loaded	-	4.6	15	mA	

Measuring Circuit Diagram

AC Characteristics

Item	Symbol	Condition	Ratings		Unit	Remarks
			Minimum	Maximum		
Oscillation Frequency One	$\mathrm{f}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	$1.0015 \mathrm{f}_{01}$	-	MHz	Nominal frequency F_{0} reference
	$\mathrm{f}_{\text {L }}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-	$0.9985 f_{01}$	MHz	
Oscillation Frequency Two	$\mathrm{f}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathbb{N}}=4.5 \mathrm{~V}$	$1.0015 f_{02}$	-	MHz	
	$\mathrm{f}_{\mathrm{L} 2}$	$\mathrm{V}_{\mathrm{iN}}=0.5 \mathrm{~V}$	-	$0.9985 \mathrm{f}_{02}$	MHz	
Oscillation Frequency Three	$\mathrm{f}_{\mathrm{H} 3}$	$V_{i N}=4.5 \mathrm{~V}$	$1.0015 \mathrm{f}_{03}$	-	MHz	
	f_{L}	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-	$0.9985 f_{03}$	MHz	
Frequency Voltage Stability	$\Delta f\left(V_{\text {cC }}\right)$	$\begin{aligned} & V_{c c}=4.75 \\ & \text { to } 5.25 \mathrm{~V} \end{aligned}$	-100	100	ppm	5 V reference, $\mathrm{V}_{\mathbb{N}}=0.5,4.5 \mathrm{~V}$
Frequency Temperature Stability	$\Delta f\left(T_{a}\right)$	$\begin{aligned} \mathrm{T}_{\mathrm{a}} & =-20 \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	-500	500	ppm	$25^{\circ} \mathrm{C}$ reference $\mathrm{V}_{\mathrm{IN}}=0.5,4.5 \mathrm{~V}$

STANDARD CHARACTERISTICS

1A. Control Voltage and Oscillation Frequency Changes

Part Number: M2SC-12M288-D300

STANDARD CHARACTERISTICS

1B. Control Voltage and Oscillation Frequency Changes

Part Number: M2SC-18M432-D300

STANDARD CHARACTERISTICS
1C. Control Voltage and Oscillation Frequency Changes
Part Number: M2SC-24M576-D300

2. Oscillation Spectrum

Part Number: M2SC-18M432-D300
Example of $\mathrm{f}_{03}=18.432 \mathrm{MHz}$

3. Frequency Switch Oscillation Startup Characteristics

The characteristics in the circuit below were measured with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{FC}}=5.0 \mathrm{~V}$.

4. Frequency and Swltching Oscillation Startup Characteristics
A. Condition: Stop $\rightarrow 12.288 \mathrm{MHz}$

B. Condition: Stop $\rightarrow 16.934 \mathrm{MHz}$

C. Condition: Stop $\rightarrow 18.432 \mathrm{MHz}$

PART NUMBERING SYSTEM

［Part Number Example］
M2SC－ロロロロロロ－D ロロロ
（1）
（2）
（1）Frequency designation：Designates the highest frequency of the combined nominal frequency types in six alphanumeric characters．M indicates the decimal point in MHz ．

Frequency	Designation
$(12.288 \mathrm{MHz})$	Type A： 12 M 288
$(18.432 \mathrm{MHz})$	Type B： 18 M 432
$(24.576 \mathrm{MHz})$	Type C： 24 M 576

（2）Serial numbers of the series：
Standard for the M2 series（D300）：D300

MARKING

DIMENSIONS

M3 Series (D001) Piezoelectric Device
(Voltage Controlled Oscillator)

DESCRIPTION

The M3 series voltage controlled oscillators (VCO) operate in the frequency range of 50 to 300 MHz . The M3 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient and a SAW resonator that has an original configuration. The M3 series VCOs oscillate directly in the VHF band up to 300 MHz , and have a wide variable frequency width and high temperature stability.

FEATURES

- Direct oscillation at high frequencies: 50 to $\mathbf{3 0 0} \mathbf{~ M H z}$
- Wide variable frequency width: $800 \mathrm{ppm} / \mathrm{V}$ minimum (0.5 to 4.5 V)
- Superb temperature characteristics: Within $\pm 200 \mathrm{ppm}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- High-precision oscillation frequency, ready for use without adjustment
- High reliability due to hermetically sealed package
- High carrier noise ratio: -90 dB or less (12.5 kHz detuning, 8 kHz band)
- Compact size: Compatible with 16-pin DIP IC packages
- Frequency offset by built-in offset terminal
- Three types of standard frequencies available

ABSOLUTE MAXIMUM RATINGS (See Note)

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	$\mathrm{V}_{\mathrm{IN} 2}$	-0.5 to 7.0	V
Operating Temperature	T_{a}	0 to 60	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to 85	${ }^{\circ} \mathrm{C}$
Control Polarity		Positive Polarity	
Oscillation Frequency Range		50 to 300	MHz

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	5.0	V
Input Control Voltage	$\mathrm{V}_{\mathrm{IN} 2}$	0.5 to 4.5	V
Operating Temperature	T_{a}	0 to 60	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

STANDARD FREQUENCIES

Frequency	Applicaltion	Part Number
74.25 MHz	Professional HDTV	M3DA-74M250-D001
97.2 MHz	Transmission Standard HDTV	M3DA-97M200-D001
115.52 MHz	Broad-band ISDN	M3DA-155M52-D001

ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Ratings			Unit	Remarks
			Minimum	Typical	MaxImum		
Oscillation Frequency Deviation	$\Delta f_{\text {o }}$	$\mathrm{V}_{\mathrm{N} 2}=2.5 \mathrm{~V}$	-500	-	+500	ppm	t_{0} reference
Variable Width of Oscillation Frequency	$\frac{\left(f_{H}-f_{L}\right)}{f_{0}}$	$\begin{aligned} & V_{\mathrm{N} 2}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{N} 2}=4.5 \mathrm{~V} \end{aligned}$	800	-	-	ppm/V	
Temprature Stability of Oscillation Frequency	$\Delta t\left(T_{a}\right)$	$\mathrm{V}_{\mathrm{N} 2}=2.5 \mathrm{~V}$	-200	-	+200	ppm	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=0 \text { to } 60^{\circ} \mathrm{C}$
Output Level	Pout	$\mathrm{V}_{\mathrm{N} 2}=2.5 \mathrm{~V}$	0	5	7	dBm	50Ω termination
Output Level Stability	$\Delta \mathrm{P}\left(\mathrm{V}_{\mathrm{F}}\right)$	$\begin{aligned} & V_{\mathrm{N} 2}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{N} 2}=4.5 \mathrm{~V} \end{aligned}$	-2	-	+2	dB	$\begin{aligned} & \mathrm{V}_{1 \mathrm{~N} 2}=2.5 \mathrm{~V} \\ & \text { reference } \end{aligned}$
Output Level Temperature Stability	$\Delta \mathrm{P}\left(\mathrm{T}_{\mathrm{a}}\right)$	$\mathrm{V}_{\mathrm{N} 2}=2.5 \mathrm{~V}$	-2	-	+2	dB	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=0 \text { to } 60^{\circ} \mathrm{C}$
Current Consumption	$l_{\text {cc }}$	-	-	-	30	mA	
Oscillation Frequency Power Supply Voltage Fluctuation	$\Delta f\left(V_{c c}\right)$	$\mathrm{V}_{\text {W2 } 2}=2.5 \mathrm{~V}$	-50	-	+50	ppm	$V_{C C}=5 \mathrm{~V}$ reference, $\pm 5 \%$

STANDARD CHARACTERISTICS

The examples below show characteristics of the M3 VCO devices at 155.52 MHz .

Example 1. Frequency Variable Characteristics

STANDARD CHARACTERISTICS (Continued)

Example 2. Temperature Characteristics

Example 3. Osciliation Spectrum

PART NUMBERING SYSTEM

（Part Number Example）
M3DA－ロロロロロロ－D ㅁㅁ
（1）
（1）Frequency designation：Designates the nominal frequency in six alphanumeric characters．M indicates the decimal point in MHz ．

Frequency	Designation
74.25 MHz	74 M 250
97.2 MHz	97 M 200
115.52 MHz	115 M 52

（2）Serial Number（of the series）：
Standard： 001
Non－standard products： 001 to 099

PACKAGE DIMENSIONS

M3 Series (D101) Piezoelectric Device

Modulator, 50 MHz to 300 MHz

DESCRIPTION

These piezoelectric modulators feature direct oscillators (50 MHz to 300 MHz). The piezoelectric modulator uses a lithium tantalate piezoelectric single crystal (LiTaO_{3}) with a high electromechanical coupling coefficient. The piezoelectric modulator employs an exclusive SAW resonator. The piezoelectric modulator can be used in direct modulation applications needing high modulation sensitivity and a high signal noise ratio in the VHF band (up to 300 MHz).

FEATURES

- High frequency direct modulation:

50 to 300 MHz

- High modulation sensitivity: $800 \mathrm{ppm} / \mathrm{V}$ min. (0.5 to 4.5 V)
- Excellent modulation distortion ratio: 40 dB max. (1 KHz to 1.75 KHz dev.)

Terminal No.	Terminal Name	Description
1	ML	Control Voltage Input Terminai
4	MM	Modulation Input
7	GND	Grounding Terminal
8	$V_{\text {OUT }}$	Oscillation Output Terminal
14	$\mathrm{~V}_{\mathrm{CC}}$	Power Supply Terminal

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

STANDARD FREQUENCY

Standard Frequency	Application	Part Number
145.0 MHz	Mobile Phone	M3DA-145M00-D101

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5.0 \mathrm{~V}\right)$									
Item		Symbol	Condition	Ratings			Unit	Remarks	
		Min.		Typ.	Max.				
Oscillation Frequency Deviation			Δf_{0}	$\mathrm{V}_{\text {ML }}=2.5 \mathrm{~V}$	-300	-	+300	ppm	f_{0} reterence
Variable Width of Oscillation Frequency		$\frac{\left(f_{H}-f_{L}\right)}{f_{0}}$	$\begin{aligned} & V_{M L}=0.5 \mathrm{~V} \\ & V_{M L}=4.5 \mathrm{~V} \end{aligned}$	800	-	-	ppm/V		
Temperature Stability of Oscillation Frequency		$\Delta f\left(T_{a}\right)$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-200	-	+200	ppm	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=-20 \text { to } 70^{\circ} \mathrm{C}$	
Output Level		Pout	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-5	-3	-1	dBm	50Ω termination	
Output Level Stability		$\Delta \mathrm{P}\left(\mathrm{V}_{\mathrm{F}}\right)$	$\begin{aligned} & V_{M L}=0.5 \mathrm{~V} \\ & V_{M L}=4.5 \mathrm{~V} \end{aligned}$	-2	-	+2	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V} \\ & \text { reference } \end{aligned}$	
Output Level Temperature Stability		$\Delta \mathrm{P}\left(\mathrm{T}_{\mathrm{a}}\right)$	$\mathrm{V}_{\text {ML }}=2.5 \mathrm{~V}$	-2	-	+2	dB	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=-20 \text { to } 70^{\circ} \mathrm{C}$	
Current Consumption		lc	-	-	-	10	mA		
Oscillation Frequency Power Supply Voltage Fluctuation		$\Delta f\left(V_{c c}\right)$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-50	-	+50	ppm	$\begin{aligned} & \pm 5 \% \text { at } V_{C C}=5 \\ & V \\ & \text { reference } \end{aligned}$	
Modulation Characteristic	Modulation Distortion (1 KHz tone)		1.75 KHz DEV	-	-	-40	dB	15 KHz LPF	
			3.5 KHz DEV	-	-	-40	dB		
			5.0 KHz DEV	-	-	-40	dB		
	Signal to Noise Ratio		1.75 KHz DEV	-	-	-50	dB	300 to 3 KHz	
	Modulator Input Impedance			10			$K \Omega$		

PART NUMBERING SYSTEM

Designation Example

M3DA - $\square \square \square \square \square \square-$ - $\square \square \square$

(1) Frequency Designation:

The standard frequency is designated in six alphanumeric characters. M is used to designate the decimal point in MHz . Refer to STANDARD FREQUENCY. Example: 145.0 MHz device is designated as 145 M 00 .
(2)

Serial Number:
The serial number is assigned from 101 to 199 (with 101 as the standard).

PACKAGE MARKING

PACKAGE DIMENSIONS

M3 Series (D101)

SAW MODULATOR CHARACTERISTICS

M3DA-145M00-D101

Item		Rating	Characteristics	Remarks
Output Frequency		145.0 MHz	144.997 MHz	$\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V}$
Current Consumption		10 mA or less (with buffer)	7.3 mA	
Output Level		$-3 \mathrm{dBm} \pm 2 \mathrm{~dB}$	$-2.00 \mathrm{dBm}$	$\mathrm{v}_{\mathrm{C}}=2.5 \mathrm{~V}$
Spurious Response Ratio		Higher harmonic $<4 \mathrm{~dB}$ at $2 \mathrm{f}_{0}(290 \mathrm{MHz})$	$-7.3 \mathrm{~dB}$	
Frequency Stability	Power Supply Fluctuation	Within $\pm 50 \mathrm{ppm}$ for $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$	$\begin{aligned} & +6.00 \mathrm{ppm} \\ & -5.80 \mathrm{ppm} \end{aligned}$	
	AFC-F-F Characteristic	± 550 ppm or more for $2.5 \mathrm{~V} \pm 1 \mathrm{~V}$	$\begin{aligned} & \text { - } 789 \mathrm{ppm} \\ & +1016 \mathrm{ppm} \\ & \hline \end{aligned}$	
	Temperature Characteristic	Within $\pm 300 \mathrm{ppm}$ for -35 to +85	$\begin{aligned} & +66 \mathrm{ppm} \\ & +41 \mathrm{ppm} \end{aligned}$	
AFC Voltage Versus Output Frequency Characteristics		At $25 \pm 5^{\circ} \mathrm{C}$, the AFC voltage for the output frequency of 145 MHz is $\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.501 V	
		At $-20+85^{\circ} \mathrm{C}$, the AFC voltage for the output frequency of 145 MHz is $\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & 2.476 \mathrm{~V} \\ & 2.459 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$
Modulation Characteristic	Modulation Input Level	$-28 \mathrm{dBm} \pm 3 \mathrm{~dB}(600 \mathrm{~W})$ $1 \mathrm{KHz} \pm 3.5 \mathrm{KHz} \mathrm{DEV}^{*}$	-26.1 dB	15 KHz LPF
	Modulation Distortion Ratio	$\begin{aligned} & -35 \mathrm{~dB} \text { or less } 1 \mathrm{KHz}(\pm 1.75 \mathrm{KHz} \text { DEV })^{\star} \\ & -30 \mathrm{~dB} \text { or less } 1 \mathrm{KHz}(\pm 3.5 \mathrm{KHz} \mathrm{DEV})^{*} \\ & -20 \mathrm{~dB} \text { or less } 1 \mathrm{KHz}(\pm 5.0 \mathrm{KHz} \mathrm{DEV})^{*} \end{aligned}$	$\begin{aligned} & -46 \mathrm{~dB} \\ & -49 \mathrm{~dB} \\ & -48 \mathrm{~dB} \end{aligned}$	15 KHz LPF
	Modulation Characteristic	$< \pm 1 \mathrm{~dB} / 20 \mathrm{~Hz}$ to $5 \mathrm{KHz} \pm 5 \mathrm{KHz} \mathrm{DEV}{ }^{*}$		
	Signal Noise Characteristic	$<-50 \mathrm{~dB} \pm 1.75 \mathrm{KHz} \mathrm{DEV} *$	$-55 \mathrm{~dB}$	300 to 3 KHz

*Adjust the control voltage for an oscillation frequency of 145 MHz for the modulation characteristic.

Test Circuit

M30A-145M00-D101 MODULATION FREQUENCY CHARACTERISTICS

SAW MODULATOR CHARACTERISTIC DATA M3DA-145M00-D101

V-F Characteristic

SAW MODULATOR CHARACTERISTIC DATA (Continued) M3DA-145M00-D101

No. ES-38 O

SECTION 8

Power Management Switches - At a Glance

The typical cellular handset typifies the recent trend towards compact, lightweight, battery dependent products that can be used anywhere, anytime. Fujitsu's innovative power management switches can effect a reduction of power consumption in the "OFF" state, thereby extending battery life.

Page Number	Part Number	'ON' Resistance	Maximum Handling Cur- rent	Comment
$8-3$	MB3802 (dual switches)	0.12Ω	1.2 A per channel	Well suited for most portable radio applica- tions
$8-17$	MB3807A (dual switches)	0.3Ω (12 V port) 6.0Ω (5 V port)	0.5 A (12V port) 0.1 A (5V port)	Designed for PCMCIA card controllers; will have niche application to wireless products

MB3802
POWER MANAGEMENT SWITCH

DESCRIPTION

The MB3802 is a dual power management switch incorporating two identical switch circuits which have extremely low ON resistance and consume zero input current when the switches are turned OFF. These features effectively reduce power consumption and extend the battery life of portable, battery-driven products. The MB3802 can be used to efficiently control various power supply systems for Notebook Computers and typical peripheral devices such as Disk Drives and PCMCIA Cards.

The MB3802 switch blocks turn on at a very low input voltage (typical $\mathrm{V}_{\text {IN }}$ $>2.2 \mathrm{~V}$) and a stable ON resistance is obtained irrespective of the switching voltage since the internal DC/DC converter applies the optimum voltage for the N -ch MOS gate at Switch-ON.

No external diode is required because the switch block is configured with an N -ch MOS structure to prevent the flow of reverse current at Switch-OFF.

Additionally, a load-side capacitor can be discharged at Switch-OFF by an internal discharge switch which is operated by an external control pin.

FEATURES

- Extremely low ON resistance:
$-R_{O N}=0.12 \Omega$ (typical)
- $\mathrm{R}_{\mathrm{ON}}=0.06 \Omega$ (typical for parallel connection)
- Reverse current protection at load side at Switch-OFF
- Operation start at low input voltage: $\mathrm{V}_{\mathrm{IN}}>2.2 \mathrm{~V}$ (typical)
- Low power consumption
- At Switch-OFF: $I_{\mathbb{N}}=0 \mu \mathrm{~A}, \mathrm{~V}_{\mathbb{N}}=0 \mathrm{~V}$
- At Switch-ON: $\mathrm{I}_{\mathrm{IN}}=230 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$
- Load discharge function
- External control of ON/OFF time
- Break-before-make operation
- 16 Pin Plastic Flat Package (Suffix: -PF)

16-pin plastic SOP (FPT-16P-M04)

BLOCK DIAGRAM AND EXTERNAL CONNECTIONS

Note: The MB3802 incorporates two switch blocks as shown above. However, GND is common to both blocks.

PIN ASSIGNMENT

BLOCK DESCRIPTION

When $\mathrm{V}_{\mathbb{N}}$ exceeds 2.2 V , the Comparator starts driving the $\mathrm{DC} / \mathrm{DC}$ converter which boosts the $\mathrm{V}_{\mathbb{N}}$ voltage in order to switch the N -ch MOS, applying the optimum voltage to the switch gate.

When V_{IN} is below 2.1 V , the Comparator stops the DC/DC converter, starts the Switch-OFF circuit, and discharges the voltage from the switch gate to GND. The Switch-OFF circuit is powered from the $\mathrm{SW}_{\mathrm{IN}}$ and consumes $0.4 \mu \mathrm{~A}$ at 5 V .

Since the N-ch MOS back gate is connected to GND, Switch-OFF reverse current is prevented irrespective of the High level state between $\mathrm{SW}_{\mathrm{IN}}$ and $\mathrm{SW}_{\text {OUT }}$.

The load discharge circuit installed between SWOUT and GND is powered by the DCG pin, and discharges the load-side capacitor at Switch-OFF. When it is not necessary to discharge the load, connect the DCG pin to GND.

The DLY pins are for connection to an external capacitor to delay the Switch-ON/OFF time. The surge current at the load side is reduced during power-on by controlling the Switch-ON time. The Switch-ON time is also dependent on the boot time of the DC/DC converter.

PIN DESCRIPTION

1. Power Management Switch

Pin No.	Pín Symbol	Description
16	Vina	Switch Control Pins: These input control pins drive the Switch-ON with a High input level and Switch-OFF with a Low input level. They also serve as power-supply pins for the DC/DC converter to generate the switch gate voltage.
9	$V_{\text {INB }}$	
3, 4	SWINA	Switch input pins: Two common pins are assigned to SW $_{\text {INA }}$ and SW $_{\text {INB. }}$. They serve as input power supply pins for the Load Switches and the Switch-OFF circuit.
5, 6	SWing	
13, 14	SWOUTA	Switch output pins: Two common pins are assigned to SWOUTA and SWOUTe. They are typically connected to the high side of the controlled load. When DCGA or DCGB are at a High level, the respective load-discharge circuits implement the discharge function via these pins.
11, 12	SWoutb	
2	${ }^{\text {DCG }}$ A	SW OUTA/SW OuTB discharge control pins: These pins are used to control the discharge of the load at Switch-OFF. Connect them to GND when the discharge function is not required.
7	${ }^{\text {D }}$ CG ${ }_{\text {B }}$	
15	$\mathrm{DLY}_{\text {A }}$	Switch-ONOFF time control pins: The ONOFF time can be delayed by connecting an external capacitor. Both times are delayed about three fold by installing a 500 -pF capacitor between these pins and GND. Leave these pins open when they are not used. 10 V may be generated when these pins are open. To keep these pins at high impedance, take care to mount the device so that there is minimal current leakage (less than $0.1 \mu \mathrm{~A}$).
10	$\mathrm{DLYB}^{\text {a }}$	
1	GNDA	Ground pins for input threshold reference voltage and load discharge: When two switching circuits are used, ground both GND pins.
8	$\mathrm{GND}_{\mathrm{B}}$	

MB3802

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

2. Recommended Operating Conditions

Parameter	Symbol	Conditions	Ratings			Unit
			Min.	Typical	Max.	
Input voltage	$\mathrm{V}_{\text {IN }}$	-	0	-	6.0	V
Switching level	$\mathrm{V}_{\text {SWIN }}$	At Switch-ON	0	-	6.0	V
		At Switch-OFF	0	-	6.0	
Switching current	Isw	At Switch-ON (for single switch)	-	-	1.2	A
DLY-pin connection capacitance	C_{D}	-	-	-	10	nF
DLY-pin mounting leak current	IDIY	-	-0.1	-	0.1	$\mu \mathrm{A}$
Input voltage to load discharge circuit	$V_{\text {DCG }}$	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, 5 \mathrm{~V}$	2.5	-	6.0	V
Operating temperature	Top	-	-40	-	+75	${ }^{\circ} \mathrm{C}$

3. DC Characteristics

4. AC Characteristics

$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$
8

Parameter	Symbol	Conditions	Ratings			Unit
			Min.	Typlical	Max.	
Switch-ON time	LON1	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \rightarrow 3 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=3 \mathrm{~V}$	100	300	900	μs
	Lon2	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \rightarrow 5 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=5 \mathrm{~V}$	50	150	450	$\mu \mathrm{S}$
Switch-OFF time	CofF1	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V} \rightarrow 0 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=3 \mathrm{~V}$	20	60	180	$\mu \mathrm{s}$
	toff2	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V} \rightarrow 0 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=5 \mathrm{~V}$	10	30	150	μs
Switch-ON/OFF time lag	H/YS1	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=3 \mathrm{~V}$	80	240	720	$\mu \mathrm{s}$
	thys2	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\text {SWIN }}=5 \mathrm{~V}$	40	120	300	$\mu \mathrm{S}$

AC CHARACTERISTIC TEST DIAGRAMS

1. Test Condition

2. Switch-ON/OFF Timing Chart

APPLICATIONS

1. Separate Use of Two Switching Circuits

Notes:

1. The two power supplies $\mathrm{V}_{\text {SA }}$ and $\mathrm{V}_{\text {SB }}$ can be used separately by controlling the voltages $\mathrm{V}_{\text {INA }}$ and $\mathrm{V}_{\text {INB }}$.
2. Connect the DCG pin to GND when it is not used.

2. Switching Two Power Supplies

Note: When using different power supplies for a single load, control them by connecting an external capacitor so that both switches are not ON at the same time.

MB3802

3. Switching Two Loads

Note: Make this connection to control two different loads separately using a single power supply.

4. Connecting Serial Switches

Note: Make this connection to supply power from V_{S} to load B via load A.

5. Connecting Parallel Switches

Note: Connect the circuits A and B in parallel to produce a low $O N$ resistance ($R_{O N}=0.06 \Omega$). In this case, connect the DLYA and OLYB pins in common to give synchronous ON/OFF between both switches.

6. $\mathbf{2 5 \%}$ ON Resistance

Notes:

1. Make this connection to produce an ON resistance that is much lower than the single device parallel switch connection (as shown in 5.) Also, connect the DLY pins in common.
2. Consider the differences between the ON resistances and the Switch-ON/OFF times between the two devices (MB3802) and insure that load control is not offset at one device.

7. Low-side Switch

	$V_{\mathbb{N}}=3 \mathbf{V}, \mathbf{V}_{\mathbf{S}}=3 \mathrm{~V}$	$\mathrm{~V}_{\mathbb{N}}=5 \mathrm{~V}, \mathrm{~V}_{\mathbf{S}}=5 \mathrm{~V}$
Switch-ON time	$80 \mu \mathrm{~S}$	$45 \mu \mathrm{~S}$
Switch-OFF time	5.0 mS	3.5 mS

R_{A} and $R_{B}=10 \mathrm{M} \Omega$

Notes:

1. Make this connection to control the Switch-ON/OFF at the lower load side.
2. To assist the S witch-OFF circuit operation driven by the $S W_{I N}$ power supply, connect high resistances (R_{A} and R_{B} $=5$ to $10 \mathrm{M} \Omega$) to the DLY pins without overloading the DC/DC converter.
3. With this connection, the Switch-OFF time is longer than the Switch-ON time.

TYPICAL CHARACTERISTICS CURVES

MB3802

MB3807A ASSP Power Supply bipolar Power Management Switching IC (with flash memory power switching function)

- DESCRIPTION

When data is written to or read from flash memory, it requires that the voltage at its power supply (Vpp) be switched (to 12 V for writing and to 3.3 or 5.0 V for reading).
The MB3807A is a power management switching IC, designed to be compatible with the PCMCIA digital controller, to switch the Vpp voltage of flash memory.
When the switch is turned on, optimum voltage is applied to the gate of the internal charge pump N -ch MOS switch, providing a constant amount of ON resistance. The ON resistance is also kept to be low to reduce voltage drop at the Vpp pin that is caused by large current flowing when data is written.
In addition, the OFF time is much shorter than the ON time to prevent shor-circuiting between the reading and writing power supplies when the device switches the Vpp voltage for reading or writing data (break-before-make operation).

FEATURES

- Switching at low ON resistance

For writing data: SWIN1 $=12 \mathrm{~V}$, Ron $=0.3 \Omega$
For reading data: SWIN2 $=5 \mathrm{~V}$, Ron $=6.0 \Omega$

$$
\text { SWIN2 }=3.3 \mathrm{~V} \text {, Ron }=8.5 \Omega
$$

- Wide range of supply voltages: $\mathrm{Vcc}=2.7$ to 5.5 V
- Prevention of reverse current from the load at switch-off time
- ON time controllable with external pin
- Break-before-make operation

- PACKAGE

(Fin Plastic SOP

PIN ASSIGNMENT

(FPT-16P-M04)

- LOGICAL OPERATION TABLE

EN1	EN0	SW1	SW2
0	0	OFF	OFF
0	1	OFF	ON
1	0	ON	OFF
1	1	OFF	OFF

PIN DESCRIPTION

Pin No.	Pin name		
1	EN1A	These pins turn the corresponding switches on and off depending on the PCMCIA compatible signals, as shown in "LOGICAL OPERATION TABLE."	
9	EN1B	"LO	
2	ENOA		
7	ENOB		These pins connect the 12-V power supply for writing data to flash memory. When the SW1 is turned on, the voltage at the SWIN1 pin is output to the SWOUT pin. These pins also serve as power supply pins for the charge pump on the SW1 side. For switching, the pins require a voltage higher than Vcc.
4	SWIN1A		

BLOCK DIAGRAM

BLOCK DESCRIPTION

The SWIN1 and SWIN2 pins are connected to the $12-\mathrm{V}$ and $3.5 / 5.0-\mathrm{V}$ power supplies, respectively. The SWOUT pin is connected to the VPP power supply pin of the flash memory.
When conditions, $\mathrm{EN} 1=$ " H " and $\mathrm{ENO}=$ " L " are established in an attempt to write data to flash memory, the switchon circuit (charge pump) on the SW1 side is activated.
The charge pump applies optimum voltage to the SW1 gate to turn the switch on, causing the SWOUT pin to supply 12-V power from the SWIN1 pin to the VPP pin of the flash memory. On the SW2 side, the switch-off circuit discharges the SW2 gate voltage to the GND to turn the switch off.
Reading data from flash memory assume the conditions EN1 = "L" and EN $0=$ "H." When the conditions are established, the switch-on circuit (charge pump) on the SW2 side and the switch-off circuit on the SW1 side are activated to cause the SWOUT pin to supply 3.3/5.0-V power from the SWIN2 pin to the Vpp pin of the flash memory.

Since the switch-on circuits are powered from the SWIN1 and SWIN2 pins, 80 to $350 \mu \mathrm{~A}$ current flows from the SWIN1 and SWIN2 pins to the GND when the switch is turned on.

The back gate of the N-channel MOS is connected to the GND. This prevents reverse current from flowing at switch-off time, regardless of the high potential of SWIN1 or SWIN2 pin and the SWOUT pin.

The DLY pin is an external capacitance connector to delay turning the switch on. Controlling the switch ON time minimizes surge current flowing to the capacitor connected to the load when the switch is turned on.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings		Unit
			Min.	Max.	
Input voltage	Vin	-	-0.3	7	V
Switching voltage	Vswint	-	-0.3	18	V
	Vswin2	-	-0.3	18	V
Switching current	Iswinı	Switch-on peak	-	1.5	A
	Iswin2		-	0.3	A
Permissible loss	Po	$\mathrm{Ta} \leq+75^{\circ} \mathrm{C}$	-	290	mW
Storage temperature	Tstg	-	-55	+125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Values		Unit
			Min.	Min.	
Supply voltage	Vcc	-	2.7	5.5	V
High-level input voltage	V_{IH}	-	$\mathrm{Vcc} \times 0.8$	Vcc	V
Low-level input voltage	VIL	-	0	$\mathrm{Vcc} \times 0.2$	V
Switching voltage	Vswint	-	Vcc	15.0	V
		Switch OFF state	0	15.0	V
	Vswin2	-	Vcc	6.0	V
		Switch OFF state	0	6.0	V
Switching current	Iswin 1	Switch ON state	-	500	mA
	Iswin2	Switch ON state	-	100	mA
DLY pin capacitance for connection	Coly	-	-	10	nF
DLY pin leakage current	loly	-	-0.1	0.1	$\mu \mathrm{A}$
Operating temperature	Top	-	-40	+75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

1. DC Characteristics
$\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Values			Unit
			Min.	Typical*1	Max.	
Switch resistance (SW1)	Ron1	$\begin{aligned} & \mathrm{Vswint}=12 \mathrm{~V}, \mathrm{Iswin} 1=500 \mathrm{~mA} \\ & \mathrm{Vcc}=3 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	-	300	450	$\mathrm{m} \Omega$
Switch resistance (SW2)	Ron2	$\begin{aligned} & \mathrm{Vswin2}=3 \text { to } 5 \mathrm{~V}, \text { Iswin } 2=100 \mathrm{~mA} \\ & \mathrm{Vcc}=3 \mathrm{~V} 2,5 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	-	6	10	Ω
Switch resistance	Ront1	$\begin{aligned} & V \mathrm{SWIN} 1=12 \mathrm{~V}, \text { Iswini }=500 \mathrm{~mA} \\ & \mathrm{VcC}=3 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$	-	-	610	$\mathrm{m} \Omega$
	Ront2	$\begin{aligned} & V_{\text {SWiN2 }}=3 \text { to } 5 \mathrm{~V}, \text { ISWiN2 }=100 \mathrm{~mA} \\ & \text { Vcc }=3 \mathrm{~V}, 5 \mathrm{~V} \end{aligned}$	-	-	14	Ω
High-level input current	IH	$V C C=5.5 \mathrm{~V}, \mathrm{~V}_{1 H}=5.5 \mathrm{~V}$	-	0	10	$\mu \mathrm{A}$
Low-level input current	ILI	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIL}=0 \mathrm{~V}$	-10	0	-	$\mu \mathrm{A}$
Switch-off leakage current	IL1	$\begin{aligned} & \mathrm{ENO}=0 \mathrm{~V}, \mathrm{EN} 1=0 \mathrm{~V} \\ & \text { or } \mathrm{ENO} 0=3 \mathrm{~V}, \mathrm{EN} 1=3 \mathrm{~V} \\ & \mathrm{~V} \text { SWIN } 1=15 \mathrm{~V}, \mathrm{Vcc}=3 \mathrm{~V} \end{aligned}$	-	0	10	$\mu \mathrm{A}$
	IL2	$\begin{aligned} & \mathrm{ENO}=0 \mathrm{~V}, \mathrm{EN} 1=0 \mathrm{~V} \\ & \text { or } \mathrm{ENO}=3 \mathrm{~V}, \mathrm{EN} 1=3 \mathrm{~V} \\ & \mathrm{Vswin} 2=6 \mathrm{~V}, \mathrm{VcC}=3 \mathrm{~V} \end{aligned}$	-	0	10	μA
Charge pump driving current ${ }^{2}$	ISWON1	$\begin{aligned} & \mathrm{ENO}=0 \mathrm{~V}, \mathrm{EN} 1=5 \mathrm{~V} \\ & \mathrm{Vcc}=5 \mathrm{~V}, \mathrm{VswiN1}=12 \mathrm{~V} \end{aligned}$	175	350	700	$\mu \mathrm{A}$
	ISWON2	$\begin{aligned} & \mathrm{ENO}=5 \mathrm{~V}, \mathrm{EN} 1=0 \mathrm{~V} \\ & \mathrm{VCC}=5 \mathrm{~V}, \mathrm{~V} \text { SWIN2 }=5 \mathrm{~V} \end{aligned}$	30	80	200	$\mu \mathrm{A}$
DLY output voltage	Voly	$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Vswin2}=12 \mathrm{~V}$	-	24	35	V
Supply current	Icc	$\begin{aligned} & \mathrm{ENO}=5 \mathrm{~V}, \mathrm{EN} 1=0 \mathrm{~V} \\ & \text { or } \mathrm{ENO}=5 \mathrm{~V}, \mathrm{EN} 1=0 \mathrm{~V} \\ & \mathrm{Vcc}=5 \mathrm{~V} \end{aligned}$	50	100	300	$\mu \mathrm{A}$

*1: Typical values assume $\mathrm{Vcc}=\mathrm{TYP}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$.
*2: The charge pump driving current flows from SWIN to GND when the switch is turned on.
2. $A C$ Characteristics
$\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Values			Unit
			Min.	Typical	Max.	
ON time	ton 1	Vswin $=12 \mathrm{~V}, \mathrm{R}=24 \Omega, \mathrm{Vcc}=5 \mathrm{~V}$	30	60	140	$\mu \mathrm{s}$
	ton2	$V_{\text {swin }}=12 \mathrm{~V}, \mathrm{R}=24 \Omega, \mathrm{Vcc}=3 \mathrm{~V}$	30	60	140	$\mu \mathrm{s}$
	ton3	Vswin2 $=5 \mathrm{~V}, \mathrm{R}=50 \Omega, \mathrm{Vcc}=5 \mathrm{~V}$	40	90	200	$\mu \mathrm{s}$
	tona	$\mathrm{Vswin2}=3 \mathrm{~V}, \mathrm{R}=30 \Omega, \mathrm{Vcc}=3 \mathrm{~V}$	200	400	1200	$\mu \mathrm{S}$
OFF time	toff 1	$V_{\text {swin }}=12 \mathrm{~V}, \mathrm{R}=24 \Omega, \mathrm{Vcc}=5 \mathrm{~V}$	10	30	60	$\mu \mathrm{S}$
	toff2	Vswin $1=12 \mathrm{~V}, \mathrm{R}=24 \Omega, \mathrm{VcC}=3 \mathrm{~V}$	10	40	70	$\mu \mathrm{s}$
	toff3	Vswin2 $=5 \mathrm{~V}, \mathrm{R}=50 \Omega, \mathrm{Vcc}=5 \mathrm{~V}$	1	7	20	$\mu \mathrm{s}$
	toff4	V Swin2 $=3 \mathrm{~V}, \mathrm{R}=30 \Omega, \mathrm{Vcc}=3 \mathrm{~V}$	1	7	20	$\mu \mathrm{s}$
ON/OFF time difference	thrs ${ }^{\text {d }}$	-	29	53	130	$\mu \mathrm{s}$
	thrss	-	29	53	130	$\mu \mathrm{s}$
	thrs3	-	30	60	190	$\mu \mathrm{s}$
	thYS4	-	190	360	12000	$\mu \mathrm{s}$

Note: ON/OFF time difference: $\mathrm{tHYS} 1=$ toNi - toff3

$$
\text { tHYS2 }=\text { tON2 }- \text { tofF } 4
$$

$$
\text { tHYS3 }=\text { ton3 }- \text { toff } 1
$$

$$
\text { thYS4 }=\text { ton4 }- \text { tOFF2 }
$$

AC SPECIFICATION TEST DIAGRAM

- Measurement Conditions

TIMING DIAGRAM

- ON-time and OFF-time Waveforms

(Continued)

Note: The ENO/EN1 rise and fall times ($10 \%, 90 \%$) are each 1 ms or less

- APPLICATION

TYPICAL CHARACTERISTIC CURVES

(Continued)

ORDERING INFORMATION

Part number	Package	Remarks
MB3807APF	16 pin Plastic SOP (FPT-16P-M04)	

- PACKAGE DIMENSION

16 pin Plastic SOP
(FPT-16P-M04)

© 1994 FUJITSU LIMITED F16002S-4C-4
Dimensions in mm (inches)

SECTION 9

Application Notes and Articles - At a Glance

Application Notes

Page Number	Title
$9-3$	Fujitsu Prescalers and Phase-Locked Loops for VHF and UHF Frequency Synthesis

Technical Articles

Page Number	Title
$9-35$	Resonator-Type Low-Loss Filters
$9-43$	L and S Band Low-Loss Filters using SAW Resonators

Prescalers and PLLs

Fujitsu Prescalers and Phase-Locked Loops for VHF and UHF Frequency Synthesis

A Tutorial with Selection Guides

Fujitsu Microelectronics, Inc.
Field Applications Engineering

Copyright© 1991 by Fujitsu Microelectronics, Inc.

Abstract

This Application Note includes a broad introduction to the relevant high frequency synthesis theory and its application areas, a description of prescaler and phase-locked loop (PLL) components, and guidelines for selecting and designing with Fujitsu's extensive selection of prescaler and PLL IC products.

All Rights Reserved.

Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Fujitsu Microelectronics, inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A.

Printed in the U.S.A.
Edition 1.1

Contents

Introduction 1
PLL Tuning Systems 1
What is a PLL? 3
Frequency Synthesis With PLLs and Prescalers 4
The Pulse Swallow Method 6
A description of the pulse swallow method is as follows: 6
Stand-alone PLLs and Integrated PLLs 7
Selecting the Right PLL IC 9
Selecting A PLL 10
Width of the counters 10
Selecting the N and A counters 10
PLL Counter Selection Guide 11
A Practical Example: Selecting the PLL IC for an FM Receiver 11
Example 11
Programming of the counters 12
Set-up and switching times of the counters and modulus control logic 12
Positive or negative edge triggering of counters 12
Phase detector 13
Charge pump 14
Charge pump waveforms and fr and fv 15
4-bit Microcontrollers with PLLs 15
What is a Prescaler? 16
Dual modulus prescalers 17
Single modulus prescalers 17
Microwave Prescalers 18
Stand-alone Prescaler Application 18
Selecting the Right Prescaler 19
Toggling speed 19
Termination resistor internal/external 20
Stability of Vout 21
Flexibility of the input voltage 21
ECL level 21
Flexibility of Vcc 21

Contents (Continued)

Modulus set-up time 21
Input impedance and reactance 21
Smith chart 21
Packaging 22
Signal propagation delay through the prescaler 24
Balanced inputs 24
Output duty cycles 24
Power dissipation 24
Conclusion 25
References 27
Books 27
Articles 27

Illustrations

Figures Page

1. A Typical Heterodyne FM Receiver Tuned to the 88.1 MHz Signal 2
2. A Typical Heterodyne (Audio) Sender 3
3. A Basic PLL Configuration 3
4. Frequency Synthesis with a Programmable Counter 5
5. Prescaler Accommodating for a Slow Program Counter 5
6. Pulse Swallow 6
7. System Blocks 7
8. Fujitsu's Integrated PLL ICs 7
9. Varactor Diode in a VCO or a VCXO 8
10. A Varactor Diode Acting as a Voltage-controlled Variable Capacitance 9
11. PLL Program Counter Triggered by Opposite Edge 13
12. PLL Program Counter Triggered by Same Edge 13
13. Active Low Pass Filter 14
14. External Charge Pump Example 15
15. Frequency Division 16
16. Selection Guide to the Fujitsu Bipolar Prescaler Family 18
17. A Stand-alone Application of a Prescaler: Clock Rate Reduction 18
18. Input Signal Amplitude Versus Input Frequency for MB509 Dual Modulus Prescaler 20
19. Smith Chart Constant Resistance 22
20. Smith Chart Constant Reactance 22
21. Input Impedance of Fujitsu's MB501L Dual Modulus Prescaler as a Function of Frequency Shown on a Smith Chart 23
Tables Page
22. Fujitsu's Low Power CMOS PLLs 9
23. Fujitsu's Super PLLs 10
24. Fujitsu Prescalers 25

Introduction

Phase-locked loops (PLLs) and prescalers are used for synthesizing and controlling frequencies in a multitude of high frequency systems. These systems range from radio and television broadcasting, cellular phones, computer local area networks (LANs), and measurement instrumentation to satellite and microwave systems.

Dedicated PLL integrated circuits (ICs) are manufactured in CMOS technology and typically operate in the $20-30 \mathrm{MHz}$ range (maximum). Prescalers manufactured in bipolar ECL or GaAs technologies are considered interface ICs that allow the relatively slower PLLs to accurately control and select frequencies well into the microwave range ($>1 \mathrm{GHz}$).

Fujitsu manufactures a broad range of high frequency telecommunication ICs that includes prescalers, PLLs, integrated PLLs, as well as microcontrollers with onboard PLL and prescaler circuits.

PLL. Tuning Systems

Tuning of telecommunication senders and receivers is, by far, the largest application area for today's PLLs and prescalers. High frequency PLLs have largely replaced older methods such as direct tuning an RC or LC oscillator to the desired local oscillator frequency.

At the expense of a quantized (instead of a continuous frequency) resolution, PLLs and the so-called digital tuning circuits into which they are incorporated provide a cheaper, faster, more compact and reliable solution to tuning circuitry. The fact that PLLs only allow selection of frequencies in discrete steps, rather than over a continuous range, is not a concern because the available frequencies (for airwaves, long distance telephone cables, satellites, microwave links, ISDN etc.) are heavily regulated and limited to preassigned channel frequencies.

The frequency position and spacing between channels depends on the physical carrier medium and the program material involved. For example, U.S. airwaves regulations of the Federal Communications Commission (FCC) specify that:

AM radio must be broadcast at $530,540,550$ to 1610 , or 1620 kHz
FM radio must be broadcast at $87.9,88.1$ to $107.7,107.9 \mathrm{MHz}$
TV (channels $2-69$) must be broadcast at $55.25,61.25,67.25,77.25,83.25$ to $795.25,801.25 \mathrm{MHz}$.
These frequencies represent the center frequencies of each channel. The spacing of 10 KHz between assigned AM channels, 200 kHz between assigned FM channels, and 6 MHz between assigned TV channels reflects the progressively higher bandwidths necessary for FM and TV.

Other regulated frequencies worth mentioning within the VHF ($30-300 \mathrm{MHz}$) and UHF ($300 \mathrm{MHz}-3$ GHz) bands include: $46 / 49 \mathrm{MHz}$ for cordless telephones, $800-900 \mathrm{MHz}$ for cellular phones (also known as land mobile radio services), $0.1-1.5 \mathrm{GHz}$ for cable TV and $>2 \mathrm{GHz}$ for emerging Digital TV standards and Integrated Services Digital Network (ISDN). Fujitsu prescalers and PLL ICs are appropriate for most of these applications.

Figure 1 shows a superheterodyne FM broadcast receiver and some of the involved spectra and frequencies. For an example, let us examine the steps involved in tuning to the FM station at 88.1 MHz .

Figure 1. A Typical Heterodyne FM Receiver Tuned to the 88.1 MHz Signal
The antenna is exposed to a multitude of transmission frequencies. In order to retrieve the desired signal, several stages of amplification and progressive selective filtration must be applied. In FM broadcasting each radio station is allowed to use up to 150 kHz around the assigned center frequency. Since the spacing
between the assigned channels is 200 kHz , this leaves a $50-\mathrm{kHz}$ wide isolation gap between the stations to avoid a spectral overlap. Thus, a $150-\mathrm{kHz}$ wide filter can be used in the final stage to isolate the desired station from all the others. Accurate tuning of such a narrow filter over the $20-\mathrm{MHz}$ wide FM frequency range is not an easy task. To achieve accurate tuning, the filter is kept at a constant frequency, the so-called Intermediate Frequency (IF), and the desired radio signal is shifted in frequency to fall exactly within the filter passband. 10.7 MHz is the broadly used value for IF in commercial FM tuners.

The antenna signal is converted to a lower frequency by mixing (or heterodyning) with an appropriately chosen local oscillator frequency $f_{l o c}$. A PLL is employed for synthesizing floc. In order to place the desired radio station (originally located at $f_{i n}$) exactly at the center of the IF bandpass filter, the PLL frequency $f_{\text {loc }}$ must be set so that $I F=f_{l o c}-f_{\text {in }}$. In other words, to tune to the 88.1 MHz signal, a $f_{l o c}$ of $88.1+10.7$ $\mathrm{MHz}=98.8 \mathrm{MHz}$ is necessary. Tuning to another signal is accomplished by selecting a different $f_{\text {loc }}$.

An appropriate FM demodulator working at the IF provides the final restoration of the original signal.
On the sender side (see Figure 2) the sequence is reversed: a modulated IF signal is mixed with the local frequency oscillator up to the appropriate channel-frequency and broadcast.

Figure 2. A Typical Heterodyne (Audio) Sender
Near-ideal PSK, PM, or FM demodulators can be implemented with PLLs as well as local oscillators.

What is a PLL?

A PLL is a control loop consisting of a phase detector (PD), low pass filter (LPF), voltage controlled oscillator (VCO), program counter(s), and, as necessary, single- or dual-modulus prescalers. (See Figure 3.)

Figure 3. A Basic PLL Configuration
The output of the PD is a voltage indicating the phase difference between its two inputs.

The LPF smooths the PD output and determines the dynamic performance of the loop. The dynamic performance includes general servo loop issues, such as the capture and lock ranges, the noise suppression bandwidth and the transient response.

When the loop is out of lock, the PD voltage changes the frequency of the VCO in a direction that reduces the phase difference between the input signal and the local oscillator signal. When the loop is locked, the signals at both inputs are in phase and have the same frequency.

Generally speaking, the output of the VCO is considered the desired PLL output. It should be mentioned, however, that in some instances (such as when a PLL is used as an FM de-modulator), the filtered output of the PD, rather than the output of the VCO, can be viewed as the system output.

The bandwidth of the low-pass loop filter is crucial to the dynamic- and noise-filtering performance of the loop. The two performance requirements are conflicting, since faster lock-up times require wider LP filters while better noise characteristics are achieved with narrower filters. Therefore, a reasonable compromise has to be met for each application.

Narrow filter bandwidths provide long-loop averaging times and are useful in applications where a noisy, intermittent, or varying reference source must be cleaned up.

For example, in digital LANs, a PLL is used to regenerate a local clock rate from frame synchronization bits, which appear intermittently on most asynchronous communications networks.

In a similar way, the "flywheel synchronizers" for vertical and horizontal scan in today's TV receivers, are operated using PLL circuits. In both cases the "slow" lowpass filter maintains a relatively constant VCO frequency between occurrences of synchronization patterns on the input.

In frequency synthesis applications, the reference frequency source will typically be a high quality, relatively noise-free, crystal oscillator. The loop filter can be extensively wide to provide for fast switching times without compromising noise performance.

A novel approach to PLL design is to electronically bypass the loop filter during the bulk of a frequency switching period and then to activate it back into the loop for final lock-in.

As previously mentioned, the loop filter is the single most important factor in determining the dynamic performance of the servo loop. A thorough theoretical treatment of servo loop analysis is beyond the scope of this publication. References 1 through 4 listed in the back of this note are recommended for more in-depth information.

Frequency Synthesis With PLLs and Prescalers

Figure 4 shows a simple frequency-synthesizing configuration employing a PLL and a single program counter.

Figure 4. Frequency Synthesis with a Programmable Counter
When the loop is in lock, the two input frequencies of the PD are equal, hence:

$$
f_{r e f}=f_{o} / N \Leftrightarrow f_{o}=N \cdot f_{r e f}
$$

A reprogramming of " N " by +1 or -1 will result in selection of a new output frequency with channel separation of $f_{\text {ref }}$.

The scheme of Figure 4, although attractive in its simplicity, is only applicable to output frequencies below 40 MHz , since higher VCO frequencies will exceed the program counter's toggling rate.

Figure 5 shows a widely used remedy to the high frequency problem: a $1 / \mathrm{M}$ prescaler is inserted in the feedback loop as a buffer between the VCO and the program counter. This lowers the program counter's input frequency to $f_{\text {out }} / M$ instead of $f_{\text {out }}$.

Figure 5. Prescaler Accommodating for a Slow Program Counter
Figure 5 also shows a reference frequency divider, $1 / R$, inserted in the reference frequency path to allow more flexibility in output frequency programming. Without the reference frequency divider, the presence of the prescaler would result in broadening the channel separation to $M \cdot f_{\text {ref }}$. A resolution of $f_{\text {ref }}$ is maintained by setting R equal to M.

In many cases, the scheme of Figure 5 is a satisfactory solution, with one drawback. Compared to Figure 4, the operational frequency of the phase detector is lowered by the prescaling factor M. A lowered PD frequency necessitates use of a narrower low-pass filter to suppress spurious output signals from the phase detector at the comparison frequency and its harmonics. Especially in very high frequency synthesizers, where the divide ratio of the prescaler becomes substantial, the loop's lock-in and switching speed characteristics will be severely degraded as a result of narrowing the lowpass filter.

The Pulse Swallow Method

The widely used "multi-modulus division", also known as pulse swallowing (see Figure 6), offers a solution to previously mentioned problems. This method employs two programmable counters and a dual modulus prescaler inside the loop. (For simplicity the reference frequency divider is not shown.)

Figure 6. Pulse Swallow

A description of the pulse swallow method is as follows:

N must be larger than $A(N>A)$. The dual modulus prescaler is initially set to divide by $M+1$. After " A " pulses out of the prescaler, the swallow counter is full and changes the prescaler modulus to M. After additional ($N-A$) pulses out of the prescaler, the program counter changes the prescaler modulus back to $M+1$, restarts the swallow counter and the cycle repeats.

In this way each cycle of the $1 / N$ counter is a result of:

$$
A \cdot(M+1)+(N-A) \cdot M=N \cdot M+A
$$

cycles of the $f_{\text {pit }}$.
In other words:

$$
f_{\text {out }}=(N \cdot M+A) \cdot f_{r e f}
$$

Since M is multiplied by N, but not A, the frequency will change by $f_{\text {ref }}$ when A is changed by 1 . In this way both the channel separation and the PD frequencies are maintained at $f_{\text {ref }}$ to provide for an uncompromised loop performance.

As previously mentioned, more complex variations of the multi-modulus theme include: $N Y N+Z$ prescalers (as in MB508 with $128 / 130,256 / 258$ and $512 / 514$) and quad-modulus schemes involving multiple swallow counters and special prescalers.

Stand-alone PLLs and Integrated PLLs

Figure 7 shows a general purpose high frequency synthesizer and the functional blocks. These blocks are: the PD, the reference counter, the A and the N counters and modulus control logic. The MB87014, manufactured entirely in CMOS, includes an onboard 180 MHz prescaler.

Figure 7. System Blocks
Advances in recent years in CMOS and BiCMOS (combined ECL and CMOS on one chip) have allowed integration of gigahertz prescalers on the same chip as the PLL. The architecture of these integrated PLL BiCMOS devices is illustrated in Figure 8.

Figure 8. Fujitsu's Integrated PLL ICs

Before discussing the blocks on the PLL chip, let us briefly mention the circuits not found on it. As stated earlier, the low-pass filter must yield a good compromise between accommodating the desired noise and switching characteristics on one side and removing spurious components from the phase detector output on the other side. A charge pump output (see Figure 14) from the PLL is provided in most cases, allowing direct connection of an external passive RC
filter. The charge pump output is simply a very high impedance output ($Z_{\text {out }} \geq 400 k \Omega$) well suited to drive high-Q resonant circuits found in the VCO. Optionally, an unbuffered PD output is often also made available for connection of custom external active filter configurations. Typical filter bandwidths for frequency synthesis are $1-10 \mathrm{kHz}$.

The prescaler and the VCO are the only two devices actually operating at the high output frequency $f_{\text {out }}$.
The VCO is frequently custom made for a specific application. Some popular oscillator types, in order of decreasing phase and frequency-stability, but increasing frequency coverage and linearity, are as follows:

- PLL IC with an on-chip inverter/buffer for an external reference frequency oscillator
- Voltage controlled crystal oscillator with varactor diode (also known as VCXO)
- LC oscillator with a varactor diode
- RC multivibrator

A list of crystal oscillator and VCXO manufacturers can be found in reference 11.

Figure 9. Varactor Diode in a VCO or a VCXO

Figure 10. A Varactor Diode Acting as a Voltage-controlled Variable Capacitance

Selecting the Right PLL IC

Table 1 lists Fujitsu's family of CMOS PLL ICs and Table 2 lists the BiCMOS integrated PLL ICs.
Table 1. Fujitsu's Low Power CMOS PLLs

Please refer to the CMOS PLL's section.

Table 2. Fujitsu's Super PLLs

Please refer to the Super PLL's section.

Selecting A PLL

The specifications to consider when selecting a PLL are as follows:

Width of the counters

The most significant feature of the various PLL devices (since operating speed is practically the same for all), is the width of their counters. In general, the width (in bits) of the reference counter determines the frequency resolution ($\Delta f_{\text {channel }}=f_{\text {ref }} / R$) obtainable from the system. The width of the programmable counter, ($1 / \mathrm{N}$) (see Figure 7) and the swallow counter ($1 / A$) determine the number of channels that can be covered. Fujitsu devices are available with up to 18 -bit wide combined program and swallow counters, and 16-bit wide reference counters.

Selecting the N and A counters

It is easily observed from the dual-modulus equation $\left[f_{\text {out }}=(N \cdot M+A) \cdot \Delta f_{\text {channel }}\right]$ that A need not assume values higher than the prescaler modulus M, since setting A equal to $M+X$ is equivalent to setting A equal to X and increasing N by 1 . Hence, all possible channels can be covered in a dual modulus configuration if the programmable swallow counter number (A) is allowed to assume all values from 0 to $M-1$, where M is the modulus of the $M / M+1$ prescaler:

$$
\bullet 0 \leq A \leq M-1
$$

Under all circumstances the condition $\mathrm{N} \geq \mathrm{A}$ must be satisfied:

$$
\text { - } N_{\min }=A_{\max }=M-1 .
$$

To select the right PLL counters for your application, supply the information that is requested in the following guide.

PLL Counter Selection Guide

1. Identify maximum and minimum output frequency desired, $f_{\text {out }}$, max and $f_{\text {out }}$, min.
2. Select a $M / M+1$ prescaler, so that $f_{\text {out, } \max } / M$ can be accommodated by the PLL ($<20 \mathrm{MHz}$ typically).
3. Identify desired channel spacing(s), $\Delta f_{\text {channel }}$ -
4. Let $A=0$, then $N_{\text {min }}=f_{\text {out }, \min } / \Delta f_{\text {channel }}$ and $N_{\max }=f_{\text {out }, \max } / \Delta f_{\text {channel }}$.
5. Verify that $N_{\min } \geq M-1$; if not, select a bigger prescaling modulus and go back to s $} 3$.
6. Select an N program counter with enough bit-width to accommodate the value of $N_{\max }$.
7. Select an A swallow counter with enough bit-width to accommodate the value $M-1$; set all higher bits to 0 .
8. Select the reference frequency divider (R) and a crystal reference frequency so that $f_{\text {ref }} / R=\Delta f_{\text {channel }}$.

A Practical Example: Selecting the PLL IC for an FM Receiver

We are going to select the appropriate PLL IC and prescaler for the local oscillator of the superheterodyne FM receiver shown earlier in Figure 1. In order to receive an FM station at $f_{\text {in }}$, the local oscillator must be set to $f_{l o c}=f_{\text {in }}+10.7 \mathrm{MHz}$. For receiving all FM stations, $f_{l o c}$ has to be selectable between 98.6 MHz and 118.6 MHz in 0.2 MHz steps; that is 101 positions in total.

To select a PLL for our example FM Receiver, we used the PLL Selection Guide, supplied the required information (see Example), and selected the appropriate PLL.

Example

1. $f_{\text {out, } \max }=118.6 \mathrm{MHz} f_{\text {out }}=98.6 \mathrm{MHz}$
2. Choose the MB503 prescaler ($M=16$)
$f_{\text {out }, \max } / M=7.4 \mathrm{MHz}<20 \mathrm{MHz}$
3. $\Delta f_{\text {channel }}=0.2 \mathrm{MHz}$
4. $\quad N_{\text {min }}=f_{\text {out }, \text { min }} / \Delta f_{\text {channel }}=493$
$N_{\max }=f_{\text {out }, \text { max }} / \Delta f_{\text {channel }}=593$
5. $N_{\text {max }}>16$, OK
6. $N_{\max }$ of 593 requires a 10 -bit wide N -counter
7. $A_{\max }$ of $\mathbf{1 5}$ requires the following:

- A 4-bit wide (swallow) counter
- Either an MB87001A or an MB87006A
- Choose MB87001A

8. Choose an fref of 3.2 MHz and set the R -counter to 16 to yield $\Delta f_{\text {channel }}=0.2 \mathrm{MHz}$

Programming of the counters
In order to preserve board space, all Fujitsu PLLs have serially programmable counters. The divisor values are fed through a serial pin to a shift register and latched-in with a control pulse. This allows 16-pin packaging to be used for all devices.

Set-up and switching times of the counters and modulus control logic

These delays are important and can become a limiting factor, especially when operating in pulse swallow mode. When the circuit has counted down so that the N program counter is full, the whole counter system is reset. The reset function must be completed within the next cycle of the $M / M+1$ prescaler or,

$$
t_{\text {reset }}<M / f_{\text {out }, \text { max }}
$$

Where $t_{\text {reset }}$ equals the sum of propagation delays through the A and N counters, (the required modulus set-up time of the prescaler and release time of the modulus control logic).

Positive or negative edge triggering of counters

As previously mentioned, when the modulus of a dual-modulus prescaler is changed from 64 to 65 , one half-cycle of the output (output low) will be extended to 33 input cycles. The other half-cycle will remain unchanged at 32 input cycles.

Therefore, modulus set-up time of the prescaler will be expressed relative to an edge of the affected halfcycle (in this case the negative-going edge). If the program counters and the modulus control logic are triggered on an opposite edge, valuable set-up time margin will be lost. (See Figures 11 and 12).

When necessary, insertion of a fast inverter between the prescaler and the program counter may provide some timing relief.

Figure 11. PLL Program Counter Triggered by Opposite Edge

Figure 12. PLL Program Counter Triggered by Same Edge

Phase detector

There are some differences between analog and digital phase detectors.
An analog phase detector works on a so-called integrating multiplier principle (Gilbert Cell multiplier is one example) and reflects not only timing differences, but also (if the signals are not purely sinusoidal or square) differences in the shape of the input signals. Analog phase detectors can offer superior signal-tonoise (S / N) ratios and can react almost instantaneously to minute changes in input waveforms. However, they are relatively complex and lend themselves poorly to high speed CMOS integration.

The digital phase-frequency detector is a simple and extremely fast sequential circuit (4 flip-flops). The circuit detects only positive-going threshold crossings and indicates which of the two inputs is ahead of the other one. It is not dependent on the shape of the signals. The digital phase-frequency detector is in all Fujitsu PLLs.

Charge pump

The single-ended output from the phase detector is called the internal charge pump. The three-state charge pump output goes high when $f_{\text {ref }}>f_{D c o}$, low when $f_{r e f}<f_{v c o}$ and high-impedance state when $f_{\text {ref }}=f_{\text {rco }}$. This output can be connected directly to an active or passive external filter. The MB87014 provides an inverted charge pump output as well.

The charge pump output is derived from two flip-flops out of the phase detector, $\phi \mathrm{r}$ and $\phi \mathrm{v}$. In the case of MB87006A, MB87014 and the MB87086 ${ }^{1}$ when the loop is unlocked, the appropriate output terminal, ϕr or $\phi \mathrm{v}$, pulls low to indicate which of the two inputs $f_{\text {ref }}$ or f_{vco} is at a higher frequency.

The signals ϕr and ϕv would normally be considered an intermediate result; however, they are also made accessible on two output terminals allowing construction of an external charge pump.

A charge pump combines the two digital outputs ($\phi \mathrm{r}$ and $\phi \mathrm{v}$) into one output. (See Figure 13.) The external configuration shown here also directly implements the lowpass filter. Note that due to different polarity assignments, this configuration is not appropriate for MB87001A, 87073, 87076, and the integrated PLLs. Also note that often a large resistor is inserted following the op-amp output to increase the output impedance.

Figure 13. Active Low Pass Filter
A fast external charge pump implementation appropriate for the MB87001A, 87073, 87076 PLLs, ICs, and an integrated PLL is shown in Figure 14. The ϕr and ϕv outputs on these devices are of the open-drain type. (The rest of the PLL family provides push-pull outputs for ϕr and ϕv.)

[^47]| | ϕr | $\phi \mathbf{v}$ | |
| :--- | :--- | :--- | :--- |
| $f_{\mathbf{r}}>f_{\mathbf{v}}$ | $:$ | Low | Low |
| $f_{r}=f_{\mathbf{v}}$ | $:$ | Low | High-Impedance |
| $f_{r}<f_{\mathbf{v}}$ | $:$ | High | High-Impedance |

The ϕ-outputs of these devices are open drain.
An external charge pump allows use of faster transistors or op-amps (higher slew rates) and may offer improvement in lock-in performance.

Figure 14. External Charge Pump Example

Charge pump waveforms and ϕr and ϕv

As previously mentioned, in the case of MB87006A, 87014 and 87086 (see footnote ${ }^{1}$ on the preceeding page), when the loop is unlocked, the appropriate output terminal, ϕ or $\phi \mathrm{v}$, pulls low to indicate which of the two inputs $f_{r e f}$ or $f_{v c o}$ is at a higher frequency. This active terminal, ϕr or ϕv, will not stay at a steady low but will occasionally toggle to a high state. Basically, its output provides a pulse-width modulated representation of the frequency difference between the inputs.

When the loop is in lock, ϕr and $\phi \mathrm{v}$ will both be in the "high" state. However, synchronously with the phase comparison frequency, a short spurious negative pulse will occur at both outputs.
The same pulse anomalies will also appear on the output from the internal charge pump. One of the tasks of the loop lowpass filter is to remove all spurious signals (pulses) from the PD output. The loop filter band width must, therefore, always be below the phase comparison frequency. Conversely the phase comparison frequency should be kept as high as possible.

4-bit Microcontrollers with PLLs

Fujitsu also offers a family of 4-bit microcontrollers, the MB88560 family with an on-chip PLL.The MB88560 family consists of two 4-bit CMOS microcomputers: the MB88561 with a liquid crystal display (LCD) controller/driver and the MB88562 with a vacuum fluorescent display (VFD) driver. Both devices contain 21 I/O lines, an 8-bit timer/counter, an A/D converter with 6-bit resolution, display drivers, and a PLL with prescalers suitable for all broadcast and shortwave frequencies. Each device has independent AM (up to 32 MHz) and FM (up to 120 MHz) inputs. Up to 4 K by 8-bit ROM space and 256 K by 4 -bit static RAM space is available on-chip.

Both chips allow extremely compact designs of car radios, personal stereos, personal communication equipment, etc.

A two-part MB88560 design guide and a demo board are both available from Fujitsu.

What is a Prescaler?

A prescaler is an integrated circuit that divides the frequency of an incoming signal by an integer M (see Figure15). The divisor, M, is called the Modulus.
Internally, a prescaler is a specialized ripple counter, which counts incoming pulses and performs one output cycle for every M received input cycle. If M is an even number the output is toggled following every $M / 2$ input pulse. For M odd, one of the toggles is delayed an extra input cycle (e.g., 6 input pulses for output high and 5 input pulses for output low for $M=11$).

Figure15. Frequency Division
There are distinct differences between prescalers and general purpose divide-by- N counters. We will refer to the latter as program counters and substitute the letter N when referring to them for the remainder of this text.

Prescalers are comparatively simple devices. They contain a minimal amount of logic (less than approximately 100 gates) and offer a few, well chosen modulus numbers. This streamlined architecture allows implementation in the fastest bipolar and GaAs technologies without excessive power consumption or expense. For example, the MB510 dual modulus prescaler from Fujitsu offers a choice of four divide ratios ($128,144,256$ and 272). Manufactured in $0.8 \mu \mathrm{~m}$ bipolar technology, this 8 -pin device is ECL compatible, accepts input frequencies up to 2.7 GHz , and dissipates only 0.05 watts of power.

Program counters, on the other hand, contain a fair amount of programming and decoding logic in order to allow a wide selection of N (any value of N between 0 and $2 q^{-1}$ is made selectable using a q-bit wide program input). The relatively high internal gate count generally limits program counters to TTL or CMOS technology with toggling speeds of less than 40 MHz .

The important point to be made is that there is no need to make program counters faster, or prescalers more programmable. The distinction between the two types of devices is intentional. Once the frequency is brought down sufficiently by a prescaler, sonhisticated frequency manipulation is performed with CMOS program counters and a PLL. Prescalers are generally classified as either single or dual modulus.

Dual modulus prescalers

Dual modulus prescalers allow a very rapid transition from a divide-by- M mode to a divide-by- $M+1$ mode (e.g., from 64 to 65); hence, they are often also called $M / M+1$ prescalers ($64 / 65$). In conjunction with PLLs and the pulse swallow method (discussed on page 14), dual modulus prescalers allow finer frequency resolution than single modulus prescalers.

Single modulus prescalers

Single modulus prescalers are fixed, or semi-fixed dividers that only divide by a fixed number M. A semifixed single modulus prescaler allows a choice of more than one modulus (e.g., 32,64 and 128), but is not necessarily optimized for fast switching between moduluses, and the modulus choices are not spaced one apart.

Less common varieties of prescalers include:

- $M / M+Z$ (where $Z \neq 1$) dual modulus prescalers
- Four modulus prescalers
- Decimal single modulus prescalers

Figure 16 shows Fujitsu's bipolar prescaler ICs.

Please refer to the Quick Section Guide In the front of this databook.

Figure 16. Selection Guide to the Fujitsu Bipolar Prescaler Family
Microwave Prescalers
Microwave prescalers manufactured in GaAs technology are available from specialized vendors, including Fujitsu. The microwave prescalers have frequencies above 3 GHz (microwave range) and toggle speeds of up to 10 GHz . The cost of GaAs parts, however, is considered high when compared to ECL bipolar parts.

Stand-alone Prescaler Application

Prescalers can be used as stand-alone components without a PLL.
A stand-alone application does not involve feedback of signals around the prescaler. The most common stand-alone application for a prescaler is in digital clock distribution networks, where a prescaler simply reduces an incoming clock rate and distributes it to slower analog or digital circuitry. (See Figure17.)

Figure 17. A Stand-alone Application of a Prescaler: Clock Rate Reduction

Prescalers offer several advantages as stand-alone elements. For example, consider an application that requires a high quality $1-\mathrm{MHz}$ reference signal. For this application, a straightforward, high quality $1-\mathrm{MHz}$ crystal oscillator might seem the most obvious choice; however, the highest quality will be achieved with a higher frequency reference signal (10 MHz) followed by a prescaler ($1 / 10$). This application is preferred because of the following reasons:

- Crystal resonators with higher oscillation frequency tend to have smaller dimensions, shorter oscillation stabilization times and narrower characteristic variations.
- A prescaler will clean up the incoming high frequency signal in two ways:
- It will totally remove variations in the amplitude noise (amplitude envelope of the incoming signal), since its output amplitude is independent of the input.
- It will reduce the phase noise (jitter of zero-crossings) of the incoming signal by approximately a factor of M since its output only switches synchronously with one out of every $M / 2$ input pulses.

The above reasons apply up to a certain point, or as long as the prescaling factor is moderate. The frequency of the crystal should not be increased to the point where RF shielding or board layout has to be changed. Increasingly small dimensions or the price of the crystal can also become a problem.

Numerous digital LSI ICs take advantage of the beneficial properties of prescaling; e.g., they have onboard prescalers that allow a direct connection of high frequency crystal clocks to slower internal logic. For example, Fujitsu's line of 4-bit microprocessors offers a built-in, divide-by-2 prescaler as a recommended option. This option allows the user to drive the $2-\mathrm{MHz}$ internal logic with a $4-\mathrm{MHz}$ crystal rather than a $2-\mathrm{MHz}$ crystal. With this option, the $4-\mathrm{MHz}$ crystal clock will turn on and be fully operational (as well as recover from any external disturbances) in half the time required for a $2-\mathrm{MHz}$ crystal.

Selecting the Right Prescaler

To select the appropriate prescaler, first determine the necessary modulus choices and input toggling speeds.

Toggling speed

One should be aware that a $1-\mathrm{GHz}$ ($f_{\text {in,max }}$ typically) prescaler does not abruptly stop functioning when fed frequencies above 1 GHz . The $1-\mathrm{GHz}$ prescaler will typically require higher input levels to trigger, and it may deliver a smaller output swing, but typically it will function up to a $20-50$ percent higher frequency. See Figure 18.

These characteristics are important, since frequency switching in a PLL is normally accompanied by a fair amount of overshoot. A VCO intended to stabilize at 1 GHz may reach, for example, 1.4 GHz before settling down. It is important that the loop (including the prescaler) remains functional during that period. Charts like Figure 18 can be helpful in verifying such cases.

Figure 18. Input Signal Amplitude Versus Input Frequency for MB509 Dual Modulus Prescaler
Prescalers with higher frequency ratings will typically be associated with higher power dissipation and higher switching noise. For example, measurements of gallium arsenide dividers suggest noise performances 20 to 30 dB worse than for ECL dividers (reference 10).

Also note that the input coupling capacitance of a prescaler will limit the lowest useful frequency.

Termination resistor internal/external

All Fujitsu prescalers, except MB501LV, MB504LV, MB501SL, MB509, and MB510 have an open emitter output. Typically a $2.2 \mathrm{k} \Omega$ resistor to ground for a load capacitance of 12 pF is recommended. By choosing a smaller or a larger external resistor, the prescaler's output can be tailored to drive higher or lower loads, respectively.

The prescalers with on-chip termination can drive output load capacitances of up to 8 pF undistorted. A shunt resistance can be added for driving larger loads.

In some situations it is desirable to "overdesign" the termination resistor. The limited current driving ability will tend to smooth the output signal, thus reducing its harmonic content and switching noise induced into supply lines.

Stability of $V_{\text {out }}$

One of the purposes of prescaling is to eliminate amplitude modulation from the output of the VCO. Therefore, it is absolutely mandatory that the output high and low are stable and guaranteed over a wide range of $\mathrm{V}_{\mathrm{in}}, \mathrm{V}_{\mathrm{cc}}$ and temperature.

Flexibility of the input voltage

A prescaler should be able to toggle properly with relatively widely varying input voltage levels (anywhere between 0.15 to 2 Vp -p for the Fujitsu MB 504), while maintaining a constant output level.

ECL level

For most Fujitsu prescalers the maximum allowable input voltage swing is $2 \mathrm{Vp}-\mathrm{p}$. This means that a typical TTL voltage swing of 3 V will overload the prescaler, whereas ECL voltage levels can be accommodated without problems. The outputs of the prescaler are ECL compatible, too.

The statement "The outputs are 1.6 V peak on ECL level" found on the data sheet for MB501, 503, 504 etc. means that Fujitsu prescalers do not require negative supply voltages. In this sense they are not "true" ECL devices.

Flexibility of $V_{c c}$

A wide operational range of Vcc is essential (2.7 V to $4.5 \mathrm{~V}, 3.0 \mathrm{~V}$ typical for MB501LV), if a prescaler is to be used in a battery-powered system. Most Fujitsu prescalers, except the low voltage (LV-suffix) types which operate from a 3 V supply, operate from a single 5 V supply. The integrated PLLs, MB1501 and MB1504, however, operate from a 3 V supply (a higher supply voltage between V_{cc} and 8 V is required for the charge pump circuit).

Modulus set-up time

The time from application of appropriate voltage to the modulus select pin to appearance of the correctly prescaled waveform at the output is $10-50 \mathrm{~ns}$. As previously discussed in the PLL section, fast modulus set-up times are necessary for correct implementation of the pulse swallow method.

Input impedance and reactance

Excessive reactance may affect performance of the VCO and require buffer circuitry between it and the prescaler. For very high frequencies ($>500 \mathrm{MHz}$), the input impedance should be given on a Smith chart. The nominal input impedance of Fujitsu's high frequency prescalers is 50Ω.

Smith chart

Signals on a printed circuit board travel at approximately $2 / 3$ the speed of light. This means that at frequencies above 500 MHz , the signal wavelengths become less than 0.4 m and comparable in size to the board itself. At this point, circuit board traces start acting as transmission lines; i.e., the RMS voltage level will vary along the trace unless impedances of the termination and the trace are matched.

A Smith chart is a graphical impedance representation widely used in transmission theory. It is a tool allowing an easy assessment of impedance mismatch.

The chart consists of two sets of circles: the constant resistance circles (see Figure 19) and the constant reactance circles (see Figure 20). The values of these circles are normalized to the characteristic impedance of the system by dividing the actual value of resistance or reactance by the characteristic impedance, for example, in a 50Ω system, a resistance of 100 W is normalized to a value of 2.0 .

A further series of circles may be plotted on the chart; these are the circles of constant voltage standing wave ratio (VSWR) and represent the degree of mismatch in the system. The VSWR is the ratio of the device impedance to the characteristic impedance. It is always expressed as a ratio greater than 1 (a 25Ω device in a 50Ω system gives rise to a $2: 1$ VSWR). See Figure 21.

Packaging

All Fujitsu prescalers are available in 8-pin DIP or surface mountable 8-pin plastic flat packages. Space saving and better stray capacitance performance are obtained with surface mounting.

CMOS PLLs and BiCMOS integrated PLLs are available in 16-pin DIP and Flatpacks.

Figure 19. Smith Chart Constant Resistance

Figure 20. Smith Chart Constant Reactance

A standard commercially available torm of Smith chart graph paper. Copyrighted 1949 by Philip Smith. Anatog instruments New Proviaence.
N. and reprinted with their permission.

Note: The nominal $Z_{\text {in }}$ is 50Ω.
Figure 21. Input Impedance of Fujitsu's MB501L Dual Modulus Prescaler as a Function of Frequency Shown on a Smith Chart

Signal propagation delay through the prescaler

Although a signal delay through the prescaler will affect the lock-in times of the loop, the prescaler is, in this respect, of little importance relative to the loop lowpass filter. Extensive phase shifts between the input and the output of the prescaler may, however, affect the PLL stability.

High capacitive loading will typically be the main cause for delays. This situation can be remedied by decreasing the output termination resistor value, thereby improving drive performance.

Self-oscillation problems can be caused by poor grounding, lack of decoupling, or cross-talk due to board layout. Fujitsu prescalers are guaranteed to be non-oscillatory under most conditions.

Balanced inputs

The ability to drive balanced inputs can be beneficial at high frequencies. All Fujitsu prescalers offer complementary inputs. The prescaler outputs, however, are single ended as they are intended to drive singleended PLL inputs.

Output duty cycles

The output duty cycle should be 50 percent when the modulus is an even number (such as three input clock periods high and three input clock periods low for division with modulus 6). Division by an odd number should cause minimal deviation from 50 percent duty cycle (such as four input clocks high and three input clocks low for division with modulus 7). Rise and fall times are, of course, load dependent and deviations from idealized waveforms will occur. Also, clearly specify which of the output half-cycles (output low or output high) is the one that is extended in the $\mathrm{M}+1$ mode of a dual modulus prescaler.

Power dissipation

Thanks to a proprietary, "third generation," $0.8 \mu \mathrm{~m}$ emitter self-align and polysilicon electrode and resistor (ESPER) manufacturing technology, Fujitsu can offer bipolar prescalers with the most beneficial frequency rating/power dissipation ratio available. See Table 3.

Please refer to the Prescalers section in the front of this databook.

Conclusion

For further technical assistance and product information, including updates, please contact your nearest Fujitsu Microclectronics Sales Office. You will find a listing of the offices at the back of this paper.

References

Books

1. Berlin, Howard M. Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis: Howard W. Sams \& Co. 1978.
2. Blanchard, Alain. Phase-Locked Loops: Application to Coherent Receiver Design. New York: Wiley-Interscience, 1976.
3. Egan, William F. Frequency Synthesis by Phase Lock. New York: Wiley-Interscience, 1981.
4. Gardner, Floyd M. Phaselock Techniques. New York: John Wiley and Sons, 1979.
5. Kinley, Harold. The PLL Synthesizer Cookbook. Blue Ridge Summit: TAB Books, 1980.
6. Kroupa, V.F. Frequency Synthesis. New York: Wiley, 1973.

7 Lindsay, W. C. and M. K. Simon, eds. Phase-Locked Loops and Their Application. New York: IEEE Press, 1978.
8. Manassewitch, Vadim. Frequency Synthesizers. Theory and Design. New York: Wiley, 1976.
9. Plessey Semiconductors. Radio Telecoms IC Handbook. Irvine: Plessy Semiconductors, 1987.
10. Rohde, Ulrich L. Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs: PrenticeHall, 1983.

Articles
11. Hillstrom, Tim L. "Design method yields low-noise, wide-range crystal oscillators." EDN (March 1988).
12. Ormond, Tom. "Crystal Oscillators." EDN (October 17, 1985).

RESONATOR-TYPE LOW-LOSS FILTERS

Y. Satoh, O. Ikata, T. Matsuda, T. Nishihara, and T. Miyashita

Fujitsu Laboratories Ltd.
10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan

1. Introduction

The application of $800-900 \mathrm{MHz}$ SAW filters as RF filters has contributed to the recent miniaturization trend in portable telephone terminals ${ }^{(1),(2)}$. SAW filters merit attention for their small size and sharp transition-band characteristics, and will find increased application for further reductions in size and power consumption and the higher sensitivity of portable telephone terminals. For example, an antenna duplexer implemented with SAW filters would greatly contribute the size reduction of telephone terminals. The conventional SAW filter's potential to implement these improvements will require work to decrease its insertion loss, obviate an external matching circuit, and increase its power handling ability.
These problems are difficult to solve with conventional transversal filters having the interdigitated interdigital transducer (IIDT) structure. From 800 to 900 MHz , the experimental insertion loss limit for IIDT filters is 3 to 4 dB with an external matching circuit (1).(2). The input or output impedance of IIDT filters is usually capacitive because of the large number of finger pairs and the high relativepermittivity of substrates such as LiTaO_{3}. Hence, conventional IIDT filters need inductive external matching elements. To overcome these limitations, we investigated the resonator-type SAW filter having a ladder structure similar to the ceramic or crystal filter. This filter can have a low insertion loss and does not require an external matching circiut, but the connection of many resonators increases tuning difficulty and size. Fortunately, these problems are resolvable with high-frequency SAW resonators because their frequency of resonance is controllable in the photolithographic fabrication process, and filter size remains small due to the short period of the IDT at high frequencies.

2. Principles

In the basic section of a ladder resonator filter (Figure 1), the impedance of the series-arm resonator (Zs) and the admittance of the parallel-arm resonator (Y_{p}) are given in the following equations, assuming that they include no resistance:

$$
\begin{align*}
& Z_{s}=j X_{s} \tag{1}\\
& Y_{p}=j B_{p} \tag{2}
\end{align*}
$$

The variations of X_{s} and B_{p} as a function of frequency are graphed in Figure 2. Here, the antiresonance angular frequency of the parallel-arm resonator (wap) nearly equals the resonance angular frequency of the series-arm resonator (ω rs).

The image transfer constant (γ) of the basic filter section (Figure 1) is expressed with X_{s} and $B p$ in the following equation:

$$
\tanh h(\gamma)=\sqrt{B_{p} \circ X_{s} /\left(B_{p} \circ X_{s}-1\right)}
$$

According to the theory of imageparameter filters, the basic section in Figure 1 shows a passband characteristic when equation 3 has an imaginary number. It does, however, show a stopband characteristic when it has a real number. Therefore, condition $0<B_{p} \cdot X_{s}<1$ gives the passband, and condition $\mathrm{B}_{\mathrm{p}} \cdot \mathrm{X}_{\mathrm{s}}>1$ or $\mathrm{B}_{\mathrm{p}} \cdot \mathrm{X}_{\mathrm{s}}<0$ gives the stopband (Figure 2). The vicinity of center frequency $\omega_{0}(=\omega r s=\omega$ ap $)$ results in a passband and both sides out of a passband result in stopbands. Since X_{s} and B_{ρ} nearly equal to zero in the vicinity of the center frequency, the insertion loss is supposed theoretically to be zero and the input/output impedance equal to the line impedance.

3. Simulation

We developed a simulation tool for the resonator-type filter based on the Smith`s equivalent circuit model ${ }^{(3)}$. We modified its 3×3 admittance-matrix expression to a 4×4 chain-matrix expression as previously demonstrated ${ }^{(4)}$. The equivalent circuit used in our simulation (Figure 3) includes the electrode resistance $R^{(5)}$. We assumed an electrode line and space ratio of 1:1. In this simulation, we added the following electrode effects to the previous simulation ${ }^{(2)}$:
(1) Aperture length of IDT: W
(2) Thickness of IDT: h

The aperture length of IDT W affects static capacitance Co and resistance R of one finger as given from the following equations:

$$
\begin{align*}
& C_{0}=W \varepsilon_{0} \sqrt{\varepsilon_{11} \varepsilon_{33}} / 2 \tag{4}\\
& R=4 W p_{0} /\left(p_{0} h\right) \tag{5}
\end{align*}
$$

Here,
$\rho_{0}=9 \mu \Omega \cdot \mathrm{~cm} \quad(\mathrm{Al}-2 \% \mathrm{Cu}$, at 1 GHz$)$ $\varepsilon_{11} \varepsilon_{33}$: Dielectric tensor components of the substrate
p: IDT period

Fig. 1 Basic section of a ladder filter

Fig. 2 Bandpass filter using two kinds of SAW resonators

Fig. 3 Equivalent circuit of IDT developed by Smith

The actual value of C_{0} is about 2×10^{-2} pF per a finger of $100-\mu \mathrm{m}$ length on LiTaO_{3} crystal. The effect of W on wave diffraction was not considered in our simulation, given that W is sufficiently large for diffraction.
The thickness of the electrode h affects the bulk wave radiation and the centerfrequency shift i.e. mass loading effect as well as R in equation 5 .

Because bulk wave radiation occurs mainly under the electrode, an acoustic transmission line supposedly has lossy paths under there. The series-arm impedance (Za) and the parallel-arm impedance (Zb) of an acoustic transmission line under the electrode are replaced (Figure 3) by ${ }^{(6)}$

$$
\begin{align*}
& Z_{a}=Z_{m} \tan h\left(\theta_{m} / 2\right) \tag{6}\\
& Z_{b}=Z_{m} \operatorname{cosec} h\left(\theta_{m}\right) \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
& \theta_{m}=\alpha_{m} I_{m}+j \beta_{m} I_{m} \\
& I_{m}: \text { Width of the finger electrode } \\
& \alpha_{m}: \text { Attenuation constant / finger } \\
& \beta_{m}: \tau_{v} \pi f p / 2 V_{0} \\
& \tau_{v}=V_{0} / V_{m}
\end{aligned}
$$

V_{0} : Acoustic velocity of the free surface
Vm : Acoustic velocity of the metal surface Zm : Acoustic impedance under the metal The value of $\alpha \mathrm{m}$ was assumed proportional only to h, and its actual value was determined by fitting to the experimental value. The frequency dependence of $\alpha \mathrm{m}$ is neglected in this study.
The filter's center-frequency shift is due to the shift of the synchronous frequency of IDT (fs) given by the equation ${ }^{(3)}$

$$
\begin{align*}
f_{s} & =1 / 2\left(\mathrm{~lm} / V_{m}+I_{g} / V_{0}\right)^{-1} \\
& =2\left(V_{0} / p\right) /\left(1+\tau_{v}\right) \tag{8}
\end{align*}
$$

where
I_{g} : Length of the gap between electrodes From equation 8, note that is varies towards the lower frequency with increasing τ_{v}. Since the relationship of τ_{v} to h is not clear, we tried experimentally to determine it for a $36^{\circ} y-x \quad \mathrm{LiTaO}_{3}$ crystal. We first measured the acoustic velocity under the metal film, obtaining τ_{v} as a function of the normalized thickness h / λ (dashed line, Figure 4). However, the linear variation of τ_{v} did not agree with

Fig. 4 Dependence of τ_{v} on h / λ

Fig. 5 Filter structure consisting of three sections
(a)
S_{21}

(b) S_{11}

(c) S_{22}

Fig. 6 Comparison of the simulation (solid lines) and experiment (broken lines)
the actual center-frequency shift. We then measured the resonant frequency of one port resonator for various thicknesses and derived τ_{v} under IDT from it. Results are plotted by the solid line in Figure 4. The relationship of τ_{v} to the thickness under the IDT is obtained experimentally as

$$
\begin{equation*}
\tau_{v}=1+\mathrm{A}+\mathrm{B}(\mathrm{~h} / \lambda)+\mathrm{C}(\mathrm{~h} / \lambda)^{2} \tag{9}
\end{equation*}
$$

Here, $A=0.022, B=0.413$, and $C=7.66$. We used this relationship for the simulations.
In the circuit comparing experimental and simulation results (Figure 5), each basic section is connected alternately to match image-impedances. Bonding wire inductance is about 1.5 nH . The structure had 150 finger pairs, $60 \mu \mathrm{~m}$ aperture, and $4.12-\mu \mathrm{m}$ periods in the series-arm resonators, and 40 finger pairs, $160-\mu \mathrm{m}$ aperture, and $4.30-\mu \mathrm{m}$ periods in the parallel-arm resonators. Each SAW resonator had short-terminated reflectors. Results of comparison are shown in Figure 6 when h / λ is $0.073, \alpha_{m}$ is $0.1 X(h / \lambda)$ neper/finger, and k^{2} is 7.5%. We fitted k^{2} to the band width in passband and α_{m} to the insertion loss in the actual device. As shown, we obtained good agreement for three S-parameter sets.

4. Filter design

We used a simulation tool developed to investigate design rules for the resonator-type filter. The following parameters were important for controlling filter characteristics:
(1) Static capacitance ratio ($\mathrm{Cop}_{\mathrm{op}} / \mathrm{Cos}_{\text {os }}$) of the parallel-arm resonator($\mathrm{Cop}_{\mathrm{op}}$) to the series-arm resonator(Cos)
(2) Static capacitance value for each individual resonator($\mathrm{C}_{\mathrm{op}}, \mathrm{Cos}_{\text {os }}$)
In designing filters, the static capacitance is determined by the product of finger pair number and aperture length W.

First, the static capacitance ratio (Cop/Cos) controls the insertion loss and stop band rejection --a tradeoff (Figure 7). This tendency is the same in a ceramic filter. If filter specifications call for a low insertion loss, we should select the lower value of Cop/Cos; for a high stop-band rejection, we would choose the higher $\mathrm{Cop}_{\mathrm{op}} / \mathrm{C}_{\text {os }}$.

We next found that the filter's input/output impedance can be controlled by changing the values of Cop and Cos, while keeping the value of Cop/Cos constant. Figures 8 to 10 show the variation of S parameters (S_{21} and S_{11}) when $C_{o p}$ and $C_{o s}$ are increased and $\mathrm{C}_{\mathrm{op}} / \mathrm{Cos}_{\mathrm{os}}=0.75$. Small dotted circles in the S_{11} charts indicate the borderline of $\Gamma=0.33$ (SWR=2.0). When the S_{11} values of the passband are within these circles, the filter is in the matching condition.

Fig. 7 S21 dependence on static capacitance ratio $\mathrm{Cop}_{\mathrm{op}} / \mathrm{Cos}$

Fig. 8 S-parameter characteristics under $\mathrm{C}_{\mathrm{op}}=1.6 \mathrm{pF}$ and $\mathrm{Cos}_{\mathrm{os}}=2.1 \mathrm{pF}$
condition, while Figure 9 shows the matched condition. Therefore, Cop and Cos can be combined to optimize impedance matching (the shaded area in Figure 11). Figure11(a) is for a 933MHz filter and (b) is a $1.5-\mathrm{GHz}$ filter. Optimum values of $C_{o p}$ and Cos exist for almost all practical Coo/Cos values to the matching condition.
We considered the matching condition mechanism using a simple model. Since the resonator-type filter is simply expressed by the LC equivalent circuit (see Figure 1), each resonator's impedance, Z_{s} and Z_{p}, is given by the following equations, using the symbols from Figure 1,

$$
\begin{align*}
& Z_{s}=\left(\omega^{2}-\omega_{\mathrm{rs}}^{2}\right) / j \omega C_{o s}\left(\omega^{2}-\omega_{a s}{ }^{2}\right) \tag{10}\\
& Z_{p}=\left(\omega^{2}-\omega_{\mathrm{r}}{ }^{2}\right) / j \omega C_{o p}\left(\omega^{2}-\omega_{\mathrm{ap}}^{2}\right) \tag{11}
\end{align*}
$$

where

$$
\omega_{\mathrm{rs}}=1 / \sqrt{L_{\mathrm{s}} C_{1 s}}
$$

Resonant angular frequency of the series-arm resonator

$$
\omega_{\mathrm{as}}=\omega_{\mathrm{rs}}\left(1+C_{1 s / 2 C o s}\right)
$$

Antiresonant angular frequency
of the series-arm resonator $\omega_{\mathrm{pp}}=1 / \sqrt{L_{1 \mathrm{p}} C_{1 p}}$:

Resonant angular frequency
of the parallel-arm resonator
$\omega_{\mathrm{ap}}=\omega_{\mathrm{rp}}\left(1+\mathrm{C}_{1 \mathrm{p}} / 2 \mathrm{C}_{\mathrm{op}}\right):$
Antiresonant angular frequency
of the parallel-arm resonator
For the matching condition of the constant K-type filter, the following relationship must be satisfied:

$$
\begin{equation*}
Z_{s} \times Z_{p}=R^{2} \tag{12}
\end{equation*}
$$

As shown in Figure 2, the following relationships is assumed,

$$
\begin{align*}
& \omega_{\mathrm{ap}} \approx \omega_{\mathrm{rs}} \approx \omega_{0}, \quad \omega_{0}-\omega_{\mathrm{rp}} \approx \omega_{\mathrm{as}}-\omega_{0} \\
& 2 \omega_{0} \geqslant \Delta \omega, \Delta \omega \equiv\left(\omega_{\mathrm{as}}-\omega_{\mathrm{rp}}\right) / 2 \tag{13}
\end{align*}
$$

where ω_{0} is the center frequency of the filter. From equations 12 and 13, the relationship becomes:

$$
\begin{equation*}
R^{2} \approx 1 /\left(\omega_{0}^{2} C_{o s} C_{o p}\right) \tag{14}
\end{equation*}
$$

The relationship of equation 14 is plotted by the solid line in Figures 11a, and b. Note that the matching areas shaded agree well with the equation 14 , except for high Cop/Cos values.

Fig. 9 S-parameter characteristics under $\mathrm{C}_{\mathrm{op}}=2.7 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{os}}=3.6 \mathrm{pF}$
(a) S 21
(b) S_{11}

Fig. 10 S -parameter characteristics under $\mathrm{C}_{\mathrm{op}}=3.7 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{os}}=5.0 \mathrm{pF}$
(a) $f_{0}=933 \mathrm{MHz}$

(b) $\mathrm{f}_{\mathrm{o}}=1.5 \mathrm{GHz}$

Fig. 11 Optimum relations between Cop and Cos for impedance matching

5. Low-loss RF filter development

We designed and fabricated RF filters for portable telephone terminals using the rule we obtained on static capacitance. We used an Al-Cu sputtered film for the electrodes and a $36^{\circ} y$-x LiTaO3 crystal for the piezoelectric substrate. As an example, Figures 12 and 13 show the S_{21} and SWR characteristic of a $900-\mathrm{MHz}$ filter designed under capacitance conditions of $C_{o p=3} .0 \mathrm{pF}$, Cos=3.2 pF, and $C_{o p} / C_{o s}=0.94$. For comparison, the same characteristics of a conventional IIDT filter are also shown. Note that the insertion loss of the resonator-type filter is improved by 2 dB and that its SWR is less than 1.9 , indicating no need for an external matching circuit. Figures 14 and 15 show the S_{21} and SWR characteristic of a $1.5-\mathrm{GHz}$ band filter fabricated using an i-line stepper. The capacitance values are $C_{o p}=2.26 \mathrm{pF}$, $\mathrm{C}_{\text {os }}=1.6 \mathrm{pF}$, and $\mathrm{C}_{\mathrm{op}} / \mathrm{C}_{\text {os }}=1.4$, giving us low-loss characteristics ($\mathrm{IL}<2.5 \mathrm{~dB}$) and the matched condition (SWR<1.5). These filters are mounted in a $3.8 \times 3.8 \times 1.5 \mathrm{~mm}$ ceramic SMT package (Figure 16).

6. Conclusion

We investigated a bandpass filter using SAW resonators with a ladder structure. To calculate optimum design conditions, we developed a detailed simulation tool

Fig. $12 \mathrm{~S}_{21}$ characteristics of $900-\mathrm{MHz}$ filters for portable telephones

Fig. $14 \mathrm{~S}_{21}$ characteristics of $1.5-\mathrm{GHz}$ filters for portable telephones

Fig. 13 SWR characteristics of $900-\mathrm{MHz}$ filters for portable telephones

Fig. 15 SWR characteristics of $1.5-\mathrm{GHz}$ filters for portable telephones
which considered the aperture and electrode thickness. We fabricated $900-\mathrm{MHz}$ and $1.5-\mathrm{GHz}$ bandpass filters as examples, and confirmed that the insertion loss decreased compared to that for conventional IIDT filter, and that the input or output impedance was nearly 50Ω. These features will be useful in the development of advanced portable telephone terminals.

Fig. $163.8 \times 3.8 \times 1.5 \mathrm{~mm}$ SMD package

Acknowledgements
The authors would like to thank K. Komenou for his encouragement, N. Wakatsuki for his helpful suggestions, Y. Fujiwara and H. Omori for their supply of SMD packages and many technical supports.

References
(1) M. Hikita, H. Kojima, T. Tabuchi, and Y. Kinoshita, " $800-\mathrm{MHz}$ high-performance SAW filter using new resonant configuration", IEEE Trans. on MTT, vol. MTT33, No. 6, p. 510, 1985.
(2) O. Ikata, Y. Satoh, T. Miyashita, T. Matsuda, and Y. Fujiwara, "Development of $800-\mathrm{MHz}$ band SAW filters using weighting for the number of finger pairs", 1990 Ultrasonics Symposium, Proceedings, p. 83, 1990.
(3) W. R. Smith, H. M. Gerard, and W. R. Jones, "Analysis and design of dispersive interdigital surface-wave transducers," IEEE Trans. on MTT, vol. MTT-20, No. 7, p. 458, 1972.
(4) H. Sato, K. Yamanouchi, and K. Shibayama, "Studies on the triple transit echo of acoustic surface wave filter", Paper of Technical Group, JIEICE, US-7325, pp. 1-14, 1973 (in Japanese).
(5) N. Nakayama, N. Wakatsuki, and M. Nakamura, "Effects of stray capacitance and electrode resistance on the acoustic surface wave transducers", Paper of Technical Group, JIEICE, US-73-48, pp. 1-10, 1973(in Japanese).
(6) T. Kojima and H. Hoshi, "Investigation of SAW resonators utilizing energy storage effect", Paper of Technical Group, JIEICE, US-86-21, pp. 61-68, 1986(in Japanese).

L and S Band Low-Loss Filters
 using SAW Resonators

T. Matsuda, H. Uchishiba, O. Ikata, T. Nishihara and Y. Satoh
FUJITSU LABORATORIES LTD. Akashi, Japan

Abstract

This paper describes L and S band low-loss filters using one-port SAW resonators in a ladder circuit structure. Foúr kinds of filters were developed. Three types have a wide frequency band, with fractional bandwidth of about 4%. A $36^{\circ} y-x \mathrm{LiTaO}_{3}$ substrate was used for these. The last type of tilter has a narrow frequency band, with 0.03% of fractional bandwidth, and used an ST-cut quartz substrate. To design these ladder type SAW filters, several important factors were considered, the static capacitance of IDT, the period of IDT and film thickness. For fabrication, i-line stepper and reactive ion etching was used to delineate fine IDT patterns with line and gap width of 0.4 to $0.7 \mu \mathrm{~m}$. Minimum insention losses of 2 dB were obtained for the three wide band filters. The insertion loss of the narrow band filter was 6 dB . The input and output impedance of these filters were 50Ω. The filters were mounted in $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$ or $3.8 \mathrm{~mm} \times$ $3.8 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ SMT packages.

1. Introduction

The worldwide spread of the mobile communication systems has increased the demand of SAW filters and this market will extend in the future. In order to accept a large number of subscribers, the frequency band of mobile communication systems has become higher. The recent increase in data communications has given funther impetus to this market. For example, the personal digital cellular (PDC) in Japan uses the frequency range around 1.5 GHz . personal
communication network (PCN) in Europe around 1.8 GHz , and wireless LAN system around 2.4 GHz . The filters used in these systems are required to have low-loss, wide band and sharp band edge characteristics with small package size. The ladder type SAW filters reported previously ${ }^{1)}{ }^{2 /}$ are suitable for these requirement. Figure 1 shows the filter frequency versus its fractional bandwidth, and areas which have been realized by using ladder type SAW filters. The 800 MHz filters for use in advanced mobile phone systems (AMPS) were reported in the previous paperl). In this paper, these same techniques are applied to L and S band filters with a wide range of fractional bandwidths.

Figure 1 Fitter frequency versus its fractional bandwidth. The shaded areas closed by solid line are described in the present paper.

2. Filter specifications

Japanese PDC, European PCN and wireless LAN were selected as targets for the wide band filter application. These three filters used LiTaO_{3} as a substrate. For the narrow band pass filter application, the timing filter of HDTV was developed by using a quartz substrate. Table 1 shows these filter specifications. As shown in Table 1, each specification of four systems has a different design difficulty. PCN in Europe requires the widest fractional bandwidth of 4.3%. Wireless LAN in Europe requires high stopband rejection with wide bandwidth. HDTV requires the narrowest fractional bandwidth of 0.03%.

3. The design of wide band-pass filters

Figure 2 shows the outline of a one-port SAW resonator and the these basic ladder circuit structure used. As suggested in the equivalent circuit of Figure 2, the one-port SAW resonator has dual resonance frequencies. In the ladder type filter design, the anti-resonance frequency of the parallel arm resonator nearly coincides with the resonance frequency of the series arm resonator. A number of basic ladder circuits are connected so as to minimize the impedance mismatching as shown in Figure 3. The character L in Figure 3 indicates the inductance of the bonding wire used in the connection to the SMT ceramic package. The resonance frequency of each resonator is designed by the period of IDT. In the design of the ladder type filter, the important factors that effect the filter's characteristics are described in the following example of the PCN filter design.

Table 1 SAW filter specifications

Item	PDC in dapan	PCN in Europe	Wiroless LAN in Europe	Timing finer for HDTV
Center trequency	Tx:1441 GHz Ax .1 .489 GHz	$\begin{aligned} & \mathrm{Tx}: 1.7475 \mathrm{GHz} \\ & \mathrm{Rx}: 18425 \mathrm{GHz} \end{aligned}$	2.45 GHz	1.485 GHz
Bancuntin	24 MHz	75 MHz	100 MHz	400 kHz
insertion loss al bandwith	3 d8	4 dB	5 d8	788
Slopband artenuation	30 d8	20 de	40 d8	32 dB

(1) Resonators' capacitance product (CsCp)

When the series arm resonators' static capacitance and the parallel arm resonators' static capacitance are symbolized as Cs and Cp respectively, the product of Cp and Cs can control the input and output impedance of the ladder type filters ${ }^{1), 2)}$ as the equation.

$$
\begin{equation*}
C p C s=1 /\left(\omega_{0}^{2} R^{2}\right) \tag{1}
\end{equation*}
$$

Here, ω_{0} is the center angular frequency of the filter and R is the line impedance which is usually 50Ω. This relationship is plotted in Figure 4 for the center frequency (f_{0}) of $1.5 \mathrm{GHz}, 1.8 \mathrm{GHz}, 2.4 \mathrm{GHz}$. The higher f_{0}, the smaller the value of CpCs becomes. The static capacitance value is determined by the product of aperture length and finger pair number of IDT. Therefore, the small static capacitance results in the small size of IDT, that is, the small chip size. The ladder type SAW filter is suitable for high frequency filter in view of the package size.

Figure 2 The outline of a one-port SAW resonator and a basic ladder circuit structure used.

Figure 3 A filter structure connecting three basic sections. The character L indicates the inductance of bonding wire.

Figure 4 Optimum relations between Cp and Cs for impedance matching.

Figure 5 Dependence of bandwidth, the stopband attenuation and minimum insertion loss on $\mathrm{Cp} / \mathrm{Cs}$ in the frequency range around 1.8 GHz .

Figure 6 Dependence of band width and SWR on $\Delta \lambda$ in the frequency range around 1.8 GHz .
(2) Resonators' capacitance ratio ($\mathrm{C} \rho / \mathrm{Cs}$) and the number of basic ladder circuits
The filters' insertion loss and stopband attenuation are affected by the ratio $\mathrm{Cp} / \mathrm{Cs}$. Figure 5 shows dependencies of the bandwidth, the stopband attenuation and the minimum insertion loss on $\mathrm{Cp} / \mathrm{Cs}$ in the frequency range around 1.8 GHz . As shown in Figure 5, if $\mathrm{Cp} / \mathrm{Cs}$ becomes larger, bandwidth is narrower. The minimum insertion loss didn't change, but the nominal insertion loss averaged over the passband increased. It is necessary for the PCN specification that the stopband attenuation is larger than 20 dB and the bandwidth is wider than 82 MHz over a temperature range of -30 to $70^{\circ} \mathrm{C}$. It is noticed in Figure 5 that both the stopband attenuation and bandwidth specifications can't be satisfied together. A new development to solve this problem is described in the later section.
The number of basic ladder circuits show the same characteristics as $\mathrm{Cp} / \mathrm{Cs}$. By increasing the number, the stopband attenuation is improved, the insertion loss is increased and the bandwidth becomes narrower.
(3) The difference of period, $\Delta \lambda$

The anti-resonance frequency of the parallel arm resonator and the resonance frequency of the series arm resonator are controlled by $\Delta \lambda$ which is the difference between IDT periods of the parallel arm resonator and the series arm resonator. The anti-resonance frequency of the parallel arm resonator doesn't need to be equal to the resonance frequency of the series arm resonator. The passband can be extended by increasing $\Delta \lambda$. The standing wave ratio (SWR), however, becomes larger by increasing $\Delta \lambda$. Figure 6 shows dependence of SWR and bandwidth on $\Delta \lambda$ in the frequency range around 1.8 GHz . When the limit of SWR is less than 2.0, the bandwidth is limited to 70 MHz which is insufficient for the PCN specification.
(4) Film thickness, h

The number of basic ladder circuits, $\Delta \lambda$ and $\mathrm{Cp} / \mathrm{Cs}$ are related to each other as described above and the wide band filter for PCN can't be realized by
adjusting these factors. However, electromechanical coupling factor (K^{2}) of the piezoelectric substrate was noticed to relate the fractional bandwidth. If k^{2} is larger, the bandwidth is wider. The electromechanical coupling factor is given in the following equation.

$$
\begin{equation*}
k^{2}=2\left(V_{0}-V_{m}\right) / V_{0} \tag{2}
\end{equation*}
$$

Here,
V_{0} : free surface velocity
V_{m} : metal surface velocity

As apparent in this equation, if V_{m} become slower, k^{2} become larger. The thicker film thickness of IDT is available to make V_{m} slower, but the nominal insertion loss may be increased by making the electrodes thicker. Figure 7 shows the experimental dependence of bandwidth, insertion, loss and SWR on the film thickness. The values of $\mathrm{Cp} / \mathrm{Cs}$ and $\Delta \lambda$ were constant in Figure 7, but the passband was extended and SWR became less than 2.0 by increasing the film thickness. Contrary to the anticipated result, the insertion loss didn't deteriorate for these film thicknesses. The reason for this characteristic may be that the insertion loss is recovered by increasing \mathbf{k}^{2} through making the electrodes thicker. For further increasing the film thickness, the insertion loss will deteriorate due to bulk wave radiation. For PCN specification, a sutficient bandwidth (85 MHz) and an SWR (<2.0) are obtained at $0.2 \mu \mathrm{~m}$ film thickness.

Figure 7 Dependence of bandwidth, insertion loss and SWR on the film thickness in the frequency range around 1.8 GHz .
4. The design of a narrow band-pass filter

This filter used an ST-cut quartz as substrate and SH-type SAW ${ }^{3}$. The dielectric constant of quartz is much smaller than that of LiTaO_{3}. Therefore, the size of IDT needs more space compared with LiTaO 3 substrate in order to design the impedance matching. The value of $\Delta \lambda$ is very small, about 0.01 $\mu \mathrm{m}$. Some attention is therefore needed to control $\Delta \lambda$. To precisely control $\Delta \lambda$, the reticle is made with very high accuracy.

5. Fabrication and evaluation of filters

The electrode film consisted of Al-Cu alloy deposited by the DC sputter on piezoelectric substrates. The IDT photoresist patterns were exposed on an i-line stepper. Figure 8 shows IDT photoresist patterns for 2.4 GHz . The line and gap width of IDT patterns were $0.4 \mu \mathrm{~m}$. The reactive ion etching was used to avoid surface damage of a substrate. Figure 9 shows the S_{21} and SWR characteristics of 1.5 GHz filter for PDC. This filter had 2 dB minimum insertion loss, 38 MHz bandwidth at 3 dB and about 30 dB stopband attenuation. The SWR was less than 2.0 in the passband. Figure 10 shows the same characteristics of 1.8 GHz filter for European PCN. The maximum fractional bandwidth in this study was obtained. Filter characteristics were 85 MHz bandwidth at 4 dB and about 20 dB stopband attenuation. The SWR was less than 2.0. Figure 11 shows the wireless LAN filter. The bandwidth was 110 MHz at 5 dB and the stopband attenuation was about 45 dB which was a very high value. The SWR was less than 2.5. Figure 12 shows a timing filter for HDTV. The bandwidth of 400 kHz at 6.5 dB , which was the minimum fractional bandwidth of 0.03% in this study, about 30 dB the stopband attenuation and the SWR of less than 2.0 were obtained. The HDTV filter and PDC filter were mounted in a $3.8 \mathrm{~mm} \times 3.8 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ ceramic SMT packages. The other filters were mounted in 3 $\mathrm{mm} \times 3 \mathrm{~mm} \times 1 \mathrm{~mm}$ ceramic SMT packages.

1 Wixl

1. $1 \mu \mathrm{~m}$

Figure 8 IDT photoresist patterns for 2.4 GHz .

Figure $9 \mathrm{~S}_{21}$ and SWR characteristics of 1.5 GHz filter for Japanese PDC.

Figure $10 \mathrm{~S}_{21}$ and SWR characteristics of 1.8 GHz filter for European PCN.

Figure $11 \mathrm{~S}_{21}$ and SWR characteristics of 2.4 GHz filter for wireless LAN.

(a) S_{21}

(b) SWR

Figure $12 \mathrm{~S}_{21}$ and SWR characteristics of 1.5 GHz filter for HDTV.

6. Conclusion

L and S band low-loss filters were developed using the ladder type filter made of one port SAW resonators. The filters for PDC in Japan, PCN in Europe and wireless LAN in Europe were successfully developed as wideband applications, and HDTV filter was developed as a narrow band application. These filters' characteristic impedances were all 50Ω. The properties of these filters will be useful in the future development of the wireless communications systems discussed.

Acknowledgement

The author would like to thank Y. Fujiwara for his supply of SMT package and H. Omori for his helpful suggestions.

Reference

(1) O. Ikata, T. Miyashita, T. Matsuda, T. Nishihara and Y. Satoh, "Development of Low-Loss BandPass Filters Using SAW Resonators for Portable Telephones": IEEE, Ultrasonic symposium, pp. 111115, (1992)
(2)Y. Satoh, O. Ikata, T. Matsuda, "A Band-Pass Filter Using One-Port SAW Resonators", FUJITSU Scientific \& Technical Journal, Vol. 29, No. 4, pp.367-376 (December, 1993)
(3)T. Nishikawa, A. Tani, C. Takeuchi, "SH-Type Surface Acoustic Waves on Rotated Y-cut Quartz", FUJITSU Scientific \& Technical Journal, Vol. 17 No. 4. pp.99-113 (December, 1981)

SECTION 10

Quality and Reliability

10

Fujitsu Quality Program

To ensure the best quality in our semiconductor products, Fujitsu conducts a complete program of inspections at every phase of processing.
The wide range of inspections in our manufacturing programs ensures that every product has the quality and reliability for which it was designed Statistical analysis evaluates these results objectively.

Incoming Inspections

Whenever a Fujitsu plant purchases materials or components from another manufacturer, the Quality Control Group conducts an incoming inspection. The group visits the supplier's factories to convey the importance Fujitsu places on the quality of everything we buy. Moreover Fujitsu will work together with the suppliers to maintain and improve the quality of their products.
Every year, we award the best manufacturers to encourage all our suppliers to maintain and improve the quality of their products
Control Flow for the Purchase of Materials and Components

Quality Control Flow Chart

In-Process Manufacturing Group Inspections

Fuijitsu's Manufacturing Groups implement these inspections to set control items and standards for each manufacturing process. Prompt feedback maintains and improves the quality consciousness throughout the groups.

Inspections occur regularly for each lot and/or each production line.

In-Process QC Group Inspections

The Quality Control Groups inspect at the end of each major manufacturing.
Using the sampling standards, the groups confirm the level of quality before the products proceed to the next phase.

Statistical Process Control (SPC)

Fujitsu's SPC program uses statistical analysis. Engineering Groups set the major quality parameters and their spec value for the manufacturing processes to assure the proper quality. The Manufacturing Groups determine the control values for the equipment and conditions for the production process.

Once mass production begins, the Manufacturing Groups implement control plans to check and improve the product capability to each process.

Some important parameters are film thickness, monitor characteristics, bonding strength, electrical characteristics and yield (see figure at right). Computer software checks each parameter automatically.

16M DRAM Oxide Thick

SECTION 11

Ordering Information

11

ORDERING INFORMATION FOR STANDARD PRODUCTS

Part Number	Description	Package Type	Options	Order Number
PRESCALERS				
MB501L	1.1 GHz Prescaler	DIP-08P-M01		MB501LP
		FPT-08P-M01		MB501LPF
		FPT-08P-M01	T\&R	MB501LPF-ER
MB501LV	1.1 GHz Prescaler	DIP-08P-M01		MB501LVP
		FPT-08P-M01		MB501LVPF
MB501SL	1.1 GHz Prescaler	DIP-08P-M01		MB501SLP
		FPT-08P-M01		MB501SLPF
		FPT-08P-M01	T\&R	MB501SLPF-ER
MB504	520 MHz Prescaler	DIP-08P-M01		MB504P
		FPT-08P-M01		MB504PF
		FPT-08P-M01	T\&R	MB504PF-ER
MB504L	520 MHz Prescaler	DIP-08P-M01		MB504LP
		FPT-08P-M01		MB504LPF
		FPT-08P-M01	T\&R	MB504LPF-ER
MB504LV	520 MHz Prescaler	DIP-08P-M01		MB504LVP
		FPT-08P-M01		MB504LVPF
MB505-16	1.6 GHz Prescaler	DIP-08P-M01		MB505-16P
		FPT-08P-M01		MB505-16PF
MB506	2.4 GHz Prescaler	DIP-08P-M01		MB506P
		FPT-08P-M01		MB506PF
		FPT-08P-M01	T\&R	MB506PF-ER
M8507	1.6 GHz Prescaler	DIP-08P-M01		MB507P
		FPT-08P-M01		MB507PF
		FPT-08P-M01	T\&R	MB507PF-ER
MB508	2.3 GHz Prescaler	DIP-08P-M01		MB508P
		FPT-08P-M01		MB508PF
		FPT-08P-M01	T\&R	MB508PF-ER
MB509	1.1 GHz Prescaler	DIP-08P-M01		MB509P
		FPT-08P-M01		MB509PF
MB510	2.7 GHz Prescaler	DIP-08P-M01		MB510P
		FPT-08P-M01		MB510PF
		FPT-08P-M01	T\&R	MB507PF-ER
MB511	2.7 GHz Prescaler	DIP-08P-M01		MB511P
		FPT-08P-M01		MB511PF
M8551	1.0 GHz Prescaler	FPT-08P-M01		MB551PF
	\& VCO			

ORDERING INFORMATION FOR STANDARD PRODUCTS

ORDERING INFORMATION FOR STANDARD PRODUCTS

Part Number	Description	Package Type	Options	Order Number
MB1504	520 MHz SPLL	DIP-16P-M04		MB1504P
		FPT-16P-M06		MB1504PF
		FPT-16P-M06	T\&R	MB1504PF-ER
MB1504H	520 MHz SPLL	FPT-16P-M06		MB1504HPF
MB1504L	520 MHz SPLL	FPT-16P-M06		MB1504LPF
MB15E05	2.0 GHz SPLL	FPT-16P-M05		MB15E05PFV1
MB1505	600 MHz SPLL	FPT-16P-M02		MB1505PF
MB15E06	2.5 GHz SPLL	FPT-16P-M05		MB15E06PFV1
MB1506	2.0 GHz SPLL	FPT-20P-M03		MB1506PFV
MB1507	2.0 GHz SPLL	FPT-16P-M06		MB1507PF
MB1508	2.5 GHz SPLL	FPT-20P-M01		MB1508PF
MB1509	400 MHz D-SPLL	FPT-20P-M01		MB1509PF
MB15U10	1.1 GHz D-SPLL	FPT-20P-M03		MB15U10PFV
MB1510	1.1 GHz D-SPLL	FPT-20P-M01		MB1510PF
		FPT-20P-M01	T\&R	MB151OPF-ER
MB15B1]	1.1/.4 GHz D-SPLL	FPT-20P-M03		MBI5BIIPFV
MB1511	1.1 GHz SPLL	FPT-20P-M03		MB1511PFV
		FPT-20P-M03	T\&R	MB1511PFV-ER
MB1512	1.1 GHz SPLL	FPT-20P-M03		MB1512PFV
		FPT-20P-M03	T\&R	MB1512PFV-ER
MB15B13	$1.1 \mathrm{GHz} \mathrm{D-SPLL}$	FPT-20P-M03		MB15B13PFV
MB1513	1.1 GHz SPLL	FPT-20P-M03		MB1513PFV
		FPT-20P-M03	T\&R	MB1513PFV-ER
MB1514	400 MHz D-SPLL	FPT-20P-M01		MB1514PF
MB1515	2.5 GHz SPLL	FPT-20P-M03		MB1515PFV
MB15A16	1.1 GHz SPLL	FPT-16P-M05		MB15A16PFVI
		FPT-16P-M05	T\&R	MB15A16PFVI-ER
MB1516A	1.1 GHz SPLL	FPT-16P-M05		MB1516APFVI
		FPT-16P-M05	T\&R	MB1516APFVI-ER
MB1517A	1.1 GHz SPLL	FPT-16P-M05		MB1517APFV1
		FPT-16P-M05	T\&R	MB1517APFVI-ER
MB1518	2.5 GHz SPLL	FPT-16P-M06		MB1518PF
		FPT-16P-M06	T\&R	MB1518PF-ER
MB15A19	$600 \mathrm{MHz} \mathrm{D-SPLL}$	FPT-20P-M01		MB15A19PF
MB1519	600 MHZ D-SPLL	FPT-20P-M01		MB1519PF
MB15SO2	300 MHz MASKED	SOP-8P-M03		MB15SO2PFV

ORDERING INFORMATION FOR STANDARD PRODUCTS

Part Number	Description	Package Type	Options	Order Number
SUPER ANALOG				
MB531	1.1 GHz MIXER	FPT-8P-M01		MB531PF
M8539	1.6 GHz LNA	FPT-8P-M03		MB539PFV
MB54501	$1.1 \mathrm{GHz} \mathrm{LNA/MIX}$	FP-16P-M05		MB54501PFV
MB54502	1.1 GHz D-LNA	FP-16P-M05		MB54502PFV
MB54503	1.1 GHz AMP	FP-16P-M05		MB54503PFV
MB54609	$1.0 \mathrm{GHz} /$ Q MOD	FPT-20P-M03		MB54609PFV
MB54619	$2.0 \mathrm{GHz} /$ Q MOD	FPT-20P-M03		MB54619PFV
SAW FILTERS				
FAR-F5CB-836M50-G201	AMPS SAW	$5 \times 5 \mathrm{MM}$	3K T\&R	F5CB-836M50G201R
			IK T\&R	F5CB-836M50G201T
FAR-F5CB-881M50-G201	AMPS SAW	$5 \times 5 \mathrm{MM}$	3K T\&R	F5CB-881M50G201R
			IKT\&R	F5CB-881M50G201T
FAR-F5CB-881M50-G211	AMPS SAW	$5 \times 5 \mathrm{MM}$	3K T\&R	F5CB-881M50G211R
FAR-F5CB-888M50-G201	ETACS SAW	$5 \times 5 \mathrm{MM}$	IK T\&R	F5CB-888M50G201T
FAR-F5CB-933M50-G202	ETACS SAW	$5 \times 5 \mathrm{MM}$	IK T\&R	F5CB-933M50G202T
FAR-F5CB-911M50-G201	NTACS SAW	$5 \times 5 \mathrm{MM}$	3K T\&R	F5CB-911M50G201R
			IKT\&R	F5CB-911M50G201T
FAR-F5CB-902M50-G201	NMT SAW	$5 \times 5 \mathrm{MM}$	IK T\&R	F5CB-902M50G201T
FAR-F5CB-947M50-G201	NMT SAW	$5 \times 5 \mathrm{MM}$	IK T\&R	F5CB-947M50G201T
FAR-F5CB-947M50-G211	NMT SAW	$5 \times 5 \mathrm{MM}$	1 KT TR	F5C3-947M50G201T
FAR-F5CC-836M50-L2AA	AMPS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-836M50L2AAT
FAR-F5CC-836M50-L2AZ	AMPS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-836M50-L2AZT
FAR-F5CC-881M50-L2AB	AMPS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-881M50L2ABT
FAR-F5CC-881M50-L2AY	AMPS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-881M50-L2AYT
FAR-F5CC-933M50-L2BA	NTT SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-933M50-L2BAT
FAR-F5CC-878M50-L2BB	NTI SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-878M50-L2BBT
FAR-F5CC-888M50-L2CA	ETACS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-888M50-L2CAT
FAR-F5CC-933M50-L2CB	ETACS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-933M50-L2CBT
FAR-F5CC-911M50-L2DA	NTACS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-911M50-L2DAT
FAR-F5CC-856M50-L2DB	NTACS SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-856M50-L2DBT
FAR-F5CC-902M50-L2EA	NMT SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-902M50-L2EAT
FAR-F5CC-902M50-L2EZ	NMT SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-902M50L2EZT
FAR-F5CC-902M50-L2EX	NMT SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-902M50-L2EXT
FAR-F5CC-947M50-L2EY	NMT SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-947M50-L2EYT
FAR-F5CC-897M50-L2KA	EGSM SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-897M50L2KAT
FAR-F5CC-942M50-L2KB	EGSM SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-942M50-L2KBT
FAR-F5CC-942M50-L2KY	EGSM SAW	3.8×3.8 MM	IK T\&R	F5CC-942M50-L2KYT

ORDERING INFORMATION FOR STANDARD PRODUCTS

Part Number	Description	Package Type	Options	Order Number
FAR-F5CC-950M00-L2FA	PDC SAW	$3.8 \times 3.8 \mathrm{MM}$	1K T\&R	F5CC-950M00L2FAT
FAR-F5CC-820M00-L2FB	PDC SAW	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-820M00L2FBT
FAR-F5CC-915M00-L2JA	ISM SAW (US)	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-915M00-L2JAT
FAR-F5CC-915M00-L2JZ	ISM SAW (US)	$3.8 \times 3.8 \mathrm{MM}$	1K T\&R	F5CC-915M00-L2JZI
FAR-F5CC-935M00-L2LA	2-WAY PAGER	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F5CC-935M00L2LAT
FAR-F6CC-IG4410-L2ZA	PDC 1.5 GHz	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F6CC-1G4410-L2ZAT
FAR-F6CC-1G4890-L2ZB	PDC 1.5 GHz	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F6CC-1G4890-L2ZBT
FAR-F6CC-1G6190-L2ZN	PDC 1.5 GHz	$3.8 \times 3.8 \mathrm{MM}$	IK T\&R	F6CC-1G6190-L2ZBT
FAR-F6CE-1G7475-L2YA	DCS 1800	$3 \times 3 \mathrm{MM}$	IK T\&R	F6CE-1G7475-L2YAT
FAR-F6CE-1G8425-L2YB	DCS 1800	$3 \times 3 \mathrm{MM}$	IK T\&R	F6CE-1G8425-L2YBT
FAR-F6CE-1G8800-L2XA	PCS SAW (US)	$3 \times 3 \mathrm{MM}$	IK T\&R	F6CE-1G8800-L2XAT
FAR-F6CE-1G9600-L2XB	PCS SAW (US)	$3 \times 3 \mathrm{MM}$	IK T\&R	F6CE-1G9600-L2XBT
FAR-F6CE-2G4500-L2WA	LAN 2.4 GHz	$3 \times 3 \mathrm{MM}$	IK T\&R	F6CE-2G4500-L2WAT
POWER MANAGEMENT				
MB3802	PWR MGMT SW	FPT-16P-M04		MB3802PF
MB3807A	PWR MGMT SW	FPT-16P-M04		MB3807APF

SECTION 12

Sales Information

12

Introduction to Fujitsu

Fujitsu Limited (Japan)

Fujitsu Limited was founded as a telecommunications equipment manufacturer in 1935, and today is not only one of Japan's leading telecommunications companies, but also one of the world's largest computer manufacturers.

This leadership has resulted, at least in part, form the superb quality of the company's semiconductors and electronic components. Manufactured by the company's Electronics Devices Operations Group, these vital electronic devices also contribute to the high reliability and performance of products made by many other manufacturers around the world.

Today, Fujitsu is one of the world's top manufacturers of semiconductors and electronic components. In Japan, Fujitsu's R\&D laboratories for semiconductor and electronic components are situated in Kawasaki and Mie, and manufacturing works are located in Iwate, Aizu, Wakamatsu and Suzaka. Fujitsu also has six affiliated manufacturing works in the country. Overseas facilities in the U.S., Europe, and Asia also help to meed the growing global demand for Fujitsu semiconductors and electronic components.

Fujitsu enforces strict quality control at all stages of production, from materials selection through manufacturing to final testing. As a result, Fujitsu's electronic devices are known for their extremely high reliability and excellent cost-to-performance ratio.

Fujitsu manufactures a full line of semiconductors and electronic components to meet the diverse applications of am wide variety of customers. Backed by Fujitsu's extensive R\&D commitment equal to over 10 percent of annual sales, Fujitsu's electronic devices stay on the cutting edge of electronics technology.

Fujitsu Limited

Japan
FUJITSU LIMITED
Application \& Sales
Engineering Dept.
1015, Kamikodanake
Nakahara-ku,
Kawasaki 211, Japan
Tel: (044)754-3283
FAX: (044)754-3343

North and South America

FUJITSU
MICROELECTRONICS, INC.
3545 North First Street
San Jose, CA 95134-1804, USA.
Tel: 1-800-642-7616

Europe

FUJITSU
MIKROELEKTRONIK GmbH
Am Siebenstein 6-10,
63303 Dreieich-Buchschlag,
Germany
Tel: (06103) 690-0
Telex: 411963
FAX: (06103) 690-122

Asia

FUJITSU
MICROELECTRONICS ASIA
PTE LIMITED
\#06-04 to \#05-07
Plaza By The Park
No. 51 Bras Basah Road
Singapore 0718
Tel: 336-1600
Telex: 55573
FAX: 336-1609

Fujitsu Microelectronics, Inc. (FMI) Sales Offices

CALIFORNIA

Irvine
Century Centre
2603 Main Street, Ste. 510
Irvine, CA 92714
Tel: 714/724-8777
FAX: 714/724-8778

San Jose

3545 North First Street
San Jose, CA 95134-1804
Tel: 408/922-9000
FAX: 408/432-9044/ 408/432-9045
HERZING: 408/943-1204
Santa Clara
2880 Lakeside Drive, Ste. 250
Santa Clara, CA 95054
Tel: 408/982-1800
FAX: 408/982-1825

COLORADO

Denver
12000 North Washington Street,
Ste. 370
Thornton, CO 80241
Tel: 303/254-9901
FAX: 303/254-9921

GEORGIA
Atlanta
3500 Parkway Lane, Ste. 210
Norcross, GA 30092
Tel: 770/449-8539
FAX: 770/441-2016

ILLINOIS

Chicago
One Pierce Place, Ste. 1245 W.
Itasca, IL. 60143-2681
Tel: 708/250-8580
FAX: 708/250-8591
MASSACHUSETTS

Boston

1000 Winter Street, Ste. 2500
Waltham, MA 02154
Tel: 617/487-0029
FAX: 617/890-9002

MINNESOTA

Minneapolis
3800 W. 80th Street, Ste. 430
Bloomington, MN 55431-4419
Tel: 612/893-5570
FAX: 612/893-5580

NEW YORK

New York
Hauppauge Office Park
Building 2, Ste. 310
898 Veterans Memorial Hwy
Hauppauge, NY 11788
Tel: 516/582-8700
FAX: 516/582-3855

OREGON

Portland
15220 NW Greenbrier Pkwy
Ste. 360
Beaverton, OR 97006
Tel: 503/690-1909
FAX: 503/690-8074
TEXAS
Dallas
14785 Preston Road, Ste. 274
Dallas, TX 75240
Tel: 214/233-9394
FAX: 214/386-7917
Houston
Two Chasewood Park, Ste. 250
20405 SH 249
Houston, TX 77070
Tel: 713/379-3030
FAX: 713/379-1059

FMI Sales Representatives — USA

WESTERN AREA

ARIZONA

Aztech Component Sales, Inc. 15230 N. 75th Street, Ste. 1031 Scottsdale, AZ 85260
602/991-6300
FAX: 602/991-0563

CALIFORNIA

Innfinity Sales inc.
20 Corporate Park, Ste. 100
Irvine, CA 92714
714/833-0300
FAX: 714/833-0303
6540 Lusk Blvd., Ste. C256
San Diego, CA 92121
619/535-9300
FAX: 619/550-3707
26560 W. Agoura Road,
Suite 103A
Calabasas, CA 91302
818/880-6480
FAX: 818/880-1922

NORCOMP
1267 Oakmead Parkway
Sunnyvale, CA 94086
408/733-7707
408/774-1947
8880 Wagon Way
Granite Bay, CA 95746
916/791-7776
FAX: 916/791-2223

COLORADO

Spectrum Marketing
2211 West 27th Avenue,
Ste. 316
Denver, CO 80211
303/480-9991
FAX: 303/455/5303
2924 Robidoux Road
Sandy, Utah 84093
801/972-8552
FAX: 801/943-9522

IDAHO

Intermountain Technical
Marketing
1310 E. First Street
Meridian, ID 83642
208/888-6071
FAX: 208/888-6074

OREGON

L-Squared Limited 15234 NW Greenbrier Parkway
Beaverton, OR 97006
503/629-8555
FAX: 503/645-6196
10502 Riviera PI. N.E.
Seattle, WA 98125-6937
206/525-8555
FAX: 206/527-0882

FMI Sales Representatives - USA (continued)

CENTRAL AREA

ILLINOIS

Beta Technology 1009 Hawthorne Drive Itasca, IL 60143
708/250-9586
FAX: 708/250-9592

INDIANA

Valentine Associates 1030 Summit Drive Carmel, IN 46032-2580 317/846-0008 FAX: 317/846-0255

KENTUCKY

Valentine Associates 3215 Brentwood Drive Henderson, KY 42420 502/826-9444
FAX: 502/826-9108

MICHIGAN

R.C. Merchant \& Co., Inc. 23735 Research Drive Farmington Hills, MI 48335 810/476-4600 FAX: 810/476-3162

815 Main Street
St. Joseph, MI 49085
616/983-7378
FAX: 616/983-3506

MINNESOTA

Beta Technology
15612 Highway 7, Suite 320
Minnetonka, MN 55345
612/938-1006
FAX: 612/938-2209

OHIO

Stegman Blaine Marketing 8228 Winton Road, Ste. 300D Cincinnati, OH 45231
513/729-1969
FAX: 513/729-1984
147 W. National Road
Vandalia, OH 45377
513/890-7975
FAX: 513/890-5191
10539 Shale Brook Way
Cleveland, OH 44136
216/572-0003
FAX: 216/238-3229
4347 Stow Road
Stow, OH 44224
216/688-9603
FAX: 216/688-6421

TEXAS

Technical Marketing, Inc.
(T.M.I)

3320 Wiley Post Road
Carroliton, TX 75006
214/387-3601
FAX: 214/387-3605
TWX: 910/860-5158
2901 Wilcrest Drive, Ste. 139
Houston, TX 77042
713/783-4497
FAX: 713/783-5307
TLX: 510/100-9699
3701 Executive Center Drive
Suite 205
Austin, TX 78731
512/343-6976
FAX: 512/343-7986

WISCONSIN

Beta Technology
9401 W. Beloit Street, Ste. 409
Milwaukee, WI 53227
414/543-6609
FAX: 414/543-9288

FMI Sales Representatives - USA (continued)

EASTERN AREA

ALABAMA

ComRep, Inc.
190 Lime Quarry Road, Ste. 212
Madison, AL 35758
205/772-9982
FAX: 205/772-8693

CONNECTICUT

Connecticut Applied
Technology
555 Highland Avenue, Ste. 2
Cheshire, CT 06410
203/272-6564
FAX: 203/271-3670

FLORIDA

Semtronic Associates
657 Maitland Avenue
Altamonte Springs, FL 32701
407/831-8233
FAX: 407/831-2844
TLX: 810/854-0321
1467 S. Missouri Avenue
Clearwater, FL 34616
813/461-4675
FAX: 813/442-2234
3471 NW 55th Street
Ft. Lauderdale, FL 33309
305/731-2484
FAX: 305/731-1019

GEORGIA

ComRep, Inc.
6855 Jimmy Carter Blva., Ste. 2128
Norcross, GA 30071
770/449-9905
FAX: 770/449-1909

MARYLAND

Arbotek Asso., Inc.
2408 Peppermill Drive, Ste. 1
Glen Burnie, MD 21061
410/768-5335
FAX: 410/768-8118
MASSACHUSETTS
3D Sales
5 Burlington Woods Drive
Burlington, MA 01803
617/229-2999
FAX: 617/229-2033

NEW JERSEY

BGR Associates
Evesham Commons
525 Route 73, Ste. 100
Marlton, NJ 08053
609/983-1020
FAX: 609/983-1879
TWX: 710/940-1358
Technical Applications \&
Marketing (T.A.M)
91 Clinton Road, Ste. 1D
Fairfield, NJ 07006
201/575-4130
FAX: 201/575-4563

NEW YORK

Quality Components

116 Fayette Street Manlius, NY 13104 315/682-8885
FAX: 315/682-2277
TWX: 910/997-1313
716/655-0556
FAX: 716-655-0601
500 Helendale Road, Ste. 125
Rochester, NY 14609
716/ 288-3420
FAX: 716/288-3484

NORTH CAROLINA

ComRep, Inc.
3125 Poplarwood Court, Ste. 123
Raleigh, NC 27604
919/873-1003
FAX: 919/873-0307
8206 Providence Road,
Ste. 1200-374
Charlotte, NC 28277
704/544-9122
FAX: 704/543-9646

PUERTO RICO

Semtronic Associates
Crown Hills
\#125 Carite St./Esq. Ave.
Parana
Rio Piedras, PR 00926
809/766-0700
FAX: 809/763-8071

FMI Sales Representatives - Canada

Pipe-Thompson, Ltd.
5468 Dundas Street, W. 206
Islington, Ontario M9B 6E3
416/236-2355
FAX: 416/236-3387
17 Brandy Creek Crescent
Kanata, Ontario K2M 2B8
613/591-1821
FAX: 613/591-0461

FMI Distributors - USA

ALABAMA

Innsight Electronics
4835 University Square, Ste. 19
Huntsville, AL 35816
205-830-1222
FAX: 205-830-1225
Marshall Industries
3313 Memorial Parkway South,
Ste. 150
Huntsville, AL 35801
205-881-9235
FAX: 205-881-1490
Milgray Electronics
5021 Bradford Dr., Ste. 202
Huntsville, AL 35805
205-722-8551
FAX: 205-722-0161

ARIZONA

Innsight Electronics 1515 West University Drive,
Ste. 103
Tempe, AZ 85281
602-829-1800
FAX: 602-967-2658
Marshall Industries
9831 S. 51st St., Ste. C107-109
Phoenix, AZ 85044
602-496-0290
FAX: 602-893-9029

CALIFORNIA

Bell Microproducts
30 Fairbanks, Ste. 114
Irvine, CA 92718
714-470-2900
FAX: 714-470-2929
1941 Ringwood Avenue
San Jose, CA 95131-1721
408-451-9400
FAX: 408-451-1600
860-H Hampshire
Westlake Village, CA 91362
805-496-2606
FAX: 805-496-6119

Insight Electronics
2 Venture Plaza, Ste. 340
Invine, CA 92718
714-727-3291
FAX: 714-727-1804
9980 Huennekens Street
San Diego, CA 92121
619-587-1100
FAX: 619-587-1380
1295 Oakmead Parkway
Sunnyvale, CA 94086
408-720-9222
FAX: 408-720-8390
4333 Park Terrace Drive,
Ste. 101
Westlake Village, CA 91361
818-707-2101
FAX: 818-707-0321
Marshall Industries
26637 W. Agoura Road
Calabasas, CA 91302-1959
818-878-7000
FAX: 818-880-6846
9320 Telstar Avenue
El Monte, CA 91731
818-307-6000
FAX: 818-307-6297
One Morgan Drive
Irvine, CA 92718
714-458-5365
FAX: 714-581-5255
336 Los Coches Street
Milpitas, CA 95035
408-942-4600
FAX: 408-942-4722
3039 Kilgore Avenue, Ste. 140
Rancho Cordova, CA 95670
916-635-9700
FAX: 916-635-6044
5961 Kearny Villa Road
San Diego, CA 92123
619-627-4140
FAX: 619-627-4163

Milgray Electronics
25 Mauchly, Ste. 329
Invine, CA 92718
714-753-1282
FAX: 714-753-1682
6835 Flanders Drive, Ste. 300
San Diego, CA 92121
619-457-7545
FAX: 619-457-9750
2860 Zanker Road, Ste. 209
San Jose, CA 95134
408-456-0900
FAX: 408-456-0300
275 E. Hillcrest Drive, Ste. 145
Thousand Oaks, CA 91360
805-371-9399
FAX: 805-371-9317
5650 D T C Parkway, Ste. 202
Englewood, CA 80111
303-721-7702
FAX: 303-721-7803
COLORADO
Insight Electronics
384 Inverness Drive South,
Ste. 105
Englewood, CO 80112
303-649-1800
303-649-1818
Marshall Industries
12351 North Grant Street, Ste. A
Thornton, CO 80111
303-451-8383
FAX: 303-457-2899

CONNECTICUT

Milgray Electronics
326 West Main Street
Milford, CT 06460-0418
203-878-5538
FAX: 203-878-6970
Marshall Industries
Barnes Industrial Park North, 20 Sterling Dr.
Wallingford, CT 06492
203-265-3822
FAX: 203-284-9285

FMI Distributors - USA (continued)

FLORIDA

Bell/Vantage

1110 Douglas Avenue, Ste. 2050
Altamonte Springs, FL 32714
407-542-3083
FAX: 407-682-1286
1761 West Hillsboro Blvd., Ste. 208
Deertield Beach, FL 33441
305-429-1001
FAX: 305-481-3586
Insight Electronics
600 North Lake Road, Ste. 250
Altamonte Springs, FL 32701
407-834-6310
FAX: 407-834-6461
6400 Congress Avenue,
Ste. 1600
Boca Raton, FL 33487
407-997-2540
FAX: 407-997-2542
17757 U.S. Hwy 19 North,
Ste. 520
Clearwater, FL 34624
813-524-8850
FAX: 813-532-4245
Marshall Industries
380 South Northlake Blvd.,
Ste. 1024
Altamonte Springs, FL 32701
407-767-8585
FAX: 407-767-8676
2700 W. Cypress Creek Road,
Ste. D114
Ft. Lauderdale, FL 33309
305-977-4880
FAX: 305-977-4887
2840 Scherer Drive, Ste. 410
St. Petersberg, FL 33716
813-573-1399
813-573-0069
Milgray Electronics
755 Rinehart Road, Ste. 100
Lake Mary, FL 32746
407-321-2555
FAX: 407-322-4225

GEORGIA

Insight Electronics
3005 Breckinridge Blvd.,
Ste. 210-A
Duluth, GA 30136
404-717-8566
404-717-8588
Marshall Industries
5300 Oakbrook Parkway,
Ste. 140
Norcross, GA 30093
404-923-5750
FAX: 404-923-2743

ILLINOIS

Insight Electronics
1365 Wiley Road, Ste. 142
Schaumburg, IL 60173
708-885-9700
FAX: 708-885-9701
Marshall Industries
50 East Commerce Drive, Unit A
Schaumburg, IL 60173
708-490-0155
FAX: 708-490-0569
Milgray Electronics
1530 East Dundee Road,
Ste. 250
Palatine, IL 60067-8319
708-202-1900
FAX: 708-202-1985

INDIANA

Marshall Industries
14027 Sedona Court Indianapolis, IN 46032
317-388-9069
FAX: 317-297-2787
Milgray Electronics
5226 Elmwood Ave Indianapolis, IN 46023
317-781-9997
FAX: 317-781-6970

KANSAS

Marshall Industries 10413 W. 84th Terrace Lenexa, KS 66214
913-492-3121
FAX: 913-492-6205
Milgray Electronics
6400 Glenwood, Ste. 313
Overland Park, KS 66202-4021
913-236-8800
FAX: 913-384-6825

MASSACHUSETTS

Bellivantage

17A Sterling Road Bilierica, MA 01862
508-667-2400
FAX: 508-663-7474
Insight Electronics
55 Cambridge Street, Ste. 301
Burlington, MA 01803
617-270-9400
FAX: 617-270-3279
Interface Electronics*
228 South Street
Hopkinton, MA 01748
508-435-0100
FAX: 508-435-6516
Marshall Industries
33 Upton Drive
Wilmington, MA 01887
508-657-9024
FAX: 508-658-7608
Milgray Electronics
187 Ballardvale Street Wilmington, MA 01887-1046
508-657-5900
FAX: 508-658-7989

FMI Distributors - USA (continued)

MARYLAND
Bell/Vantage
6925 R Oakland Mills Road
Columbia, MD 21045
410-720-5100
FAX: 410-381-2172
Insight Electronics
6925 Oakland Mills Road, Ste. D
Columbia, MD 21045
410-381-3131
FAX: 410-381-3141
Marshall Industries
9130B Guilford Road
Columbia, MD 21046
410-880-3030
FAX: 410-880-3202
Milgray Electronics
6460 Dobbin Road, Ste. D
Columbia, MD 21045-5813
410-730-6119
FAX: 410-730-8940
MICHIGAN
Marshall Industries
31067 Schoolcraft Road
Livonia, MI 48150
313-525-5850
FAX: 313-525-5855
MINNESOTA
Marshall Industries
14800 28th Avenue North, Ste. 175
Plymouth, MN 55447
612-559-2211
FAX: 612-559-8321
Insight Electronics
5353 Gamble Drive, Ste. 330
St. Louis Park, MN 55416
612-525-9999
FAX: 612-525-9998

MISSOURI

Marshall Industries
514 Earth City Expressway,
Ste. 131
Earth City, MO 63045
314-770-1749
FAX: 314-770-1486

NORTH CAROLINA

Marshall Industries
5224 Greens Dairy Road
Raleigh, NC 27604
919-878-9882
FAX: 919-872-2431
Milgray Electronics
2925 Huntleigh Drive, Ste. 101
Raleigh, NC 27604-3374
919-790-8094
FAX: 919-872-8851
NEW JERSEY
Bell/Vantage*
23 Sebago Street
Clifton, NJ 07013
201-777-4100
FAX: 201-777-6194
Insight Electronics
2 Eves Drive, Ste. 208
Marlton, NJ 08053
609 985-5556
FAX: 609-985-5895
Interface Electronics
1 Greentree Center, Ste. 201
Marlton, NJ 08053
609-988-5448
FAX: 609-988-5566
Marshall Industries
101 Fairfield Road
Fairfield, NJ 07004
201-882-0320
FAX: 201-882-0095
158 Gaither Drive \#100
Mt. Laurel, NJ 08054
609-234-9100
FAX: 609-778-1819
Milgray Electronics
3001 Greentree Executive
Campus, Ste. C
Marlton, NJ 08053-1551
609-983-5010
FAX: 609-985-1607
3799 Route 46 East, Ste. 303
Parsippany, NJ 07054-1273
201-335-1766
FAX: 201-335-2110

NEW YORK

Bell/Vantage
1056 West Jericho Turnpike
Smithtown, NY 11787
516-543-2000
FAX: 516-543-2030
Marshall Industries
100 Marshall Drive
Endicott, NY 13760
607-785-2345
FAX: 607-785-5546
1250 Scottsville Road
Rochester, NY 14624
716-235-7620
FAX: 716-235-0052
Milgray Electronics
77 Schmitt Boulevard
Farmingdale, NY 11735-1410
516-420-9800
FAX: 516-420-9884
1170 Pittsford-Victor Road,
Ste. 200
Pittsford, NY 14534-3807
716-381-9700
FAX: 716-381-9495

OHIO

Insight Electronics
9700 Rockside Road, Ste. 105
Valley View, OH 44125
216-520-4333
FAX: 216-520-4322
Marshall Industries
3520 Park Center Drive
Dayton, OH 45414
513-898-4480
FAX: 513-898-9835
30700 Bainbridge Road, Unit A
Solon, OH 44139
216-248-1788
FAX: 216-248-2312
Milgray Electronics
6155 Rockside Road, Ste. 206
Cleveland, OH 44131-2289
216-447-1520
FAX: 216-447-1761

FMI Distributors - USA (continued)

OREGON

Insight Electronics
8705 S.W. Nimbus Avenue,
Ste. 200
Beaverton, OR 97005
503-626-3031
FAX: 503-641-4530
Marshall Industries
9705 S.W. Gemini Drive
Beaverton, OR 97005
503-644-5050
FAX: 503-646-8256
Milgray Electronics
8705 S.W. Nimbus, Ste. 260
Beaverton, OR 97008
503-626-4040
FAX: 503-641-0650

TEXAS

Bell Microproducts 12701B Research Blvd., Ste. 301
Austin, TX 78759
512-258-0725
FAX: 512-258-6512
1202 Executive Drive West
Richardson, TX 75081
214-783-4191
FAX: 214-783-4192
Insight Electronics
11500 Metric Blvd., Ste. 215
Austin, TX 78758
512-719-3090
FAX: 512-719-3091
10777 Westheimer, Ste. 1100
Houston, TX 77042
713-260-9614
FAX: 713-260-9602
1778 N. Plano Road, Ste. 320
Richardson, TX 75081
214-783-0800
FAX: 214-680-2402

Marshall Industries 8504 Cross Park Drive Austin, TX 78754
512-837-1991
FAX: 512-832-9810
10681 Haddington Drive, Ste. 160
Houston, TX 77043
713-467-1666
FAX: 713-467-9805
1551 N. Glenville Drive
Richardson, TX 75081
214-705-0600
FAX: 214-705-0675
Milgray Electronics
11824 Jollyville Road, Ste. 103
Austin, TX 78759
512-331-9961
FAX: 512-331-1070
16610 N. Dallas Parkway,
Ste. 1300
Dallas, TX 75248-2617
214-248-1603
FAX: 214-248-0218
12919 SW Freeway, Ste. 130
Stafford, TX 77477-4113
713-240-5360
FAX: 713-240-5404

UTAH

Milgray Electronics
310 East 4500 South, Ste. 110
Murray, UT 84107
801-261-2999
FAX: 801-261-0880
Marshall Industries
2355 South 1070 West, Ste. D
Salt Lake City, UTY 84119
801-973-2288
FAX: 801-973-2296

WASHINGTON

Marshall Industries

11715 North Creek Pkwy. South, Ste. 112
Bothell, WA 98011
206-486-5747
FAX: 206-486-6964
Insight Electronics
12002 115th Avenue, N.E.
Kirkland, WA 98034
206-820-8100
FAX: 206-821-2976

WISCONSIN

Marshall Industries

20900 Swenson Drive, Ste. 150
Waukesha, WI 53186
414-797-8400
FAX: 414-797-8270
Insight Electronics
10855 W. Potter Road
Wauwatosa, WI 53222
414-258-5338
FAX: 414-258-5360

FMI Distributors - Canada

ALBERTA

Active Components
3833-29th Street NE
Calgary, Alberta, Canada
T1Y 6B5
403-250-5550
FAX: 403-291-7054
4606 97th Street
Edmonton, Alberta, Canada
T6E 5N9
403-438-2858
FAX: 604-434-0812

BRITISH COLUMBIA

Active Components
1695 Boundary Road
Vancouver, B.C., Canada
V5K 4X7
604-294-1166
FAX: 604-294-1206
MANITOBA
Active Components
106 King Edward St. East
Winnipeg, Manitoba, Canada
R3H ON8
204-944-1446
FAX: 204-783-8133

ONTARIO

Active Components
5935 Airport Road, Ste. 200
Mississauga, Ontario, Canada
L4V 1W5
905-612-9200
FAX: 905-612-9185
Baxter Center, 1050 Baxter Rd.
Ottawa, Ontario, Canada
K2C 3P2
613-820-8313
FAX: 613-820-3271
Marshall Industries
6285 Northam Drive, Ste. 112
Mississauga, Ontario, Canada
L4V 1X5
905-612-1771
FAX: 905-612-1988
Milgray Electronics
2783 Thamesgate Drive
Mississagua, Ontario, Canada
L4T 1G5
905-678-0958
FAX: 905-678-1213

QUEBEC

Active Components
237 Hymus Boulevard
Pointe Claire, Quebec, Canada
H9R 5C7
514-694-7710
FAX: 514-695-3707
1000 Ave. St.Jean Baptiste, Ste. 100
Quebec, Quebec, Canada
G2E 5G5
418-877-6666
FAX: 418-877-6671
Marshall industries
148 Brunswick Boulevard Pointe Claire, Quebec, Canada H9R 59P
514-694-8142
FAX: 514-694-6989
Milgray Electronics
6600 Trans Canada Hwy,
Ste. 209
Pointe Claire, Quebec, Canada
H9R 4S2
514-426-5900
FAX: 514-426-5836

SECTION 13

Glossary

Wireless Communications Glossary

This section contains definitions for terms and phrases which are commonly used in discussions of wireless communications.
On the next page, we include a list of acronyms which are associated with wireless communications, as well as acronyms which are specific to Fujitsu's corporate structure or wireless product line. Following the list of acronyms is the definitions portion of the glossary.

13-3

AGC	Automatic Gain Control	FM	Frequency Modulation
AM	Amplitude Modulation	FMG	Fujitsu Microelectronics, GmbH
AMPS	Advanced Mobile Phone System	FMI	Fujitsu Microelectronics, Inc.
ANSI	American National Standards Institute	FML	Fujitsu Microelectronics, Ltd.
ASIC	Application-Specific Integrated Circuit	FNI	Fujitsu Networks Industry, Inc.
ASK	Amplitude Shift Keying	FNSA	Fujitsu Network Switching of America, Inc.
BICMOS	Bipolar/Complementary Metal Oxide Semiconductor	FNTS FSK	Fujitsu Network Transmission Systems, Inc. Frequency Shift Keying
B-PCS	Broadband Personal Communications Systems	GFSK	Gaussian Frequency Shift Keying
CAGR	Compound Annual Growth Rate	GHz	Gigahertz
CDMA	Code Division Multiple Access	GMSK	Gaussian Minimum Shift Keying
CMOS	Complementary Metal Oxide Semiconductor	GPS	Global Positioning Satellite System
CODEC	Coder/Decoder		(also known as Groupe Speciale Mobile)
CT1	Cordless Telephone - First Generation	IF	Intermediate Frequency
CT2	Cordless Telephone - Second Generation	1S-54	Interim Standard Number 54
CTIA	Cellular Telephone Industry Association	IS-95	Interim Standard Number 95
DBS	Direct Broadcast Satellite	IS-136	Interim Standard Number 136
DCS1800	Digital Communication Service at 1800 MHz	$\begin{aligned} & \text { ISM } \\ & \text { JDC } \end{aligned}$	Industrial, Scientific, and Medical Japanese Digital Cellular
DECT	Digital European Cordless Telephone	kHz	Kilohertz
DQPSK	Differential Quadrature Phase Shift Keying	LAN	Local Area Network
DSP	Digital Signal Processing	LiTaO3	Lithium Tantalate
DSSS	Direct Sequence Spread Spectrum	LNA	Low Noise Amplifier
ESPER	Emitter-Base Self-Aligned Polysilicon Electrode and Resistor	LO	Local Oscillator
ETACS	Enhanced Total Access Communications System	MCM MHz	Multi-Chip Module Megahertz
ETSI	European Telecommunication Standards Inst.	NF NMT	Noise Figure Nordic Mobile Telephone
FAI	Fujitsu America, Inc.	N-PCS	Narrowband Personal Communications
FBCS	Fujitsu Business Communication Sys., Inc.		Systems
FCC	Federal Communications Commission	PA	Power Amplifier
FCPA	Fujitsu Computer Products of America, Inc.	PBX	Private Business Exchange
FCPT	Fujitsu Computer Packaging Tech., Inc.	PC	Personal Computer
FCSI	Fujitsu Compound Semiconductor, Inc.	PCB	Printed Circuit Board
FDD	Frequency Division Duplexing	PCMCIA	PC Memory Card Interface Association
FDMA	Frequency Division Multiple Access	PCN	Personal Communications Network
FHSS	Frequency Hopping Spread Spectrum	PCS	Personal Communications System
FJ	Fujitsu Japan	PHS	Personal Handiphone System

PLL	Phase Lock Loop	SAW	Surface Acoustic Wave
PM	Phase Modulation	SMR	Specialized Mobile Radio
PQFP	Plastic Quad Flat Pack	TACS	Total Access Communications System
PSK	Phase Shift Keying	TDD	Time Division Duplexing
QAM	Quadrature Amplitude Modulation	TDMA	Time Division Multiple Access
QFP	Quad Flat Pack	U-PCS	Unlicensed Personal Communications
QPSK	Quadrature Phase Shift Keying		Systems
R\&D	Research and Development	VCO	Voltage Controlled Oscillator
RF	Radio Frequency	WAN	Wide Area Network
		WLAN	Wireless Local Area Network

Terms and Phrases Associated with Wireless

Advanced Moblle Phone Service (AMPS)

The standard for analog cellular telephone service in the United States.

Amplitude Modulation (AM)

A method of analog modulation where the input data signal is used to vary the amplitude of the carrier.

Amplitude Shift Keying (ASK)

A method of digital modulation where the digital input data signal is used to vary the amplitude of the carrier. Very popular with remote car alarm applications.

Antenna

A device which converts electromagnetic radiation in the form of radio waves into an electrical signal, and vice versa.

Baseband controller

A CMOS or BiCMOS circuit which controls the operation of the analog sections of the radio. The baseband controller acts as the interface between the analog portion of the radio and the digital data and control functions. It is often an ASIC implementation.

Broadband Personal Communication Service (B-PCS)

A standard under development in the United States to provide digital wireless service in a manner similar to cellular telephony, in that the service will be available from infrastructure developed and operated by third-party companies. The system will provide wireless voice, data, and eventually video communication capability.

Cellular telephony

A wireless telephone service which allows a user to make and receive calls while driving, walking, or remaining stationary. This is accomplished via an infrastructure which has a number of base station antenna sites arrayed in such a way to create a number of individual 'cells' which cover a specified geographic area. The infrastructure allows users to move from cell to cell during a call by transferring the radio connection to the user's cellular telephone from one base station to another. This infrastructure is established by a third party, and a user must subscribe to the service and pay both monthly and air time charges to access the infrastructure.

Charge pump

A component of a phase lock loop system which produces pulses of electrical current. The polarity of the current and the time duration of the puise are controlled by the phase detector. The output of a charge pump serves as the input to the loop filter of a PLL system.

Code Divided Multiple Access (CDMA)

A type of multiplexing for wireless systems developed by Qualcomm which uses spread spectrum techniques to allow many users to share the same frequency bands simultaneously.

Compression point (P1dB)

The maximum input signal strength that an amplifier can amplify in a linear manner.

Conversion gain

A measure of the gain of a mixer, measured from the signal input port to the output port.

Cordiess Telephone - Second Generation (CT2)

A digital cordless telephone standard developed in France and Britain for residential and office use. Also very popular in Hong Kong and other Far East countries.

Cordiess telephony

A cordless telephone is a device which serves the same basic function as an ordinary telephone, but without the restriction of a cord. They have a limited range of service, and are intended for use in and around the home. Cordless telephones do not require third party infrastructure or subscriber fees.

Differential Quadrature Phase Shift Keying (DQPSK)

A modified form of quadrature phase shift keying which offers a slight improvement in performance.
Digital Communications Service at 1800 MHz (DCS-1800)
A modification of the GSM protocol to allow operation at 1800 MHz for European PCS applications.

Terms and Phrases Associated with Wireless (Continued)

Digital Communications Service at 1900 MHz (DCS-1900)

A modification of the GSM protocol to allow operation at 1900 MHz . This is one of several proposed standards for broadband PCS and unlicensed PCS in the United States.

Digital European Cordless Telephone (DECT)

A standard for digital cordless telephones which is adopted throughout Europe. Originally designed for office applications, it has voice and data capability inherent to the standard. It is now becoming more common for residential use as well.

Direct Conversion Receiver

A radio receiver architecture where the local oscillator frequency is set equal to the carrier frequency of the signal of interest. This produces an output signal which is centered at 0 Hz , which means that the signal is directly converted to its baseband representation. This architecture is used most commonly in pagers. Also known as a homodyne receiver.

Dual Conversion Receiver

A radio receiver architecture which uses two frequency conversions (via two separate mixer/local oscillator combinations). Dual conversion receivers generally give superior performance, but at the expense of extra component count and cost. Also known as a dual superheterodyne receiver.

Dual modulus prescaier

A prescaler which has two distinct divide ratios. The choice of divide ratio is determined by a control input to the prescaler which is generated by the swallow counter of a PLL IC.

Duplexer

A device which is used in systems which utilize frequency division duplexing. It consists of two filters, one for the frequencies used for the received radio signals, and one for the frequencies used for the transmitted radio signals. The duplexer provides the receiver with isolation from interference from the transmitter for radio systems which use the same antenna for both transmit and receive.

Duplexing

The rules which determine how two radios transmit and receive signals to each other.

Dynamic Range

The range of input signal strength that a radio receiver can detect properly. It is bounded on the low end by the noise of the receiver, and on the high end by the distortion and nonlinearity of the receiver.

Frequency Division Duplexing (FDD)

A method of duplexing where a radio transmits on one carrier frequency, and receives on another frequency, so that the transmission and reception do not interfere with each other.

Frequency Division Multiple Access (FDMA)

A type of multiplexing for wireless systems where each radio conversation is assigned a unique carrier frequency exclusively for their use.

Frequency Modulation (FM)

A method of analog modulation where the input data signal is used to vary the frequency of the carrier.

Frequency Shift Keying (FSK)

A method of digital modulation where the frequency of the carrier alternates between two or more discrete frequencies based on the state of the digital input data signal. It is relatively easy and inexpensive to implement, but it has poor spectral efficiency.

Gain

The ratio of the signal strength at the output of a device to the signal strength at its input.

Gaussian Minimum Shift Keying (GMSK)

This is a special, tightly controlled version of frequency shift keying modulation designed for better spectral efficiency. It is the modulation method used for GSM and its derivatives.

Global System for Mobile Communications (GSM)

A standard for digital cellular telephone service which was originally developed for use in Europe. GSM is now being adopted as the digital cellular standard in many areas of the world, with the exception of Japan and the United States.

Terms and Phrases Associated with Wireless (Continued)

Low noise amplifier (LNA)

An amplifier used at the input of radio receivers which amplifies the radio frequency signals. LNAs are designed so that they add the smallest possible amount of noise to the received radio signal.

Messaging

A service which is functionally equivalent to wireless electronic mail. Moderate length text messages can be sent and received from a portable device, such as a personal digital assistant.

Mixer

A device which multiplies two input signals together. It is used in conjunction with a local oscillator to perform frequency translations on radio signals.

Multiplexing

The means by which wireless communication systems accommodate many users simultaneously.

Narrowband Advanced Mobile Phone Service (N-AMPS)

A modification to the AMPS cellular telephone standard in the United States which reduces the bandwidth of a frequency channel by a factor of three, thus increasing the capacity of a cellular system threefold.

Narrowband Personal Communication Service (N-PCS)

A standard which is being deployed in the United States which provides advanced digital messaging services, such as 2-way paging.

Noise

Random electrical signals which are generated in all electrical circuits. Excessive levels of noise prevent radios from detecting input signals with low signal strengths.

Noise Figure (NF)

A measure of the amount of noise that an amplifier or mixer adds to the input signal.

Nordic Mobile Telephone (NMT)

One of the first analog cellular systems developed, now in use in Norway, Sweden, Finland, and a number of other countries.

Paging

A basic form of wireless communication which allows a user to be notified, via a beeping sound from a small radio receiver known as a pager, that someone is trying to contact them. More sophisticated paging products have an alphanumeric display which allows small text messages to be sent to the user. Conventional pagers are receive-only devices, and do not contain a transmitter of any kind.

Passband

The input signal frequencies which a filter allows to pass through to its output.

Personal Communications Network (PCN)

see Personal Communications System

Personal Communications System (PCS)

A generic classification of digital wireless communications services which are under development in both the United States, Europe, and Japan. PCS is envisioned as a means to provide a ubiquitous 乍anytime, anywherea communication service for voice, data, messaging/ paging, and eventually compressed video.

Phase detector

A component of a phase lock loop system which compares the relative placement in time of the positive edges of its two input signals. The results of this comparison are used to control the charge pump of a PLL system.

Phase lock loop (PLL)

A circuit which generates an output signal whose phase and frequency characteristics are controlled by an input reference signal. A basic PLL system consists of a reference signal, a phase detector, a charge pump, a loop filter, and a voltage controlled oscillator (VCO). Almost all PLL systems also include programmable counters and prescalers which allow the output frequency of the PLL to be set to a non-integer multiple of the reference signal.

In integrated circuit terms, a PLL refers to the integration of the phase detector, charge pump, programmable counters, and in some cases the prescaler, onto one IC. This is also known as a synthesizer.

Terms and Phrases Associated with Wireless (Continued)

Harmonics

Signals at frequencies which are integer multiples of the frequency of a sinusoidal signal. Harmonics are caused by nonlinearities in amplifiers and mixers which distort the fundamental signals.

Homodyne Receiver
see Direct Conversion Receiver

IF filter

A filter which is used on radio signals which have been converted down to an intermediate frequency. The lf filter has a passband width equal to the bandwidth of an individual frequency channel for the application. The IF filter selects which frequency channel will be demodulated by the radio.

Image filter.

A filter used at the input of radio receivers which allows only the relevant frequencies for that application to pass through, and rejects all other frequencies.

Industrial, Scientific, and Medical (ISM)
Radio frequency bands available in the United States and some parts of Europe for unlicensed radio operation. The ISM bands are commonly used for digital cordless telephones and wireless local area networks (WLANs). Most applications using the ISM bands utilize spread spectrum techniques. The three ISM bands available in the US are $902-928 \mathrm{MHz}, 2.4-2.483 \mathrm{GHz}$, and $5.725-5.85 \mathrm{GHz}$.

Insertion loss

A measure of how much signal strength is lost on signals within the passband of a filter.

Interim Standard 54 (IS-54)

see Interim Standard 136.

Interim Standard 95 (IS-95)

One of two competing standards for digital cellular telephone service in the United States. This standard specifies the use of code division multiple access (CDMA) as the method of multiplexing. This standard was originally developed by Qualcomm.

Interim Standard 136 (IS-136)

One of two competing standards for digital cellular telephone service in the United States. This standard, formerly known as IS-54, specifies the use of time division multiple access (TDMA) as the method of multiplexing. This standard was originally developed by a consortium of cellular service providers and equipment manufacturers led by Motorola.

Intermediate frequency (IF)

The frequency that the high frequency radio signal is translated to by the mixer and local oscillator.

Interstage filter

An interstage filter is used to filter signals between stages of a power amplifier. They are used to filter out any harmonics which may be generated by distortions in the power amplifier.

Japanese Digital Cellular (JDC)

The standard for digital cellular telephones in Japan. Also known as RCR-27.

Local oscillator (LO)

A pure sinusoidal signal which is used in conjunction with a mixer to perform precise frequency translations on radio signals. The local oscillator signal is often generated by using a voltage controlled oscillator (VCO) which is controlled by a phase lock loop (PLL). The tuning of a radio to a specific frequency channel is accomplished by setting the frequency of the LO to an appropriate value.

Lock time

The time that a phase lock loop takes to change its output frequency and have it become locked to the reference signal.

Loop bandwidth

A measure of how quickly a phase lock loop responds to keep its output signal locked to the reference signal.

Loop filter

A component of a phase lock loop system which converts the pulses of electrical current from the output of the charge pump into a voltage which is used as the input to a voltage controlled oscillator.

Terms and Phrases Associated with Wireless (Continued)

Phase noise

A measure of how much a fixed frequency oscillator signal varies in frequency due to the effects of random noise in the oscillator circuit.

Power amplifier (PA)

This device takes a modulated transmit signal at the RF frequency and amplifies it to a level which is appropriate to drive the antenna. It is often implemented as a series of amplifier stages.

Prescaler

A device which takes the high frequency output signal from a VCO and divides the frequency down to a value which can be used as an input to the program counter divider portion of a PLL.

Program counter (N-counter)

A component of a phase lock loop system which divides the output frequency of the voltage controlled oscillator, usually after it has already been divided by a prescaler, before presenting it as an input to the phase detector. The amount of frequency division performed by the program counter can be altered by programming the counter with a different value, which will result in a course change in the output frequency of the PLL system.

Quadrature Amplitude Modulation (QAM)

A complex method of digital modulation where the input data signal controls both the amplitude and phase of the carrier. It is difficult and expensive to implement, but is one of the most spectrally efficient form of modulation.

Quadrature modulator

A device which is used in radios which utilize complex digital modulation techniques such as QPSK and QAM. It takes a local oscillator signal and splits it into two components, identical in frequency but separated in phase by 90 degrees. These two signals are then modulated by two separate input signals (the I and Q data signals), and the resulting modulated signals are then combined into one signal and fed into a mixer to be upconverted in frequency to the proper RF frequency.

Quadrature Phase Shift Keying (QPSK)

A method of digital modulation where the phase of the carrier takes on one of four possible values, corresponding to the state of two digital input data bits which control the modulation. It is a popular form of modulation because it represents a good compromise of ease of implementation and spectral efficiency.

Reference counter (R-counter)

A component of a phase lock loop system which divides the frequency of the reference signal before presenting it as an input to the phase detector. Changing the value that is stored in the reference counter results in a change in the size of the frequency steps that the PLL output frequency can make.

Reference signal

The external signal used by a phase lock loop system as the reference from which the output signal of the PLL is derived.

Specialized Mobile Radio

Private, licensed mobile radio networks commonly used for dispatching services for taxis, delivery companies, etc.

Spectral Efficiency

A measure of the data rate which can be sent per 1 Hz of bandwidth. Units are in bits per second per $\mathrm{Hz}(\mathrm{bps} / \mathrm{Hz})$. The greater the spectral efficiency, the greater the channel capacity.

Spread spectrum

A technique developed for military communications which essentially "spreads" a narrow bandwidth radio signal over a wide frequency band in order to make the signal less susceptible to interference. It is also used to improve the security of a wireless data transmission, as it is difficult to intercept.

Spurious signals, spurii

Unwanted signals at frequencies other than the desired frequency. Spurii result from the operation of a phase lock loop (due to the inherent operation of the phase detector), and from unwanted mixer output signals.

[^48]
Terms and Phrases Associated with Wireless (Continued)

Swallow counter (A-counter)

A component of a phase lock loop system which works in conjunction with the program counter to control the divide ratio of a dual modulus prescaler. Changing the value programmed in the swallow counter will result in a fine change in the output frequency of the PLL system.

Synthesizer

A common term for an phase lock loop integrated circuit.

Time Division Duplexing (TDD)

A method of duplexing where a radio transmits and receives on the same carrier frequency, but at different times, so that the transmission and reception do not interfere with each other.

Time Division Multiple Access (TDMA)

A type of multiplexing for wireless systems where multiple radios use the same carrier frequency, but only in certain specified timeslots, so that no two radios use the same carrier frequency at the same time.

Time Division Duplexing (TDD)

A method of duplexing where a radio transmits and receives on the same carrier frequency, but at different times, so that the transmission and reception do not interfere with each other.

Unlicensed Personal Communication Service (U-PCS)

A standard under development in the United States to provide digital wireless service in a manner similar to cordless telephony, in that the service will not require access to third-party infrastructure.

Voltage controlled oscillator (VCO)

A device which produces a sinusoidal output signal. The frequency of the output signal is controlled by a voltage at the input to the device.

Wireless Local Area Network (WLAN)

A computer network which allows the transfer of data and the ability to share resources without the need to physically connect each node with wires. Popular with users of portable computers, and in environments where it is impractical to install a wired LAN.

Introduction and Quick Selection Guide

Prescalers
CMOS Phase-Locked Loops (PLLs)
Super PLLs (Single Chip PLLs/Prescalers)
Super Analog RF Devices
BiCMOS LSI RF Integrated Circuits
Piezoelectric Devices/SAW Filters
Power Management Switches
Application Notes and Articles
10 Quality and Reliability
Ordering Information
12 Sales Information
13 Glossary

FUJITSU MICROELECTRONICS, INC.
3545 North First Street
San Jose, California 95134-1804
1-800-642-7616
See the list of sales offices inside this data book.

[^0]: * Not for New Designs
 ** Dual PLL/prescaler set

[^1]: Note:

[^2]: Copyright © 1995 by FUUITSU LIMITED and FUJITSU MICROELECTRONICS

[^3]: This device contains circuitry to protect the inputs agains damage du; to high static voltages or electric fields. However, it is advised that nomal precautions be taken to avoid application of any voltage higherthanmaximumratedvoltages to this high impedance circuit.

[^4]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]: Copyight© 1995 FUUITSU LIMITED and FUJITSU MICROELECTRONICS, INC.

[^6]: Copyight © 1994 by FUIITSU LIMTED and FUUITSU MICROELECTRONIGS, INC.

[^7]: peration should be restricted to the conditions as detailed in the operational sections of this data sheet.

[^8]: Copyright (C) 1994 by FUJITSU LIMITED

[^9]: NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute

[^10]: This device contains circuitry to protect the inputs against damage due to high static vollages of electric fields. However. (1s advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuh.

[^11]: *1: MB87093A: fin $=145 \mathrm{MHz}, \operatorname{Rin}=12.8 \mathrm{MHz}$, Outputs are opened MB87095A: fin $=110 \mathrm{MHz}$, $\operatorname{Ain}=12.8 \mathrm{MHz}$, Outputs are opened. MB87096A: $\operatorname{fin}=90 \mathrm{MHz}, \operatorname{Rin}=15.36 \mathrm{MHz}$, Outputs are opened.
 *2: Inputs set low. Outputs are opened.

[^12]: This device contains circuitry to protect the inputs against dam age due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high imany voltage higit
 pedance circuit.

[^13]: COPYIGht ${ }^{-1994}$ by FUIITSU LIMIED and FUIITSUMICROELECTRONICS, INC.

[^14]: Copyright $\left.{ }^{(}\right) 1995$ by FUJITSU LIMITED and FUJITSU MICROELECTRONICS, INC.

[^15]: $V_{P X} \quad$: Maximum 6 V
 $V_{P} \quad$ When the internal charge pump is not used, please connect to $V_{C C}$.
 $\mathrm{C}_{1}, \mathrm{C}_{2}$: Depend on the crystal parameters
 LE, FC : With internal pull-up resistor
 ΦP, fout: N-ch open drain output
 Φ R : C-MOS output

[^16]: Copyright © 1994 by FUJITTSU LIMITED AND FUUITSU MICROELECTRONICS, INC.

[^17]: NOTE: Permanent device damage may occurif the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^18]: Copyright ${ }^{\text {© }}{ }_{1994}$ by FUUITSU LIMITED and FUUITSU MICROELECTRONICS, INC.

[^19]: S_{8} to S_{18} :Divide ratio of programmable counter setting bits (16 to 2047)
 S_{1} to S_{7} : Divide ratio of swallow counter setting bits (0 to 127)
 C: Control bit (Control bit is set to low.)
 Dara is input from MSB data.

[^20]: Copyright © FUJITSU LIMITED and FUJITSUMICROELECTRONICS, INC.

[^21]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is actvised that normal precautions be taken to avoid application of any voltage higherthan maximum rated voltages to this high impedance circuit.

[^22]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be
 taken to avoid apolication of any voltage higher than taken to avoid application of any voltage higher than
 maximum rated voltages to this high impedance circuit.

[^23]: Copyright© 1994 by FUJITSULIMITED

[^24]: *1: High impedance

[^25]: *1: Conditions; Vcc $=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in locking state.
 *2: Conditions; $\mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in power saving state.

[^26]: *1: Condition ; $\mathrm{Ta}=25^{\circ} \mathrm{C}$

[^27]: This device contains circuitry to protect the inputs against damage due to high static vollages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higherthan maximum rated voltages to this high impedance circuit.

[^28]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^29]: Notes: *1: Divide ratio of the prescaler is 128/129.
 *2: Divide ratio of the prescaler is $64 / 65$.

[^30]: COPyright© 1994 by FUIITSU LIMITED and FUJITSU MICROELECTRONICS, INC.

[^31]: This device contains circuity to protect the inputs against damage due to high siatic voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^32]: Copyright © 1992 by FUJITSU LIMITED

[^33]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^34]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields However, it is advised that normal precautions be taken to avoid application of any voltage higher than
 rated voltages to this high impedance circuit.

[^35]: Puise Swallow Function: fuco $=\{(M \times N)+A\} \times f r \quad A<N$

[^36]: Note: On the rising edge of the clock, one bit of the data shifts into the shift register. When LE is high, the data stored the shift register is transferred into the latch.

[^37]: NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^38]: This device cormains circuity to protect the inputs against
 It is acrised thal normad procautions be taken to etvoid acplication of any volage higher than maximumized voitages. to this high impedance circuit.

[^39]: Note: - Electrical characteristics may vary depending on the use of external elements or mounting conditions.

[^40]: NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^41]: * 1 Prescaler or 90° phase shifter

[^42]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken io avoid apolication of any voltage higher than
 maximum rated voltages to this high impedance circuit.

[^43]: NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^44]: This device contains circuitry to protect the inputs against damage due to high static voltages or electic fields. However, tis advised that normal precautions be taken to avoid apolication of any voltage higher than

[^45]: COpyright © 1995 by FUJITSU LIMITED

[^46]: *: To be determined

[^47]: ${ }^{1}$ Note that the remaining Fujitsu PLLICs(MB87001A, 87073, and 87076), as well as the single-chip PLL/Prescaler family (MB1500), have a different phase detector design and a different truth table for $\phi \mathrm{r}$ and $\phi \mathrm{v}$:

[^48]: Stopband
 The input signal frequencies which a filter prevents from passing through to its output.

