

Prescalers

Phase-Locked Loops (PLLs)

FUJITSU

Telecommunication Products

1992
 Data Book

Fujitsu Limited
Tokyo, Japan
Fujitsu Microelectronics, Inc.
San Jose, California. U.S.A.
Fujitsu Mikroelektronik GmbH
Frankfurt, F.R. Germany
Fujitsu Microelectronics Asia PTE Limited
Singapore

All Rights Reserved.

Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Integrated Circuits Division, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A.

Printed in the U.S.A.
Edition 1.0

PREFACE

This data book contains the latest product information for Fujitsu's line of Telecommunications Products. This year's edition includes Piezoelectric Devices and IC Compandors, as well as sustaining products from the previous edition. Please note that the contents of this edition have been reorganized to better categorize products for your ease of use.

In addition to the collection of data sheets, you will find valuable information on ordering and expanded packaging descriptions, both in the Order Information section. One appendix, Design Information, is included as a guideline for selecting and designing Fujitsu prescalers and phase-locked loops for VHF and UHF frequency synthesis.
If you are interested in obtaining other Fujitsu product information, see the publication listing on the following pages for titles and brief descriptions of other Fujitsu product literature. To obtain a copy of any of the documents, contact one of our sales offices.

FUJITSU PRODUCT PUBLICATIONS

The following is a list of the product publications available from Fujitsu Microelectronics, Inc. Call your nearest FMI Sales Office or Sales Representative to order any document(s) you need. (See the Sales Information section for phone numbers.)

STANDARD PRODUCTS

Dynamic RAM Products Data Book	Contains product data sheets for NMOS and CMOS DRAMs, including 1 M and 4 M devices, and MOS application-specific RAMs.
Static RAM Products Data Book	Contains product data sheets for high-speed CMOS and BiCMOS SRAMs, low-power CMOS SRAMs and applicationspecific SRAMs.
ECL RAM Products Data Book	Contains product data sheets for ECL and TTL bipolar ECL RAMs, BiCMOS ECL RAMs, and application-specific RAMS including self-timed RAMs (STRAMs).
Programmable Memory Products Data Book	Contains product data sheets for programmable ROMs (including registered and wide-temperature range PROMs); CMOS maskprogrammable ROMS, OTP ROMs, erasable PROMs, and EEPROMs; NMOS erasable PROMs and non-volatile RAMs.
Memory Card Products Data Book	Contains product data sheets and programming information for 68 -pin JEIDA and PCMCIA standard memory cards and connectors and for 38 -pin memory cards.
Power Transistor Products Data Book	Contains product data sheets for RETs, Darlington arrays, and FETs.
Linear Products Data Book	Contains product data sheets for audio products, power supply controls, motor drivers, disk drivers, and converters (A/D, D/A, A/D-D/A, and FN), and other linear products.
Linear Products Selector Guide	Presents an overview of linear products.
Telecommunication Products Data Book	Contains product data sheets for prescalers and VCOs, PLLs, single-chip PLLs and Prescalers, CODECs, telephone ICs, and cellular telephone ICs, cordless telephone ICs, and piezoelectric devices.
Telecommunication Devices Selector Guide	Presents an overview of telecommunication products and piezoelectric devices.
Interface and Logic Products Selector Guide	Presents an overview of logic and interface devices.
CMOS 4-bit Microcontrollers Data Book, Vol. I	Contains product information, including the development tool for the MB8850 and MB88200 families of 4-bit microcontrollers.
CMOS 4-bit Microcontrollers Data Book, Vol. II	Contains product information, including the development tool for the MB88500 family of 4-bit microcontrollers.
CMOS 4-bit Microcontrollers Selector Guide	Presents an overview of the MB88500 (high end), MB8850 (midrange), and MB88200 (low end) families of 4-bit microcontrollers.
Master Product Guide	Presents an overview of the entire range of products offered by the Integrated Circuits Division: Standard and ASIC products.

FUJITSU PRODUCT PUBLICATIONS (Continued)

ASIC PRODUCTS

CMOS Channeled Gate Arrays Data Book
and Design Evaluation Guide
CMOS Channelless Gate Arrays Data
Book and Design Evaluation Guide
ASIC Products Selector Guide

BiCMOS Gate Arrays Data Book and Design Evaluation Guide

ECL Gate Arrays Data Book and Design Evaluation Guide

Contains product information for UHB Series High Drive CMOS Gate Arrays and CG10 Series High Drive CMOS Gate Arrays.

Contains product information for AU Series CMOS Series Gate Arrays and CG21 Series CMOS Gate Arrays.

Presents an overview of CMOS, BiCMOS, ECL, and GaAs gate arrays and CMOS standard cell products.

Contains product information for BC Series BiCMOS Gate Arrays and BC-H Series BiCMOS Gate Arrays.

Contains product information for ET Series ECL Gate Arrays, H Series ECL Gate Arrays, Ultra-High Performance ECL Gate Arrays, and VH Series ECL Gate Arrays.

Discusses the trend in ASICs: migration from using gates as primitives to using LSI and even VLSI macros as design elements.

Provides an overview of the third-party tools that work in concert with Fujitsu's proprietary tools, ViewCAD ${ }^{\text {TM }}$, BankCAD ${ }^{\text {™ }}$, and FAME. Also included are product profiles explaining how the third-party tools fit within the design framework.

Provides a basic understanding of Fujitsu's proprietary CAD/CAE system, ViewCAD. This book provides information necessary to design, test, simulate, and analyze circuits using Fujitsu's unit cell libraries for AU, UHB, CG10, CG21, and CG31 CMOS technologies.
Explains how to install Fujitsu's proprietary CAD/CAE system, ViewCAD.

Provides a basic understanding of the Valid System on the Sun platform as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries for AU and UHB CMOS technologies.

Provides a basic understanding of the Fujitsu ASIC Management Environment (FAME) software as it interfaces with third-party tools (Sun or PC) to build circuits using Fujitsu's unit cell libraries.

Provides installation and directory information for the Fujitsu ASIC Management Environment (FAME) software, which uses third-party tools (Sun or PC) to build circuits using Fujitsu's unit cell libraries.

Provides a basic understanding of the Synopsys ${ }^{(8)}$ system as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries.

FUJITSU PRODUCT PUBLICATIONS (Continued)

ASIC SOFTWARE (Continued)

Verilog-XL User's Guide

Future Publications

For Memory Products:

Hybrid Products (1992)

For ASIC Software:
ASIC Design Environment Data Book (1992)

Provides a basic understanding of the Verilog-XL® system as it interfaces with Fujitsu programs to build circuits using Fujitsu's unit cell libraries. capabilities.

Provides detailed information about the ASIC Design Methodology at Fujitsu. It contains an overview of the third-party tools that work in concert with Fujitsu's proprietary tools, ViewCAD, BankCAD, and FAME. Also included are product profiles explaining how the thirdparty tools fit within the design framework.

Synopsys(©) is a registered trademark of Synopsys, Inc. Verilog-XL(®) is a registered trademark of Cadence Design Systems, Inc. ViewCAD ${ }^{\text {TM }}$ and BankCAD ${ }^{\text {TM }}$ are trademarks of Fujitsu Limited. ASIC Gallery ${ }^{\text {™ }}$ is a trademark of Fujitsu Microelectronics, Inc.

Contents and Alphanumeric Product List

Fujitsu's Telecommunication Products

Introduction vii
Section 1 - Prescalers - At a Glance 1-1
MB467 $\quad 200$ MHz Low Power High Frequency Prescaler 1-3
MB501/L \quad 1.0/1.1 GHz Two Modulus Prescaler 1-11
$503 \quad 200 \mathrm{MHz}$ Two Modulus Prescaler 1-11
504/L $\quad 520 \mathrm{MHz}$ Two Modulus Prescaler 1-11
MB501LV \quad 1.1 GHz Low Voltage/Low Power Two Modulus Prescaler 1-23
MB504LV $\quad 520$ GHz Low Voltage/Low Power Two Modulus Prescaler 1-23
MB501SL \quad 1.1 GHz Super Low Power Two Modulus Prescaler 1-33
MB505-16 $\quad 1.6$ GHz Ultra-high Frequency Prescaler 1-43
MB506 $\quad 2.4 \mathrm{GHz}$ Ultra-high Frequency Prescaler 1-47
MB507 $\quad 1.6 \mathrm{GHz}$ Two Modulus Prescaler 1-51
MB508 2.3 GHz Two Modulus Prescaler 1-59
MB509 \quad 1.1 GHz Two Modulus Prescaler with Stand-by Mode 1-67
MB510 $\quad 2.7 \mathrm{GHz}$ Two Modulus Prescaler 1-75
MB511 \quad 1.0 GHz High-speed Prescaler 1-83
Section 2 - Phase-Locked Loops (PLLs) - At a Glance 2-1
MB87001A $\quad 13$ MHz CMOS Serial Input PLL Frequency Synthesizer 2-3
MB87006A $\quad 17$ MHz CMOS Serial Input PLL Frequency Synthesizer 2-15
MB87014A CMOS Serial Input PLL Frequency Synthesizer with 180 MHz Prescaler 2-27
MB87076 $\quad 13$ MHz CMOS Serial Input PLL Frequency Synthesizer With Power Down Mode 2-37
MB87086A 15 MHz CMOS Serial Input PLL Frequency Synthesizer 2-51
MB87087 $\quad 17$ MHz CMOS Serial Input PLL Frequency Synthesizer 2-61
MB87090 $\quad 13 \mathrm{MHz}$ CMOS Serial Input PLL FrequencySynthesizer with Constant Current Output Charge Pump2-73
Section 3 - Single-Chip PLLs/Prescalers - At a Glance 3-1
MB1501 Serial Input PLL Frequency Synthesizer with 1.1 GHz Prescaler 3-3
1501H
1501L
MB1502 Low Power Serial Input PLL Synthesizer with 1.1 GHz Prescaler 3-21
MB1503 Serial Input PLL Frequency Synthesizer with 1.1 GHz Prescaler 3-35
MB1504 Serial Input PLL Frequency Synthesizer with 520 MHz Prescaler 3-49
1504H
1504L
MB1505 Serial Input PLL Frequency Synthesizer with 600 MHz Prescaler 3-67
MB1507 Low Power Serial Input PLL Frequency Synthesizer with 2.0 GHz Prescaler 3-79

Contents and Alphanumeric Product List (Continued)

MB1508 Serial Input PLL Frequency Synthesizer with 2.5 GHz Prescaler 3-91
MB1509 Dual Serial Input PLL Frequency Synthesizer with 400 MHz Prescaler 3-101
MB1511 Low Power and Low Voltage Serial Input PLL FrequencySynthesizer with 1.1 GHz Prescaler3-115
MB1512 Low Power Serial Input PLL Frequency Synthesizer with 1.1 GHz Prescaler 3-127
MB1513 Serial Input PLL Frequency Synthesizer with 1.1 GHz Prescaler 3-139
MB1518 Serial Input PLL Frequency Synthesizer with 2.5 GHz Prescaler 3-153
MB1519 Dual Serial Input PLL Frequency Synthesizer with 600 MHz Prescaler 3-161
Section 4 - Single-Chip VCOs/Prescalers - At a Glance 4-1
MB551 1 GHz Dual Modulus Prescaler with VCO Circuit 4-3
Section 5 - Piezoelectric Devices - At a Glance 5-1
F5CB Series SAW-Bandpass Filter Devices 5-3
M2 Series Piezoelectric Devices (D100) with VCO 5-17
M2 Series Piezoelectric Devices (D300) with VCO 5-25
M3 Series Piezoelectric Devices (D001) with VCO 5-35
M3 Series Piezoelectric Devices (D101) with VCO 5-39
Section 6 - Cordless Telephone Integrated Circuits - At a Glance 6-1
MB86460A Modem with Internal Voice-Band Filters 6-3
MB87002 CMOS 1200 bps Minimum Shift Keying Modem 6-25
Section 7 - Telephone Integrated Circuits - At a Glance 7-1
MB3120 Compandor IC 7-3
MB3121 Compandor IC 7-15
MB4513 Telephone Amplifier/Tone Ringer 7-19
MB4518 Telecommunication Circuit 7-31
MB4752A Subscriber Line Interface IC 7-47
MB87007A Dual Tone Multifrequency Pulse Dialer 7-57
87008A
MB87009 Dual Tone Multifrequency Pulse Dialer 7-83
MB87017B Dual Tone Multifrequency Receiver 7-111
MB87029 Dual Tone Multifrequency Pulse Dialer 7-123
MB87057 Dual Tone Multifrequency Receiver 7-149
Section 8 - Coders/Decoders (CODECs) - At a Glance 8-1
MB6021A $\quad \mu$-law and A-law Single-chip CODEC with Filters 8-3
6022A

Contents and Alphanumeric Product List (Continued)

Section 9 - Quality and Reliability - At a Glance 9-1
Quality Control at Fujitsu 9-3
Quality Control Processes at Fujitsu 9-4
Section 10 - Ordering Information - At a Glance 10-1
IC Packages, Inserted Types 10-3
IC Packages, Surface Mounted Types 10-4
Part Number System 10-6
Section 11 - Sales Information - At a Glance 11-1
Fujitsu Worldwide Locations
Fujitsu Limited (Japan) 11-3
Fujitsu Microelectronics, Inc. (U.S.A.) 11-4
Fujitsu Electronic Devices Europe 11-6
Fujitsu Mikroelektronik GmbH (West Germany)
Fujitsu Microelectronics, Limited. (U.K.)
Fujitsu Microelectronics, Italia S.R.L. (Italy)
Fujitsu Microelectronics, Ireland, Ltd. (Ireland)
Fujitsu Microelectronics Asia PTE Ltd. (Singapore) 11-8
Integrated Circuits Corporate Headquarters - Worldwide 11-9
FMI Sales Offices for North and South America 11-10
FMI Representatives - USA 11-11
FMI Representatives - Canada 11-14
FMI Representatives - Mexico 11-14
FMI Representatives - Puerto Rico 11-14
FMI Distributors - USA 11-15
FMI Distributors - Canada 11-17
FMG, FML, FMIL Sales Offices for Europe 11-18
FMG, FML, FMIL Distribuiors - Europe 11-19
FMAP Sales Offices for Asia, Australia and Oceania 11-20
FMAP Representatives - Asia and Australia 11-21
FMAP Distributors - Asia 11-21
Section 12 - Appendix - Design Information
Application Note: Prescalers and PLLs 12-1

Contents and Alphanumeric Product List

Telecommunications Products

Alphanumeric List of Fujitsu Part Numbers
Device Page Device Page
F5 Series 5-3
MB1508 3-91
M2 Series (D100) 5-17
M2 Series (D300) 5-25
M3 Series (D001) 5-35
M3 Series (D101) 5-39
MB467 1-3
MB501 1-11
MB501L 1-11
MB501LV 1-23
MB501SL 1-33
MB503 1-11
MB504 1-11
MB504L 1-11
MB506 1-47
MB507 1-51
MB508 1-59
MB509 1-67
MB510 1-75
MB511 1-83
MB551 4-3
MB1501 3-3
MB1501H 3-3
MB1501L 3-3
MB1502 3-21
MB1503 3-35
MB1504 3-49
MB1504H 3-49
MB1504L 3-49
MB1505 3-67
MB1507 3-79
MB1509 3-101
MB1511 3-115
MB1512 3-127
MB1513 3-139
MB1518 3-153
MB1519 3-163
MB3120 7-3
MB3121 7-15
MB4513 7-19
MB4518 7-31
MB4752A 7-47
MB6021A 8-3
MB6022A 8-3
MB86460A 6-3
MB87001A 2-3
MB87002 6-25
MB87006A 2-15
MB87007A 7-57
MB87008A 7-57
MB87009 7-83
MB87014A 2-27
MB87017B 7-111
MB87029 7-123
MB87057 7-149
MB87076 2-37
MB87086A 2-51
MB87087 2-61
MB87090 2-73

Introduction

Page Title
xiii Fujitsu's Telecommunication Products

Fujitsu's Telecommunication Products

Introduction

Fujitsu manufactures a wide range of integrated circuits that includes linear products, microprocessors, telecommunications circuits, ASICs, high-speed ECL logic, power components (consisting of both discrete transistors and transistor arrays), and both static and dynamic RAMs.

The telecommunication product line offers devices for use in a wide range of applications. These telecommunication products are manufactured to meet the high standard of quality and reliability that is found in all Fujitsu products.

Prescalers

Fujitsu offers a wide range of prescaler devices capable of satisfying the technical requirements of today's applications. Features such as the 200 MHz to 2.7 GHz frequency range, low power consumption, and a multitude of divide ratios are some of the advantages of Fujitsu's prescaler family.

Phase-Locked Loops (PLLs)

The Fujitsu family of PLLs offers a wide range of operating frequencies with low supply currents and voltages to meet design needs. The serial input capability of these devices is an outstanding feature of Fujitsu's PLLs.

Single-Chip PLLs/Prescalers

Fujitsu is one of only a few semiconductor manufacturers to offer single-chip PLL/Prescaler devices. Fujitsu is the only manufacturer with a BiCMOS version that combines high speed and low power consumption in a single chip. With the increasing emphasis on board space reduction (to improve cost), reliability, and overall product size, these single-chip devices provide solutions for designers.

Single-Chip VCOs/Prescalers

Fujitsu is the only semiconductor manufacturer with a single-chip VCO/Prescaler family of products. With the increasing emphasis on overall product size reduction and added on-chip functionality, this new family of devices provides the needed design solution.

Fujitsu's Telecommunication Devices

Piezoelectric Devices

Fujitsu's lithium tantalate peizoelectric bandpass SAW filters provide sharp roll-off characteristics and excellent stability over temperature in a tiny $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ surface mount package. Standard frequencies are available for AMPS, NTACS, NMT, and ETACS transmit and receive frequencies. This family of devices also includes a series of voltage controlled oscillators.

Cordiess Telephone Integrated Circuits

Fujitsu's family of cordless telephone ICs offers low power consumption, ideal for application of this type. This family of products consists of minimum-shift keying modems for data transfer applications.

Telephone Integrated Circuits

Fujitsu offers a complete family of telephone ICs as an application-specific product line. These devices are capable of periorming advanced telephone functions such as SLIC, speech transmission/reception, DTMF, on-hook dialing, last number repeat, tone amplification, and companding functions.

Coder/Decoders (CODECs)

The Fujitsu family of CODECs consists of the MB6020 series. All devices conform to CCITT and AT\&T specifications.

Prescalers - At a Glance

$\frac{\text { Page }}{1-3}$	$\begin{gathered} \text { Device } \\ \hline \hline \text { MB467 } \end{gathered}$	Maximum Frequency 200 MHz	$\frac{\text { lcc }^{\text {Supply }}}{6 \mathrm{~mA}}$	$\frac{V_{c c}}{5 \mathrm{~V}}$	$\begin{aligned} & \begin{array}{l} \text { Divide } \\ \text { Ratio } \end{array} \\ & \hline \hline 10 / 20 \end{aligned}$	Package Options		
						8 -pin	Plastic	DIP, FPT
1-11	MB501	1.0 GHz	30 mA	5 V	64/65, 128/129	8 -pin	Plastic	DIP, FPT
	501L	1.1 GHz	10 mA	5 V	$\begin{aligned} & \text { 64/65, } \\ & \text { 128/129 } \end{aligned}$			
	503	200 MHz	8 mA	5 V	$\begin{aligned} & \text { 16/17, } \\ & 32 / 33 \end{aligned}$			
	504	520 MHz	10 mA	5 V	$\begin{aligned} & 32 / 33, \\ & 64 / 65, \end{aligned}$			
	504L	520 MHz	5 mA	5 V	$\begin{aligned} & 32 / 33, \\ & 64 / 65 \end{aligned}$			
1-23	MB501LV	1.1 GHz	12 mA	3 V	64/65, 128/129	8-pin	Plastic	DIP, FPT
	504LV	520 MHz	6 mA	3 V	$\begin{aligned} & 32 / 33, \\ & 64 / 65 \end{aligned}$			
1-33	MB501SL	1.1 GHz	5 mA	5 V	64/65, 128/129	8-pin	Plastic	DIP, FPT
1-43	MB505-16	1.6 GHz	9 mA	5 V	128/256	8-pin	Plastic	DIP, FPT
1-47	MB506	2.4 GHz	18 mA	5 V	64/128/256	8-pin	Plastic	DIP, FPT
1-51	MB507	1.6 GHz	18 mA	5 V	$\begin{aligned} & \text { 128/129, } \\ & 256 / 257 \end{aligned}$	8 -pin	Plastic	DIP, FPT
1-59	MB508	2.3 GHz	24 mA	5 V	128/130, 256/258, 512/514	8 -pin	Plastic	DIP, FPT
1-67	MB509	1.1 GHz	11.6 mA	5 V	$\begin{aligned} & \text { 64/65, } \\ & \text { 128/129 } \end{aligned}$	8 -pin	Plastic	DIP, FPT
1-75	MB510	2.7 GHz	10 mA	5 V	$\begin{aligned} & \text { 128/144, } \\ & 256 / 272 \end{aligned}$	8-pin	Plastic	FPT
1-83	MB511	1.0 GHz	23 mA	5 V	1,2,8	8 -pin	Plastic	DIP, FPT

200MHz, LOW POWER PRESCALER

The Fujitsu MB467 is a prescaler, which is used in Phase Locked Loop (PLL) frequency synthesizer. The MB467 will divide by 10 when SW pin is high (Vcc level) and by 20 when SW pin is low (open or $1 / 2 \mathrm{~V} \propto$ level). The output is an open collector output to drive TTL or CMOS logic circuit.

- Operating Frequency: $200 \mathrm{MHz}_{\mathrm{z}}$ max.
- Low Power Comsumption: 30mW typ.
- Low Level Input Voltage: $V_{i N} \geq 150 \mathrm{~m} V_{P-p}$
- Wide Operation Temperature: $\mathrm{T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Power Supply Voltage: $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%$
- Interface

Input: Capacitor coupling due to internal biased input Output: Open collector output

- Plastic 8-pin Standard Dual-In-Line Package: (Suffix: -P)
- Plastic 8-pin Standard Flat Package: (Suffix: -PF)

PIN ASSIGNMENT

Note: *it should be open.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Function
2	$V_{c c}$	DC Supply Voltage Input
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	CH	Check Input For Outgoing Test. It should be open.
7	NC	Non Connection
8	$\overline{I N}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{c c}$	4.5	5.0	5.5	V
Ambient Temperature	$\mathrm{T}_{\text {A }}$	-30		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			7	pF

ELECTRICAL CHARACTERISTICS

($\mathrm{V} c \mathrm{c}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-30$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Power Supply Current	Icc	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		6	10	mA
High-level Output Voltage	V_{OH}	With $2 \mathrm{k} \Omega$ pull-up resistor to $V_{c c}$	4.0			V
Low-level Output Voltage	V_{0}	With $2 k \Omega$ pull-up resistor to $V_{C C}$			0.4	V
Input Frequency	f_{N}	$\begin{array}{r} \mathrm{VI}_{\mathrm{N}}: 150 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ \text { sine wave } \end{array}$	10		200	$\mathrm{MH}_{\mathbf{z}}$
Input Signal Amplitude for IN	$V_{1 N}$		150		2000	$m V_{\text {P-p }}$

TIMING CHART

TEST CIRICUIT

Note: Input frequency has a influence of input signal amplitude, input signal slew rate, and input coupling capacitor value.
The MB467 can operate down to DC when large value of above parameters are selected.
The MB467 starts self-oscillation unless signal is input.
When a double drive, please connect either of input pins to GND by a 39 kohms pull down resistor. The oscillation is prevented easily.
When a single drive, please connect a pull down resistor to unused pin.

TYPICAL CHARACTERISTICS CURVE

APPLICATION EXAMPLE

PACKAGE DIMENSIONS

8-LEAD PLASTIC DUAL-IN-LINE PACKAGE

(CASE No. : DIP-08P-M01)

PACKAGE DIMENSIONS

8-LEAD PLASTIC FLAT PACKAGE
(CASE No. : FPT-08P-MO1)

MB467

MB501/501L/503/504/504L TWO MODULUS PRESCALERS

TWO MODULUS PRESCALERS

The Fujitsu MB 501/503/504 are two modulus prescalers, which are used in Phase Locked Loop (PLL) frequency synthesizer and will divide the input frequency by the modulus of $64 / 65$ or $128 / 129,16 / 17$ or $32 / 33$, and $32 / 33$ or $64 / 65$ respectively. MB 501L/MB 504L is the low-power version of MB 501/ MB 504; it will perform exactly the same function as MB 501/MB 504 but with much lower power dissipation.

The output is 1.6 V peak to peak on ECL level.

- High Operating Frequency, Low Power Operation.
1.0 GHz at 150 mW typ. (MB 501)
1.1 GHz at 50 mW typ. (MB501L)

200 MHz at 40 mW typ. (MB 503)
520 MHz at 50 mW typ. (MB 504)
520 MHz at 25 mW typ. (MB 504L)

- Pulse Swallow Function
- Wide Operation Temperature

$$
T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

- Stable Output Amplitude $\quad \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}_{\text {P-P }}$
- Complete PLL synthesizer circuit with the Fujitsu MB 87001A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or space saving Flat Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	V_{o}	10	mA
Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

[^0]Fig. 1 - BLOCK DIAGRAMS

Note: SW: $H=V_{C C}, L=$ open MC: $H=2.0 \mathrm{~V}$ to V_{CC}, $\mathrm{L}=\mathrm{GND}$ to 0.8 V

	SW	MC	Divide Ratio
MB 503	H	H	$1 / 16$
	H	L	$1 / 17$
	L	H	$1 / 32$
	L	L	$1 / 33$

Note: SW: $H=V_{C C}, L=$ open
$\begin{aligned} M C: H & =2.0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}, \\ \mathrm{L} & =\text { GND to } 0.8 \mathrm{~V}\end{aligned}$

	SW	MC	Divide Ratio
	H	H	$1 / 64$
MB 501/	H	L	$1 / 65$
MB 501L	L	H	$1 / 128$
	L	L	$1 / 129$

	SW	MC	Divide Ratio
	H	H	$1 / 32$
MB 504/	H	L	$1 / 33$
MB 504L	L	H	$1 / 64$
	L	L	$1 / 65$

Note: $\mathrm{SW}: \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ open
$M C: H=2.0 \mathrm{~V}$ to V_{CC},

$$
\mathrm{L}=\mathrm{GND} \text { to } 0.8 \mathrm{~V}
$$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage		4.5	5.0	5.5	V
Output Current	I_{0}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	V_{CC}	DC Supply Voltage
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	NC	Modulus Control Input (See Divide Ratio Table)
7	Non Connection	
8	IN	Complementary Input

MB501
MB501L
MB503
MB504
MB504L

ELECTRICAL CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted)

Parameter		Symbol	Conditions	Value			Unit	
		Min		Typ	Max			
Power Supply Current	MB501		Icc	I/O pins are open		30	42*	mA
	MB501L				10	14*	mA	
	MB503				8	12*	mA	
	MB504				10	14*	mA	
	MB504L				5	7*	mA	
Output Amplitude		V_{0}		1.0	1.6		$V_{\text {P-P }}$	
Input Frequency	MB501	f_{IN}	With input coupling capacitor 1000pF	10		1000	MHz	
	MB501L			10		1100	MHz	
	MB503			10		200	MHz	
	MB504			10		520	MHz	
	MB504L			10		520	MHz	
Input Signal Amplitude for IN	MB501	$V_{\text {IN }}$		-4		5.5	dBm	
	MB501L			-4		5.5	dBm	
	MB503			-12		10	dBm	
	MB504			-12		10	dBm	
	MB504L			-12		10	dBm	
High Level Input Voltage for MC		$V_{\text {IHM }}$		2.0			V	
Low Level Input Voltage for MC		$V_{\text {ILM }}$				0.8	V	
High Level Input Voltage for SW		$\mathrm{V}_{\text {IHs }}{ }^{* *}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V	
Low Level Input Voltage for SW		$V_{\text {ILS }}$		Open			V	
High Level Input Current for MC		$\mathrm{I}_{\text {IHM }}$	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.4	mA	
Low Level Input Current for MC		IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA	
Modulus Set-up Time MC to OUT	MB501	${ }_{\text {tset }}$			18	28	ns	
	MB501L				16	26	ns	
	MB503				38	46	ns	
	MB504				20	30	ns	
	MB504L				18	28	ns	

[^1]
MB501/MB501L TIMING CHART (2 MODULUS)

Example: Divide ratio $=64 / 65$

Note: When divide ratio of 65 is selected, positive pulse is applied by one to 33 .
The typical set up time is 18 ns (MB501), 16 ns (MB501L) from the MC signal input to the timing of change of prescaler divide ratio.

MB503 TIMING CHART (2 MODULUS)
Example: Divide ratio $=16 / 17$

Note: When divide ratio of 17 is selected, positive pulse is applied by one to 9 . The typical set up time is 38 ns from the MC signal input to the timing of change of prescaler divide ratio.

MB504/MB504LV TIMING CHART (2 MODULUS)

Example: Divide ratio $=32 / 33$

Note: When divide ratio of 33 is selected, positive pulse is applied by one to 17 .
The typical set up time is 20 ns (MB504), 18 ns (MB504L) from the MC signal input to the timing of change of prescaler divide ratio.

MB501
MB501L
MB503
MB504
MB504L

Fig. 2 - TEST CIRCUIT

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 4 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 5 - INPUT SIGNAL AMLITUDE vs. INPUT FREQUENCY

Fig. 6 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 7 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 8 - TYPICAL APPLICATION EXAMPLE

An example of application of MB501/501L/503/504/504L with PLL Synthesizer IC MB87001A

PACKAGE DIMENSIONS

8-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-08P-M01)

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE

(CASE No.: FPT-08P-M01)

MB501LV/504LV
 LOW VOLTAGE/LOW POWER TWO MODULUS PRESCALERS

LOW VOLTAGE/LOW POWER TWO MODULUS PRESCALERS

The Fujitsu MB501LV/504LV are low power and low voltage versions of MB501/504 two modulus prescalers used in Phase Locked Loop (PLL) frequency synthesizer and will divide the input frequency by the modulus of $64 / 65$ or $128 / 129$, and $32 / 33$ or $64 / 65$ respectively.
The output level is 1.1 V peak to peak on ECL level.

- Wide Low Voltage Operation. 3.0 V typ., +2.7 to 4.5 V
- High Frequency Operation, Low Power Operation ($\mathrm{V}_{\mathrm{IN}}=-12 \mathrm{dBm}$ min. $)$
1.1 GHz at 36 mW typ. (MB 501 LV)

520 MHz at 18 mW typ. (MB 504LV)

- Pulse Swallow Function
- Wide Operation Temperature

$$
\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

- Stable Output Amplitude

$$
V_{O U T}=1.1 \mathrm{~V}_{\mathrm{ppp}} \text { typ. }
$$

- Built-in a termination resistor Stable output amplitude is obtained up to output load capacitance of 8 pF .
- Complete PLL synthesizer circuit with the Fujitsu MB 87001A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or space saving Flat Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{cc}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - BLOCK DIAGRAMS

SW	MC	Divide Ratio
H	H	$1 / 64$
H	L	$1 / 65$
L	H	$1 / 128$
L	L	$1 / 129$

Note: SW: $H=V_{C C}, L=$ open MC: $H=V_{\text {IHM }}$ to $V_{C C}$. $L=G N D$ to $0.8 V$
$V_{1 H M}=\frac{1}{2} V_{C C}+0.3 V$
b) MB 504LV

SW $M C$ Divide Ratio H H $1 / 32$ H L $1 / 33$ L H $1 / 64$ L L $1 / 65$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbolue				Unit
		Min	Typ	Max	
Supply Voltage		2.7	3.0	4.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			8	pF

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Function
2	V CC $^{\text {Input }}$	
3	SW	DC Supply Voltage
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection Input (See Divide Ratio Table)
8	$\overline{\text { NN }}$	Complementary Input

ELECTRICAL CHARACTERISTICS
 (Recommended Operating Conditions unless otherwise noted)

Parameter		Symbol	Conditions	Value			Unit	
		Min		Typ	Max			
Power Supply Current	MB501LV		I_{cc}	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$		12		mA
	MB504LV				6		mA	
Output Amplitude		V_{0}		0.8	1.1		$V_{\text {P-P }}$	
Input Frequency	MB501LV	$\mathrm{fin}^{\text {N }}$	with input coupling capacitor 1000 pF	10		1100	M Hz	
	MB504LV			10		520	MHz	
Input Signal Amplitude		$V_{\text {IN }}$		-12		5.5	dBm	
High Level Input Voltage for MC Input		$\mathrm{V}_{\text {IHM }}$	$\mathrm{V}_{1 H M}=1 / 2 \mathrm{~V}_{\text {CC }}+0.3$	$V_{\text {IHM }}$			V	
Low Level Input Voltage for MC Input		$V_{\text {ILM }}$				0.8	V	
High Level Input Voltage for SW Input		$\mathrm{V}_{1 \mathrm{HS}}{ }^{*}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V	
Low Level Input Voltage for SW Input		$V_{\text {ILS }}$		OPEN			V	
High Level Input Current for MC Input		$\mathrm{I}_{\text {IHM }}$	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.4	mA	
Low Level Input Current for MC Input		IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA	
Modulus Set-up Time MC to OUT	MB501LV	$\mathrm{t}_{\text {SET }}$			16	26	ns	
	MB504LV				18	28	ns	

Note: *Design Guarantee

MB501LV TIMING CHART (2 MODULUS)

Example: Divide ratio $=64 / 65$

Note: When divide ratio of 65 is selected, positive pulse is applied by one to 33 .
The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

MB504LV TIMING CHART (2 MODULUS)

Example: Divide ratio $=32 / 33$

Note: When divide of 33 is selected, positive pulse is applied by one to 17 .
The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 2 - TĖST CIRCUIT

TYPICAL CHARACTERISTICS CURVES

Fig. 5 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

8-LEAD PLASTIC DUAL IN-LINE PACKAGE

 (CASE No.: DIP-08P-M01)
© 1988 FUJITSU LIMITED DO8006-2C

Dimensions in inches (millimeters)

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-08P-M01)

MB501SL
 SUPER LOW POWER TWO MODULUS PRESCALER

SUPER LOW POWER TWO MODULUS PRESCALER

The Fujitsu MB501SL is a super low power version of MB501 two modulus prescaler used in Phase Locked Loop (PLL) frequency synthesizer and divides the input frequency by the modulus of $64 / 65$ or $128 / 129$, respectively. The MB501SL achieves extremely small stay capacitance of internal element, realized through the use of Fujitsu Advanced Process Technology. As the results, high speed operation is achieved with low power supply current of 5 mA typ., about a half current value of MB501L.

```
- High Frequency Operation
            fmax = 1.1 GH 年max. (VIN = - 14bBm)
                64/65, 128/129
- Low Power Supply Current:
5.0mA typ.
- Stable Output Amplitude: }\quad\mp@subsup{V}{0}{}=1.6\textrm{Vp-p typ.
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Plastic 8-pin Dual-In-Line Package
Plastic 8-pin Mini Flat Package
- Built-in Termination Resistor
```

Stable output amplitude is obtained up to output load capacitance of 8 pF .

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated
voltages to this high impedance circuit.

[^2]Fig. 1 - MB501SL BLOCK DIAGRAM

	SW	MC	Divide Ratio
MB501SL	H	H	$1 / 64$
	H	L	$1 / 65$
	L	H	$1 / 128$
	L	L	$1 / 129$

Note: SW: $H=V_{c c}, L=$ open
MC: $\mathrm{H}=2.0 \mathrm{~V}$ to V_{cc}, $\mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	Description
1	IN	Input
2	Vower Supply, +5 V	
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
7	MC	Modulus Control Input (See Divide Ratio Table)
7	$\overline{\mathbb{N}}$	Non Connection

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{cc}	4.5	5.0	5.5	\checkmark
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	CL	-	-	8	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power Supply Current	Icc	-	-	5.0	7.0	mA
Output Amplitude	V_{0}	Built-in a termination resistor. Load capacitance $=8 \mathrm{pF}$	1.0	1.6	-	$V_{\text {p.p }}$
Input Frequency	fin	With input coupling capacitor 1000 pF	10	-	1100	MHz
Input Signal Amplitude	$\mathrm{V}_{\text {IN }}$	-	-14	-	0	dBm
High Level Input Voltage for MC	$\mathrm{V}_{\text {IHM }}$	-	2.0	-	-	V
Low Level Input Voltage for MC	$\mathrm{V}_{\text {ILM }}$	-	-	-	0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\text {IHs }}{ }^{*}$	-	$V_{c c}-0.1$	$V_{c c}$	$V_{c c}+0.1$	V
Low Level Input Voltage for SW	$\mathrm{V}_{1 \mathrm{LS}}$	-	OPEN			V
High Level Input Current for MC	ІІм	$\mathrm{V}_{1 H}=2.0 \mathrm{~V}$	-	-	0.4	mA
Low Level Input Current for MC	IILM	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2	-	-	mA
Modulus Set-up Time MC to Output	${ }_{\text {tex }}$	-	-	16	26	ns

Note: * Design Guarantee

Fig. 2 -TEST CIRCUIT

TWO MODULUS OPERATING TIMING CHART
Example. Divide Ratio of $64 / 65$

Notes:
When divide ratio of 129 is selected, positive pulse is added by one to 65 .
The typical set up time ($\mathrm{t}_{\mathrm{SET}}$) is 16 ns from MC signal input to the timing of change of prescaler divide ratio.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 5 - POWER SUPPLY CURRENT vs. POWER SUPPLY VOLTAGE

Fig. 6 - POWER SUPPLY CURRENT vs. TEMPERATURE

Fig. 7 - INPUT SIGNAL vs. INPUT FREQUENCY

Fig. 8 -TYPICAL APPLICATION EXAMPLE
1

MB501SL

PACKAGE DIMENSIONS

Dimensions in

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-08P-M01)

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE
 (CASE No.: FPT-08P-M02)

MB505-16
 Ultra High Frequency Prescaler

ULTRA HIGH FREQUENCY PRESCALER

The Fujitsu MB505 is a high frequency prescaler used in Phase Locked Loop (PLL) frequency synthesizer and will divide the input frequency by the modulus of 128 or 256 . The output level is 1.6 V peak to peak on ECL level.

Its ultra high frequency operation provides wide application range, such as Direct Broadcasting Satellite System, CATV system, UHF Transceiver, etc.

- High Frequency Operation	1.6 GHz max.
- Low Power Dissipation	45 mW typ.
- Wide Operation Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude	$\mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}_{\text {P.P }}$

- Complete PLL synthesizer circuit with the Fujitsu MB 87006A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Raging	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voit. ages or electric fields. However, it is advisec that normal precautions be taken to avord application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB 505 BLOCK DIAGRAM

PIN DESCRIPTION

Pin Number	Symbol	Function
1	IN	Input
2	V_{CC}	Power Supply Voltage
3	SW	Divide Ratio Control Input Selecting divide ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	NC	No Connection
7	NC	No Connection
8	$\overline{\mathbb{N}}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Vymbol				Unit
		Min	$T_{y p}$	Max	
Supply Voltage		4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Supply Current	Icc			9		mA
Output Amplitude	V_{0}		1.0	1.6		$V_{\text {D - }}$
Input Frequency	$\mathrm{f}_{\text {IN }}$	with input coupling capacitor 1000 pF	100		1600	MHz
Input Signal Amplitude	$V_{\text {IN }}$		0.15		1.2	V_{p-p}
High Level Input Voltage for SW	$\mathrm{V}_{\text {IHS }}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}-0.1$	V
Low Level Input Voltage for SW	$V_{\text {ILS }}$			Open		V

Fig. 2 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

PACKAGE DIMENSIONS

(Suffix: -P) (Suffix: -PF)

MB506
ULTRA HIGH FREQUENCY PRESCALER

ULTRA HIGH FREQUENCY PRESCALER

The Fujitsu MB506 is a high frequency prescaler used in Phase Locked Loop (PLL) frequency synthesizer and will divide the input frequency by the modulus of 64,128 or 256 . The output level is 1.6 V peak to peak on ECL level.

Its ultra high frequency operation provides wide application range, such as Direct Broadcasting Satellite System, CATV system, UHF Transceiver, etc.

- High Frequency Operation
2.4 GHz max.
- Power Dissipation
- Wide Operation Temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude $\quad \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}_{\text {P-P }}$
- Complete PLL synthesizer circuit with the Fujitsu MB 87006A, PLL synthesizer IC
- Plastic 8-pin Standard Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to V_{CC}	V
Output Current	I_{\circ}	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry a protect the inputs against damage due to hgh static voltages or electric fields. Howeve it is advised that normal precautions be then to avoid application of any voltage higler than maximum rated voltages to this hgh impedance circuit.

Fig. 1 - MB 506 BLOCK DIAGRAM

SW1	SW2	Divide Ratio
H	H	$1 / 64$
L	H	$1 / 128$
H	L	$1 / 128$
L	L	$1 / 256$

Note: $H=V_{C C}, L=$ open

PIN DESCRIPTION

Pin Number	Symbol	Function
1	IN	Input
2	$\mathrm{V}_{\text {cc }}$	Power Supply Voltage
3	SW1	Divide Ratio Control Input Selecting divide ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	SW2	Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)
7	NC	No Connection
8	$\overline{\mathrm{N}}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	V_{Cc}	4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Conditions		Value			Unit
				Min	Typ	Max	
Supply Current	$I_{\text {cc }}$				18		mA
Output Amplitude	V_{0}			1.0	1.6		$V_{\text {P-P }}$
Input Frequency	$\mathrm{fiN}^{\text {N }}$	with input coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	100		2200	MHz
		capacitor 1000 pF	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 60^{\circ} \mathrm{C} \end{aligned}$	100		2400	
Input Signal Amplitude	$\mathrm{V}_{\text {IN }}$	$\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ to 1.3 GHz		-16		5.5	dBm
		$\mathrm{f}_{\mathrm{IN}}=1.3 \mathrm{MHz}$ to 2.4 GHz		-4		5.5	
High Level Input Voltage for SW	$\mathrm{V}_{1 \mathrm{HS}}{ }^{*}$			$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{v}_{\mathrm{cc}}+0.1$	V
Low Level Input Voltage for SW	$V_{\text {ILS }}$				Open		V

Note: *Design Guarantee
Fig. 2 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

PACKAGE DIMENSIONS

1.6 GHz TWO MODULUS PRESCALER

1.6 GHz TWO MODULUS PRESCALER

The Fujitsu MB507 is a 1.6 GHz two modulus prescaler used in Phase Locked Loop (PLL) frequency synthesizer and will divide the input frequency modulus of $128 / 129$ or $256 / 257$.
The output level is 1.6 V peak to peak on ECL level.

- High Frequency Operation:
- Power Dissipation:
- Pulse Swallow Function
- Wide Operation Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude: $\quad \mathrm{V}_{\text {OUT }}=1.6 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Package

Standard 8-pin Dual-In-Line Package (Suffix: -P)
Standard 8-pin Flat Package
(Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{1 \mathrm{~N}}$	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB507 BLOCK DIAGRAM

MB 507	SW	MC	Divide Ratio
	H	H	$1 / 128$
	H	L	$1 / 129$
	L	H	$1 / 256$
	L	L	$1 / 257$

Note: SW: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ open
$\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	V $_{\text {cC }}$	DC Supply Voltage
3	SW	Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	$\overline{\text { IN }}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Vymbol				Unit
		Min	Typ	Max	
Supply Voltage		4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Supply Current	$I_{\text {cc }}$			18		mA
Output Amplitude	V_{0}		1.0	1.6		$V_{\text {P-P }}$
Input Frequency	$\mathrm{f}_{1 \mathrm{~N}}$	With input coupling capacitor 1000pF	100		1600	MHz
Input Signal Amplitude	$V_{\text {IN }}$		-4		10	dBm
High Level Input Voltage for MC Input	$\mathrm{V}_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC Input	$\mathrm{V}_{\text {ILM }}$				0.8	V
High Level Input Voltage for SW Input	$V_{\text {IHs* }}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V
Low Level Input Voltage for SW Input	$V_{\text {ILS }}$		OPEN			V
High Level Input Current for MC Input	$\mathrm{I}_{\text {IHM }}$	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC Input	$\mathrm{I}_{\text {ILM }}$	$\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}$	-0.2			mA
Modulus Set-up Time MC to OUT	${ }_{\text {t }}^{\text {SET }}$	1.6 GHz Operation		18	28	ns

Fig. 2 - TEST CIRCUIT

TIMING CHART (2 MODULUS)
Example: Divide ratio $=128 / 129$

Note: When divide of 129 is selected, positive pulse is applied by one to 65.
The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

(Suffix: P)

8-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (CASE No.: DIP-08P-M01)

PACKAGE DIMENSIONS (Continued)

(Suffix: PF)
8-LEAD PLASTIC FLAT PACKAGE
(CASE No.: FPT-08P-M01)

MB507

2.3 GHz TWO MODULUS PRESCALER

The Fujitsu MB508 is a 2.3 GHz two modulus prescaler used in Phase Locked Loop (PLL) frequency synthesizer and divides the input frequency by a modulus of $128 / 130,256 / 258$ or $512 / 514$. The output level is 1.6 V peak to peak ECL level. Its ultra high frequency operation provides wide application, such as Direct Broadcasting Satellite System, CATV system, UHF Transceiver, etc.

- High Frequency Operation: $f=2.3 \mathrm{GHz} \max .\left(V_{\mathrm{IN}}=-4 \mathrm{dBm} \min .\right)$
- Input Signal Amplitude: $\quad \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}\left(\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}\right.$ to 1.8 GHz$)$
- Pulse Swallow Function: 128/130, 256/258, 512/514
- Power Dissipation: 120 mW typ.
- Wide Operation Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Stable Output Amplitude: $\quad \mathrm{V}_{\mathrm{OUT}}=1.6 \mathrm{~V}_{\text {P.p }}$ typ.
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer system block IC

PIN ASSIGNMENT

- Standard Plastic 8-pin Dual-In-Line Package or Flat Package

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB508 BLOCK DIAGRAM

SW1	SW2	MC	Divide Ratio
H	H	H	$1 / 128$
H	H	L	$1 / 130$
H	L	H	$1 / 256$
L	H	H	$1 / 256$
H	L	L	$1 / 258$
L	H	L	$1 / 258$
L	L.	H	$1 / 512$
L	L	L	$1 / 514$

$\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{Cc}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	Descriptions
1	IN	Input
2	VCC $^{\text {SW1 }}$	Power Supply, +5V
3	SWT	Divide Ratio Control Input (See Divide Ratio Table)
4	Output	
5	MND	Ground
6	SW2	Modulus Control Input (See Divide Ratio Table)
7	$\overline{\text { IN }}$	Divide Ratio Control Input (See Divide Ratio Table)
8	Complementary Input	

RECOMMENDED OPERATING CONDITIONS

Parameter	Vymbol				Unit
		Min	Typ	Max	
Power Supply Voltage		4.5	5.0	5.5	V
Output Current	I_{0}		1.2		mA
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			12	pF

ELECTRICAL CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Values			Unit
			Min	Typ	Max	
Power Supply Current	$I_{\text {cc }}$			24		mA
Output Amplitude	V_{0}		1.0	1.6		$V_{\text {P-P }}$
Input Frequency	$\mathrm{f}_{\text {IN }}$	With input coupling capacitor 1000 pF	100		2300	MHz
Input Signal Amplitude	$V_{\text {INA }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \text { to } \\ & 2300 \mathrm{MHz} \end{aligned}$	-4		5.5	dBm
	$V_{\text {INB }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{N}}=100 \mathrm{MHz} \text { to } \\ & 1800 \mathrm{MHz} \end{aligned}$	-16		10	dBm
High Level Input Voltage for MC	$V_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC	$V_{\text {ILM }}$				0.8	\checkmark
High Level Input Voltage for SW	$\mathrm{V}_{\mathrm{IHS}}{ }^{*}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V
Low Level Input Voltage for SW	$V_{\text {ILS }}$		OPEN			\checkmark
High Level Input Current for MC	$\mathrm{I}_{\text {IHM }}$	$\mathrm{V}_{1 \mathrm{H}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC	$\mathrm{I}_{\text {ILM }}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA
High Level Input Current for SW	$\mathrm{I}_{\text {IHS }}$	$\mathrm{V}_{1 \mathrm{H}}=\mathrm{V}_{\mathrm{cc}}$			250	$\mu \mathrm{A}$
Modulus Set-up Time MC to Output at 2.3 GHz Operation	$\mathrm{t}_{\text {SET }}$			18	28	ns

Fig. 2 - TEST CIRCUIT

TIMING CHART (2 MODULUS)
Example: Divide ratio $=128 / 130$

Note: When divide ratio of 130 is selected, positive pulse is applied by two to 66 .
The typical set up time is 18 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

(Suffix: -P)

8-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-08P-M01)

PACKAGE DIMENSIONS (Continued)

(Suffix: -PF)

8-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-08P-M01)

MB508
1

MB509

TWO MODULUS PRESCALER WITH STAND-BY MODE

The Fujitsu MB509 is a low power two modulus prescaler which enables pulse swallow function. The MB509 is used in Phase Locked Loop (PLL) frequency synthesizer and divides the input frequency by the modulus of 64/65 or 128/129, respectively.
Power consumption is 58 mW typ. at power supply voltage of 5.0 V . The MB509 is equipped with the stand by mode which cuts off the power supply current $I_{c c}$ under PLL phase lock condition. ($l_{\mathrm{cc}}=180 \mu \mathrm{~A}$ under current cut condition) Intermittent operating mode is achieved by using MB509 and MB87076.

- High Speed: $\mathfrak{f m a x}=1.1 \mathrm{GHz}$ max. $\left(V_{\mathbb{I N}}=-4 \mathrm{dBm}\right.$ min. $)$
- Pulse Swallow Function: 64/65, 128/129
- Power Supply Consumption: 58mW typ.
- Stand-by Current: $180 \mu \mathrm{~A}$ typ.
- Stable Output Amplitude: $\mathrm{V}_{\mathrm{o}}=1.6 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ typ.
- Complete PLL synthesizer circuit with the Fujitsu MB87076, PLL frequency synthesizer IC.
- Plastic 8 -pin Dual-In-Line Package (Suffix: -P)

Plastic 8-pin Mini Flat Package (Suffix: -PF)

- Built-in a Termination Resistor Stable output amplitude is obtained up to output load capacitance of 8 pF .

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{cc}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{cc}	V
Output Current	I_{0}	10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{sTG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^3]Fig. 1 - MB509 BLOCK DIAGRAM

PS	SW	MC	Divide Ratio
H	H	H	$1 / 64$
H	H	L	$1 / 65$
H	L	H	$1 / 128$
H	L	L	$1 / 129$
L	-	-	Stand-by mode

Note: SW: $\mathrm{H}=\mathrm{V}_{\text {cc }} \mathrm{L}=$ open
MC: $\mathrm{H}=3.0 \mathrm{~V}$ to Vcc ,
$L=G N D$ to $0.8 V$
PS: $H=2.0 \mathrm{~V}$ to V_{cc}, $\mathrm{L}=\mathrm{GND}$ to 0.4 V

PIN DESCRIPTION

Pin Number	Symbol	Description
1	IN	Input
2	V $_{\mathrm{cc}}$	Power Supply, +5V
3	SW	Divide Ratio Control Input (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	PS	Stand-by Control Input (See Divide Ratio Table)
8	$\overline{\mathbb{N}}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value			
		Typ	Max	Unit		
Power Supply Voltage	V_{cc}		4.5	5.0	5.5	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	
Load Capacitance	CL	-	-	8	pF	

ELECTRICAL CHARACTERISTICS
(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power Supply Current			-	11.6	-	mA
	$\mathrm{IPs}^{\text {P }}$	Stand-by mode	-	180	-	$\mu \mathrm{A}$
Output Amplitude	V。	Built-in a Termination Resitor. Load capacitance $=8 \mathrm{pF}$	1.0	1.6	-	$V_{\text {Pp }}$
Input Frequency	$f_{1 \times}$	With input coupling capacitor 1000pF	10	-	1100	MHz
Input Signal Amplitude	$V_{\text {IN }}$	-	-4	-	5.5	dBm
High Level Input Voltage for MC	$\mathrm{V}_{\text {IH }}$	-	3.0	-	-	V
Low Level Input Voltage for MC	V_{L}	-	-	-	0.8	V
High Level Input Voltage for SW	$\mathrm{V}_{\text {H }}{ }^{*}$		$V_{\text {cc }}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}+} 0.1$	V
Low Level Input Voltage for SW	$V_{\text {II }}$		Open			V
High Level Input Voltage for PS	$\mathrm{V}_{\text {IH }}$	-	2.0	-	-	V
Low Level Input Voltage for PS	V_{1}	-	-	-	0.4	V
High Level Input Current for MC	$\mathrm{IH}^{\text {H}}$	$\mathrm{V}_{\mathrm{HH}}=3.0 \mathrm{~V}$	-	-	0.4	mA
Low Level Input Current for MC	$1 / 2$	$\mathrm{V}_{\mathrm{tL}}=0.8 \mathrm{~V}$	-0.2	-	-	mA
Modulus Set-up Time MC to Output	$\mathrm{t}_{\text {ser }}$	-	-	16	26	ns

Note: * Design Guarantee

Fig. 2 - TEST CIRCUIT

TWO MODULUS OPERATING TIMING CHART (64/65 DIVIDE RATIO)

The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SIGNAL AMPLITUDE vs. INPUT FREQUENCY

Fig. 4 - WAVEFORM OF STAND BY MODE

PS pin Input Signal

OUT pin Output signal (Prescaler output)

Note: About 50 ns of set up time is required both power on/off.

Fig. 5 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (continued)

8-LEAD PLASTIC FLAT PACKAGE
(Case No.: FPT-8P-MOI)

2.7 GHz TWO MODULUS PRESCALER

2.7 GHz TWO MODULUS PRESCALER

The Fujitsu MB510 is a ultra high speed two modulus prescaler which enables pulse swallow function. The MB510 is used in Phase Locked Loop (PLL) frequency synthesizer and divides the input frequency by the modulus of 128/144 or 256/272, respectively.

The MB510 achieves extremely small stray capacitance of internal element, realized through the use of Fujitsu Advanced Process Technology. As the results, ultra high speed is achieved with low power supply current of 10 mA typ.

- High Frequency Operation:
- Power Dissipation:
- Pulse Swallow Function:
- Wide Operation Temperature:
- Stable Output Amplitude:
- Built-in a Termination Resistor
- Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC
- Package

Standard 8-pin Flat Package
(Suffix: -PF)

AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to V_{CC}	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^4]Fig. 1 - MB510 BLOCK DIAGRAM

SW	MC	Divide Ratio
H	H	$1 / 128$
H	L	$1 / 144$
L	H	$1 / 256$
L	L	$1 / 272$

Note: SW: $H=V_{C C}, L=$ open
MC: $H=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V

PIN DESCRIPTION

Pin Number	Symbol	
1	IN	Input
2	V	
3	SW	DC Supply Voltage
4	OUT	Divide Ratio Control Input (See Divide Ratio Table)
5	GND	Output
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	Non Connection
8	$\overline{\text { IN }}$	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Output Current	I_{O}		1.2		mA
Ambient Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$
Load Capacitance	C_{L}			8	pF

ELECTRICAL CHARACTERISTICS
 (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Supply Current	Icc			10.0	15.0	mA
Output Amplitude	V_{0}	Built-in a termination resistor. Load capacitance $=8 \mathrm{pF}$	1.0	1.6		$V_{\text {P-P }}$
Input Frequency	fin	With input coupling capacitor 1000pF	10		2700	MHz
Input Signal Amplitude	$V_{\text {IN }}$	$\mathrm{fiN}_{\mathrm{IN}}=10$ to 2200 MHz	-10		10	dBm
		$\mathrm{f}_{\mathrm{IN}}=2200$ to 2700 MHz	-4		10	
High Level Input Voltage for MC Input	$\mathrm{V}_{\text {IHM }}$		2.0			V
Low Level Input Voltage for MC Input	$V_{\text {ILM }}$				0.8	V
High Level Input Voltage for SW Input	$\mathrm{V}_{1 \mathrm{HS}}{ }^{*}$		$\mathrm{V}_{\mathrm{cc}}-0.1$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.1$	V
Low Level Input Voltage for SW Input	$V_{\text {ILS }}$		OPEN			V
High Level Input Current for MC Input	$I_{\text {IHM }}$	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$			0.4	mA
Low Level Input Current for MC Input	Iflm	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$	-0.2			mA
Modulus Set-up Time MC to OUT	${ }_{\text {t }}^{\text {SET }}$			16	26	ns

Fig. 2 - TEST CIRCUIT

Fig. 3 - INPUT SIGNAL AMPLIFITUDE vs. INPUT FREQUENCY

TWO MODULUS TIMING CHART
Example. Divide Ratio of 128/144

Note: When divide ratio of 144 is selected, positive pulse is applied by 16 to 80 . The typical set up time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

Fig. 4 - TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

(Suffix: -PF)

8-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-08P-M01)

MB510

MB511 1GHz HIGH SPEED PRESCALER

HIGH SPEED PRESCALER

The Fujitsu MB511 is a 1 GHz high speed prescaler designed for use in PLL (Phase Locked Loop) frequency synthesizer application.

The MB511 consumes low power 23 mA at 5 V up to 1 GHz input frequency due to adoption of Fujitsu advanced bipolar process.

The MB511 will divide by 1,2 , or 8 , respectively and very sensitivity (-20 dBm min .). So, the MB511 is well suited for electronically tuned TV and CATV applications.

- Wide operating frequency range: $\mathrm{f}_{\text {in }}=50$ to $1000 \mathrm{MHz}\left(\mathrm{V}_{\text {in }}=\right.$ -20 dBm)
- Maximum operating frequency depends upon a divide ratio 1/1: 250 MHz max. (Buffer through)
1/2: 500 MHz max.
1/8: 1000 MHz max.
- Low supply current: 23 mA @5V
- High input sensitivity: -20 dBm min
- Stable output amplitude: 800 mVp -p $\left(\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}\right)$
- Wide temperature range:
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 8 -pin dual-in-line package (Suffix: -P)

Plastic 8-pin flat package (Suffix: -PF)

Absolute maximum ratings (See note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Outpu+ Current	V_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB511 BLOCK DIAGRAM

FUNCTION TABLE

S1 S2	Divide Ratio	Operating Frequency	
L	L	Not use	-
L	H	1	250 MHz
H	L	2	500 MHz
H	8	8	1000 MHz

$H=V_{c c}$
$L=$ OPEN

PIN DESCRIPTIONS

Pin No.	Symbol	I/O	Descriptions
1	IN	1	Input. The connection with VCO should be an AC connection.
2	$V_{\text {CC }}$	-	Power supply voltage input.
3	NC	-	No connection.
4	OUT	0	Output. Termination resistor is necessary due to emitter follower output.
5	GND	-	Ground.
6	S2	1	Divide ratio control input.
7	S1	1	Divide ratio control input.
8	$\overline{\text { IN }}$	1	Complementary input.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage		4.5	5.0		V	
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$	
Load Capacitance	C_{L}			5	pF	Termination resistor 500 Ω

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Note	
		Min	Typ	Max				
Power Supply Current			Icc	15	23	32	mA	Except termination output current.
Output Amplitude		V_{0}	0.4	0.8	1.2	V_{p-p}	500Ω termination, $C_{L}=5 p F$ max.	
Input Frequency	1/1	f_{1}	50		250	MHz	Min value is measured with coupling capacitor of 1000 pF .	
	1/2	f_{2}	50		500	MHz		
	1/8	f_{3}	50		1000	MHz		
Input Signal Amplitude		$V_{\text {in }}$	-20		+10	dBm	50Ω	
High Level Input Voltage	S1, S2	V_{IH}	$\mathrm{V}_{\mathrm{cc}}-0.7$	V_{cc}	$\mathrm{V}_{\mathrm{cc}}+0.5$	V		
Low Level Input Voltage		$V_{\text {IL }}$		OPEN		V		
High Level Input Current	S1, S2	$\mathrm{I}_{1 \mathrm{H}}$	40		160	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	

Fig. 2 - TEST CIRCUIT

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - INPUT SENSITIVITY CURVE (1/8 DIVIDE RATIO) POWER SUPPLY VOLTAGE DEPENDENCY

Fig. 4 - INPUT SENSITIVITY CURVE (1/2 DIVIDE RATIO) POWER SUPPLY VOLTAGE DEPENDENCY

Fig. 6 - POWER SUPPLY CURRENT vs. POWER SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 7 - INPUT SENSITIVITY CURVE (1/8 DIVIDE RATIO) TEMPERATURE DEPENDENCY

Fig. 9 - INPUT SENSITIVITY CURVE (1/1 DIVIDE RATIO) TEMPERATURE DEPENDENCY

Fig. 8 - INPUT SENSITIVITY CURVE (1/2 DIVIDE RATIO) TEMPERATURE DEPENDENCY

Fig. 10 - POWER SUPPLY CURRENT
vs. TEMPERATURE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (continued)

Section 2

Phase-Locked Loops (PLLs) - At a Glance

Page	Device	Maximum Frequency	$\mathrm{I}_{\mathbf{C c}}{ }^{\mathrm{Su}}$	Vcc	Programmable Counter	Swallow Counter	Reference Counter
2-3	MB87001A	13 MHz	$\begin{aligned} & 2.0 \mathrm{~mA} \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V}- \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 16-1023	Binary $0-127$	Binary 8-2048
2-15	MB87006A	10 MHz	3.5 mA	$\begin{aligned} & 3.0 \mathrm{~V}- \\ & 6.0 \mathrm{~V} \end{aligned}$	Binary 16-1023	Binary 0-127	Binary $8-16383$
2-27	MB87014A*	40 MHz	8.0 mA typ.	$\begin{aligned} & 4.5 \mathrm{~V}- \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 5-1023	$\begin{aligned} & \text { Binary } \\ & 0-63 \end{aligned}$	Binary $5-65535$
2-37	MB87076	15 MHz	3.0 mA	$\begin{aligned} & 2.7 \mathrm{~V}- \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 16-2047	Binary $0-127$	Binary $8-16383$
2-51	MB87086A	95 MHz	8.0 mA	$\begin{aligned} & 4.5 \mathrm{~V}- \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 5-1023	None	Binary $5-65535$
2-61	MB87087	10 MHz	2.5 mA typ. at 3.0 V 3.5 mA typ. at 5.0 V	$\begin{aligned} & 3.0 \mathrm{~V}- \\ & 6.0 \mathrm{~V} \end{aligned}$	Binary 5-1023	Binary $0-127$	Binary 5-16383
2-73	MB87090	15 MHz 13 MHz	4.0 mA typ. at 5.0 V 3.0 mA typ. at 3.0 V	$\begin{aligned} & 2.7 \mathrm{~V}- \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary $16-1023$	Binary 0-127	Binary 8-2048
NOTES: All devices are available in 16-pin plastic DIP and FPT packages. *Also has on-chip 180 MHz dual modulus (+64/65) prescaler.							

MB87001A

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87001A, fabricated in CMOS technology, is a serial input PLL frequency synthesizer.

The MB87001A contains an inverter for oscillator, a programmable reference divider, a divide factor of programmable reference divider control circuit, a phase detector, a charge pump, a 17-bit shift register, a 17 -bit latch, a programmable divider (a binary 7 -bit swallow counter, a binary 10 -bit programmable counter), and a control generator for an external dual modulus prescaler.

When supplemented with a loop filter and VCO, the MB87001A contains the necessary circuit to make up PLL frequency synthesizer. Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Single power supply voltage: $V_{D D}=2.7 \mathrm{~V}$ to 5.5 V
- Wide temperature range: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- 13 MHz typical input capability @5V (fin input)
- On-chip inverter for oscillator
- 8 divide factors for programmable reference divider are selected by \mathbf{S}_{1}. S_{2} and S_{3} input (1/8, 1/16, 1/64,
$1 / 128,1 / 256,1 / 512,1 / 1024$, 1/2048)
- Programmable 17 -bit divider with input amplifier consisting of: Binary 7 -bit swallow counter Binary 10-bit programmable counter
- Two types of phase detector output: On-chip charge pump output Output for external charge pump
- Easy interface to Fujitsu dual modulus prescaler

ABSOLUTE MAXIMUM	RATINGS (see NOTE)		($\mathrm{Vss}^{\text {s }}$ OV)
Rating	Symbol	Value	Unit
Power Supply Voltage	Vod	$V_{s s}-0.5$ to $V_{s s}+7.0$	V
Input Voltage	V IN	$V_{S S}-0.5$ to $V_{\text {DD }}+0.5$	V
Output Voltage	Vout	$V_{S S}-0.5$ to $V_{\text {DD }}+0.5$	V
Output Current	lout	± 10	mA
Open-drain Output	Voop	$\mathrm{V}_{\mathrm{SS}}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+3.0$	V
Operating Temperature	TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tste	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	PD	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^5]Fig. 1 - MB87001A BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1	$V_{\text {D }}$	-	Power supply voltage input.
2	Clock	1	Clock signal input for 17-bit shift register. Each rising edge of the clock shifts one bit of the data into the shift register.
3	Data	1	Serial data input for 17 -bit shift register. The data is used for setting the divide factor of programmable divider.
4	LE	1	Load enable input. When this pin is high level (high active), the data stored in the 17-bit shift register is transferred to 17-bit latch.
5	fin	1	Input for programmable divider from VCO or prescaler output. This input involves bias circuit and amplifier. The connection with external dual modulus prescaler should be an AC connection.
6	M	0	Control output for external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of fin input signal (pin \#5). Pulse Swallow Function: MB501L $\quad M=$ High: Preset modulus factor 64 or 128 $\mathrm{M}=$ Low: Preset modulus factor 65 or 129
7	LD	0	Output of phase detector. It is high level when fr and fp are equal, and then the loop is locked. Otherwise it outputs negative pulse signal.
8	Do	0	Three-state charge pump output of the phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency $f r$ and programmable divider output frequency fp as listed below: $\mathrm{fr}>\mathrm{fp}$: Drive mode ($\mathrm{D}_{0}=$ High level) $\mathrm{fr}=\mathrm{fp}: \quad$ High-impedance mode $\mathrm{fr}<\mathrm{fp}$: \quad Sink mode ($\mathrm{Do}=$ Low level)
$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & \phi R \\ & \phi P \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Phase detector outputs for an external charge pump. The mode of $\phi \mathrm{R}$ and $\phi \mathrm{P}$ is changed by the combination of programmable reference divider output frequency fr and programmable divider output frequency fp as listed below: * $\phi \mathrm{P}$ is a N -channel operi drain output.

PIN DESCRIPTION (Continued)

FUNCTIONAL DESCRIPTION

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data of binary code is input to Data pin. These data are loaded into the 17 -bit shift register from MSB. When load enable signal LE is high, the data stored in the 17 -bit shift register is transferred to the 17-bit latch.
The data (1) to (7) set a divide factor of the binary 7-bit swallow counter and data(8) to (17) set a divide factor of binary 10-bit programmable counter. In other words, serial data is equivalent to the divide factor of programmable divider.

Fig. 2 - BLOCK DIAGRAM OF PROGRAMMABLE DIVIDER

Binary 7-bit Swallow Counter Data Input

(7)	6	(5)	4	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	.
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows. Example MB501L
$S W=H(64 / 65)$: Bit 7 of shift register (7) should be zero.

Binary 10-bit Programmable Counter Data Input

17	(16)	(15)	14	(13)	12	(11)	10	9	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
\cdot	.									
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited. Divide factor N: 5 to 1023

PULSE SWALLOW FUNCTION

$f_{v c o}=[(N \times M)+A] \times f r$
fvco: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10 -bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)
A : Preset divide factor of binary 7-bit swallow counter (0 to 127)
fr : Output frequency of the programmable reference divider

Clock: Clock signal input for the 17 -bit shift register.
Each rising edge of the clock shifts one bit of data into the shift register.
Data : Serial data input for the 17-bit shift register.
LE : Load enable input.
When LE is high (high active), the data stored in the 17 -bit shift register is transferred to the 17 -bit latch.
The 17-bit data is used for setting a divide factor of the programmable divider.

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS
$\left(V_{D D}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$)

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\text {IN }}$		V_{IH}		2.1			V
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$				0.9		
Input Sensitivity	fin	Vfin	Amplitude in AC coupling, sine wave	0.8			Vp.p	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		1.0				
High-level Input Current	Except fin and $\mathrm{OSC}_{\mathrm{IN}}$	lit	$V_{I N}=V_{D D}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		in	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {Ss }}$		-1.0			
Input Current	fin	Ifin	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$		± 30		$\mu \mathrm{A}$	
	OSC $_{1 \times}$	losc	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$		± 30			
High-level Output Voltage	Except ϕP and OSCout	Vor	$\mathrm{IOH}=0 \mu \mathrm{~A}$	2.95			V	
Low-level Output Voltage		VoL	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05		
Low-level Output Voltage	ϕP	Volf	$\mathrm{l}_{\mathrm{oL}}=0.8 \mathrm{~mA}$			0.8	V	
High-level Output Voltage	OSCout	Vorx	$\mathrm{I}_{\mathrm{O}}=0 \mu \mathrm{~A}$	2.50				
Low-level Output Voltage		Voux	$\mathrm{l}_{\mathrm{l}} \mathrm{L}=0 \mu \mathrm{~A}$			0.50		
High-level Output Current	Except ϕ P and OSC ${ }_{\text {out }}$	Іон	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.5			mA	
Low-level Output Current		los	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	0.5				
N -channel Open Drain Cut Off Current	ϕP	lopf	$V_{O}=V_{\text {DD }}+3.0$		1.0		$\mu \mathrm{A}$	
Power Supply Current* ${ }^{1}$		100			2.0		mA	
Max. Operating Frequency of Programmable Reference Divider		fmaxd		13	20		MHz	
Max. Operating Frequency of Programmable Divider		$f m a x p$		10	20		MHz	

Note: $* 1$: fin $=5.0 \mathrm{MHz}, 12.8 \mathrm{MHz}$ Crystal is connected between OSCIN ${ }^{\text {and }}$ OSCout. Inputs are connected to ground except for fin and OSCIN. Outputs are open.

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\mathbf{I N}}$		$V_{\text {IH }}$		3.5			V
Low-level Input Voltage		$V_{\text {IL }}$				1.5		
Input Sensitivity	fin	Vfin	Amplitude in AC coupling, sine wave	1.0			Vp-p	
	OSC ${ }_{\text {IN }}$	Vosc		1.5				
High-level Input Current	Except fin and OSCIn	l_{1+}	$V_{\text {IN }}=V_{\text {DD }}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		$1 / 2$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		-1.0			
Input Current	fin	Ifin	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$	
	OSCin	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$		± 50			
High-level Output Voltage	Except ϕP and OSCout	V OH	$\mathrm{l}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	4.95			V	
Low-level Output Voltage		VoL	$l a=0 \mu \mathrm{~A}$			0.05		
Low-level Output Voltage	ϕP	Volp	$\mathrm{loL}=2 \mathrm{~mA}$			1.0	V	
High-level Output Voltage	OSCout	$V_{\text {OHX }}$	$\mathrm{l}^{\text {aH }}=0 \mu \mathrm{~A}$	4.50				
Low-level Output Voltage		loux	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.50		
High-level Output Current	Except ϕ P and OSCour	IOH	$\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.0			mA	
Low-level Output Current		lob	$\mathrm{V}_{\mathrm{oL}}=0.8 \mathrm{~V}$	1.0				
N -channel Open Drain Cut Off Current	ϕP	loff	$V_{0}=V_{\text {DD }}+3.0$		1.0		$\mu \mathrm{A}$	
Power Supply Current* ${ }^{1}$		lod			3.0		mA	
Max. Operating Frequency of Programmable Reference Divider		fmaxd		15	25		MHz	
Max. Operating Frequency of Programmable Divider		fmaxp		13	25		MHz	

Note: $* 1:$ fin $=5.0 \mathrm{MHz}, 12.8 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\mathbb{1}}$ and $\mathrm{OSC}_{\text {out }}$.
Inputs are connected to ground except for fin and $\mathrm{OSC}_{\mathrm{I}}$. Outputs are open.

Fig. 3 -TYPICAL APPLICATION EXAMPLE

TYPICAL CHARACTERISTICS CURVES

Inupt Sensitivity vs. Input Frequency (fin Section)

Power Supply Current vs. Input Frequency

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-16P-M06)

MB87006A

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87006A, fabricated in CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer.

The MB87006A contains an inverter for oscillator, programmable reference divider (binary 14-bit programmable reference counter), 14-bit shift register, 14-bit latch, phase detector, charge pump, 17-bit shift register, 17-bit latch, programmable divider (binary 7 -bit swallow counter, binary 10-bit programmable counter) and control generator for dual modulus prescaler.
When supplemented with a loop filter and VCO, the MB87006A contains the necessary circuit to make up a PLL frequency synthesizer. Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Wide range power supply voltage: $V_{C C}=3.0$ to 6.0 V
- Wide temperature range:

$$
T_{A}=-40 \text { to } 85^{\circ} \mathrm{C}
$$

- 17 MHz typical input capability at 5 V (fin input)
- Programmable divider with input amplifier consisting of:
-Binary 7-bit swallow counter -Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of binary 14-bit programmable reference counter
- On-chip inverter for oscillator
- Divide factor of programmable divider and programmable reference divider are set by serial data input. (The last data bit is control bit.)
- Two types of phase detector output: -On-chip charge pump output -Output for external charge pump
- Easy interface with Fujitsu prescalers
- 16-pin standard dual-in-line package (Suffix: -P)
16-pin standard flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Bating	Symbol	Value	Unit
Power Supply Voltage	Vod	$V_{s s}-0.5$ to Vss +7.0	V
Input Voltage	VIN	$V_{s s}-0.5$ to $V_{\text {DD }}+0.5$	V
Output Voltage	Vout	$V_{s S}-0.5$ to $V_{D D}+0.5$	V
Output Current	lout	± 10	mA
Operating Temperature	$T_{\text {A }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{0}	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However. it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^6]Fig. 1 - MB87006A BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbot	10	Descripion
1	OSCIN	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
3	fv	0	Monitor output of the phase detector. This pin is tied to the programmable divider output.
4	V_{00}	-	Power supply voltage input.
5	Do	0	Three-state charge pump output of phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency fv as listed below: $\mathrm{fr}>\mathrm{fv}: \quad$ Drive mode $\left(\mathrm{D}_{0}=\right.$ High level) $\mathrm{fr}=\mathrm{fv}_{\mathrm{v}}$. High impedance fr < fv : \quad Sink mode ($\mathrm{D}_{\mathrm{o}}=$ Low level)
6	$\mathrm{V}_{\text {ss }}$	-	Ground.
7	LD	0	Output of phase detector. It is high level when fr and f_{v} are equal, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	fin	1	Clock input for programmable divider. This input contains internal bias circuit and amplifier. The connection with an external dual-modulus prescaler should be an AC connection.
9	Clock	1	Clock signal input for 17-bit shift register and 14-bit shift register. Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for programmable divider and programmable reference divider. The last bit of the data is the control bit. Control bit determines which latch is activated. The data stored in the shift register is transferred to the 14 -bit latch when the bit is high, and to 17 -bit latch when low.
11	LE	1	Load enable input with internal pull up resistor. When this pin is high (active high), the data stored in shift register is transferred to 14-bit latch or 17-bit latch depending on the control bit data.
12	M	0	Control output for an external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of fin input signal (pin \#8). Pulse swallow function: e.g. MB501L: $M=$ High: Preset modulus factor 64 or 128 $M=$ Low Preset modulus factor 65 to 129

PIN DESCRIPTION (Continued)

Findos	Symbor	40	Descriplion
13	fr	0	Monitors output of phase detector input. This pin is tied to the programmable reference divider output.
14	REFout	0	Monitor output pin of the reference frequency. This output can be used as system clock for microprocessor, or reference oscillator for another PLL frequency synthesizer.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output for external charge pump. The mode of ϕR and ϕV is changed by the combination of programmable reference divider output frequency fr and programmable divider output frequency fv as listed below.

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT TIMING

* Data for programmable reference divider.

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider and programmable divider.
Data is input from MSB, and last bit data is a control bit.
Control bit is set high when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Data is input to internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data stored in shift register is transferred to 14-bit latch, or 17-bit latch depending on the control bit setting.

PULSE SWALLOW FUNCTION

$$
f v c o=[(N \times M)+A] \times f o s c+R(N>A)
$$

fuco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10-bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)

A : Preset divide factor of binary 7-bit programmable counter (0 to 127, $A<N$)
fosc : Output frequency of external oscillator
R : Preset divide factor of binary 14-bit programmable reference counter (5 to 16383)

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Serial data consists of 14-bit data, which is used for setting divide factor of programmable reference counter, and 1-bit control data. In this case, control bit is set high level.

The data format is shown below.

BINARY 14-BIT REFERENCE COUNTER DATA INPUT

(14)	(13)	(12)	(11)	(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	0	0	0	0	1	1	1	7
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	.	-	-	-	-
1	1	1	1	1	1	1	1	1	1	1	1	1	1	16383

Note: Divide factor less than 5 is prohibited. Divide factor : 5 to 16383

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER
Serial data consists of 17 -bit data, which is used for setting divide factor of programmable divider, and 1 -bit control data. In this case, control bit is set low level. The data (1) to(7) set a divide factor of 7 -bit swallow counter and data (8)to(1) set divide factor of 10 -bit programmable counter.

The data format is shown below.

BINARY 7-BIT SWALLOW COUNTER DATA INPUT

(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
\cdot							
\cdot							
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows. e.g. MB501L ($+65 / 65$)prescaler

SW $=\mathrm{H}(64 / 65)$: Bit 7 to shift register (7) should be zero.

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

(17)	(16)	(15)	14	(13)	$(12$	(11)	$(10$	(9)	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
\cdot										
\cdot										
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited.
Divide factor N : 5 to 1023

PHASE DETECTOR OUTPUT WAVEFORM

RECOMMENDED OPERATING CONDITIONS

MB87006A

ELECTRICAL CHARACTERISTICS

Notes: $\quad * 1:$ fin $=8.0 \mathrm{MHz} 11.5 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\mathbb{N}}$ and OSCout. Inputs are grounded except for fin and OSCin. Output are open.

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$)

Parameter					Value		
				Min	IVP	May	
High-level Input Voltage	Except fin and OSC In $_{\text {I }}$	$\mathrm{V}_{\text {IH }}$		Vodx0.7			V
Low-level Input Voltage		V IL				$V_{\text {do }} \times 0.3$	
Input Sensitivity	fin	Vfpp	Amplitude in AC coupling, sine wave	0.5			$V_{\text {p-p }}$
	$\mathrm{OSC}_{\text {IN }}$	V sin		0.5			
High-level Input Current	Except fin and OSC IN_{N}	$1{ }_{1}$	$V_{I N}=V_{D D}$		1.0		$\mu \mathrm{A}$
Low-level Input Current		ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$		-1.0		
Input Current	fin	Ifin	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$
	OSC ${ }_{\text {IN }}$	losc	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$
	LE	le	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		-60		$\mu \mathrm{A}$
High-level Output Voltage	Except OSCout	Vон	$\mathrm{l}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	4.95			V
Low-level Output Voltage		VoL	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05	
High-level Output Current	Except M and OSCout	loh	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	-1.0			mA
Low-level Output Current		la	$V_{\text {OL }}=0.4 \mathrm{~V}$	1.0			
High-level Output Current	M	Іонм	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	-1.5			mA
Low-level Output Current		lomm	$\mathrm{V}_{\mathrm{oL}}=0.4 \mathrm{~V}$	3.0			
Power Supply Current *'		100			3.5		mA
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	25		MHz
Maximum Operating Frequency of Programmabie Divider		$f m a x p$		17	25		MHz

Note: \quad *1. fin $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\mathbb{N}}$ and OSCour. Inputs are ground except for fin and OSC ${ }_{\text {IN }}$. Outputs are open.

TYPICAL CHARACTERISTICS CURVE

Input Sensitivity vs. Input Frequency (fin Section)

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

 (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-16P-M06)

MB87014A
 CMOS PLL Frequency Synthesizer/Prescaler

The Fujitsu MB87014A, fabricated in advanced CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer with an on-chip 180 MHz dual modulus prescaler.
The MB87014A contains dual modulus prescaler, inverter for oscillator, programmable reference divider, control circuit, phase detectors, charge pump, programmable divider (binary 6 -bit swallow counter and binary 10-bit programmable counter).

The MB87014A contains the necessary circuit to make up a PLL frequency synthesizer that operates at a speed up to 180 MHz .

- Single power supply voltage: $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V
- Wide temperature range: $\mathrm{T}_{\mathrm{A}}=-30$ to $60^{\circ} \mathrm{C}$
- 180 MHz input capability at 5 V (fin input)
- On-chip inverter for oscillator
- Programmable divider with input amplifier consisting of: Binary 6-bit swallow counter
Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of binary 16 -bit programmable reference counter
- Divide factor of programmable divider and programmable reference divider are set by serial data input. (The last data bit is a control bit.)
- Three types of phase detector outputs:
- On-chip charge pump output for active LPF
- On-chip charge pump output for passive LPF
- Output for external charge pump
- 16-pin standard dual-in-line package (Suffix: -P)

16-pin standard flat package (Suffix: -PF)

- Pulse swallow function

$$
f_{\text {vco }}=[(N \times M)+A] \times\left(\mathrm{F}_{\text {osc }}+\mathrm{R}\right)(\mathrm{N}>\mathrm{A})
$$

fyco :Output frequency of external voltage controlled oscillator (VCO)
$\mathrm{N} \quad$ Preset divide factor of binary 10-bit programmable counter (5 to 1023)
M :Preset modulus factor of internal dual modulus prescaler (64/65)
A :Preset divide factor of binary 6-bit swallow counter (0 to 63)
fosc :Output frequency of the external oscillator
R Preset divide factor of binary 16 -bit programmable reference counter (5 to 65535)
ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+7.0$	V
Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 10	mA
Operating Ambient Temperature	T_{A}	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against ls anage due to high static vorages or electric fields. However, in of any voltage higher than maximum rated voltages to this high impedance circuit.

[^7]

PIN DESCRIPTION

Plinon	Sy\%bot	\$10	Desictiphion
1	$\mathrm{OSC}_{\text {IN }}$	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used, but for large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be left open when an external oscillator is used.
3	fv	0	Monitor pin for the phase detector input. This pin is tied to the programmable divider output.
4	Voo	-	Power supply voltage input.
5	Dop	0	Output pin for low pass filter (Passive type). The mode of Dop is changed by the combination of programmable reference divider output frequency f_{r}, and programmable divider output frequency fv_{v} as listed below: $f_{t}>f_{v}: \quad$ Drive mode (Dop $=$ High level) $\mathrm{f}_{\mathrm{r}}=\mathrm{fv}: \quad$ High-impedance f_{f} < fv: \quad Sink mode (Dop = Low level)
6	$V_{s s}$	-	Ground.
7	LD	0	Output of phase detector. It is high level when f_{f} and f_{v} are coherent, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	fin	1	Frequency input to an internal prescaler from VCO. The connection with VCO should be AC connection.
9	Clock	1	Clock signal input for shift registers. Each rising edge of the clock makes one bit of the data shift into the shift registers.
10	Data	1	Serial data input for shift registers. The last bit of the data is the control bit. The control data determines which latch is activated.
11	LE	1	Load enable input. When this pin is high, the data from shift register is latched into programmable reference divider or programmable divider depending upon a control bit setting.
12	DoA	0	Output pin for low pass filter (Active type). The mode of $D_{O A}$ is changed by the combination of programmable reference divider output frequency f_{r}, and programmable divider output frequency f_{v} as listed below: $f_{f}>f_{v}: \quad$ Sink mode (Doa = Low level) $\mathrm{f}_{\mathrm{r}}=\mathrm{fv}_{\mathrm{v}}: \quad$ High-impedance $f_{t}<f_{v}: \quad$ Drive mode ($D_{O A}=$ High level)
13	f_{r}	0	Monitor pin for the phase detector input. This pin is tied to the programmable reference divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output pins for low pass filter (differential filter type). Outputs for external charge pump are changed by the combination of programmable reference divider output frequency f_{r}, and programmable divider output frequency f_{v} as listed below.

FUNCTIONAL DESCRIPTIONS

DIVIDE FACTOR OF DIVIDER

Binary code serial data is input to data pin. On rising edge of clock, one bit of data shifts into the shift register. Input data consists of 16 -bit data and 1 -bit control data. The control data determines which latch is activated. When control is high, 16 -bit latch is selected; when low, 6 -bit latch and 10 -bit latch are selected.

The serial data is input to 16 -bit shift registers and 1 -bit control register. When load enable is high, the data from the shift register is latched into the programmable reference divider (binary 16 -bit programmable reference counter) or programmable divider (binary 6 -bit swallow counter and binary 10 -bit programmable counter) depending upon a control bit setting.

FUNCTIONAL DESCRIPTIONS (Continued)

BINARY 6-BIT SWALLOW COUNTER DATA INPUT

Divide Factor	(1)	(2)	(3)	4	(5)	(6)
0	0	0	0	0	0	0
1	1	0	0	0	0	0
2	0	1	0	0	0	0
\cdot						
\cdot						
63	1	1	1	1	1	1

- Divide factor $\mathrm{A}: 0$ to 63

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

Divide Factor Factor	(7)	(8)	(9)	(10)	(11)	(11)	(13)	(14)	(15)	(16)
5	1	0	1	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0
7	1	1	1	0	0	0	0	0	0	0
-	.	-		-	-	-	-	-	-	-
1023	1	1	1	1	1	1	1	1	1	1

- Divide factor N: 5 to 1023
- Divide factor less than 5 is prohibited.

BINARY 16-BIT PROGRAMMABLE COUNTER DATA INPUT

Divide Factor	(1)	(2)	(3)	4	(5)	(6)	(7)	8	(9)	10	(11)	(12)	(13)	$(14$	(15)	(16)
5	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
\cdot																
\cdot																
65535	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

- Divide factor R: 5 to 65535
- Divide factor less than 5 is prohibited.

STAND-BY MODE

When zero data of 16-bit serial data is input, the MB87014 goes to stand-by mode. During stand-by mode, an internal circuit stops operation and f_{in} and $O S C_{\text {in }}$ are forced to high level. Thus, a low supply current is achieved. Stand-by down mode is released when data other than low is input.
SERIAL DATA INPUT TIMING

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider or programmable divider Data is input from MSB and last bit data is control bit.
Control bit is high level when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Clock input for 16 -bit shift registers and control register. Data is input into internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data from shift register is latched into programmable reference divider or programmable divider depending upon the control bit setting.

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

$\left(V_{S s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30\right.$ to $60^{\circ} \mathrm{C}$)

					Value		
				Min	Typ	Max	
High-level Input Voltage	Except fin and OSC ${ }_{\text {IN }}$	$\mathrm{V}_{1 H}$		3.5			V
Low-level Input Voltage		VIL				1.5	
Input Sensitivity	$\mathrm{fin}^{\text {in }}$	$V_{\text {tpp }}$	Amplitude in AC coupling, Sine wave	1.0			$V_{\text {p.p }}$
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {sin }}$		1.0			
High-level Input Current	Except fin and OSC ${ }_{\text {IN }}$	1 lH	$V_{1 H}=V_{D D}$		1.0		
Low-level Input Current		IL	$\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\text {Ss }}$		-1.0		
Input Current	$f_{\text {in }}$	Ifin	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$
	OSCin	losc	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {D }}$		± 50		
High-level Output Voltage	Except OSCout	Vон	$\mathrm{l}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	4.95			V
Low-level Output Voltage		VoL	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05	
High-level Output Current	Except OSCout	IOH	$\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{~V}$	-1.0			mA
Low-level Output Current		loL	$\mathrm{V}_{\mathrm{oL}}=0.4 \mathrm{~V}$	1.0			
Power Dissipation* ${ }^{1}$		lodp			8.0		mA
Stand-by Current**		lods			100		$\mu \mathrm{A}$
Maximum Operating** ${ }^{3}$ Frequency	REF Section	$f_{\text {maxd }}$		40	60		MHz
	PD Section	$f_{\text {maxp }}$		180	250		MHz

Notes: $\quad * 1: f_{\text {in }}=180 \mathrm{MHz}, 22 \mathrm{MHz}$ cystal is connected between O_{IN} and $O_{\text {O }} \mathrm{O}_{\text {out }}$ pins. Inputs are grounded except $f_{\text {in }}$ and OSCin. Outputs are open.
*2 All serial data is set to zero. Input are grounded except $f_{\text {in }}$ and OSCIIN. Output are open.
*3 REF Section :Maximum operating frequency of programmable reference divider. PD Section :Maximum operating frequency of programmable divider.

TYPICAL CHARACTERISTICS CURVES

Input Sensitivity vs. Input Frequency (fin Section)

Power Supply Current vs. Input Frequency

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE

 (CASE No.: FPT-16P-M06)

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER WITH POWER DOWN MODE

The Fujitsu MB87076, fabricated in CMOS technology, is a serial input PLL frequency synthesizer that features a power down mode.

The MB87076 contains an inverter for Oscillator, 14-bit Shift Register, 18-bit Shift Register, 1-bit Control Regisier, 14-bit Latch, 18-bit Latch, Programmable Divider (Binary 11-bit Programmable Counter and Binary 7-bit Swallow Counter), Programmable Reference Divider (Binary 14-bit Programmable Reference Counter), Phase Detector, Charge Pump, Control Generator for Two Modulus Prescaler, and Power Down Circuit.

The MB87076 selects either operation mode or power down mode, depending on PS input signal level. When device begins operation, phase f_{t} and f_{v} are synchronized

- Single Power Supply Voltage: $V_{D D}=2.7$ to 5.5 V
- Wide Temperature Range: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Low Power Supply Current: 3 mA typ, ($100 \mu \mathrm{~A}$ in power down mode)
- On-chip Inverter for Oscillator
- Programmable Reference Divider with Input Amplifier Programmable Divider with Input Amplifier
- 2 Types of Phase Detector Output

On-chip Charge Pump Output
Output for External Charge Pump

- On-chip Power Down Circuit
- 16-pin Standard Dual-in-line Package (Suffix: -P) 16-pin Standard Flat Package (Suffix: -PF)
- Pulse Swallow Function
$f_{\mathrm{yco}}=[(N \times M)+A] \times f_{\mathrm{OSC}}+R$
$f_{\text {vco }}$: VCO (Voltage Controlled Oscillator) Output Frequency
N : Preset Divide Factor of Binary 11-bit Programmable Counter (16 to 2047)
M : Preset Modulus Factor of External Two Modulus Prescaler (64 in 64/65 mode, 128 in 128/129 mode)
A : Preset Divide Factor of Binary 7-bit Swallow Counter (0 to 127)
fosc : Output Frequency of an External Oscillator
R : Preset Divide Factor of Binary 14-bit Programmable Reference Counter (8 to 16383)
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{DD}	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{S S}+7.0$	V
Input Voltage	$\mathrm{V}_{I N}$	$\mathrm{~V}_{S S}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{D D}+0.5$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 10	mA
Open Drain Output	V_{OP}	$\mathrm{V}_{S S}-0.5$ to $\mathrm{V}_{\mathrm{DD}}+3.0$	V
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static vothages or electric fields. However it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^8]Fig. 1 - MB87076 BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1	OSC $_{\text {IN }}$	1	Pin for Crystal Oscillator; Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupling when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Pin for Crystal Oscillator; Output of the inverting amplifier. This pin should be connected to ground when an external oscillator is used.
3	LC	0	Output pin for Loop Control Signal; It is at high level, when operation mode is selected. It is at low level, when power down mode is selected.
4	$V_{\text {D }}$	-	Power Supply Voltage
5	D	0	Three-state Charge Pump Output; The mode of D_{O} is changed by the combination of Programmable Reference Divider output frequency f_{r} and Programmable Divider output frequency f_{p} as listed below: $\begin{array}{ll} \mathfrak{f}_{\mathrm{t}}>\mathfrak{f}_{\mathrm{p}}: & D_{\mathrm{o}}=\mathrm{H} \text { level } \\ \mathfrak{f}_{\mathrm{t}}=f_{\mathrm{p}}: & D_{\mathrm{o}}=\text { High-impedance level } \\ \mathfrak{f}_{\mathrm{t}}<\mathfrak{f}_{\mathrm{p}}: & D_{\mathrm{o}}=\mathrm{L} \text { level } \end{array}$
6	$\mathrm{V}_{\text {ss }}$	-	Ground
7	LD	0	Output of Phase Comparator; It is at Low level when f_{r} and f_{p} are coherent, and then the loop is locked. Otherwise it outputs high level.
8	fin	1	Input for Binary 7-bit Swallow Counter and Binary 11 -bit Programmable Counter from VCO; This input involves bias circuit and amplifier. The connection with Dual Modulus Prescaler should be $A C$ connection.
9	Clock	1	Clock signal input for 18-bit Shift Register and 14-bit Shift Register; Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for Shift Registers. This data is the divide ratio of the divider, which is provided from the corresponded shift register. The last bit of the data is the control bit which specified destination of shift register. The data is transferred to 14 -bit Shift Register when the bit is at high level, and to 18 -bit Shift Register when at low level.

PIN DESCRIPTION (Continued)

Pin No.	Symbol	1/0	Description
11	LE	1	Load Enable Input; When this pin is at high level, the data latched from the Shift Register is transferred to Programmable Reference Divider or Programmable Divider depending on the control bit data.
12	M	0	Control output for external Dual Modulus Prescaler. The connection should be DC connection. Pulse Swallow Function: (Example) MB501: M = High: Preset Modules Factor 64 or 128 $M=$ Low: Preset Modules Factor 65 or 129
13	f	0	Monitors output of the phase comparator input; as well as monitoring the output of the reference divider.
14	PS	1	Power down control input; When this pin is at High level, operation mode is selected. When this pin is at Low level, power down mode is selected.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output for external charge pump.

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT FOR PROGRAMMABLE DIVIDER

Binary serial data is input to Data pin. Each rising edge of clock shifts one bit of the data into the shift registers and control register. Input data consists of 18-bit data and 1-bit of control bit data. In this case, control bit is set at low level. S_{1} to S_{7} is used for setting the divide ratio of 7 -bit swallow counter and S_{8} to S_{18} is used for setting the divide ratio of 11 bit programmable counter.

The data format is shown below.

7-bit Swallow Counter Data Input

Divide factor A	S_{7}	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Note: Divide factor: 0 to 127

11-bit Programmable Divider Data Input

Divide factor N	$\mathrm{~S}_{18}$	$\mathrm{~S}_{17}$	$\mathrm{~S}_{16}$	$\mathrm{~S}_{15}$	$\mathrm{~S}_{14}$	$\mathrm{~S}_{13}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{8}$
5	0	0	0	0	0	0	0	0	1	0	1
6	0	0	0	0	0	0	0	0	1	1	0
0	\cdot										
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide factor less than 5 is prohibited.
Divide factor: 5 to 2047

FUNCTIONAL DESCRIPTION (Continued)

SERIAL DATA INPUT FOR PROGRAMMABLE REFERENCE DIVIDER

Binary serial data is input to Data pin. Each rising edge of clock shifts one bit of the data into the shift registers and control register. Input data consists of 14-bit data and 1-bit of control bit data. In this case, control bit is set at high level.

The data format is shown below.
Control bit

14-bit Programmable Divider Data Input

Divide factor R	S_{14}	$\mathrm{~S}_{13}$	$\mathrm{~S}_{12}$	$\mathrm{~S}_{11}$	$\mathrm{~S}_{10}$	$\mathrm{~S}_{9}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\cdot														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: Divide factor less than 8 is prohibited. Divide factor: 8 to 16383

Fig. 2 - SERIAL DATA INPUT TIMING

Fig. 3 - PHASE DETECTOR WAVEFORM

Note: LD is set at High level when $f_{f} \neq f_{v}$. (Unclock condition) LD is set at Low level when $f_{r}=f_{v}$. (Lock condition)

POWER DOWN OPERATION DESCRIPTION

The MB87076 has power down function which selects operation mode or power down mode depending on PS input signal level. When PS is set at low level, power down mode is selected. During power down mode, internal dividers stop operation. Thus, very low power supply consumption is achieved and LC pin is set at Low level.

Then the PS level goes High with the frequency of VCO as almost the same value as that under the condition of phase lock, the following sequence is taken.

1) Programmable divider starts operation
2) f_{p} is output with some delay
3) Programmable reference divider starts operation when it receives f_{p}.
4) f_{i} is output
5) LC is forced to set at High level (Normal operation mode is selected)

When the f_{f} outputs immediately after the f_{p} outputs, and goes into the phase detector, the phase lock condition is obtained just after the first clock. When PS is set at Low level again, internal dividers stop operation. Then internal condition is reset.

Fig. 4 - POWER DOWN MODE

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{D D}$	2.7	5.0	5.5	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	$V_{\text {ss }}$		$V_{D D}$	V
Output Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(V_{s s}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC $_{\text {IN }}$		$\mathrm{V}_{\text {IH }}$		2.1			v
Low-level Input Voltage		v_{1}				0.9		
Input Sensitivity	$f i n$	$V_{\text {pp }}$	Amplitude in AC coupling, sine wave	0.5			$V_{p p p}$Sine	
	$\mathrm{OSC}_{\text {IN }}$	$V_{\text {sin }}$		0.5				
High-level Input Current	Except fin and $\mathrm{OSC}_{\mathrm{IN}}$	${ }_{1 / 4}$	$V_{\text {IN }}=V_{\text {OD }}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		$1 / 2$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$		-1.0			
Input Current	$f i n$	$\mathrm{InN}_{\text {In }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DO }}$		± 30		$\mu \mathrm{A}$	
	OSC $_{\text {IN }}$	$\mathrm{I}_{\text {x }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {D }}$		± 30			
High-level Output Voltage	Except ϕP and OSC out	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	2.95			v	
Low-level Output Voltage		Vol	$\mathrm{log}_{\text {c }}=0 \mu \mathrm{~A}$			0.05		

ELECTRICAL CHARACTERISTICS (Continued)

$\left(\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=3.0 \mathrm{~V}, \mathrm{~T}_{A}=-40\right.$ to $85^{\circ} \mathrm{C}$								
Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Low-level Output Voltage	ϕP		Vocv	$\mathrm{l}_{\mathrm{OL}}=0.8 \mathrm{~mA}$			0.80	v
High-level Output Voltage		$V_{\text {OHX }}$	$\mathrm{I}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	2.50				
Low-level Output Voltage		Voux	$\mathrm{I}_{\mathrm{OL}}=0 \mu \mathrm{~A}$			0.50		
High-level Output Current		1 OH	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.5				
Low-level Output Current		lob	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	0.5				
N -channel open drain Cut Off Current		loff	$V_{O}=V_{D D}+3.0 \mathrm{~V}$		1.0		$\mu \mathrm{A}$	
Power Supply Current ${ }^{\circ}$		looop	Operation mode		2.50		mA	
		loops	Power down mode			80	$\mu \mathrm{A}$	
Max. Operation Frequency of Programmable Reference Divider		$\mathrm{f}_{\text {maxd }}$		10	20		MHz	
Max. Operation Frequency of Programmable Divider		$f_{\text {maxp }}$		10	20			

Note: $* 1 \quad$ fin $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is conneceted between $\mathrm{OSC}_{\mathbb{N}}$ and $\mathrm{OSC}_{\text {out }}$. PS is set at high level, all other inputs are set at low level. Outputs are open.

ELECTRICAL CHARACTERISTICS (Continued)

ELECTRICAL CHARACTERISTICS (Continued)

$\left(\mathrm{V}_{\text {SS }}=0 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$								
Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Low-level Output Voltage	ϕP		Volv	$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.50	V
High-level Output Voltage		$\mathrm{V}_{\text {OHX }}$	$\mathrm{I}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	4.50				
Low-level Output Voltage		VoLx	$\mathrm{l}_{\mathrm{OL}}=0 \mu \mathrm{~A}$			0.50		
High-level Output Current		$\mathrm{IOH}^{\text {l }}$	$\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.0				
Low-level Output Current		lot	$\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	1.0				
N -channel open drain Cut Off Current		lopf	$V_{O}=V_{D D}+3.0 \mathrm{~V}$		1.0		$\mu \mathrm{A}$	
Power Supply Current *		$l_{\text {DDOP }}$	Operation mode		3.0		mA	
		$\mathrm{I}_{\text {DDPS }}$	Power down mode			100	$\mu \mathrm{A}$	
Max. Operation Frequency of Programmable Reference Divider		$f_{\text {maxd }}$		15	25			
Max. Operation Frequency of Programmable Divider		$f_{\text {maxp }}$		10	25			

Note: $* 1 \quad$ fin $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is conneceted between $\mathrm{OSC}_{\mathbb{N}}$ and $\mathrm{OSC}_{\text {out }}$. PS is set at high level, all other inputs are set at low level. Outputs are open.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-16P-M02)

MB87086A
CMOS PLL Frequency Synthesizer/Prescaler
The Fuijtsu MB87086A, fabricated in advanced CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer. The MB87086A contains an inverter for oscillator, programmable reference divider (binary 16-bit programmable reference counter), programmable divider (binary 10-bit programmable counter), phase detector, charge pump.

The MB87086A contains the necessary circuit to make up a PLL frequency synthesizer that operates at a speed up to 95 MHz .

- Single power supply voltage: $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V
- Wide temperature range: $\mathrm{T}_{\mathrm{A}}=-30$ to $60^{\circ} \mathrm{C}$
- On-chip inverter for oscillator
- Divide factor of programmable divider and programmable reference divider are set by serial data input. (The last data bit is a control bit).
- Three types of phase detector outputs:
-On-chip charge pump output for active LPF
-On-chip charge pump output for passive LPF -Output for external charge pump
- 16-pin standard dual-in-line package (Suffix: -P) 16-pin standard flat package (Suffix:-PF)
- 95 MHz input capability at 5 V (fin input)
- fin, Clock, Data input circuits involve schmitt circuit
- The divide factor is selected according to the following equation:
$\mathrm{f}_{\mathrm{vco}}=\mathrm{N} \times \mathrm{f}_{\mathrm{osc}}+\mathrm{R}$
fvco :Output frequency of external voltage controlled oscillator (VCO)
N :Preset divide factor of programmable divider (5 to 1023)
M :Preset modulus factor of internal dual modulus prescaler (64/65)
fosc :Output frequency of the external oscillator
R Preset divide factor of binary programmable reference divider (5 to 65535)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{DD}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{SS}}+7.0$	V
Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output Current	$\mathrm{l}_{\mathrm{OUT}}$	± 10	mA
Operating Ambient Temperature	T_{A}	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^9]

PIN DESCRIPTION

Pin No.	Symbol	1/0	Description
1	OSC $_{\text {IN }}$	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used, but for large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be connected to open when an external oscillator is used.
3	fv	0	Monitor pin for the phase detector input. This pin is tied to the programmable divider output.
4	$V_{D D}$	-	Power supply voltage input.
5	Dop	0	Output pin for low pass filter (Passive type). The mode of Dop is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency fv as listed below: $\mathrm{fr}>\mathrm{fv}$: \quad Drive mode (Dop - High level) $\mathrm{fr}=\mathrm{fv}: \quad$ High-impedance fr < $\mathrm{fv}: \quad$ Sink mode (Dop = Low level)
6	$V_{s s}$	-	Ground.
7	LD	0	Output of phase detector. It is high level when fr and f_{v} are coherent, and when the loop is locked. Otherwise it outputs low pulse signal.
8	fin	1	Frequency input to programmable divider from VCO or prescaler output. (This input has an internal feed back resistor.)
9	Clock	1	Clock signal input for shift registers. Each rising edge of the clock makes one bit of the data shift into the shift registers.
10	Data	1	Serial data input for shift registers. The last bit of the data is the control bit. The control data determines which latch is activated.
11	LE	1	Load enable input. When this pin is high level, the data stored in the shift registers is transferred to 16 -bit latch, or 10-bit latch depending on the control bit setting.
12	DoA	0	Output pin for low pass filter (Active type). The mode of $D_{O A}$ is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency f_{v} as listed below: fr > fv: Drive mode (Don - Low level) fr = fv: High-impedance $\mathrm{fr}<\mathrm{fv}: \quad$ Sink mode ($\mathrm{D}_{\mathrm{OA}}=$ High level $)$
13	$f r$	0	Monitor pin for the phase detector input. This pin is tied to the programmable reference divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output pins for low pass filter (differential filter type). Outputs for external charge pump are changed by the combination of programmable reference divider output frequency fr, and programmable divider output frequency $f v$ as listed below.

FUNCTIONAL DESCRIPTIONS

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER
Binary code serial data is input to data pin. Each rising edge of clock makes one bit of the data shift into the shift registers and control register. Input data consists of 16 -bit or 10-bit data and 1-bit of control bit data. The 16 -bit data is used for setting the divide factor of programmable reference divider. The 10-bit data is used for setting the divide factor of programmable divider.

The last bit of the data stored in control register is a control bit. Control data determines which latch is activated. When this bit is at high level, 16 -bit latch is selected; when this is at low level, 10-bit latch is selected.

The data format is shown below.

When LE is high level and control bit is high level, the data stored in 16 -bit shift register is transferred to 16 -bit latch. When LE is high level and control bit is at low level, the data stored in 10-bit shift register is transferred to 10-bit latch.

BINARY 10-BIT PROGRAMMABLE DIVIDER DATA INPUT

(10)	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
\cdot										
\cdot										
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited. Divide factor N: 5 to 1023

BINARY 16-BIT PROGRAMMABLE REFERENCE DIVIDER DATA INPUT

(16)	(15)	$(14$	(13)	(12)	(11)	$(10$	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
\cdot																
\cdot																
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	65535

Note: Divide factor less than 5 is prohibited. Divide factor R: 5 to 65535

SERIAL DATA INPUT TIMING

Notes:
Data input for programmable reference divider.
() Data input for programmable divider.
Data Serial data input is used for setting divide factor of programmable reference divider or programmable divider. Data is input from MSB and last bit data is control bit.
Control bit is set at high level when divide factor of programmable reference divider is set. Control bit is set at low level when divide factor of programmable divider is set.
Clock Clock input for 10-bit shift register, 16-bit shift register and control register. Data is input into internal shift registers by rising edge of the clock.

LE Load enable input:
When LE is high level, the data stored in shift registers is transferred to 16 -bit latch, or 10 -bit latch depending on the control bit setting.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{D D}$	4.5	5.0	5.5	V
Input Voltage	$V_{\text {IN }}$	$V_{\text {ss }}$		$V_{D D}$	V
Operating Temperature	T_{A}	-30		+60	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSCin		V_{1}		3.5			
Low-level Input Voltage		$V_{\text {IL }}$				1.5		
Input Sensitivity	fin	Vfpp	Amplitude in AC coupling, Sine wave	1.0			Vp-p	
	OSC ${ }_{\text {IN }}$	$V \mathrm{sin}$		1.0				
High-level Input Current	Except fin and OSCIN	lin	$V_{I H}=V_{D D}$		1.0			
Low-level Input Current		112	$\mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {SS }}$		-1.0			
Input Current	fin	1 Iin	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$	
	$\mathrm{OSC}_{\text {IN }}$	losc	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$		± 50			
High-level Output Voltage	Except OSCout	V OH	$\mathrm{I}_{\mathrm{OH}}=0 \mu \mathrm{~A}$	4.95			V	
Low-level Output Voltage		VoL	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05		
High-level Output Current	Except OSCout	loH	$\mathrm{V}_{\text {OH }}=4.6 \mathrm{~V}$	-1.0			mA	
Low-level Output Current		los	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1.0				
Power Dissipation*'		ldo			8.0		mA	
Maximum Operating*² Frequency	REF Section	fmaxd		40	60		MHz	
	PD Section	f maxp		95	130		MHz	

Notes: $\quad *$ 1: fin $100 \mathrm{MHz}, 22 \mathrm{MHz}$ cystal is connected between OSC In $_{\text {In }}$ and OSCour pins. inputs are grounded except fin and OSC ${ }_{\mathrm{I}}$. Outputs are open.
*2 REF Section: Maximum operating frequency of programmable reference divider. PD Section: Maximum operating frequency or programmable divider.

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE

 (CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

MB87086A

MB87087

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87087, fabricated in CMOS technology, is a serial input phase locked loop (PLL) frequency synthesizer.

The MB87087 contains an inverter for oscillator, programmable reference divider (binary 14-bit programmable reference counter), 14-bit shift register, 14-bit latch, phase detector, charge pump, 17 -bit shift register, 17 -bit latch, programmable divider (binary 7 -bit swallow counter, binary 10 -bit programmable counter) and control generator for dual modulus prescaler.
When supplemented with a loop filter and VCO, the MB87087 contains the necessary circuit to make up a PLL frequency synthesizer. Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1 GHz .

- Wide range power supply voltage: $V_{C C}=3.0$ to 6.0 V
- Wide temperature range: $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- $\quad 17 \mathrm{MHz}$ typical input capability at 5 V (fin input)
- Programmable divider with input amplifier consisting of:
-Binary 7-bit swallow counter -Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of binary 14-bit programmable reference counter
- On-chip inverter for oscillator
- Divide factor of programmable divider and programmable reference divider are set by serial data input. (The last data bit is control bit.)
- Two types of phase detector output: -On-chip charge pump output -Output for external charge pump
- Easy interface with Fujitsu prescalers
- 16-pin standard dual-in-line package (MB87087P)
16-pin standard flat package (MB87087PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	VDo	Vss -0.5 to $\mathrm{V}_{\text {ss }}+7.0$	V
Input Voltage	$V_{\text {IN }}$	$V_{S S}-0.5$ to $V_{D D}+0.5$	V
Output Voltage	Vout	$V_{\text {Ss }}-0.5$ to $V_{D D}+0.5$	V
Output Current	lour	± 10	mA
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	Po	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^10]

PIN DESCRIPTION

Pin No.	Symbol	10	Description
1	$\mathrm{OSC}_{1 \times}$	1	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSCout	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
3	fv	0	Monitor output of the phase detector. This pin is tied to the programmable divider output.
4	$V_{\text {Do }}$	-	Power supply voltage input.
5	Do	O	Three-state charge pump output of phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency fr , and programmable divider output frequency fv as listed below: $\mathrm{fr}_{\mathrm{r}}>\mathrm{fv}$: Drive mode ($\mathrm{D}_{\mathrm{o}}=$ High level) $\mathrm{fr}=\mathrm{fv}$: High impedance fr_{r} < fv : \quad Sink mode ($\mathrm{D}_{\mathrm{o}}=$ Low level)
6	$\mathrm{V}_{\text {ss }}$	-	Ground.
7	LD	O	Output of phase detector. It is high level when $f r$ and f_{v} are equal, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	fin	1	Clock input for programmable divider. This input contains internal bias circuit and amplifier. The connection with an external dual-modulus prescaler should be an AC connection.
9	Clock	1	Clock signal input for 17 -bit shift register and 14 -bit shift register. Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	1	Serial data input for programmable divider and programmable reference divider. The last bit of the data is the control bit. Control bit determines which latch is activated. The data stored in the shift register is transferred to the 14 -bit latch when the bit is high, and to 17 -bit latch when low.
11	LE	1	Load enable input with internal pull up resistor. When this pin is high (active high), the data stored in shift register is transferred to 14-bit latch or 17-bit latch depending on the control bit data.
12	M	0	Control output for an external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of input signal fin (pin \#8). Pulse swallow function: e.g. MB501L: $M=$ High: Preset modulus factor 64 or 128 $M=$ Low: Preset modulus factor 65 to 129

PIN DESCRIPTION (Continued)

Pinno.	Sylubor	\%\%	Description
13	fr	0	Monitor output of phase detector input. This pin is tied to the programmable divider output.
14	NC	-	No connection.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \phi V \\ & \phi R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Output for external charge pump. The mode of ϕR and ϕV is changed by the combination of programmable reference divider output frequency $f r$ and programmable divider output frequency $f v$ as listed below.

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT TIMING

* Data for programmable reference divider.

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider and programmable divider. Data is input from MSB, and last bit data is a control bit.
Control bit is set high when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.
Clock: Data is input to internal shift registers by rising edge of the clock.
LE: Load enable input:
When LE is high, the data stored in shift register is transferred to 14 -bit latch, or 17 -bit latch depending on the control bit setting.

PULSE SWALLOW FUNCTION

$$
f_{v c o}=[(N \times M)+A] \times f o s c \div R(N>A)
$$

fvco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10-bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler
(e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)

A : Preset divide factor of binary 7 -bit programmable counter (0 to $127, A<N$)
fosc : Output frequency of external oscillator
R : Preset divide factor of binary 14-bit programmable reference counter (5 to 16383)

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Serial data consists of 14-bit data, which is used for setting divide factor of programmable reference counter, and 1-bit control data. In this case, control bit is set high level.

The data format is shown below.

BINARY 14-BIT REFERENCE COUNTER DATA INPUT

(14)	(13)	(12)	(11)	$(10$	(9)	(8)	(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	0	0	0	0	1	1	1	7
\cdot														
\cdot														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	16383

Note: Divide factor less than 5 is prohibited. Divide factor : 5 to 16383

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data consists of 17 -bit data, which is used for setting divide factor of programmable divider, and 1-bit control data. In this case, control bit is set low level. The data(1) to (7) set a divide factor of 7 -bit swallow counter and data (8) to (17) set divide factor of 10-bit programmable counter

The data format is shown below

BINARY 7-BIT SWALLOW COUNTER DATA INPUT

(7)	(6)	(5)	(4)	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
\cdot							
\cdot							
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows.
e.g. MB501L ($+65 / 65$) prescaler
$\mathrm{SW}=\mathrm{H}(64 / 65)$: Bit 7 to shift register (7) should be zero.

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

(17)	(16)	(15)	(14)	(13)	12	(11)	$(10$	9	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
\cdot										
\cdot										
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited.
Divide factor N:5 to 1023

RECOMMENDED OPERATING CONDITIONS

ELECTRICAL CHARACTERISTICS

					Value		
				Min	Tip	Man	
High-level Input Voltage		V_{H}		$V_{\text {DO }} \times 0.7$			
Low-level Input Voltage	and OSCIN	VIL				Voox0.3	\checkmark
	fin	Vfin		0.5			
	OSCin	Vosc		0.5			
High-level Input Current		${ }_{1 H}$	$V^{\prime \prime}=V_{D D}$		1.0		
Low-level Input Current		ILI	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {Ss }}$		-1.0		
	fin	Ifin	$V_{\text {IN }}=V_{\text {Ss }}$ to $V_{\text {DD }}$		± 30		$\mu \mathrm{A}$
Input Current	OSCin	losc	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {Ss }}$ to $\mathrm{V}_{\text {DD }}$		± 30		$\mu \mathrm{A}$
	LE	leg	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$		-40		$\mu \mathrm{A}$
High-level Output Voltage		Vor	$\mathrm{IOH}^{\prime}=0 \mu \mathrm{~A}$	2.95			
Low-level Output Voltage		VoL	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05	
High-level Output Current		IOH	V OH $=2.6 \mathrm{~V}$	-0.5			
Low-level Output Current		lob	$\mathrm{VOL}=0.4 \mathrm{~V}$	0.5			
High-level Output Current		Іонм	$\mathrm{V}_{\mathrm{OH}}=2.6 \mathrm{~V}$	-0.7			
Low-level Output Current		loum	$\mathrm{VOL}=0.4 \mathrm{~V}$	1.5			
Power Supply Current *1		lod			2.5		mA
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	20		MHz
Maximum Operating Frequency of Programmable Divider		f maxp		10	20		MHz

Notes: $\quad * 1:$ fin $=8.0 \mathrm{MHz} 11.5 \mathrm{MHz}$ Crystal is connected between $\mathrm{OSC}_{\text {In }}$ and OSCout. Inputs are grounded except fin and $O S C_{\mathbb{N}}$. Output are open.

ELECTRICAL CHARACTERISTICS (Continued)

Parameter		Symbor	Condilion	Value			Unilts	
		Min		Typ	Max			
High-level Input Voltage	Except fin and OSC ${ }_{\text {In }}$		$V_{\text {IH }}$		$V_{\text {DOX }} 0.7$			
Low-level Input Voltage		VIL				$V_{\text {Do }} \times 0.3$	V	
Input Sensitivity	fin	Vfin	Amplitude in AC coupling, sine wave	0.5			Vp.p	
	OSC ${ }_{\text {IN }}$	Vosc		0.5				
High-level Input Current	Except fin and OSC ${ }_{\text {In }}$	lim	$V_{I N}=V_{D D}$		1.0		$\mu \mathrm{A}$	
Low-level Input Current		If	$V_{\text {IN }}=V_{\text {ss }}$		-1.0			
Input Current	fin	Ifin	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DO }}$		± 50		$\mu \mathrm{A}$	
	$\mathrm{OSC}_{\text {IN }}$	losc	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$		± 50		$\mu \mathrm{A}$	
	LE	leg	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		-60		$\mu \mathrm{A}$	
High-level Output Voltage	Except OSCout	VOH	$\mathrm{loH}=0 \mu \mathrm{~A}$	4.95			V	
Low-level Output Voltage		Vol	$\mathrm{loL}=0 \mu \mathrm{~A}$			0.05		
High-level Output Current	Except M and OSCout	Іон	$\mathrm{V}_{\text {OH }}=4.6 \mathrm{~V}$	-1.0			mA	
Low-level Output Current		los	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	1.0				
High-level Output Current	M	Іонм	$\mathrm{V}_{\text {OH }}=4.6 \mathrm{~V}$	-1.5			mA	
Low-level Output Current		locm	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$	3.0				
Power Supply Current *1		100			3.5		mA	
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	25		MHz	
Maximum Operating Frequency of Programmable Divider		f maxp		17	25		MHz	

Note: $\quad * 1$. f in $=8.0 \mathrm{MHz}, 11.5 \mathrm{MHz}$ Crystal is connected between OSC $_{\text {IN }}$ and OSCout. Inputs are grounded except fin and OSCIn. Outputs are open.

TYPICAL CHARACTERISTICS CURVE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

16-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-16P-M06)

© 1990 FUIITSU LIMITED F16015S-2C

MB87090

CMOS PLL FREQUENCY SYNTHESIZER

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER WITH CONSTANT CURRENT OUTPUT CHARGE PUMP

The Fujitsu MB87090, fabricated in CMOS technology, is a serial input PLL frequency synthesizer with constant current output charge pump.
The MB87090 contains an inverter for oscillator, programmable reference divider, divide factor of programmable reference divider control circuit, phase detector, constant current output charge pump, 17-bit shift register, 17-bit latch, programmable divider (binary 7 -bit swallow counter, binary 10-bit programmable counter), and a control generator for an external dual modulus prescaler.
When supplemented with a loop filter and VCO, the MB87090 contains the necessary circuit to make up a PLL frequency synthesizer.
Unique to this device is a constant current output charge pump. This allows improved modulation characteristics, tracking and noise performance compared to earlier devices.

- Constant current output charge pump. Magnitude of current controlled by external resistor: 0 to 4 mA .
- 13 MHz input capability @5V (fin input)
- Single power supply voltage: $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V
- Wide temperature range: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- On-chip inverter for oscillator
- Eight divide factors for programmable reference divider are selected by external input S_{1}, S_{2}, and $S_{3}(1 / 8,1 / 16,1 / 64,1 / 128,1 / 256,1 / 512,1 / 1024,1 / 2048)$
- Programmable 17-bit divider with input amplifier consisting of:

Binary 7-bit swallow counter
Binary 10-bit programmable counter

- Easy interface to Fujitsu dual modulus prescalers.
- 16-pin standard dual-in-line package (Suffix: -P)

16-pin standard flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)
ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	$V_{D D}$	$V_{S s}-0.5$ to $V_{S s}+7.0$	V
Input Voltage	$V_{\text {IN }}$	$V_{S s}-0.5$ to $V_{D D}+0.5$	V
Output Voltage	$V_{\text {out }}$	$V_{S s}-0.5$ to $V_{D D}+0.5$	V
Output Current	louT	± 10	mA
Operating Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	300	mW

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^11]

Fig. 1 - MB87090 BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Symbol	1/0	Description
1	VDD	-	Power supply voltage input.
2	Clock	1	Clock signal input for 17-bit shift register. Each rising edge of the clock shifts one bit of the data into the shift register.
3	Data	1	Serial data input for 17 -bit shift register. This data is used for setting the divide factor of programmable divider.
4	LE	1	Load enable input. When this pin is high level (high active), the data stored in the 17-bit shift register is transferred to the 17-bit latch.
5	fin	1	Input for programmable divider from VCO or prescaler output. This input involves bias circuit and amplifier. The connection with external dual modulus prescaler should be an AC connection.
6	M	0	Control output for external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of fin input signal (pin \#5). Pulse Swallow Function: MB501L $M=$ High: Preset modulus factor 64 or 128 $M=$ Low: Preset modulus factor 65 or 129
7	LD	0	Output of phase detector. It is high level when f_{r} and f_{p} are equal, and then the loop is locked. Otherwise it outputs negative pulse signal.
8	Do	0	Three-state charge pump output of the phase detector. The mode of D_{0} is changed by the combination of programmable reference divider output frequency f_{f} and programmable divider output frequency f_{p} as listed below: $f_{r}>f_{p}$: Drive mode (Do = High level) $f_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$: High-impedance mode $f_{\mathrm{f}}<\mathrm{f}_{\mathrm{p}}$: Sink mode \quad (Do $=$ Low level)
9	RC	1	The value of external resistor connected to this pin determines the magnitude of the current delivered by the charge pump. See graph on page 10.
10	f	0	This pin is tied to programmable reference divider output.
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & S_{1} \\ & S_{2} \\ & S_{3} \end{aligned}$	1	Control input for programmable reference divider. The combination of these inputs provides divide factor to programmable reference divider. See following page.
14	OSCout	0	Pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
15	$\mathrm{OSC}_{\mathbb{N}}$	I	Pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
16	$\mathrm{V}_{\text {ss }}$	-	Ground

FUNCTIONAL DESCRIPTION

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

Divide factor of programmable reference divider is set depending on input dignal S_{1} to S_{3}.

S_{n}	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	$\frac{1}{512}$	$\frac{1}{1024}$	$\frac{1}{2048}$
S_{1}	0	1	0	1	0	1	0	1
S_{2}	0	0	1	1	0	0	1	1
S_{3}	0	0	0	0	1	1	1	1

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data of binary code is input to Data pin. These data are loaded into the 17-bit shift register from MSB. When load enable signal LE is high, the data stored in the 17-bit shift register is transferred to the 17 -bit latch.
The data (1) to (7) set a divide factor of the binary 7-bit swallow counter and data (8) to (1) set a divide factor of binary 10-bit programmable counter. In other words, serial data is equivalent to the divide factor of programmable divider.

Fig. 2 - BLOCK DIAGRAM OF PROGRAMMABLE DIVIDER

Binary 7-bit Swallow Counter Data Input

(7)	6	(5)	4	(3)	(2)	(1)	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
1	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	.
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127
Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows. Example MB501L
$S W=H(64 / 65)$: Bit 7 of shift register (7) should be zero.

Binary 10-bit Programmable Counter Data Input

17$)$	(16)	(15)	$(14$	(13)	$(12$	(11)	$(10$	9	(8)	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
\cdot	.									
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited.
Divide factor $\mathrm{N}: 5$ to 1023

PULSE SWALLOW FUNCTION

$$
f_{\text {fvo }}=[(N \times M)+A] \times \text { fosc } \div R \quad(N>A)
$$

fuco : Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide factor of binary 10-bit programmable counter (5 to 1023)
M : Preset modulus factor of external dual modulus prescaler (e.g. 64 in $64 / 65$ mode, 128 in 128/129 mode of an MB501L prescaler)
A : Preset divide factor of binary 7-bit swallow counter (0 to 127)
fosc: Output frequency of the external oscillator
R : Preset divide factor of programmable reference divider ($8,16,64,128,256,512,1024,2048$)

CONSTANT CURRENT OUTPUT CHARGE PUMP

The MB87090 adopts constant current output charge pump. The output current of charge pump is controlled by an external resistor shown in Fig. 3.

Fig. 3 - EXTERNAL RESISTOR CONNECTION EXAMPLE

TIMING CHART

Clock: Clock signal input for the 17-bit shift register.
Each rising edge of the clock shifts one bit of data into the shift register.
Data : Serial data for the 17 -bit shift register is input.
LE : Load enable input.
When LE is high (high active), the data stored in the 17 -bit shift register is transferred to the 17 -bit latch.
The 17-bit data is used for setting a divide factor of the programmable divider.

RECOMMENDED OPERATING CONDITIONS
($\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	VDD	2.7	-	5.5	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	Vss	-	$V_{D D}$	V
Operating Temperature	TA	-40	-	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except $f_{\text {in }}$ and OSCNN		V_{IH}	-	2.1	-	-	V
Low-level Input Voltage		VIL	-	-	-	0.9		
Input Sensitivity	f in	$V_{\text {tpp }}$	Amplitude in AC coupling, sine wave	0.8	-	-	$V_{\text {p.p }}$	
	OSCin	$V_{\text {sin }}$		1.0	-	-		
High-level Input Current	Except f in and OSC ${ }_{\text {in }}$	$I_{1 H}$	$V_{I N}=V_{\text {DD }}$	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		ILI	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-	-1.0	-		
Input Current	$\mathrm{fin}^{\text {in }}$	1 lin	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$	-	± 30	-	$\mu \mathrm{A}$	
Input Current	OSC ${ }_{\text {IN }}$	losc	$V_{I N}=V_{S S}$ to $V_{\text {DO }}$	-	± 30	-	$\mu \mathrm{A}$	
High-level Output Voltage	Except OSCout	Vон	$\mathrm{IOH}=0 \mu \mathrm{~A}$	2.95	-	-	V	
Low-level Output Voltage		Vol	$\mathrm{loL}=0 \mu \mathrm{~A}$	-	-	0.05		
High-level Output Voltage	OSCout	Vонх	$\mathrm{I}_{\mathrm{O}}=0 \mu \mathrm{~A}$	2.50	-	-	V	
Low-level Output Voltage		Voux	$\mathrm{loL}=0 \mu \mathrm{~A}$	-	-	0.50		
High-level Output Current	Except Do and OSCout	Іон	$\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}$	-0.5	-	-	mA	
Low-level Output Current		los	$\mathrm{VOL}=1.0 \mathrm{~V}$	0.5	-	-		
High-level Output Current	Do ${ }^{-1}$	Iohd	$\mathrm{VOH}=2.0 \mathrm{~V}$	-1.0	-3.0	-	mA	
Low-level Output Current		loco	$\mathrm{VOL}=1.0 \mathrm{~V}$	1.0	3.0	-		
Power Supply Current ${ }^{2}$		ldo	-	-	2.0	4.0	mA	
Max. Operating Frequency of Programmable Reference Divider		$f_{\text {maxd }}$	-	13	20	-	MHz	
Max. Operating Frequency of Programmable Divider		$f_{\text {maxp }}$	-	10	20	-	MHz	

Notes: *1: RC pin external resistor $\mathrm{R}_{\mathrm{Ac}}=5 \mathrm{k} \Omega$.
*2 $f_{\text {in }}=5.0 \mathrm{MHz}, 12.8 \mathrm{MHz}$ Crystal is connected between OSC ${ }_{\text {IN }}$ and OSCour. RC pin external resistor $\mathrm{R}_{\mathrm{RC}}=5 \mathrm{k} \Omega$.
Inputs are connected to ground except for $\mathrm{f}_{\text {in }}$ and OSC IN. . Outputs are open.

ELECTRICAL CHARACTERISTICS (continued)

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
High-level Input Voltage	Except f_{in} and $\mathrm{OSC}_{\mathrm{IN}}$		$\mathrm{V}_{\text {H }}$	-	3.5	-	-	V
Low-level Input Voltage		VIL	-	-	-	1.5		
Input Sensitivity	$\mathrm{fin}^{\text {in }}$	$V_{\text {pp }}$	Amplitude in AC coupling, sine wave	1.0	-	-	Vp.p	
	OSC $_{\text {In }}$	$\mathrm{V}_{\text {an }}$		1.5	-	-		
High-level Input Current	Except $\mathrm{fin}_{\text {in }}$ and $\mathrm{OSC}_{\mathrm{in}}$	$1{ }_{1}$	$V_{\text {IN }}=V_{\text {D }}$	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IL	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ss }}$	-	-1.0	-		
Input Current	$\mathrm{f}_{\text {in }}$	Inn	$V_{\text {IN }}=V_{\text {SS }}$ to $V_{\text {DD }}$	-	± 50	-	$\mu \mathrm{A}$	
Input Current	OSC ${ }_{\text {IN }}$	losc	$V_{\text {IN }}=V_{S S}$ to $V_{\text {DD }}$	-	± 50	-	$\mu \mathrm{A}$	
High-level Output Voltage	Except OSCout	Vor	$\mathrm{loH}=0 \mu \mathrm{~A}$	4.95	-	-	V	
Low-level Output Voltage		Vob	$l o L=0 \mu \mathrm{~A}$	-	-	0.05		
High-level Output Voltage	OSCout	Vонх	$\mathrm{IOH}^{\text {a }}=0 \mu \mathrm{~A}$	4.50	-	-	V	
Low-level Output Voltage		Voux	$l o L=0 \mu \mathrm{~A}$	-	-	0.50		
High-level Output Current	Except Do and OSC ${ }_{\text {out }}$	Іон	$\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-1.0	-	-	mA	
Low-level Output Current		lot	$\mathrm{V}_{\mathrm{OL}}=1.0 \mathrm{~V}$	1.0	-	-		
High-level Output Current	Do ${ }^{\circ}$	Іоно	$\mathrm{V}_{\mathrm{OH}}=4.0 \mathrm{~V}$	-2.0	-5.0	-	mA	
Low-level Output Current		loto	V OL $=1.0 \mathrm{~V}$	2.0	5.0	-		
Power Supply Current ${ }^{2}$		lod	-	-	3.0	6.0	mA	
Max. Operating Frequency of Programmable Reference Divider		$\mathrm{f}_{\text {maxd }}$	-	15	25	-	MHz	
Max. Operating Frequency of Programmable Divider		$f_{\text {maxp }}$	-	13	25	-	MHz	

Note: \quad *1. RC pin external resistor $\mathrm{R}_{\mathrm{Ac}}=5 \mathrm{k} \Omega$.
*2. $\mathrm{f}_{\text {in }}=5.0 \mathrm{MHz}, 12.8 \mathrm{MHz}$ Crystal is connected between OSC ${ }_{\text {IN }}$ and OSCout. RC pin external resistor R $\mathrm{Rc}=5 \mathrm{k} \Omega$.
Inputs are connected to ground except for $\mathrm{f}_{\text {in }}$ and $\mathrm{OSC}_{\text {IN }}$. Outputs are open.

TYPICAL CHARACTERISTICS CURVES

Conditions: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} / 3.0 \mathrm{~V}$, Input amplitude of $\mathrm{fin}=1.0 \mathrm{~V}_{\text {Pp, }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Fig. 4 - INPUT FREQUENCY vs. INPUT SENSITIVITY (fin Section)

Fig. 6 - SUPPLY VOLTAGE vs. SUPPLY CURRENT

Fig. 5 - OUTPUT RESISTANCE vs. OUTPUT CURRENT

Fig. 7 - INPUT FREQUENCY vs. SUPPLY CURRENT

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
(CASE No.: DIP-16P-M04)

PACKAGE DIMENSIONS (Continued)

Section 3

Single-Chip PLLs/Prescalers - At a Glance

Page	Device	Maximum Frequency	Divide Ratio	${ }_{\text {Icc }}^{\text {Supi }}$	$V_{c c}$	Programmable Counter	Swallow Counter	Reference Counter	Package Options
3-3	$\begin{gathered} \text { MB1501 } \\ \text { 1501H } \\ \text { 1501L } \end{gathered}$	1.1 GHz	$\begin{aligned} & 64 / 65 \text { or } \\ & 128 / 129 \end{aligned}$	15 mA	$\begin{aligned} & 2.7 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 16 to 2047	Binary 0 to 127	Binary 8 to 16383	16-pin Plastic FPT
3-21	MB1502	1.1 GHz	$\begin{aligned} & 64 / 65 \text { or } \\ & 128 / 129 \end{aligned}$	8 mA	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \text { (typ) } \end{aligned}$	Binary $16 \text { to } 2047$	Binary 0 to 127	Binary 8 to 16383	16-pin Plastic FPT
3-35	MB1503	1.1 GHz	128/129	8 mA	5.0 V (typ)	Binary $16 \text { to } 2047$	Binary 0 to 127	Binary 8 to 16383	16-pin Plastic FPT
3-49	$\begin{gathered} \text { MB1504 } \\ \text { 1504H } \\ \text { 1504L } \end{gathered}$	520 MHz	$\begin{aligned} & 32 / 33 \text { or } \\ & 64 / 65 \end{aligned}$	10 mA	$\begin{aligned} & 2.7 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary 16 to 2047	Binary 0 to 127	Binary 8 to 16383	16-pin Plastic FPT
3-67	MB1505	600 MHz	$\begin{aligned} & 32 / 33 \text { or } \\ & 64 / 65 \end{aligned}$	6 mA	5.0 V (typ.)	Binary 16 to 2047	Binary 0 to 63	Binary 8 to 16383	16-pin Plastic FPT
3-79	MB1507	2.0 GHz	$\begin{aligned} & 128 / 129 \text { or } \\ & 256 / 257 \end{aligned}$	18 mA	5.0 V (typ)	Binary $16 \text { to } 2047$	$\begin{aligned} & \text { Binary } \\ & 0 \text { to } 255 \end{aligned}$	Binary 8 to 16383	16-pin Plastic FPT
3-91	MB1508	2.5 GHz	$\begin{aligned} & 256 / 272 \text { or } \\ & 512 / 528 \end{aligned}$	16 mA	5.0 V (typ)	Binary $32 \text { to } 4095$	Binary 0 to 31	Binary 256, 512, 1024, 2048	20-pin Plastic FPT
3-101	MB1509*	400 MHz	$\begin{aligned} & 32 / 33 \text { or } \\ & 64 / 65 \end{aligned}$	8 mA	$\begin{aligned} & 3.0 \mathrm{~V} \\ & \text { (typ) } \end{aligned}$	Binary $16 \text { to } 2047$	Binary 0 to 127	$\begin{aligned} & \text { Binary } \\ & 512 \text { or } 1024 \end{aligned}$	20-pin Plastic FPT
3-115	MB1511	1.1 GHz	$\begin{aligned} & 64 / 65 \text { or } \\ & 128 / 129 \end{aligned}$	7 mA	$\begin{aligned} & 2.7 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary $16 \text { to } 2047$	Binary 0 to 127	Binary 8 to 16383	20-pin Plastic FPT
3-127	MB1512	1.1 GHz	$\begin{aligned} & 64 / 65 \text { or } \\ & 128 / 129 \end{aligned}$	8 mA	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \text { (typ) } \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16 \text { to } 2047 \end{aligned}$	Binary 0 to 127	Binary 8 to 16383	20-pin Plastic FPT
3-139	MB1513	1.1 GHz	128/29	8 mA	5.0 V	$\begin{aligned} & \text { Binary } \\ & 16 \text { to } 2047 \end{aligned}$	Binary 0 to 127	Binary 8 to 16383	20-pin Plastic FPT
3-153	MB1518	2.5 GHz	512/528	16 mA	5.0 V (typ)	Binary $32 \text { to } 511$	Binary $0 \text { to } 31$	512	16-pin Plastic FPT
3-163	MB1519*	600 MHz	64/65	11 mA	$\begin{aligned} & \text { 2.7 V to } \\ & 5.5 \mathrm{~V} \end{aligned}$	Binary $16 \text { to } 2047$	Binary 0 to 127	512, 1024	20-pin Plastic FPT

*Dual PLLPrescaler

MB1501/MB1501H/MB1501L

 SERIAL INPUT PLL FREQUENCY SYNTHESIZER
SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB1501/MB1501H/MB1501L, utilizing BI-CMOS technology, is a single chip serial input PLL frequency synthesizer with puise-swallow function.
The MB1501 series contain a 1.1 GHz two modulus prescaler that can select either 64/65 or 128/129 divide ratio; control signal generator; 16 -bit shift register; 15 -bit latch; programmable reference divider (binary 14 -bit programmable reference counter); 1 -bit switch counter; phase comparator with phase inverse function; charge pump; crystal oscillator; 19 -bit shift register; 18 -bit latch; programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter).
The MB1501 operates on a low supply voltage (3 V typ) and consumes low power (45 mW at 1.1 GHz).

MB1501 Product Line

	V_{p} Voltage	$V_{\text {oop }}$ Voltage	Lock up time	Do Output Widh	High-level Output Current	Low-level Output Current
MB1501	8 V max	8.5 V max	Middle speed	Middle	Middle	Middle
MB1501H	$10 \mathrm{~V} \max$	10.0 V max	High speed	Low	High	Low
MB1501L	8 V max	8.5 V max	Low speed	High	Low	High

- On-chip prescaler
- Low power supply voltage: 2.7 V to 5.5 V (3.0V typ)
- Low power supply consumption: 45 mW (3.0V, 1.1 GHz operation)
- Serial input 18 -bit programmable divider consisting of: - Binary 7-bit swallow counter (Divide ratio: 0 to 127)
- Binary 11 -bit programmable counter (Divide ratio: 16 to 2047)
- Serial input 15 -bit programmable reference divider consisting of:
- Binary 14 -bit programmable reference counter (Divide ratio: 8 to 16383)
- 1 -bit switch counter (SW) Sets divide ratio of prescaler
- 2types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Condition	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {cc }}$		-0.5 to +7.0	V
	$\mathrm{V}_{\text {PH }}$	MB1501H	$\mathrm{V}_{\text {cc }}$ to 12.0	V
	$\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{PL}}$	MB1501/1501L	$V_{c c}$ to 10.0	
Output Voltage	$V_{\text {Out }}$		-0.5 to $V_{c c}+0.5$	V
Open-drain Output	$V_{\text {OOPH }}$	MB1501H	-0.5 to 11.0	\checkmark
	$\mathrm{V}_{\text {OOP }, ~} \mathrm{~V}_{\text {OOPL }}$	MB1501/1501L	-0.5 to 9.0	
Output Current	l ${ }_{\text {Out }}$		± 10	mA
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE DIP-16P-M04

PLASTIC PACKAGE FPT-16P-M06

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. How ever, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

\qquad

[^12]

PIN DESCRIPTIONS

Pin No.	Pin Name	1/0	Descriptions
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC }_{\text {OUT }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between $\mathrm{OSC}_{\mathbb{N}}$ and $\mathrm{OSC}_{\text {out }}$.
3	V_{p}	-	Power supply input for charge pump.
4	$\mathrm{V}_{\text {cc }}$	-	Power supply voltage input.
5	D	0	Charge pump output. Phase characteristic can be inversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. This pin outputs high when the phase is locked. While the phase difference of f_{l} and f_{p} exists, the output level goes low.
8	$\mathrm{f}_{\text {in }}$	1	Prescaler input. The connection with an external VCO should be an AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. Each rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Serial data of binary code input. The last bit of the data is a control bit. The last data bit specifies which latch is activated. When the last bit is high level and LE is high-level, data is transferred to 15 -bit latch. When the last bit is low level and LE is high level, data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high level (or open), data stored in the shift register is transferred to latch depending on the control data.
12	FC	0	Phase selecting input of phase comparator (with internal pull up resistor). When FC is low level, charge pump and phase detector characteristics can be inversed.
13	f_{r}	O	Monitor pin of phase comparator input. It is the same as programmable reference divider output.
14	f_{p}	0	Monitor pin of phase comparator input. It is the same as programmable divider output.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \varnothing P \\ & \varnothing R \end{aligned}$	0	Outputs for external charge pump. Phase characteristics can be inversed depending on FC input. $\varnothing \mathrm{P}$ pin is an N -channel open-drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is input using Data pin, Clock pin and LE pin, The 15 -bit programmable reference divider and 18 -bit programmable divider are controlled respectively.

On rising edge of the clock shifts one bit of the data into the internal shift registers.
When load enable (LE) is high level (or open), data stored in shift resisters is transferred to 15-bit latch or 18 -bit latch depending upon the control bit level.

Control data " H " ; Data is transferred into 15 -bit latch.
Control data "L" ; Data is transferred into 18-bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

(O) 14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide ratio R	S 14	S 13	S 12	S	S	S	S	S	S	S	S	S	S	S
9	8	7	6	5	4	3	2	1						
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Divide ratio less than 8 is prohibited. Divide ratio R: 8 to 16383

SW: Divide ratio of prescaler setting bit.
SW="H": 64
SW="L" : 128
S_{1} to S_{14} : Divide ratio of programmable reference counter setting bits (8 to 16383)
C : Control bit (Control bit is set to high.)

FUNCTIONAL DESCRIPTIONS

PROGRAMMABLE DIVIDER

Programmable divider consists of 19-bit shift register, 18-bit latch, 7 -bit swallow counter and 11-bit programmable counter. Serial 19-bit data format is shown below.

[^13]
SERIAL DATA INPUT TIMING

On the rising edge of the clock shifts one bit of the data into the shift registers.
Parenthsis data is used for setting the divide ratio of the programmable reference divider.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS
FC pin (pin 12) is provided to inverse the phase comparator characteristics. The characteristics of internal charge pump output (D_{\circ}), phase detector outputs ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) can be inversed depending upon FC input data. Outputs are shown below.

	$F C=H$ (or open)			$F C=L$		
	D_{\circ}	$\varnothing R$	$\varnothing P$	D_{\circ}	$\varnothing R$	$\varnothing P$
$f_{r}>f_{p}$	H	L	L	L	H	Z
$f_{r}<f_{p}$	L	H	Z	H	L	L
$f_{r}=f_{p}$	Z	L	Z	Z	L	Z

Note: $\mathrm{Z}=$ (High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like(1), FC should be set high or open circuit;
When VCO characteristics are like (2), FC should be set Low.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value			Unit
			Min	Typ	Max	
Power Supply Voltage	$V_{c c}$		2.7	3.0	5.5	V
	$\mathrm{V}_{\text {PH }}$	MB1501H	V_{cc}		10.0	V
	$\mathrm{V}_{\mathrm{p}}, \mathrm{V}_{\mathrm{PL}}$	$\begin{aligned} & \text { MB1501 } \\ & \text { MB1501L } \end{aligned}$	$V_{c c}$		8.5	
Open-drain Output	$V_{\text {OOPH }}$	MB1501H	$V_{c c}$		10.0	V
	$V_{\text {OOP }}, V_{\text {OOPL }}$	$\begin{aligned} & \hline \text { MB1501 } \\ & \text { MB1501L } \\ & \hline \end{aligned}$	V_{cc}		8.5	
Input Voltage	$V{ }_{\text {IN }}$		GND		$\mathrm{V}_{\text {cc }}$	V
Operating temperature	$\mathrm{T}_{\text {A }}$		-40		+85	${ }^{\circ} \mathrm{C}$

MB1501
MB1501H
MB1501L

ELECTRICAL CHARACTERISTICS

($\mathrm{V} \mathrm{cc}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Pin Name	Symbol	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	V_{cc}	$l_{\text {cc }}$	*1		-	15	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	f_{iN}	*2		10	-	1100	MHz
	OSC $_{\text {IN }}$	fosc			-	12	20	MHz
Input Sensitivity	$\mathrm{f}_{\text {in }}$	$V_{\text {in } 1}$	$\mathrm{V}_{\mathrm{cc}}=2.7 \sim 4.0 \mathrm{~V}$		-10	-	6	dBm
		$V_{\text {fin } 2}$	$\mathrm{V}_{\mathrm{cc}}=4.0 \sim 5.5 \mathrm{~V}$		-4	-	6	dBm
	OSG $_{\text {IN }}$	$V_{\text {IN }}$			0.5	-	-	$V_{\text {P.p }}$
High-level Input Voltage	Except f_{in} and OSC $_{\text {IN }}$	V_{1}			$0.7 \times V_{c c}$	-	-	V
Low-level Input Voltage		$\mathrm{V}_{\text {LL }}$			-	-	0.3 xV Vc	V
High-level Input Current	Data, Clock	$I_{\text {H/ }}$			-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current					-	-1.0	-	$\mu \mathrm{A}$
Input Current	OSC $_{\text {IN }}$	I_{N}			-	± 50	-	$\mu \mathrm{A}$
	LE, FC	$L_{\text {LE }}$			-	-60	-	$\mu \mathrm{A}$
High-level Output Voltage	Except D_{0} and OSC ${ }_{\text {out }}$	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$		2.4	-	-	V
Low-level Output Voltage		V oL			-	-	0.4	V
N -channel Open-drain Cutoff Current	\varnothing ¢	$\mathrm{l}_{\text {off }}$	$V_{C C} \leq V_{P} \leq 8 \mathrm{~V}$		-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	Except D_{0} and OSC ${ }_{\text {out }}$	1 OH			-1.0	-	-	mA
Low-level Output Current		loL			1.0	-	-	mA
High-level Output Current	D	$\mathrm{I}_{\text {DOH }}$	MB1501H	$\begin{aligned} & V_{C C}=3 V \\ & V_{P}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-2.2	-4.5	-	mA
		$\mathrm{I}_{\text {OOH }}$	MB1501	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	-0.5	-2.0	-	mA
		$\mathrm{l}_{\text {DOHL }}$	MB1501L	$V_{P}=6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	-0.5	-1.1	-2.2	mA
Low-level Output Current		$\mathrm{I}_{\text {DOL }}$	MB1501H	$\begin{aligned} & V_{C c}=3 \mathrm{~V} \\ & V_{P}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2.2	6.0	-	mA
		lool	MB1501	$\begin{aligned} & V_{C C}=3 \mathrm{~V} \\ & V_{P}=6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	6.0	-	mA
		loou	MB1501L		4.5	12.0	-	mA
Leakage Current	$D_{0}, \varnothing P$	$\mathrm{D}_{\text {oz }}$	$\begin{array}{\|l\|} \text { MB1501H } \\ \hline \begin{array}{\|l\|} \text { MB1501 } \\ \text { MB1501L } \end{array} \\ \hline \end{array}$	$\begin{aligned} & V_{C C}=3 V, V_{P}=12 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \\ & V_{C C}=3 \mathrm{~V}, V_{P}=9 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-		1.0	$\mu \mathrm{A}$

Note: *1 $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{N}}=1.1 \mathrm{GHz}$, $\mathrm{f}_{\mathrm{osc}}=12 \mathrm{MHz}$ crystal. Inputs are grounded except f_{iN}, and outputs are open.
*2 Input coupling capacitor 1000 pF is connected.

TYPICAL CHARACTERISTICS CURVES

CHARGE PUMP CHARACTERISTICS

LOCK UP TIME MEASUREMENT

DO PIN OUTPUT CURRENT CURVES (TYPICAL)

Do PIN OUTPUT WAVEFORM AT LOCK CONDITION

PHASE CHARACTERISTICS ($\Delta \mathrm{f}$ vs. Do OUTPUT ENERGY)

3

Input Sensitivity vs. Input Frequency (Supply Voltage Dependence)

Input Sensitivity vs. Input Frequency (Temperature Dependence)

TEST CIRCUIT
Do Pin Output Current (Іон, loL) Measurement

MB1501
 MB1501H
 MB1501L

Lock up Time Measurement

LPF Circuit

Phase Characteristics Measurement

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-16P-M04)

(C) 1988 FUJITSU LIMITED D16033S-2C

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE
 (Case No. : FPT-16P-M06)

C) 1990 FUJITSU LIMITED F16015S-2C

MB1501
MB1501H
MB1501L

MB1502 Serial Input PLL Frequency Synthesizer

The Fujitsu MB1502 fabricated in Bi-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.

The MB1502 contains the following: analog switch to speed up lock uptime, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14 -bit programmable reference counter), 1 -bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18 -bit latch, programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter) and a 1.1 GHz two modulus prescaler that can select either a 64/65 or 128/129 divide ratio.

It operates supply voltage of 5 V typ. and achieves very low power supply current of 8 mA typ. realized through the use of Fujitsu Advanced Process Technology.

- High operating frequency: $\mathfrak{f}_{\mathbb{N} \operatorname{MAX}}=1.1 \mathrm{GHz}\left(\mathrm{V}_{\text {IN MAX }}=-10 \mathrm{dBm}\right)$
- Pulse swallow function: 64/65 or 128/129
- Low supply current: $I_{c c}=8 \mathrm{~mA}$ typ.
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter: 8 to 16383
- 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- Two types of phase detector output:
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic DIP Package (Suffix: -P)

16-pin Plastic Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {OOP }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Pln Name	vo	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{1 w} \\ & \text { OSC }_{\text {out }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\text {IN }}$ and OSC $_{\text {out }}$.
3	V_{p}	-	Power supply input for charge pump and analog switch.
4	$V_{c c}$	-	Power supply voltage input.
5	D。	0	Charge pump output. The characteristics of charge pump are reversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f, and f_{p} exists, this pin outputs low level.
8	$\mathrm{f}_{1 \times}$	1	Prescaler input. The connection with an external VCO should be AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift reaister. Each rising edge of the clock shifts one bit of data into the shift register.
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shitt register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
12	FC	1	Phase select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control $f_{\text {out }}$ pin (test pin) output level, $f_{\text {f }}$ or $f_{\text {p }}$.
13	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
14	fout	0	Monitor pin of phase comparator input. $\mathrm{f}_{\text {out }}$ pin outputs either programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level. FC=H: It is the same as f, output level. $F C=L$: It is the same as f_{p} output level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \varnothing P \\ & \varnothing R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data "L" data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14-bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	$\begin{gathered} S \\ 14 \end{gathered}$	$\begin{gathered} S \\ 13 \end{gathered}$	$\begin{gathered} S \\ 12 \end{gathered}$	$\begin{gathered} S \\ 11 \end{gathered}$	$\begin{gathered} S \\ 10 \end{gathered}$	S	$\begin{aligned} & S \\ & 8 \end{aligned}$	S 7	$\begin{aligned} & S \\ & 6 \end{aligned}$	S	$\begin{aligned} & S \\ & 4 \end{aligned}$	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	\bullet	-	-	-	\bullet	\bullet	\bullet	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW:This bit selects divide ratio of prescaler.
SW=H : 64
$\mathrm{SW}=\mathrm{L}: 128$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18-bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19 -bit data format is shown on the following page

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S 6	S	S	S	S	S
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S									
17	S										
16	S	S	S	S	S	S	S	S			
14	13	12	11	10	9	8					
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

$f_{v c o}=[(P \times N)+A] x f_{o s c}+R$
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
$\mathrm{f}_{\text {osc }}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to16383)
P: Preset modulus of external dual modulus prescaler (64 or 128)

SERIAL DATA INPUT TIMING

NOTES: The data noted in parentheses is used for setting the divide ratio.
On rising edge of clock, one bit of data shifts into the shift register.
NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider.
On rising edge of clock shifts one bit of data in the shift register.
PHASE CHARACTERISTICS
FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{o}), phase comparator output level ($\left.{ }_{\varnothing} \mathrm{R},{ }_{\varnothing} \mathrm{P}\right)$ are reversed depending upon FC pin input level. Also, monitor pin ($f_{\text {out }}$) output level of phase comparator is controlled by FC pin input level. The relationship between outputs ($\mathrm{D}_{\phi 1}, \phi^{\mathrm{R}}, \phi^{P}$) and $F \mathrm{FC}$ input level is shown below.

	FC=H or open				$\mathrm{FC}=\mathrm{L}$			
	D。	${ }_{0} \mathrm{R}$	${ }_{9}{ }^{\text {P }}$	$\mathrm{f}_{\text {out }}$	D	${ }_{8} \mathrm{R}$	${ }_{9} \mathrm{P}$	$\mathrm{f}_{\text {out }}$
$\mathrm{f}_{1} \mathrm{f}_{\mathrm{p}}$	H	L	L	$\left(\mathrm{f}_{\mathrm{f}}\right)$	L	H	Z	$\left(f_{p}\right)$
$\mathrm{f}_{1}<t_{p}$	L	H	Z	(f)	H	L	L	$\left(f_{p}\right)$
$t_{1}=t_{p}$	Z	L	Z	$(\mathrm{f}$,)	Z	L	Z	$\left(f_{p}\right)$

Note: $\quad Z=($ High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit; When VCO characteristics are like (2), FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{t}>f_{p}$ or $f_{f} \hat{f}_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{0}) is connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\begin{array}{ll}\mathrm{LE}=\mathrm{H} \text { (Changing the divide ratio of internal prescaler) : Analog switch=ON } \\ \mathrm{LE}=\mathrm{L} \text { (Normal operating mode) } & \text { : Analog switch }=\mathrm{OFF}\end{array}$
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{cc}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc}	V_{p}	8.0	V
	V_{1}	GND		V_{cc}	V
Operating Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

MB1502

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{C}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{A}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noticed.)

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			$I_{\text {cc }}$	Note 1		8.0	12.0	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note 2	10		1100	MHz	
	OSC $_{\text {IN }}$	$\mathrm{f}_{\text {osc }}$			12	20	MHz	
Input Sensitivity	f_{in}	$\mathrm{Vf}_{\text {in }}$		-10		6	dBm	
	$\mathrm{OSC}_{\text {IN }}$	$V_{\text {osc }}$		0.5			$V_{\text {pp }}$	
High-level Input Voltage	Except fi_{n} and $\mathrm{OSC}_{1 \mathrm{~N}}$	$\mathrm{V}_{\text {IH }}$		$\mathrm{V}_{\mathrm{cc}} \times 0.7$			V	
Low-level Input Voltage		V_{L}				$\mathrm{Vcc}_{\text {cc }} 0.3$	V	
High-level Input Current	Data Clock	I_{1+}			1.0		$\mu \mathrm{A}$	
Low-level Input Current		$1 / 1$			-1.0		$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{l}_{\text {osc }}$			± 50		$\mu \mathrm{A}$	
	LE, FC	$\mathrm{I}_{\text {LE }}$			-60		$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and $\mathrm{OSC}_{\text {out }}$	$\mathrm{V}_{\text {O }}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	4.4			V	
Low-level Output Current		V_{oL}				0.4	V	
N -channel Open Drain Cutoff Current	$D_{0}, \varnothing P$	$\mathrm{I}_{\text {off }}$	$\begin{aligned} & V_{p}=V_{c c} \text { to } 8 \mathrm{~V} \\ & V_{0 O P}=G N D \text { to } 8 \mathrm{~V} \end{aligned}$			1.1	$\mu \mathrm{A}$	
Output Current	Except D_{0} and OSC ${ }_{\text {out }}$	I_{OH}		-1.0			mA	
		l_{ol}		1.0			mA	
Analog Switch On Resistor		$\mathrm{R}_{\text {on }}$			25		Ω	

NOTE 1: $f_{\mathrm{i}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{1 \mathrm{~N}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$. Inputs are grounded and outputs are open.
NOTE 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TYPICAL CHARACTERISTICS CURVES
input sensitivity characteristics

INPUT IMPEDANCE CHARACTERISTICS

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-16P-M04)

16-LEAD PLASTIC FLAT PACKAGE (Case No.: FPT-16P-M06)

(C) 1990 FUIITSU LIMITED F16015S-2C

MB1502

3

MB1503

Serial Input PLL Frequency Synthesizer

The Fujitsu MB1503 is a serial input phase-locked loop (PLL) frequency synthesizer with a pulse-swallow function. A stand-by mode is provided to limit power consumption during intermittent operation.

The MB1503 is configured with a 1.1 GHz dual-modulus prescaler with a $128 / 129$ divide ratio, control signal generator, 16-bit shift register, 15-bit latch, programmable reference divider (binary 14 -bit programmable reference counter), 1 -bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19 -bit shift register, 18 -bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter), analog switches, and intermittent operation control circuit that selects the operating or stand-by mode depending on the power-save control input state (PS).
The MB1503 operates from a single +5 V supply. Fujitsu's advanced technology achieves an I_{cc} of 8 mA , typical. The stand-by mode current consumption is just $100 \mu \mathrm{~A}$.

- High operating frequency: $f_{\mathbb{N}}=1.1 \mathrm{GHz}\left(\mathrm{V}_{\mathbb{N}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function: high-speed dual-modulus prescaler with 128/129 divide ratio
- Low supply current: $I_{C C}=8 \mathrm{~mA}$ typ. at 5 V
- Power-saving stand-by mode: $100 \mu \mathrm{~A}$
- Serial input, 18 -bit programmable reference divider consisting of:

Binary 7-bit swallow counter: 0 to 127
Binary 11-bit programmable counter: 0 to 2,047

- Serial input, 15 -bit programmable reference divider consisting of binary 15 -bit programmable reference counter: 8 to 16,383 1-bit switch counter sets prescaler divide ratio
- On-chip analog switch for fast lock-up
- On-chip charge pump
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 16-pin dual inline package (Suffix: -P) Plastic 16-pin small outline package (Suffix:-PF)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to 7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 10.0$	V
	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^14]
BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	10	Description
1	OSC_{10}	1	Programmable reference divider input Oscillator input An external crystal is connected to this pin
2	OSC $_{\text {out }}$	\bigcirc	Oscillator output An external crystal is connected to this pin
3	V_{p}	-	Power supply input for charge pump and analog switch
4	V_{cc}	-	Power supply
5	D	0	Charge pump output Phase of charge pump is reversed depending on FC input
6	GND	-	Ground
7	LD	\bigcirc	Phase comparator output The output level is high when LD is locked. The output level is low when LD is unlocked
8	$\mathrm{f}_{\text {W }}$	1	Prescaler input Connection with an external VCO should be done by AC coupling
9	Clock	1	Clock input for 19 -bit and 16 -bit shift registers Data is shifted into the shift register on the rising edge of the clock Schmitt trigger circuit is involved
10	Data	1	Serial data input using binary code The last bit of the data is a control bit When the control bit is high, data is transmitted to the 15 -bit latch When it is low, data is transmitted to the 18 -bit latch Schmitt trigger input is involved
11	LE	1	Load enable signal input When LE is high, the data of the shift register is transferred to a latch, depending on the control bit in the serial data. At the same time, an internal analog switch turns on and the output of the internal charge pump is connected to the BiSW pin Schmitt trigger input is involved
12	FC	1	Phase select input of phase comparator (with internal pull-up resistor) When FC is low, the characteristics of the charge pump and phase comparator are reversed The FC input signal is also used to control the $f_{\text {out }}$ pin (test pin) of f_{R} or f_{p}
13	Bisw	0	Analog switch output BiSW is usually in the high-impedance state. When the switch is turned on (LE is high), the state of the internal charge pump is output
14	f_{p}	0	Programmable counter output monitor pin
15	f_{f}	0	Reference counter output monitor pin
16	PS	1	Power save signal input Set PS low while the system is powered (Never use pin 16 as it is opened) PS = High : Operation mode PS = Low : Stand-by mode

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{v c o}=[(M \times N)+A] \times f_{o s c}+R \quad(A<N)$
$f_{\text {vco }}$: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
$f_{\text {osc }}$: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (8 to 16,383)
M : Preset divide ratio of modulus prescaler (128)

Serial data input

Serial data is input using the Data, Clock, and LE pins. Serial data controls the 15 -bit programmable reference divider and 18 -bit programmable divider separately.
Binary serial data is input to the Data pin.
One bit of data is shifted into the internal shift registers on the rising edge of the clock. When the load enable pin is high or open, stored data is latched depending on the control data as follows:

Control data	Destination of serial data
H	15 bit latch
L	18 bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 15 -bit latch and a 14 -bit reference counter. The serial 16 -bit data format is shown below:

- 14-bit programmable reference counter divide ratio

Oividration	5 14	\% 13	§ I2	\$1	\$	S S	S 8,	\$	S	S.	S!	S.	S 2?	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=8$ to 16,383)
Notes: 1. Divide ratios less than 8 are prohibited.
2. SW: This bit selects the divide ratio of the prescaler SW Low: 128 or 129
(SW must be always be low.)
3. $\mathbf{S} 1$ to $\mathbf{S} 14$: These bits select the divide ratio of the programmable reference counter (8 to 16,383).
4. C: Control bit: Set high.
5. Input data MSB first.
(b) Programmable divider divide ratio

The programmable divider consists of a 19-bit shift register, an 18 -bit latch, a 7 -bit swallow counter, and an 11-bit programmable counter. The serial 19-bit data format is shown below:

- 7-bit swallow counter divide ratio

Divide ratio A	$\begin{aligned} & 4 \\ & 4 \\ & 7 \end{aligned}$	S.	S.	S.	S. 3	S	S
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
-	-	-	-	-	-	-	-
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio N	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & 18 \end{aligned}$	S 17	S 18	\$15	S 14	S 13	S.	S 1.	\$18	S.	S
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
-	-	-	-	-	-	-	-	-	\bullet	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=16$ to 2,047)

Notes: 1. Divide ratios less than 16 are prohibited for 11-bit programmable counter.
2. S 1 to S 7 : These bits select the divide ratio of swallow counter (0 to 127).
3. S 8 to S 18 : These bits select the divide ratio of programmable counter (16 to 2,047).
4. C: Control bit: (Set low)
5. Input data MSB first.

Serial data input timing

$\begin{array}{ccc}\text { - } t_{1}(\geq 1 \mu \mathrm{~s}): \text { : Data setup time } & t_{2}(\geq 1 \mu \mathrm{~s}): \text { : Data hold time } & t_{3}(\geq 1 \mu \mathrm{~s}): \text { Clock pulse width } \\ t_{4}(\geq 1 \mu \mathrm{~s}): \text { LE setup time to the rising edge of last clock } & t_{5}(\geq 1 \mu \mathrm{~s}): \text { LE pulse width }\end{array}$

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Intermittent operation

Intermittent operation limits power consumption by shutting down or starting the internal circuits according to its necessity. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{p}) and the comparison frequency (f_{p}) and frequency lock is lost.
To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting phase of both frequencies to limit the error signal output. This is done by the PS control circuit. If PS is set high, the circuit enters the operating mode. If PS is set low, operation stops and the device enters the stand-by mode. Each mode is explained below:

- Operating mode ($\mathrm{PS}=$ High)

All circuits are operating, and PLL operation is normal.

- Stand-by mode (PS = Low level)

Circuits that do not affect operation are power-down to limit current consumption.
The current in the power save state is typically $100 \mu \mathrm{~A}$.
At this time, the levels of D_{o} and $L D$ are the same as when the PLL is locked.
Since D_{0} is placed in the high-impedance state and the input voltage of the voltage controlled oscillator (VCO) is set to the voltage in the operating mode (when locked) by the time constant of the low-pass filter, the frequency output from the VCO (fvco) is kept at the locking frequency.

The operating and stand-by modes alternate repeatedly. This intermittent operation limits the error signal by forcibly correcting the phase of the reference and comparison frequencies to limit power consumption. The device must be set in the stand-by mode ($\mathrm{PS}=$ low) when it is powered up.

Relationship between the FC input and phase characteristics

The FC pin changes the phase characteristics of the phase comparator. The internal charge pump output level (D_{0}) is reversed, depending on the FC pin input level. The relationship between the FC input level and D_{0} is shown below:

	FC= High or open	FC=Low
$\mathrm{f}_{\mathrm{R}}>\mathrm{f}_{\mathrm{P}}$	H	L
$\mathrm{f}_{\mathrm{R}}<\mathrm{f}_{\mathrm{p}}$	L	H
$\mathrm{f}_{\mathrm{R}}=\mathrm{f}_{\mathrm{P}}$	Z (*1)	Z (*1)

*1: High impedance

When designing a synthesizer, the FC pin setting depends on the VCO characteristics.
*: When the VCO characteristics are similar to (1), set FC high or open.
*: When the VCO characteristics are similar to (2), set FC low.

Phase comparator output waveform (FC = High)

Notes: 1. Phase difference detection range: -2π to $+2 \pi$
2. Spike appearance depends on the charge pump characteristics. Also, the spike is output to diminish dead band.
3. When $f_{R}>f_{p}$ or $f_{R}<f_{p}$, spike might not appear depending on the charge pump characteristics.
4. LD is low when the phase difference is two or more. LD is high when the phase difference is two or less for three or more cycles (when $\mathrm{f}_{\text {oscin }}=12.8 \mathrm{MHz}, \mathrm{tw}=625$ to $1,250 \mathrm{~ns}$).

Analog switch

The LE signal turns the analog switch on or off. When the analog switch is turned on, the charge pump output $\left(\mathrm{D}_{\mathrm{o}}\right)$ is output through the BiSW pin. When it is turned off, the BiSW pin is in the high-impedance state.

When $\mathrm{LE}=$ high (when the divide ratio of the internal divider is changed): Analog switch $=0$ n
When LE = low (normal operating mode): Analog switch = off
The LPF time constant can be decreased by inserting an analog switch between LPF1 and LPF2. This decreases the lock-up time when the PLL channel is changed.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value.			Unit
		Min	Typ	Max	
Supply voltage	V_{cc}	4.5	5.0	5.5	V
	V_{p}	$\mathrm{V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{p}} \leq 8.0$			V
Input voltage	V_{1}	GND	-	V_{cc}	V
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

3

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device from a socket
- Protect leads of the device using conductive sheet when handling PC boards on which devices are mounted.

MB1503

ELECTRICAL CHARACTERISTICS

Pilameler		Symbol	Valus			Un\#	condilion	
		Mi\%	IyPs	Max				
Supply current			$l_{\text {cc }}$	-	8.0	12.0	mA	With $\mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. Inputs are V_{cc} and outputs are open
Stand-by current		IPS	-	100	-	$\mu \mathrm{A}$	With $\mathrm{f}_{\mathrm{IN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. The PS pin is grounded, remaining inputs are at $V_{c c}$, and outputs are open	
Operating frequency	f_{N}	f_{N}	10	-	1100	MHz	$A C$ coupling. The minimum operating frequency is measured with a $100-\mathrm{pF}$ capacitor connected	
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	12	20	MHz		
Input sensitivity	f_{IN}	$\mathrm{V}_{\text {tin }}$	-10	-	6	dBm		
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {osc }}$	0.5	-	-	Vp-p		
High-level input voltage	Except $f_{\mathbb{N}}$ and OSC $_{\text {IN }}$	V_{H}	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	-	V		
Low-level input voltage		V_{LL}	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V		
High-level input current	Data, Clock, LE	I_{H}	-	1.0	-	$\mu \mathrm{A}$		
Low-level input current		$1 /$	-	-1.0	-	$\mu \mathrm{A}$		
	FC	l_{fc}	-	-60	-	$\mu \mathrm{A}$		
Input current	$\mathrm{OSC}_{\text {ı }}$	losc	-	± 50	-	$\mu \mathrm{A}$		
High-level output voltage	Except D_{o} and OSC $_{\text {out }}$	V_{OH}	4.4	-	-	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	
Low-level output voltage		V_{0}	-	-	0.4	V		
High-impedance Cut off current	D	$\mathrm{I}_{\text {off }}$	-	-	1.1	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{O}_{0}}=G N D \text { to } 8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{p}} \leq 8 \mathrm{~V} \end{aligned}$	
Output current	Except D_{o} and OSC ${ }_{\text {out }}$	I_{OH}	-1.0	-	-	mA		
		I_{L}	1.0	-	-	mA		
Analog switch ON resistance		$\mathrm{R}_{\text {on }}$	-	25	-	Ω		

TEST CIRCUIT
 (FOR MEASURING PRESCALER INPUT SENSITIVITY)

3

APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
(CASE No.: DIP-16P-M04)

MB1504/MB1504H/MB1504L SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 520MHz PRESCALER

The Fujitsu MB1504/MB1504H/MB1504L, utilizing BI-CMOS technology, is a single chip serial input PLL frequency synthesizer with pulse-swallow function.
The MB1504 series contain a 520 MHz two modulus prescaler that can select either $32 / 33$ or $64 / 65$ divide ratio; control signal generator; 16-bit shift register; 15 -bit latch; programmable reference divider (binary 14 -bit programmable reference counter); 1 -bit switch counter; phase comparator with phase inverse function; charge pump; crystal oscillator; 19-bit shift register; 18 -bit latch; programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter).

The MB1504 operates on a low supply voltage (3 V typ) and consumes low power (30 mW at 520 MHz).
MB1504 Product Line

	V_{p} Voltage	$V_{\text {con }}$ Voltage	Lock up time	Doutput Width	High-level Output Current	Low-level Output Current
MB1504	8 V max	8.5 V max	Middle speed	Middle	Middle	Middle
MB1504H	10 V max	10.0 V max	High speed	Low	High	Low
MB1504L	8V max	8.5 V max	Low speed	High	Low	High

- High operating frequency: $f_{\text {in max }}=520 \mathrm{MH}_{\mathrm{z}}\left(\mathrm{V}_{\mathrm{IN}_{\text {min }}}=0.20 \mathrm{~V}_{\text {p.p }}\right)$
- On-chip prescaler
- Low power supply voltage: 2.7 V to 5.5 V (3.0 V typ)
- Low power supply consumption: $30 \mathrm{~mW}(3.0 \mathrm{~V}, 520 \mathrm{MHz}$ operation)
- Serial input 18 -bit programmable divider consisting of: - Binary 7 -bit swallow counter (Divide ratio: 0 to 127)
- Binary 11 -bit programmable counter (Divide ratio: 16 to 2047)
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14 -bit programmable reference counter (Divide ratio: 8 to 16383) - 1-bit switch counter (SW) Sets divide ratio of prescaler
- 2types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Condition	Value	Unit
Power Supply Voltage	$\mathrm{V}_{c c}$		-0.5 to +7.0	V
	$\mathrm{V}_{\text {P }}$	MB1504H	$\mathrm{V}_{\text {cc }}$ to 12.0	V
	$V_{p}, V_{P L}$	MB1504/1504L	$\mathrm{V}_{c c}$ to 10.0	
Output Voltage	$V_{\text {out }}$		-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Open-drain Output	$\mathrm{V}_{\text {OOPH }}$	MB1504H	-0.5 to 11.0	V
	$V_{\text {oop }} V_{\text {onopl }}$	MB1504/1504L	-0.5 to 9.0	
Output Current	lout		± 10	mA
Storage Temperature	$\mathrm{T}_{\text {ste }}$		-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^15]

PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Descriptions
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\mathbb{N}} \\ & \text { OSC }_{\text {oUt }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\text {IN }}$ and OSC Out. .
3	V_{p}	-	Power supply input for charge pump.
4	$V_{c c}$	-	Power supply voltage input.
5	Do	0	Charge pump output. Phase characteristic can be inversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. This pin outputs high when the phase is locked. While the phase difference of $f_{\text {, }}$ and f_{p} exists, the output level goes low.
8	$f_{\text {in }}$	1	Prescaler input. The connection with an external VCO should be an AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. Each rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Serial data of binary code input. The last bit of the data is a control bit. The last data bit specifies which latch is activated. When the last bit is high level and LE is high-level, data is transferred to 15 -bit latch. When the last bit is low level and LE is high level, data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high level (or open), data stored in the shift register is transferred to latch depending on the control data.
12	FC	0	Phase selecting input of phase comparator (with internal pull up resistor). When FC is low level, charge pump and phase detector characteristics can be inversed.
13	f_{s}	0	Monitor pin of phase comparator input. It is the same as programmable reference divider output.
14	f_{p}	0	Monitor pin of phase comparator input. It is the same as programmable divider output.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\propto P$ $\otimes R$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. Phase characteristics can be inversed depending on FC input. $\emptyset \mathrm{P}$ pin is an N -channel open-drain output.

MB1504
MB1504H
MB1504L

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is input using Data pin, Clock pin and LE pin, The 15-bit programmable reference divider and 18-bit programmable divider are controlled respectively.

On rising edge of the clock shifts one bit of the data into the internal shift registers.
When load enable (LE) is high level (or open), data stored in shift resisters is transferred to 15 -bit latch or 18 -bit latch depending upon the control bit level.

Control data " H " ; Data is transferred into 15 -bit latch.
Control data "L" ; Data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

SW: Divide ratio of prescaler setting bit.

S_{1} to S_{14} : Divide ratio of programmable reference counter setting bits (8 to 16383)
C: Control bit (Control bit is set to high.)

FUNCTIONAL DESCRIPTIONS

PROGRAMMABLE DIVIDER
Programmable divider consists of 19-bit shift register, 18 -bit latch, 7 -bit swallow counter and 11-bit programmable counter. Serial 19-bit data format is shown below.

[^16]
SERIAL DATA INPUT TIMING

On the rising edge of the clock shifts one bit of the data into the shift registers.
Parenthsis data is used for setting the divide ratio of the programmable reference divider.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS

FC pin (pin 12) is provided to inverse the phase comparator characteristics. The characteristics of internal charge pump output (D_{0}), phase detector outputs ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) can be inversed depending upon FC input data. Outputs are shown below.

	$F C=H$ (or open)			$F C=L$		
	D_{0}	$\varnothing R$	$\varnothing P$	D_{0}	$\varnothing R$	$\varnothing P$
$f_{r}>f_{p}$	H	L	L	L	H	Z
$f_{r}<f_{p}$	L	H	Z	H	L	L
$f_{r}=f_{p}$	Z	L	Z	Z	L	Z

Note: $\quad Z=($ High impedance)

VCO INPUT VOLTAGE \rightarrow

Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1) , FC should be set high or open circuit;
When VCO characteristics are like (2), FC should be set Low.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Value			Unit
			Min	Typ	Max	
Power Supply Voltage	V cc		2.7	3.0	5.5	V
	$V_{\text {PH }}$	MB1504H	V cc		10.0	V
	$V_{P}, V_{P L}$	$\begin{aligned} & \text { MB1504 } \\ & \text { MB1504L } \end{aligned}$	$V_{c c}$		8.5	
Open-drain Output	$V_{\text {OOPH }}$	MB1504H	$V_{c c}$		10.0	V
	$V_{\text {OOP }}, V_{\text {OOPL }}$	$\begin{aligned} & \text { MB1504 } \\ & \text { MB1504L } \end{aligned}$	$V_{c c}$		8.5	
Input Voltage	$V_{\text {IN }}$		GND		$V_{c c}$	V
Operating temperature	$\mathrm{T}_{\text {A }}$		-40		+85	${ }^{\circ} \mathrm{C}$

MB1504
MB1504H
MB1504L

ELECTRICAL CHARACTERISTICS

($\mathrm{V} c \mathrm{c}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Pin Name	Symbol	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	$\mathrm{V}_{\text {cc }}$	Icc	*1		-	10	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{fiN}^{\text {N }}$	*2		10	-	520	MHz
	OSC $_{\text {IN }}$	fosc			-	12	20	MHz
Input Sensitivity	$f_{\text {in }}$	$V_{\text {fint }}$	$V_{c c}=2.7 \sim 4.0 \mathrm{~V}$		-10	-	6	dBm
		$V_{\text {fin2 }}$	$V_{c c}=4.0 \sim 5.5 \mathrm{~V}$		-4	-	6	dBm
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}$			0.5	-	-	$V_{\text {p-p }}$
High-level Input Voltage	Except $\mathrm{f}_{\text {in }}$ and $\mathrm{OSC}_{\text {IN }}$	V_{H}			0.7 xV cc	-	-	V
Low-level Input Voltage		$V_{\text {IL }}$			-	-	$0.3 \times V_{\text {cc }}$	V
High-level Input Current	Data, Clock	I_{H}			-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		$1 / 2$			-	-1.0	-	$\mu \mathrm{A}$
Input Current	OSC ${ }_{\text {IN }}$	In			-	± 50	-	$\mu \mathrm{A}$
	LE, FC	Le			-	-60	-	$\mu \mathrm{A}$
High-level Output Voltage	Except D_{0} and OSC	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$		2.4	-	-	V
Low-level Output Voltage		$V_{\text {OL }}$			-	-	0.4	V
N -channel Open-drain Cutoff Current	$\otimes P$	loff	$\mathrm{V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{p}} \leq 8 \mathrm{~V}$		-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	Except Do and OSC $_{\text {out }}$	IOH			-1.0	-	-	mA
Low-level Output Current		10 L			1.0	-	-	mA
High-level Output Current	Do	IDOHH	MB1504H	$\begin{aligned} & V_{c c}=3 V \\ & V_{p}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	-2.2	-4.5	-	mA
		$\mathrm{l}_{\mathrm{DOH}}$	MB1504	3V	-0.5	-2.0	-	mA
		$\mathrm{I}_{\text {DOHL }}$	MB1504L	$V_{P}=6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-0.5	-1.1	-2.2	mA
Low-level Output Current		l OLH	MB1504H	$\begin{aligned} & V_{c C}=3 V \\ & V_{P}=12 V, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	2.2	6.0	-	mA
		Iool	MB1504	$\begin{aligned} & V_{c c}=3 V \\ & V_{P}=6 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	6.0	-	mA
		IDOL	MB1504L		4.5	12.0	-	mA
Leakage Current	$D_{0}, \varnothing \mathrm{P}$	Doz	$\begin{aligned} & V_{c C}=3 \mathrm{~V} \\ & V_{P}=12 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-		1.0	$\mu \mathrm{A}$

Note: $\quad * 1 \quad \mathrm{~V}_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{iw}}=520 \mathrm{MHz}, \mathrm{f}_{\mathrm{osc}}=12 \mathrm{MHz}$ crystal.
inputs are grounded except $\mathrm{f}_{\mathrm{N},}$, and outputs are open.
*2 Input coupling capacitor 1000 pF is connected.

TYPICAL CHARACTERISTICS CURVES

LOCK UP TIME MEASUREMENT

DO PIN OUTPUT CURRENT CURVES (TYPICAL)

MB1504
MB1504H
MB1504L

Do PIN OUTPUT WAVEFORM AT LOCK CONDITION

MB1504

MB1504H

MB1504L

PHASE CHARACTERISTICS ($\Delta \mathrm{f}$ vs. Do OUTPUT ENERGY)

MB1504
MB1504H
MB1504L

INPUT SENSITIVITY
Input Sensitivity vs. Input Frequency (Supply Voltage Dependence)

Input Sensitivity vs. Input Frequency (Temperature Dependence)

TEST CIRCUIT
Do Pin Output Current (loн, loL) Measurement

Lock up Time Measurement

Phase Characteristics Measurement

$$
\begin{aligned}
& V_{c c}=3 V, V_{p}=3 V \\
& \Delta f=f r-f p \\
& \text { Energy }(E n)=V^{2} t
\end{aligned}
$$

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-16P-M04)

Dimensions in

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE
 (Case No.:FPT-16P-M06)

C 1990 FUIITSU LIMITED F16015S-2C

MB1504
MB1504H
MB1504L

3

MB1505

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 600MHz PRESCALER

The Fujitsu MB1505, utilizing BI-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.
The MB1505 contains a $600 \mathrm{MH}_{z}$ two modulus prescaler that can select of either $32 / 33$ or $64 / 65$ divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1 -bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19 -bit shift register, 18 -bit latch, programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter) and analog switch to speed up lock up time.
It operates supply voltage of 5 V typ. and achieves very low supply current of 6 mA typ. realized through the use of Fujitsu Advanced Process Technology.

- High operating frequency: $f_{\text {IN max }}=600 \mathrm{MH}_{z}\left(\mathrm{~V}_{\text {IN min }}=-4 \mathrm{dBm}\right)$
- Pulse swallow function: $32 / 33$ or $64 / 65$
- Low supply current: $I_{c c}=6 m A$ typ.
- Serial input 18 -bit programmable divider consisting of: - Binary 7-bit swallow counter: 0 to 63
- Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14 -bit programmable reference counter: 8 to 16383 - 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic DIP Package (Suffix : -P) 16 -pin Plastic Flat Package (Suffix : -PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{cc}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {oop }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\text {out }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {sTG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE DIP-16P-M04

PLASTIC PACKAGE FPT-16P-M02

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voitages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSC }_{\text {out }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between $\mathrm{OSC}_{\text {IN }}$ and $\mathrm{OSC}_{\text {out }}$.
3	V_{p}	-	Power supply input for charge pump and analog switch.
4	V_{cc}	-	Power supply voltage input.
5	D	O	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f, and f_{p} exists, this pin outputs low level.
8	$f_{\text {in }}$	1	Prescaler input. The connection with an external VCO should be AC connection.
9	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
11	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
12	FC	1	Phse select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control $f_{\text {out }}$ pin (test pin) output level, f, or f_{p}.
13	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
14	$f_{\text {out }}$	O	Minitor pin of phase comparator input. $f_{\text {out }}$ pin outputs either programmable reference divider output (f_{r}) or programmable divider output (f_{p}) depending upon FC pin input level. FC=H: It is the same as f, output level. FC=L: It is the same as f_{p} output level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \varnothing P \\ & \varnothing R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15 -bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S	S	S	S	S	S	S	S	S	S	S	S	S
11	10	9	8	7	6	5	4	3	2	1				
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
SW=H:32/33
SW=L: 64/65
S1 to S14: These bits select divide ratio of programmable reference divider. C : Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19-bit data format is shown following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S	S	S	S	S	S
0	0	0	0	0	0	0	0
0	0	2	1				
1	0	0	0	0	0	0	1
\bullet							
63	0	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 63
S 7 should be set to zero

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S	S	S	S	S	S	S	S
14	13	12	11	10	9	8					
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 63)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

[^17]

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{\circ}), phase comparator output level ($\approx \mathrm{R}, \boxed{\mathrm{P}}$) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($D_{o}, \oslash R, \diamond P$) and $F C$ input level are shown below.

	$\mathrm{FC}=\mathrm{H}$ or open				FC=L			
	D。	QR	${ }_{4} \mathrm{P}$	$\mathrm{f}_{\text {out }}$	D	\otimes R	${ }_{8} \mathrm{P}$	$\mathrm{f}_{\text {out }}$
$\mathrm{f}_{1}>\mathrm{f}_{\mathrm{p}}$	H	L	L	$\left(\mathrm{f}_{\mathrm{t}}\right)$	L	H	Z	$\left(\mathrm{f}_{\mathrm{p}}\right)$
$\mathrm{f}_{1}<\mathrm{f}_{\mathrm{p}}$	L	H	Z	(f)	H	L	L	$\left(\mathrm{f}_{\mathrm{p}}\right)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	Z	L	Z	$\left(\mathrm{f}_{r}\right)$	Z	L	Z	$\left(\mathrm{f}_{\mathrm{p}}\right)$

Note: $\quad Z=($ High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit;
When VCO characteristics are like (2), FC should be set Low.

3

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{1}>f_{p}$ or $f_{1}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{o}) to be connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\begin{array}{ll}L E=H \text { (Changing the divide ratio of internal prescaler) : Analog switch }=O N \\ L E=L \text { (Normal operating mode) } & \text { : Analog switch }=O F F\end{array}$
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{cc}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{cc}	V_{p}	8.0	V
	V_{1}	GND		V_{cc}	V
Operating Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

MB1505

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			$l_{\text {cc }}$	Note 1		6.0		mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note 2	10		600	MHz	
	$\mathrm{OSC}_{\text {IN }}$	fosc			12	20	MHz	
Input Sensitivity	$\mathrm{f}_{\text {in }}$	$\mathrm{Vf}_{\text {in }}$		-4		6	dBm	
	$\mathrm{OSC}_{\text {IN }}$	Vosc		0.5			$V_{\text {PP }}$	
High-level Input Voltage	Except fin_{n} and OSC_{1}	V_{1+}		$\mathrm{V}_{\mathrm{cc}} \times 0.7$			V	
Low-level Input Voltage		V_{LL}				$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V	
High-level Input Current	Data Clock	$I_{1 / H}$			1.0		$\mu \mathrm{A}$	
Low-level Input Current		$1 / 1$			-1.0		$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc			± 50		$\mu \mathrm{A}$	
	LE, FC	Le			-60		$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and OSC $_{\text {out }}$	$\mathrm{V}_{\text {OH }}$	$V_{\mathrm{cc}}=5 \mathrm{~V}$	4.4			V	
Low-level Output Current		V_{0}				0.4	V	
N -channel Open Drain Cutoff Current	$D_{0}, \varnothing P$	loff	$\begin{aligned} & V_{p}=V_{\text {cc }} \text { to } 8 \mathrm{~V} \\ & V_{0 o p}=G N D \text { to } 8 \mathrm{~V} \end{aligned}$			1.1	$\mu \mathrm{A}$	
Output Current	$\begin{aligned} & \text { Except } D_{\circ} \\ & \text { and OSC } \end{aligned}$	$\mathrm{IOH}^{\text {H}}$		-1.0			mA	
		lol		1.0			mA	
Analog Switch On Resistor		$\mathrm{R}_{\text {on }}$			25		Ω	

NOTE 1: $f_{i n}=600 \mathrm{MHz}, \mathrm{OSC}_{\mathbb{N}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$. Inputs are grounded and outputs are open.
NOTE 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT

3

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

16-LEAD PLASTIC DUAL IN-LINE PACKAGE
 (Case No.: DIP-16P-M04)

3

16-LEAD PLASTIC FLAT PACKAGE
(Case No. : FPT-I6P-M02)

C) 1988 FUIITSU LIMITED F16005S-4C

MB1507

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 2.0GHz PRESCALER

The Fujitsu MB1507 is a single chip serial input PLL frequency synthesizer designed for BS tuner and cellular telephone applications.
It contains a $2.0 \mathrm{GH}_{\mathrm{z}}$ dual modulus prescaler which enables pulse swallow function, and an analog switch to speed up lock up time.
It operates supply voltage of 5.0 V typ. and dissipates 18 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- Pulse swallow function: $128 / 129$ or 256/257
- Low supply current: $l_{\mathrm{cc}}=18 \mathrm{~mA}$ typ.
- Serial input 19 -bit programmable divider consisting of:
- Binary 8 -bit swallow counter: 0 to 255
- Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of:
- Binary 14-bit programmable reference counter: 8 to 16383
- 1-bit switch counter (SW) sets divide ration of prescaler
- On-chip analog switch achieves fast lock up time
- Two types of phase detector output
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 16-pin Plastic Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	V_{CC} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {OOP }}$	-0.5 to 8.0	V
Output Current	$\mathrm{l}_{\text {OUT }}$	+10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. How ever, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^18]

PIN DESCRIPTION

Pin No.	Pin Name	vo	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{OSC}_{\mathbf{w}} \\ & \mathrm{OSC}_{\text {OUT }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between $O S C_{\mathbb{N}}$ and $O S C_{\text {our }}$.
3	V_{p}	-	Power supply input for charge pump and analog switch.
4	$V_{c c}$	-	Power supply voltage input.
5	D	0	Charge pump output. The characteristics of charge pump are reversed depending upon FC input.
6	GND	-	Ground.
7	LD	0	Phase comparator output. Normally the output level is high level. While the phase difference of f_{f} and f_{p} exists, the output becomes low level.
8	$\mathrm{fin}^{\text {N }}$	1	Prescaler input. The connection with VCO should be AC connection.
9	Clock	1	Clock input for 20 -bit shift register and 16 -bit shift register. Each rising edge of the clock shifts one bit of data into shift registers
10	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 19-bit latch.
11	LE	1	Load enable input (with pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
12	FC	1	Phase select input of phase comparator (with pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator are reversed. FC pin input signal controls $f_{\text {out }}$ pin (test pin) output level, f_{f} or f_{p}.
13	BISW	0	Analog switch output. Usually BISW pin is set at high-impedance state. When internal analog switch in ON (LE pin is set at high level), this pin outputs internal charge pump output.
14	fout	0	Monitor pin of phase comparator input. $f_{\text {out }}$ pin outputs programmable reference divider output (f_{t}) or programmable divider output (f_{p}) depending upon FC pin input level. $\mathrm{FC}=\mathrm{H}$: It is the same as f_{r} output level. FC=L: It is the same as f_{p} output level.
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	${ }_{\oplus}$ $ø$ R	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $ø \mathrm{P}$ pin is N -channel open drain output.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15-bit programmable reference divider and 19-bit programmable divider, respectively.
Binary serial data is input to Data pin.
Each rising edge of the clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 19-bit latch.

THE DIVIDE RATIO SETTING

$$
f_{\mathrm{vco}}=[(\mathrm{MxN})+\mathrm{A}] \times \mathrm{ff}_{\mathrm{osc}}+\mathrm{R}
$$

$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
M: Preset modulus of external dual modulus prescaler (128 or 256)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 8 -bit swallow counter ($0 \leq A \leq 255, A<N$)
fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S 13	S 12	S 11	S 10	S	S	S	S	S	S	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	0	0	1
9	\bullet													
\bullet	\bullet	4	3	2	1									
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW: This bit selects divide ratio of prescaler.
SW=H:128/129
$S W=L: 256 / 257$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 20-bit shift register, 19-bit latch, 8 -bit swallow counter and 11-bit programmable counter. Serial 20 -bit data format is shown below.

8-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	8	S	S	S	S	S	S	S
6	5	4	3	2	1			
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
\bullet								
255	1	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 255

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 19	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S 9
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S8: Swallow counter divide ratio setting bit. (0 to 255)
S9 to S19: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets to low level)
Data is input from MSB side.

SERIAL DATA INPUT TIMING

NOTES: The data noted in parenthesis is used for setting divide ratio of programmable reference divider. On rising edge of clock, one bit of data shifts into the shift register.

PHASE CHARACTERISTICS

FC pin is provided to change phase polarity of phase comparator. Characteristics of internal charge pump output level (D_{\circ}), phase comparator output level ($\varnothing \mathrm{R}, \varnothing \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level.

	$\mathrm{FC}=\mathrm{H}$ or open				$F C=1$			
	D	\varnothing R	$\varnothing \mathrm{P}$	$\mathrm{f}_{\text {cot }}$	D	\varnothing ¢	øP	$\mathrm{f}_{\text {out }}$
$\mathrm{f}_{1}>\mathrm{f}_{\mathrm{p}}$	H	L	L	(f_{t})	L	H	z	(f_{p})
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	z	L	z	(f)	z	L	z	(f_{p})
$\mathrm{f}_{\mathrm{r}}<\mathrm{f}_{\mathrm{p}}$	L	H	z	(f)	H	L	L	(f_{p})

Note: $\quad \mathbf{Z}=$ (High impedance)

VCO POLARITY

[^19]PHASE DETECTOR OUTPUT WAVEFORM (FC=High)

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{r}>f_{p}$ or $f_{t}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlied by LE input signal. When the analog switch is $O N$, internal charge pump output (D_{0}) is connected to BISW pin. When the analog switch is OFF, BI-SW pin is set to high-impedance state.

LE	Analog Switch
H (Changing the divide ratio of internal prescaler)	ON
L(Normal operating mode)	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{\text {cc }}$	4.5	5.0	5.5	V
	$V_{\text {P }}$	$V_{\text {cc }}$	-	8.0	V
Input Voltage	V_{1}	GND	-	$V_{c c}$	V
Operating Temperature	$T_{\text {A }}$	-40	-	85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			Icc	Note 1	-	18.0	25.0	mA
Operating Frequency	f_{n}	f_{n}	Note 2	10	-	2000	MHz	
	OSC $_{\text {IN }}$	fosc	-	-	12	20	MHz	
Input Sensitivity	$f_{\text {m }}$	$V_{\text {m }}$	50Ω	-4	-	6	dBm	
	$\mathrm{OSC}_{1 \times}$	$V_{\text {osc }}$	-	0.5	-	-	$V_{P P}$	
High-level Input Voltage	Except $f_{\text {in }}$ and $\mathrm{OSC}_{\mathbb{N}}$	$V_{1 H}$	-	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	-	V	
Low-level Input Voltage		$V_{\text {IL }}$	-	-	-	$V_{c c} \times 0.3$	V	
High-level Input Current	Data Clock	114	-	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL	-	-	-1.0	-	$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc	-	-	+50	-	$\mu \mathrm{A}$	
	LE, FC	le	-	-	-60	-	$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and OSC ${ }_{\text {out }}$	V_{OH}	$V_{c c}=5 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Current		$V_{O L}$		-	-	0.4	V	
High Impedance Cutoff Current	$\mathrm{D}_{0}, \varnothing \mathrm{P}$	loff	$\begin{aligned} & V_{p}=V_{c c} \text { to } 8 \mathrm{~V} \\ & V_{\infty O P}=G N D \text { to } 8 \mathrm{~V} \end{aligned}$	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except D_{0} and OSC ${ }_{\text {out }}$	lOH	-	-1.0	-	-	mA	
		loL	-	1.0	-	-	mA	
Analog Switch On Resistance		R_{oN}	-	-	25	-	Ω	

NOTE 1: $f_{i n}=2.0 \mathrm{GHz}$, fosc $=12 \mathrm{MHz} X^{\prime}$ tal $V_{c c}=5 \mathrm{~V}$. Inputs are grounded and outputs are open. NOTE 2: AC coupling. Minimum operating frequency is measured with a capacitor $1000_{p} F$.

TEST CIRCUIT (Prescaler Input Sensitivity)

TYPICAL APPLICATION EXAMPLE

3

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE
 (Case No.: FPT-16P-M06)

(C) 1990 FUJITSU LIMITED F16015S-2C

MB1508

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER ON CHIP 2.5GHz PRESCALER

The Fujitsu MB1508 on chip 2.5 GHz dual modulus prescaler is a serial input PLL (Phase Locked Loop) frequency synthesizer with pulse swallow function. It is well suited for BS tuner, CATV system, and TV tuner applications.

It operates supply voltage of 5.0 V typ. and dissipates 16 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- Power supply voltage: $\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\mathrm{in}}=2.5 \mathrm{GHz}\left(\mathrm{V}_{\mathrm{in}}=-4 \mathrm{dBm}\right)$
- 2.5 GHz dual modulus prescaler: $P=256 / 272,512 / 528$
- Low power supply current: $\mathrm{I}_{\mathrm{cc}}=16 \mathrm{~mA}$ typ.
- Programmable reference divider consisting of: Binary 2-bit programmable reference counter ($R=256,512,1024,2048$)
- Programmable divider consisting of:

Binary 5-bit swallow counter ($A=0$ to 31)
Binary 12-bit programmable counter ($N=32$ to 4095)

- Wide operating temperature: $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 20-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

	Symbol	\Value	Unll
Power Supply Voltage	Vcc	-0.5 to 7.0	V
Output Voltage	Vo	0.5 to $V_{c c}+0.5$	V
Output Current	10	± 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings
are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^20]

PIN DESCRIPTIONS

Pln No.	Pin Name	110	
1	FC	1	Phase select input pin of the phase detector. This pin involves an internal pull up resistor. When this pin is low, characteristics of the charge pump and phase detector can be reversed. This input also selects fout pin output level, either fr or fp. See Functional Description section, Phase Detector Characteristics.
2	LE	I	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch.
3	Data	1	Serial data of binary code input pin. This pin involves a schmitt trigger circuit.
4	Clock	1	Clock input pin of the 24-bit shift register. This pin involves a schmitt trigger circuit. Each rising edge of the clock shifts one bit of data into the shift register.
5	Vcc 1	-	PLL power supply voltage input pin.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {In }} \\ & \text { OSCout } \end{aligned}$	1	Oscillator input pin. Oscillator output pin. A crystal is connected between $\mathrm{OSC}_{\text {In }}$ pin and OSCout pin.
8	GND1	-	PLL ground pin.
$\begin{gathered} 9 \\ 10 \end{gathered}$	D_{0} Doz	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Charge pump output pins. Phase characteristics can be reversed depending upon FC pin input level.
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	BC4 BC3 BC2 BC1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Band switching output pins. (Open-collector output) Output is controlled by a band bit data, individually. $\mathrm{BCX}-$ bit $=\mathrm{H}$: BCX output transistor is ON. $B C X$-bit=L: BCX output transistor is OFF. $(X=1 \text { to } 4)$
15	$\overline{f_{\text {in }}}$	1	Complementary input pin of fin. Please connect to GND through a capacitor.
16	GND2	-	Prescaler ground pin.
17	$\mathrm{fin}^{\text {in }}$	1	Prescaler input pin, This signal is AC coupled.
18	Vcc2	-	Prescaler power supply voltage input pin.
19	fout	0	Monitor pin of the phase detector input. fout pin outputs either of the programmable reference divider output frequency fr or programmable divider output frequency $f p$ depending upon the FC pin input level.
20	LD	0	Phase detector output pin. Normally this pin outputs high. While the phase difference between fr and fp exists, this pin outputs low.

FUNCTIONAL DESCRIPTIONS

DIVIDE RATIO SETTING

Divide ratio can be set using the following equation:
$f_{v c o}=\{(P \times N)+(16 \times A)\} \times f_{\text {fosc }}+R$
fvoo: Output frequency of an external voltage controlled oscillator (VCO)
P: Preset divide ratio of an internal dual modulus prescaler (256 or 512)
N: Preset divide ratio of binary 12-bit programmable counter (32 to 4095)
A: Preset divide ratio of binary 5 -bit swallow counter (0 to 31)
tosc: Reference oscillator frequency
R: Preset divide ratio of reference counter ($256,512,1024,2048$)

SERIAL DATA I NPUT

Each rising edge of the clock shifts one bit of data into the shift register.
When the loaa enable is high, the data stored in the shift register is transferred to the latch.
The data format of 24 bits is shown below.
\longrightarrow Data Input Flow

5-bit swallow counter divide ratio (A1 to A5)

Divide ratio A	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{A}
5	4	3	2	1	
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$
31	1	1	1	1	1

12-bit programmable counter divide ratio (N1 to N12)
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}\hline \text { Divide ratio } & \begin{array}{c}N \\ 12\end{array} & \begin{array}{c}N \\ 11\end{array} & \begin{array}{c}N \\ 10\end{array} & \begin{array}{c}N \\ 9\end{array} & \begin{array}{c}N \\ 8\end{array} & \begin{array}{c}N \\ 7\end{array} & \begin{array}{c}N \\ 6\end{array} & \begin{array}{c}N \\ 5\end{array} & \begin{array}{c}N \\ 4\end{array} & \begin{array}{c}N \\ 3\end{array} & N & N \\ 2\end{array}\right] 1$

FUNCTIONAL DESCRIPTIONS

Reference counter divide ratio (R1 to R2)

Divide ratio R	R	R
2	1	
256	0	0
512	0	1
1024	1	0
2048	1	1

Prescaler divide ratio (SW)
When divide ratio of prescaler setting bit is high, divide ratio of $256 / 272$ is selected When divide ratio of prescaler setting bit is low, divide ratio of $512 / 528$ is selected.

Band Switch Setting (BC1 to BC4)
When band switch setting bit is high, output is ON.
When band switch setting bit is low, output is OFF.

SERIAL DATA INPUT TIMING

Note: Each rising edge of the clock shifts one bit of data into the shift register.
When LE is high, the data stored in the shift register is transferred into the latch.

PHASE DETECTOR CHARACTERISTICS
FC pin selects the phase of the phase detector. Phase characteristics (charge pump output) can be reversed depending upon the FC pin. input level. Monitor pin (fout) output level is selected by the FC pin input level as well.

		FC $=\mathrm{H}$ (or open)		$F C=L$
	D_{01}, D_{02}	fout	D_{01}, D_{02}	fout
$f r>f p$	H	Outputs programmable reference divider output frequency fr .	L	Outputs programmable divider output frequency fp.
$\mathrm{fr}=\mathrm{fp}$	Z		Z	
$\mathrm{fr}<\mathrm{fp}$	L		H	

Note:

Z: High-impedance
Depending upon the VCO polarity, FC pin should be set accordingly.

When VCO polarity is like 1 , FC should be set high or open. When VCO polarity is like 2, FC should be set low.
VCO POLARITY

PHASE DETECTOR WAVEFORM

TEST CIRCUIT (FOR PRESCALER INPUT SENSITIVITY)

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value:			Unit
		Min	Typ	Max	
Power Supply Voltage	$V_{c c}$	4.5	5.0	5.5	V
Input Voltage	V_{1}	GND	-	Vcc	V
Operating Temperature	TA	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameder		Symbol	Condition	V/ues			Unins k dis	
		Min		TVF	Heksis			
Power Supply Current			lcc	Note1	-	16.0	-	mA
Operating Frequency	$f_{\text {in }}$	f fin	Note2	10	-	2500	MHz	
	$\mathrm{OSC}_{\mathbb{1}}$	fosc	-	-	4	10		
Input Sensitivity	f fin	Vfin	2300 to 2500 MHz	-4	-	6	dBm	
			1900 to 2300 MHz	-7	-	6		
			10 to 1900 MHz	-10	-	6		
	OSCin	Vosc	-	0.5	-	-	$V_{\text {PP }}$	
High-level Input Voltage	Except $f_{\text {in }}$ and OSC ${ }_{\text {IN }}$	V_{IH}	-	$V_{c c} \times 0.7+0.4$	-	-	V	
Low-level Input Voltage		$\mathrm{V}_{\text {IL }}$	-	-	-	$V_{\text {ccx }} 0.3-0.4$		
High-level Input Current	Data, Clock, LE	1 IH	-	-	1:0	-	$\mu \mathrm{A}$	
Low-level input Current		IL	-	-	-1.0	-		
	FC	lilfe	-	-	-60	-		
Input Current	$\mathrm{OSC}_{1 \times}$	liosc	-	-	± 50	-		
High-level Output Voltage	Except Do	VOH	$V_{c c}=5.0 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Voltage		Vol	-	-	-	0.4		
High-impedance Cutoff Current	$\begin{aligned} & \mathrm{D}_{01}, \mathrm{D}_{02} \\ & \mathrm{BC} 1 \text { to } \mathrm{BC} 4 \end{aligned}$	loff	-	-	-	1.1	$\mu \mathrm{A}$	
High-level Output Current	Except Do	loh	-	-1.0	-	-	mA	
Low-level Output Current		los	-	1.0	-	-		
Withstand Output Voltage	BC 1 to BC 4	V_{B}	-	-	-	12	V	

Note1: $f_{\text {in }}=2.5 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}^{\prime}}=4.0 \mathrm{MHz}, \mathrm{V}_{c c}=5.0 \mathrm{~V}$. Input pins are grounded and output pins are open. Note2: AC coupling. Minimum operating frequency is measured with a capacitor 1000 pF .

MB1508 APPLICATION CIRCUIT

PACKAGE DIMENSIONS

20-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-20P-M01)

MB1509

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 400MHz PRESCALER

The Fujitsu MB1509 is a 400 MHz dual serial input PLL (Phase Locked Loop) frequency sizer synthesizer designed for cordless telephone application.

The MB1509 has two PLL circuits on a single chip: one for transmit and the other for reception. Separate power supply pins are provided for the transmit and reception PLL circuits. Transmit PLL contains a low sensitivity charge pump for ease of modulation and reception PLL contains a high sensitivity charge pump for faster lock up time.

The MB1509 incorporates two 400 MHz dual modulus prescalers to enable implemention of a pulse swallow function.

It operates supply voitage of 3.0 V typ. and dissipates 8 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: fin $=400 \mathrm{MHz}$
- Low power supply voltage: $\mathrm{V}_{\mathrm{cc}}=2.7$ to 5.5 V
- Low power supply current: lcc =8mA typ, @3V.
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Two charge pumps

Low sensitivity charge pump for transmit High sensitivity charge pump for reception

- Plastic 20-pin dual in line package (Suffix: -P) Plastic 20-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

[^21] maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

BLOCK DESCRIPTIONS

TRANSMIT/RECEPTION BLOCK

- 20-bit latch
- Programmable divider consisting of: Binary 7 -bit swallow counter (Divide ratio: 0 to 127)
Binary 11-bit programmable counter (Divide ratio: 16 to 2047)
- Phase detector with phase polarity change function
- 400 MHz dual modulus prescaler (Divide ratio: $32 / 33,64 / 65$)
- Charge pump

COMMON BLOCK

- 23-bit shift register
- Programmable divider consisting of: Reference counter (Divide ratio: 512, 1024)
(Divide frequency $=25 \mathrm{kHz}, 12.5 \mathrm{kHz}$ (Crystal oscillator frequency $=12.8 \mathrm{MHz}$)
- Crystal oscillator
- fp monitor output selector
- Latch selector
- Schmitt circuits
- Analog switches

PIN DESCRIPTIONS

PIN DESCRIPTIONS (Continued)

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f_{v c o}=\{(M \times N)+A\} \times$ fosc $+R(A<N)$
fvco: Output frequency of external voltage controlled oscillator (VCO)
M: Preset divide ratio of dual modulus prescaler (32 or 64)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter (512 or 1024)

FUNCTIONAL DESCRIPTIONS

serial data input

Serial data is input using three pins: Data pin, Clock pin, and LE pin. Programmable divider of transmit section and programmable divider of reception section are controlled individually.
Serial data of binary data is input into Data pin.
Each rising edge of the clock shifts one bit of serial data into the shift register. When load enable signal is high, the data stored in thegister is shift register is transferred to either the latch of the transmit section or the latch of the reception section, depending upon the control bit data setting.

Control data	Destination of serial data
H	Latch of transmit section
L	Latch of reception section

SHIFT REGISTER CONFIGURATION

Control bit

N1 to N11 : Divide ratio of the programmable counter setting bit (16 to 2047)
A1 to A7 : Divide ratio of the swallow counter setting bit (0 to 127)
FC : Phase control bit of the phase detector
PRE : Divide ratio of the prescaler setting bit (32/33 or 64/65)
FP : Output of the programmable divider control bit (fp1 or fp2)
REF : Divide ratio of the reference counter setting bit (512 to 1024)
CNT : Control bit

SERIAL DATA INPUT TIMING

Each rising edge of the clock shifts one bit of data into the shift register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
.	-	-	-	-	-	\cdot	\cdot	\cdot	\cdot	\cdot	-
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 16 is prohibited. Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot	-	-	\cdot	\cdot	\cdot	\cdot	-
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

PRE : DIVIDE RATIO (P) OF THE PRESCALER SETTING BIT
H = 32/33
$L=64 / 65$
REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT
$\mathrm{H}=512(\mathrm{fr}=25.0 \mathrm{kHz})$
$\mathrm{L}=1024(\mathrm{fr}=12.5 \mathrm{kHz}$)
FP : OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT
$H=f p$ pin (15 pin) outputs programmable divider output frequency (fp1) of transmit section. $\mathrm{L}=\mathrm{fp} \mathrm{pin}$ (15 pin) outputs programmable divider output frequency (fp 2) of reception section.

FC : PHASE CONTROL BIT OF THE PHASE DETECTOR
Output of charge pump is selected by FC pin.

	$F C=H$	$F C=L$
$\mathrm{fr}>\mathrm{f} p$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO Polarity	(1)	(2)

Note: Z = High-impedance Depending upon the VCO polarity, FC bit should be set.

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase difference is tw or more.

LD output becomes high when phase difference less than tw is reperated 3 times or more.
(e. g. $\mathrm{t}_{\mathrm{w}}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$)

- Spike apperance depends on the charge pump characteristics. The spike is output to diminish the dead band.
- When $\mathrm{fr}>\mathrm{fp}$ or $\mathrm{fr}<\mathrm{fp}$, spike might not generate depending upon the VCO characteristics.

ANALOG SWITCH

ON/OFF of the analog switch is controlled by the combination of the control data and LE signal. When the analog switch is ON, BS1, BS2 pin output the charge pump output ($\mathrm{D}_{01}, \mathrm{D}_{02}$). When analog switch is OFF, BS pin is set to high impedance.

	Control data = H Divide ratio of transmit section is set		Control data = L Divide ratio of reception section is set	
	$L E=H$	$L E=L$	$L E=H$	$L E=L$
	ON	OFF	OFF	OFF
Analog switch of reception section	OFF	OFF	ON	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min	Typ	Max		
Power Supply Voltage	V_{cc}	2.7	3.0	5.5	V	$V_{C C 1}=V_{C C 2}$
	V_{P}	Vcc	-	8.0	V	
Input Voltage	Vin	GND	-	Vcc	V	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB1509

ELECTRICAL CHARACTERISTICS

Parameler		Symbols	Condition	V114*			unit	
		Mins		\$yp				
Power Supply Current*			lcc 1	Reception section is active.	-	4.0	-	mA
		1 cc 2	Transmit/reception section are active.	-	8.0	12.0		
Operating Frequency**	fin	fin1	$P=64 / 65$	10	-	400	MHz	
		fin2	$\mathrm{P}=32 / 33$	10	-	200		
	OSC ${ }_{\text {IN }}$	fosc		-	12.8	20		
Input Sensitivity	fin	Vfin	$V_{c c}=2.7$ to $4.0 \mathrm{~V}, 50 \Omega$	-10	-	0	dBm	
			$V_{c c}=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$	-4	-	2		
	$\mathrm{OSC}_{1 \times}$	Vosc		0.5	-	-	Vpp	
High-level Input Voltage	Except fin and $\mathrm{OSC}_{\mathrm{IN}}$	$\mathrm{V}_{\text {IH }}$		Vccx $0.7+0.4$	-	-	V	
Low-level Input Voltage		VIL		-	-	Vccx0.3-0.4		
High-level Input Current	Data, Clock LE	$\mathrm{li}_{\text {H }}$		-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL		-	-1.0	-		
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc		-	± 50	-		
High-level Output Voltage	Except Do and OSCout	V OH	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V	
Low-level Output Voltage		Vol		-	-	0.4		
High-impedance Cutoff Current	Do	loff	$\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\text {cc }}$ to 8.0 V	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCout	Іон		-1.0	-	-	mA	
		lob		1.0	-	-		
	Do1	Ion	$\mathrm{V}=6 \mathrm{~V}$	-	-1	-		
		los.	$\mathrm{Vcc}=3 \mathrm{~V}$	-	12	-		
	Do2	Іон	$V_{P}=6 \mathrm{~V}$	-	-3	-		
		lor	$\mathrm{Vcc}=3 \mathrm{~V}$	-	6	-		
Analog Switch ON Resistance		Ron		-	50	-	Ω	

Notes: $\quad *: \quad$ fin $=400 \mathrm{MHz}$, OSC $_{\mathbb{N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc} 1}=\mathrm{V}_{\mathrm{cc} 2}=3.0 \mathrm{~V}$. The remaining input pins are grounded and output pins are open.
**: AC coupling. Minimum operating frequency is measured with capacitor 1000 pF .

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

APPLICATION EXAMPLE

PACKAGE DIMENSIONS

20-LEAD PLASTIC DUAL IN-LINE PACKAGE

 (CASE No.: DIP-20P-M02)

3

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-20P-M01)

MB1511

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB1511 is a single chip serial input PLL frequency synthesizer designed for VHF tuner and cellular telephone applications. It contains a $1.1 \mathrm{GH}_{\mathrm{z}}$ dual modulus prescaler which enables pulse swallow function, and an analog switch to speed up lock up time. It operates supply voltage of 3.0 V typ. and dissipates 7 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology. The MB1511 is housed in SSOP package, this enables high integration.

- Low power supply voltage: $\mathrm{V}_{\mathrm{cc}}=2.7$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\mathrm{IN} \max }=1.1 \mathrm{GH}_{\mathrm{Z}}\left(\mathrm{V}_{\mathbb{N} \operatorname{MN}}=-10 \mathrm{dBm}\right)$
- Pulse swallow function: 64/65 or 128/129
- Low supply current: $\mathrm{I}_{\mathrm{cc}}=7 \mathrm{~mA}$ typ.
- Serial input 18 -bit programmable divider consisting of: - Binary 7-bit swallow counter: 0 to 127 - Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter: 8 to 16383 - 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2types of phase detector output - On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 20-pin Plastic Shrink Small Outline Package (Suffix: - PFV)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{cc}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {oop }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\text {our }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {sTG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 This device contains circuitry to protect the inputs against
damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to ever, it is advised that normal precautions be taken to
avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^22]

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\mathbb{1 N}} \\ & \text { OSC }_{\text {out }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between $\mathrm{OSC}_{\text {IN }}$ and $\mathrm{OSC}_{\text {our }}$.
4	V_{p}	-	Power supply input for charge pump and analog switch.
5	$\mathrm{V}_{\text {cc }}$	-	Power supply voltage input.
6	D。	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
7	GND	-	Ground.
8	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of f_{r} and f_{p} exists, this pin outputs low level.
10	f_{N}	1	Prescaler input. The connection with an external VCO should be AC connection.
11	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
13	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
14	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output is connected to BISW pin because internal analog switch becomes ON state.
15	FC	I	Phase select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal controls $f_{\text {out }}$ pin (test pin) output level, f_{r} or f_{p}.
16	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump output.
17	$\mathrm{f}_{\text {out }}$	0	Minitor pin of phase comparator input. $\mathrm{f}_{\text {out }}$ pin outputs either programmable reference divider output (f_{t}) or programmable di- vider output (f_{p}) depending upon FC pin input level. FC=H: It is the same as $f_{\text {t }}$ output level. FC=L: It is the same as f_{p} output level.
$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \varnothing P \\ & \varnothing R \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.
$\begin{gathered} 2,9 \\ 12,19 \end{gathered}$	NC	-	No connection.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15 -bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	$\begin{gathered} S \\ 13 \end{gathered}$	S 12	S 11	S	$\begin{aligned} & \mathrm{S} \\ & 9 \end{aligned}$	S	S 7	S	$\begin{aligned} & \mathrm{S} \\ & 5 \end{aligned}$	S	S	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW:This bit selects divide ratio of prescaler.
SW=H:64/65
SW=L: $128 / 129$
S1 to S14: These bits select divide ratio of programmable reference divider.
C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19-bit data format is shown following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S	S	S	S	S	S
5	4	3	2	1			
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S	S
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited.
Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047)
C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

The divide ratio is set using the following equation.
$\left.\mathrm{f}_{\mathrm{vcO}}=[\mathrm{MxN})+\mathrm{A}\right] \times \mathrm{ff}_{\mathrm{os}+}+\mathrm{R}$
$f_{v c o}$: Output frequency of external voltage controlled oscillator (VCO)
M: Preset modulus of external dual modulus prescaler (64 or 128)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
fosc: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14 -bit programmable reference counter (8 to16383)

SERIAL DATA INPUT TIMING

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider.
On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS

FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{0}), phase comparator output level ($\varnothing \mathrm{R}, \oslash \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (fout) output level of phase comparator is controlled by FC pin input level. The relation between outputs ($D_{0}, \otimes R, \otimes P$) and FC input level are shown below.

	FC=H or open				FC=L			
	D	өR	${ }_{* P}$	$\mathrm{f}_{\text {out }}$	D	${ }^{6} \mathbf{R}$	${ }_{*}$ P	$\mathrm{f}_{\text {out }}$
$\mathrm{f}_{1}>\mathrm{i}_{\mathrm{p}}$	H	L	L	$\left(\mathrm{f}_{\mathrm{f}}\right)$	L	H	Z	(f_{p})
$\mathrm{f}_{\mathrm{t}}<\mathrm{f}_{\mathrm{p}}$	L	H	Z	$\left(\mathrm{f}_{\mathrm{f}}\right.$)	H	L	L	$\left(\mathrm{f}_{\mathrm{p}}\right)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	Z	L	Z	(f)	Z	L	Z	$\left(f_{p}\right)$

Note: $\quad Z=$ (High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit; When VCO characteristics are like(2), FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{f} f_{p}$ or $f_{t}<i_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is ON, internal charge pump output (D_{0}) is connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.

LE	Analog Switch
H (Changing the divide ratio of intermal prescaler)	ON
L (Normal operating mode)	OFF

When an analog switch is inserted between LP1 and LP2, faster lock up times is achieved to reduce LPF time constant during PLL channal switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{cc}	2.7	3.0	5.5	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc}		8.0	V
	V_{I}	GND	-	V_{cc}	V
Operating Temperature	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off befer inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handing or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			$\mathrm{I}_{\text {c }}$	Note 1		7.0		mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note 2	10		1100	MHz	
	$\mathrm{OSC}_{\text {IN }}$	fosc			12	20	MHz	
Input Sensitivity	$f_{\text {in } 1}$	Vfint	$\mathrm{V}_{\mathrm{cc}}=4.0$ to 5.5 V	-4		6	dBm	
	fin 2	Vtin3	$\mathrm{V}_{C C}=2.7$ to 4.0 V	-10		6		
	OSC $_{\text {IN }}$	Vosc		0.5			$\mathrm{V}_{\text {PP }}$	
High-level Input Voltage	Except fin and $\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {H }}$		$\mathrm{V}_{\mathrm{cc}} \times 0.7$			V	
Low-level Input Voltage		V_{1}				$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V	
High-level Input Current	Data Clock	I_{1+1}			1.0		$\mu \mathrm{A}$	
Low-level Input Current		$1 /$			-1.0		$\mu \mathrm{A}$	
Input Current	$\mathrm{OSC}_{\text {IN }}$	losc			± 50		$\mu \mathrm{A}$	
	LE, FC	$L_{\text {LE }}$			-60		$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and OSC OUt	V_{OH}	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$	2.2			V	
Low-level Output Current		V oL				0.4	V	
N -channel Open Drain Cutoff Current	$D_{0}, \varnothing P$	loff	$V_{c c} \leq V_{p} \leq 8 \mathrm{~V}$			1.1	$\mu \mathrm{A}$	
Output Current	Except D。 and OSC ${ }_{\text {out }}$	IOH		-1.0			mA	
		lol		1.0			mA	
Analog Switch On Resistance		$\mathrm{R}_{\text {on }}$			50		Ω	

NOTE 1: $f_{i n}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathbb{N}_{\mathbb{N}}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$. Inputs are grounded and outputs are open.
NOTE 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000pF.

MB1511

TEST CIRCUIT

3

TYPICAL APPLICATION EXAMPLE

3

MB1511

PACKAGE DIMENSIONS

LOW POWER SERIAL INPUT PLL SYNTHESIZER WITH 1.1GHz PRESCALER

The Fujitsu MB1512, utilizing BI-CMOS technology, is a single chip serial input PLL synthesizer with pulse-swallow function.
The MB1512 contains a $1.1 \mathrm{GH}_{\mathbf{z}}$ two modulus prescaler that can select of either 64/65 or 128/129 divide ratio, control signal generator, 16 -bit shift register, 15 -bit latch, programmable reference divider (binary 14 -bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19-bit shift register, 18 -bit latch, programmable divider (binary 7 -bit swallow counter and binary 11 -bit programmable counter) and analog switch to speed up lock up time. It operates supply voltage of 5 V typ. and achieves very low supply current of 8 mA typ. realized through the use of Fujitsu Advanced Process Technology.

- High operating frequency: $f_{\mathbb{N} \max }=1.1 \mathrm{GH}_{\mathrm{z}}\left(\mathrm{V}_{\mathbb{N} \operatorname{MN}}=-10 \mathrm{dBm}\right)$
- Pulse swallow function: $64 / 65$ or $128 / 129$
- Power supply voltage: $\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
- Low supply current: $\mathrm{I}_{\mathrm{cc}}=8 \mathrm{~mA}$ typ.
- Serial input 18 -bit programmable divider consisting of:
- Binary 7-bit swallow counter: 0 to 127
- Binary 11-bit programmable counter: 16 to 2047
- Serial input 15 -bit programmable reference divider consisting of: - Binary 14-bit programmable reference counter: 8 to 16383 - 1-bit switch counter (SW) sets divide ratio of prescaler
- On-chip analog switch achieves fast lock up time
- 2types of phase detector output
- On-chip charge pump (Bipolar type)
- Output for external charge pump
- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 20-pin Plastic Shrink Small Outline Package

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{cc}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc} to 10.0	V
Output Voltage	$\mathrm{V}_{\text {our }}$	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Open-drain Voltage	$\mathrm{V}_{\text {oop }}$	-0.5 to 0.8	V
Output Current	$\mathrm{I}_{\text {out }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE FPT-20P-M03

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. How ever, it is advised that normal precautions be taken to ever, it is advised that normal precautions be taken to rated voltages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Pin Name	IVO	Description
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { OSC }_{1 \mathbb{1}} \\ & \text { OSC }_{\text {out }} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input. Oscillator output. A crystal is placed between OSC $_{\text {IN }}$ and OSC $_{\text {our. }}$.
4	V_{p}	-	Power supply input for charge pump and analog switch.
5	$V_{c c}$	-	Power supply voltage input.
6	D。	0	Charge pump output. The characteristics of charge pump is reversed depending upon FC input.
7	GND	-	Ground.
8	LD	0	Phase comparator output. Normally this pin outputs high level. While the phase difference of $f_{\text {, }}$ and f_{p} exists, this pin outputs low level.
9	NC	-	No connection.
10	f_{IN}	1	Prescaler input. The connection with an external VCO should be AC connection.
11	Clock	1	Clock input for 19 -bit shift register and 16 -bit shift register. On rising edge of the clock shifts one bit of data into the shift registers.
12	NC	-	No connection.
13	Data	1	Binary serial data input. The last bit of the data is a control bit which specified destination of shift registers. When this bit is high level and LE is high level, the data stored in shift register is transferred to 15 -bit latch. When this bit is low level and LE is high level, the data is transferred to 18 -bit latch.
14	LE	1	Load enable input (with internal pull up resistor). When LE is high or open, the data stored in shift register is transferred into latch depending upon the control bit. At the time, internal charge pump output to be connected to BISW pin because internal analog switch becomes ON state.
15	FC	1	Phse select input of phase comparator (with internal pull up resistor). When FC is low level, the characteristics of charge pump, phase comparator is reversed. FC input signal is also used to control $f_{\text {out }}$ pin (test pin) output level, $f_{\text {, or }} f_{p}$.
16	BISW	0	Analog switch output. Usually BISW pin is set high-impedance state. When internal analog switch is ON (LE pin is high level), this pin outputs internal charge pump state.
17	$f_{\text {out }}$	0	Minitor pin of phase comparator input. $f_{\text {out }}$ pin outputs either programmable reference divider output (f_{t}) or programmable divider output (f_{ρ}) depending upon FC pin input level. FC=H: It is the same as f, output level. FC=L: It is the same as f_{p} output level.
$\begin{aligned} & 18 \\ & 20 \end{aligned}$	$\begin{aligned} & \varnothing P \\ & \varnothing R \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Outputs for external charge pump. The characteristics are reversed according to FC input. $\varnothing \mathrm{P}$ pin is N -channel open drain output.
$\begin{gathered} 2 \\ 19 \end{gathered}$	NC	-	No connection.

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data input is achieved by three inputs, such as Data pin, Clock pin and LE pin. Serial data input controls 15 -bit programmable reference divider and 18 -bit programmable divider, respectively.
Binary serial data is input to Data pin.
On rising edge of clock shifts one bit of serial data into the internal shift registers and when load enable pin is high level or open, stored data is transferred into latch depending upon the control bit.
Control data " H " data is transferred into 15 -bit latch.
Control data " L " data is transferred into 18 -bit latch.

PROGRAMMABLE REFERENCE DIVIDER

Programmable reference divider consists of 16 -bit shift register, 15 -bit latch and 14 -bit reference counter. Serial 16 -bit data format is shown below.

14-BIT PROGRAMMABLE REFERENCE COUNTER DIVIDE RATIO

Divide Ratio R	S 14	S 13	S 12	S 11	S 10	S	S	S	S	S	S	S	S	S
F	S													
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
\bullet														
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 8 is prohibited.
Divide ratio: 8 to 16383
SW:This bit selects divide ratio of prescaler.
SW=H:64/65
SW=L: 128/129
S1 to S14: These bits select divide ratio of programmable reference divider. C: Control bit (sets as high level).
Data is input from MSB side.

PROGRAMMABLE DIVIDER

Programmable divider consists of 19 -bit shift register, 18 -bit latch, 7 -bit swallow counter and 11 -bit programmable counter. Serial 19-bit data format is shown following page.

7-BIT SWALLOW COUNTER DIVIDE RATIO

Divide Ratio A	S 7	S 6	S 5	S	S	3	S
2	S						
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							
127	1	1	1	1	1	1	1

NOTE: Divide ratio: 0 to 127

11-BIT PROGRAMMABLE COUNTER DIVIDE RATIO

Divide Ratio N	S 18	S 17	S 16	S 15	S 14	S 13	S 12	S 11	S 10	S	S
16	0	0	0	0	0	0	1	0	0	0	1
17	0	0	0	0	0	0	1	0	0	0	1
\bullet											
2047	1	1	1	1	1	1	1	1	1	1	1

NOTES: Divide ratio less than 16 is prohibited. Divide ratio: 16 to 2047
S1 to S7: Swallow counter divide ratio setting bit. (0 to 127)
S8 to S18: Programmable counter divide ratio setting bit. (16 to 2047) C: Control bit (sets as low level).
Data is input from MSB side.

PULSE SWALLOW FUNCTION

$f_{\mathrm{vco}}=[(\mathrm{PxN})+\mathrm{A}] \times \mathrm{ff}_{\mathrm{occ}}+\mathrm{R}$
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127, A<N$)
$\mathrm{f}_{\mathrm{osc}}$: Output frequency of the external reference frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to16383)
P: Preset modulus of external dual modulus prescaler (64 or 128)

SERIAL DATA INPUT TIMING

NOTES: Parenthesis data is used for setting divide ratio of programmable reference divider. On rising edge of clock shifts one bit of data in the shift register.

PHASE CHARACTERISTICS

VCO CHARACTERISTICS
FC pin is provided to change phase characteristics of phase comparator. Characteristics of internal charge pump output level (D_{0}), phase comparator output level (${ }_{\varnothing} \mathrm{R},{ }_{\varnothing} \mathrm{P}$) are reversed depending upon FC pin input level. Also, monitor pin (foud output level of phase comparator is controlled by FC pin input level. The relation between outputs ($\mathrm{D}_{0},{ }_{e} \mathrm{R},{ }_{8} \mathrm{P}$) and FC input level are shown below.

	FC=H or open				FC=L			
	D	${ }_{9} \mathrm{R}$	${ }_{9} \mathbf{P}$	$\mathrm{f}_{\text {out }}$	D	${ }^{2} \mathrm{R}$	${ }_{9} \mathrm{P}$	$\mathrm{f}_{\text {out }}$
$f_{1}>{ }_{\text {P }}$	H	L	L	(f_{f})	L	H	Z	$\left(f_{p}\right)$
$f_{r}<f_{p}$	L	H	Z	(f)	H	L	L	$\left(f_{p}\right)$
$\mathrm{f}_{\mathrm{f}}=\mathrm{f}_{\mathrm{p}}$	Z	L	Z	(f)	Z	L	Z	$\left(f_{p}\right)$

Note: $\quad Z=($ High impedance)
Depending upon VCO characteristics, FC pin should be set accordingly:
When VCO characteristics are like (1), FC should be set High or open circuit; When VCO characteristics are like (2), FC should be set Low.

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike appearance depends on charge pump characteristics. Also, the spike is output in order to diminish dead band. When $f_{p}>f_{p}$ or $f_{r}<f_{p}$, spike might not appear depending upon charge pump characteristics.

ANALOG SWITCH

ON/OFF of analog switch is controlled by LE input signal. When the analog switch is $O N$, internal charge pump output (D_{o}) to be connected to BISW pin. When the analog switch is OFF, BISW pin is set to high-impedance state.
$\begin{array}{ll}L E=H \text { (Changing the divide ratio of internal prescaler) : Analog switch }=O N \\ L E=L \text { (Normal operating mode) } & : \text { Analog switch }=O F F\end{array}$
LPF time constant is decreased in order to insert a analog switch between LPF1 and LPF2 when channel of PLL is changing. Thus, lock up time is decreased, that is, fast lock up time is achieved.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{cc}	4.5	5.0	5.5	V
	$\mathrm{~V}_{\mathrm{p}}$	V_{cc}	V_{p}	8.0	V
Input Voltage	V_{1}	GND		V_{cc}	V
Operating Temperature	T_{A}	-40		85	${ }^{\circ} \mathrm{C}$

MB1512

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min		Typ	Max			
Power Supply Current			$\mathrm{I}_{\text {cc }}$	Note 1		8.0		mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	f_{in}	Note 2	10		1100	MHz	
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{f}_{\text {osc }}$			12	20	MHz	
Input Sensitivity	f_{in}	$\mathrm{Vt}_{\text {in }}$		-10		6	dBm	
	OSC $_{\text {IN }}$	$V_{\text {osc }}$		0.5			$V_{\text {pp }}$	
High-level Input Voltage	Except fi_{n} and OSC ${ }_{\text {IN }}$	V_{1+}		$\mathrm{Vcc}_{\text {c }} 0.7$			V	
Low-level Input Voltage		V_{1}				$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V	
High-level Input Current	Data Clock	$\mathrm{I}_{\text {H }}$			1.0		$\mu \mathrm{A}$	
Low-level Input Current		I_{11}			-1.0		$\mu \mathrm{A}$	
Input Current	OSC $_{\text {ı }}$	Iosc			± 50		$\mu \mathrm{A}$	
	LE, FC	$\mathrm{I}_{\text {LE }}$			-60		$\mu \mathrm{A}$	
High-level Output Current	Except D_{0} and $\mathrm{OSC}_{\text {out }}$	$\mathrm{V}_{\text {OH }}$	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	4.4			V	
Low-level Output Current		V_{oL}				0.4	V	
N -channel Open Drain Cutoff Current	$\mathrm{D}_{\mathrm{o}}, \varnothing \mathrm{P}$	loff	$\mathrm{V}_{\text {cc }} \leq \mathrm{V}_{p} \leq 8 \mathrm{~V}$			1.1	$\mu \mathrm{A}$	
Output Current	Except D。 and $\mathrm{OSC}_{\text {out }}$	IOH		-1.0			mA	
		I_{0}		1.0			mA	
Analog Switch On Resistor		$\mathrm{R}_{\text {on }}$			25		Ω	

NOTE 1: $f_{i f}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathbb{N}_{\mathbb{N}}}=12 \mathrm{MHz}, \mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$. Inputs are grounded and outputs are open.
NOTE 2: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT

3

TYPICAL APPLICATION EXAMPLE

PACKAGE DIMENSIONS

Dimensions in

MB1513
 Serial Input PLL Frequency Synthesizer

The Fujitsu MB1513 is a serial input phase-locked loop (PLL)frequency synthesizer with a pulse-swallow function. A stand-by mode is provided to limit power consumption during intermittent operation.

The MB1513 is configured with a 1.1 GHz dual-modulus prescaler with a $128 / 129$ divide ratio, control signal generator, 16-bit shift register, 15 -bit latch, programmable reference divider (binary 14-bit programmable reference counter), 1-bit switch counter, phase comparator with phase conversion function, charge pump, crystal oscillator, 19 -bit shift register, 18 -bit latch, programmable divider (binary 7-bit swallow counter and binary 11-bit programmable counter), analog switches, and intermittent operation control circuit that selects the operating or stand-by mode depending on the power-save control input state (PS).
The MB1513 operates from a single +5 V supply. Fujitsu's advanced technology achieves an I_{cc} of 8 mA , typical. The stand-by mode current consumption is just $100 \mu \mathrm{~A}$.

- High operating frequency: $f_{\mathrm{IN}}=1.1 \mathrm{GHz}\left(\mathrm{V}_{\mathbb{N}}=-10 \mathrm{dBm}\right)$
- Pulse-swallow function: high-speed dual-modulus prescaler with 128/129 divide ratio
- Low supply current: $I_{\mathrm{cc}}=8 \mathrm{~mA}$ typ. at 5 V
- Power-saving stand-by mode: $100 \mu \mathrm{~A}$ typ.
- Serial input, 18 -bit programmable divider consisting of:

Binary 7-bit swallow counter: 0 to 127
Binary 11-bit programmable counter: 16 to 2,047

- Serial input, 15-bit programmable reference divider consisting of binary 14-bit programmable reference counter: 8 to 16,383 1 -bit switch counter sets prescaler divide ratio
- On-chip analog switch for fast lock-up
- On-chip charge pump minimizes system component count
- Wide operating temperature range: -40 to $+85^{\circ} \mathrm{C}$
- Plastic 20-pin shrink small outline package (Suffix: PFV)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
	$\mathrm{~V}_{\mathrm{P}}$	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P}} \leq 10.0$	V
	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circultry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^23]
BLOCK DIAGRAM

PIN DESCRIPTION

Pin No.	Pin name	110	Description
1	$\mathrm{OSC}_{\text {IN }}$	1	Programmable reference divider input Oscillator input An external crystal is connected to this pin
2	NC	-	No connection
3	OSC $_{\text {out }}$	0	Oscillator output An external crystal is connected to this pin
4	V_{p}	-	Power supply input for charge pump and analog switch
5	V_{cc}	-	Power supply
6	D	0	Charge pump output The phase of charge pump is reversed depending on FC input
7	GND	-	Ground
8	LD	0	Phase comparator output The output level is high when LD is locked. The output level is low when LD is unlocked
9	NC	-	No connection
10	f_{N}	1	Prescaler input An external VCO should be AC-coupled to this pin
11	Clock	1	Clock input for 19 -bit and 16 -bit shift registers One bit of data is shifted into the registers on the rising edge of the clock Schmitt trigger circuit is involved
12	NC	-	No connection
13	Data	I	Binary serial data input The last bit of the data is a control bit When the control bit is high, data is transmitted to the 15 -bit latch When the control bit is low, data is transmitted to the 18 -bit latch Schmitt trigger circuit is involved
14	LE	1	Load enable signal input When LE is high, the contents of the shift register are transferred to a latch, depending on the control bit in the serial data. At the same time, an internal analog switch turns on and the output of the internal charge pump is connected to the BiSW pin Schmitt trigger circuit is involved
15	FC	1	Phase select input of phase comparator (with internal pull-up resistor) When FC is low, the characteristics of charge pump and phase comparator are reversed FC input signal is also used to control the $f_{\text {out }}$ pin (test pin) of f_{R} or f_{p}
16	BiSW	0	Analog switch output Usually, BiSW is in the high-impedance state. When the switch is on (LE is high), the charge pump is connected to the BiSW pin
17	f_{p}	0	Programmable counter output monitor pin
18	f_{R}	0	Reference counter output monitor pin
19	NC	-	No connection
20	PS	1	Power save signal input Set low when the system is operating (Never use pin 20 as it is opened) PS = High : Operation mode PS = Low : Stand-by mode

FUNCTION DESCRIPTIONS

Pulse swallow function

The divide ratio can be calculated using the following equation:
$f_{\text {vco }}=[(M \times N)+A] \times f_{\text {osc }}+R \quad(A<N)$
$f_{\text {vco }}$: Output frequency of external voltage controlled oscillator (VCO)
N : Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A : Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
$f_{\text {osc }}$: Output frequency of the reference frequency oscillator
R : Preset divide ratio of binary 14-bit programmable reference counter (8 to 16,383)
M : Preset divide ratio of prescaler (128)

Serial data input

Serial data is input using the Data, Clock, and LE pins. Serial data controls the 15-bit programmable reference divider and 18-bit programmable divider separately.
Binary serial data is input to the Data pin.
One bit of data is shifted into the internal shift registers on the rising edge of the clock. When the load enable pin is high or open, stored data is latched, depending on the control as follows:

Control data	Destination of serial data
H	15 bit latch
L	18 bit latch

(a) Programmable reference divider ratio

The programmable reference divider consists of a 15 -bit latch and a 14 -bit reference counter. The 16 -bit serial data format is shown below:

- 14-bit programmable reference counter divide ratio

Divideratio म	$\begin{aligned} & \mathrm{K} \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \$_{1} \\ & 13 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 12 \\ & 1 \end{aligned}$	\$	$\begin{aligned} & \begin{array}{l} \text { sing } \\ 10 \end{array} \end{aligned}$	\$	S	§	\$	S	S.	S 3	S	S
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=8$ to 16,383)
Notes: 1. Divide ratios less than 8 are prohibited.
2. SW: This bit selects the divide ratio of the prescaler SW Low: 128 or 129
(SW must be always be low.)
3. S1 to S14: These bits select the divide ratio of the programmable reference counter (8 to 16,383).
4. C: Control bit: Set high.
5. Input data MSB first.
(b) Programmable divider divide ratio

The programmable divider consists of a 19 -bit shift register, an 18 -bit latch, a 7 -bit swallow counter, and an 11-bit programmable counter. The 19 -bit serial data format is shown below:

- 7-bit swallow counter divide ratio

Bivioe ratio A	\$	4	S	S,	S. 3	S	S
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet	-	-	-	-	-	-	-
127	1	1	1	1	1	1	1

(Divide ratio $=0$ to 127)

- 11-bit programmable counter divide ratio

Divide ratio N	$\frac{8}{18}$	Sint	S_{16}	\$15	$\begin{aligned} & 4 \\ & 14 \end{aligned}$	$\frac{8}{13}$	$\frac{8}{12}$	$\stackrel{s}{2}$	${ }^{10}$	\%	S
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-
2047	1	1	1	1	1	1	1	1	1	1	1

(Divide ratio $=16$ to 2,047)

Notes: 1. Divide ratios less than 16 are prohibited for 11-bit programmable counter.
2. S 1 to S : These bits select the divide ratio of swallow counter (0 to 127).
3. S8 to S18: These bits select the divide ratio of programmable counter (16 to 2,047).
4. C: Control bit: (Set low)
5. Input data MSB first.

Serial data input timing

$\begin{array}{lll}\text { - } t_{1}(\geq 1 \mu \mathrm{~s}): \text { : Data setup time } & \mathrm{t}_{2}(\geq 1 \mu \mathrm{~s}): \text { Data hold time } & \mathrm{t}_{3}(\geq 1 \mu \mathrm{~s}): \text { Clock pulse width } \\ \mathrm{t}_{4}(\geq 1 \mu \mathrm{~s}): \text { : LE setup time to the rising edge of last clock } & t_{5}(\geq 1 \mu \mathrm{~s}): \text { : } \mathrm{LE} \text { pulse width }\end{array}$

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.

Intermittent operation

Intermittent operation limits power consumption by shutting down or starting the internal circuits according to its necessity. If device operation resumes uncontrolled, the error signal output from the phase comparator may exceed the limit due to an undefined phase relationship between the reference frequency (f_{R}) and the comparison frequency (f_{p}) and frequency lock is lost.
To prevent this, an intermittent operation control circuit is provided to decrease the variation in the locking frequency by forcibly correcting phase of both frequencies to limit the error signal output. This is done by the PS control circuit. If PS is set high, the circuit enters the operating mode. If PS is set low, operation stops and the device enters the stand-by mode. Each mode is explained below:

- Operating mode ($\mathrm{PS}=$ High)

All circuits are operating, and PLL operation is normal.

- Stand-by mode (PS = Low)

Circuits that do not affect operation are powered-down to save power.
The current in the power save state is typically $100 \mu \mathrm{~A}$.
At this time, the levels of D_{o} and LD are the same as when the PLL is locked.
Since D_{0} is placed in the high-impedance state and the input voltage of the voltage-controlled oscillator (VCO) is set to the voltage in the operating mode (when locked) by the time constant of the low-pass filter, the frequency output from the VCO ($\mathrm{f}_{\mathrm{vco}}$) is kept at the locking frequency.

The operating and stand-by modes alternate repeatedly. This intermittent operation limits the error signal by forcibly correcting the phase of the reference and comparison frequencies to limit power consumption.
The device must be set in the stand-by mode ($\mathrm{PS}=\mathrm{low}$) when it is powered up.

Relationship between FC input and phase characteristics

The FC pin controls the phase characteristics of the phase comparator. The internal charge pump output level (D_{o}) is reversed depending on the FC pin input level. The relationship between the FC input level and D_{0} is shown below:

	FC $=$ High or open	FC=Low
$\mathrm{f}_{\mathrm{R}}>\mathrm{f}_{\mathrm{p}}$	H	L
$\mathrm{f}_{\mathrm{R}}<\mathrm{f}_{\mathrm{p}}$	L	H
$\mathrm{f}_{\mathrm{R}}=\mathrm{f}_{\mathrm{P}}$	Z (*1)	Z (*1)

*1: High impedance
When designing a synthesizer, the FC pin setting depends on the VCO characteristics.
*: When the VCO characteristics are similar to
(1), set FC high or open.
*: When the VCO characteristics are similar to
(2), set FC low.

MB1513

Phase comparator output waveform (FC = High)
\square

Analog switch

The LE signal turns the analog switch on or off. When the analog switch is turned on, the charge pump output (D_{o}) is output through the BiSW pin. When it is turned off, the BiSW pin is in the high-impedance state.

When LE = high (when the divide ratio of the internal divider is changed): Analog switch =on
When LE = low (normal operating mode): Analog switch = off
The LPF time constant can be decreased by inserting an analog switch between LPF1 and LPF2. This decreases the lock-up time when the PLL channel is changed.

RECOMMENDED OPERATING CONDITIONS

Parametar	Symbor	Valua			Unil
		Mins	IP	Max	
Supply voltage	V_{cc}	4.5	5.0	5.5	V
	V_{p}	$\mathrm{V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{p}} \leq 8.0$			V
Input voltage	V_{1}	GND	-	V_{cc}	V
Operating temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

Notes: To protect against damage by electrostatic discharge, note the following handling precautions:

- Store and transport devices in conductive containers.
- Use properly grounded workstations, tools, and equipment.
- Turn off power before inserting or removing this device from a socket.
- When handling PC boards on which devices are mounted, protect leads of the device using conductive sheet.

ELECTRICAL CHARACTERISTICS

Paramater		Symbol	Valus			Unil	corlilions.	
		Ain	Ty1.	Mav				
Supply current			$I_{\text {cc }}$	-	8.0		mA	With $\mathrm{f}_{\mathrm{iN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{iN}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. Inputs are at V_{cc} and outputs are open
Stand-by current		IPS	-	100	-	$\mu \mathrm{A}$	With $\mathrm{f}_{\mathrm{iN}}=1.1 \mathrm{GHz}, \mathrm{OSC}_{\mathrm{IN}_{\mathrm{N}}}=$ $12 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. The PS pin is grounded, remaining inputs are at $V_{c c}$, and outputs are open	
Operating frequency	$\mathrm{f}_{\text {IN }}$	f_{N}	10	-	1100	MHz	AC coupling. The minimum operating frequency is measured with a $100-\mathrm{pF}$ capacitor connected	
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{f}_{\text {osc }}$	-	12	20	MHz		
Input sensitivity	f_{N}	$\mathrm{V}_{\text {tin }}$	-10	-	6	dBm		
	$\mathrm{OSC}_{\text {IN }}$	$\mathrm{V}_{\text {osc }}$	0.5	-	-	Vp-p		
High-level input voltage	Except f_{w} and OSC $_{\text {IN }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{cc}} \times 0.7$	-	-	V		
Low-level input voltage		V_{1}	-	-	$\mathrm{V}_{\mathrm{cc}} \times 0.3$	V		
High-level input current	Data Clock LE	I_{H}	-	1.0	-	$\mu \mathrm{A}$		
Low-level input current		$1 / 2$	-	-1.0	-	$\mu \mathrm{A}$		
	FC	$I_{\text {fG }}$	-	-60	-	$\mu \mathrm{A}$		
Input current	$\mathrm{OSC}_{\text {Im }}$	losc	-	± 50	-	$\mu \mathrm{A}$		
High-level output voltage	Except D_{o} and OSC ${ }_{\text {out }}$	V_{OH}	4.4	-	-	V	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$	
Low-level output voltage		V_{0}	-	-	0.4	V		
High-impedance Cut off current	D	$\mathrm{I}_{\text {off }}$	-	-	1.1	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{D}_{0}}=G N D \text { to } 8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{p}} \leq 8 \mathrm{~V} \end{aligned}$	
Output current	Except D_{o} and OSC ${ }_{\text {out }}$	I_{OH}	-1.0	-	-	mA		
		loL	1.0	-	-	mA		
Analog switch ON resistance		$\mathrm{R}_{\text {on }}$	-	25	-	Ω		

TEST CIRCUIT (FOR MEASURING PRESCALER INPUT SENSITIVITY)

APPLICATION EXAMPLE

PACKAGE DIMENSIONS

MB1518

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL FREQUENCY SYNTHESIZER ON CHIP 2.5GHz PRESCALER

The Fujitsu MB1518 on chip 2.5 GHz dual modulus prescaler is a serial input PLL (Phase Locked Loop) frequency synthesizer with pulse swallow function. It is well suited for BS tuner, CATV system applications.

It operates supply voltage of 5.0 V typ. and dissipates 16 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- Power supply voltage: $\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\mathrm{in}}=2.5 \mathrm{GHz}\left(\mathrm{V}_{\mathrm{in}}=-4 \mathrm{dBm}\right)$
- 2.5 GHz dual modulus prescaler: $\mathrm{P}=512 / 528$
- Low power supply current: $l_{c c}=16 \mathrm{~mA}$ typ.
- Programmable reference divider : $\mathrm{R}=512$
- Programmable divider consisting of:

Binary 5-bit swallow counter ($A=0$ to 31)
Binary 9-bit programmable counter ($\mathrm{N}=32$ to 511)

- Wide operating temperature: $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 16-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	\# \% Value	Unit
Power Supply Voltage	V cc	-0.5 to 7.0	V
Output Voltage	Vo	0.5 to $V_{c c}+0.5$	V
Output Current	10	± 10	mA
Storage Temperature	Tsta	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static vohtages or electric fields. However, a is advised that normal precautions be taken to avoid voltages to this high impedance circuit.

MB1518 BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin No:	Pln Name	10	Descriptions
1	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch.
2	Data	1	Serial data of binary code input pin. This pin involves a schmitt trigger circuit.
3	Clock	1	Clock input pin of the 14-bit shift register. This pin involves a schmitt trigger circuit. On rising edge of the clock shifts one bit of the data into the shift register.
4	Vcci	-	PLL power supply voltage input pin.
$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { OSCIn } \\ & \text { OSCout } \end{aligned}$	1	Oscillator input pin. Oscillator output pin. A crystal is connected between OSCin pin and OSCout pin.
7	GND1	-	PLL ground pin.
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{o}} \\ & \mathrm{Do}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Charge pump output pins. Phase characteristics can be reversed depending upon FC pin input level.
10	FC	1	Phase select input pin of the phase detector. This pin involves an internal pull up resistor. When this pin is low, characteristics of the charge pump and phase detector can be reversed. This input also selects four pin output level, either fr or fp. Please see on page 6.
11	$\overline{\text { in }}$	1	Complementary input pin of $\mathrm{f}_{\text {in }}$. Please connect to GND through a capacitor.
12	GND2	-	Prescaler ground pin.
13	fin	1	Prescaler input pin, This signal is input with AC coupled.
14	Vcc2	-	Prescaler power supply voltage input pin.
15	fout	0	Monitor pin of the phase detector input. fout pin outputs either of the programmable reference divider output frequency fr or programmable divider output frequency fp depending upon the FC pin input level.
16	LD	0	Phase detector output pin. Normally this pin outputs high. While the phase difference between fr and $f p$ exists, this pin outputs low.

FUNCTIONAL DESCRIPTIONS

divide ratio setting

Divide ratio can be set using the following equation:
$f_{v c o}=\{(P \times N)+(16 \times A)\} \times f_{\text {osc }}+R$
fvco: Output frequency of an external voltage controlled oscillator (VCO)
P: Preset divide ratio of an internal dual modulus prescaler (512)
N: Preset divide ratio of binary 9-bit programmable counter (32 to 511)
A: Preset divide ratio of binary 5 -bit swallow counter (0 to 31)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter (512)

SERIAL DATA I NPUT

On rising edge of the clock shifts one bit of the data into the shift register. When the load enable is high, the data stored in the shift register is transferred to the latch.
14 bit of serial data formit is shown below.

5-bit swallow counter divide ratio (A1 to A5)

Divide ratio A	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$
31	1	1	1	1	1

9-bit programmable counter divide ratio (N1 to N9)

Divide ratio	N	N	\mathbf{N}	N	N	N	N	N	N
$\mathbf{9}$	8	7	6	5	4	3	2	1	
32	0	0	0	1	0	0	0	0	0
33	0	0	0	1	0	0	0	0	1
34	0	0	0	1	0	0	0	1	0
$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$	$:$
511	1	1	1	1	1	1	1	1	1

SERIAL DATA INPUT TIMING

Note: On rising edge of the clock shifts one bit of the data into the shift register.
When LE is high, the data stored the shift register is transferred into the latch.

PHASE DETECTOR CHARACTERISTICS
FC pin selects the phase of the phase detector. Phase characteristics (chage pump output) can be reversed depending upon the FC pin input level. Monitor pin (fout) output level is selected by the FC pin input level as well.

	$\mathrm{FC}=\mathrm{H}$ (or open)		FC = L	
	D01, D_{02}	fout	$\mathrm{D}_{01}, \mathrm{D}_{02}$	fout
$\mathrm{fr}>\mathrm{fp}$	H	Outputs programmable reference divider output frequency fr.	L	Outputs programmable divider output frequency fp .
$\mathrm{fr}=\mathrm{fp}$	Z		Z	
$\mathrm{fr}<\mathrm{fp}$	L		H	

Note:

Z: High-impedance
Depending upon the VCO polarity, FC pin should be set accordingly.

When VCO polarity is like 1 ,
FC should be set high or open.
When VCO polarity is like 2,
FC should be set low.
VCO POLARITY
Frequency
VCO

PHASE DETECTOR WAVEFORM

Note: Phase difference detection range : -2π to $+2 \pi$
Spike shape depends on the charge pump characteristics.
The spike is output to diminish the dead band.

TEST CIRCUIT (FOR PRESCALER INPUT SENSITIVITY)

3

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	¢1p	Max	
Power Supply Voltage	Vcc	4.5	5.0	5.5	V
Input Voltage	V_{1}	GND	-	Vcc	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameler		Symbol	Condition	Value			Unlts	
		M M M		Typ	May*			
Power Supply Current			lcc	Note1	-	16.0	-	mA
Operating Frequency	f fin	$\mathrm{fin}^{\text {in }}$	Note2	10	-	2500	MHz	
	OSC_{1}	fosc	-	-	4	10		
Input Sensitivity	f in	Vfin	2300 to 2500 MHz	-4	-	6	dBm	
			1900 to 2300 MHz	-7	-	6		
			10 to 1900 MHz	-10	-	6		
	OSC_{1}	Vosc	-	0.5	-	-	VPp	
High-level Input Voltage	Except $f_{\text {in }}$ and $\mathrm{OSC}_{\mathrm{IN}}$	V_{IH}	-	Vccx0.7+0.4	-	-	V	
Low-level Input Voltage		VIL	-	-	-	$V_{c c} \times 0.3-0.4$		
High-level Input Current	Data, Clock, LE	IIH_{1}	-	-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		If	-	-	-1.0	-		
	FC	lupg	-	-	-60	-		
Input Current	$\mathrm{OSC}_{\mathbb{N}}$	liosc	-	-	± 50	-		
High-level Output Voltage	Except Do	$\mathrm{V}_{\text {OH }}$	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	4.4	-	-	V	
Low-level Output Voltage		VoL	-	-	-	0.4		
High-impedance Cutoff Current	$\mathrm{D}_{01}, \mathrm{D}_{02}$	loff	-	-	-	1.1	$\mu \mathrm{A}$	
High-level Output Current	Except Do	IOH	-	-1.0	-	-	mA	
Low-level Output Current		los	-	1.0	-	-		

Note1: $\mathrm{f}_{\mathrm{in}}=2.5 \mathrm{GHz}, \mathrm{OSC}_{\mathbb{N}}=4.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$. Input pins are grounded and output pins are open.
Note2: AC coupling. Minimum operating frequency is measured with a capacitor 1000 pF .

MB1518 APPLICATION CIRCUIT

C_{1}, C_{2} : depends on the crystal oscillator.
FC : with internal pull up resistor.

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE

 (CASE No.: FPT-16P-M06)

MB1519

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER

DUAL SERIAL INPUT PLL FREQUENCY SYNTHESIZER WITH 600MHz PRESCALER

The Fujitsu MB1519 is a 600 MHz dual serial input PLL (Phase Locked) frequency synthesizer designed for cellular telephone and cordless telephone applications.

The MB1519 has two PLL circuits on a single chip: one for transmit and the other for reception. Separate power supply pins are provided for the transmit and reception PLL circuits. Transmit PLL contains a low sensitivity charge pump for ease of modulation and reception PLL contains a high sensitivity charge pump for faster lock up time.

600 MHz dual modulus prescalers are on chip and enables a pulse swallow function.
It operates supply voltage of 3.0 V typ. and dissipates 11 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

- High operating frequency: fin $=600 \mathrm{MHz}$
- Low power supply voltage: $\mathrm{V}_{\mathrm{cc}}=2.7$ to 5.5 V
- Low power supply current: lcc = 11mA typ, @3V.
- Wide operating temperature: $T_{A}=-40$ to $85^{\circ} \mathrm{C}$
- Two charge pumps

Low sensitivity charge pump for transmit High sensitivity charge pump for reception

- Plastic 20-pin dual in line package (Suffix: -P)

Plastic 20-pin flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	/ $\%$ V/alue	Unlt
Power Supply Voltage	$V_{c c}$	-0.5 to 7.0	V
	V_{p}	$V_{c c}$ to 10.0	
Output Voltage	Vout	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
Output Current	lout	± 10	mA
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DESCRIPTIONS

TRANSMIT/RECEPTION BLOCK

- 20-bit latch
- Programmable divider consisting of:

Binary 7-bit swallow counter (Divide ratio: 0 to 127)
Binary 11-bit programmable counter (Divide ratio: 16 to 2047)

- Phase detector with phase polarity change function
- 600MHz dual modulus prescaler (Divide ratio: 64/65)
- Charge pump

COMMON BLOCK

- 23-bit shift register
- Programmable divider consisting of:

Reference counter (Divide ratio: 512, 1024)
(Divide frequency $=25 \mathrm{kHz}, 12.5 \mathrm{kHz}$ (Crystal oscillator frequency $=12.8 \mathrm{MHz}$)

- Crystal oscillator
- fp monitor output selector
- Latch selector
- Schmitt circuits
- Analog switches

PIN DESCRIPTIONS

PIN DESCRIPTIONS (Continued)

Pin Mo.	Pif Name	10	Descriptions
16	$\mathrm{V}_{\text {cca }}$	-	Power supply voltage input pin for reception section, programmable reference divider, shift register, and crystal oscillator. When power is OFF, latched data of reception section and reference counter is cancelled.
17	fin_{2}	1	Prescaler input pin of reception section. The connection with VCO should be AC conneciton.
18	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch depending on a control data. At this moment, charge pump output signal is output from BS pin since internal analog swith becomes ON.
19	Data	1	Serial data input pin of 23 -bit shift register. This pin involves a schmitt trigger circuit. The stored data in the shift register is transferred to either transmit section or reception section depending upon a control data.
20	Clock	1	Clock input pin of 23 -bit shift register. This pin involves a schmitt trigger circuit. On rising edge of the clock shifts one bit of data into the shift register.

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
$f_{\text {fvo }}=\{(M \times N)+A\} \times f_{\text {osc }}+R \quad(A<N)$
fvco: Output frequency of external voltage controlled ocillator (VCO)
M: Preset divide ratio of dual modulus prescaler (64)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 127$)
fosc: Reference oscillator frequency
R: Preset divide ratio of reference counter (512 or 1024)

FUNCTIONAL DESCRIPTIONS

SERIAL DATA INPUT

Serial data is input using three pins, Data pin, Clock pin, and LE pin. Programmable divider of transmit section and programmable divider of reception section are controlled individually
Serial data of binary data is input into Data pin.
On rising edge of clock shifts one bit of serial data into the shift register. When load enable signal is high, the data stored in the shift register is transferred to either the latch of transmit section or the latch of reception section depending upon the control bit data setting.

Control data	Destination of serial data
H	Latch of transmit section
L	Latch of reception section

SHIFT REGISTER CONFIGURATION

Control bit

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
C	R	F	D	F	A	A	A	A	A	A	A	N	N	N	N	N	N	N	N	N	N	N
N	E	P	M	C	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11
T	F		Y																			

N1 to N11	: Divide ratio of the programmable counter setting bit (16 to 2047)
A1 to A7	: Divide ratio of the swallow counter setting bit (0 to 127)
FC	: Phase control bit of the phase detector
DMY	: Dummy bit (sets to low)
FP	: Output of the programmable divider control bit (fp1 or fp2)
REF	: Divide ratio of the reference counter setting bit (512 to 1024)
CNT	: Control bit

SERIAL DATA INPUT TIMING

On rising edge of the clock shifts one bit of the data into the shift register.

BINARY 11-BIT PROGRAMMABLE COUNTER DATA SETTING

Divide Ratio (N)	N 11	N 10	N 9	N 8	N 7	N 6	N 5	N 4	N 3	N 2	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
\cdot	-										
2047	1	1	1	1	1	1	1	1	1	1	1

Note: Divide ratio less than 16 is prohibited.
Divide ratio (N) range $=16$ to 2047

BINARY 7-BIT SWALLOW COUNTER DATA SETTING

Divide Ratio (A)	A 7	A 6	A 5	A 4	A 3	A 2	A 1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\cdot							
127	1	1	1	1	1	1	1

Note: Divide ratio (A) range $=0$ to 127

DMY : DUMMY BIT INPUT
This bit is set to low in operation.
REF : DIVIDE RATIO (R) OF THE REFERENCE COUNTER SETTING BIT
$\mathrm{H}=512(\mathrm{fr}=25.0 \mathrm{kHz})$
$\mathrm{L}=1024$ ($\mathrm{fr}=12.5 \mathrm{kHz}$)
FP : OUTPUT OF THE PROGRAMMABLE DIVIDER SETTING BIT
$H=f p$ pin (15 pin) outputs programmable divider output frequency (fp 1) of transmit section. $\mathrm{L}=\mathrm{fp}$ pin (15 pin) outputs programmable divider output frequency (fp 2) of reception section.

FC : PHASE CONTROL BIT OF THE PHASE DETECTOR Output of charge pump is selected by FC pin.

	$F C=H$	$F C=L$
$f r>f p$	H	L
$f r=f p$	Z	Z
$f r<f p$	L	H
Vco Polarity	(1)	(2)

Note: $Z=$ High-impedance
Depending upon the VCO poratity, FC bit should be set.
Vco Output
Frequency
Vco Input Voltage \longrightarrow (2)

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase difference detection range $=-2 \pi$ to $+2 \pi$

- LD output becomes low when phase difference is tw or more.

LD output becomes high when phase difference less than t_{w} is reperated 3 times or more.
(e. g. $\mathrm{t}_{\mathrm{w}}=625$ to 1250 ns , foscin $=12.8 \mathrm{MHz}$)

- Spike apperance depends on the charge pump characteristics. The spike is output to diminish the dead band.
- When $\mathrm{fr}>\mathrm{fp}$ or fr < fp, spike might not generate depending up the VCO characteristics.

ANALOG SWITCH

ON/OFF of the analog switch is controlled by the combination of the control data and LE signal. When the analog switch is ON, BS1, BS2 pin output the charge pump output ($\mathrm{D}_{01}, \mathrm{D}_{02}$). When analog switch is OFF, BS pin is set to high impedance.

	Control data $=H$ Divide ratio of transmit section is set		Control data $=L$ Divide ratio of reception section is set	
	$L E=H$	$L E=L$	$L E=H$	$L E=L$
Analog switch of transmit section	ON	OFF	OFF	OFF
Analog switch of reception section	OFF	OFF	ON	OFF

3

When a analog switch is inserted between LP1 and LP2, faster lock up time is achieved to reduce LPF time constant during PLL channel switching.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symboll	Value			Unit	Note
		Min』	TyP	Max		
Power Supply Voltage	Vcc	2.7	3.0	5.5	V	$\mathrm{V}_{\mathrm{cc} 1}=\mathrm{V}_{\mathrm{cc} 2}$
	V_{P}	Vcc	-	8.0	V	
Input Voltage	$V_{\text {IN }}$	GND	-	Vcc	V	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+85	${ }^{\circ} \mathrm{C}$	

HANDLING PRECAUTIONS

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB1519
ELECTRICAL CHARACTERISTICS

Payamel		Symbols	Condition	V/4)			UnIf	
		Min		\$19\%	M1\%s			
Power Supply Current*			loct	Reception section is active.	-	5.5	-	mA
		lcc 2	Transmit/reception section are active.	-	11.0	-		
Operating Frequency**	fin	fin		10	-	600	MHz	
	OSC ${ }_{\text {IN }}$	fosc		-	12.8	20		
Input Sensitivity	fin	Vfin	$V_{c c}=2.7$ to $4.0 \mathrm{~V}, 50 \Omega$	-8	-	0	dBm	
			$\mathrm{Vcc}=4.0$ to $5.5 \mathrm{~V}, 50 \Omega$	-4	-	2		
	OSC ${ }_{\text {IN }}$	Vosc		0.5	-	-	VPP	
High-level Input Voltage	Except fin and OSC ${ }_{\text {IN }}$	V_{1}		$\mathrm{Vccx} 0.7+0.4$	-	-	V	
Low-level Input Voltage		VIL		-	-	$V_{\operatorname{ccx}} 0.3-0.4$		
High-level Input Current	Data, Clock LE	l_{H}		-	1.0	-	$\mu \mathrm{A}$	
Low-level Input Current		IIL		-	-1.0	-		
	FC	Ifc		-	-60	-		
Input Current	OSCIN	losc		-	± 50	-		
High-level Output Voltage	Except Do and OSCout	Vor	$\mathrm{Vcc}=3.0 \mathrm{~V}$	2.2	-	-	V	
Low-level Output Voltage		Vol		-	-	0.4		
High-impedance Cutoff Current	Do, ϕP	loff	$\begin{aligned} & V_{P}=V_{c c} \text { to } 8.0 \mathrm{~V} \\ & V_{O O P}=G N D \text { to } 8.0 \mathrm{~V} \end{aligned}$	-	-	1.1	$\mu \mathrm{A}$	
Output Current	Except Do and OSCout	IOH		-1.0	-	-	mA	
		los		1.0	-	-		
	Do1	Іон	$V_{P}=6 \mathrm{~V}$	-	-1	-		
		los	$\mathrm{Vcc}=3 \mathrm{~V}$	-	12	-		
	Do2	Іон	$\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$	-	-3	-		
		lot	$\mathrm{Vcc}=3 \mathrm{~V}$	-	6	-		
Analog Switch ON Resistance		Ron		-	25	-	Ω	

Notes: $\quad *: \quad$ fin $=600 \mathrm{MHz}, \mathrm{OSC}_{1 \mathrm{~N}}=12.8 \mathrm{MHz}, \mathrm{V}_{\mathrm{cc} 1}=\mathrm{V}_{\mathrm{cc} 2}=3.0 \mathrm{~V}$. The remaining input pins are grounded and output pins are open. **: AC coupling. Minimum operating frequency is measured when a capacitor 1000 pF is connected.

TEST CIRCUIT (PRESCALER INPUT SENSITIVITY TEST)

3

APPLICATION EXAMPLE

[^24]
PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

20-LEAD PLASTIC FLAT PACKAGE (CASE No.: FPT-20P-M01)

Section 4

Single-Chip VCOs/Prescalers - At a Glance

Page	Device	Maximum Frequency	Divide Ratio	${ }_{I_{\text {cc }}}^{\text {Supply }}$	$v_{c c}$
4-3	MB551	1 GHz	128 or 129	16 mA (typ)	5 V (typ)
NOTE:	The MB551 is available in an 8-pin Plastic FPT package.				

MB551

1 GHz Dual Modulus Prescaler

The Fujitsu MB551 is a dual modulus prescaler with low supply current and a VCO (voltage controlled oscillator). It is used in a frequency synthesizer in the 1 GHz region.

The MB551 contains a Colpitts oscillator with a grounded base capacitor, an open-collector output buffer amplifier, a prescaler interface circuit, and a dual modulus prescaler that can select divide ratios of 128 or 129.

The VCO oscillator section can be constructed with external components such as a capacitor, dieletric oscillator (resonator), and variable capacitor.

The on-chip VCO and prescaler are connected on internal control circuit. Thus, the influence caused by carrier to noise by deviation of prescaler input load is suppressed.

The MB551 operates on a supply voltage of 5 V typical and has a 16 mA supply current typical.

- Oscillator frequency: 1 GHz max.
- Low supply current: $\mathrm{lcc}_{\mathrm{cc}}=16 \mathrm{~mA}$ typ.
- Oscillator output voltage: 0 dBm typ.
- Carrier to noise ratio: 70 dB typ. $(\Delta \mathrm{f}=50 \mathrm{kHz}$, $B W=15 \mathrm{kHz}$
65 dB typ. ($\Delta \mathrm{f}=25 \mathrm{kHz}$, $\mathrm{BW}=15 \mathrm{kHz}$
- Pulse swallow method: Divide ratio of 128 or 129
- Prescaler output contains termination circuit: V1 $=1.6 \mathrm{Vp}-\mathrm{p}$ typ.
- Signal to noise ratio: 45 dB typ. (BW = 0.3 to $3 \mathrm{kHz}, 3 \mathrm{kHz}$ Dev, 1 kHz tone)
- Stable oscillator output
- Supply voltage dependence: $\pm 200 \mathrm{kHz} / \mathrm{V}$ typ.
- Frequency stability: $35 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Referenced to $25^{\circ} \mathrm{C}$)
- Load regulation: $\pm 2 \mathrm{MHz}$ VSWR = 2 typ.
- Plastic 8-pin flat package: Suffix -PF

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	
Supply Voltage	V_{CC}	-0.5 to +7.0	
Oscillator Transistor Base, Emitter Input Voltage	V_{B} V_{E}	DC voltage is not input from outside.	
Input Voltage for MC and OUT (3,4 pins)	$\mathrm{V}_{\mathrm{P} 1}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Input Voltage for $\mathrm{f}_{\mathrm{VCo}}$ and C (1,6 pins)	$\mathrm{V}_{\mathrm{P} 2}$	$\mathrm{~V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{P} 2}<+7.0$	V
Input Current	I_{P}	± 10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment

Pin assignment to be determined

[^25] impedance circult.

[^26]Figure 1. MB551 Equivalent Circuit

PIN DESCRIPTIONS

Pin No.	Symbol	I/O	Description
1	$\mathrm{f}_{\text {vco }}$	0	Voltage controlled oscillator output
2	V $_{\text {cc }}$	-	Supply voltage input, +5 V
3	MC	1	Modulus control input
4	OUT	0	Prescaler output
5	B	-	Oscillator transistor base pin
6	C	-	Oscillator transistor collector pin
7	E	-	Oscillator transistor emitter pin
8	GND	-	Ground

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	$\mathrm{V}_{\text {cc }}$	4.5	5.0	5.5	V
External Variable Capacitor Control Voltage	V_{T}	1.5		4.5	V
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40		+85	${ }^{\circ} \mathrm{C}$
Prescaler Output Load	C_{L}			8	pF

VCO ELECTRICAL CHARACTERISTICS ${ }^{1,2}$

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Oscillator Frequency	fosc		-TBD-		900	MHz
Oscillator output	Pout	-To be supplied-		0		dBm
Carrier to Noise Ratio	C/N	$\Delta \mathrm{f}=25 \mathrm{kHz}, \mathrm{BW}=15 \mathrm{kHz}$		65		dB
Signal to Noise Ratio	S/N	$B W=0.3-3 k H z, 3 k H z$ Dev. Tone 1 kHz		45		dB
Fundamental to 1st Harmonic Ratio	SP-1			-10		dB
Frequency Stability	Δf_{t}	$\begin{aligned} & T_{A}=-40-85^{\circ} \mathrm{C} \\ & \text { Referenced to } 25^{\circ} \mathrm{C} \end{aligned}$		35		ppm/ $/{ }^{\circ} \mathrm{C}$
Supply Deviation	Δt_{v}	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$		± 100		kHz/V
Conversion Gain	$\Delta \mathrm{f}$ osc	Control range: 1.5-4.5V		4.3		MHz N
Load Regulation	$\Delta \mathrm{f}_{\text {SWR }}$	$\mathrm{V}_{\text {SWR }}=2.0$ All phase Referenced to 50Ω		± 2		MHz

Notes: ${ }^{1}$ These values depend on external components.
2These values are measured under the test circuit shown in Figure 2.

PRESCALER ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Supply Current	lcc			16.0		mA
Output Amplitude	$\mathrm{V}_{\text {OUT }}$	Internal termination resistor is used. Load capacitor is less than 8 pF .	1.0	1.6		Vp-p
Input Frequency	fin	Minimum value is measured with input coupling capacitor 1000 pF.	10		900	MHz
Input Signal Amplitude	Vin		-4		6	dBm
High-level Input Voltage for MC	V_{IH}		2.0			V
Low-level Input Voltage for MC	VIL				0.8	V
High-level Input Current for MC	$\mathrm{I}_{\mathbf{H}}$				0.4	mA
Low-level Input Current for MC	ILL		-0.2			mA
Modulus Setup Time	$\mathrm{t}_{\text {SE }} \mathrm{T}$			16	26	ns

DUAL MODULUS FUNCTION

Notes: ${ }^{1}$ When MC is high, divide ratio of 128 is selected.
${ }^{2}$ When MC is low, divide ratio of 129 is selected.
$\left(V_{I H}=2.0 \mathrm{~V}\right.$ min., $V_{I L}=0.8 \mathrm{~V}$ max.)
${ }^{3}$ When divide ratio of 129 is selected, positive pulse is added by 1 to 65 .
${ }^{4}$ The typical setup time is 16 ns from the MC signal input to the timing of change of prescaler divide ratio.

Figure 2. Test Circuit Example-I

Figure 3. Test Circuit Example-II

Fig. 4 - RECOMMENDED PRINT CIRCUIT BOARD PATTERN

(Parts List)

C1	: 1pF	(Taiyo Yuden UMK212C)	C15	$: 0.01 \mu \mathrm{~F}$	(Film condenser)
C2	: 2pF	(Taiyo Yuden UCN103C)	C16	0.014F	(Film condenser)
C3	: 3pF	(Taiyo Yuden UMK212C)	C17	$: 0.01 \mu \mathrm{~F}$	(Film condenser)
C4	: 4pF	(Taiyo Yuden UMK212C)			
C5	: 2 pF	(Taiyo Yuden UMK212C)			
C6	: 20pF	(Taiyo Yuden UMK316C)	R1	390Ω	(Rohm MCR25)
C7	: 51 pF	(Taiyo Yuden UMK212C)			
C8	: 20pF	(Taiyo Yuden UMK316C)			
C9	: 20pF	(Taiyo Yuden UMK316C)	L1	: 22 nH	(Murata LQN2A)
C10	: 51 pF	(Taiyo Yuden UMK212C)	L2	$: 56 \mathrm{nH}$	(Murata LQN2A)
C11	: 20pF	(Taiyo Yuden UMK316C)	L3	: 82 nH	(Murata LQN2A)
C12	: 51pF	(Taiyo Yuden UMK212C)			
C13	: 20pF	(Taiyo Yuden UMK316C)			
C14	: 51pF	(Taiyo Yuden UMK212C)	VD	: 1SV164	(NEC)

Dielectric oscillator: (Murata DRR060 Serise, 1.5GHz)

TYPICAL CHARACTERISTICS CURVES

Fig. 5 - Supply Current vs. Supply Voltage

Fig. 6 - Oscillator Waveform $($ Span $=50 \mathrm{kHz})$

FREQUENCY
(TEST CIRCUIT - I, RECOMMENDED PRINTED CIRCUIT BOARD USED)
Fig. 7 - Conversion Gain

$$
\begin{aligned}
& V_{c c}=5.0 \mathrm{~V} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
$$

Fig. 8 - Supply Voltage Dependence

(TEST CIRCUIT - I, RECOMMENDED PRINTED CIRCUIT BOARD USED)
Fig. 9 - C/N, S/N vs. Variable Capacitor Control Voltage

Fig. 10 - Supply Voltage Dependence

Fig. 11- Prescaler Input Sensitivity Curve (Supply Voltage Dependence) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }}$)

Fig. 12- Prescaler Input Sensitivity Curve (Temperature Dependence) (Vcc=5V))

(TEST CIRCUIT - II)
Fig. 13 - Conversion Gain

Fig. 14-C/N, S/N vs. Variable Capacitor Control Voltage

Figure 15. Application Example

Note: C1 and C2 depend on crystal oscillator.

MB551

PACKAGE DIMENSIONS

Section 5

Piezoelectric Devices - At a Glance

Page	Device	Description	Frequency Range	Package Option	
$5-3$	F5CB Series	SAW-Bandpass Filter	$700-1000 \mathrm{MHz}$	8 -pin	LCC
$5-17$	M2 Series	VCO (D100)	$4-30 \mathrm{MHz}$	14-pin	DIP
$5-25$	M2 Series	VCO (D300)	$4-30 \mathrm{MHz}$	16-pin	SIP
$5-35$	M3 Series	VCO (D001)	$50-300 \mathrm{MHz}$	16-pin	DIP
$5-39$	M3 Series	VCO (D101)	$50-300 \mathrm{MHz}$	14-pin	DIP

F5CB Series

Piezoelectric Filters

SAW-BPF, 700 MHz to 1000 MHz

The F5 series are wide bandpass filters for use in the 700 MHz to 1000 MHz range. The F5 series uses a single lithium tantalate piezoelectric crystal $\left(\mathrm{LiTaO}_{3}\right)$ that has a high electromechanical coupling coefficient. The LiTaO_{3} also provides wide bandwidths and exceptional stability. Fujitsu's exclusive mounting technique makes the F5 series very compact and surface mountable. The F5 is suitable for use in handheld phones.

- Considerably smaller and lighter than the ceramic filter (volume and weight are reduced by $1 / 30$)
- Surface mount package (SMT)
- Wide variety of bandwidths
- Low insertion loss
- High power rating: 0.2 W guaranteed
- 8-pad ceramic package (LCC)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Operating Temperature	T_{a}	-30 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to 100	${ }^{\circ} \mathrm{C}$
Maximum Input Level	$\mathrm{P}_{\text {IN }}$	200	mW
Frequency Range		700 to 1000	MHz

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Operating Temperature	T_{a}	-30 to 70	${ }^{\circ} \mathrm{C}$

5

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect

This device contains circuitry to protect the inputs against damage dua to high static voltages or electric fieds. However, t is advised that
 than maximum rated vohages to this high impedance circuit.

[^27]F5CB Series

STANDARD FREQUENCIES

Number	Model	System	Use *	Center Frequency (MHz)	Bandwidth (MHz)
1	F5CB-836M50-G201	AMPS/EAMPS	Tx	836.5	25
2	F5CB-881M50-G201	AMPS/EAMPS	Rx	881.5	25
3	F5CB-888M50-G201	ETACS	Tx	888.5	33
4	F5CB-933M50-G202	ETACS	Rx	933.5	33
5	F5CB-902M50-G201	NMT	Tx	902.5	25
6	F5CB-947M50-G201	NMT	Rx	947.5	25
7	F5CB-911M50-G201	NTACS	Tx	911.5	27
8	F5CB-856M50-G201	NTACS	Rx	856.5	27

[^28]
TEST CIRCUIT

ELECTRICAL CHARACTERISTICS - EXAMPLES

Example 1. AMPS Specification (Tx) Part Number F5CB-836M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	IL	824 to 849 MHz	-	3.5	4.2	dB
In-band Ripple		824 to 849 MHz	-	1.0	1.5	dB
Absolute Out-of-band Attenuation		DC to 800 MHz	20	25	-	dB
		869 to 894 MHz	20	25	-	dB
		894 to 3000 MHz	15	20	-	dB
In-band VSWR		824 to 849 MHz	-	1.7	2.0	
Matching Constants	C_{1}			7	-	pF
	L_{1}			9	-	nH
	C_{2}			6	-	pF
	L_{2}			11	-	nF

Example 2. AMPS Specification (Rx)
Part Number F5CB-881M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	L	869 to 894 MHz	-	-	4.5	dB
In-band Ripple		824 to 849 MHz	-	-	1.5	dB
Absolute Out-of-band Attenuation		DC to 824 MHz	20	-	-	dB
		824 to 849 MHz	20	-	-	dB
		917 to 939 MHz	18	-	-	dB
		947 to 1049 MHz	30	-	-	dB
		1049 to 3000 MHz	15	-	-	dB
In-band VSWR		869 to 894 MHz	-	1.8	2.0	
Matching Constants	C_{1}			6	-	pF
	L_{1}			7	-	nH
	C_{2}			7	-	pF
	L_{2}			9	-	nF

ELECTRICAL CHARACTERISTICS - EXAMPLES (Continued)

Example 3. ETACS Specification (TX)
Part Number F5CB-888M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	L	872 to 900 MHz	-	4.5	5.0	dB
		900 to 905 MHz	-	5.5	6.5	dB
In-band Ripple		872 to 905 MHz	-	-	2.5	dB
Absolute Out-of-band Attenuation		DC to 847 MHz	20	25	-	dB
		847 to 860 MHz	8	12	-	dB
		917 to 920 MHz	10	13	-	dB
		920 to 922 MHz	13	15	-	dB
		922 to 950 MHz	20	23	-	dB
		962 to 995 MHz	30	33	-	dB
		995 to 3000 MHz	15	20	-	dB
In-band VSWR		872 to 905 MHz	-	2.0	2.5	
Matching Constants	C_{1}			7	-	pF
	L_{1}			7	-	nH
	C_{2}			6	-	pF
	L_{2}			9	-	nF

F5CB Series

ELECTRICAL CHARACTERISTICS - EXAMPLES (Continued)

Example 4. ETACS Specification (Rx)
Part Number F5CB-933M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	LL	917 to 947 MHz	-	4.5	5.0	dB
		947 to 950 MHz	-	5.5	6.5	dB
In-band Ripple		917 to 950 MHz	-	1.0	2.5	dB
Absolute Out-of-band Attenuation		DC to 872 MHz	20	25	-	dB
		872 to 900 MHz	15	18	-	dB
		900 to 902 MHz	13	15	-	dB
		902 to 905 MHz	8	13	-	dB
		962 to 965 MHz	10	15	-	dB
		965 to 970 MHz	15	18	-	dB
		970 to 995 MHz	20	25	-	dB
		1005 to 1040 MHz	30	33	-	
		1040 to 3000 MHz	15	20	-	
In-band VSWR		917 to 950 MHz	-	20	2.5	
Matching Constants	C			6	-	pF
	L_{1}			6	-	nH
	C_{2}			7	-	pF
	L_{2}			8	-	nF

Example 5. NMT Specification (Tx)
Part Number F5CB-902M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	IL	890 to 915 MHz	-	4.0	4.5	dB
In-band Ripple		890 to 915 MHz	-	1.3	2.0	dB
Absolute Out-of-band Attenuation		DC to 850 MHz	20	25	-	dB
		850 to 870 MHz	15	22	-	dB
		935 to 960 MHz	20	28	-	dB
		1012 to 1058 MHz	30	33	-	dB
		1058 to 3000 MHz	15	20	-	dB
In-band VSWR		890 to 915 MHz	-	1.5	2.0	
Matching Constants	C_{1}			5	-	pF
	L_{1}			6	-	nH
	C_{2}			6	-	pF
	L_{2}			9	-	nF

ELECTRICAL CHARACTERISTICS - EXAMPLES (Continued)

Example 6. NMT Specification (Rx)
Part Number F5CB-947M50-G201

Item	Symbol	Condition	Rating			Unit
			Minimum	Typical	Maximum	
Insertion Loss	L	935 to 960 MHz	-	4.0	4.5	dB
In-band Ripple		935 to 960 MHz	-	1.3	2.0	dB
Absolute Out-of-band Attenuation		DC to 890 MHz	20	25	-	dB
		890 to 915 MHz	18	22	-	dB
		980 to 1005 MHz	18	30	-	dB
		1012 to 1058 MHz	28	32	-	dB
		1089 to 1115 MHz	30	32	-	dB
		1115 to 3000 MHz	15	20	-	dB
In-band VSWR		935 to 960 MHz	-	1.5	2.0	
Matching Constants	C_{1}	-	-	6	-	pF
	L_{1}	-	-	6	-	nH
	C_{2}	-	-	7	-	pF
	L_{2}	-	-	9	-	nF

Example 7. NTACS Specification (T_{X})
Part Number F5CB-911M50-G201

Parameter	Symbol		Specification			Unit
		Condition	Minimum	Typical	Maximum	
Insertion Loss	L	898-925 MHz	-	4.0	4.5	dB
In-band Ripple		$898-925 \mathrm{MHz}$	-	1.5	2.0	dB
Absolute Out-of-Band Attenuation		DC-815 MHz	25	27	-	dB
		$815-870 \mathrm{MHz}$	22	25	-	dB
		$1008-1100 \mathrm{MHz}$	30	33	-	dB
		$1100-3000 \mathrm{MHz}$	15	20	-	dB
In-band VSWR		$898-925 \mathrm{MHz}$	-	1.8	2.0	
Matching Constants	C_{1}	-	-	6	-	pF
	L_{1}	-	-	7	-	nH
	C_{2}	-	-	5	-	pF
	L_{2}	-	-	10	-	nH

ELECTRICAL CHARACTERISTICS - EXAMPLES (Continued)

Example 8. NTACS Specification ($\mathbf{R}_{\mathbf{X}}$) Part Number F5CB-856M50-G201

Parameter	Symbol		Specification			Unit
		Condition	Minimum	Typical	Maximum	
Insertion Loss	L	$843-870 \mathrm{MHz}$	-	4.0	4.5	dB
In-band Ripple		$843-870 \mathrm{MHz}$	-	1.5	2.0	dB
Absolute Out-of-Band Attenuation		DC-814 MHz	22	25	-	dB
		898-935 MHz	22	25	-	dB
		$935-1100 \mathrm{MHz}$	30	33	-	dB
		$1100-3000 \mathrm{MHz}$	15	20	-	dB
In-band VSWR		$843-870 \mathrm{MHz}$	-	1.8	2.0	
Matching Constants	C_{1}	-	-	7	-	pF
	L_{1}	-	-	8	-	nH
	C_{2}	-	-	7	-	pF
	L_{2}	-	-	9	-	nH

5

Below is an example of the AMPS-Tx filter input and output characteristics with compensating L\&C components.

PART NUMBER DESIGNATION

Designation Example			
F5CB - $\square \square \square \square \square \square-\mathrm{G} \square \square \square$ - \square			
(1) (2) (3)			
(1) (2)	Frequency Designation:	Specifies the nominalfrequency in six alphanumeric characters. Enter M (for MHz) at the decimal point. Refer to STANDARD FREQUENCIES. Example: For an 836.5 MHz device, the frequency designation would show "836M50."	
	Serial Number:	Specifies a number from 201 to 299 (with 201 as the standard)	
(3)	Packaging (Reeled tape)	Designation	Contents
		T	1 K pcs/reel
		R	$3 \mathrm{~K} \mathrm{pcs} / \mathrm{reel}$

PACKAGE DIMENSIONS

PACKAGE MARKING

5

F5CB Series

PACKAGING: Reel Type

1. Reel Dimension

Unit: mm (inches)

2. Package Style

PACKAGING: Reel Type (Continued)
3. Tape Dimension

Unit: mm (inches)

5

F5CB Series

5

M2 Series (D100) Piezoelectric Device (Voltage Controlled Oscillator)

The M2 series (D100) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz .
The M2 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient for stable and wide variable frequency width.

- Wider variable frequency width than quartz crystals: $\pm 0.2 \%$ or more
- High stability (100 times more stable than LC configuration)
- Excellent carrier noise ratio
- Hermetically sealed in a metal case for high reliability in severe environmental conditions
- Compatible with 14 -pin DIP IC packages

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	V_{IN}	-0.5 to 10	V
Output Voltage	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 25	mA
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Oscillation Frequency Range		4 to 30	MHz

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	4.75 to 5.25	V
Input Control Voltage	$\mathrm{V}_{\text {IN }}$	0.5 to 5.0	V
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(Bottom View)

(Bottom View)		
	1 14	70 80
Terminal No.	Terminal Name	Description
1	$\mathrm{V}_{\mathbf{I N} 1}$	Control Voltage Input Terminal
7	GND	Grounding Terminal
8	$V_{\text {OUT }}$	Oscillation Output Terminal
14	V cc	Power Supply Terminal

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

STANDARD FREQUENCIES

8.192 MHz	14.318 MHz	17.734 MHz	21.053 MHz	25.175 MHz
9.408 MHz	16.000 MHz	18.432 MHz	21.477 MHz	27.338 MHz
11.290 MHz	16.257 MHz	18.816 MHz	22.579 MHz	28.224 MHz
11.580 MHz	16.384 MHz	20.480 MHz	24.576 MHz	28.636 MHz
12.288 MHz	16.934 MHz			

ELECTRICAL CHARACTERISTICS

DC Characteristics

Item			Ratings		
	Symbol	Condition	Minimum	Maximum	Unit
Output Level	$\mathrm{V}_{\text {OUT }}$	See the measuring circuit diagram	0.5	-	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Power Supply Current	I_{CC}	Load open	-	15	mA

Measuring Circuit Diagram

(C_{L} is the value including the measurement probe and the jig capacitance.)
AC Characteristics

Item	Symbol	Condition	Ratings		Unit	Remarks
			Minimum	Maximum		
Oscillation Frequency	fosc	$\mathrm{V}_{1 \mathrm{~N}}=2.5 \mathrm{~V}$	-0.05	+0.05	\%	Nominal frequency reference$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
	f_{H}	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$	+0.15	-	\%	
	f_{L}	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-	-0.15	\%	
Frequency Voltage Stability	$\Delta \mathrm{f}, \mathrm{V}_{\text {cc }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V} \end{aligned}$	-200	200	ppm	5 V reference, $\mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}$
Frequency Temperature Stability	$\Delta f, T_{\text {a }}$	$\begin{aligned} & V_{\mathbb{N}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=4.5 \mathrm{~V} \end{aligned}$	-500	500	ppm	$25^{\circ} \mathrm{C}$ reference -10° to $70^{\circ} \mathrm{C}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

STANDARD CHARACTERISTICS:

Part Number: M2DA-8M1920-D100

Control Voltage and Oscillation Frequency

Temperature Characteristics

Power Supply Voltage Characteristics

STANDARD CHARACTERISTICS:

Part Number: M2DA-12M288-D100

Control Voltage and Oscillation Frequency

Temperature Characteristics
Control Voltage (V)

Power Supply Voltage Characteristics

STANDARD CHARACTERISTICS:

Part Number: M2DA-28M636-D100

Power Supply Voltage Characteristics

Oscillation Spectrum

APPLICATION CIRCUIT EXAMPLES

Example 1. Connection to CMOS

Example 2. Connection to LS TTL (or CMOS)

PART NUMBERING SYSTEM

［Part Number Example］

M2DA－ロロロロロロ－Dロロロ
 （1）

（1）Frequency designation：Designates the nominal frequency in six alphanumeric characters． \mathbf{M} indicates the decimal point in MHz ．

Frequency	Designation
8.192 MHz	8 M 1920
9.408 MHz	9 M 4080
11.290 MHz	11 M 290
11.580 MHz	11 M 580
12.288 MHz	12 M 288
14.318 MHz	14 M 318
16.000 MHz	16 M 000
16.257 MHz	16 M 257
16.384 MHz	16 M 384
16.934 MHz	16 M 934
17.734 MHz	17 M 734

Frequency	Designation
18.432 MHz	18 M 432
18.816 MHz	18 M 816
20.480 MHz	20 M 480
21.053 MHz	21 M 053
21.477 MHz	21 M 477
22.579 MHz	22 M 579
24.576 MHz	24 M 576
25.175 MHz	25 M 175
27.338 MHz	27 M 338
28.224 MHz	28 M 224
28.636 MHz	28 M 636

（2）Serial Number（of the Series）：
Standard： 100
Nonstandard products： 001 to 099
MARKING

DIMENSIONS

DATA SHEET

M2 Series (D300)

 Piezoelectric Device (Voltage Controlled Oscillator)The M2 series (D300) voltage controlled oscillators (VCO) operate in the frequency range of 4 to 30 MHz . The M 2 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient for stable and wide variable frequency width.
This module incorporates three VCOs for the three sampling frequencies used in digital audio equipment ($32,44.1$, and 48 kHz). The frequencies are selected by external signals.

- Clock replay in response to three sampling frequencies (32, 44.1 and 48 kHz), is contained in one module
- Wider variable frequency width than in quartz crystals: $\pm 0.1 \%$ or more
- Excellent stability for signal noise reproduced by high quality' of the lithium tantalate
- 100 times more stable than VCOs of LC and TTL-IC configuration
- Three sampling frequencies controlled at CMOS logic level
- SIP packaged for high-density mounting of devices
- Compatible with the Electronic Industry Association of Japan (EIAN) digital I/O Standard Type II (consumer digital audio equipment), Level I (high-resolution mode) and Level II (standard resolution mode)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	$\mathrm{V}_{\mathbb{I}}$	-0.5 to 10	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 25	mA
Operating Temperature	T_{a}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Negative value of current means that the current flows from the device.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	4.75 to 5.25	V
Input Control Voltage	$\mathrm{V}_{\mathbb{I}}$	0.5 to 5.0	V
Operating Temperature	T_{a}	-20 to +70	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

	(Front 16 15 14 13 12 11 10 10 9 8 7 6 5 4 3 2 1	View)
Terminal No.	Terminal Name	Description
1, 16	$\mathrm{V}_{\text {cc }}$	Power Supply Terminal
3	$V_{\text {OUt }}$	Output Terminal
8	$\mathrm{V}_{\text {IN }}$	Control Voltage Intput Terminal
$\begin{array}{\|l\|} \hline 2,4,5,6,7, \\ 9,10,11,12,13 \\ \hline \end{array}$	GND	Grounding Terminal ${ }^{1}$
14	F1	Frequency Switching Terminal ${ }^{2}$
15	F0	Frequency Switching Termina ${ }^{2}$

1 The GND terminal and the $V_{C C}$ terminals are not connected inside the module. So be sure to route them on the PC board.
2 The F1 and FO bits switch the oscillation frequencies. The F1 and F0 bits are equivalent to bits 25 and 24 of the EIAJ Digital I/O Standard.
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^29]M2 Series (D300)
STANDARD COMBINATION OF FREQUENCIES

Type $\mathrm{A}(\mathrm{n}=256)$	$\mathrm{f}_{01}(\mathrm{~L})$	8.192 MHz	$32 \mathrm{kHz} \times 256$
	$\mathrm{f}_{02}(\mathrm{M})$	11.290 MHz	$44.1 \mathrm{kHz} \times 256$
	$\mathrm{f}_{03}(\mathrm{H})$	12.288 MHz	$48 \mathrm{kHz} \times 256$
Type B $(\mathrm{n}=384)$	$\mathrm{f}_{01}(\mathrm{~L})$	12.288 MHz	$32 \mathrm{kHz} \times 384$
	$\mathrm{f}_{02}(\mathrm{M})$	16.934 MHz	$44.1 \mathrm{kHz} \times 384$
	$\mathrm{f}_{03}(\mathrm{H})$	18.432 MHz	$48 \mathrm{kHz} \times 384$
Type C $(\mathrm{n}=512)$	$\mathrm{f}_{01}(\mathrm{~L})$	16.384 MHz	$32 \mathrm{kHz} \times 512$
	$\mathrm{f}_{02}(\mathrm{M})$	22.579 MHz	$44.1 \mathrm{kHz} \times 512$
	$\mathrm{f}_{03}(\mathrm{H})$	24.576 MHz	$48 \mathrm{kHz} \times 512$

SWITCHING BIT DESIGNATION

F1	F0	Oscillation Frequency
H	H	$f_{01}(L): 32 \mathrm{kHz} \times n$
L	L	$f_{02}(M): 44.1 \mathrm{kHz} \times n$
H	L	$f_{03}(H): 48 \mathrm{kHz} \times n$
L	H	Stop

Note: $n=256,384,512$

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

DC Characteristics

Item		Symbol	Condition	Ratings			Unit	
		Minimum		Normal	Maximum			
Output Voltage	H		V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{cc}}-0.5$	5.0	-	V
	L	V_{OL}	$\mathrm{l}_{\mathrm{LL}}=20 \mu \mathrm{~A}$	-	0.0	0.5	V	
Power Supply Current		$l_{\text {cc }}$	Not Loaded	-	4.6	15	mA	

Measuring Circuit Diagram

AC Characteristics

Item	Symbol	Condition	Ratings		Unit	Remarks
			Minimum	Maximum		
Oscillation Frequency One	$\mathrm{f}_{\mathrm{H} 1}$	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	$1.0015 f_{01}$	-	MHz	Nominal frequency For reference
	$\mathrm{f}_{\mathrm{L} 1}$	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-	$0.9985 \mathrm{f}_{01}$	MHz	
Oscillation Frequency Two	$\mathrm{f}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	$1.0015 f_{02}$	-	MHz	
	$\mathrm{f}_{\mathrm{L} 2}$	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	-	$0.9985 f_{02}$	MHz	
Oscillation Frequency Three	f_{H}	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	$1.0015 f_{03}$	-	MHz	
	f_{L}	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	-	$0.9985 f_{03}$	MHz	
Frequency Voltage Stability	$\Delta f\left(\mathrm{~V}_{\mathrm{cc}}\right)$	$\begin{aligned} & V_{\mathrm{cc}}=4.75 \\ & \text { to } 5.25 \mathrm{~V} \end{aligned}$	-100	100	ppm	5 V reference, $\mathrm{V}_{\text {IN }}=0.5,4.5 \mathrm{~V}$
Frequency Temperature Stability	$\Delta f\left(T_{a}\right)$	$\begin{aligned} & \mathrm{T}_{\mathrm{a}}=-20 \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	-500	500	ppm	$25^{\circ} \mathrm{C}$ reference $\mathrm{V}_{\text {IN }}=0.5,4.5 \mathrm{~V}$

M2 Series (D300)

STANDARD CHARACTERISTICS

1A. Control Voltage and Oscillation Frequency Changes
Part Number: M2SC-12M288-D300

STANDARD CHARACTERISTICS

1B. Control Voltage and Oscillation Frequency Changes

Part Number: M2SC-18M432-D300

STANDARD CHARACTERISTICS

1C. Control Voitage and Oscillation Frequency Changes
Part Number: M2SC-24M576-D300

2. Oscillation Spectrum

Part Number: M2SC-18M432-D300
Example of $f_{03}=18.432 \mathrm{MHz}$

3. Frequency Switch Oscillation Startup Characteristics

The characteristics in the circuit below were measured with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{FC}}=5.0 \mathrm{~V}$.

4. Frequency and Switching Oscillation Startup Characteristics
A. Condition: Stop $\rightarrow 12.288 \mathrm{MHz}$

B. Condition: Stop $\boldsymbol{\rightarrow} 16.934 \mathrm{MHz}$

C. Condition: Stop $\rightarrow 18.432 \mathrm{MHz}$

PART NUMBERING SYSTEM

［Part Number Example］

Frequency designation：Designates the highest frequency of the combined nominal frequency types in six alphanumeric characters．M indicates the decimal point in MHz ．

Frequency	Designation
$(12.288 \mathrm{MHz})$	Type A： 12 M 288
$(18.432 \mathrm{MHz})$	Type B： 18 M 432
$(24.576 \mathrm{MHz})$	Type C： 24 M 576

（2）Serial numbers of the series：
Standard for the M2 series（D300）：D300

MARKING

DIMENSIONS

M3 Series (D001) Piezoelectric Device (Voltage Controlled Oscillator)

The M3 series voltage controlled oscillators (VCO) operate in the frequency range of 50 to 300 MHz . The M3 series VCOs use a single LiTaO_{3} (lithium tantalate) piezoelectric crystal with a high electromechanical coupling coefficient and a SAW resonator that has an original configuration. The M3 series VCOs oscillate directly in the VHF band up to 300 MHz , and have a wide variable frequency width and high temperature stability.

- Direct oscillation at high frequencies: 50 to 300 MHz
- Wide variable frequency width: $800 \mathrm{ppm} / \mathrm{V}$ minimum (0.5 to 4.5 V)
- Superb temperature characteristics: Within $\pm 200 \mathrm{ppm}\left(0\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
- High-precision oscillation frequency, ready for use without adjustment
- High reliability due to hermetically sealed package
- High carrier noise ratio: -90 dB or less (12.5 kHz detuning, 8 kHz band)
- Compact size: Compatible with 16-pin DIP IC packages
- Frequency offset by built-in offset terminal
- Three types of standard frequencies available

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
Input Control Voltage	$\mathrm{V}_{\mathrm{IN} 2}$	-0.5 to 7.0	V
Operating Temperature	T_{a}	0 to 60	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-40 to 85	${ }^{\circ} \mathrm{C}$
Control Polarity		Positive Polarity	
Oscillation Frequency Range		50 to 300	MHz

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	5.0	V
Input Control Voltage	$\mathrm{V}_{\mathrm{IN} 2}$	0.5 to 4.5	V
Operating Temperature	T_{a}	0 to 60	${ }^{\circ} \mathrm{C}$

[^30]
(Bottom View)

(Bottom View)		
		$\begin{array}{ll} 7 & 8 \\ 0 & 0 \end{array}$ 09
Terminal No.	Terminal Name	Description
1	$\mathrm{V}_{\mathrm{IN} 1}$	Offset Terminal
7	GND	Grounding Terminal
8	$V_{\text {OUT }}$	Oscillation Output Terminal
9	$V_{\text {cc }}$	Power Supply Terminal
16	$\mathrm{V}_{\text {IN2 }}$	Control Voltage Input Terminal

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

STANDARD FREQUENCIES

Frequency	Application	Part Number
74.25 MHz	Professional HDTV	M3DA-74M250-D001
97.2 MHz	Transmission Standard HDTV	M3DA-97M200-D001
115.52 MHz	Broad-band ISDN	M3DA-155M52-D001

ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Ratings			Unit	Remarks
			Minimum	Typical	Maximum		
Oscillation Frequency Deviation	$\Delta f_{\text {。 }}$	$\mathrm{V}_{\mathbb{N} 2}=2.5 \mathrm{~V}$	-500	-	+500	ppm	f_{0} reference
Variable Width of Oscillation Frequency	$\frac{\left(f_{H}-f_{L}\right)}{f_{0}}$	$\begin{aligned} & V_{\mathbb{N} 2}=0.5 \mathrm{~V} \\ & V_{\mathbb{N} 2}=4.5 \mathrm{~V} \end{aligned}$	800	-	-	ppm/V	
Temperature Stability of Oscillation Frequency	$\Delta f\left(T_{a}\right)$	$\mathrm{V}_{\mathbb{N} 2}=2.5 \mathrm{~V}$	-200	-	+200	ppm	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=0 \text { to } 60^{\circ} \mathrm{C}$
Output Level	Pout	$\mathrm{V}_{\mathbb{N} 2}=2.5 \mathrm{~V}$	0	5	7	dBm	50Ω termination
Output Level Stability	$\Delta \mathrm{P}\left(\mathrm{V}_{\mathrm{F}}\right)$	$\begin{aligned} & V_{\mathbb{N} 2}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N} 2}=4.5 \mathrm{~V} \end{aligned}$	-2	-	+2	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{N}_{2}=2.5 \mathrm{~V}} \\ & \text { reference } \end{aligned}$
Output Level Temperature Stability	$\Delta \mathrm{P}\left(\mathrm{T}_{\mathrm{a}}\right)$	$\mathrm{V}_{\mathbb{N} 2}=2.5 \mathrm{~V}$	-2	-	+2	dB	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=0 \text { to } 60^{\circ} \mathrm{C}$
Current Consumption	$l_{\text {cc }}$	-	-	-	30	mA	
Oscillation Frequency Power Supply Voltage Fluctuation	$\Delta f\left(V_{c c}\right)$	$\mathrm{V}_{\mathbb{N} 2}=2.5 \mathrm{~V}$	-50	-	+50	ppm	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ reference, $\pm 5 \%$

STANDARD CHARACTERISTICS

The examples below show characteristics of the M3 VCO devices at 155.52 MHz .
Example 1. Frequency Variable Characteristics

STANDARD CHARACTERISTICS (Continued)

Example 2. Temperature Characteristics

Example 3. Oscillation Spectrum

PART NUMBERING SYSTEM

(Part Number Example)
M3DA- $\square \square \square \square \square \square-$ - $\square \square \square$
(1)
(2)
(1) Frequency designation: Designates the nominal frequency in six alphanumeric characters. M indicates the decimal point in MHz.

Frequency	Designation
74.25 MHz	74 M 250
97.2 MHz	97 M 200
115.52 MHz	115 M 52

(2) Serial Number (of the series):

Standard: 001
Non-standard products: 001 to 099

PACKAGE DIMENSIONS

M3 Series (D101) Piezoelectric Device

Modulator, 50 MHz to $\mathbf{3 0 0} \mathbf{~ M H z}$

These piezoelectric modulators feature direct oscillators (50 MHz to 300 MHz). The piezoelectric modulator uses a lithium tantalate piezoelectric single crystal $\left(\mathrm{LiTaO}_{3}\right)$ with a high electromechanical coupling coefficient. The piezoelectric modulator employs an exclusive SAW resonator. The piezoelectric modulator can be used in direct modulation applications needing high modulation sensitivity and a high signal-to-noise ratio in the VHF band (up to 300 MHz).

- High frequency direct modulation: 50 to 300 MHz
- High modulation sensitivity: $\quad 800 \mathrm{ppm} / \mathrm{V}$ min. (0.5 to 4.5 V)
- Excellent modulation distortion ratio: $40 \mathrm{~dB} \max$. (1 kHz to 1.75 kHz dev.)
- Excellent signal noise ratio: $\quad \mathbf{- 5 0 ~ d B}$ max.
- Excellent temperature characteristic: ± 200 ppm max. (-20 to 70°)
- Highly reliable hermetically sealed package
- Compatible with 14 -pin DIP IC packages

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	-0.5 to 7.0	V
ML Pin Input Voltage	V_{ML}	-0.5 to 10	V
MM Pin Input Voltage	$\mathrm{V}_{\text {MM }}$	-0.5 to 7.0	V
ML Pin Modulation Polarity		Positive	
MM Pin Modulation Polarity		Negative	
Operating Temperature	T_{a}	-20 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Power Supply Voltage	V_{CC}	4.75 to 5.25	V
ML Pin Input Voltage	V_{ML}	2.5	V
Operating Temperature	T_{a}	-20 to 70	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(Bottom View)

Terminal No.	Terminal Name	Description
1	ML	Control Voltage Input Terminal
4	MM	Modulation Input
7	GND	Grounding Terminal
8	Vout	Oscillation Output Terminal
14	VCC $_{\text {CC }}$	Power Supply Terminal

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^31]
STANDARD FREQUENCY

Standard Frequency	Application	Part Number
145.0 MHz	Mobile Phone	M3DA-145M00-D101

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}\right)$									
Item		Symbol	Condition	Ratings			Unit	Remarks	
		Min.		Typ.	Max.				
Oscillation Frequency Deviation			$\Delta \mathrm{f}_{\text {o }}$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-300	-	+300	ppm	t_{0} reference
Variable Width of Oscillation Frequency		$\frac{\left(f_{H}-f_{L}\right)}{f_{0}}$	$\begin{aligned} & V_{\mathrm{ML}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ML}}=4.5 \mathrm{~V} \end{aligned}$	800	-	-	ppm/V		
Temperature Stability of Oscillation Frequency		$\Delta f\left(T_{a}\right)$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-200	-	+200	ppm	$\begin{aligned} & 25^{\circ} \mathrm{C} \text { reference, } \\ & \mathrm{T}_{\mathrm{a}}=-20 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	
Output Level		Pout	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-5	-3	-1	dBm	50Ω termination	
Output Level Stability		$\Delta \mathrm{P}\left(\mathrm{V}_{\mathrm{F}}\right)$	$\begin{aligned} & V_{\mathrm{ML}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ML}}=4.5 \mathrm{~V} \end{aligned}$	-2	-	+2	dB	$\begin{aligned} & \mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V} \\ & \text { reference } \end{aligned}$	
Output Level Temperature Stability		$\Delta \mathrm{P}\left(\mathrm{T}_{\mathrm{a}}\right)$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-2	-	+2	dB	$25^{\circ} \mathrm{C}$ reference, $\mathrm{T}_{\mathrm{a}}=-20 \text { to } 70^{\circ} \mathrm{C}$	
Current Consumption		$l_{\text {cc }}$	-	-	-	10	mA		
Oscillation Frequency Power Supply Voltage Fluctuation		$\Delta f\left(V_{c c}\right)$	$\mathrm{V}_{\mathrm{ML}}=2.5 \mathrm{~V}$	-50	-	+50	ppm	$\left\lvert\, \begin{aligned} & \pm 5 \% \text { at } V_{C C}=5 \\ & V \\ & \text { reference } \end{aligned}\right.$	
Modulation Characteristic	Modulation Distortion (1 KHz tone)		1.75 kHz DEV	-	-	-40	dB	15 kHz LPF	
			3.5 kHz DEV	-	-	-40	dB		
			5.0 kHz DEV	-	-	-40	dB		
	Signal to Noise Ratio		1.75 kHz DEV	-	-	-50	dB	300 to 3 kHz	
	Modulator Input Impedance			10			K Ω		

PART NUMBERING SYSTEM

Designation Example

(1) Frequency Designation:

The standard frequency is designated in six alphanumeric characters. M is used to designate the decimal point in MHz. Refer to STANDARD FREQUENCY. Example: 145.0 MHz device is designated as 145 M 00 .
(2)

Serial Number:
The serial number is assigned from 101 to 199 (with 101 as the standard).

PACKAGE MARKING

PACKAGE DIMENSIONS

SAW MODULATOR CHARACTERISTICS

M3DA-145M00-D101

Item		Rating	Characteristics	Remarks
Output Frequency		145.0 MHz	144.997 MHz	$\mathrm{v}_{\mathrm{C}}=2.5 \mathrm{~V}$
Current Consumption		10 mA or less (with buffer)	7.3 mA	
Output Level		$-3 \mathrm{dBm} \pm 2 \mathrm{~dB}$	$-2.00 \mathrm{dBm}$	$\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V}$
Spurious Response Ratio		Higher harmonic < 4 dB at $2 \mathrm{f}_{0}(290 \mathrm{MHz}$)	$-7.3 \mathrm{~dB}$	
Frequency Stability	Power Supply Fluctuation	Within ± 50 ppm for $5 \mathrm{~V} \pm 0.25 \mathrm{~V}$	$\begin{aligned} & +6.00 \mathrm{ppm} \\ & +5.80 \mathrm{ppm} \end{aligned}$	
	AFC-F-F Characteristic	$\pm 550 \mathrm{ppm}$ or more for $2.5 \mathrm{~V} \pm 1 \mathrm{~V}$	$\begin{aligned} & -789 \mathrm{ppm} \\ & +1016 \mathrm{ppm} \end{aligned}$	
	Temperature Characteristic	Within ± 300 ppm for -35 to +85	$\begin{aligned} & \text { +66 ppm } \\ & +41 \mathrm{ppm} \\ & \hline \end{aligned}$	
AFC Voltage Versus Output Frequency Characteristics		At $25 \pm 5^{\circ} \mathrm{C}$, the AFC voltage for the output frequency of 145 MHz is $\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.501 V	
		At $-20+85^{\circ} \mathrm{C}$, the AFC voltage for the output frequency of 145 MHz is $\mathrm{V}_{\mathrm{C}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & 2.476 \mathrm{~V} \\ & 2.459 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$
Modulation Characteristic	Modulation Input Level	$\begin{aligned} & -28 \mathrm{dBm} \pm 3 \mathrm{~dB}(600 \mathrm{~W}) \\ & 1 \mathrm{KHz} \pm 3.5 \mathrm{kHz} \mathrm{DEV}^{*} \end{aligned}$	-26.1 dB	15 kHz LPF
	Modulation Distortion Ratio	$\begin{array}{\|l} \hline-35 \mathrm{~dB} \text { or less } 1 \mathrm{kHz}(\pm 1.75 \mathrm{kHz} \mathrm{DEV})^{*} \\ -30 \mathrm{~dB} \text { or less } 1 \mathrm{kHz}(\pm 3.5 \mathrm{kHz} \mathrm{DEV})^{*} \\ -20 \mathrm{~dB} \text { or less } 1 \mathrm{kHz}(\pm 5.0 \mathrm{kHz} \mathrm{DEV})^{*} \\ \hline \end{array}$	$\begin{aligned} & -46 \mathrm{~dB} \\ & -49 \mathrm{~dB} \\ & -48 \mathrm{~dB} \end{aligned}$	15 kHz LPF
	Modulation Characteristic	< $\pm 1 \mathrm{~dB} / 20 \mathrm{~Hz}$ to $5 \mathrm{kHz} \pm 5 \mathrm{kHz} \mathrm{DEV}{ }^{*}$		
	Signal Noise Characteristic	$<-50 \mathrm{~dB} \pm 1.75 \mathrm{kHz} \mathrm{DEV} *$	-55dB	300 to 3 kHz

*Adjust the control voltage for an oscillation frequency of 145 MHz for the modulation characteristic.

Test Circuit

M30A-145M00-D101 MODULATION FREQUENCY CHARACTERISTICS

5

SAW MODULATOR CHARACTERISTIC DATA M3DA-145M00-D101

V-F Characteristic

SAW MODULATOR CHARACTERISTIC DATA (Continued) M3DA-145M00-D101
No. ES-38 O

Section 6

Cordless Telephone Integrated Circuits - At a Glance

Page	Device	Description	Package Options		
$6-3$	MB86460A	Modem with Internal Voice-Band Filters	48 -pin	Plastic	FPT
$6-25$	MB87002	CMOS 1200 bps MSK Modem	16 -pin	Plastic	DIP, FPT

MODEM WITH INTERNAL VOICE-BAND FILTERS

CMOS MODEM CIRCUIT WITH INTERNAL VOICE-BAND FILTERS FOR CORDLESS TELEPHONES

The MB86460 MSK (Minimum Shift Keying) modem IC contains a 1200-band MSK modem and voice-band filters.
The voice-band filter consists of transmit and receive bandpass filters, pre-emphasis/de-mphasis, and splatter filters arranged in an SCF configuration. In addition, a limiter circuit is included.
The MB86460 operates at low voltage (3.0 to 5.5 V) and is suitable for cordess telephone applications.

- On-chip voice-band filters and 1200 -band MSK modem
- Low supply voltage requirements (3.0 to 5.5 V)
- Wide operating temperature range ($\mathrm{TA}_{\mathrm{A}}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)
- Standby function for low power consumption
- MSK frame detection
- Frame synchronization selectable
- Full-duplex MSK modem
- Transmitreceive muting
- Externally adjustable receive and transmit gain
- Externally adjustable limiter level
- Carrier/interference detection circuit

- The on-chip oscillator operates with 3.6864 or 3.456 MHz crystal (selectable).
- The on-chip serial interface reduces the number of signal lines
- CMOS I/O interface

2in\%	10	Horam\%	\% \% No\%	1\%	P\%inans\%	2\%) ${ }^{\text {No. }}$	10.	phomine
1	0	EMPour	17	0	CC_{1}	33	1	SD
2	1	CMPour	18	1	CC_{2}	34	0	Sck
3	0	CMPw	19	-	Vodn	35	1	SEND
4	0	AFing	20	0	Cour	36	1	RST
5	1	AFiwn	21	1	DETm	37	1	OSCIN
6	0	1/2 V $\mathrm{V}_{\text {dour }}$	22	0	DETour	38	0	OSCOUT
7	1	$1 / 2 \mathrm{~V}_{\text {Dow }}$	23	1	$\overline{\text { TEST }}$	39	0	TDour
8	1	CC.	24	1	FIM	40	-	DG
9	0	CC_{3}	25	0	Dour	41	-	AG
10	1	DEM ${ }_{1}$	26	1	DSTB	42	0	MOD
11	0	DEM ${ }_{2}$	27	1	DCK	43	-	VDDD
12	0	EXPIN	28	1	Dns	44	0	LIMout
13	1	EXPour	29	1	FCL	45	1	LIM
14	0	AFour	30	0	FDour	46	0	SAMPour
15	1	RAMPIN	31	0	RCK	47	1	SAMPIN
16	0	RAMPour	32	0	RD	48	0	Sour

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised due to high static votages or electric fields. However, it is advised
that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN DESCRIPTION

	Pin No.	Ph name	Function
Power supply pins	19	$V_{\text {DoA }}$	Analog supply voltage (3.0 to 5.5 V).
	40	DG	Digital ground
	41	AG	Analog ground
	43	$V_{\text {DoD }}$	Digital supply voltage (3.0 V to 5.5 V). $\mathrm{V}_{\text {Doo }}=\mathrm{V}_{\text {Doa }}$ is recommended.
Input pins	2	COMPour	Input from external compressor
	5	AFwn	Inverting input of the input transmit amplifier The transmit input amplifier gain is adjusted by two external resistors, R1 and R2. R1 is connected to this pin and R2 connected between this pin and pin 4 ($\mathrm{AF}_{\text {inz }}$).
	7	$1 / 2 \mathrm{~V}$ Down	Input to the $1 / 2 \mathrm{~V}_{\mathrm{DD}}$ generator. A $1 \mu \mathrm{~F}$ bypass capacitor is usually connected from this pin to analog ground (pin 41)
	10	DEM ${ }^{1}$	Inverting input of the receive input amplifier The receiver input amplifier gain is adjusted by two external resistors, R3 and R4. R3 is connected to this pin and R 4 is connected between this pin and pin 11 (DEM2).
	13	EXPour	Input from external expander
	15	RAMPiw	Inverting input of the receive summing amplifier
	21	DET ${ }_{\text {IN }}$	Reference voltage input to the tone detector. With this pin open, the reference voltage level is $1 / 100 \mathrm{VDD}$.
	23	$\overline{\text { TEST }}$	Input for pattern check mode selection When TEST is low, an internal pattern is loaded into the shitt register on the rising edge of DCK. When TEST is high, data at DIN is loaded into the shift register ans data in the shift register is shifted out to Dout on the rising edge of DCK. This pin is pulled by up a high resistance.
	24	F/M	Mode selection input. When F / \bar{M} is low, the mode selection pattern is set and checked. When $F \bar{M}$ is high, the frame synchronization pattern is set and checked.
	26	DSTB	Input serial signal strobe. An input serial signal is validated on the rising edge of DSTB.
	27	DCK	Input serial signal clock. Serial data at $\mathrm{D}_{\mathbb{w}}$ is read in on the rising edge of DCK . (When TEST is high)
	28	$\mathrm{D}_{\text {IN }}$	Input for serial signals from the microprocessor
	29	FCL	Frame detection latch clear input. When FCL is low, FDour goes low. This pin is pulled up by a high resistance. FCL is pulled low to pull FDout low after the frame synchronization pattern is set.
	33	SD	MSK modem data input
	35	SEND	Mutes transmit data to the MSK modem. A high on the SEND line enables data transmission.
	36	RST	Reset input. A low on RST resets all circuits. This pin is pulled up by a high resistance.

	Pin to.	Prinames	Function
Input pins	37	$\mathrm{OSC}_{\text {IN }}$	Internal oscillator inputs. A 3.6864 or 3.456 MHz crystal is connected between OSC $_{\text {IN }}$ and OSCour.
	38	OSCout	
	45	LIM	Limiter level adjustment input. The limiter level is set to $0.05 \mathrm{~V}_{\mathrm{Do}}(\mathrm{V})$ when this pin is left open.
	47	SAMPIN	Inverting input of the transmit summing amplifier
Input pin	8	CC_{4}	For demodulator external coupling capacitor. A $0.1 \mu \mathrm{~F}$ capacitor is connected between CC_{3} and CC_{4}.
Output pin	9	CC_{3}	
Output pin	17	CC_{1}	For tone detector input external coupling capacitor. A $0.1 \mu \mathrm{~F}$ capacitor is connected between CC_{1} and CC_{2}.
Input pin	18	CC_{2}	
Output pins	1	EMPour	Pre-emphasis output
	3	COMP_{1}	Output to external compressor
	4	$\mathrm{AF}_{\text {N } 2}$	Output of input transmit amplifier. The transmit input gain is adjusted with external registors connected to this pin and pin 5 ($\mathrm{AF}_{\mathrm{IN}_{1}}$).
	6	1/2 VDDout	Output of the $1 / 2 \mathrm{~V}_{\text {DD }}$ reference. Internal circuit operation is referenced to the voltage on this pin.
	11	DEM ${ }_{2}$	Output of receive input amplifier. The receive input amplifier gain is adjusted with external resistors connected to this pin and pin 10 (DEM $)_{1}$).
	12	EXP ${ }_{\text {IN }}$	Output to external expander
	14	AFout	Output to external expander or de-emphasis
	16	RAMPout	Output of receive summing amplifier
	20	Cout	Output of tone detector. An external $0.1 \mu \mathrm{~F}$ capacitor is connected from this pin to ground complete the internal primary LPF configuration.
	22	DETout	Tone detector output. DETout is high when the input to the tone detector (rms value) exceeds the reference voltage.
	25	Dout	Patterncheck setting output When TEST is high, the rising edge of DCK triggers output of the pattern.
	30	FDout	Frame detection circuit output. FDour goes high when a signal matching the frame synchronization pattern is output from RD after a reset.
	31	RCK	MSK modem receive clock output. RD data is output on the rising edge of RCK.
	32	RD	MSK modem receive data output
	34	SCK	MSK modem transmit clock output. SD data is read in on the rising edge of SCK.
	39	TD ${ }_{\text {out }}$	Test digital output
	42	MOD	Transmit output
	44	LIMout	Limiter output
	46	SAMP ${ }_{\text {out }}$	Output of the transmit summing amplifier
	48	Sout	MSK modulated signal output

CIRCUIT FUNCTIONS

The MB86460 consists of the transmit filters, receive filters, MSK modulator, MSK demodulator, digital circuits, and tone detector.

1. Transmit filters

The input amplifier AMP1 controls the gain of the transmitted VF signal. Gain is adjusted with external resistors R1 and R2. The input signal is then band-limited to 3.7 kHz or less by the transmit filter LPF1. The signal is then output at CMP in to an external compressor. We recommend forming an RC filter using external resistor R1, and external capacitor C1.
The compressor output signal is input to filter HPF2 at CMPout for 6 dB /octave pre-emphasis. The pre-emphasis filter can be bypassed externally.
The pre-emphasis filter output is brought out at EMPour to the external summing network of summing amplifier AMP2, where the signal is summed with the MSK modulating signal. The signal then enters the limiter. The limiter level can be adjusted externally at the LIM pin.
The output of the limiter is then band-limited to 3 kHz by splatter filter LPF2 and output at the MOD pin. the transmitted VF signal can be muted externally.

2. Receive filters

Input amplifier AMP3 controls the gain of the received VF signal. Gain is adjusted by external resistors R3 and R4. The input signal is then band-limited to 0.23 kHz to 3.4 kHz by receive filters LPF4 and HPF3. The signal then enters filter LPF5, where the $6 \mathrm{~dB} / \mathrm{octave}$ pre-emphasis is removed. The de-emphasis filter can be bypassed externally.
The output of the de-emphasis filter is brought out to the EXP ${ }_{\text {IN }}$ pin to an external expander. The expander output is then input to summing amplifier AMP4, where the signal is summed with tone, DTMF, or other signal. The signal is then output at RAMPout. The receive VF signal can be muted externally.

3. MSK modulator

In the MSK modulator, a $1200-\mathrm{Hz}$ (data 1) or $1800-\mathrm{Hz}$ (data 0) sine-wave signal is generated for data input to pin SD in synchronization with transmit clock SCK. The MSK modulator signal then passes through pin Sout and enters summing amplifier AMP2, where the signal is summed with the transmit VF signal.

4. MSK demodulator

The received MSK signal passes through receive input amplifier AMP3. The signal then enters BPF1, where frequencies other than 1200 and 1800 Hz are eliminated. The signal passes through waveform-shaping circuit 1 and is A/D converted. The signal then enters the delay detector, where data is regenerated. The noise components in the regenerated data are filtered out by LPF3 and then the signal enters waveform-shaping 2 , where A / D conversion is done again.
The digital phase-locked loop (DPLL) circuit recovers receive clock RCK from the regenerated data signal and outputs the regenerated data at the RD pin.
The MB86460 has a built-in frame-detection function for reducing microprocessor load. When the regenerated data output from pin RD matches the frame synchronization pattern, $\mathrm{FD}_{\text {our }}$ goes high. The frame synchronization pattern can be set externally.

5. Digital circuits

The digital circuits consist of the timing generator and serial interface. The timing generator generates basic clocks for the MSK modulator and demodulator, transmit filters, and receive filters, and consists of a $3.6864-\mathrm{MHz}$ crystal and an on-chip oscillator and divider circuits.
The signal interface is used to set the standby mode, the bypass mode, and the frame synchronization pattern, and to enable or and disable the transmit/receive mute function. These operations are microprocessor-controllable through serial signal lines $\mathrm{D}_{\mathrm{iN}}, \mathrm{DCK}$, DSTB, and $\bar{F} \bar{M}$.

6. Tone detector

The tone detector is used for interference or carrier detection during demodulation. The tone detector full-wave-rectifies the output of the receive LPF or demodulator BPF, smoothes the signal, and compares it with the reference to check for interference or carrier presence.

FUNCTION DESCRIPTIONS

1. Timing chart for the 1200 -bps MSK modem
2. Modulation

3. Demodulation

4. Frame detection

2. Limiter

SAMPitar input avallit	LMion output ieval (V)	Condition
$\frac{V_{D D}}{2}-0.25>V_{1}$	$\frac{\mathrm{V}_{\mathrm{DD}}}{2}-0.25$	LIM pin is open.$V_{D D}=5.0 \mathrm{~V}$
$\frac{V_{D D}}{2}-0.25 \leq V_{1} \leq \frac{V_{D D}}{2}+0.25$	V_{1}	
$\frac{l_{\text {DD }}}{2}+0.25<V_{1}$	$\frac{V_{D D}}{2}+0.25$	
$V_{\text {LIM }}>\mathrm{V}_{\text {i }}$	Vım	LIM Pin $=\mathrm{V}_{\text {um }}$
$V_{\text {LIM }} \leq \mathrm{V}_{\mathrm{i}} \leq \mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\text {LIM }}$	V_{1}	
$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {UM }}<\mathrm{V}_{\mathrm{i}}$	$V_{\text {do }}-V_{U M}$	

3. Microprocessor interface (mode selection)

The serial interface selects the standby mode and mute mode.
(1) Data input timing (TEST is high, $F \bar{M}$ is low)

DSTB

The serial pattern is valid.

MB86460A

FUNCTION DESCRIPTIONS

(2) Data setting

On reset, D15 to D3, D1, and D0 are set to 0 , and D2 is set to 1 .

- Standby mode (D2, D1, D0)

Mode selection (Mn): n indicates values in binary notation for D2 (MSB) to D0 (LSB).

Alock		circut	Mods						Femarks	
		Mo:	M1	M3	us	M4	Ms:			
Transmit system	Voice-band filters		AMP1	0	0	X	X	X	X	
		Prefilter 1	0	0	X	X	X	X		
		LPF1	0	0	X	X	X	X		
		Postfilter 1	0	0	X	X	X	X		
		Prefilter 2	0	0	X	X	X	X		
		HPF2	0	0	X	X	X	X		
		Posttilter 2	0	0	X	X	X	X		
		AMP2	0	0	X	X	X	X		
		Limiter	0	0	X	X	X	X		
		LPF2	0	0	X	X	X	X		
		Postfilter 3	0	0	X	X	X	X		
	MODEM	Modulator circuit	0	X	X	X	X	X		
Receive system	Voice-band filters	AMP3	0	0	0	0	X	X		
		Prefilter 3	0	0	0	0	X	X		
		LPF4	0	0	0	X	X	X		
		HPF3	0	0	0	X	X	X		
		HPF4	0	0	0	X	X	X		
		LPF5	0	0	0	X	X	X		
		Postrifter 4	0	0	0	X	X	X		
		AMP4	0	0	0	X	X	X		
		Tone detector	0	0	0	0	X	X		
	$\begin{gathered} \text { MSK } \\ \text { MODEM } \end{gathered}$	BPF1	0	X	0	0	X	X		
		Waveform-shaping circuit 1	0	X	0	0	X	X		
		LPF3	0	X	0	0	X	X		
		Waveform-shaping circuit 2	0	X	0	0	X	X		
Others		OSC	0	0	0	0	0	X		
		1/2 $\mathrm{V}_{\text {D }}$ reference	0	0	0	0	X	X		

O Active X Powered down
Note: During reset, mode M4 is set.

FUNCTION DESCRIPTIONS

- Mute mode
(D4, D3)
(1)
- Pre-emphasis/de-emphasis bypass mode (D6, D5)
$\xrightarrow{(1)}$
- Compander bypass mode
(D7)

- Tone detector mode
(D8)

- Crystal oscillator mode
(D9)

Note: The internal dividing ratio depends on the frequency of the crystal.

- Test mode
(D15 to D10)

Note: In no-test (normal operation) mode, set D12 and D13 to 0.

MB86460A

FUNCTION DESCRIPTIONS

4. Setting the frame synchronization pattern

The frame synchronization pattern is set via the serial interface pins. (16 bits)
For strobe, use DSTB and set $\overline{F / M}$ to high.
Data input timing ($\overline{\mathrm{TEST}}$ is high, $\mathrm{F} / \overline{\mathrm{M}}$ is high)

DSTB

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Paramatar	Symbal	Pin nama	Minimum	Typical	Maximum	Unit
Supply voltage	$V_{\text {D }}$	$V_{D D}$	GND-0.3	-	7	V
Input voltage	V_{IN}	All input pins	GND-0.3	-	$\mathrm{V}_{\mathrm{DO}+} 0.3$	\checkmark
Output voltage	Vout	All output pins	GND-0.3	-	V ${ }_{\text {DO }}+0.3$	V
Output current	lout	All output pins	-10	-	10	mA
Storage temperature	$\mathrm{T}_{\text {ato }}$		-40	-	125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

	Symbol	Pin name	Minimum	Typleal	Maximum	Unit
Supply voltage	$V_{\text {Do }}$	$V_{\text {DO }}$	3.0 *	5.0	5.5	\checkmark
Input voltage	$V_{\text {IN }}$	All input pins	0	-	$V_{\text {Do }}$	\checkmark
Analog output load resistance	RL	All analog output pins	50	-	-	k Ω
Analog output load capacitance	C_{L}	All analog output pins	-	-	30	pF
OSC pin load capacitance	Cosc	OSG $_{\text {In }}$, OSC $_{\text {out }}$	20	30	50	pF
Operating temperature	$\mathrm{T}_{\text {A }}$		-20	25	70	${ }^{\circ} \mathrm{C}$

* The MB86460A operates down to 2.7 V , but electrical characteristics are not guaranteed from 2.7 V to 3.0 V .

ELECTRICAL CHARACTERISTICS

1. Transmit characteristics

Parameter	Symbol	Ph nama	Condition	Nifimum	Typica!	Maximum	Unif
Transmit gain 1	Tgainı	AFIN1-MOD	Input: $-27 \mathrm{dBV}, 1 \mathrm{kHz}$ $R_{1}=R_{2}, R_{5}=R_{7}$ With pre-emphasis. Compander bypassed.	7.0	9.0	11.0	dB
Transmit mute	Tmute	AF ${ }_{\text {IN1 }}$-MOD	Input: - $27 \mathrm{dBV}, 1 \mathrm{kHz}$ $R_{1}=R_{2}, R_{5}=R_{7}$ With pre-emphasis. Compander bypassed. Transmit muted.	45	-	-	dB
Transmit signal-to-noise ratio	T_{sN}	AF IN $^{\text {- }}$-MOD	Input: - $27 \mathrm{dBV}, 1 \mathrm{kHz}$ $R_{1}=R_{2}, R_{5}=R_{7}$ With pre-emphasis. Compander bypassed. Band: 50 Hz to 20 kHz	40	-	-	dB
Transmit distortion	Tsio	AF ${ }_{\text {IN1 }}-\mathrm{MOD}$	Same as above	-	-	-40	dB
Receive gain	Rgam	DEM1-RAMPout	Input: -26 dBV, 1 kHz $R_{3}=R_{4}, R_{8}=R_{10}$ With de-emphasis. Compander bypassed.	-1.0	0.0	1.0	dB
Receive mute	Rmute	DEM1-RAMPout	Input: $-18 \mathrm{dBV}, 1 \mathrm{kHz}$ $\mathrm{R}_{3}=\mathrm{R}_{4}, \mathrm{R}_{8}=\mathrm{R}_{10}$ With de-emphasis. Compander bypassed. Receive muted.	45	-	-	dB
Receive signal-to-noise ratio	Rs,	DEM1-RAMPout	Input: $-18 \mathrm{dBV}, 1 \mathrm{kHz}$ $R_{3}=R_{4}, R_{8}=R_{10}$ With de-emphasis. Compander bypassed. Band: 50 Hz to 20 kHz	40	-	-	dB
Receive distortion	Rs/D	DEM 1 -RAMPout	Same as above	-	-	-40	dB
Transmit gain 2	Tgan ${ }^{\text {2 }}$	AFini-EMPout $^{\text {I }}$	Input: - $27 \mathrm{dBV}, 1 \mathrm{kHz}$ $R_{1}=R_{2}$ With pre-emphasis. Compander bypassed.	-1.0	0.0	1.0	dB
Transmit gain 3	Tgans	EMPour-MOD	$\begin{aligned} & \text { Input: }-27 \mathrm{dBV}, 1 \mathrm{kHz} \\ & \mathrm{R}_{5}=\mathrm{R}_{7} \end{aligned}$	8.0	9.0	10.0	dB
Transmit frequency characteristics	$\mathrm{T}_{\text {fa }}$	$A^{\text {F }}$ - $-M O D$	Input: -27 dBV $R_{1}=R_{2}, R_{5}=R_{7}$ With pre-emphasis. Compander bypassed.	Sho	wn in Figu	re 1.	

$\mathrm{V}_{\mathrm{DD}}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$							
Parameter	Symbol	Ph name	Condilion	Minimum	Tyifal	Maximum	Un!
Receive frequency characteristics	RfA	DEM1-RAMP out $^{\text {¢ }}$	Input: -26 dBV $R_{3}=R_{4}, R_{5}=R_{7}$ With de-emphasis. Compander bypassed.	Show	n in Figu	e 2.	
Demodulator BPF gain	$\mathrm{B}_{\text {GAIN }}$	DEM ${ }_{1}-\mathrm{CC}_{1}$	$\begin{aligned} & \text { Input: }-18 \mathrm{dBV} \text {, } \\ & 1.5 \mathrm{kHz} \\ & \mathrm{R}_{3}=\mathrm{R}_{4} \end{aligned}$	-1.5	0	1.5	dB
Demodulator LPF gain	Lgain	$\mathrm{CC}_{4}-\mathrm{CC}_{3}$	Input: -18 dBV , 300 Hz In test mode	-	-6.0	-	dB
Demodulator BPF frequency characteristics	$B_{\text {FA }}$	DEM 1 -CC,	Input: $0-300 \mathrm{~Hz}$ -18 dBV, $R_{3}=R_{4}$ $1200-1200 \mathrm{~Hz}$ $1800-1800 \mathrm{~Hz}$ $1800-2100 \mathrm{~Hz}$ $3000-5000 \mathrm{~Hz}$$\|$	$\begin{gathered} - \\ -3.5 \\ -1.0 \\ -3.5 \end{gathered}$	- - -	$\begin{gathered} -30.0 \\ - \\ - \\ - \\ -30.0 \end{gathered}$	dB
Demodulator LPF frequency characteristics	$L_{\text {FA }}$	$\mathrm{CC}_{4}-\mathrm{CC}_{3}$	Input: -18 dBV, In test mode Reduced by 3 dB	-	800	-	Hz

6

MB86460A

ELECTRICAL CHARACTERISTICS

2. DC characteristics

Pammet	Syibol		\%\# Ham	condition	Ainimum	Jypical	Maximum	Un!
Supply current	lodo	$V_{\text {D }}$		Standby mode 0	3	8	14	mA
	lod			Standby mode 1	2	6	11	mA
	loD2			Standby mode 2	1.5	5	8.5	mA
	lob3			Standby mode 3	1.3	4.5	8.0	mA
	lood			Standby mode 4	0.1	1.0	2.0	mA
	loos			Standby mode 5	-	25	100	$\mu \mathrm{A}$
Low-level input voltage	V_{LL}	All digital input pins		-	0	-	$0.3 \times V_{\text {DD }}$	V
High-level input voltage	$\mathrm{V}_{\text {IH }}$			-	$0.7 \times V_{\text {D }}$	-	$V_{D D}$	V
Low-level input current	IL_{1}	SD, SEND, Din DCK, DSTB, F/M		$\mathrm{V}_{1}=0 \mathrm{~V}$	-10	-	10	$\mu \mathrm{A}$
High-level input current	$l_{\text {H }}$			$V_{1}=V_{D D}$	-10	-	10	$\mu \mathrm{A}$
Low-level output voltage	VoL	All digital output pins		$\mathrm{loL}=0.5 \mathrm{~mA}$	0	-	$0.2 \times V_{D D}$	V
High-level output voltage	V_{OH}			$\mathrm{I}_{\text {OH }}=-0.5 \mathrm{~mA}$	$0.8 \times V_{D D}$	-	$V_{D 0}$	V
Pull-up resistance	$\mathrm{R}_{\text {LU }}$	RST,	EST	-	50	100	200	$\mathrm{k} \Omega$
Oscillation frequency	fosc	OSC $_{\text {IN, }}$, OSC ${ }_{\text {out }}$		Mode 0	-	3.6864	-	MHz
				Mode 1	-	3.456	-	
Analog input resistance 1	$\mathrm{R}_{\text {ANI }}$	$1 / 2 \mathrm{VD}$		-	50	100	200	$\mathrm{k} \Omega$
Analog input resistance 2	$\mathrm{R}_{\text {AIIN2 }}$	DETIN	Operating	Between this pin and $1 / 2 V_{D D}$	25	50	100	k Ω
	$\mathrm{R}_{\text {AIN2B }}$		At power down	Between this pin and ground	225	450	900	
Analog input resistance 3	$\mathrm{R}_{\text {AIN3A }}$	LIM ${ }_{\text {IN }}$	Operating	Between this pin and $1 / 2 V_{D o}$	10	20	40	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {AII3s }}$		At power down	Between this pin and ground	90	180	360	
Analog output load resistance	RL	$\mathrm{AF}_{\text {in2 }}$, Sout, DEM_{2}, RAMP	MPin, EMPout, AMPout, MOD, LIMout, EXPin, out	Between this pin and $1 / 2 V_{D D}$	50	-	-	k Ω
Analog output load capacitance 1	CLI_{1}	$\mathrm{AF}_{\text {IN2 }}$, Sout, DEM ${ }_{2}$, RAMP	MPin, EMPout, AMPout, MOD, LIMout, EXPin, UT	-	-	-	100	pF
Analog output load capacitance 2	Cl_{12}	Cout		-	-	0.1	-	$\mu \mathrm{F}$

$V_{\text {DD }}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{A}=-20$ to $70^{\circ} \mathrm{C}$								
Parameter	Symbol	Pin name	condition		Minimum	Typical	Maximum	Unl!
Analog input voltage range	$V_{\text {IA }}$	CMPout		-	$\frac{1}{4} \mathrm{~V}_{\text {DD }}$	-	$\frac{3}{4} V_{D D}$	V
Analog output voltage range	VoA	$\mathrm{AF}_{\text {inz }}, \mathrm{CMP}_{\text {in }}, \mathrm{EMP}_{\text {out }}$, SAMP ${ }_{\text {out, }}$ MOD, DEM $_{2}$, EXP $_{\text {IN }}$, RAMPout, LIMout		-	$\frac{1}{4} \mathrm{~V}_{\text {DO }}$	-	$\frac{3}{4} V_{D D}$	V
Modulator output voltage	$\mathrm{V}_{\text {MOTI }}$	Sout	Operating		$0.16 \times \mathrm{V}_{\text {DD }}$	$0.2 \times \mathrm{V}_{\text {D }}$	$0.24 \times \mathrm{V}_{\text {DD }}$	V_{p-p}
	$V_{\text {мот2 }}$		Operating Offset voltage		1/2V $\mathrm{VDO}^{\text {-0.3 }}$	1/2V VD	1/2V $\mathrm{VDD}+0.3$	V
	$\mathrm{V}_{\text {мот3 }}$		SEND = "L"		1/2V $\mathrm{VOD}_{\text {- }} 0.3$	$1 / 2 \mathrm{~V}_{\text {D }}$	$1 / 2 \mathrm{~V}_{\text {DO }}+0.3$	V
Limiter high voltage	$V_{\text {DL }}$	SAMPout-LIMout	The LIM pin is open.		$\begin{aligned} & 1 / 2 \mathrm{~V}_{\mathrm{DD}} \\ & +0.04 \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & 1 / 2 \mathrm{~V}_{D D} \\ & +0.05 \mathrm{~V}_{D D} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 / 2 V_{D D} \\ +0.06 V_{D D} \end{array}$	V
			LIM pin $=\mathrm{V}_{\text {LIM }}$		$\begin{gathered} 1 / 2 V_{\mathrm{DO}}+0.8 \\ \times\left(1 / 2 \mathrm{~V}_{\mathrm{DD}}-\right. \\ \left.V_{\mathrm{UM}}\right) \end{gathered}$	$\begin{gathered} 1 / 2 V_{D D}+1.0 \\ \times\left(1 / 2 V_{D D}-\right. \\ \left.V_{\mathrm{UM}}\right) \end{gathered}$	$\begin{gathered} 1 / 2 \mathrm{~V}_{\mathrm{DD}}+1.2 \\ \times\left(1 / 2 \mathrm{~V}_{\mathrm{DD}}-\right. \\ \left.\mathrm{V}_{\mathrm{UM}}\right) \end{gathered}$	V
Limiter low voltage	Vou	SAMPout-LIMout	The LIM pin is open.		$\begin{aligned} & 1 / 2 V_{D D} \\ & -0.06 V_{D D} \end{aligned}$	$\begin{aligned} & \hline 1 / 2 \mathrm{~V}_{D D} \\ & -0.05 \mathrm{~V}_{D D} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 / 2 V_{D D} \\ -0.04 V_{D D} \end{array}$	V
			LIM pin $=\mathrm{V}_{\text {LIM }}$		$\begin{gathered} 1 / 2 V_{D D}-1.2 \\ \times\left(1 / 2 V_{D D}-\right. \\ \left.V_{\mathrm{UM}}\right) \end{gathered}$	$\begin{gathered} 1 / 2 V_{D O}-1.0 \\ \times\left(1 / 2 V_{D O}\right. \\ \left.V_{\mathrm{UM}}\right) \end{gathered}$	$\begin{gathered} 1 / 2 V_{D O}-0.8 \\ \times\left(1 / 2 V_{D D}-\right. \\ \left.V_{\mathrm{UMM}}\right) \end{gathered}$	V
Tone detection level	$V_{\text {det }}$	DET ${ }^{\text {m }}$	$\mathrm{R}_{3}=\mathrm{R}_{4}$	The DETin pin is open.	$\frac{1}{125} V_{D 0}$	$\frac{1}{100} V_{D O}$	$\frac{1}{80} V_{00}$	$\mathrm{V}_{\text {ms }}$
					$\begin{array}{\|c\|} \hline 1 / 12.5 \mathrm{x} \\ \left(1 / 2 \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Dr})}\right. \\ \hline \end{array}$	$\begin{gathered} 1 / 10 \mathrm{x} \\ \left(1 / 2 V_{D D}-V_{D T}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 1 / 8 \mathrm{X} \\ \left(1 / 2 \mathrm{~V}_{D D}-\mathrm{V}_{\mathrm{DT}}\right) \end{array}$	$\mathrm{V}_{\text {ms }}$

ELECTRICAL CHARACTERISTICS

3. $A C$ characteristics

$V_{D D}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $70^{\circ} \mathrm{C}$							
Parameter	Symbol	PHM\%	Comaliont	Ninlmum	Typlcal	Maximum	Unit
SCK delay time 1	$\mathrm{td}_{\mathrm{sc}}$	SCK	-	0	150	417	$\mu \mathrm{s}$
SCK delay time 2	$\mathrm{td}_{\mathrm{sc} 2}$	SCK	-	417	570	834	$\mu \mathrm{s}$
SCK delay time 3	$\mathrm{td}_{5 \times 3}$	SCK	-	0	150	417	$\mu \mathrm{s}$
FDO delay time 1	tdfol	FDout	-	0	-	1	$\mu \mathrm{s}$
FDO delay time 2	$\mathrm{td}_{\text {FD2 }}$	FDout	-	0	-	1	$\mu \mathrm{s}$
SCK low width	$\mathrm{tw}_{\mathrm{Ls}}$	SCK	-	390	417	444	$\mu \mathrm{s}$
SCK high width	$\mathrm{tw}_{\text {Hs }}$	SCK	-	390	417	444	$\mu \mathrm{s}$
SEND setup time	$\mathrm{tS}_{\text {se }}$	SEND	-	1	-	-	$\mu \mathrm{s}$
SEND hold time	$\mathrm{th}_{\text {SE }}$	SEND	-	1	-	-	$\mu \mathrm{s}$
SD setup time	tsso	SD	-	1	-	-	$\mu \mathrm{s}$
SD hold time	thso	SD	-	1	-	-	$\mu \mathrm{s}$
Sout delay time 1	tdson	Sout	-	0	-	20	$\mu \mathrm{s}$
Sout delay time 2	tdsoz	Sout	-	0	-	20	$\mu \mathrm{s}$
Sour delay time 3	$\mathrm{td}_{\text {so3 }}$	Sour	-	0	-	10	$\mu \mathrm{s}$
MSK input invalid time	$\mathrm{td}_{\text {R1 }}$	DEM_{1}, DEM $_{2}$	-	0	-	10	ms
Number of fetched bits	N	-	$\mathrm{DEM}_{1}, \mathrm{DEM}_{2}$ No noise	-	-	15	bit
Demodulator delay time	$\mathrm{td}_{\text {bo }}$	RD	$\begin{aligned} & \mathrm{N} \geq 15 \\ & \mathrm{DEM} \mathrm{M}_{1}, \mathrm{DEM}_{2} \text { No noise } \end{aligned}$	1483	1900	2317	$\mu \mathrm{s}$
RD timimg	$\mathrm{td}_{\text {go }}$	RD	-	-1	-	1	$\mu \mathrm{s}$
RCK low width	twir	RCK	$\begin{aligned} & \mathrm{N} \geq 15 \\ & \mathrm{DEM}, \mathrm{DEM}_{2} \text { No noise } \end{aligned}$	338	417	496	$\mu \mathrm{s}$
RCK high width	$\mathrm{tw}_{\text {HR }}$	RCK	$\begin{aligned} & N \geq 15 \\ & D E M_{1}, \mathrm{DEM}_{2} \text { No noise } \end{aligned}$	338	417	496	$\mu \mathrm{s}$
RST low width	${ }_{\text {tw }}^{\text {Lc }}$	RST	-	20	-	-	$\mu \mathrm{s}$
Digital input rise time	t	RST, SEND, SD, $\mathrm{D}_{\text {iN }}$, DCK, DSTB, $\overline{\text { TEST, F/M }}$	-	-	-	100	ns
Digital input fall time	t_{t}	RST, SEND, SD, $\mathrm{D}_{\mathbb{N}}$, DCK, DSTB, $\overline{\text { TEST, }} \mathbf{F / M}$	-	-	-	100	ns

$V_{\text {DO }}=3.0$ to $5.5 \mathrm{~V}, \mathrm{~T}_{A}=-20$ to $70^{\circ} \mathrm{C}$							
Mramaiek	Symorl	Piminma	Conditan	Minimum	typral	Maximam	Uni!
$\mathrm{D}_{\text {IN }}$ setup time	tso	D_{IN}	-	100	-	-	ns
$\mathrm{D}_{\text {in }}$ hold time	th ${ }_{\text {D }}$	$\mathrm{D}_{\text {IN }}$	-	100	-	-	ns
Strobe setup time	$\mathrm{ts}_{\text {T }}$	DSTB	-	100	-	-	ns
DCK low width	tw ${ }_{\text {L }}$	DCK	-	100	-	-	ns
DCK period	twwo	DCK	-	2	-	-	$\mu \mathrm{s}$
Strobe low width	$\mathrm{tw}_{\text {LT }}$	DSTB	-	100	-	-	ns
TEST setup time	tste	TEST	-	100	-	-	ns
TEST hold time	$\mathrm{th}_{\text {TE }}$	TEST	-	100	-	-	ns
F/M setup time	$\mathrm{ts}_{\text {fm }}$	F/M	-	100	-	-	ns
F/ \bar{M} hold time	$\mathrm{th}_{\text {FM }}$	F/M	-	100	-	-	ns
Dout delay time	tdo	Dout	-	0	-	1	$\mu \mathrm{s}$

MB86460A

TIMING CHART

(1) MSK modem timing

Serial interface timing

TRANSMIT RECEIVE CHARACTERISTICS

Figure 1 Transmit frequency characteristics

Figure 2 Receive frequency characteristics

MB86460A

DIMENSIONS

6

MB87002 1200 BPS MSK MODEM

1200 BPS MSK (Minimum Shift Keying) MODEM

The MB87002 is a $1200-$ bps CMOS minimum shift keying (MSK) single-chip modem for multichannel access (MCA) and radio communication application. Its operation at low supply voltages and low power consumption is especially suitable for portable application.

- Data rate: 1200-bps
- Low power consumption (20 mW with 5 V power supply)
- Low supply voltage operation: 3.0 to 5.5 V (5 V typical)
- On-chip crystal oscillator: 3.6864 MHz
- Switched-capacitor filter (SCF)
- Selectable timing regenerator pull-in characteristic (within 15 bits for high-speed, and within 25 bits for low-speed operation)
- Low external component count
- TTL compatible inputs and outputs

absolute maximum ratings (See NOTE)

Pramor	Syindig	AIIHAM\%	Valus			UHII
			Min	\$ y \%	Max	
Power Supply Voltage	VDD	$V_{D D}$	GND - 0.3	-	7	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	All input pins	GND - 0.3	-	$V_{D D}+0.3$	V
Output Voltage	Vout	All output pins	GND - 0.3	-	$V_{D D}+0.3$	V
Output Current	lout	All output pins	-10	-	10	mA
Storage Temperature	TSTG	-	-55	-	125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

(TOP VIEW)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^32]PIN DESCRIPTIONS

Pin No.	Symbol	10.	Functional descriptions
1	R/TC	1	Transmit-receive clock output control. When pulled high, the 1.2 kHz transmit clock is output from the CLOCK pin and DATAOUT becomes low. When pulled low, the 1.2 kHz receive clock is output from the CLOCK pin.
2	CLOCK	0	Transmit-receive clock output pin. When R / TC pin is pulled high, 1.2 kHz transmit clock is output. When R/TC pin is pulled low, the 1.2 kHz receive clock is output.
3	OSC1	1	Pin for external crystal (3.6864 MHz) connection.
4	OSC2	0	Pin for external crystal (3.6864 MHz) connection.
5	DATAOUT	0	Regenerated data output signal.
6	MSKOUT	0	Modulated signal output pin. $\mathrm{V}_{\text {oo }} / 2$ is output when the RESET pin is pulled low.
7	BPFIN	1	Demodulated signal input to the receive band-pass filter (BPF).
8	GND	-	Ground
9	$1 / 2 \mathrm{~V}_{\text {D }}$	0	$\mathrm{V}_{\mathrm{Do}} / 2$ reference voltage output
10	TEST	I	Test function control signal input. In the normal mode, this pin is pulled high or left open. In the test mode, it is pulled low. In the test mode, the BPF \mathbb{N} pin directly accepts Waveform Shaping I and receive LPF input signals, and the DATA IN pin directly accepts Waveform Shaping II input signals. In this mode, the delay detection circuit signal is output from BPFOUT and the receive LPF signal is output from MSKOUT.
11	DPLLC	1	DPLL pull-in time control signal input. When pulled low, high-speed operation is selected. When pulled high, low-speed operation is selected.
12	BPFOUT	0	Receive BPF output pin.
13	RESET	1	Device reset signal input. A low on this pin resets all circuits. Pulled high or left open to enable device operation.
14	SEND	1	Data transmit enable. With the reset high or open, transmit signals are output when this pin is pulled low to high.
15	DATAIN	1	Transmit data input to the receive BPF.
16	$V_{\text {DD }}$	-	Supply voltage pin (+3.0 to +5.5 V).

MB87002 BLOCK DIAGRAM

6

FUNCTIONAL DESCRIPTION

The timing generating section generates the clock signals required by the modulator and demodulator. The basic clock is generated by an internal oscillator and external crystal (3.6864 MHz).
Modulator uses a programmable DAC with a 6 bit resistor string. The MSKOUT output is 1200 Hz for input 1 and 1800 Hz for input 0 synchronized with transmit clock. Before the transmit signal is output, a fixed level of $1 / 2 \mathrm{~V}_{D D}$ is output by pulling the SEND pin low. The demodulator is composed of a band-pass filter (BPF), a delay detection circuit, a low-pass filter (LPF), and a digital phase-locked loop (DPLL). The BPF removes noise components from the $1,200 \mathrm{~Hz}$ and $1,800 \mathrm{~Hz}$ receive signals from the BPFIN pin and consists of a 10th-order Chebyshev switched-capacitor filter (SCF). The delay detection circuit, after conversion of the BPF output from analog to digital in the waveform shaping circuit, regenerates data by delay detection. The noise components in the regenerated data are removed by the LPF. The LPF is a third-order Butterworth filter and removes noise components of 800 Hz or higher. The DPLL extracts the receive clock from the regenerated data. The regenerated data is output from the DATAOUT pin synchronized with the receive clock. The DPLL has a tendency to degrade the bit error rate when the pull-in time is shortened. This IC allows users to choose between two pull-in times. When the DPLLC pin is pulled low, the high-speed mode is selected. When pulled high, the low-speed mode is selected.
The on-chip $1 / 2 V_{D o}$ circuit supplies the reference voltage required by BPF, LPF, and waveform shaping circuits and reduces external circuitry and component count.

NOTE: Devices consisting of mixed analog and digital signal processing circuits are usually difficult to test. The MB87002 incorporates a test circuit which simplifies independent testing of the BPF, delay detection circuit, LPF and DPLL.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Pin name	Value			Unil
			Min	typ	Max	
Power Supply Voltage	$V_{\text {D }}$	$V_{D O}$	3.0	5.0	5.5	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	All input pins	0	-	$V_{\text {Do }}$	V
OSC1 Pin Load Capacitance	Coscı	OSC1	25	-	50	pF
OSC2 Pin Load Capacitance	Cosc2	OSC2	25	-	50	pF
Analog Output Load Resistance	Rмо	MSKOUT	10	-	-	$\mathrm{k} \Omega$
Analog Output Load Capacitance	$\mathrm{C}_{\text {мо }}$	MSKOUT	-	-	30	pF
Operating Temperature	$\mathrm{T}_{\text {A }}$	-	-10	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

DC characteristics ($\mathrm{V}_{\mathrm{DD}}=4.5 \sim 5.5 \mathrm{~V}$)

Parameter	Symbol	Pin name	Condition	Value			Unit
				Min	Typ	Max	
Power Supply Current	loo	$V_{\text {D }}$		-	4	8	mA
Digital Input Low Voltage	V IL	RESET, SEND, DATAIN, DPLLC, R/TC, TEST		0	-	0.8	V
Digital Input High Voltage	$\mathrm{V}_{\text {IH }}$	RESET, SEND, DATAIN, DPLLC, R/TC, TEST		2.2	-	$V_{D 0}$	V
Digital Input Low Current	1.	SEND, DATAIN, DPLLC, R/TC	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$	-10	-	0	$\mu \mathrm{A}$
Digital Input High Current	IH_{H}	RESET, SEND, DATAIN, DPLLC, R/TC, TEST	$V_{\text {IN }}=V_{\text {OD }}$	0	-	10	$\mu \mathrm{A}$
Pull-up Resistance	$\mathrm{R}_{\text {PLU }}$	RESET, TEST		25	50	100	k Ω
Digital Output Low Voltage	V_{0}	DATAOUT, CLOCK	$\mathrm{loL}=2.0 \mathrm{~mA}$	0	-	0.4	V
Digital Output High Voltage	$\mathrm{V}_{\text {OH }}$	DATAOUT, CLOCK	$\mathrm{l}_{\mathrm{OH}}=1.0 \mathrm{~mA}$	2.4	-	$V_{\text {D }}$	V
Oscillator Frequency	$\mathrm{OSC}_{\text {IN }}$	OSC1, OSC2		-	3.6864	-	MHz
Analog Input Resistance 1	$\mathrm{R}_{\text {AIN: }}$	BPFIN	Input pin-1/2 $\mathrm{V}_{\text {Do }}$	50	100	200	$\mathrm{k} \Omega$
Analog Input Voltage 1	$\mathrm{V}_{\text {AIN } 1}$	BPFIN		0.5	-	2.5	$\mathrm{V}_{\mathrm{p}+}$
Analog Output Voltage 1	Aout,	MSKOUT	Operation	0.8	1.0	1.2	V_{p+p}
			Offset voltage in operation	$\begin{gathered} 1 / 2 V_{D D} \\ -0.3 \end{gathered}$	1/2 VDo	$\begin{gathered} 1 / 2 V_{D D} \\ +0.3 \end{gathered}$	V
			RESET = Low	$\begin{gathered} 1 / 2 V_{\text {Do }} \\ -0.3 \end{gathered}$	1/2 V ${ }_{\text {D }}$	$\begin{gathered} 1 / 2 V_{D D} \\ +0.3 \end{gathered}$	V
Receive BPF Absolute Gain	$A B S_{1}$	-	$\begin{aligned} & \text { Input frequency } \\ & 1500 \mathrm{~Hz} \end{aligned}$	-1.0	0	1.0	dB
Receive BPF Frequency Characteristics	F_{1}	-	$\begin{array}{r} 0-300 \mathrm{~Hz} \\ 900-1200 \mathrm{~Hz} \\ 1200-1800 \mathrm{~Hz} \\ 1800-2100 \mathrm{~Hz} \\ 300-5000 \mathrm{~Hz} \\ \text { Reference } \\ \text { frequency } \\ 1500 \mathrm{~Hz} \end{array}$	$\begin{array}{r} - \\ -3.5 \\ -1.0 \\ -3.5 \\ - \end{array}$	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	$\begin{gathered} -40.0 \\ - \\ - \\ -30.0 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Receive LPF Cutoff Frequency	Fo	-	3 dB down	-	800	-	Hz
Receive LPF Absolute Gain	ABS_{2}	-	$0 \mathrm{~Hz}<$ Input frequency $\leq 300 \mathrm{~Hz}$	-	-6.0	-	dB

MB87002

DC characteristics ($\mathrm{V}_{\mathrm{DD}}=3.0 \sim 4.5 \mathrm{~V}$)
$T_{A}=25^{\circ} \mathrm{C}$

Paramoler	Symbor	Pinname	conclition	Valus.			Unl
				Min	Tho	Max.	
Power Supply Current	lod	V_{DD}		-	-	8	mA
Digital Input Low Voltage	VIL	RESET, SEND, DATAIN, DPLLC, R/TC, TEST		0	-	0.6	V
Digital Input High Voltage	$V_{\text {IH }}$	RESET, SEND, DATAIN, DPLLC, R/TC, TEST		2.2	-	$V_{\text {Do }}$	V
Digital Input Low Current	IL	SEND, DATAIN, DPLLC, R/TC	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$	-10	-	0	$\mu \mathrm{A}$
Digital Input High Current	$\mathrm{IIH}^{\text {H}}$	RESET, SEND, DATAIN, DPLLC, R/TC, TEST	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	0	-	10	$\mu \mathrm{A}$
Pull-up Resistance	$\mathrm{R}_{\text {PLU }}$	RESET, TEST		25	50	100	k Ω
Digital Output Low Voltage	Vob	DATAOUT, CLOCK	$\mathrm{loL}=0.5 \mathrm{~mA}$	0	-	0.4	V
Digital Output High Voltage	$\mathrm{V}_{\text {OH }}$	DATAOUT, CLOCK	$\mathrm{l}_{\mathrm{OH}}=0.5 \mathrm{~mA}$	2.4	-	$V_{D D}$	V
Oscillator Frequency	$\mathrm{OSC}_{\text {IN }}$	OSC1, OSC2		-	3.6864	-	MHz
Analog Input Resistance 1	Raln	BPFIN	Input pin-1/2 Vod	50	100	200	$\mathrm{k} \Omega$
Analog Input Voltage 1	$\mathrm{V}_{\text {AIN1 }}$	BPFIN		0.5	-	$V_{D D}-2.0$	$\mathrm{V}_{\mathrm{p}+\mathrm{p}}$
Analog Output Voltage 1	Aоut,	MSKOUT	Operation	$V_{00} \times 0.16$	$V_{\text {Do }} \times 0.2$	$V_{D D} \times 0.24$	V_{pp}
			Offset voltage in operation	$\begin{array}{r} 1 / 2 V_{D D} \\ -0.3 \end{array}$	$1 / 2 \mathrm{~V} D$	$\begin{aligned} & 1 / 2 V_{D D} \\ & +0.3 \end{aligned}$	V
			RESET = Low	$\begin{gathered} 1 / 2 V_{\text {oD }} \\ -0.3 \end{gathered}$	$1 / 2 \mathrm{~V}_{\mathrm{DD}}$	$\begin{aligned} & 1 / 2 V_{\mathrm{DD}} \\ & +0.3 \end{aligned}$	V
Receive BPF Absolute Gain	ABS ${ }_{1}$	-	Input frequency 1500 Hz 1500 Hz	-2.0	0	2.0	dB
Receive BPF Frequency Characteristics	F_{1}	-	$\begin{array}{r} 0-300 \mathrm{~Hz} \\ 900-1200 \mathrm{~Hz} \\ 1200-1800 \mathrm{~Hz} \\ 1800-2100 \mathrm{~Hz} \\ 300-5000 \mathrm{~Hz} \\ \text { Reference } \\ \text { frequency } \\ 1500 \mathrm{~Hz} \end{array}$	$\begin{array}{r} - \\ -3.5 \\ -1.0 \\ -3.5 \\ - \end{array}$	- - -	$\begin{gathered} -30.0 \\ - \\ - \\ -25.0 \end{gathered}$	$\begin{aligned} & d B \\ & d B \\ & d B \\ & d B \\ & d B \end{aligned}$
Receive LPF Cutoff Frequency	F_{0}	-	3 dB down	-	800	-	Hz
Receive LPF Absolute Gain	ABS_{2}	-	$\begin{gathered} 0 \mathrm{~Hz}< \\ \text { Input frequency } \\ \leq 300 \mathrm{~Hz} \end{gathered}$	-	-6.0	-	dB

AC characteristics ($\mathrm{V}_{\mathrm{DD}}=3.0 \sim 5.5 \mathrm{~V}$)

Parameter	Syimbol	Pin name	condition	Value			Unit
				Min.	Typ.	Max.	
Transmit Clock Delay Time 1	$\mathrm{t}_{\text {dich }}$	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	0	150	417	$\mu \mathrm{s}$
Transmit Clock Delay Time 2	$\mathrm{tasch}^{\text {che }}$	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	417	570	834	$\mu \mathrm{s}$
Transmit Clock Delay Time 3	tascl	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " H "	0	150	417	$\mu \mathrm{s}$
Transmit Clock High Width	$\mathrm{t}_{\text {whC }} 1$	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	390	417	444	$\mu \mathrm{s}$
Transmit Clock Low Width	$t_{\text {wLCO }}$	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	390	417	444	$\mu \mathrm{s}$
SEND Setup Time	tssc	SEND	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	1	-	-	$\mu \mathrm{s}$
SEND Hold Time	thsc	SEND	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	1	-	-	$\mu \mathrm{s}$
DATAIN Setup Time	tsoc	DATAIN	$\mathrm{R} / \mathrm{TC}=$ " H "	1	-	-	$\mu \mathrm{s}$
DATAIN Hold Time	thoc	DATAIN	$\mathrm{R} / \mathrm{TC}=$ " H^{\prime}	1	-	-	$\mu \mathrm{s}$
MSKOUT Output Delay Time 1	tacm_{1}	MSKOUT	$\mathrm{R} / \mathrm{TC}=$ " H "	-	-	10	$\mu \mathrm{s}$
MSKOUT Output Delay Time 2	tacm 2	MSKOUT	$\mathrm{R} / \mathrm{TC}=$ " H "	-	-	10	$\mu \mathrm{s}$
BPFIN Invalid Time	$\mathrm{t}_{\text {dRB }}$	BPFIN		0	-	10	ms
Pull-in Bit Number	N	-	$\begin{gathered} \mathrm{R} / \mathrm{TC}=\text { "L", } \\ \text { DPLLC }=\text { " } \mathrm{L} ", \\ \text { BPFIN: No noise } \end{gathered}$	-	-	15	bit
Demodulator Delay Time	$t_{\text {dbo }}$	DATAOUT	$\mathrm{R} / T \mathrm{C}=" \mathrm{~L} "$, DPLLC $=" \mathrm{~L} "$, $\mathrm{N} \geq 15$ BPFIN: No noise	1483	1900	2317	$\mu \mathrm{s}$
DATAOUT Timing	taco	DATAOUT	$\mathrm{R} / \mathrm{TC}=$ " L "	-1	-	1	$\mu \mathrm{s}$
Receive Clock High Width	$\mathrm{t}_{\mathrm{wHC}}$	CLOCK	$\mathrm{R} / \mathrm{TC}=$ " $\mathrm{L} "$, DPLLC $=" \mathrm{~L} "$, $\mathrm{N} \geq 15$ BPFIN: No noise	338	417	496	$\mu \mathrm{s}$
Receive Clock Low Width	twicz	CLOCK	$\begin{gathered} \mathrm{R} / \mathrm{TC}=" \mathrm{~L} ", \\ \mathrm{DPLLC}=" \mathrm{~L} ", \\ \mathrm{~N} \geq 15 \\ \text { BPFIN: No noise } \end{gathered}$	338	417	496	$\mu \mathrm{s}$
RESET Low Width	$\mathrm{t}_{\text {wLR }}$	RESET		20	-	-	$\mu \mathrm{s}$
MSKOUT Output Delay Time 3	$\mathrm{t}_{\text {dRM }}$	MSKOUT		0	-	10	$\mu \mathrm{s}$
Transmit Clock Delay Time 4	$\mathrm{t}_{\text {tic }}$	CLOCK		0	-	2	$\mu \mathrm{s}$
Receive Clock Delay Time 1	taRC	CLOCK		0	-	2	$\mu \mathrm{s}$

BPF FREQUENCY CHARACTERISTICS

TIMING CHART

Modulator timing chart (TEST pin $=$ High or Open)

NOTE:1. SEND pin is pulled high after low-to-high transition of the RESET pin.
2. DATAIN signal is read at the rising edge of the CLOCK.
3. When SEND pin changes from low to high, the CLOCK pin is pulled high once. Then 1.2 kHz clock is output.
4. When R/TC pin is pulled high, DATAOUT pin outputs low.
5. When power is first applied, RESET pin must be set to low to reset all circuits before use.

Demodulator timing chart (TEST pin = High or Open)

NOTE:1. DATAOUT is output synchronized with the rising edge of the CLOCK.
2. When demodulator section is used, SEND pin must be set to high or low. When SEND pin is set to low, MSKOUT is fixed to $1 / 2 V_{\text {Do }}$.
3. When power is first applied, RESET pin must be set to low to reset all circuits before use.

Clock output timing chart

PACKAGE DIMENSIONS

Plastic DIP, 16 pins

(DIP-16P-M03)

Plastic SOP, 16 pins

(FPT-16P-M03)

Section 7

Telephone Integrated Circuits - At a Glance

Page	Device	Description	Package Optlons		
7-3	MB3120	Compandor IC	16-pin	Plastic	FPT
			17-pin	Plastic	ZIP
$7-15$	MB3121	Compandor IC	28 -pin	Plastic	FPT
$7-19$	MB4513	Telephone Amplifier/Tone Ringer	48-pin	Plastic	DIP, FPT
$7-31$	MB4518	Telecommunication Circuit	28-pin	Plastic	DIP, FPT
$7-47$	MB4752A	Subscriber Line Interface IC	28-pad	Ceramic	LCC
$7-57$	MB87007A	Dual Tone Multifrequency Pulse Dialer	18-pin	Plastic	DIP
	MB87008A		24-pin	Plastic	FPT
$7-83$	MB87009	Dual Tone Multifrequency Pulse Dialer	20-pin	Plastic	FPT
$7-111$	MB87017B	Dual Tone Multifrequency Receiver	18-pin	Plastic	DIP
			24-pin	Plastic	FPT
$7-123$	MB87029	Dual Tone Multifrequency Pulse Dialer	22-pin	Plastic	DIP
$7-149$	MB87057		24-pin	Plastic	FPT
				Dual Tone Multifrequency Receiver	18-pin
		Plastic	DIP		

MB3120

COMPANDOR IC

COMPANDOR IC

The Fujitsu MB3120 is a compandor IC to expand dynamic range at transmission/reception systems and to improve the tone quality by means of restricting noise.

Two functions are loaded on one IC, the one is the compressor which has the $2 / 1$ ratio of input/output ratio by logarithm, and the expandor which has the $1 / 2$ ratio of input/output ratio by logarithm.

The MB3120 is encapsulated in a small package. This enables high density mounting.

The MB3120 is well suitable for a mobile radio system like as cellular radio, MCA and handy telephone set.

- Wide power supply voltage range
(3.2V to 10.0 V)
- Low power supply current
- On-chip both compressor and expandor
- Wide dynamic range
- Less external elements
ABSOLUTE MAXIMUM RATINGS (See NOTE)

($T_{A}=25^{\circ} \mathrm{C}$)			
Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	12	V
Mute Control Voltage	$\mathrm{V}_{\text {MUTE }}$	5^{*}	V
Inhibit Control Voltage	$\mathrm{V}_{\text {INH }}$	5^{*}	V
Power Dissipation	P_{D}	560	mW
Operating Temperature	T_{A}	-20 to +75	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

*: This value takes $V_{C C}$ when $V_{C C}$ is less than 5 V .
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- Inhibit function with compression/expantion ratio of one
- Equipped with mute function which cut off the output signal
- 16-pin Flat Package 17-pin Zig-zag In-line Package

7

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid that normal precautions be taken to avoid mum rated voltages to this high impedance circuit.

MB3120 BLOCK DIAGRAM

BLOCK DESCRIPTIONS

$C_{1} \quad: \quad C_{1}$ determines the low cut off frequency of compressor section.
$\mathrm{fc}=\frac{1}{2 \pi \mathrm{R} \cdot \mathrm{C}_{1}}$
R is on chip feed back resistor ($10 k \Omega$ typ.)
$\mathrm{C}_{2}, \mathrm{C}_{8}, \mathrm{C}_{9}$: Input coupling condenser
C_{3}, C_{7} : Smooth capacitor of full wave rectifier. Atack time and recovery time are determined by C_{3} and C_{7}. Time constant T_{C} can be calculated.
$\mathrm{T}_{\mathrm{C}}(\mathrm{ms}) \doteqdot 10 \times \mathrm{C}_{3}(\mu \mathrm{~F})$
$\mathrm{C}_{4}, \mathrm{C}_{10}$: Output coupling condenser
$\mathrm{C}_{5}, \mathrm{C}_{6} \quad$: Coupling condenser for internal feed back of compressor section.
$\mathrm{C}_{11} \quad$: Ripple filter condenser

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage	V_{CC}	3.2		10	V
Operating Temperature	T_{A}	-20		75	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Parameter			$1 \mathrm{~V}_{\mathrm{Cc}}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			
	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power Supply Current	$I_{\text {cc }}$			3.0	4.5	mA

Compressor

Input Resistance	$\mathrm{R}_{\text {INC }}$		14	20		k Ω
Input Reference Level	$V_{\text {oco }}$	$V_{\text {IN }}=-6 \mathrm{dBm}$	-10.5	-9.0	-7.5	dBm
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=-6 \mathrm{dBm}, \\ & \mathrm{~T}_{\mathrm{A}}=-20 \text { to } 75^{\circ} \mathrm{C}^{* 2} \end{aligned}$	-2.5	0	2.5	dB
Output Level*1	$\mathrm{V}_{\text {OC1 }}$	$V_{\text {IN }}=-20 \mathrm{~dB}$	-10.5	-10.0	-9.5	dB
	$\mathrm{V}_{\text {OC2 }}$	$V_{\text {IN }}=-40 \mathrm{~dB}$	-20.7	-20.0	-19.3	dB
	$V_{\text {Oc3 }}$	$V_{\text {IN }}=-60 \mathrm{~dB}$	-31.5	-30.0	-29.0	dB
		$\begin{aligned} & V_{\text {IN }}=-60 \mathrm{~dB}, \\ & T_{A}=-20 \text { to } 75^{\circ} C^{* 2} \end{aligned}$	-4.0	0	3.0	dB
	$\mathrm{V}_{\text {OC4 }}$	$V_{\text {IN }}=-80 \mathrm{~dB}$		-40.0		dB

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	

Expandor

Input Resistance	$\mathrm{R}_{\text {INE }}$		4.7	6.7		$\mathrm{k} \Omega$
Input Reference Level	$\mathrm{V}_{\text {OEO }}$	$\mathrm{V}_{\text {IN }}=-9 \mathrm{dBm}$	-1.5	0	1.5	dBm
		$\begin{aligned} & V_{\text {IN }}=-9 \mathrm{dBm}, \\ & T_{A}=-20 \text { to } 75^{\circ} \mathrm{C}^{* 2} \end{aligned}$	-2.5	0	2.5	dB
Output Level*1	$V_{\text {OE1 }}$	$V_{\text {IN }}=-10 \mathrm{~dB}$	-20.5	-20.0	-19.5	dB
	$\mathrm{V}_{\text {OE2 }}$	$V_{\text {IN }}=-20 \mathrm{~dB}$	-40.7	-40.0	-39.3	dB
	$\mathrm{V}_{\text {OE3 }}$	$V_{\text {IN }}=-30 \mathrm{~dB}$	-61.0	-60.0	-58.5	dB
		$\begin{aligned} & V_{\text {IN }}=-30 \mathrm{~dB}, \\ & T_{A}=-20 \text { to } 75^{\circ} \mathrm{C}^{* 2} \end{aligned}$	-3.0	0	4.5	dB
	$V_{\text {OE4 }}$	$V_{\text {IN }}=-40 \mathrm{~dB}$		-80.0		dB

Compandor

Total Harmonic Distortion	THD	$V_{O}=0 \mathrm{dBm}$		0.5	2.0	$\%$
Output Noise Voltage	V_{ON}	$\mathrm{BW}=100 \mathrm{~Hz}$ to 5 kHz			-80.0	dBm
Voltage Gain	A_{V}	$\mathrm{V}_{1 \mathrm{~N}}=-6 \mathrm{dBm}$	4.5	6.0	7.5	dB
Gain Deviation 1	$\Delta \mathrm{A}_{\mathrm{V} 1}$	$\mathrm{V}_{1 \mathrm{~N}}=-6 \mathrm{dBm}$, $\mathrm{T}_{\mathrm{A}}=-20$ to $75^{\circ} \mathrm{C}^{* 2}$	-3.0	0	3.0	dB
Gain Deviation 2	$\Delta \mathrm{A}_{\mathrm{V} 2}$	$\mathrm{f}=200 \mathrm{~Hz}$ to 5 kHz, $\mathrm{V}_{\mathrm{OI}}=0 \mathrm{dBm}$	-0.5	0	0.5	dB
Voltage Gain at Inhibit	$\mathrm{A}_{\mathrm{VINH}}$	$\mathrm{V}_{1 \mathrm{~N}}=-6 \mathrm{dBm}$, $\mathrm{V}_{\text {ININH }}=0.4 \mathrm{~V}$	4.5	6.0	7.5	dB

Compressor Mute Attenuation*3	$\mathrm{V}_{\text {OCMUTE }}$	$\mathrm{V}_{\text {IN }}=-6 \mathrm{dBm}$, $\mathrm{V}_{\text {INCMUTE }}=2.7 \mathrm{~V}$		-50	dBm	
Expandor Mute Attenuation 3	$\mathrm{~V}_{\text {OEMUTE }}$	$\mathrm{V}_{\text {IN }}=-9 \mathrm{dBm}$, $\mathrm{V}_{\text {INEMUTE }}=2.7 \mathrm{~V}$		-70		dBm
High-level Control Voltage for Mute and Inhibit Pins	$\mathrm{V}_{\text {IH }}$		2.7		V	
Low-level Control Voltage for Mute and Inhibit Pins*3	$\mathrm{V}_{\text {IL }}$				0.4	V

Notes:
${ }^{*} 1$ Measured at input reference level of 0 dB .
*2 Gain deviation with temperature when output level of $25^{\circ} \mathrm{C}$ is specified as 0 dB .
*3 As for Zip-17 pin, both compressor and expandor circuit enter mute function depending on 8 pin input.

TYPICAL CONNECTION EXAMPLE

FPT-16

ZIP-17

[^33]
OUTPUT TRANSITION RESPONSE CHARACTERISTICS

TYPICAL CHARACTERISTICS CURVES

Fig. 1 - INPUT VOLTAGE vs. OUTPUT LEVEL
$\mathrm{f}=1 \mathrm{kHz}$
Mute OFF
INH OFF $\mathrm{Rg}=600 \Omega$ $R_{\mathrm{L}}=10 \mathrm{k} \Omega$ TYP. CONNECTION

Fig. 2 - INPUT VOLTAGE vs. OUTPUT LEVEL (INHIBIT COND.)
$f=1 \mathrm{kHz}$ Mute OFF INH ON
$\mathrm{Rg}=600 \Omega$
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$
TYP. CONNECTION

Fig. 3 - INPUT REFERENCE LEVEL vs. VOLTAGE SUPPLY

Fig. 4 - MAX. OUTPUT LEVEL vs. SUPPLY VOLTAGE (COMPANDOR)

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 5 - FREQUENCY vs. VOLTAGE GAIN
(COMPANDOR)

Fig. 6 - INPUT REFERENCE LEVEL vs. TEMPERATURE

Fig. 7 - OUTPUT LEVEL vs. TOTAL HARMONIC DISTORTION (COMPRESSOR)

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 8 - OUTPUT LEVEL vs. TOTAL HARMONIC DISTORTION (EXPANDOR)

Fig. 10 - OUTPUT LEVEL vs. TOTAL HARMONIC DISTORTION (EXPANDOR INHIBIT COND.)

Fig. 9 - OUTPUT LEVEL vs. TOTAL HARMONIC DISTORTION (COMPANDOR)

Fig. 11 - OUTPUT LEVEL vs. TOTAL HARMONIC DISTORTION (COMPRESSOR INHIBIT COND.)

TYPICAL CHARACTERISTICS CURVES (continued)

Fig. 12 - FREQUENCY vs. TOTAL HARMONIC DISTORTION (COMPANDOR)

Fig. 13 - EXAPNDOR MUTE ATTENUATION

Fig. 14 - COMPRESSOR MUTE ATTENUATION

PACKAGE DIMENSIONS

16-LEAD PLASTIC FLAT PACKAGE

(CASE No.: FPT-16P-M04)

PACKAGE DIMENSIONS (Continued)

7

17-LEAD PLASTIC ZIG-ZAG IN-LINE PACKAGE (CASE No.: ZIP-17P-M01)

(BOTTOM VIEW)

The Fujitsu MB3121 is a highly functional compandor IC with on-chip support circuitry that includes a microphone amplifier, input amplifier, and a splatter filter amplifier. It also features low operating voltage and low power consumption.

The MB3121 is designed to improve the sound quality in transceiver systems by increasing the dynamic range of the voice signal and suppressing noise. This device incorporates a signal compression circuit having an input/output compression ratio of $1 / 2^{*} \log (I / O)$ and an expandor circuit with an input/output expansion ratio of $2^{*} \log (1 / \mathrm{O})$.

The MB3121 is the ideal choice for application in portable/mobile equipment such as car phones and cordless telephones.

- Low voltage operation: 1.8 to 7 V
- Compressor and expandor circuitry
- Adjustable voltage gain (0 to 40 dB)
- Limiter circuit
- Amplifier circuit for use with a splatter filter
- Data input and output pins
- Output signal muting function
- INHIBIT function that sets the compression and expansion ratio to 1:1
- STANDBY mode
- 28-pin plastic SOP

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	V_{cc}	1.8 to 7 (Typical $=3$)	V
Operating Temperature	T_{a}	-20 to +75	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^34]

7

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it darnage due to high static voltages or electric fields. However, it
is advised that normal precautions be taken to avoid application is advised that normal precautions be taken to avoid application
of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Conditions	Value			Unit	
		Min.		Typ.	Max.			
Supply Current			lcc	No Signal Applied	-	3.3	5.0	mA
Supply Current, STANDBY Mode		$\mathrm{I}_{\text {SB }}$	$\mathrm{V}_{\mathrm{SB}}=0 \mathrm{~V}$	-	0.1	10.0	$\mu \mathrm{A}$	
Compressor	Input/Output Reference Level	$\mathrm{V}_{\mathrm{OC} 1}$	$\mathrm{V}_{\text {in }}=100 \mathrm{mV}$ rms	-20.8	-17.8	-14.8	dBm	
	Output Level	$\mathrm{V}_{\mathrm{OC} 11}$	$V_{\text {in }}=-20 \mathrm{~dB}$	-10.5	-10.0	-9.5	dB	
	Output Level	$\mathrm{V}_{0 \mathrm{Cl} 12}$	$V_{\text {in }}=-40 \mathrm{~dB}$	-21.0	-20.0	-19.0	dB	
	Input Limiting Voltage	$\mathrm{V}_{\text {LIM }}$	$\mathrm{V}_{\text {in }}=+14 \mathrm{~dB}$	-	550	-	$m \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$	
	MUTE Attenuation	ATT $_{\text {c }}$	$\begin{gathered} V_{\text {in }}=0 \mathrm{~dB} \\ \mathrm{BW}=200 \mathrm{~Hz} \text { to } 5 \mathrm{kHz} \end{gathered}$	60	80	-	dB	
Expandor	Input/Output Reference Level	$\mathrm{V}_{\mathrm{OC} 1}$	$\mathrm{V}_{\text {in }}=100 \mathrm{mV}$ rms	-20.8	-17.8	-14.8	dBm	
	Output Level	$\mathrm{V}_{0 \times 11}$	$V_{\text {in }}=-20 \mathrm{~dB}$	-41.0	-40.0	-39.0		
	Output Level	$\mathrm{V}_{0 C_{12}}$	$V_{\text {in }}=-40 \mathrm{~dB}$	-65.0	-63.0	-60.0	dB	
	Maximum Output Voltage	$\mathrm{V}_{0 \mathrm{ml}}$	THD $=2 \%$	500	700	-	mV	
	MUTE Attenuation	$\mathrm{ATT}_{\mathrm{c}}$	$\begin{gathered} V_{\text {in }}=0 \mathrm{~dB} \\ \mathrm{BW}=200 \mathrm{~Hz} \text { to } 5 \mathrm{kHz} \end{gathered}$	60	80	-	dB	
Compandor	Output Noise Voltage	Vox	$\begin{gathered} R_{L}=0 \Omega \\ B W=200 \mathrm{~Hz} \text { to } 5 \mathrm{kHz} \end{gathered}$	-	10	-	$\mu \mathrm{V}$	
	Total Harmonic Distortion	THD	$V_{\text {OC1 }}=100 \mathrm{mV}$ tms	-	0.5	1.5	\%	
	Voltage Gain	A_{V}	$\mathrm{V}_{\text {in }}=100 \mathrm{mV}$ rms	-1.5	0.0	1.5	dB	
Amplifiers	Open Circuit Voltage Gain	Avo	-	40	50	-	dB	
	Maximum Output Voltage	A $_{\text {OM2 }}$	THD $=2 \%$	500	700	-	mV	
Filter	Filter Gain	AVF1	$V_{\text {in }}=\underset{f=1 \mathrm{kHz}}{100 \mathrm{mV}} \mathrm{~m}_{\text {rms }} \text { (typ) }$	-0.5	0.0	0.5	dB	
	Filter Gain	AVF2	$f=3 \mathrm{kHz}$	-3.5	-3.0	-2.5	dB	
	Filter Gain	AVF3	$f=30 \mathrm{kHz}$	-65.0	-60.0	-55.0	dB	
STANDBY (SB) Pin Control Voltage		$\mathrm{V}_{\text {SBH }}$	Normal	1.0	-	$\mathrm{V}_{C C}$	V	
		$V_{\text {SBL }}$	In STANDBY	0.0	-	0.3	V	
MUTE Pin Control Voltage		$\mathrm{V}_{\text {muted }}$	Muted	0.8	-	V_{cc}	V	
		$\mathrm{V}_{\text {MUTEL }}$	Normal	0.0	-	0.2	V	
INHIBIT (INH) Pin Control Voltage		$\mathrm{V}_{\text {INHH }}$	Normal	0.8	-	$\mathrm{V}_{C C}$	V	
		$\mathrm{V}_{\text {INHL }}$	Compression/Expansion Inhibited	0.0	-	0.2	V	

28-Lead Plastic Flat Package

 (Case No.:FPT-28P-M01)

MB4513

TELEPHONE IC

TELEPHONE IC

(SPEECH NETWORK, TONE RINGER, FILTER)
The Fujitsu MB4513 has an on-chip speech network circuit, filter circuit, and toneringer circuit. The MB4513 is intended to be used with dialer IC's (MB87003/4, MB87007A/8A, MB87029) to produce a telephone which can be connected to a rotary dial line or push button line.

- On-chip speech network circuit, filter circuit and tone ringer circuit
- Uses a ceramic piezoelectronic transmitter and receiver
- Reception amplifier adopts BTL (Balanced Transformer Less) circuit
- Three selections of tone by the external switches
- Connectable to pulse or DTMF lines

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Parameter		Symbol	Value	Unit
Speech	Supply Voltage	V_{L}	20	V
	Supply Current	I_{L}	150	mA
	Supply Voltage	V_{TR}	20	V
	Supply current	I TR	7	mA
Operating Ambient Temperature	T_{A}	-30 to 60	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to 125	${ }^{\circ} \mathrm{C}$	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

(FPT-48P-M02)

BLOCK DIAGRAM

Note : The pin numbers correspond to QFP package.

DC CHARACTERISTICS
($\mathrm{T} A=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition		Values			Unit
			$I_{L}(\mathrm{~mA})$	Min	Typ	Max	
$V_{\text {L }}$ Voltage	V_{L}	MUTE: OFF	20	1.9	2.7	3.9	V
			90	5.0	6.2	7.5	V
$V_{\text {L }}$ Voltage	V_{L}	MUTE: ON	20	2.2	3.2	4.4	V
			90	5.3	6.5	8.0	V
Supply Voitage	VCc	During Speech	20	1.4	1.7	2.0	V

AC CHARACTERISTICS

($\mathrm{T} A=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition			Values			Unit
			$I_{L}(\mathrm{~mA})$	$\begin{aligned} & \text { Freq } \\ & \text { (kHz) } \end{aligned}$	Min	Typ	Max	
AC Impedance	$\mathbf{Z}_{\text {TEL }}$		30	1.0	400	600	800	Ω
			90	1.0				
Transmit Voltage Gain	GTV	$V_{\mathbb{N}}=-50 \mathrm{dBm}$	30	1.0	42	45	48	dB
Transmit Dynamic Range	$V_{\text {TD }}$	DIS > -20 dB	30	1.0	-2	2.5		dBV
			90	1.0	0	8		
Reception Voltage Gain	GRV	$V_{\mathbb{N}}=-50 \mathrm{dBm}$	30	1.0	38	43	46	dB
Reception Dynamic Range	VRD	DIS > -20 dB	30	1.0	-3	4		dBV
			90	1.0	-1.0	7		
Reception Pad Loss	LRP	$\begin{gathered} V_{I N}=-50 \mathrm{dBm} \\ L_{R P}=G_{R V}(30 \mathrm{~mA}) \\ -G_{R V}(90 \mathrm{~mA}) \end{gathered}$	30	1.0	3	6	9	dB
			90	1.0				
Speaker Gain	Gsv	$\mathrm{V}_{\mathrm{IN}}=-70 \mathrm{dBm}$	30	1.0	61	67	73	dB
Speaker Dynamic Range	$V_{\text {SD }}$	DIS > -20 dB	30	1.0	3	8		dBV

AC CHARACTERISTICS (Cont'd)

Parameter	Symbol	Condition				Values			Unit	
				$I_{L}(\mathrm{~mA})$	Freq (kHz)	Min	Typ	Max		
Filter Input Output Characteristics	LF1	$\mathrm{V}_{\mathbb{N}}=-40 \mathrm{dBm}$		30	0.5	17	20	23	dB	
	LF2			1.0	17	20	23			
	LF3			3.0		12	20			
	LF4			6.0		-7	5			
	LF5			12.0		-21	-9			
Tone Ringer Start Current	1 TR	Load $=47 \mathrm{nF}$					1.0	1.7	30	mA
Tone Ringer Output Voltage	$V_{\text {TR }}$	$\begin{aligned} & \text { Load }=47 \mathrm{nF} \\ & \mathrm{I} T R=5 \mathrm{~mA} \end{aligned}$					19	21		dBV
Tone Ringer Tone **		$\begin{gathered} \text { Load }= \\ 47 \mathrm{nF} \\ \text { ITR }= \\ 5 \mathrm{~mA} \end{gathered}$	HAU		TS1	TS2	Tone			
	F1		Open		Open	Open	$(1024,819) 8 \mathrm{~Hz}$ warble frequency			
	F2			Close	Open	$(1024,819) 16 \mathrm{~Hz}$ warble frequency				
	F3			Open	Close	$(1024,1365) 8 \mathrm{~Hz}$ warble frequency				
	F4			Close	Close	1024				
	F5		Close			$(1024,1365) 8 \mathrm{~Hz}$ warble frequency				

Note : * LF Vout - VIN
: ** Provides a tone signal that shifts between warble frequency at 8 Hz or 16 Hz .

MEASUREMENT CIRCUIT

APPLICATION CIRCUIT

TYPICAL CHARACTERISTICS CURVES

AC IMPEDANCE VS. FREQUENCY

TYPICAL CHARACTERISTICS CURVES

FILTER RESPONSE

DYNAMIC RANGE VS. SUPPLY CURRENT

TONE RINGER OUTPUT VOLTAGE VS. TONE RINGER INPUT CURRENT

PACKAGE DIMENSIONS

48-LEAD PLASTIC DUAL IN-LINE PACKAGE (Case No. : DIP-48P-M0I)

(C) 1988 FUJITSU LIMITED D48002S-3C

```
48-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-48P-M02)
```


(C) 1988 FUJITSU LIMITED D48003S-3C inches (millimeters)

PACKAGE DIMENSIONS

7

MB4518

TELECOMMUNICATION CIRCUIT

The MB4518 provides many of the major speech circuit functions of the telephone handset. Additional features include a level expander circuit to minimize ambient acoustic noise interference and an on-chip amplifier with speaker-drive capability. Combined with general-purpose dialer and tone-ringer ICs, the MB4518 provides all of the basic handset functions.
The MB4518 easily interfaces with microprocessors designed for telephone handset control to provide microprocessor-controlled speaker level, transmitter muting, and side-tone level adjustments. The sidetone level adjustment circuit detects loop current levels and switches between two balance networks for proper sidetone level.

- On-chip power amplifier drives an 8Ω speaker
- Transmit level expander
- Simple receive level boost
- Balanced transmitter input for improved noise rejection
- Drives low-impedance receiver (dynamic receiver)
- Switchable balance network for optimum side-tone level
- Loop-current monitoring automatic gain control (automatic pad function)
- Low loop current drain ($\mathrm{l} \div 5 \mathrm{~mA}$)
- Superior branching properties
- Gain and frequency characteristics adjustable by external resistor and capacitor.
- Simple telephone microcomputer interface
- Available in 28 -pin shrink dip and flat packages

ABSOLUTE MAXIMUM RATINGS (See NOTE)

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$

fating	Symbol	Value	Unil
Supply voltage	V_{L}	18	V
Supply current	L	120	mA
Operating temperature range	Top	-30 to +60	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$

PLASTIC PACKAGE (DIP-28P-M03)

PLASTIC PACKAGE (FPT-28P-M01)

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^35]
PIN ASSIGNMENT

(TOP VIEW)

PIN FUNCTIONS

Pin $\mathrm{Na}_{\text {a }}$	Symbolz	10.	Deschiplion.
1	GND	-	Chip ground. Connected to the $(-)$ side of an external diode bridge connected to the subscriber loop.
2	$V_{c c}$	-	Power supply pin. Supplies power to the chip circuits. Coupled from the loop (AC-grounded) by an external capacitor.
3	RPI	1	Receive preamplifier input. Connected to the receive input through an external coupling capacitor.
4	RPO	0	Receive preamplifier output. The receive preamplifier gain and frequency compensation are externally adjusted with a resistor and capacitor connected between this pin and the RPI pin.
5	VREF	-	Reference voltage pin. Connected to the internal reference voltage and AC-grounded through an external capacitor.
6	PADC	-	Pad insertion control. Start-up current for the pad insertion control is adjusted by connecting an external resistor to this pin.
7	RGU	1	Simple receive gain control. Grounding this pin increases the receive preamplifier gain by about 6 dB . Normally left open.
8	RBO	0	Receive buffer output. Connected to the RI and SPI pins through external coupling capacitors.
9	SPSW	I	Speaker defeat switch. When this pin is open, the speaker is connected; when grounded, the speaker is disconnected.
10	RI	1	Receive main amplifier input. The receive signal is coupled to this pin from the RBO pin by an external capacitor.
11	RO	0	Receive main amplifier output. Connected to a low-impedance receiver by an external coupling capacitor. Some receivers may require a shunt capacitor to prevent oscillation.
12	SPREF	-	Speaker circuit reference voltage pin. Reference voltage pin for the speaker and receive output circuit. AC-grounded through an external capacitor.
13	VSP	-	Speaker amplifier power supply pin. The speaker amplifier receives power from this pin. The speaker power supply can be coupled at this point by an external capacitors.
14	SPO	0	Speaker output. Connected to an 8Ω speaker through an external capacitor. Some applications may require a speaker shunt capacitor to prevent oscillation.

MB4518

Ri. No.	Symbol	110	Description.
15	SPGND	-	Speaker amplifier ground. This pin must be connected to the circuit network ground.
16	SPI	I	Speaker amplifier input. Connected to the RBO pin through an external capacitor and resistor for adjustment of speaker amplifier gain and frequency compensation.
17	SPH	-	Speaker circuit power control. The speaker power supply circuit is connected to the speaker amplifier input (VSP) through an external network which can be adjusted to control chip power consumption.
18	VL	I	Line input. Connected to the (+) side of an external diode bridge connected to the subscriber loop.
19	TOE	0	Transmit main amplifier output. Connected to the emitter of the transmit transistor.
20	MFIN	I	DTMF signal input. Connected to the base of the transmit output transistor. The input impedance is about $24 \mathrm{k} \Omega$. During voice transmission this pin must be open.
$\begin{aligned} & 21, \\ & 22 \end{aligned}$	BN1, BN2	-	Balance network pins. Used for connection of external balance networks. BN1: Short loop, BN2: Long loop
23	BNC	-	Balance network switching control. An external resistor is connected between this pin and V_{cc} or ground to adjust the BN1 and BN2 switching current.
24	EXR	-	Level expander reference voltage pin. Reference voltage pin for the control of the level expander. Connecting an external capacitor holds the positive peak voltage level.
25	EXC	-	Level expander control. Control pin for the level expander. Connecting an external capacitor holds the negative peak voltage level. When grounded, this pin disables the expander function.
26	MUTE	-	Muting. Grounding this pin suppresses output to the loop. During communication this pin must be left open.
$\begin{aligned} & 27, \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{T} 11, \\ & \mathrm{~T} 12 \end{aligned}$	I	Transmit preamplifier input. Connected to the transmitter through external coupling capacitors. The input is balanced. TI 1 is the noninverting input and $\mathrm{T} \mid 2$ is the inverting input.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITIONS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			
	Symbol	valus	リआ\%
Supply voltage	V_{L}	12	V
Supply current	IL	20 to 120	mA

ELECTRICAL CHARACTERISTICS

D ${ }^{\text {an man }}$	S.m tot				Valus		Unll
	4\#\#\#	(乡=纳kty	U(1)	M1/.	y yk.		
Handset DC voltage	V_{Lt}	-	20	2.9	3.2	3.5	V
	V_{12}		90	6.0	6.5	7.0	V
Supply voitage	V cc	-	20	1.3	1.6	1.9	v
Handset AC impedance	$Z_{\text {telu }}$	-	30	500	600	700	Ω
	$\mathrm{Z}_{\text {tel2 }}$		90	500	600	700	Ω
Transmit circuit gain	$\mathrm{G}_{\text {TV1 }}$	$V_{\text {w }}=-50 \mathrm{dBV}$	30	38.0	41.0	44.0	dB
	$\mathrm{G}_{\mathrm{TV} 2}$	$V_{W}=-50 \mathrm{dBV}$	90	36.5	39.5	42.5	dB
	$\Delta \mathrm{G}_{\mathrm{rv}}$	$\begin{gathered} \Delta G_{T V}=G_{T V}\left(V_{\mathbb{W}}=-50 \mathrm{dBV}\right) \\ -\mathrm{G}_{\mathrm{TV}}\left(\mathrm{~V}_{\mathrm{IN}}=-65 \mathrm{dBV}\right) \end{gathered}$	30	4.0	7.0	10.0	dB
Transmit circuit dynamic range	$\mathrm{D}_{\text {T1 }}$	Distortion attenuation: $\geq 20 \mathrm{~dB}$	30	-0.5	2.5	-	dBV
	$\mathrm{D}_{\text {T2 }}$		90	4.5	7.5	-	dBV
Transmit circuit residual noise	NT *	-	-	-	-	-56	dBV
Receive circuit gain	Grvi	$V_{W}=-30 \mathrm{dBV}$	30	-8.0	-5.0	-2.0	dB
	$\mathrm{G}_{\mathrm{RV} 2}$	$V_{W}=-30 \mathrm{dBV}$	90	-13.0	-10.0	-7.0	dB
Receive circuit gain increase	$\mathrm{G}_{\text {Rup }}$	$V_{W}=-30 \mathrm{dBV}$	30	4.0	6.0	8.0	dB
Receive circuit dynamic range	D ${ }_{\text {1 }}$	Distortion attenuation: $\geq 20 \mathrm{~dB}$	30	-15.0	-12.0	-	dBV
	D F		90	-10.5	-7.5	-	dBV
Speaker circuit gain	Gsv1	$V_{W}=-30 \mathrm{dBV}$	30	4.0	7.0	10.0	dB
	Gsv2	$V_{\text {W }}=-30 \mathrm{dBV}$	90	0.0	3.0	6.0	dB
Speaker circuit dynamic range	$\mathrm{D}_{\text {st }}$	Distortion attenuation: $\geq 20 \mathrm{~dB}$	30	-22.0	-19.0	-	dBV
	$\mathrm{D}_{\text {s2 }}$		90	-11.5	-8.5	-	dBV
Balance network switching	$\mathrm{l}_{\text {fn }}$	Far \rightarrow near	-	43.0	55.0	70.0	mA
	INF	Near \rightarrow far	-	32.5	42.5	52.5	mA
	I_{H}	Hysteresis width	-	9.0	12.5	27.5	mA

*: Design guaranteed

TEST CIRCUITS

- DC characteristics test circuit

1 L : Current source (AC impedance $\geq 60 \mathrm{k} \Omega, 1 \mathrm{kHz}, 30 \mathrm{~mA}$)
(V) : DC voltmeter

- Balance network switching I_{kN} : When IL increases from 30 mA to 70 mA IL (mA) for which VBN2 increases from 1.5 V to 3.5 V or more
I_{NF} : When IL decreases from 70 mA to 30 mA IL (mA) for which VBN1 decreases from 3.5 V to 1.5 V or less

Note: The tolerance of the load impedance for each pin shall be $\pm 1 \%$. (All test circuits)

- Transmission characteristics test circuit

\bigodot : Oscillator (Output impedance and DC resistance $\leq 4 \Omega$ at 1 kHz)
IL : Current source (AC impedance $\geq 60 \mathrm{k} \Omega, 1 \mathrm{kHz}, 30 \mathrm{~mA}$)
(V) : AC voltmeter

Transmit circuit gain: $\mathrm{G}_{\mathrm{Tv}}(\mathrm{dB})=20 \log \mathrm{~V} 3 / \mathrm{V} 1$ (oscillator 1)
$\mathrm{G}_{\text {mev }}(\mathrm{dB})=20 \log \mathrm{~V} 3 / \mathrm{V} 2$ (oscillator 2)

- Dynamic range : The distortion attenuation with the output signal level fixed is at least 20 dB .
- Residual noise : Measure the transmit output signal level with no transmit input signal.
- Receive characteristics test circuit

Abstracted from the electrical characteristics circuit
\approx : Oscillator (Output impedance and DC resistance $\leq 4 \Omega, f=1 \mathrm{kHz}$)
IL : Current source (AC impedance $\geq 60 \mathrm{k} \Omega, 1 \mathrm{kHz}, 30 \mathrm{~mA}$)
(V) : AC voltmeter

Receive circuit gain: $\quad G_{\text {gv }}(d B)=20 \log$ V4N3

- Gain boost : Measure the V3 AC signal level boost when SW1 is closed.
- Dynamic range : The distortion attenuation with the output signal level fixed is at least 20 dB .
- Speaker characteristics test circuit

Abstracted from the electrical characteristics circuit
\approx : Oscillator (Output impedance and DC resistance $\leq 4 \Omega, f=1 \mathrm{kHz}$)
IL : Current source (AC impedance $\geq 60 \mathrm{k} \Omega, 1 \mathrm{kHz}, 30 \mathrm{~mA}$)
(V) : AC voltmeter

Speaker system gain: $\mathrm{G}_{\text {sv }}(\mathrm{dB})=20$ Log V5N3 (SW2 open)

- Dynamic range : The distortion attenuation with the output signal level fixed is at least 20 dB .
- Test circuit components

Feterence Designation	componats	Yatios	Femarks
R1	Resistor	$82 \Omega \mathrm{~F}, 1 / 8 \mathrm{~W}$ or more	
R2	Resistor	820Ω F, 1/16 W or more	
R3	Resistor	2.4 k 2 F, 1/16 W or more	
R4	Resistor	$8.2 \mathrm{k} \Omega \mathrm{F}, \mathrm{1/16} \mathrm{~W} \mathrm{or} \mathrm{more}$	
R5	Resistor	$1.5 \mathrm{k} \Omega \mathrm{F}, 1 / 16 \mathrm{~W}$ or more	
R6	Resistor	$6.2 \mathrm{k} \Omega \mathrm{F}, 1 / 16 \mathrm{~W}$ or more	
R7	Resistor	5.6 k Ω F, 1/16 W or more	
R8	Resistor	680Ω F, 1/16 W or more	
R9	Resistor	$5.6 \mathrm{k} \Omega \mathrm{F}, 1 / 16 \mathrm{~W}$ or more	
R10	Resistor	$27 \mathrm{k} \Omega \mathrm{F}, 1 / 16 \mathrm{~W}$ or more	
R11	Resistor	$10 \Omega \mathrm{~F}, 1 / 8 \mathrm{~W}$ or more	
R12	Resistor	$8 \Omega \mathrm{~F}, 1 / 8 \mathrm{~W}$ or more	Speaker
R13	Resistor	$150 \Omega \mathrm{~F}, 1 / 16 \mathrm{~W}$ or more	Receiver
R14	Resistor	$20 \mathrm{k} \Omega$ or more $\mathrm{F}, 1 / 16 \mathrm{~W}$ or more	
C1	Capacitor	$0.027 \mu \mathrm{~F}, 16 \mathrm{~V}$ or more, $\pm 1 \%$	
C2	Capacitor	$0.015 \mu \mathrm{~F}, 16 \mathrm{~V}$ or more, $\pm 1 \%$	
C3	Capacitor	$220 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 5 \%$	
C4	Capacitor	$100 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C5	Capacitor	2.2 FF, 3 V or more, $\pm 1 \%$	
C6	Capacitor	2000 PF, 3 V or more, $\pm 1 \%$	
C7	Capacitor	$2.2 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 5 \%$	
C8	Capacitor	$2.2 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 5 \%$	
C9	Capacitor	$2.2 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 5 \%$	
C10	Capacitor	$1000 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 5 \%$	
C11	Capacitor	$220 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C12	Capacitor	$2.2 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C13	Capacitor	$100 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C14	Capacitor	$100 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C15	Capacitor	$0.47 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 5 \%$	
C16	Capacitor	$2.2 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 1 \%$	
C17	Capacitor	$2.2 \mu \mathrm{~F}, 3 \mathrm{~V}$ or more, $\pm 1 \%$	
C18	Capacitor	$2.2 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 1 \%$	
C19	Capacitor	$2.2 \mu \mathrm{~F}, 5 \mathrm{~V}$ or more, $\pm 1 \%$	

TYPICAL CHARACTERISTIC CURVES

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

MB4752A

Subscriber Line Interface IC

The Fujitsu MB4752A is designed for PBX (Private Branch Exchange), and has battery feed, supervision, and 4-wire-to-2-wire conversion functions.

The battery feed mode can be set to a 200×2 or 440×2 constant feed resistor by using the terminal connection.

The subscriber line interface circuit is used for digital PBX and CO. This device can be used worldwide to achieve high longitudinal balance with 4W-to-2W gain and characteristics by adjusting the external resistor.

- $440 \Omega \times 2 / 200 \Omega \times 2$ feeding resistance
- Loop detection function
- Line fault protection
- Hybrid function (4-wire to 2 -wire conversion function)
- Ring trip comparator

Balancing impedance is selected by external parts

- Digital output terminal has open-collector output with a pull up resistor
- 28-pad LCC package: (Suffix:-TV)

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	Note
Power Supply Voltage	V_{BB}	-60 to +0.5	V	Referenced to GND
	$V_{\text {cc }}$	-0.5 to +7	V	Referenced to E
	$V_{\text {EE }}$	-7 to +0.5	V	
	$V_{E G}$	-7.5 to +0.5	V	Referenced to GND
Input Voltage	$V_{\text {A }}$	$\mathrm{V}_{\mathrm{BB}}-0.5$ to +0.5	V	Referenced to GND
	V_{B}	$\mathrm{V}_{\text {BB }}-0.5$ to +0.5	V	
	RTPA	$\mathrm{V}_{B B}-0.5$ to $\mathrm{V}_{8 B}+30$	V	
	RTPB	-30 to +0.5	V	
	$\mathrm{V}_{4} \mathrm{w}$	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Referenced to E
Storage Temperature	Tste	-55 to +150	${ }^{\circ} \mathrm{C}$	

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against darmage due to high static voltages or electric fields. However, it darnage due to high static voltages or electric fields. However, it
is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high of any voitage hig
impedance circuit.

[^36]Figure 1. MB4752A Block Diagram

7

PIN DESCRIPTION

Pin No.	Symbol	Description
1	NC	No Connection
2	CA	High-impedance capacitor pin. A capacitor is connected between this terminal and CB terminal. AC impedance of Battey Feed circuit is made up to high impedance by this external capacitor.
3	A	440Ω battery feed for line A
4	A^{1}	200Ω battery feed for line A
5	NB	Base drive output for the NPN power transistor
6	NE	Emitter current sensing input for the NPN power transistor
7	$V_{B B}$	Most negative voltage supply, -48 V
8	RTPA	Ring-trip input for line A
9	NC	No Connection
10	ZT	4 W to 2 W transformation impedance
11	V_{0}	4 W to 2 W gain setting resistor input
12	R_{f}	4 W to 2 W gain setting resistor input
13	V_{EE}	Negative voltage supply, -5 V
14	4W	4-wire input
15	E	Ground
16	NC	No Connection
17	SCNA	SCN detecting output for line A
18	SCNB	SCN detecting output for line B
19	V_{cc}	Positive voltage supply, +5V
20	NC	No Connection
21	RTPB	Ring trip input for line B
22	Z	Compensation capacitor input
23	G	Ground
24	PE	Emitter current sensing input for the PNP power transistor
25	PB	Base drive output for the PNP power transistor
26	B^{1}	200Ω battery feed for line B
27	B	440Ω battery feed for line B
28	CB	High-impedance capacitor pin. A capacitor is connected between this terminal and CB terminal. AC impedance of Battery Feed circuit is made up to high impedance by this external capacitor.

FUNCTIONAL DESCRIPTION

Battery Feed

By selecting connection A, B or $\mathrm{A}^{1}, \mathrm{~B}^{1}$, balanced feeding resistance of 440Ω for PBX or 200Ω for CO application is selected.

Loop Detection

The digital signal output indicates the handset condition as off the hook, both the SCNA and SCNB terminals simultaneously, by detecting the current that is generated when the handset is off the hook.

Line Fault Protection

Line fault protection outputs the signals when line A or B is short circuited to SCNA and SCNB, respectively.
When excess current flows, arrester provides system protection, and DC feeding resistance becomes six times as large as the normal value. As a result, current decreases.

Hybrid (Four-to-two wire conversion)

As for the communication channel, the telephone switching system has a four-wire line internally, and the telephone set system has a two-wire line. This device also has a built-in four-wire to two-wire converter. The two-wire to four-wire converter contains external common industrial operational amplifier.

Ring Trip Comparator

It is necessary for the electrical telephone switching system to detect that the receiver is on the hook during a calling signal.
Ring trip detection is performed by connecting external low pass filter to the input RTPA or RTPB terminal. The output signal is superimposed on the trip supervise SCA when the handset is on the hook.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Condition	Unit	Note
Power Supply Voltage		V_{BB}	-48 ± 5	V	Referenced to GND
		$V_{C C}$	5.0 ± 0.25	V	Referenced to E
		V_{EE}	-5.0 ± 0.25	V	
		V_{EG}	-0.5 to +0.5	V	Referenced to GND
2 W	440Ω Feeding Loop Resistor	R_{L}	0 to 1200	Ω	Line resistor + terminal resistor
	200Ω Feeding Loop Resistor	R_{L}	0 to 1900	Ω	
	Low Frequency Inductive Current	$\mathrm{I}_{\text {AC }}$	0 to 6.4	mArms	Single line current $f=50 / 60 \mathrm{~Hz}$
4 W	Input Offset Voltage	$\mathrm{V}_{\text {RCS }}$	-0.2 to 0.2	V	
	Input Voltage	$\mathrm{S}_{4 \mathrm{~W}}$	7.0	dBm	
Operating Temperature		Top	5 to 70	${ }^{\circ} \mathrm{C}$	

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted.)

Parameter		Symbol	Condition		Min.	Typ.	Max.	Unit
Power Supply Current	On-Hook	$\mathrm{IBB1}$	$\begin{aligned} & V_{B}=0 \mathrm{~V} \\ & V_{A}=V_{B B} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}=-53 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}}=-5.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EG}}=0 \mathrm{~V} \end{gathered}$	-6.4	-3.8	-	mA
		lcCl_{1}			-	2.5	6.6	mA
		IEEE^{1}			-2.2	-1.1	-	mA
440Ω Feeding Mode	Off-Hook$R_{L}=0 \Omega$	I_{882}	$\begin{gathered} V_{B}=-26.5 \mathrm{~V} \\ V_{A}=V_{B B} \\ +26.5 \mathrm{~V} \end{gathered}$		-13	-8	-	mA
		lcCe^{2}			-	2.5	6.4	mA
		$l_{\text {EE2 }}$			-2.2	-1.2	-	mA
Power Supply Current	On-Hook	$\mathrm{I}_{\text {BB3 }}$	$\begin{aligned} V_{B} & =0 V \\ V_{A} & =V_{B B} \end{aligned}$		-7.5	-4	-	mA
		$\mathrm{l}_{\text {cc3 }}$			-	2.5	6.6	mA
		IEE			-2.2	-1.1	-	mA
200Ω Feeding Mode	Off-Hook$\mathrm{R}_{\mathrm{L}}=0 \Omega$	$\mathrm{l}_{\text {BB4 }}$	$\begin{gathered} \mathrm{V}_{\mathrm{B}}=-26.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{BB}} \\ +26.5 \mathrm{~V} \end{gathered}$		-15.6	-9.5	-	mA
		ICCC_{4}			-	2.5	6.4	mA
		$\mathrm{I}_{\text {EE } 4}$			-2.2	-1.2	-	mA

DC CHARACTERISTICS (Continued)

(Recommended operating condition unless otherwise noted.)

Parameter		Symbol	Condition		Min.	Typ.	Max.	Unit
Power Supply Current 440Ω Feeding Mode		$\mathrm{I}_{\mathrm{A} 1}$	$\begin{gathered} V_{B}=-24 \mathrm{~V} \\ V_{A}=V_{B B}+24 \mathrm{~V} \\ V_{B}=-10 \mathrm{~V} \\ V_{A}=V_{B B}+10 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} \mathrm{V}_{\mathrm{BB}} & =-48 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EG}} & =0 \mathrm{~V} \end{aligned}$	47.5	54	65	mA
		$\mathrm{I}_{\mathrm{B} 1}$			-65	-54	-47.5	mA
		$\mathrm{l}_{\mathrm{A} 2}$			16.8	21	26.5	mA
		$\mathrm{I}_{\mathrm{B} 2}$			-26.5	-21	-16.8	mA
Loop Supply Current 200Ω Feeding Mode		$\mathrm{I}_{\text {A }}$	$\begin{gathered} V_{B}=-24 \mathrm{~V} \\ V_{A}=V_{B B}+24 \mathrm{~V} \end{gathered}$		72.5	83	91.4	mA
		I_{83}			-91.4	-83	-72.5	mA
		$\mathrm{I}_{\text {A }}$	$\begin{gathered} V_{B}=-10 \mathrm{~V} \\ V_{A}=V_{B B}+10 \mathrm{~V} \end{gathered}$		35.7	45	58	mA
		$\mathrm{I}_{\text {B4 }}$			-58	-45	-35.7	mA
Line-Fault Drooping Current 440Ω Feeding Mode		$\mathrm{l}_{\mathrm{PG} 1}$	$\mathrm{V}_{\mathrm{A}}=\mathrm{GND}$	$\begin{gathered} V_{\mathrm{BB}}=-53 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EG}}=0 \mathrm{~V} \end{gathered}$	-	22	28	mA
		$\mathrm{I}_{\mathrm{PS} 1}$	$V_{B}=V_{B B}$		-28	-22	-	mA
Line-Fault Drooping Current 200Ω Feeding Mode		lpG^{2}	$V_{A}=$ GND		-	29	36	mA
		$\mathrm{I}_{\text {PB2 }}$	$V_{B}=V_{B B}$		-36	-29	-	mA
Loop Detection Current	Detection	loni	$V_{B B}=-43 \mathrm{~V}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}} & =-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EG}} & =0 \mathrm{~V} \end{aligned}$	11.1	12.4	14.2	mA
	Release	loff1			10.4	11.5	13.4	mA
	Detection	Ion2	$\mathrm{V}_{\mathrm{BB}}=-53 \mathrm{~V}$		14.4	16.0	18.1	mA
	Release	loff2			13.4	14.8	16.6	mA
Ring Trip Detection Volt.	RTPA	$\mathrm{V}_{\text {RD1 }}$	On-hook	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}=-48 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EG}}=0 \mathrm{~V} \end{gathered}$	-44	-43.3	-42.5	V
	RTPB	$\mathrm{V}_{\mathrm{RD} 2}$	On-hook		-5	-4.4	-4	V
Line-Fault Detection Volt. 200Ω Feeding Mode	Line A to GND	$\mathrm{V}_{\mathrm{GD} 1}$	$\mathrm{V}_{\mathrm{B}}=$ Open		24	26.5	30	V
	Line B to V_{BB}		$\mathrm{V}_{\mathrm{A}}=$ Open		24	26.5	30	V
Line-Fault Detection Volt. 440Ω Feeding Mode	Line A to GND	$\mathrm{V}_{\mathrm{GD} 2}$	$\mathrm{V}_{\mathrm{B}}=$ Open		11	15.5	21	V
	Line B to $V_{B B}$		$\mathrm{V}_{\mathrm{A}}=$ Open		11	15.5	21	V
Line-Fault SCN Mask Current	SCNA	1 ma	$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\text {BB }}$		3.3	4.4	5.9	mA
	SCNB	$\mathrm{I}_{\text {mb }}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$		-5.9	-4.4	-3.3	mA
SCN Output Low Voltage	SCNA	VoLA	$\begin{gathered} \mathrm{I}=1.2 \mathrm{~mA} \\ \mathrm{~V} \mathrm{Cc}=5.25 \mathrm{~V} \\ \text { On-hook } \end{gathered}$	$\begin{aligned} & V_{B B}=-48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V} \end{aligned}$	-	0.02	0.4	V
	SCNB	$V_{\text {OLB }}$			-	0.02	0.4	V
SCN Output High Voltage	SCNA	$\mathrm{V}_{\mathrm{OHA}}$	$\begin{gathered} \mathrm{I}=-50 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}=}=-4.75 \mathrm{~V} \\ \text { Off-hook } \end{gathered}$		2.4	3.8	-	V
	SCNB	$V_{\text {OHB }}$		$\begin{aligned} & V_{E G}=0 V \\ & \text { Ref. to } \mathrm{E} \end{aligned}$	2.4	3.8	-	V

Note: Unless RTPA terminal is in use, it must be connected to $V_{B B}$.

AC CHARACTERISTICS

(Recommended operating condition unless otherwise noted.)

Parameter		Symbol	Con	Ion	Min.	Typ.	Max.	Unit	
4 W to 2 W Gain		G_{42}	$\mathrm{L}=+4 \mathrm{dBm}, \mathrm{f}=1 \mathrm{kHz}$		-5.4	-4.4	-3.4	dB	
4 W to 2 W Gain Frequency Response		G_{142}	$f=0.2 \mathrm{kHz}$	Referenced to output at$\begin{gathered} \mathrm{f}=1 \mathrm{kHz} \\ \mathrm{~L}=-10 \mathrm{dBr} \end{gathered}$	-0.1	+0.07	-	dB	
		$f=0.3 \mathrm{kHz}$	-0.1		+0.04	+0.2	dB		
		$\mathrm{f}=0.4 \mathrm{kHz}$	-0.1		+0.02	+0.2	dB		
		$\mathrm{f}=0.6 \mathrm{kHz}$	-0.1		0	+0.2	dB		
		$f=2.4 \mathrm{kHz}$	-0.1		-0.01	+0.2	dB		
		$f=3.0 \mathrm{kHz}$	-0.1		-0.01	+0.2	dB		
		$f=3.4 \mathrm{kHz}$	-0.1		-0.01	+0.2	dB		
4 W to 2 W Gain Level Linearity			$\mathrm{G}_{\text {L42 }}$	$\mathrm{L}=+3 \mathrm{dBr}$	Referenced to output at$\begin{gathered} \mathrm{L}=-10 \mathrm{dBr} \\ \mathrm{f}=1 \mathrm{kHz} \end{gathered}$	-0.1	0	+0.1	dB
		$\mathrm{L}=-40 \mathrm{dBr}$		-0.1		0	+0.1	dB	
		$\mathrm{L}=-50 \mathrm{dBr}$		-0.2		0	+0.2	dB	
Idle Channel Noise			N_{12}			-	-94	-76	dB
4 W to 2 W Signal/Noise Ratio			SN_{42}	$\mathrm{L}=0 \mathrm{dBr}$	$\mathrm{f}=1 \mathrm{kHz}$	50	57	-	dB
		$\mathrm{L}=-30 \mathrm{dBr}$		46		61	-	dB	
		$\mathrm{L}=-40 \mathrm{dBr}$		36		52	-	dB	
		$\mathrm{L}=-45 \mathrm{dBr}$		31		47	-	dB	
Longitudinal Balance			$L_{\text {B2W }}$	$\mathrm{f}=0.3 \mathrm{kHz}$	AdjustREA48 to 53Ω	43	60	-	dB
		$f=1.0 \mathrm{kHz}$		43		60	-	dB	
		$f=3.4 \mathrm{kHz}$		43		60	-	dB	
Power Supply Noise Rejection	$\mathrm{V}_{\text {BB }}$ to 2 W		$\mathrm{P}_{\text {SRB }}$	$\begin{gathered} L=0.24 \mathrm{Vrms} \\ f=1 \mathrm{kHz} \end{gathered}$		20	39	-	dB
	$\mathrm{V}_{\text {cc }}$ to 2 W		$\mathrm{P}_{\text {SAC }}$			20	41	-	dB
	$\mathrm{V}_{\text {EE }}$ to 2 W	$\mathrm{P}_{\text {SRE }}$	20			55	-	dB	
	$V_{E G}$ to 2 W	$\mathrm{P}_{\text {SRR }}$	20			43	-	dB	

Note: Unless RTPA terminal is in use, it must be connected to $V_{B B}$.

SCN Logical Table

Input Condition			SCNA	SCNB	Note
Loop Detection	Loop Detection (Off-hook to On-hook)	$L_{L}<l_{\text {ON }}$	L	L	l_{L} : Loop Current l_{ON} I $\mathrm{I}_{\mathrm{ON},}$, lon2 $I_{\text {OFF: }}$ loff1, loff2 See DC Characteristics
		$\mathrm{l}_{\mathrm{L}}>\mathrm{l}_{\text {ON }}$	H	H	
	Loop Release (On-hook to Off-hook)	$\mathrm{L}_{\mathrm{L}}<\mathrm{l}_{\text {OFF }}$	H	H	
		$L_{L}>l_{\text {OFF }}$	L	L	
Ring Trip Detection	RTPA input	$\mathrm{V}_{\text {RTPA }} \mathrm{V}_{\text {RD1 }}$	L	L	$V_{\text {RTPA: }}$ RTPA Input Volt. $V_{\text {RTPB: }}$ RTPB Input Volt. $V_{\text {RD1 }}$: See DC Char. $\mathrm{V}_{\mathrm{RD} 2}$:
		$V_{\text {RTPA }}>\mathrm{V}_{\text {RD1 }}$	H	L	
	RTPB input	$\mathrm{V}_{\mathrm{RTPB}}<\mathrm{V}_{\mathrm{RD} 2}$	L	L	
		$\mathrm{V}_{\mathrm{RTPB}}>\mathrm{V}_{\mathrm{RD} 2}$	H	L	
Line-Fault Detection	Line A to Ground	$\mathrm{IA}+\mathrm{IB}<\mathrm{ION}$ *2	L	L	IA: Line A Current IB: Line B Current IMA: See DC Char. IMB: See DC Char.
		$\begin{aligned} & \mathrm{IA}+\mathrm{IB}>\mathrm{ION} \text { * } 2 \text { and } \\ & \mathrm{IB}<\mathrm{IMB} \end{aligned}$	H	L	
		$\begin{aligned} & I A+I B>I O N * 2 \text { and } \\ & I B>I M B \end{aligned}$	H	H	
	Line B to Ground	$1 A+I B<I O N * 2$	L	L	
		$\begin{aligned} & I A+I B>I O N * 2 \text { and } \\ & I A<I M A \end{aligned}$	L	H	
		$\begin{aligned} & I A+I B>I O N * 2 \text { and } \\ & I A>I M A \end{aligned}$	H	H	

Note: Unless RTPA terminal is in use, it must be connected to V_{BB}.
Line Fault Protection

2 W State		Feed Mode	Note
Line to Ground $N_{B B}$	$\mid \mathrm{VB}+\left(\mathrm{VA}-\mathrm{V}_{\mathrm{BB}} \mid<\mathrm{VGD}\right.$	Normal Feeding (No Protection)	VA: Line A Voltage VB: Line B Voltage
	$\mid \mathrm{VB}+\left(\mathrm{VA}-\mathrm{V}_{\mathrm{BB}} \mid>\right.$ VGD	Feeding Resistor (6 times that of normal value)	VGD, VGD1, VGD2: See DC Char.

Figure 2. Power Supply Mode (440Ω)

Figure 3. Power Supply Mode (200 Ω)

MB87007A/MB87008A DTMF Pulse Dialer

The Fujitsu MB87007A/MB87008A is a Dual Tone Multifrequency (DTMF) pulse dialer for pushbutton telephone sets. It uses the Si-Gate CMOS process and is suitable for both DTMF and PULSE modes. The MB87007AMB87008A can be switched from a PULSE mode to a DTMF mode by a mode selection entry or by an input from the keyboard. It has a 26-digit redial memory that permits the coexistence of PULSE and DTMF modes and enables mixed redialing in both PULSE and DTMF modes by a signal key entry.

- Pulse 10 pps, 20 pps, or DTMF operation that is selected by the mode switch pin (MODEIN)
- On-chip 26 digits of redial memory (up to 25 digits can be written into the memory)
- MB87007A has a make ratio of 39% and MB87008A has a make ratio of 33%
- LDT function is provided (switching from PULSE mode to DTMF mode by key entry)
- Beep tone for input confirmation can be output (for all effective key entry independently PULSE/DTMF modes)
- Mixed redialing of both PULSE and DTMF modes is possible
- Redial inhibit function is included for redial memory overflow
- PAUSE function is provided and pause accumulation is possible
- FLASH function is provided (ONHOOK mode is selected by keyboard input)
- Crystal or ceramic oscillator (3.579545 MHz) can be used
- Pause release function is provided (two or more consecutive pauses can be released)
- Operating voltages: PULSE mode: 2.0 V to 6.0 V DTMF mode: 2.5 V to 6.0 V ($\mathrm{TA}=-30$ to $60^{\circ} \mathrm{C}$)

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Pin Name	Value	Unit
Power Supply Voltage	V_{DD}	V_{DD}	GND -0.3 to 7.0	V
Input Voltage	VI	All inputs	GND -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Ouput Voltage	VO	All outputs	GND -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$		-55 to +150	${ }^{\circ} \mathrm{C}$

[^37]Figure 1. MB87007A/MB87008A Block Dlagram

PIN DESCRIPTIONS

I/O	Pin No.		Symbol	Description		
	DIP	FPT				
Power Supply	1	1	$V_{D D}$	Power supply voltages: Pulse mode 2.0 V to 6.0 V DTMF mode 2.5 V to 6.0 V Memory Retention mode 2.0 V min.		
	10	12	GND	Ground		
Input	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 17 \\ 16 \\ 15 \\ 14 \end{array}$	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 23 \\ 22 \\ 21 \\ 20 \end{array}$	$\begin{aligned} & \text { COL才 } \\ & \text { COL2 } \\ & \text { COL3 } \\ & \text { COL4 } \\ & \text { ROW1 } \\ & \text { ROW2 } \\ & \text { ROW3 } \\ & \text { ROW4 } \end{aligned}$	Uses key entries from 2 of 7 or 2 of 8 keyboard with common GND. This IC is available with a single contact from A type key board and electronic input (Low entry). Key input debouncing time is 23 ms typ. for both PULSE and DTMF modes. Key input release guard time is 23 ms typ. for both PULSE and DTMF modes. Key entry is accepted in PULSE/DTMF mode only when a single key (one key on the keyboard) is pressed longer than the debouncing time. If two or more keys are pressed, they are not accepted unless they are released one-by-one and the last key is held closed longer than the debouncing time, after all other keys are released. Key entry is accepted in DTMF mode only when either a single key (dual-tone key) is pressed, or two or more keys in the same COL or ROW (single-tone keys) are pressed longer than the debouncing time. If even one key is pressed in COL4, the single-tone keys are ineffective. When multiple single-tone keys are pressed, if they are released one-by-one, and the last key is held closed longer than the debouncing time (after all other keys are released), the key is effective as the dual-tone key. Hereafter, key entries are described with the premise that keys are held closed longer than the debouncing time. Pauses between key entries in PULSE and DTMF modes must be 50 ms or more. However, up to 50 ms is necessary from key entry to output start for a single-tone output. Key switch contact resistance up to $5 \mathrm{k} \Omega$ is allowable.		
	6	8	MODEIN	This pin selects the pulse $10 \mathrm{pps}, 20 \mathrm{pps}$ and DTMF mode.		
				Mode		Setting
				PULSE mode	10 pps	Open (1 M Ω or more)
					20 pps	V_{DD}
				DTMF mode		GND
				When mode switching is requested by MODEIN during PULSE or TONE transmission, the request will not be accepted. The request is accepted by key entry after data entry transmission is completed. In ONHOOK mode, MODEIN is set to a high impedance state.		

PIN DESCRIPTIONS

	Pin No.		Symbol	Description	
vo	DIP	FPT			
Input	12	15	HKS	Hook switch input pin.	
				ONHOOK Mode	Open or $V_{\text {DD }}$
				OFFHOOK Mode	GND
				Output is inhibited in ONHOOK mode and PULSEOUT, DTMF/BEEPOUT, MUTE, and MODEOUT are set at a high impedance state. All key entries are set to HZ and the on-chip operational amplifier and oscillator ($\mathrm{OSCIN}=\mathrm{L}, \mathrm{OSCOUT}=\mathrm{L}$) become power down states. This pin is pulled up by a high resistance internally. The input level is in the CMOS level.	
	8	10	OSCIN	Oscillator input pin. This pin is pulled up by a high resistance in ONHOOK mode.	
Output	9	11	OSCOUT	Oscillator output pin. This pin is pulled down by a high resistance in ONHOOK mode.	
	7	9	MODEOUT	The output level is in the CMOS level and set to a high impedance state in ONHOOK mode. Low level is output in the PULSE mode and high level is output in the DTMF mode, including the LDT function. MODEOUT blinks on and off at a frequency of 2.5 Hz typ., if there is no pause before and after mode switching in redial function. Independent of PULSE/DTMF modes, the beep tone is output at the BEEPOUT when the FLASH key is pressed. The MODEOUT pin is output low level during the beep tone output. High impedance of 0.6 second typ. is output following the beep tone output. The key acceptance state (OFFHOOK mode) is now entered.	
	11	13	MUTE	N-channel open drain output. The following are MUTE pin HZ conditions during PULSE/DTMF modes. 1. There is no key entry. 2. When the FLASH key is pressed, HZ of 0.6 typ. second is output after the beep tone is output. 3. During pause output state. (However, when a key is pressed, MUTE is low level while beep tone is being output.) 4. During MODEOUT blinking. After key entries become effective in the PULSE or DTMF modes, the output level is low during the beep tone transmission, pulse transmission in accordance with effective key entries, and DTMF output transmission.	
	13	16	PULSEOUT	N -channel open drain output. High impedance (HZ) is set in ONHOOK or DTMF modes. In PULSE mode, this pin is set low for pulse brakes, according to numerical key entries. When the FLASH key is pressed in either the PULSE or DTMF mode, a low level is output for 600 milliseconds typ. after the beep tone is sent (even during a PULSE/DTMF send). The key acceptance state (OFFHOOK state) then returns. The make ratio for PULSE output is 39\% for MB87007A and 33\% for MB87008A.	

PIN DESCRIPTIONS

10	Pin No.		Symbol	Description
	DIP	FPT		
	18	24	DTMF/ BEEPOUT	The DTMF/BEEPOUT pin is a bipolar emitter follower that can drive a 100Ω load between pin and GND. In the DTMF mode (exclude COL4) when a single key (numeric, * or \#) is pressed, a dual tone is output. Pressing two or more keys in the same ROW or COL on the keyboard outputs the signal tone in the ROW or COL. However, if a key in COL4 is pressed, DUAL TONE or single tone in the ROW or COL is not output (see Electrical Characteristics). If the FLASH key is pressed during DTMF sending, the beep tone is output at BEEPOUT and subsequent DTMF tones are not output. The ONHOOK mode is entered for 600 milliseconds typ. after which, MODEIN and key entries are placed in the acceptance state (OFFHOOK mode). Beep tone (key entry confirmation tone) is output in PULSE mode. The 41 ms typ. beep tone (1 kHz square wave) is output when the following keys are pressed. 1. Numerical key entry. 2. First LDT key entry (subsequent LDT key entries are ineffective). 3. Pause key entries: ${ }^{*}$ or \mathbb{P} key. (However, if the first key after OFFHOOK is the PAUSE key, the key entry is ineffective or not accepted.) 4. Redial key entries: \#or RED** key. (They are effective only when the redial key is the first key after OFFHOOK.) 5. PAUSE release key entries: \mathbb{D}^{\star}, or RED key. (They are accepted only during redialing and effective only when MODEOUT is blinking or at a pause time during redialing.) 6. FLASH key entry: © key. (For FLASH key entry, the beep tone is output in PULSE and DTMF modes.) When two or more keys are pressed simultaneously, that is, double or multiple key entries, the key entries are ineffective and the beep tone is not output. If DTMF mode tone request is received during a beep tone transmission, the beep tone is terminated even though the duration is 41 ms or shorter and DTMF tone is output. DUAL TONE output time conditions are as follows: 1. 80 ms typ. for redial output. 2. 80 ms typ. when the key entry time is within 130 ms typ. and more than the debouncing time. 3. DUAL TONE output is stopped at once if akey is pressed over 130 ms typ. and released. 4. Signal tone is output from the end of debouncing time until the key is released. 5. When a beep or DTMF tone is not being output, this pin is placed in a high impedance state.

FUNCTIONAL DESCRIPTIONS
 Ordinal Dialing

In the OFFHOOK mode, PULSE/DTMF signals are output according to the key input, regardless of number of key input figures. For the PULSE mode, any number of digital entries withkeys 0 to 9 . For the DTMF mode, any number of digital entries with keys 0 to $9, *$ and
\#.
Upto 26 digits can be stored in the redial memory. In the PULSE mode, a redial digit is counted for any numeric, pause, and LDT entry. In the DTMF mode, a redial digit is counted for any numeric, ${ }^{*}$. \# , and $(P$ entry.

In both the PULSE and DTMF modes, one digit is counted as mode information when MODEIN is used for mode switching. After OFFHOOK, the first numeric entry is counted as mode digit. In the PULSE mode the numeric key is counted as a mode digit. In the DTMF mode, a numeric key, ${ }^{*}$, and \#\# entry is counted as a mode digit. In either the OFFHOOK or PULSE modes, the mode-information digit is written into the redial memory.

Redialing Function

The redial memory is read out to execute the redialing operation when a redial key is the first key pressed in OFFHOOK state. In the PULSE mode, the redial keys are \# and \#. In the DTMF mode, only the RED key is accepted for redial.

When 27 or more digits are written into the redial memory, PULSE or DTMF signals that correspond to the key entries are output, but the redialing operation is ineffective because of memory overilow. At this time, even if the first key pressed after the state change from ONHOOK to OFFHOOK is the redial key, the entry is not accepted and the beep tone is not output in either mode of operation.

After OFFHOOK, if a numeric or LDTkey is the first entry in PULSE mode, or the first entry in the DTMF mode is a nurneric, *, \# or a single-tone key entry (excluding COL4), the redial memory is cleared and data is written into memory according to key entry information.

Mixed Redialing

Mixed redialing is executed when the mode is changed from the PULSE to DTMF mode (done by pressing the LDT key), or when MODE is changed during key entries.

If, at redialing, there is a pause before or after mode switching (including LDT), PULSE/DTMF is sent and PULSE/DTMF signals are transmitted after the pause. To redial when there is no pause before or after mode switching (including LDT), all operations must cease after mode switching and a HALT state is enabled. MODEOUT blinks (indicates that mode switching has no automatic pause) and prompts a pause release.

The pause release keys in PULSE mode are \square^{*} RED , and the key. Inthe DTMF mode, the RED and the keys are used for pause release. PULSE and DTMF signals can now be sent by key entry. The FLASH key, is the only other acceptable entry.

During redial output, the \mp key is the only key entry accepted. The pause release key is only accepted when MODEOUT is blinking or during a pause at redialing.

Mode Switching

During PULSE or TONE transmissions, mode switching by MODEIN is not permitted; after transmission is complete, MODEIN can be used for mode switching.

When PULSE or DTMF modes are switched by MODEIN, one digit is stored into redial memory as mode information. After OFFHOOK, if the first key entry is numeric in the PULSE mode, or a numeric \approx or $\#$ in the DTMF mode, the mode-information digit is written into redial memory.

In the PULSE mode, after the LDT key is accepted only one time, the DTMF mode is selected (regardless of MODEIN pin switching). The LDT key is not accepted in the DTMF mode. The MODEIN pin switching enables the desired mode of operation to be selected.

Line Dial Tone (LDT) Function

If the LDT key is pressed in the PULSE mode, the DTMF mode is selected and DTMF tones can be output. In PULSE mode, only the first LDT key is accepted after key acceptance state (OFFHOOK mode) is entered. Once the LDT key is accepted, the following LDT key entries are ignored.

When the LDT key is used to enter the DTMF mode, all keys (excluding COL4 keys) provide dual-tone and single-tone outputs. (Note: If even one COL4 key is pressed, neither dual nor single tones are output.) The mode after that is not switched. If mode switching by LDT from memory is done during redialing, key entries after redialing are executed in DTMF mode regardless of the MODEIN state and the data is written into the redial memory. However, for effective keys (not the redial key) after ONHOOK changes to OFFHOOK, memory is reset and written in the current mode.

Pause Function

A pause state can be entered by pause key entry.
In the PULSE mode, a pause is introduced by pressing the \# or P keys; in the DTMF mode (including LDT) only the $(P$ key is effective. If a pause key is the first key pressed after changing from ONHOOK to OFFHOOK, the entry is not accepted. One pause key entry introduces a pause state that is typically 4 seconds; contiguous pause (NX 4 seconds) can be executed by making consecutive key entries. The pause can be reduced by entering P or RED during a redialing pause time.

In the PULSE mode, the ${ }^{\star}$ key is used as a pause release key. Multiple pauses can be sent up to 500 times faster by entering a pause release key, that is, N X 4 seconds becomes NX 800 milliseconds.

Flash Function

Keyboard entries enable ONHOOK mode. Only the F key is used as a FLASH key in both PULSE and DTMF modes (including LDT). When the F key is pressed, the ONHOOK mode is entered for 600 milliseconds (typical), after beeptone is sent. During this time, the key entry pin is not accepted. MODEIN, MUTE, MODEOUT, and DTMF/BEEPOUT pins are placed in the high-impedance state and the PULSEOUT pin is set low level. After 600 milliseconds (typical), the return of OFFHOOK is automatic and key entries can again be accepted.

Test (High-speed Mode)

A test mode circuit is built into the IC. In the ONHOOK state, pins OSCIN and OSCOUT are pulled down by a high resistance. To activate the test mode, tie the OSCIN high and apply clock signal to OSCOUT. The internal circuit operates up to 128 times faster than normal operation.

Figure 1. Keyboard Configuration

Figure 2. Reference Circuit

Key input capacitance (2 to 5, 14 to 17 pins) : 500 pF .
When electronic input is used, there is no need for connecting a capacitance with key input pins.

KEY OPERATION DIAGRAM

Redial key for PULSE mode	RED (P) = RED or \#
Redial key for DTMF mode	RED (D) $=$ RED
Pause key for PULSE mode	$P(P)=P$ or $\#$
Pause key for DTMF mode	$P(D)=P$
Pause release key of PULSE mode	: P PR (P) = RED, P, or *
Pause release key of DTMF mode	: PR (D) = RED or P
Pause output	$P=\text { Pause }$

KEY ENTRIES IN PULSE MODE

When MODEIN is set to 10 pps

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) (2)	1-2		
ON					
OFF	OPEN	RED (P)	1-2		
			3		
ON					
OFF	OPEN	RED (P)	1-2-3		
ON					
OFF	$V_{\text {DD }}$	RED (P)	1-2-3		
ON					
OFF	GND	RED (D)	1-2-3		
		(4)			4

KEY ENTRIES IN PULSE MODE

When MODEIN is set to 20 pps

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output			
			10pps	20pps				
ON								
OFF	$V_{D D}$	(1) 2		1-2				
ON								
OFF	$V_{D D}$	RED (P)		1-2				
				3				
ON								
ON								
OFF	GND	RED (D)		1-2-3				
		(4)			4			

KEY ENTRIES IN DTMF MODE

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output			
			10pps	20pps				
ON								
OFF	GND	(1) 2			1-2			
ON								
OFF	GND	RED (D)			1-2			
		(3)			3			
ON								
ON								
OFF	GND	RED (P)			1-2-3			
		(4)		4				

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is a pause before LDT

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) $21 \mathrm{P}^{(P)}$	1-2-P		3
ON		LDT 3			
OFF	GND	RED (P)	1-2-P		3
					4
ON					
OFF ON	$V_{D D}$	RED (P)	$1-2-P$		3-4
OFF	GND	RED (D)	1-2-P		3-4

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is a pause after LDT

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) LDT	1-2		(P) -3
ON		P (D) 3			
OFF	GND	RED (P)	1-2		$\text { (P) }-3$
ON					
OFF	$V_{D D}$	RED (P)	1-2		(P) $-3-4$
ON					
OFF	GND	RED (D)	1-2		(P) -3-4

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is no pause before and after LDT

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) 2	1-2		
		LDT 3			3
ON					
OFF	OPEN	RED (P)	$\begin{gathered} \text { 1-2-MODEOUT } \\ \text { blinks } \end{gathered}$		
		PR (D)			3
		(4)			4
ON					
OFF	$V_{D D}$	$\begin{aligned} & \text { RED (P) } \\ & \text { PR (D) } \end{aligned}$	$\underset{\substack{\text { blinks }}}{\text { 1-2-MODEOUT }}$		3-4
ON					
OFF	GND	$\begin{aligned} & \text { RED (D) } \\ & \text { PR (D) } \end{aligned}$	$\begin{gathered} \text { 1-2-MODEOUT } \\ \text { blinks } \end{gathered}$		3-4

KEY ENTRIES WHEN PULSE/DTMF MODE IS SWITCHED (MIXED REDIAL)

When there is a pause before mode switching

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) (2) P (P)	1-2-P		
	$V_{D D}$	(3) 4 P $P(P)$		3-4-(P)	
	GND	5 5 P $\mathrm{P}^{(D)}$			5-*-(
	OPEN	667	6-7		
ON					
OFF	OPEN	RED (P)	$\begin{gathered} 1-2-\mathbb{P} \\ 6-7 \end{gathered}$	3-4-(P)	5-*-(P)
ON					
OFF	V_{DD}	RED (P)	$\begin{gathered} 1-2-® \\ 6-7 \end{gathered}$	3-4-P	5-*-P
ON					
OFF	GND	RED (D)	$\begin{gathered} 1-2-\mathbb{P} \\ 6-7 \end{gathered}$	3-4-P	5-*-P

KEY ENTRIES WHEN PULSE/DTMF MODE IS SWITCHED (MIXED REDIAL)
When there is a pause after mode switching

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) 2	1-2		
	$V_{D D}$	P (P) 3 4		(P) 3 -4	
	GND	P (D) 5 *			(P)-5-*
	OPEN	P (P) 67	(P) $-6-7$		
ON					
OFF	OPEN	RED (P)	$1-2$	(P) -3-4	(P)-5-*
ON					
OFF	$V_{D D}$	RED (P)	$1-2$	(P) $-3-4$	(P)-5-*
ON					
OFF	GND	RED (D)		(P) -3-4	(P)-5-*
			$\text { (P) }-6-7$	(P) ${ }^{-3}$	(P)

KEY ENTRIES WHEN PULSE/DTMF MODE IS SWITCHED (MIXED REDIAL)

When there is no pause before and after mode switching

H0OK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1)2	1-2		
	$V_{\text {DD }}$	(3)4		3-4	
	GND	(5)			5-*
	OPEN	667	6-7		
ON OFF					
	OPEN	RED (P)	1-2-MODEOUT		
		PR (P)		3-4-MODEOUT	
		PR (D)		blinks	5-*-MODEOUT
		PR (P)	6-7		blinks
$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$					
	$V_{D D}$	RED (P)	1-2-MODEOUT		
		PR (P)	blinks		
		PR (D)		blinks	
		PR (P)	6-7		blinks
$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$					
	GND	RED (D)	1-2-MODEOUT		
		PR (P)	blinks	3-4-MODEOUT	
		PR (D)		blinks	5-*-MODEOUT
		PR (P)	6-7		blinks

REDIAL MEMORY INHIBIT FUNCTION

HOOK	MODEIN	Koy Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1)(1) ... 1 (1)	$\underbrace{1-1 \ldots \ldots .1-1}$		
ON		$\underbrace{}_{25}$	25		
OFF	OPEN	RED (P)	1-1.....1-1		
ON			25		
OFF	OPEN	(1)(1) ... (1)(1)	$\underbrace{1-1 \cdots \cdots 1-1}$		
ON		$\underbrace{}_{26}$	$\underbrace{}_{26}$		
OFF	OPEN	RED (P)	No output		
		(2)	2		
ON					
OFF	OPEN	RED (P)	2		
ON					
OFF	$V_{D D}$	RED (P)	2		
ON					
OFF	GND	RED (D)	2		
					3
ON					
OFF	OPEN	LDT (1)			$\underbrace{1-1 \cdots \cdots \cdot 1-1}$
		(1)			25
ON		25			
OFF	OPEN	RED (P)			$\underbrace{1-1 \cdots \cdots \cdot 1-1}$
ON					25
OFF	OPEN	(1) LDT (1)	1-1		
		$\underbrace{1010}$			$\underbrace{1-1 \cdots \cdots \cdots 1-1}$
ON		23			23
OFF	OPEN	RED (P)	No output		No output

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Pin Name	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Voltage	$V_{\text {DD }}$	$V_{D D}$	PULSE mode and retention mode		2.0		6.0	V
			DTMF mode		2.5		6.0	V
Input Voltage	V_{1}	All Inputs			0		$V_{\text {DD }}$	V
Output Load Resistance	R_{0}	DTMF/ BEEPOUT	Between output pin and GND	DTMF mode	0.1		20	k Ω
				PULSE mode	0.1	10	100	k Ω
Operating Temperature	T_{A}				-30		60	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V_{D D}:$ PULSE mode $=2.0$ to $6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}:$ DTMF mode $=2.5$ to $6.0 \mathrm{~V}, \mathrm{TA}=\mathbf{- 3 0}$ to $60^{\circ} \mathrm{C}$

Parameter	Symbol	Pin Name	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	ldD	$V_{D D}$	All output pins are open in DTMF mode			2.5	5.0	mA
	I_{DP}		All output pins are open in PULSE mode			1.0	2.0	mA
	IDSt		All output pins, HKS pin open in Standby			1.5	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD} 1}$		$\begin{aligned} & V_{D D}= \\ & 2.5 \mathrm{~V} \\ & \\ & \mathrm{TA}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	All output pins open in DTMF		1.0	2.0	mA
	$\mathrm{I}_{\mathrm{DD} 2}$			All output pins open in PULSE		0.3	0.6	mA
	TDST1			All output pins HKS open in Standby		0.2	1.0	$\mu \mathrm{A}$
Digital Input Voltage 1	$\mathrm{V}_{\mathrm{th} 1}$	COLT to COL4 ROWT to ROW4			0.8 V D		$V_{D D}$	V
	VIL1				0		$\frac{1}{5} V_{D D}$	V
Digital Input Voltage 2	V_{1+2}	HKS, MODEIN			0.8 V D		$V_{D D}$	V
	V_{112}				0		$\frac{1}{5} V_{D D}$	V
Digital Input Current 1	l_{H}	COLT to COL4 ROWT TO ROW4		$V_{1}=V_{D D}$	-0.01		$\frac{1}{5} V_{D D}$	mA
	I_{111}			$\mathrm{V}_{1}=\mathrm{GND}$	-0.01 V_{DD}		0.01	mA
Digital Input Leakage Current 1	$l_{1 Z 1}$			$\begin{aligned} & \text { entry } \mathrm{HZ} \\ & \mathrm{D} \leq \mathrm{VI} \leq \mathrm{V}_{\mathrm{DD}} \end{aligned}$	-10		10	$\mu \mathrm{A}$
Digital Input Current 2	$\mathrm{I}_{\mathrm{H} 2}$	MODEIN	$V I=V_{D D}$		-0.01		$\frac{1}{75} V_{\text {DD }}$	mA
	IL2		$\mathrm{VI}=\mathrm{GND}$		$\begin{gathered} -1 / 75 \\ V_{D D} \end{gathered}$		0.01	mA
Digital Input Leakage current 2	lı2		MODEIN HZ$\mathrm{GND} \leq \mathrm{VI} \leq \mathrm{V}_{\mathrm{DD}}$		-10		10	$\mu \mathrm{A}$
Digital Input Current 3	$\mathrm{I}_{\mathbf{H} 3}$	HKS	$\mathrm{VI}=$		-10		10	$\mu \mathrm{A}$
Pull-up Resistor	$\mathrm{R}_{\text {PLU }}$				100	200	400	$\mathrm{k} \Omega$

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
Digital Output Voltage	V_{OH}	MODEOUT	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-0.5$		$V_{\text {D }}$	V
	$V_{\text {OL }}$	$\begin{gathered} \text { MODEOUT, } \\ \text { PULSEOUT, } \\ \text { MUTE } \end{gathered}$	$\mathrm{I}_{\mathrm{L}} \mathrm{L}=0.5 \mathrm{~mA}$	0		0.5	V
BEEP TONE High Output Voltage	$\mathrm{V}_{\text {втон }}$	DTMF/BEEPOUT	PULSE mode 100Ω is placed between output pin and GND	$V_{D D}-1.0$		V_{DD}	V
Digital Output Off Leakage Current	lot	$\begin{aligned} & \text { MUTE } \\ & \text { PULSEOUT, } \\ & \text { MODEOUT' } \end{aligned}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
External Resistance when digital input is open	$\mathrm{R}_{\text {DIO }}$	ROW1 TO ROW4 COLT to COL4 HKS, MODEIN	Resistance connected to external circuit when input is open. The other end of the resistance must be between OV and $V_{D D}$.	1			M Ω
Pull-down Resistance	$\mathrm{R}_{\text {PL }}$	OSCIN,	ONHOOK mode	75	150	300	k Ω
Oscillator Frequency	$\mathrm{O}_{\text {scin }}$				3.579545		MHz
DTMF Output Voltage 100Ω placed between output pin and GND.	Aout	DTMFOUT	No signal is output		0		V
			Offset voltage when signals are output		$\begin{gathered} 0.63 V_{D D} \\ -0.75 \end{gathered}$		V
			DTMF TONE output voltage		1.44		Vp-p
			ROW single tone output voltage		0.64		Vp-p
			COLUMN single tone output voltage		0.80		Vp-p
			COLUMN/ROW tone ratio		2.0		dB
Redial Memory Digit	$\mathrm{N}_{\text {RKEY }}$	COLT to COL4 ROWT TO ROW4				26	digits
Make Ratio	$\mathrm{W}_{\text {MAKE }}$	PULSEOUT	MB87007A		39		\%
			MB87008A		33		\%
Oscillation Start time	toss	$\begin{aligned} & \text { OSCIN, } \\ & \text { OSCOUT } \end{aligned}$		0	8	16	ms
Oscillation Stop time	tossp			0	8	16	ms
Key Entry HZ Hold time	$\mathrm{t}_{\mathrm{HzKH}}$	COLT to COL4 ROW才 TO ROW4		0		5	ms

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
MODEIN HZ Hold time	$\mathrm{t}_{\text {HZMIH }}$	MODEIN		0		5	ms
MODEOUT HZ Hold time	$\mathrm{t}_{\text {HzMOH }}$	MODEOUT		0		5	ms
Key Entry HZ Start time	$t_{\text {HZks }}$	COLT to COL4 ROW1 TO ROW4		0		5	ms
MODEIN HZ Start time	$\mathrm{t}_{\text {HZMIS }}$	MODEIN		0		5	ms
MODEOUT HZ Start time	$\mathrm{t}_{\text {Hzmos }}$	MODEOUT		0		5	ms
Pause Time	$t_{\text {tpas }}$	PULSEOUT, DTMF/BEEPOUT		3.85	4.0	4.15	s
MODEOUT Switch Start time 1	${ }_{\text {IMOC1 }}$	MODEOUT			12		ms
MODEOUT Switch Start time 2	$\mathrm{t}_{\mathrm{MOC2}}$			2	5	8	ms
MODEOUT HZ Start Time by F key entry	${ }^{\text {tmofs }}$				72		ms
MODEOUT HZ Hold Time by F key entry	${ }^{\text {moFh }}$			0.59	0.6	0.61	s
MODEOUT Blinking Period	$t_{\text {mosi }}$			0.39	0.4	0.41	s
MODEOUT Change Start time by pause release key entry	${ }^{\text {tMOPS }}$				28		ms
DTMFOUT Output Start time when mode is switched	${ }^{\text {mst }}$	DTMF/BEEPOUT		2	10	15	ms
DTMF Output Start time by pause release key entry	$t_{\text {PDT }}$				39		ms
PULSEOUT Output Hold time by F key entry	$t_{\text {PuFH }}$	PULSEOUT		0.59	0.6	0.61	s
PULSEOUT OUTPUT Start time by F key entry	$t_{\text {puFs }}$				72		ms

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition		Value			Unit
					Min	Typ	Max	
Key Entry Width1	$t_{\text {WK1 }}$	COLT to-COL4ROW1 TO ROW4			50			ms
Key Entry Width2	$t_{\text {WK2 }}$				50			ms
Key Input Pause Time	tpk				50			ms
Key Entry Debouncing time	$t_{\text {ch }}$				21	23	25	ms
Key Entry Release Guard time	$\mathrm{t}_{\text {RE }}$				21	23	25	ms
BEEP TONE Output Start time	$t_{\text {beS }}$	DTMF/BEEPOUT				31		ms
BEEP TONE Output Width	${ }^{\text {w }}$ WBE				39	41	43	ms
MUTE LOW Output Start time	$\mathrm{t}_{\text {mus }}$	MUTE				31		ms
MUTE LOW Output Hold time 1	$t_{\text {musp } 1}$			pps	26	30	34	
				pps	13	15	17	ms
			Dual To	ne Output	100	110	120	
Pulse Predigital Pause Time	tppp	PULSEOUT	MB87007A	10 pps mode	950	980	1016	ms
				20 pps mode	480	510.5	556	
			MB87008A	10 pps mode	950	974	1016	ms
				20 pps mode	480	507.5	556	
Pulse Make Width	$t_{\text {wma }}$		MB87007A	10 pps mode	38	39	40	ms
				20 pps mode	19	19.5	20	
			MB87008A	10 pps mode	32	33	34	ms
				20 pps mode	16	16.5	17	
Pulse Break Width	$t_{\text {wBr }}$		MB87007A	10 pps mode	60	61	62	ms
				20 pps mode	30	30.5	31	
			MB87008A	10 pps mode	66	67	68	ms
				20 pps mode	33	33.5	34	
Pulse Interdigital Pause Time	$t_{\text {PP }}$		MB87007A	10 pps mode	900	939	960	ms
				20 pps mode	450	469.5	480	
			MB87008A	10 pps mode	900	933	960	ms
				20 pps mode	450	466.5	480	

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
MUTE LOW Output Hold time 2	$\mathrm{t}_{\text {MUSP2 }}$	MUTE	Single Tone Output	0		8	ms
DUAL TONE Output Time	$\mathrm{t}_{\text {WDT }}$	DTMF/BEEPOUT		78	80	82	ms
DTMF Interpause Time	${ }_{\text {t }}$ tr			78	80	82	ms
Single Tone Output start time	${ }_{\text {tsis }}$				31		ms
Single Tone Output stop time	${ }^{\text {tsisp }}$			0		8	ms
DUAL TONE Output start time	$t_{\text {DTS }}$				39		ms
DUAL TONE Output stop time	$t_{\text {DTSP }}$			0		5	ms
MUTE Hold Time 1 by PAUSE key entry	tPSM1	MUTE		0	10	20	ms
MUTE Hold Time 2 by PAUSE key entry	tpSM2			75	90	105	ms
MODEOUT Blinking Start time	$t_{\text {most }}$	MODEOUT		0	5	10	ms

DTMF OUTPUT SIGNALS

Item	Symbol	Standard DTMF (Hz)	DTMF Output Signal* (Hz)	Error to Standard TDMF (\%)
ROW1	FR1	697	696.95	-0.01
ROW2	FR2	770	770.13	+0.02
ROW3	FR3	852	852.27	+0.03
ROW4	FR4	941	940.99	-0.01
COL1	FC1	1209	1209.31	+0.03
COL2	FC2	1336	1335.65	-0.03
COL3	FC3	1477	1476.71	-0.02

Figure 4. Key Input Timing

Notes: ${ }^{1}$ Key Input Debouncing Time tc
Key entry is accepted if low level is longer than 23 ms typ.
${ }^{2}$ Key Input Release Guard Time tRE
Key release is recognized if low level is longer than 23 ms typ.

TIMING CHART 1-A

When there Is a pause before LDT key in PULSE mode

TIMING CHART 1-B

When there is a pause before LDT key in PULSE mode

TIMING CHART 2-A

When there is no pause before or after LDT key in PULSE mode

TIMING CHART 2-B
When there is no pause before or after LDT key in PULSE mode

TIMING CHART 3-A

In DTMF mode

TIMING CHART 3-B
In DTMF mode

PACKAGE DIMENSIONS

MB87009

Dual Tone Multi-Frequency/Pulse Dialer

The Fujitsu MB 87009 is an IC for pushbutton telephone sets using Si gate CMOS process and can be used for both DTMF and PULSE modes.

The MB 87009 can be switched from PULSE mode to DTMF mode by mode selection entry or by input from the keyboard.

The MB 87009 contains a 26 -digit redial memory, permitting coexistence of PULSE and DTMF modes, enabling mixed redialing in both PULSE and DTMF modes by a single key entry.

- Pulsed $10 \mathrm{pps}, 20 \mathrm{pps}$, or DTMF operation can be selected by the mode switch pin (MODEC).
- 26 -digit redial memory is built in (up to 25 digits can actually be written in the memory).
- Selectable make ratio by MA/BR: 39% or 33%.
- LDT function is provided (key entry enables switching from PULSE mode to DTMF mode).
- Beep tone for input confirmation can be output (for all effective key entry independently of PULSE/DEMF mode.
- Redial inhibit function is included for redial memory overflow.
- Mixed redialing of both PULSE and DTMF modes is possible.
- PAUSE function is provided and pause accumulation is possible.
- FLASH function is provided (ONHOOK mode is entered by keyboard entry).
- Crystal or ceramic oscillator (3.579545 MHz) can be used.
- PAUSE release function is provided (two or more consecutive pauses can be released).
- Operating voltage $\left(-30^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$

PULSE mode : 2.0 to 6.0 V
DTMF mode : 2.5 to 6.0 V

ABSOLUTE RATINGS

Rating	Symbol	Value	Unit
Power voltage	$\mathrm{V}_{\text {DD }}$	GND-0.3 to 7.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$	GND-0.3 to $\mathrm{V}_{\text {DD }}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	GND-0.3 to $\mathrm{V}_{\text {DD }}+0.3$	V
Storage temperature	$\mathrm{T}_{\text {STG }}$	-55 to 150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

EXPLANATION OF THE BLOCK DIAGRAM

Setting the HKSW pin from " H " to " L " changes the mode from ONHOOK to OFFHOOK, activating the 3.579545 MHz oscillator and entering a key entry accepting state.

MODEC pin entry in OFFHOOK mode enables selection of PULSE mode 10 pps or 20 pps or DTMF mode. In PULSE mode, DTMF mode can be set by pressing the LDT key.

The keyboard logic circuit discriminates key entry information on $\overline{\text { ROW1 }}$ to $\overline{\mathrm{ROW}}$ and $\overline{\mathrm{COL}}$ to $\overline{\mathrm{COL4}}$ pins, and transmits key information to the control logic circuit after a time interval for debouncing, for effective key entry.
The control logic circuit controls the memory circuit, beep tone generator, pulse output generator, and DTMF output
generator according to key entry information.
The memory circuit contains a 26 -digit redial memory. Onetouch redialing is possible after mode and key entry information is stored.

Independently of PULSE/DTMF mode, the beep tone generator operates to output beep tone to the BEEPOUT pin for all effective key entries.
The pulse output generator detects the memory output when the PULSE mode is selected, and outputs to the POUT pin as many PULSE signals " L " as the number depending on effec-
tive memory data in PULSE mode.
The make rate is 39% when MA/BR is " H ", and 33% when "L."
When the DTMF mode is selected, the DTMF output generator outputs DTMF tones from the DTMF OUT pin according to effective memory data output. Row and column program counters and DA converter generate row and column sine wave signals, which are added by the analog adder to generate DTMF tones.

REFERENCE CIRCUIT

PIN DESCRIPTION

PIN DESCRIPTION (Cont'd)

PIN DESCRIPTION (Cont'd)

Pin No.	Pin name	1/O	Description
8	MODEO	Output pin	- Independently of PULSE/DTMF mode, the beep tone is output at the BEEPOUT when the FLASH key is pressed. HZ of 0.6 second typ. is output after the beep tone is output. After that, key acceptance state (OFFHOOK mode) is entered.
12	MUTE		- NCH open drain output pin. - The following are MUTE pin HZ conditions in PULSE and DTMF modes. (1) When there is no key entry. (2) After the beep tone is output when the FLASH key is pressed (0.6 s typ.) (3) During pause state However, MUTE is " L " while the beep tone is output. (4) During MODEO blinking. - After key entries become effective in PULSE and DTMF modes, the pin level is " L " during output of the beep tone, pulses, or DTMF according to effective key entries.
13	BEEPOUT		- CMOS Three-State Output. High-Impedance when the beep tone is not output. - Independently of PULSE/DTMF mode, the beep for input confirmation is output for all effective key entry. - BEEPTONE is output in 41 ms typ. at 1 kHz in rectangler pulse.
15	$\overline{\text { POUT }}$		- NCH open drain output pin. - HZ in ONHOOK and DTMF modes. - In PULSE mode, this pin is " L " for pulse breaks according to numerical key entries. - In PULSE and DTMF modes, when the FLASH key is pressed, "L" level is output for 0.6 second typ. after the beep tone is sent even during PULSE/ DTMF sending, and a key acceptance state (OFFHOOK mode) returns.
20	DTMF OUT		- Bipolar type NPN emitter-follower pin. It can drive a load of 100Ω (between pin and GND). - When an ordinary single key is entered in DTMF mode, DUAL TONE of numerical, 园, and 囲keys is output ($\overline{\mathrm{COL}}$ column is not allowed). Pressing two or more keys in the same $\overline{\mathrm{ROW}}$ or $\overline{\mathrm{COL}}$ on the keyboard outputs the single tone in the $\overline{R O W}$ or $\overline{\mathrm{COL}}$. However, if a key in $\overline{\mathrm{COL}}$ is pressed, DUAL TONE or single tone in the $\overline{\mathrm{ROW}}$ or $\overline{\mathrm{COL}}$ is not output. - See Section 8.4 for single tone output frequencies.

PIN DESCRIPTION（Cont＇d）

Pin No．	Pin name	1／0	Description
20	DTMF OUT	Output pin	－In the FLASH key is pressed during DTMF sending，the beep tone is output at BEEPOUT and subsequent DTMF tones are not output．After beep tone output，nearly ONHOOK mode of 0.6 second typ．is entered，and then，key acceptance state（OFFHOOK mode）is entered． －DUAL TONE output time conditions： 1） 80 ms TYP for redial output． 2） 80 ms TYP when the key entry time is within 130 ms typ．more than the debouncing time． 3）DUAL TONE output stops being generated at once if a key is pressed over 130 ms TYP and released． 4）Single tone is output from the end of debouncing time until the key is released． － HZ when the DTMF tone is not output．

OPERATION AND FUNCTION USE CONDI－

 TIONS
Ordinary dialing

Dialing is done by entering numerical keys（ 1 to 0 keys）in PULSE mode and numerical，$*$ ，and 囲 keys in DTMF mode regardless of the number of digits of key input in OFFHOOK，PULSE，or DTMF signals according to the key input are output．
The redial memory is 26 digits．A digit is counted for numerical，pause，and LDT keys in PULSE mode and for numerical，卥，囲，and \cap keys in DTMF mode．
One digit is counted as mode information for mode switch－ ing by MODEC for both PULSE and DTMF modes．The first key after OFFHOOK is counted as one digit as mode information for numerical keys in PULSE mode and numerical，\circledast ，and $\#$ keys in DTMF mode，and is written into the redial memory．

Redial function

The redial memory is read to execute redialing only if the redial key is the first key pressed in OFFHOOK state．
The redial key，＊，and RED keys are used in PULSE mode and only the RED key in DTMF mode．
When 27 or more digits are written into the redial memory， PULSE or DTMF signals corresponding to the key entries are output，but the redialing operation is ineffective because of memory overflow．At this time，even if the first key pressed after the state changes from ONHOOK to OFF． HOOK is the redial key，the redial key is not accepted and
the beep tone is not output regardless of PULSE or DTMF mode．
If a numerical or LDT key is the first key entry in PULSE mode after OFFHOOK or a numerical，困，井，or single－ tone key（excluding COL4）in DTMF mode，the memory is reset and data is written into the redial memory according to key entry information．

Mix redial function

If the mode is changed from PULSE to DTMF mode by pressing the LDT key，or MODEC is switched during key entries，mix redialing is executed．

If there is a pause before or after mode switching（including the LDT function）at redialing，PULSE／DTMF is sent and DTMF／PULSE signals are sent after the pause．However，for redialing in which there is no pause before or after mode switching（including the LDT function），the operation stops immediately after mode switching and a HALT state is entered．MODEO blinks to indicate that the mode switching has no auto pause，prompting pause release．The pause re－ lease key at this time is $\#$ ，RED ，and P keys in PULSE mode，and RED and \square keys in DTMF mode．By key entry， the operation sending subsequent PULSE／DTMF signals is returned．Key entries other than the above are not accepted， except the key．
Key entries are not accepted during redial output，except the F and pause release keys（only when MODEO is blinking or during a pause at redialing）．

Mode switching

When mode switching is requested by MODEC during pulse or tone transmission, the request will not be accepted. The request becomes acceptable after data transmission.
One digit is used as mode information in both PULSE and DTMF modes when the mode is switched by MODEC. If the first key entry is a numerical in PULSE mode after OFF. HOOK or a numerical, 困, 井 in DTMF mode, mode information is written into redial memory.
In PULSE mode, the LDT key is accepted only once. After that, DTMF mode is fixed regardless of MODEC pin switching.
In DTMF mode, the LDT key is not accepted. MODEC pin switching enables the desired mode to be selected.

LDT function

If the LDT key is pressed in PULSE mode, the mode changes to DTMF mode in which DTMF tones can be sent. "In PULSE mode, only first LDT key is accepted after key acceptance state (OFFHOOK mode) is entered. Once LDT key is accepted, the following LDT key entries are ignored.
When DTMF mode is entered by the LDT key, dual tones of keys, excepting $\overline{\mathrm{COL} 4}$ and single tones, can be output. (If even one $\overline{\mathrm{COL}} \mathrm{key}$ is pressed, dual and single tones on the $\overline{\text { ROW }}$ or $\overline{C O L}$ are not sent.) The mode after that is not switched. If mode switching by LDT from memory is done during redialing, key entries after redialing are executed in DTMF mode regardless of the MODEC state and the data is additionally written into the redial memory. However, for effective keys other than the redial key after ONHOOK changes to OFFHOOK memory is reset and written in the current mode.

PAUSE function
A pause state can be entered by pause key entry.

In PULSE mode, both $\#$ and P keys can be used as the pause key. In DTMF mode (including the LDT function), only the \cap key is used.
If the pause key is the first key pressed after ONHOOK changes to OFFHOOK, the key is not accepted.
One pause key entry can make a 4.0 second typ. pause state. $\mathrm{N} \times 4.0$ second typ. pauses can be made by multiple consecutive pause key entries.
Pause duration can be reduced by entering \mathbb{P} and RED keys during redialing pause time. In PULSE mode, the * key can also be used as a pause release key. $^{\text {k }}$

When multiple consecutive pauses are written, the consecutive pauses are all sent fast by entering a pause release key. ($\mathrm{N} \times 4.0$ second typ. pause time becomes $\mathrm{N} \times 8.0 \mathrm{~ms}$ pause time because the pauses are sent at a speed up to 500 times as fast.)

FLASH function

Keyboard entries enable ONHOOK mode. Only the F key is used as a FLASH key in both PULSE and DTMF modes (including the LDT function). When the F key is pressed, ONHOOK mode is entered for 0.6 second TYP after the beep tone is sent. The key entry pin, MODEC, MUTE, DTMFOUT, and BEEPOUT during the time become HZ and the $\overline{\text { POUT }}$ pin outputs level "L". OFFHOOK mode returns after 0.6 second typ., and key entries can be accepted.

TEST MODE (High speed mode) function
TEST MODE circuit is built into the chip. At ONHOOK, X1 and X2 are pulled down by high resistances. By making the X 1 pin " H " and entering a clock from the X2 pin, TEST MODE is enabled to operate internal circuits up to 128 times as fast.

KEY OPERATION DIAGRAM

Key Entries In PULSE Mode
When MODEC is set to $\mathbf{1 0} \mathbf{~ p p s}$

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	OPEN	12	1.2		
ON					
OFF	OPEN	RED (P)	1-2		
		3	3		
ON					
OFF	OPEN	RED (P)	1-2-3		
ON					
OFF	$V_{D D}$	RED (P)	1-2-3		
ON					
OFF	GND	RED (D)	1-2-3		
		4			4

When MODEC is set to 20 pps

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	$V_{D D}$	11 2		1-2	
ON					
OFF	$V_{D D}$	RED (P)		1-2	
		3		3	
ON					
OFF	$V_{D D}$	RED (P)		1-2-3	
ON					
OFF	OPEN	RED (P)		1-2-3	
ON					
OFF	GND	RED (D)		1-2-3	
		4			4

7

Key Entries In DTMF Mode

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	GND	(1) 2			$1-2$
ON					
OFF	GND	RED (D)			$1-2$
		3			3
ON					
OFF	GND	RED (D)			1-2-3
ON					
OFF	OPEN	RED (D)			1-2-3
ON					
OFF	$V_{D D}$	RED (P)			1-2-3
		4		4	

Key Entries When The LDT Key Is Used

When there is a pause before LDT

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	OPEN	$\begin{aligned} & 1 \text { 2 } 2(P) \\ & L D T \text { B } \end{aligned}$	1-2- ${ }^{(P)}$		3
ON					
OFF	OPEN	RED (P)	1-2-(P)		
					3
		4			4
ON					
OFF	$V_{D D}$	RED (P)	1-2-P		3.4
ON					
OFF	GND	RED (D)	1-2-(P)		
					3-4

When there is a pause after LDT

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	OPEN	$\begin{aligned} & \hline 1 \text { 上 } 2, \mathrm{LDT} \\ & \hline P \text { (D) } 3 \end{aligned}$	1-2		(P) 3
ON					
OFF	OPEN	RED (P)	$1-2$		
		4			$\begin{aligned} & \text { (P) } 3 \\ & 4 \end{aligned}$
ON					
OFF	$V_{D D}$	RED (P)	$1-2$		(P) 3 -4
ON					
OFF	GND	RED (D)	$1-2$		(P)-3-4

When there is no pause before and after LDT

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	OPEN	$\begin{aligned} & 112 \\ & \text { LDT } 3 \end{aligned}$	1-2		
			MODEO blinks \downarrow		3
ON					
OFF	OPEN	RED (P)	1-2		
		PR (D)			3
ON		4	MODEO blinks \downarrow		4
OFF	$V_{D D}$	RED (P)	1.2		
ON		PR (D)	MODEO blinks \downarrow		3-4
OFF	GND	$\begin{aligned} & \hline \text { RED (D) } \\ & \hline \text { PR (D) } \end{aligned}$	1.2		3-4

Key Entries When PULSE/DTMF Mode Is Switched (Mix Redial)
When there is a pause before mode switching

When there is a pause after mode switching

7

When there is no pause before and after mode switching

Hook	MODEC	Key entry	PULSE output		DTMF output
			10 pps	20 pps	
ON					
OFF	OPEN	(1) 2	1-2		
	$V_{D D}$	(3) 4		3-4	
	GND	5 *			5-*
	OPEN	(6) 7	6-7		
ON			MODEO blinks \downarrow		
OFF	OPEN	RED (P)	$1-2$	MODEO blinks \downarrow	
		PR (P)		3-4	MODEO blinks \downarrow
		PR (D)			5-*
		PR (P)	6-7		
ON			MODEO blinks \downarrow		
OFF	$V_{D D}$	RED (P)	1.2	MODEO blinks \downarrow	
		PR (P)		3-4	MODEO blinks \downarrow
		PR (D)			5-*
		PR (P)	6-7		
ON			MODEO blinks \downarrow		
OFF	GND	RED (D)	1-2	MODEO blinks \downarrow	
		PR (P)		3-4	MODEO blinks \downarrow
		PR (D)			5-*
		PR (P)	6-7		

Redial Memory Inhibit Function

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Condition	Value			Unit
			Min.	Typ	Max	
Power voltage	$V_{D D}$	In PULSE mode and when memory is maintained	2.0	-	6.0	V
		In DTMF mode	2.5	-	6.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$		0	-	$V_{D D}$	V
Output load condition	RO	Between output pin and GND	0.1	-	20	$k \Omega$
Ambient temperature	$T_{\text {A }}$		-30	-	60	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Parameter	Condition			Symbol	Value			Unit
			Pin name		Min	Typ	Max	
Supply Current	All output pins are OPEN in DTMF mode.		$V_{D D}$	IDD	-	2.5	5.0	mA
	All output pins are OPEN in PULSE mode.			IDDP	-	1.0	2.0	mA
	All output pins and HKSW pins are OPEN in standby state.			$I_{\text {DDSB }}$	-	1.5	10	$\mu \mathrm{A}$
	$\begin{aligned} & V_{D D}= \\ & 2.5 \mathrm{~V} \\ & \\ & \mathrm{~T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	Output pins are OPEN in DTMF mode.		IDDL	-	1.0	2.0	mA
		Output pins are OPEN in PULSE mode.		I DDPL	-	0.3	0.6	mA
		Output pins and HKSW pin are OPEN in standby state.		I DDSBL	-	0.2	1.0	$\mu \mathrm{A}$
Digital Input Voltage 1			$\begin{aligned} & \frac{\overline{\mathrm{COL1}}}{} \text { to } \\ & \frac{\mathrm{COL4}}{\mathrm{ROW1}} \\ & \frac{\mathrm{ROW} 4}{\text { ROW }} \end{aligned}$	$\mathrm{V}_{\mid \mathrm{HI}}$	$\begin{aligned} & 4 / 5 \mathrm{X} \\ & \mathrm{~V}_{D D} \end{aligned}$	-	$V_{D O}$	V
				$V_{\text {ILI }}$	0	-	$\begin{aligned} & V_{D D} \\ & / 5 \end{aligned}$	V

Electrical Characteristics (Cont'd)

Parameter	Condition		Symbol	Value			Unit
		Pin name		Min	Typ	Max	
Digital Input Voltage 2		HKSW, MODEC, MA/BR	$\mathrm{V}_{1 \mathrm{H}_{2}}$	$\begin{aligned} & 4 / 5 \mathrm{X} \\ & \mathrm{~V}_{D D} \end{aligned}$	-	VDD	V
			$V_{\text {IL2 }}$	0	-	$\begin{aligned} & V_{D D} \\ & / 5 \end{aligned}$	V
Digital Input Current 1	When $V_{\text {IN }}=V_{\text {DD }}$	$\overline{\mathrm{COL}}$ to COL4, ROW1 to ROW4	1_{1+1}	-0.01	-	$\begin{aligned} & V_{D D} \\ & / 5 \end{aligned}$	mA
	When $\mathrm{V}_{\text {IN }}=\mathrm{GND}$		$\mathrm{I}_{1 L 1}$	$\begin{aligned} & -V_{D D} \\ & / 100 \end{aligned}$	-	0.01	mA
Digital Input Leakage 1	When key entry is HZ $G N D \leqq V_{I N} \leqq V_{D D}$		IILK1	-10	-	10	$\mu \mathrm{A}$
Digital Input Current 2	When $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	MODEC	$\mathrm{I}_{1 \mathrm{H} 2}$	-0.01	-	$\begin{aligned} & V_{D D} \\ & 175 \end{aligned}$	mA
	When $\mathrm{V}_{\text {IN }}=$ GND		$1_{\text {IL2 }}$	$\begin{aligned} & -V_{D D} \\ & / 75 \end{aligned}$	-	0.01	mA
Digital Input Leakage 2	When MODEC is HZ $\mathrm{GND} \leqq \mathrm{VIN} \leqq \mathrm{~V}_{\mathrm{DD}}$		IILK2	-10	-	10	$\mu \mathrm{A}$
Digital Input Current 3	When $V_{\text {IN }}=V_{\text {DD }}$	HKSW, MA/BR	I_{1+3}	-10	-	10	$\mu \mathrm{A}$
Pull-up Resistance		HKSW	$\mathrm{R}_{\mathrm{PLU}}$	100	200	400	$k \Omega$
Digital Input Leakage 3	When $\mathrm{V}_{\text {IN }}=\mathrm{GND}$	MA/BR	IILK3	-10	-	10	$\mu \mathrm{A}$
Digital Output Voltage	When $\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	MODEO, BEEP OUT	V_{OH}	$\begin{aligned} & V_{D D} \\ & -0.5 \end{aligned}$	-	VDD	V
	When $\mathrm{I}_{\text {OL }}=0.5 \mathrm{~mA}$	$\begin{aligned} & \text { MODEO, } \\ & \text { POUT, } \\ & \text { MUTE, BEEP } \\ & \text { OUT } \end{aligned}$	$\mathrm{V}_{\text {OL }}$	0	-	0.5	V
Digital Output Off Leakage Current	GND $\leqq V_{\text {OUT }} \leqq V_{\text {DD }}$	MUTE, POUT, MODEO, BEEP OUT	Iofflk	-10	-	10	$\mu \mathrm{A}$
External resistance when digital input is open	Resistance connected to external circuit when input is open. The other end of the resistance must be between 0 V and $\mathrm{V}_{\text {DD }}$.	$\overline{\mathrm{COL}}$ to COL4, ROW1 to ROW4, HKSW, MODEC	$\mathrm{R}_{\text {DEX }}$	1	-	-	$\mathrm{M} \Omega$

Electrical Characteristics (Cont'd)

Parameter	Condition		Symbol	Value			Unit
		Pin name		Min	Typ	Max	
Pull-down Resistance	In ONHOOK mode	X1, X 2	$\mathrm{R}_{\text {PLD }}$	75	150	300	k Ω
Oscillator Frequency			$\mathrm{f}_{\text {IN }}$	-	3.579545	-	MHz
DTMF output - When 100Ω is connected between output pin and GND	When no signal is output.	DTMF OUT	$\mathrm{V}_{\text {AOUT }}$	-	0	-	V
	Offset voltage when signals are output.			-	$\begin{gathered} 0.63 \times V_{\text {DD }} \\ -0.75 \end{gathered}$	-	V
	DTMF TONE output voltage			-	1.44	-	Vp-p
	ROW signal tone output voltage			-	0.64	-	Vp-p
	COLUMN single tone output voltage			-	0.80	-	Vp-p
	COLUMN/ROW TONE ratio			-	2.0	-	dB
Number of Redial Memory Digits		$\overline{\mathrm{COL}}$ to COL4, ROW1 to ROW4	$\mathrm{N}_{\mathrm{KEY}}$	-	-	26	dig. its
Make Ratio	$M A / B R=V_{D D}$	POU		-	39	-	\%
	$\mathrm{MA} / \mathrm{BR}=\mathrm{GND}$			-	33	-	\%
Oscillation Start Time			${ }^{\text {tstart }}$	0	8	16	ms
Oscillation Stop Time			$\mathrm{t}_{\text {Stop }}$	0	8	16	ms
Key Entry HZ Hold Time			$\mathrm{t}_{\mathrm{HzK}}$	0	-	5	ms
MODEC HZ Hold Time		MODEC	$\mathrm{t}_{\text {HzMC }}$	0	-	5	ms
MODEO HZ Hold Time		MODEO	$\mathrm{t}_{\text {HzMO }}$	0	-	5	ms
Key Entry HZ Start Time			$\mathrm{t}_{\text {zKs }}$	0	-	5	ms
MODEC HZ Start Time		MODEC	$\mathrm{t}_{\text {zMCs }}$	0	-	5	ms

Electrical Characteristics (Cont'd)

Parameter	Condition		Symbol	Value			Unit
		Pin name		Min	Typ	Max	
MODEO HZ Start Time		MODEO	$t_{\text {zmos }}$	0	-	5	ms
MODEO Switch Start Time 1			$\mathrm{t}_{\text {Mosw }}$	-	12	-	ms
MODEO Switch Start Time 2			$\mathrm{t}_{\text {Mosw }}$	-	5	-	ms
MODEO HZ Start Time by F Key Entry			$\mathrm{t}_{\text {zmosf }}$	-	83	-	ms
MODEO HZ Hold Time by F Key Entry			$\mathrm{t}_{\text {HzmosF }}$	-	0.6	-	s
MODEO Blinking Period			$\mathrm{t}_{\text {Moblnk }}$	-	0.4	-	s
MODEO Switch Start Time by Pause Release Key			$\mathrm{t}_{\text {MOSWPL }}$	-	39	-	ms
Pause Time		$\overline{\text { POUT, }}$ DTMFOUT	tpause	-	4.0	-	s
DTMF Output Start Time by Pause Release Key		DTMFOUT	$\mathrm{t}_{\text {OUTPL }}$	-	50	-	ms
$\overline{\text { POUT Output }}$ Hold Time by F Key Entry		$\overline{\text { POUT }}$	$\mathrm{t}_{\mathrm{HPH}}$	-	0.6	-	ms
$\overline{\text { POUT Output }}$ Start Time by F Key Entry			tpouts	-	83	-	ms
DTMFOUT Output Start Time when the Mode is Switched		DTMFOUT	toutsws	-	10	-	ms
Key Entry Width 1		$\overline{\mathrm{COL}}$ to $\overline{\mathrm{COL}}$, ROW1 to $\overline{R O W 4}$	${ }^{\text {twk }} 1$	50	-	-	ms
Key Entry Width 2			twk 2	50	-	-	ms
Pause Between Key Entries			$t_{\text {PK }}$	50	-	-	ms

7

ElectricalCharacteristics (Cont'd)

Parameter	Condition			Symbol	Value			Unit
			Pin name		Min	Typ	Max	
Key Entry Debouncing Time			$\overline{\mathrm{COL}}$ to COL4, ROW1 to ROW4	$\mathrm{t}_{\text {ACHAT }}$	-	34	-	ms
BEEPTONE Output Start Time			BEEPOUT	$t_{\text {beepr }}$	-	42	-	ms
BEEPTONE Output Width				$t_{\text {WBEEP }}$	-	41	-	ms
MUTE LOW Output Start Time			$\overline{\text { MUTE }}$	$\mathrm{t}_{\text {MS }}$	-	42	-	ms
MUTE LOW Output Hold Time 1	For 10 pps			$\mathrm{t}_{\text {HML }} 1$	26	30	34	ms
	For 20 pps				13	15	17	
	When DUAL TONE is output				100	110	120	
Pulse Predigital Pause	$M A / B R=$"VDD"	For 10 pps	$\overline{\text { POUT }}$	$t_{\text {PPDP }}$	950	990	1016	
		For 20 pps			480	520.5	566	
	$M A / B R=$ "GND"	For 10 pps			950	984	1016	
		For 20 pps			480	517.5	556	
Pulse Make Width	$M A / B R=$ "VDD"	For 10 pps		${ }_{\text {twm }}$	-	39	-	ms
		For 20 pps			-	19.5	-	
	$M A / B R=$ "GND"	For 10 pps			-	33	-	
		For 20 pps			-	16.5	-	
Pulse Break Width	$M A / B R=$"VDD"	For 10 pps		$t_{\text {wBrk }}$	-	61	-	ms
		For 20 pps			-	30.5	-	
	MA/BR = "GND"	For 10 pps			-	67	-	ms
		For 20 pps			-	33.5	-	
Pulse Interdigital Pause	$\begin{aligned} & \text { MA/BR = } \\ & \text { "VDD" } \end{aligned}$	For 10 pps		${ }^{\text {W WIDP }}$	900	469.5	960	ms
		For 20 pps			450	469.5	480	
	$M A / B R=$"GND"	For 10 pps			900	933	960	ms
		For 20 pps			450	466.5	480	

Electrical Characteristics (Cont'd)

Parameter	Condition		Symbol	Value			Unit
		Pin name		Min	Typ	Max	
MUTE LOW Output Hold Time 2	When single tone is output	$\overline{\text { MUTE }}$	$\mathrm{t}_{\text {HML2 }}$	0	-	45	ms
DUALTONE Output Time		DTMFOUT	${ }^{\text {tw }}$ WT	78	80	82	ms
DTMF Interpause			${ }^{\text {I INPS }}$	78	80	82	ms
Single Tone Output Start Time			${ }^{\text {t }}$ INGS	-	42	-	ms
Single Tone Output Stop Time			${ }^{\text {t }}$ Singe	0	-	5	ms
DUALTONE Output Start Time			touals	-	50	-	ms
DUALTONE Output Stop Time			t duale	0	-	5	ms
MUTE Hold Time 1 by Pause Key		$\overline{\text { MUTE }}$	tPSM 1	0	10	20	ms
$\overline{\text { MUTE Hold }}$ Time 2 by Pause Key			$\mathrm{t}_{\text {PSM }}$	75	90	105	ms
MODEO Blinking Start Time		MODEO	$\mathrm{t}_{\text {mobs }}$	0	5	10	ms

MB87009

DTMF OUTPUT SIGNALS

Item	Symbol	Standard DTMF (Hz)	DTMF output signals (Hz) (Oscillator frequency 3.579545 MHz$)$	Error to standard DTmF $(\%)$
ROW1	FR1	697	696.95	-0.01
ROW2	FR2	770	770.13	+0.02
ROW3	FR3	852	852.27	+0.03
ROW4	FR4	941	940.99	-0.01
COL1	FC1	1209	1209.31	+0.03
COL2	FC2	1336	1335.65	-0.03
COL3	FC3	1477	1476.71	-0.02

KEYBOARD CONFIGURATION

An example of a single contact type keyboard is shown below.

$$
\gamma \equiv
$$

Timing chart 1-B (When there is a pause before LDT in PULSE mode) Key entries in Timing chart 1-A are written as memory data.

Timing chart 2-A (When there is no pause before or after LDT in PULSE mode)

Timing chart 2-B (When there is no pause before or after LDT in PULSE mode) Key entries in Timing chart 2-A are written as memory data.

Timing chart 3-A (in DTMF mode)

Timing chart 3-B (in DTMF mode)
Key entries in Timing chart 3-A are written as memory data.

PACKAGE DIMENSIONS (Suffix: P)

PACKAGE DIMENSIONS (Suffix: PF)

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein any license under the patent rights of Fujitsu Limited or others. Fujitsu Limited reserves the right to change device specifications.

MB87017B

DTMF RECEIVER

DUAL TONE MULTI FREQUENCY RECEIVER

The MB87017B is a one chip DTMF receiver with an input amplifier gain adjuster and low power consumption, integrating filter and decoder circuits. The MB87017B can select either automatic guard time setting mode or adjustable external guard time setting mode.
This circuit consists of SCFs (Switched Capacitor Filters) and decoders which convert 16 types of DTMF tone pairs into hexadecimal four-bit codes.

- All DTMF receiver functions are integrated on one chip.
- Low power consumption
- Built-in input amplifier gain adjustment circuit
- Selectable automatic or adjustable external guard time setting modes

ABSOLUTE MAXIMUM RATINGS (See NOTE)

【̌ூnating	Syibol	Value	Unit
Supply Voltage	$V_{D D}$	+6.0	V
Analog Input Voltage	$V_{\text {AIN }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Digital Input Voltage	Voin	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating Temperature	$\mathrm{T}_{\text {A }}$	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tste	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. How ever, it is advioed hat normal procautions be taken to migher than maximum rated voltages to this high impedance circuit.

[^38]
PIN ASSIGNMENT

BLOCK DIAGRAM
(DIP PACKAGE)

PIN DESCRIPTIONS

Pin Number		Symbol	10	Dascribtion
DIP	FPT			
1	1	$A_{\text {IN }}$	1	Analog input pin (non-inverted operational amplifier input)
2	2	$\mathrm{G}_{\text {A1 }}$	1	Operational amplifier gain adjustment pin 1 (inverted operand amplifier input). Operational amplifier gain adjustment pin 2 (operand amplifier output pin). * These pins are provided for operational amplifier gain adjustment. The polarity of $\mathrm{G}_{\mathrm{A}_{1}}$ is opposite to that of $\mathrm{G}_{\mathrm{A} 2}$.
3	3	G^{12}	0	
4	5	$V_{\text {REF }}$	0	Reference voltage output pin. ($1 / 2 \mathrm{~V}_{\text {DO }}$)
5	6	AG	-	Analog ground pin
6	7	TEST	-	Test pin. Usually set to ground level.
7	8	OSC1	1	Clock input pin. Clock output pin. * Connect a 3.5795 MHz crystal between OSC1 and OSC2 pins.
8	11	OSC2	0	
9	12	GND	-	Ground pin
10	13	TOE	1	Three-state output enable pin. * Data from Q_{1} to Q_{4} may be output when this pin is set to "High".
11 to 14	$\begin{aligned} & 14,15 \\ & 18.19 \end{aligned}$	Q_{1} to Q_{4}	0	Three-state data output pin.
15	20	DS	0	Signal detection pin. * This pin goes to "High" when an valid tone pair is received and decoded, and the data in the output data-bus is updated.
16	21	DF	0	Frequency detection pin. * This pin goes to "High" when a received tone pair is acknowledged as the valid DTMF signal frequency.
17	23	GT	0	Guard time mode select pin. * When GT pin is clamped to V_{DD}, automatic guard time setting circuit is selected; Guard Time Present (GTP) and Guard Time Absent (GTA) are set to 20 milliseconds. * See functional descriptions on page 5. * When GT pin exceeds $1 / 2 V_{\text {Do }}$ DS pin outputs high level. When GT pin is less than $1 / 2 V_{D 0}$, DS pin outputs low level.
18	24	V ${ }_{\text {D }}$	-	Positive supply voltage pin. * The voltage must be $+5 \mathrm{~V} \pm 5 \%$.
-	$\begin{gathered} \hline 4,9 \\ 10,16 \\ 17,22 \end{gathered}$	NC	-	No connection

FUNCTIONAL DESCRIPTIONS

FILTER

The filters consist of 3 sixth-order SCFs. The dial tone removal filter (including the 60 Hz filter) output is connected to the individual hysteresis comparators through the low group and high group filters.
In the figure below, the solid line shows the characteristics of the low group filter while the broken line shows the characteristics of the high group filter. At a frequency of 770 Hz , it is assumed that 0 dB are lost. Therefore, this point is used for reference.

DECODER

1. Digital Frequency-detecting Circuit

The DF (Detect Frequency) pin goes to "High" when the detector circuit acknowledges the output signals from the two comparators as valid DTMF signal frequencies in the digital frequency detecting block.

2. Guard Time Setting Circuit

Automatic or adjustable external guard time setting modes are provided. Guard time has two types: GTP (Guard Time Present) and GTA (Guard Time Absent).

2.1 Automatic Guard Time Setting Circuit

When GT pin is clamped to $V_{D D}$, automatic guard time setting circuit is selected; tatp and tata are set to 20 milliseconds. The output signal from the filters may be acknowledged as a DTMF signal if:
(1) A signal with valid DTMF frequency lasts more than 40 milliseconds. This signal is decoded into a DTMF signal. These pulses correspond to the input signal enable period and disable period for alternative current characteristics.
(2) A period of more than 40 milliseconds exists between DTMF signals n and $(n+1)$. If this is not the case the DTMF signal $(n+1)$ is disabled.
These pulses correspond to the inter-digit pauses for acceptance and rejection for alternative current characteristics.
In (1), it takes the DS (Detect Signal) pin GTP to acknowledge that the input signal is a DTMF signal after DF switches to "High". The DS pin switches to "High" when the input signal is acknowledged as a DTMF signal.
In (2), it takes the DS pin GTA to disable DTMF signal n after DF switches to "Low". The DS pin switches to "Low" when the signal is disabled. (See Page 10 for the timing chart.)

$$
\begin{aligned}
& t_{S D A}>t_{G T P}+t_{P D F} \\
& t_{I D A}>t_{A D F}+t_{G T A}
\end{aligned}
$$

2.2 Adjustable External Guard Time Setting Circuit

The simplified adjustable external guard time setting circuit shown below enables any guard time present (GTP) or guard time absent (GTA) setting.
The guard time is adjusted by selecting external register R when the external capacitor is $0.1 \mu \mathrm{~F}$.

2.3 Automatic Guard-time/Adjustable External Guard-time Setting Mode Selection Circuit

- Adjustable external guard time setting mode

Adjustable external guard time setting mode (GT pin is set low) is selected on the rising edge of the detected frequency (DF).

- Automatic guard time setting mode

The automatic guard time setting mode (GT pin is set high) is selected the power-on reset signal and on the rising edges of the DF.

2.4 Power-on Reset Circuit

The power-on reset circuit generates a reset signal to initialize the automatic guard time or adjustable guard time setting circuit when power is applied.
The power-on reset circuit specifications and timing diagram are shown below.

paramelar	人1mior	Miniman	yricat	Waxtimutin	unit	Rematis
Power supply rise time Power supply fall time	t t	0.1	-	50	ms	Power-on reset operation conditions
Power-off time	torl	100	-	-	ms	

FUNCTIONAL DESCRIPTIONS

- Power-on reset timing diagram

NOTE: If the values of power supply rise time, fall time, and power off time shown in the table are not satisfied, the power-on reset signal will not be generated and the automatic guard time setting circuit may not recover from malfunction (receive disabled).
The adjustable external guard time setting circuit will not enter malfunction even if the power-on reset signal is not generated.
Therefore, if power supply conditions disable the power-on reset circuit, the adjustable external guard setting circuit can be used.

OUTPUT CIRCUIT

When the signal detector pin (DS) switches to "High", a received tone pair is stored in the output circuit register. The output latch status may be output on the output bus by setting the three state control input (TOE) to "High".

SAMPLE DIFFERENCE INPUT CONFIGURATION

The MB87017B uses a difference input amplifier and provides for a bias power source ($\mathrm{V}_{\text {reF }}$) to apply a bias voltage to the input signal. This also allows a pin to connect a gain adjustment resistor to the amplifier output.

MB87017B

RECOMMENDED OPERATING CONDITIONS

DC CHARACTERISTICS

$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$						
Pallhatat	Symbol	EOHAIthat	Eating.			Uni!
			Minmum	Tyeical.	Maximum	
Power Consumption	Po	$\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	25	37	mW
Low Level Input Voltage	VIL		0	-	0.8	V
High Level Input Voltage	V_{H}		2.0	-	VDD	V
Low Level Input Leak Current	$1 /$	$\mathrm{V}_{1}=$ GND	-10	-	10	$\mu \mathrm{A}$
High Level Input Leak Current	114	$V_{1}=V_{D D}$	-10	-	10	$\mu \mathrm{A}$
Low Level Output Voltage	VoL	$\mathrm{loL}=2 \mathrm{~mA}$	0	-	0.4	V
High Level Output Voltage	$\mathrm{V}_{\text {OH }}$	$\mathrm{l}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4	-	$\mathrm{V}_{\text {D }}$	V
$V_{\text {ref }}$ Output Voltage	$\mathrm{V}_{\text {fer }}$		-	2.5	-	V

AC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$						
P	SYMbol	(endiion	Mating			Uni!
			MinMum	Wyick	Maximim	
Signal Input Level ${ }^{\text {a }}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-29	-10	-1	dBm
TWIST ${ }^{2}$			-	± 10	-	dB
Allowable Frequency Deviation			$\pm 1.5 \pm 2 \mathrm{~Hz}$	-	-	\%
Prohibited Frequency Deviation			± 3.5	-	-	\%
Allowable Noise Level			-	-12	-	dB
Allowable Dial Tone Level ${ }^{44}$			-	22	-	dB
Input Signal Detection Timing (Present) ${ }^{.5}$	tppa		5	11	14	ms
Input Signal Detection Timing (Absent) ${ }^{\text {. }}$.	tadF		0.5	4	8.5	ms
Input Signal Enable Period (Accept) ${ }^{\text {•5,6 }}$	tson		-	-	40	ms
Input Signal Enable Period (Reject) ${ }^{\text {P5,6 }}$	tsor		20	-	-	ms
Inter-digit Pause (Accept) \quad-5,6	tipa		-	-	40	ms
Inter-digit Pause (Reject) $\quad{ }^{\text {5,6 }}$	tipe		9	-	-	ms
Input Clock Frequency	$\mathrm{fin}^{\text {N }}$		3.5759	3.5795	3.5831	MHz
Clock Rise Time	$t r$		-	-	110	ns
Clock Fall Time	H		-	-	110	ns
Clock Duty	DR		-	50	-	\%

*1 dBm: 600 ohm reference
*2 TWIST = High group tone voltage/Low group tone voltage
*3 Allowable noise = Total allowable noise within the range 300 Hz to 3.4 kHz Minimum amplitude tone level in valid tone pairs
*4 Allowable dial tone level = Total allowable normal dial tone volume/Minimum amplitude tone in valid tone pairs
*5 See Timing Chart.
*6 Specified values are referenced to the automatic guard time setting mode. See page 5 for tatp, and tata in the adjustable external guard time setting mode.

TIMING CHART

NOTE: (1) Automatic guard time setting mode (GT pin is clamped to V_{DO})
(2) Adjustable external guard time setting mode (See circuit on page 5)

PACKAGE DIMENSIONS

MB87017B

MB87029

DTMF Pulse Dialer
The Fujitsu MB87029 is a Dual Tone Multifrequency (DTMF) pulse dialer that is designed for pushbutton telephone sets and uses the Si-Gate CMOS process.
The MB87029 is used in both DTMF and PULSE modes and can be switched from PULSE mode to DTMF mode by a mode selection entry or by input from the keyboard. The MB87029 contains a 26 -digit redial memory that permits the coexistence of PULSE and DTMF modes, enabling mixed redialing in both PULSE and DTMF modes by a signal key entry.

- Pulse 10 pps , 20 pps , or DTMF operation can be selected by the mode switch pin (MODEIN)
- On-chip 26 digits of redial memory (up to 25 digits can actually be written in the memory)
- Selectable make ratio by MA/BR: 39% or 33%
- Line Dial Tone (LDT) function is provided (switching from PULSE mode to DTMF mode by key entry)
- Output of a beep tone for input confirmation (for all effective key entry independently PULSE/DTMF modes)
- Redial inhibit function is included for redial memory overflow
- Mixed redialing of both PULSE and DTMF modes
- PAUSE function is provided and pause accumulation is possible
- Single-tone output is enabled by SCNT pin
- FLASH function is provided (ONHOOK mode is selected by keyboard input)
- FLASH output time, 0.1 second or 0.6 second, is selected by FCNT pin
- Crystal or ceramic oscillator (3.579545 MHz) can be used
- Pause release function is provided two or more consecutive pauses can be released)
- Operating voltages: PULSE mode: 2.0 V to 6.0 V DTMF mode: 2.5 V to 6.0 V
($\mathrm{TA}=-30$ to $60^{\circ} \mathrm{C}$)

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Pin Name	Value	Unit
Positive Supply Voltage	V_{DD}	V_{DD}	$\mathrm{GND}-0.3$ to 7.0	V
Input Voltage	VI	All inputs	$\mathrm{GND}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Ouput Voltage	VO	All outputs	GND -0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$		-55 to +150	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^39]Figure 1. MB87029 Block Diagram

PIN DESCRIPTIONS

VO	Pin No.		Symbol	Description
	DIP	FPT		
Power Supply	1	1	V D	$\begin{array}{ll}\text { Power supply voltages: } & \text { Pulse mode } 2.0 \mathrm{~V} \text { to } 6.0 \mathrm{~V} \\ & \text { DTMF mode } 2.5 \mathrm{~V} \text { to } 6.0 \mathrm{~V} \\ & \text { Memory Retention mode } 2.0 \mathrm{~V} \text { min. }\end{array}$
	11	12	GND	Ground
Input	2 3 4 5 21 20 19 18	$\begin{array}{r} 2 \\ 3 \\ 5 \\ 6 \\ 23 \\ 22 \\ 21 \\ 20 \end{array}$	$\begin{aligned} & \text { COL才 } \\ & \text { COL2 } \\ & \text { COL3 } \\ & \text { COL4 } \\ & \text { ROW1 } \\ & \text { ROW2 } \\ & \text { ROW3 } \\ & \text { ROW4 } \end{aligned}$	Uses key entries from 2 of 7 or 2 of 8 keyboards with common GND. This IC is available with a single contact from A type keyboard and electronic input (Low entry). Key input debouncing time is $\mathbf{2 3} \mathbf{~ m s}$ typ. for both PULSE and DTMF modes. Key input release guard time is 23 ms typ. for both PULSE and DTMF modes. Key entry is accepted in PULSE/DTMF modes only when a single key (one key on the keyboard) is pressed longer than the debouncing time. If two or more keys are pressed, they are not accepted unless they are released one-by-one and the last key is held closed longer than the debouncing time, after all other keys are released. Key entry is accepted in DTMF mode only when either a single key (dual-tone key) is pressed or two or more keys in the same COL or ROW (single-tone keys) are pressed longer than the debouncing time. If one key in COL4 is pressed, the single-tone keys are ineffective. If multiple single-tone keys are pressed, and the last key is held closed longer than the debouncing time, after all other keys are released, the key is effective as the dual-tone key. Hereafter, key entries are described with the premise that keys are held closed longer than the debouncing time. Pauses between key entries in PULSE and DTMF modes must be 50 ms or more. However, up to 50 ms is necessary from key entry to output start for single-tone outputs. Key switch contact resistance up to $5 \mathrm{k} \Omega$ is allowable.
	6	7	MA/BR	This pin selects the make rate. Make ratio switching by MA/BR is inhibited during PULSE/DTMF transmission. The input level is in the CMOS level.
	6	7	MODEIN	This pin selects the pulse mode, $10 \mathrm{pps}, 20 \mathrm{pps}$, or the DTMF mode. Mode switching is not accepted by MODEIN. After data transmission is completed, mode switching is honored by key entry. In the ONHOOK mode, this pin is set to a high impedance state.

PIN DESCRIPTIONS

VO	Pin No.		Symbol	Description	
	DIP	FPT			
Input	14	15	HKS	Hook switch input pin.	
				ONHOOK Mode	Open or $V_{D D}$
				OFFHOOK Mode	GND
				Output is inhibited in ONHOOK mode, and PULSEOUT, DTMFOUT, BEEPOUT, MUTE, and MODEOUT are set at a high impedance state.	
				All key entries are set to HZ and the on-chip operational amplifier and oscillator ($\mathrm{OSCIN}=\mathrm{L}, \mathrm{OSCOUT}=\mathrm{L}$) become power down states.	
				This pin is pulled up by a high resistance internally. The input level is in the CMOS level.	
	9	10	OSCIN	Oscillator input pin. In the ONHOOK mode, this pin is pulled to a low level by a high resistance.	
	16	17	FNCT	This pin selects FLASH time period.	
				FNCT	FLASH output time
				V_{DD}	0.6 second
				GND	0.2 second
				Switching is prohibited during PULSE/DTMF transmission. Input level is in the CMOS level.	
	17	18	SCNT	This input enables a single-tone output.	
				SCNT	Single tone output
				V_{DD}	Output
				GND	Not output
				Switching is prohibited during a PULSE/DTMF transmission. Input level is in the CMOS level.	
Output	10	11	OSCOUT	Oscillator output pin. In the ONHOOK mode, this pin is pulled to a low level by a high resistance.	
	8	9	MODEOUT	The output is in the CMOS level and set to a high impedance state in the ONHOOK mode. Low level is output in the PULSE mode and high level is output in the DTMF mode, including the LDT function. MODEOUT blinks on and off at a frequency of 2.5 Hz typ., if there is no pause before and after mode switching in redial function. When the FLASH key is pressed in either PULSE or DTMF mode, High impedance is output for a 0.6 second (typical) following the BEEP tone output. The key acceptance state (OFFHOOK mode) is now entered.	

PIN DESCRIPTIONS

vo	Pin No.		Symbol	Description
	DIP	FPT		
Output	12	13	MUTE	N-channel open drain output. In both PULSE and DTMF modes, the MUTE pin is in a high impedance state for the following conditions: 1. There is no key entry. 2. After the beep tone is output and the FLASH key is pressed, HZ is output for 0.6 second (typical). 3. During pause output state. (However, when key is pressed, MUTE is low level while beep tone is being output.) 4. During MODEOUT blinking. After key entries become effective in the PULSE or DTMF modes, the MUTE pin is low during output of the beep tone, pulse output (according to numeric key entry), and output of DTMF.
	13	14	BEEPOUT	The output is in CMOS level and the pin is set to a high impedance state unless beep tone is output. In PULSE/DTMF modes, the beep tone is output according to effective key entries. Beep tone is output in 41 ms typ. at 1 kHz in rectangular pulse.
	13	14	PULSEOUT	N-channel open drain output. This pin is in a high impedance state in the ONHOOK mode or DTMF mode. In PULSE mode, this pin is at low for brakes (according to numerical key entries). When the FLASH key is pressed in the PULSE or DTMF mode, a low level is output for 600 ms typ. after the beep tone is sent (even during a PULSE/DTMF send). The key acceptance state (OFFHOOK mode) then returns.
	22	24	DTMFOUT	This DTMFOUT output pin is a bipolar follower that can drive a 100Ω load between pin and GND. When a single key (numerical, ${ }^{*}$ or \#) is pressed in the DTMF modes, dual tone is output. Pressing two or morekeys in the same ROW or COLon the keyboard outputs the signal tone in the ROW or COL. If a key in COL4 is pressed, then the DUAL TONE or single tone in the ROW or COL is not output. (Please see Electrical Characteristics.) If the FLASH key is pressed during DTMF sending, the beep tone is output at BEEPOUT and subsequent DTMF tones are not output. The ONHOOK mode is entered for 600 ms typ. after the key acceptance state (OFFHOOK mode) is entered. DUAL TONE output time conditions are as follows: 1. 80 ms typ. for redial output 2. 80 ms typ. when the key entry time is within 130 ms typ. and more than the debouncing time 3. DUAL TONE output is stopped at once if a key is pressed longer than 130 ms typ. and released. 4. Signal tone is output from the end of debouncing time until the key is released. This pin is set to a high impedance state unless DTMF tone is output.

FUNCTIONAL DESCRIPTIONS

Ordinal Dialing

In OFFHOOK mode, PULSE/DTMF signals are output according to the key input, regardless of the number of key input figures. For the PULSE mode, any number of digital entries withkeys 0 to 9 . For the DTMF mode, any number of digital entries with keys 0 to $9, *$ and (\#).

Up to 26 digits can be stored in the redial memory. In the PULSE mode, a redial digit is counted for any numeric, pause, and LDT entry. In the DTMF mode, a redial digit is counted for any numeric, \square^{*}, \square, and $(\square$ entry.
In both the PULSE and DTMF modes, one digit is counted as mode information when MODEIN is used for mode switching. After OFFHOOK, the first numeric entry is counted as a mode digit. In the PULSE mode the numeric key is counted as a mode digit. In the DTMF mode, a numeric key, \#, and \# entry is counted as a mode digit. In either OFFHOOK or PULSE modes, the mode-information digit is written into the redial memory.

Redialing Function

The redial memory is read out to execute the redialing operation when a redial key is the first key pressed in OFFHOOK state. In the PULSE mode, the redial keys are \# and *. In the DTMF mode, only the RED key is accepted for redial.
When 27 or more digits are written into the redial memory, PULSE or DTMF signals that correspond to the key entries are output, but the redialing operation is ineffective because of memory overflow. At this time, even if the first key pressed after the state change from ONHOOK to OFFHOOK is the redial key, the entry is not accepted and the beep tone is not output in either mode of operation.

After OFFHOOK, if a numeric or LDT key is the first entry in PULSE mode, or the first entry in the DTMF mode is a numeric, 母, \# or a single-tone key entry (excluding COL4), the redial memory is cleared and data is written into memory according to key entry information.

Mixed Redialing

Mixed redialing is executed when the mode is changed from the PULSE to DTMF mode (done by pressing the LDT key), or when MODE is changed during key entries.

If, at redialing, there is a pause before or after mode switching (including LDT), PULSE/DTMF is sent and PULSE/DTMF signals are transmitted after the pause. To redial when there is no pause before or after mode switching (including LDT), all operations must cease after mode switching and a HALT state is enabled. MODEOUT blinks (indicates that mode switching has no automatic pause) and prompts a pause release.

The pause release keys in PULSE mode are *, RED , and the P key. Inthe DTMF mode, the RED and the B keys are used for pause release. PULSE and DTMF signals can now be sent by key entry. The FLASH key is the only other acceptable entry.

During redial output, the F key is the only key entry accepted. The pause release key is only accepted when MODEOUT is blinking or during a pause at redialing.

Mode Switching

During PULSE or TONE transmissions, mode switching by MODEIN is not permitted; after transmission is complete, MODEIN can be used for mode switching.
When PULSE or DTMF modes are switched by MODEIN, one digit is stored into redial memory as mode information. After OFFHOOK, if the first key entry is numeric in the PULSE mode, or a numeric \approx or $\#$ in the DTMF mode, the mode-information digit is written into redial memory.

In the PULSE mode, after the LDT key is accepted only one time, the DTMF mode is selected (regardless of MODEIN pin switching). The LDT key is not accepted in the DTMF mode. The MODEIN pin switching enables the desired mode of operation to be selected.

Line Dial Tone (LDT) Function

If the LDT key is pressed in the PULSE mode, the DTMF mode is selected and DTMF tones can be output. In PULSE mode, only the first LDT key is accepted after key acceptance state (OFFHOOK mode) is entered. Once LDT key is accepted, the following LDT key entries are ignored.
When the LDT key is used to enter the DTMF mode, all keys (excluding COL4 keys) provide dual-tone and single-tone outputs. (Note: If even one COL4 key is pressed, neither dual nor single tones are output.) The mode after that is not switched. If mode switching by LDT from memory is done during redialing, key entries after redialing are executed in DTMF mode regardless of the MODEIN state and the data is written into the redial memory. However, for effective keys (not the redial key) after ONHOOK changes to OFFHOOK, memory is reset and written in the current mode.

Pause Function

A pause state can be entered by pause key entry.
In the PULSE mode, a pause is introduced by pressing the $\#$ or \cap keys; in the DTMF mode (including LDT) only the \mathbb{P} key is effective. If a pause key is the first key pressed after changing from ONHOOK to OFFHOOK, the entry is not accepted.
One pause key entry introduces a pause state that is typically 4 seconds; contiguous pause ($\mathrm{N} \times 4$ seconds) can be executed by making consecutive key entries. The pause can be reduced by entering P or RED during a redialing pause time.

In the PULSE mode, the ${ }^{*}$ key is used as a pause release key. Multiple pauses can be sent up to 500 times faster by entering a pause release key, that is, NX4 seconds becomes NX800 milliseconds.

Flash Function

Keyboard entries enable ONHOOK mode. Only the F key is used as a FLASH key in both PULSE and DTMF modes (including LDT). When the F key is pressed, the ONHOOK mode is entered for 600 milliseconds (typical) after beeptone is sent. During this time, the key entry pin is not accepted. MODEIN, MUTE, MODEOUT, and DTMF/BEEPOUT pins are placed in the high-impedance state and the PULSEOUT pin is set low level. After 600 milliseconds (typical), the return of OFFHOOK is automatic and key entries can again be accepted.

Test (High-speed Mode)

A test mode circuit is built into the IC. In the ONHOOK state, pins OSCIN and OSCOUT are pulled down by a high resistance. To activate the test mode, tie the OSCIN high and apply clock signal to OSCOUT. The internal circuit operates up to 128 times faster than normal operation.

Figure 2. Keyboard Configuration

Figure 3. Reference Circuit

KEY OPERATION DIAGRAM

Redial key for PULSE mode	RED (P) = RED or \#
Redial key for DTMF mode	RED (D) $=$ RED
Pause key for PULSE mode	$P(P)=P$ or \#
Pause key for DTMF mode	$P(D)=P$
Pause release key of PULSE mode	$\mathrm{PR}(\mathrm{P})=$ RED, P , or ${ }^{*}$
Pause release key of DTMF mode	PR (D) = RED or P
Pause output	(P) $=$ Pause

KEY ENTRIES IN PULSE MODE

When MODEIN is set to 10 pps

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) 2	1-2		
OFF	OPEN	RED (P)	1-2		
		(3)	3		
ON					
OFF	OPEN	RED (P)	1-2-3		
ON					
OFF	$V_{D D}$	RED (P)	1-2-3		
ON					
OFF	GND	RED (D)	1-2-3		
					4

KEY ENTRIES IN PULSE MODE
When MODEIN is set to 20 pps

KEY ENTRIES IN DTMF MODE

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output			
			10pps	20pps				
ON								
OFF	GND	(1) 2			1-2			
ON								
OFF	GND	RED (D)			1-2			
		(3)			3			
ON								
OFF	GND	RED (D)			1-2-3			
ON								
OFF	GND	RED (P)			1-2-3			
		(4)		4				

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is a pause before LDT

HOOK	MODEIN	Kay Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) (2) P (P)	1-2-P		3
ON		LDT (3)			
OFF	GND	RED (P)	1-2-P		3
		(4)			4
ON					
OFF ON	V_{DD}	RED (P)	1-2-P		3-4
OFF	GND	RED (D)	1-2-P		3-4

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is a pause after LDT

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) (2) LDT	1-2		(P) ${ }^{3}$
ON		$P(D)$			
OFF	GND	RED (P)	1-2		P_{4}^{-3}
ON					
OFF ON	$V_{D D}$	RED (P)	1-2		(P) -3-4
OFF	GND	RED (D)	1-2		(P) $-3-4$

KEY ENTRIES WHEN THE LDT KEY IS USED

When there is no pause before and after LDT

KEY ENTRIES WHEN PULSE/DTMF MODE IS SWITCHED (MIXED REDIAL)
When there is a pause before mode switching

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$			$1-2-P$	3-4-P	5-*-P
	OPEN	(1) 2) P (P)			
	$V_{\text {DD }}$	(3) 4 P P P			
	GND	(5) ${ }^{*}$ P (D)			
	OPEN	(6) 7	6-7		
ON				$3-4-P$	5-*-P
OFF	OPEN	RED (P)	$\begin{gathered} 1-2-P \\ 6-7 \end{gathered}$		
$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$					5-*-P
	$V_{D D}$	RED (P)	$\begin{gathered} 1-2-P \\ 6-7 \end{gathered}$	3-4-P	
$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$					
	GND	RED (D)	$\begin{gathered} 1-2-P \\ 6-7 \end{gathered}$	3-4-(P)	5-*-P

MB87029

KEY ENTRIES WHEN PULSE/DTMF MODE IS SWITCHED (MIXED REDIAL)
When there is a pause after mode switching

REDIAL MEMORY INHIBIT FUNCTION

HOOK	MODEIN	Key Entry	PULSE Output		DTMF Output
			10pps	20pps	
ON					
OFF	OPEN	(1) \cdots. 1 (1)	$\underbrace{1-1 \ldots \ldots .1-1}$		
ON		25	25		
OFF	OPEN	RED (P)	1-1.....1-1		
ON			$\underbrace{1-1 \cdot 1-1}_{25}$		
OFF	OPEN	(1) 1 .. 11	1-1.....1-1		
ON		$\underbrace{}_{26}$	$\underbrace{1-1}_{26}$		
OFF	OPEN	RED (P)	No output		
		(2)	2		
ON					
OFF	OPEN	RED (P)	2		
ON					
OFF	$V_{D D}$	RED (P)	2		
ON					
OFF	GND	RED (D)	2		
		(3)			3
ON					
OFF	OPEN	LDT 1 1 $1 .$.			1-1.....1-1
ON		$\underbrace{119}_{25}$			$\underbrace{1}_{25}$
OFF	OPEN	RED (P)			$\underbrace{1-1 \cdots \cdots \cdot 1-1}$
ON					25
OFF	OPEN	(1) LD LD 1 (1)	1-1		
ON					$\underbrace{1-1 \cdots \cdots \cdot 1-1}_{23}$
OFF	OPEN	RED (P)	No output		No output

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
Power Supply Voltage	$V_{\text {DD }}$	V_{DD}	PULSE mode and memory retention mode	2.0		6.0	V
			DTMF mode	2.5		6.0	V
Input Voltage	V_{1}	All Inputs		0		$V_{D D}$	V
Output Load Resistance	R_{0}	DTMFOUT	Between output pin and GND	0.1		20	k Ω
Operating Temperature	TA			-30		60	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V_{D D}:$ PULSE mode $=2.0$ to $6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}:$ DTMF mode $=\mathbf{2 . 5}$ to $6.0 \mathrm{~V}, \mathrm{TA}=\mathbf{- 3 0}$ to $\mathbf{6 0}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Pin Name	Condition		Value			Unit
					Min	Typ	Max	
Power Supply Current	ldD	$V_{\text {DD }}$	All output pins are open in DTMF mode			2.5	5.0	mA
	IDP		All output pins are open in PULSE mode			1.0	2.0	mA
	IDSt		All output pins, HKS pin open in Standby			1.5	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD} 1}$		$V_{D D}=$ 2.5 V $T A=$ $25^{\circ} \mathrm{C}$	All output pins open in DTMF		1.0	2.0	mA
	$\mathrm{IDP1}$			All output pins open in PULSE		0.3	0.6	mA
	TDST1			All output pins HKS open in Standby		0.2	1.0	$\mu \mathrm{A}$
Digital Input Voltage 1	V_{1+1}	COLT to COL4 ROWT to ROW4			0.8 V DD		V_{DD}	V
	$\mathrm{V}_{\text {LL }}$				0		$\frac{1}{5} V_{D D}$	V
Digital Input Voltage 2	$\mathrm{V}_{\mathbf{H} 2}$	HKS, FCNT MODEIN, SCNT MABR			0.8 V DD		$V_{D D}$	V
	$V_{1 L 2}$				0		$\frac{1}{5} V_{D D}$	V
Digital Input Current 1	I_{1+1}	COLT to COL4 ROW才 TO ROW4		$V_{1}=V_{D D}$	-0.01		$\frac{1}{5} \mathrm{~V}_{\mathrm{DD}}$	mA
	$l_{\text {LL1 }}$			$V_{1}=$ GND	-0.01 V DD		0.01	mA
Digital Input Leakage Current 1	$\mathrm{I}_{1 \mathbf{1}}$			entry HZ $0 \leq V_{1} \leq V_{D D}$	-10		10	$\mu \mathrm{A}$
Digital Input Current 2	$\mathbf{I H H 2}^{2}$	MODEIN	$V_{1}=V^{\prime}$		-0.01		$\frac{1}{75} \mathrm{~V}_{\mathrm{DD}}$	mA
	I_{12}		$V_{1}=\mathbf{C}$		$\begin{gathered} -1 / 75 \\ V_{D D} \end{gathered}$		0.01	mA
Digital Input Leakage Current 2	l_{172}		$\begin{aligned} & \text { MODI } \\ & \text { GND } \end{aligned}$	$\begin{aligned} & H Z \\ & 1 \leq V_{D D} \end{aligned}$	-10		10	$\mu \mathrm{A}$
Digital Input Current 3	$\mathrm{l}_{1 / 3}$	MA/BR, SCNT, FCNT	$\mathrm{V}_{1}=\mathrm{GND}$		-10		10	$\mu \mathrm{A}$
	1_{1+3}	HKS, MA/BR, SCNT, FCNT	$V_{1}=V_{D D}$		-10		10	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
Pull-up Resistor	RPLU	HKS		100	200	400	k Ω
Digital Output Voltage	V_{OH}	MODEOUT BEEPOUT	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$	$V_{D D}-0.5$		$V_{D D}$	V
	VoL	MODEOUT, PULSEOUT, MUTE, BEEPOUT	$\mathrm{l}_{\mathrm{LL}}=0.5 \mathrm{~mA}$	0		0.5	V
Digital Output Off Leakage Current	lot	MUTE, PULSEOUT, MODEOUT, BEEPOUT	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{DD}}$	-10		10	$\mu \mathrm{A}$
External Resistance when digital input is open	$\mathrm{R}_{\text {DIO }}$	ROWT TO ROW4 COLT to COL4 HKS, MODEIN	Resistance connected to external circuit when input is open. The other end of the resistance must be between O V and $V_{D D}$.	1			M Ω
Pull-down Resistance	$\mathrm{R}_{\text {PL }}$	CIN	ONHOOK mode	75	150	300	k Ω
Oscillator Frequency	$\mathrm{O}_{\text {sclin }}$	OSCOUT			3.579545		MHz
DTMF Output Voltage 100Ω placed between output pin and GND.	A ${ }_{\text {out }}$	DTMFOUT	No signal is output		0		V
			Offset voltage when signals are output		$\begin{gathered} 0.6 V_{D D} \\ -0.75 \end{gathered}$		V
			DTMF TONE output voltage		1.44		Vp-p
			ROW single tone output voltage		0.64		$\mathrm{Vp}-\mathrm{p}$
			COLUMN single tone output voltage		0.80		$\mathrm{Vp}-\mathrm{p}$
			COLUMN/ROW tone ratio		2.0		dB
Redial Memory Digit	$\mathrm{N}_{\text {RKEY }}$	COLT to COL4 ROW才 TO ROW4				26	digits
Make Ratio	$\mathrm{W}_{\text {MAKE }}$	PULSEOUT	$\mathrm{MA} / \mathrm{BR}=\mathrm{V}_{\mathrm{DD}}$		39		\%
			MABR $=$ GND		33		\%
Oscillation Start time	toss	OSCIN, OSCOUT		0	8	16	ms
Oscillation Stop time	tossp			0	8	16	ms

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
$\begin{aligned} & \text { Key Entry HZ } \\ & \text { Hold time } \\ & \hline \end{aligned}$	${ }_{\text {thzKH }}$	COLT to COL4 ROW1 TO ROW4		0		5	ms
MODEIN HZ Hold time	$\mathrm{thzMIH}^{\text {l }}$	MODEIN		0		5	ms
MODEOUT HZ Hold time	$\mathrm{t}_{\text {HzMoh }}$	MODEOUT		0		5	ms
Key Entry HZ Start time	$\mathrm{t}_{\mathrm{Hzks}}$	COLT to COL4 ROW1 TO ROW4		0		5	ms
MODEIN HZ Start time	$t_{\text {Hzmis }}$	MODEIN		0		5	ms
MODEOUT HZ Start time	$\mathrm{t}_{\mathrm{Hzmos}}$	MODEOUT		0		5	ms
Pause Time	$t_{\text {PAS }}$	PULSEOUT, DTMFOUT		3.85	4.0	4.15	s
MODEOUT Switch Start time 1	${ }^{\text {moci }}$	MODEOUT			12		ms
MODEOUT Switch Start time 2	$\mathrm{t}_{\text {MOC2 }}$			2	5	8	ms
MODEOUT HZ Start Time by F key entry	${ }^{\text {tmofs }}$				72		ms
MODEOUT HZ			$F C N T=V_{D D}$	0.59	0.6	0.61	
key entry	${ }^{\text {mof }}$		FCNT = GND	0.09	0.1	0.11	
MODEOUT Blinking Period	$t_{\text {mosi }}$			0.39	0.4	0.41	s
MODEOUT Change Start time by pause release key entry	${ }^{\text {mops }}$				28		ms
DTMFOUT Output Start time when mode is switched	$t_{\text {MSt }}$	DTMFOUT		2	10	15	ms
DTMF Output Start time by pause release key entry	$t_{\text {PDT }}$				39		ms
PULSEOUT Output Hold time by F key entry	$t_{\text {PuFH }}$	PULSEOUT	$\mathrm{FCNT}=\mathrm{V}_{\mathrm{DD}}$	0.59	0.6	0.61	s
			$\mathrm{FCNT}=\mathrm{GND}$	0.09	0.1	0.11	
PULSEOUT OUTPUT Start time by F key entry	$t_{\text {puFs }}$				72		ms

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition		Value			Unit
					Min	Typ	Max	
Key Entry Width1	$t_{\text {wK1 }}$	COL1 to COL4 ROW1 TO ROW4			50			ms
Key Entry Width2	$t_{\text {WK2 }}$				50			ms
Key Input Pause Time	t_{pK}				50			ms
Key Entry Debouncing time	t_{CH}				21	23	25	ms
Key Entry Release Guard time	$t_{\text {fe }}$				21	23	25	ms
BEEP TONE Output Start time	$t_{\text {beS }}$	DTMF/BEEPOUT				31		ms
BEEP TONE Output Width	${ }^{\text {twbe }}$				39	41	43	ms
MUTE LOW Output Start time	$t_{\text {mus }}$	MUTE				31		ms
MUTE LOW Output Hold time 1	${ }^{\text {tmusp } 1}$			pps	26	30	34	ms
				pps	13	15	17	
			Dual Tone Output		100	110	120	
Pulse Predigital Pause Time	$t_{\text {PDP }}$	PULSEOUT	$\begin{gathered} M A / B R= \\ V_{D D} \end{gathered}$	10 pps mode	950	980	1016	ms
				20 pps mode	480	510.5	556	
			$\begin{gathered} \text { MA/BR }= \\ \text { GND } \end{gathered}$	10 pps mode	950	974	1016	ms
				20 pps mode	480	507.5	556	
Pulse Make Width	$t_{\text {wma }}$		$\begin{gathered} M A / B R= \\ V_{D D} \end{gathered}$	10 pps mode	38	39	40	ms
				20 pps mode	19	19.5	20	
			$\begin{gathered} \text { MA/BR }= \\ \text { GND } \end{gathered}$	10 pps mode	32	33	34	ms
				20 pps mode	16	16.5	17	
Pulse Break Width	${ }^{\text {twer }}$		$\begin{gathered} \mathrm{MA} / \mathrm{BR}= \\ \mathrm{V}_{\mathrm{DD}} \end{gathered}$	10 pps mode	60	61	62	ms
				20 pps mode	30	30.5	31	
			$\begin{gathered} \text { MA/BR }= \\ \text { GND } \end{gathered}$	10 pps mode	66	67	68	ms
				20 pps mode	33	33.5	34	
Pulse Interdigital Pause Time	tIDP		$\begin{gathered} M A / B R= \\ V_{D D} \end{gathered}$	10 pps mode	900	939	960	ms
				20 pps mode	450	469.5	480	
			$\begin{gathered} \text { MA/BR }= \\ \text { GND } \end{gathered}$	10 pps mode	900	933	960	ms
				20 pps mode	450	466.5	480	

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Pin Name	Condition	Value			Unit
				Min	Typ	Max	
MUTE LOW Output Hold time 2	$t_{\text {musp2 }}$	MUTE	Single Tone Output	0		8	ms
DUAL TONE Output Time	${ }^{\text {w WDT }}$	DTMF/BEEPOUT		78	80	82	ms
DTMF Interpause Time	${ }_{\text {t }}$ (TP			78	80	82	ms
Single Tone Output start time	${ }^{\text {tsis }}$		$\mathrm{SCNT}=\mathrm{V}_{\mathrm{DD}}$		31		ms
Single Tone Output stop time	${ }_{\text {tsisp }}$			0		45	ms
DUAL TONE Output start time	$t_{\text {DTS }}$				39		ms
DUAL TONE Output stop time	$t_{\text {DTSP }}$			0		5	ms
MUTE Hold Time 1 by PAUSE key entry	$t_{\text {tPSM1 }}$	MUTE		0	10	20	ms
MUTE Hold Time 2 by PAUSE key entry	$t_{\text {PSM2 }}$			75	90	105	ms
MODEOUT Blinking Start time	${ }^{\text {tmost }}$	MODEOUT		0	5	10	ms

DTMF OUTPUT SIGNALS

Item	Symbol	Standard DTMF (Hz)	DTMF Output Signal* (Hz)	Error to standard TDMF $(\%)$
ROW1	FR1	697	696.95	-0.01
ROW2	FR2	770	770.13	+0.02
ROW3	FR3	852	852.27	+0.03
ROW4	FR4	941	940.99	-0.01
COL1	FC1	1209	1209.31	+0.03
COL2	FC2	1336	1335.65	-0.03
COL3	FC3	1477	1476.71	-0.02

Note: *Oscillation frequency 3.579545 MHz

Figure 4. Key Input Timing

Notes: ${ }^{1}$ Key Input Debouncing Time tCH
Key entry is accepted if low level is longer than 23 ms typ.
2Key Input Release Guard Time tRE
Key release is recognized if low level is longer than 23 ms typ.

TIMING CHART 1-A
When there is a pause before LDT key in PULSE mode

TIMING CHART 1-B
When there is a pause before LDT key in PULSE mode

TIMING CHART 2-A
When there is no pause before or after LDT key in PULSE mode

TIMING CHART 2-B
When there is no pause before or after LDT key in PULSE mode

TIMING CHART 3-A

TIMING CHART 3-B

In DTMF mode

PACKAGE DIMENSIONS

DUAL TONE MULTI FREQUENCY RECEIVER

The MB87057 is a one chip DTMF receiver with an input amplifier gain adjuster and low power consumption, integrating filter and decoder circuits. The MB87057 can automatically set guard times.
This circuit consists of SCFs (Switched Capacitor Filters) and decoders which convert 16 types of DTMF tone pairs into hexadecimal four-bit codes.

- All DTMF receiver functions are integrated on one chip.
- Low power consumption
- Built-in input amplifier gain adjustment circuit
- Automatic guard time setup

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE (DIP-18P-M02)

PLASTIC PACKAGE
(FPT-24P-M02)

[^40]PIN ASSIGNMENT

BLOCK DIAGRAM

(DIP PACKAGE)

PIN DESCRIPTIONS

Pim Number		Symbol	10.	
DIP.	FPT.			mon
1	1	AIN	I	Analog input pin (non-inverted operational amplifier input)
2	2	$\mathrm{G}_{\wedge 1}$	1	Operational amplifier gain adjustment pin 1 (inverted operand amplifier input). Operational amplifier gain adjustment pin 2 (operand amplifier output pin). * These pins are provided for operational amplifier gain adjustment. The polarity of $G_{\wedge 1}$ is opposite to that of $G_{\wedge 2}$.
3	3	G^{2}	0	
4	5	$V_{\text {fef }}$	0	Reference voltage output pin. ($1 / 2 \mathrm{~V}$ DD)
5	6	AG	-	Analog ground pin
6	7	TEST	-	Test pin. Usually set to ground level.
7	8	OSC1	1	Clock input pin. Clock output pin. * Connect a 3.5795 MHz crystal between OSC1 and OSC2 pins.
8	11	OSC2	0	
9	12	GND	-	Ground pin
10	13	TOE	1	Three-state output enable pin. * Data from Q_{1} to Q_{4} may be output when this pin is set to "High".
11 to 14	$\begin{aligned} & 14,15 \\ & 18,19 \end{aligned}$	Q_{1} to Q_{4}	0	Three-state data output pin.
15	20	DS	0	Signal detection pin. * This pin goes to "High" when an available tone pair is received and decoded, and the data in the output data-bus is updated.
16	21	DF	0	Frequency detection pin. * This pin goes to "High" when a received tone pair is acknowledged as the valid DTMF signal frequency.
17	23	GT	0	Since " H " has been output, secure the pin in the "Open" or $\mathrm{V}_{\text {do }}$ position.
18	24	$V_{D D}$	-	Positive supply voltage pin. * The voltage must be $+5 \mathrm{~V} \pm 5 \%$.
-	$\begin{gathered} 4,9 \\ 10,16 \\ 17,22 \end{gathered}$	NC	-	No connection

FUNCTIONAL DESCRIPTIONS

1. FILTER

The filters consist of 3 sixth-order SCFs. The dial tone removal filter (including the 60 Hz filter). Output is connected to the individual hysteresis comparators through the low group and high group filters. In the figure below, the solid line shows the characteristics of the low group filter while the broken line shows the characteristics of the high group filter. At a frequency of 770 Hz , it is assumed that 0 dB are lost. Therefore, this point is used for reference.

2. DECODER

2.1 Digital Frequency-detecting Circuit

The DF (Detect Frequency) pin goes to "High" when the detector circuit acknowledges the output signals from the two comparators as valid DTMF signal frequencies in the digital frequency detecting block.

2.2 Guard Time Setup Circuit

The automatic setup mode is provided for guard time setup. Guard time has two types: GTP (Guard Time Present) and GTA (Guard Time Absent).

2.2.1 Automatic guard-time setup circuit

The automatic guard time setup circuit sets both tarp and tata to 20 ms . The output signal from the filters may be acknowledged as a DTMF signal if:
(1) A signal with valid DTMF frequency lasts more than 40 ms . This signal is decoded into a DTMF signal. These pulses correspond to the input signal enable period and disable period for alternative current characteristics.
(2) A period of more than 40 ms exists between DTMF signals n and ($n+1$). If this is not the case the DTMF signal ($n+$ 1) is disabled.
These pulses correspond to the inter-digit pauses for acceptance and rejection for alternative current characteristics.
In (1), it takes the DS (Detect Signal) pin GTP to acknowledge that the input signal is a DTMF signal after DF switches to "High". The DS pin switches to "High" when the input signal is acknowledged as a DTMF signal.
In (2), it takes the DS pin GTA to disable DTMF signal n after DF switches to "Low". The DS pin switches to "Low" when the signal is disabled. (See Page 8 for the timing chart.)

$$
\begin{aligned}
& t_{\text {soA }}>t_{\text {GTPP }}+t_{\text {tod }} \\
& t_{\text {IDA }}>t_{\text {ADF }}+t_{\text {a }}
\end{aligned}
$$

FUNCTIONAL DESCRIPTIONS

3. OUTPUT CIRCUIT

When the signal detector pin (DS) switches to "High", a received tone pair is stored in the output circuit register. The output latch status may be output on the output bus by setting the three state control input (TOE) to "High".

ROWO	COLO	COL1	COL2	COL3	Dial	Atimput		limut Tot	Outint					
						Low group: io	High group? \%		a.	M	@	介		
	1	2	3	A	1	697	1209	1	0	0	0	1		
					2	697	1336	1	0	0	1	0		
ROW1					3	697	1447	1	0	0	1	1		
	4	5	6	B	4	770	1209	1	0	1	0	0		
					5	770	1336	1	0	1	0	1		
ROW2	78		$9 \quad \mathrm{C}$		6	770	1477	1	0	1	1	0		
			7	852	1209	1	0	1	1	1				
			8	852	1336	1	1	0	0	0				
ROW3	0 \# D				9	852	1477	1	1	0	0	1		
					0	941	1336	1	1	0	1	0		
					*	941	1209	1	1	0	1	1		
DTMF Dial Matrix					\#	941	1477	1	1	1	0	0		
					A	697	1633	1	1	1	0	1		
							B	770	1633	1	1	1	1	0
							C	852	1633	1	1	1	1	1
					D	941	1633	1	0	0	0	0		

4. SAMPLE DIFFERENCE INPUT CONFIGURATION

The MB87057 uses a difference input amplifier and provides for a bias power source ($V_{\text {REF }}$) to apply a bias voltage to the input signal. This also allows a pin to connect a gain adjustment resistor to the amplifier output.

RECOMMENDED OPERATING CONDITIONS

\&amatal	Simmat	8ating			แ\#\%
		Minmum		Maylmin.	
Supply Voltage	$V_{\text {Do }}$	4.75	5.0	5.25	V
Input Voltage	V_{1}	0	-	$V_{\text {Do }}$	V
Oscillation Frequency	fosc	3.5759	3.5795	3.5831	MHz
OSC1 Pin Load Capacitance	$\mathrm{C}_{\text {LoI }}$	10.0	-	50.0	pF
OSC2 Pin Load Capacitance	$C_{\text {Lo }}$	10.0	-	50.0	pF
GA2 Pin Load Resistance	RLA	50	-	-	k Ω
GA2 Pin Load Capacitance	Cu_{4}	-	-	100	pF
Operating temperature	$\mathrm{T}_{\text {A }}$	0	-	70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

				Fating		
ramamar	chanom	conamon	Minimum	Wyucal	Maximum	mı.
Supply Voltage	$V_{\text {DD }}$		4.75	5.0	5.25	V
Power Consumption	P ${ }_{\text {D }}$	$f=3.58 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	25	37	mW
Low Level Input Voltage	VIL		0	-	0.8	V
High Level Input Voltage	$\mathrm{V}_{\text {H }}$		2.0	-	$V_{\text {Do }}$	V
Low Level Input Leak Current	$1 / 2$	$V_{1}=$ GND	-10	-	10	$\mu \mathrm{A}$
High Level Input Leak Current	$l_{1 H}$	$V_{1}=V_{D D}$	-10	-	10	$\mu \mathrm{A}$
Low Level Output Voltage	VoL	$\mathrm{loL}=2 \mathrm{~mA}$	0	-	0.4	V
High Level Output Voltage	Vor	$\mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$	2.4	-	V ${ }_{\text {D }}$	V
$V_{\text {ref }}$ Output Voltage	$\mathrm{V}_{\text {fef }}$		-	2.5	-	V

AC CHARACTERISTICS

Parametel	Syinbols	Condition	$\mathrm{V}_{\text {DD }}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\text {A }}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			
				Rating		Unil
			M1/mums	Typlea!	Maximum	
Signal Input Level ${ }^{\circ}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-29	-10	-1	dBm
TWIST			-	± 10	-	dB
Allowable Frequency Deviation			$\pm 1.5 \pm 2 \mathrm{~Hz}$	-	-	\%
Prohibited Frequency Deviation			± 3.5	-	-	\%
Allowable Noise Level ${ }^{\text {a }}$			-	-12	-	dB
Allowable Dial Tone Level $\quad 4$			-	22	-	dB
Input Signal Detection Timing (Present) ${ }^{\text {. }}$	tppa		5	11	14	ms
Input Signal Detection Timing (Absent) ${ }^{\text {² }}$	tapr		0.5	4	8.5	ms
Input Signal Enable Period (Accept) ${ }^{\circ} 5$	tsoA		-	-	40	ms
Input Signal Enable Period (Reject) ${ }^{\text {5 }}$	tsor		20	-	-	ms
Inter-digit Pause (Accept) ${ }^{\circ} \mathrm{5}$	tipa		-	-	40	ms
Inter-digit Pause (Reject) $\quad .5$	tipR		9	-	-	ms
Input Clock Frequency	$\mathrm{fin}^{\text {f }}$		3.5759	3.5795	3.5831	MHz
Clock Rise Time	tr		-	-	110	ns
Clock Fall Time	H		-	-	110	ns
Clock Duty	DR		-	50	-	\%

*1 dBm: 600 ohm reference
*2 TWIST = High group tone voltage/Low group tone voltage
*3 Allowable noise $=$ Total allowable noise within the range 300 Hz to $3.4 \mathrm{kHz} /$ Minimum amplitude tone level in valid tone pairs
*4 Allowable dial tone level = Total allowable normal dial tone volume/Minimum amplitude tone in valid tone pairs
*5 See Timing Chart.

TIMING CHART

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

Section 8

Coders/Decoders (CODECs) - At a Glance

Page	Device	Companding Law	Operation	Package Options		
$8-3$	MB6021A* 6022A	H-Law A-Law	Sync/Async Sync/Async	16-pin 18-pad	Plastic Plastic	DIP LCC

*Available in North America only

MB6021/6022 PCM CODEC

The Fujitsu CMOS BD6020 series consists of both μ-law and A-law single-chip codec/filter ICs for either synchronous-only or sync/async operation. These monolithic, single-channel, voice-frequency codecs incorporate both transmit and receive circuitries that are used for PCM (pulse coded modulation) systems.

- Transmit high-pass and low-pass filters
- Receive low-pass filter with $\operatorname{Sin} X / X$ Correction
- Anti-aliasing filter
- Conforms to CCITT and AT\&T specifications
- Synchronous and asynchronous operation: MB6021, MB6022
- Serial data rates of 64 kHz to 3.152 MHz
- PLL circuits as internal clock generator
- Internal voltage reference
- Internal auto-zero circuit
- TIL compatible digital interface
- Input gain adjust amplifier
- Pin selectable on-chip analog loopback
- μ-law: MB6021

A-law: MB6022

- Package: 16-pin ceramic DIP package (Suffix: -CZ)

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Pin MB6021 MB6022	Min.	Max.	Unit
Positive Supply Voltage	$+\mathrm{V}_{\mathrm{S}}$	7	-0.3	7	V
Negative Supply Voltage	$-\mathrm{V}_{\mathrm{S}}$	16	-7	0.3	V
Reference Supply Voltage	$\mathrm{V}_{\text {REF }}$	6	$-\mathrm{V}_{\mathrm{S}}$	$+\mathrm{V}_{\mathrm{S}}$	V
Analog Input Voltage	$\mathrm{V}_{\text {AIN }}$	1	$-\mathrm{V}_{\mathrm{S}}-0.3$	$+\mathrm{V}_{\mathrm{S}}+0.3$	V
Digital Input Voltage	$\mathrm{V}_{\text {DIN } 1}$	$8,9,10$, 11,12	-0.3	$+\mathrm{V}_{\mathrm{S}}+0.3$	V
Digital Input Voltage	$\mathrm{V}_{\text {DIN2 }}$	14	$-\mathrm{V}_{\mathrm{S}}-0.3$	$+\mathrm{V}_{\mathrm{S}}+0.3$	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$		-55	150	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, 1 is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^41]
BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The transmit section in the upper-half of the block diagram is composed of an input gain amplifier, an anti-aliasing filter (ANTI-ALIAS), a band-pass filter (COS, LPT, and HPF), and a compressing coder (CODER). An auto-zero circuit (AZ) is also included in this section. The receive section (lower half) is composed of an expanding decoder (DECODER) and a low-pass filter (LPF).

TRANSMIT SECTION

Analog signals are input to an operational amplifier to provide gain adjustment. This amplifier is followed by a 2nd order analog anti-aliasing filter (ANTI-ALIAS). This filter provides attenuation of 40 dB (typical) at the 256 kHz effective clock frequency of the following switched capacitor cosine filter (COS). From the cosine filter, the signals enter a 5 th order low-pass (LPF) clocked at 128 kHz , followed by a 3rd order high-pass filter (HPF) clocked at 128 kHz . The resulting band-pass characteristics meet both the D3/D4 specification and the CCIT G. 712 recommendation. The output of the high-pass filter is then sampled by the coder (CODEC) at 8 kHz . This coder transforms the analog signals into 8 -bit words using compressing law. The encoded PCM data is then output serially from the OUTPUT REGISTER at a frequency determined by the external clock, 64 kHz to 3.152 MHz . An auto-zero circuit (AZ) is utilized for DC offset correction.

RECEIVE SECTION

This filter smooths the decoded signals and corrects for $\operatorname{Sin} X / X$ attenuation caused by the 8 kHz sample and hold operation. The decoder (DECODER) reconstructs the analog signals from the PCM data using expanding law. The decoder is followed by a 5 th order low pass filter (LPF). This filter smooths the decoded signals and corrects them for the $\operatorname{Sin} \mathrm{X} / \mathrm{X}$ attenuation due to the 8 kHz sampling and holding operation.

INTERNAL CLOCK

Two independent phase locked loops (PLL) generate internal clocks for the transmit and receive sections from the respective synchronization clocks (XSYNC and RSYNC).

ANALOG LOOPBACK MODE

The analog loopback mode allows all decoding and coding functions to be exercised without using the analog input (AIN) and analog output (AOUT). In this mode, a digital input signal is decoded and internally routed to the transmit filters.

The output is available from the digital output (DOUT). The analog output (AOUT) is forced to the analog ground (AG) level. The analog loopback mode is selected by connecting the PD/L input to the negative supply voltage (-VS).

POWER DOWN MODE

Two power down modes are provided. The transmit and receive sections independently go into power down operation in the absense of the respective synchronization clock (XSYNC and RSYNC). If the external power down input (PD/L) is connected to a TTL low level, both the transmit and receive section are powered down regardless of the synchronization clocks. During power down operation, AOUT is forced to the level of AG, and DOUT goes into a high-impedance state.

TEST MODE

The VREF/T pin is connected to-VS, test mode allows independent evaluation of the coder and decoder. In this mode, AIN is internally connected to the input of the coder and its output is available on the DOUT pin. Also, the output of the decoder is made available on pin AOUT.

PIN DESCRIPTION

MB6021, MB6022		Description
Pin Name	Pin No.	
AIN	1	Analog Input. This is an input pin for analog signals to be filtered and coded.
$\begin{aligned} & \text { GA1 } \\ & \text { GA2 } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Gain Adjust 1 Gain Adjust 2 These pins are provided for adjusting the gain of transmit section. GA1 and GA2 are the inverting input and output of the amplifier, respectively. GA2 can drive a load impedance of 10 to $20 \mathrm{k} \Omega$ and 50 pF or less.
AG	4	Analog Ground. All analog signals are referenced to this pin.
AOUT	5	Analog Output. This pin outputs the decoded and filtered analog signals. It can drive a load impedance of $3 \mathrm{k} \Omega$ or greater, and 100 pF or less. This output is forced to $A G$ level in the analog loopback mode and power down mode.
VREF/T	6	Reference Voltage Supply/Test. This pin is provided for the supply of an external voltage reference, for the selection of an internal reference, or for the selection of test mode. If VREF/T is greater than 2 V , the external voltage reference is selected. In this mode, a 2.5 V reference is recommended. If this pin is at the TTL low level or left open, the internal reference (2.5 V) is selected. If this pin is connected to -VS, the test mode with the internal reference results. In this mode, AIN is internally connected to the input of the coder and its output is available on the DOUT pin. Also, the output of the decoder is directly available on the AOUT pin.
+VS	7	Positive Voltage Supply, $+5 \mathrm{~V} \pm 5 \%$.
DIN	8	Digital Input. This is a TTL compatible input to the decoder and accepts an eight-bit data word into the shift register on the falling edge of RCL.K.
RCLK	9	Receive Clock. This TTL compatible input defines the bit rate on the receive PCM highway. The device can operate with clock rates of 64 kHz to 3.152 MHz . The digital PCM codes are accepted on the falling edge of the clock.
XCLK	10	Transmit Clock. This TTL compatible input defines the bit rate on the transmit PCM highway. The device can operate with bit rates of 64 kHz to 3.152 MHz . The digital PCM codes are shifted out of the digital output (DOUT) pin on the rising edge of the XCLK.
RSYNC	11	Receive Synchronization Clock. This TTL compatible input defines the beginning of the receive timeslot on the receive PCM highway. It must be synchronized with RCLK. The clock rate is typically 8 kHz and its duration can be equal to or more than one RCLK cycle.
XSYNC	12	Transmit Synchronization Clock. This TTL compatible input defines the beginning of the transmit timeslot on the transmit PCM highway. It must be synchronized with XCLK. The clock rate is typically 8 kHz and its duration can be equal to or more than one XCLK cycle.
DG	13	Digital Ground. All digital signals are reference to this pin.
PD/L	14	Power Down/Analog Loopback. This three level input is provided for the selection of power down mode or analog loopback mode. If this pin is at the TTL high level, the normal operation is selected. If this pin is at the TTL low level, the device is powered down regardless of the synchronization clocks. If this pin is connected to -VS, the analog loopback mode is selected. In this mode, the output of the receive filter in internally connected to the input of the transmit filter and AOUT is forced to AG level.
DOUT	15	Digital Output. This is a TTL compatible open-drain output. A pull-up resistor greater than $0.5 \mathrm{k} \Omega$ must be connected to +VS. PCM digital codes are shifted out of the device on the rising edges of XCLK in a serial format. This output goes into high-impedance state when eight bits are shifted out of the output shift register.
-VS	16	Positive Voltage Supply, $-5 \mathrm{~V} \pm 5 \%$.

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value			Unit
			Min.	Typ.	Max.	
Positive Supply Voltage	7	+VS	+4.75	+5.0	+5.25	V
Negative Supply Voltage	16	-VS	-5.25	-5.0	-4.75	V
External Reference Voltage	6	$\mathrm{V}_{\text {REF }}$	-	2.5	-	V
Internal Reference Voltage*	6	$\mathrm{V}_{\text {IREF }}$	-0.8	0	0.8	V
Digital Output Load Resistance	15	R_{DL}	0.5	-	-	$\mathrm{k} \Omega$
Digital Output Load Capacitance	15	C_{DL}	-	-	144	pF
Analog Output Load Resistance	5	R_{L}	3	-	-	$\mathrm{k} \Omega$
Analog Output Load Capacitance	5	C_{L}	-	-	100	pF
Operating Temperature	-	Top	0	25	70	${ }^{\circ} \mathrm{C}$

Note: *VREF/T pin (pin No. 6) may be left open to select Internal Reference Voltage

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Conditions	$\underset{\text { MB6021/22 }}{\text { Pin }}$	Symbol	Value			Unit
				Min.	Typ.	Max.	
Positive Supply Current	Operating	7	+lvs		7.0	10.0	mA
Negative Supply Current	Operating	16	-lvs	-10.0	-5.0	-	mA
Positive Supply Current Power Down Mode	$\begin{gathered} \text { XSYNC }=\mathrm{RSYNC}=\mathrm{VIL} \\ S Y N C=\text { VIL } \end{gathered}$	7	+lvsst	-	1.0	2.0	mA
	PD/L = VIL			-	0.3	1.0	mA
Negative Supply Current Power Down Mode	$\begin{gathered} \text { XSYNC }=\text { RSYNC }=\text { VIL } \\ \text { SYNC }=\text { VIL } \end{gathered}$	16	-lvsst	-0.5	-0.1	-	mA
	$\mathrm{PD} / \mathrm{L}=\mathrm{VIL}$			-0.5	-0.1	-	mA
Reference Supply Current	VREF $/ T=2.5 \mathrm{~V}$	6	IVReF	10	40	100	$\mu \mathrm{A}$
Digital Input High Voltage		$\begin{gathered} 8,9,10,11 \\ 12,14 \end{gathered}$	V_{IH}	2.0	-	+VS	V
Digital Input Low Voltage		$\begin{gathered} 8,9,10,11 \\ 12,14 \end{gathered}$	$\mathrm{V}_{\text {IL }}$	0	-	0.8	V
Digital Input High Current		$\begin{gathered} 8,9,10,11 \text {, } \\ 12,14 \end{gathered}$	I_{H}	-	-	10	$\mu \mathrm{A}$
Digital Input Low Current		$\begin{gathered} 8,9,10,11 \\ 12,14 \end{gathered}$	11.	-	-	10	$\mu \mathrm{A}$
Digital Input Capacitance		$\begin{gathered} 8,9,10,11 \\ 12,14 \end{gathered}$	$\mathrm{C}_{\text {din } 1}$	-	-	10	pF
Digital Input Capacitance		-	$\mathrm{C}_{\text {DIN2 }}$	-	-	20	pF
Digital Output Low Voltage	$\begin{aligned} \mathrm{R}_{\mathrm{DL}} & =0.5 \mathrm{k} \Omega \\ +\mathrm{l}_{\mathrm{OL}} & =0.4 \mathrm{~mA} \end{aligned}$	15	$\mathrm{V}_{\mathrm{OL}, 1}$	-	-	0.4	V
Digital Output Leakage Current		15	Lo	-	-	10	$\mu \mathrm{A}$
Digital Output Capacitance		15	$\mathrm{C}_{\text {Dout }}$	-	-	12	pF
Analog input Offset Voltage		1	A $_{\text {Inoff }}$	-200	0	200	mV
Analog Input Resistance		1	$\mathrm{R}_{\text {AIN }}$	300	-	-	$\mathrm{k} \Omega$
Analog Input Capacitance		1	$\mathrm{C}_{\text {AIN }}$	-	-	10	pF
Analog Output Offset Voltage		5	A outoff	-150	-	150	mV
Analog Output Resistance		5	$\mathrm{R}_{\text {AOUT }}$	-	10	30	Ω

AC CHARACTERISTICS (MB6021, MB6022)

(Recommended operating conditions unless otherwise noted.)

Parameter	Conditions	$\begin{array}{\|c\|} \hline \text { Pin } \\ \text { MB6021/22 } \end{array}$	Symbol	Value			Unit
				Min.	Typ.	Max.	
Digital Input Rise Time	$0.8 \mathrm{~V} \rightarrow 2.0 \mathrm{~V}$	$\begin{array}{r} 8,9,10 \\ 11,12 \\ \hline \end{array}$	t_{r}	-	-	50	ns
Digital Input Fall Time	$2.0 \mathrm{~V} \rightarrow 0.8 \mathrm{~V}$	$\begin{gathered} 8,9,10, \\ 11,12 \end{gathered}$	4	-	-	50	ns
Shift Clock Frequency	-	9, 10	F_{C}	64	-	3152	kHz
Shift Clock High Width	$\mathrm{V}_{\mathrm{H}}=2.0 \mathrm{~V}$	9, 10	${ }_{\text {twCH }}$	140	-	-	ns
Shift Clock Low Width	$\mathrm{V}_{\mathrm{LL}}=0.8 \mathrm{~V}$	9, 10	${ }_{\text {twCL }}$	140	-	-	ns
Synchronization Frequency	-	11, 12	$\mathrm{F}_{\text {S }}$	-	8	-	kHz
Synchronization High Width	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$	11, 12	${ }^{\text {twSH}}$	$\begin{gathered} 1 / \mathrm{Fc} \\ \mathrm{Fc}: \mathrm{MHz}) \\ \hline \end{gathered}$	-	117	$\mu \mathrm{A}$
XSYNC to XCLK Delay	-	10, 12	t_{sx}	100	-	-	ns
XCLK to XSYNC Delay	-	10,12	$t_{\text {xs }}$	50	-	-	ns
RSYNC to RCLK Delay	-	9,11	$\mathrm{t}_{\text {SR }}$	100	-	-	ns
RCLK to RSYNC Delay	-	9,11	$t_{\text {RS }}$	50	-	-	ns
RCLK to DIN Delay	-	8,9	$t_{\text {RD }}$	50	-	-	ns
DIN to RCLK Delay	-	8,9	$t_{\text {dR }}$	50	-	-	ns
XCLK or XSYNC to DOUT Delay	Note 1, Bit 1	10, 12, 15	t_{zo}	30	-	200	ns
XCLK to DOUT Delay	Note 1, Bit 2-8	10, 15	$t_{\text {xo }}$	30	-	-	ns
XCLK to DOUT Disable Time	High-Z	10,15	$t_{\text {DZ }}$	30	-	-	ns
DOUT Fall Time	-	15	$t_{\text {dF }}$	10	-	100	ns

Note: DOUT Load Conditions: $\mathrm{R}_{\mathrm{DL}}=0.5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{DL}}=144 \mathrm{pF},+\mathrm{l}_{\mathrm{OL}}=0.4 \mathrm{~mA}$

TIMING DIAGRAM

TRANSMISSION CHARACTERISTICS OF μ-LAW (MB6021)

(Recommended operating conditions unless otherwise noted.)

Parameter	Conditions		Symbol	Value			Unit	
			Min.	Typ.	Max.			
Signal to Distortion (A to A)	1020 Hz tone (C message)	$\begin{array}{r} +3 \text { to }-30 \mathrm{dBm0} \\ -40 \mathrm{dBm0} \\ -45 \mathrm{dBm0} \end{array}$		SDA	$\begin{aligned} & 35.0 \\ & 30.0 \\ & 25.0 \end{aligned}$	-	-	dB dB dB
Signal to Distortion (A to D)	1020 Hz tone (C message)		SDX	$\begin{aligned} & 36.0 \\ & 31.0 \\ & 26.0 \end{aligned}$	-	-	dB dB dB	
Signal to Distortion (D to A)	1020 Hz tone (C message)	$\begin{array}{r} +3 \text { to }-30 \mathrm{dBm0} \\ -40 \mathrm{dBm0} \\ -45 \mathrm{dBm0} \end{array}$	SDR	36.0 31.0 26.0	-	-	dB dB dB	
Gain Tracking (A to A)	1020 Hz tone	$\begin{aligned} & +3 \text { to }-40 \mathrm{dBmo} \\ & -40 \text { to }-50 \mathrm{dBmo} \\ & -50 \text { to }-55 \mathrm{dBm0} \end{aligned}$	GTX	$\begin{aligned} & -0.4 \\ & -0.8 \\ & -2.0 \end{aligned}$	-	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 2.0 \end{aligned}$	dB dB dB	
Gain Tracking (A to D)	1020 Hz tone	$\begin{aligned} & +3 \text { to }-40 \mathrm{dBmo} \\ & -40 \text { to }-50 \mathrm{dBm0} \\ & -50 \text { to }-55 \mathrm{dBm0} \end{aligned}$	GTX	$\begin{aligned} & -0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
Gain Tracking (D to A)	1020 Hz tone	$\left\lvert\, \begin{aligned} & +3 \text { to }-40 \mathrm{dBmo} \\ & -40 \text { to }-50 \mathrm{dBmo} \\ & -50 \text { to }-55 \mathrm{dBm0} \end{aligned}\right.$	GTR	$\begin{aligned} & -0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
Frequency Response (A to A)	0 to 60 Hz 60 to 300 Hz 300 to 3000 Hz 3000 to 3400 Hz 3400 to 4600 Hz 4.6 to 12 kHz Relative to $0 \mathrm{dBmO}, 820 \mathrm{~Hz}$		FRA	$\begin{gathered} 24.0 \\ -0.2 \\ -0.2 \\ -0.2 \\ \text { Note } 1 \\ 64.0 \end{gathered}$	-	$\begin{aligned} & 0.3 \\ & 1.6 \end{aligned}$	dB dB dB dB dB dB	
Frequency Response (A to D)	0 to 60 Hz 60 to 300 Hz 300 to 3000 Hz 3000 to 3400 Hz 3400 to 4600 Hz 4.6 to 12 kHz Relative to $0 \mathrm{dBmO}, 820 \mathrm{~Hz}$		FRX	$\begin{gathered} 24.0 \\ -0.1 \\ -0.1 \\ -0.1 \\ \text { Note } 2 \\ 32.0 \end{gathered}$	-	$\begin{gathered} 0.15 \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
Frequency Response (D to A)	0 to 300 Hz 300 to 3000 Hz 3000 to 3400 Hz 3400 to 4600 Hz 4.6 to 12 kHz Relative to $0 \mathrm{dBmO}, 820 \mathrm{~Hz}$		FRR	$\begin{gathered} -0.1 \\ -0.1 \\ -0.1 \\ \text { Note } 2 \\ 32.0 \end{gathered}$	-	$\begin{gathered} 0.15 \\ 0.8 \end{gathered}$	dB $d B$ $d B$ $d B$ $d B$ $d B$	

Notes: 1. $29\left(1-\operatorname{Sin} \frac{\pi(4000-f)}{1200}\right)$
2. $29\left(1-\operatorname{Sin} \frac{\pi(4000-f)}{1200}\right)$

MB6021
MB6022

TRANSMISSION CHARACTERISTICS OF μ-LAW (MB6021) (Continued)

Parameter	Conditions	Symbol	Value			Unit
			Min.	Typ.	Max.	
Idie Channel Noise (A to A)	C message	ICNA	-	-80	-72.0	dBmoc
Idle Channel Noise (A to D)	C message	ICNX	-	-83	-74.0	dBmoc
Idle Channel Noise (D to A)	C message	ICNR	-	-83	-78.0	dBmoc
Crosstalk (A to A)	1020 Hz , OdBm0	CTA	-	-	-66	dB
Crosstalk (D to D)	1020 Hz , OdBm0	CTD	-	-	-66	dB
Absolute Level	Overload Level $3.17 \mathrm{dMb0}$	VABS	-	2.500	-	$V_{\text {OP }}$
Analog Input Level	$\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBmO} \\ & \pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	AIL	-	1.227	-	$\mathrm{V}_{\text {tms }}$
Analog Output Level	$\begin{aligned} & 1020 \mathrm{~Hz}, 0 \mathrm{dBm0} \\ & \pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	AOL	1.206	1.227	2.248	$\mathrm{V}_{\text {ms }}$
Gain Accuracy (A to A)	1020 Hz , OdBm0 Internal VREF $\pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	GAA	$\begin{aligned} & -0.5 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Gain Accuracy (A to D)	1020 Hz , OdBm0 Internal VREF $\pm V S= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Variation with power supply Variation with temperature	GAX	$\begin{aligned} & -0.25 \\ & -0.15 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \pm 0.02 \\ \pm 0.001 \end{gathered}$	$\begin{aligned} & +0.25 \\ & +0.15 \end{aligned}$	$\begin{gathered} d B \\ d B \\ d B \\ d B^{\circ} C \end{gathered}$
Gain Accuracy (D to A)	1020 Hz, OdBm0 Internal VREF $\pm V S= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Variation with power supply Variation with temperature	GAR	$\begin{aligned} & -0.25 \\ & -0.15 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \pm 0.02 \\ \pm 0.001 \end{gathered}$	$\begin{aligned} & +0.25 \\ & +0.15 \end{aligned}$	$\begin{gathered} d B \\ d B \\ d B \\ d B{ }^{\circ} \mathrm{C} \end{gathered}$
Propagation Delay (A to A)	FC $\geq 1544 \mathrm{kHz}$	PDA	-	-	540	$\mu \mathrm{s}$

TRANSMISSION CHARACTERISTICS OF μ-LAW (MB6021) (Continued)

Parameter	Conditions	Symbol	Value			Unit
			Min.	Typ.	Max.	
Delay to Distortion (A to A)	$\begin{array}{\|l\|} \hline 500 \text { to } 600 \mathrm{~Hz} \\ 600 \text { to } 1000 \mathrm{~Hz} \\ 1000 \text { to } 2600 \mathrm{~Hz} \\ 2600 \text { to } 2800 \mathrm{~Hz} \\ 1020 \mathrm{~Hz}, 0 \mathrm{dBmo} \\ \text { Relative to minimum delay } \\ \hline \end{array}$	DDA	-	-	$\begin{gathered} 1.5 \\ 0.75 \\ 0.25 \\ 1.5 \end{gathered}$	ms ms ms ms
PSRR (+VS) (A to A)	$0<f \leq 50 \mathrm{kHz}$ Idle Channel Noise (C Message) $+\mathrm{VS}+50 \mathrm{~m} \mathrm{~V}_{\mathrm{OP}}$ $A I N=A G$	PSRRA+	25	30	-	dB
PSRR (-VS) (A to A)	$0<\mathrm{f} \leq 50 \mathrm{kHz}$ Idie Channel Noise (C Message) $-\mathrm{VS}+50 \mathrm{~m} \mathrm{~V}_{\mathrm{OP}}$ AIN $=A G$	PSRRA-	35	40	-	dB
Intermoduration (A to A)	AIN a. $0.47 \mathrm{kHz},-10 \mathrm{dBmO}$ b. $0.32 \mathrm{kHz},-10 \mathrm{dBm0}$ AOUT (a-b)	IMA1	-	-	-38	dB
Intermoduration (A to A)	AIN a. $1.02 \mathrm{kHz},-9 \mathrm{dBmo}$ b. $0.05 \mathrm{kHz},-23 \mathrm{dBmo}$ AOUT (2a-b)	IMA2	-	-	-52	dBm0
Signal Frequency Noise $\text { (A to } A \text {) }$	0 to 4 kHz 4 to 200 kHz $A I N=A G$	SFNA	-	-	$\begin{aligned} & -70 \\ & -50 \end{aligned}$	dBmo dBm0
Discrimination (A to A)	$\begin{aligned} & \mathrm{AIN}=0 \mathrm{dBmo} \\ & 4.6 \text { to } 200 \mathrm{kHz} \end{aligned}$	DISA	30	-	-	dB
In Band Spurious (A to A)	2nd, 3rd Harmonic $\mathrm{AlN}=0 \mathrm{dBmo}, 700-1100 \mathrm{~Hz}$	IBSA	43	-	-	dB

MB6021

MB6022

TRANSMISSION CHARACTERISTICS OF A-LAW (MB6022)

(Recommended operating conditions unless otherwise noted.)

Parameter	Conditions		Symbol	Value			Unit	
			Min.	Typ.	Max.			
Signal to Distortion (A to A)	CCITT G. 712 Method 2 1020 Hz tone P Message	$\begin{array}{r} +3 \text { to }-30 \mathrm{dBmo} \\ -40 \mathrm{dBmon} \\ -45 \mathrm{dBmo} \end{array}$		SDA	$\begin{aligned} & 35.0 \\ & 30.0 \\ & 25.0 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & d \mathrm{~d} \end{aligned}$
	CCITT G. 712 Method 1	$\begin{array}{r} -3 \mathrm{dBmo} \\ -6 \text { to }-27 \mathrm{dBmo} \\ -34 \mathrm{dBmo} \\ -40 \mathrm{dBmo} \\ -55 \mathrm{dBmo} \end{array}$	$\begin{aligned} & 28.0 \\ & 35.5 \\ & 33.5 \\ & 28.5 \\ & 13.5 \end{aligned}$		-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
Signal to Distortion (A to D)	CCITT G. 712 Method 2 1020 Hz tone P Message	$\begin{array}{r} +3 \text { to }-30 \mathrm{dBmo} \\ -40 \mathrm{dBmo} \\ -45 \mathrm{dBmo} \end{array}$	SDX	$\begin{aligned} & 36.0 \\ & 31.0 \\ & 26.0 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
	CCITT G. 712 Method 1	$\begin{array}{r} -3 \mathrm{dBmo} \\ -6 \text { to }-27 \mathrm{dBmo} \\ -34 \mathrm{dBm0} \\ -40 \mathrm{dBmo} \\ -55 \mathrm{dBm0} \end{array}$		$\begin{aligned} & 30.0 \\ & 36.0 \\ & 34.0 \\ & 29.5 \\ & 14.5 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
Signal to Distortion (D to A)	CCITT G. 712 Method 2 1020 Hz tone P Message	$\begin{array}{r} +3 \text { to }-30 \mathrm{dBmo} \\ -40 \mathrm{dBmo} \\ -45 \mathrm{dBmo} \end{array}$	SDR	$\begin{aligned} & 36.0 \\ & 31.0 \\ & 26.0 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
	CCITT G. 712 Method 1	$\begin{array}{r} -3 \mathrm{dBm0} \\ -6 \text { to }-27 \mathrm{dBm0} \\ -34 \mathrm{dBm0} \\ -40 \mathrm{dBm0} \\ -55 \mathrm{dBm0} \end{array}$		$\begin{aligned} & 30.0 \\ & 36.0 \\ & 34.0 \\ & 29.5 \\ & 14.5 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	

TRANSMISSION CHARACTERISTICS OF A-LAW (MB6022) (Continued)

Parameter	Conditions		Symbol	Value			Unit	
			Min.	Typ.	Max.			
Gain Tracking (A to A)	CCITT G. 712 Method 2 1020 Hz tone	+3 to -30 dBmo -40 to -50 dBmo -50 to -55 dBmo		GTA	$\begin{aligned} & -0.4 \\ & -0.8 \\ & -2.0 \end{aligned}$	-	$\begin{aligned} & 0.4 \\ & 0.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
	CCITT G. 712 Method 1	$\begin{aligned} & -10 \text { to }-50 \mathrm{dBmo} \\ & -55 \text { to }-60 \mathrm{dBm0} \end{aligned}$	$\begin{aligned} & -0.5 \\ & -1.0 \end{aligned}$		-	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
Gain Tracking (A to D)	CCITT G. 712 Method 2 1020 Hz tone	+3 to $-30 \mathrm{dBm0}$ -40 to -50 dBmo -50 to $-55 \mathrm{dBm0}$	GTX	$\begin{aligned} & -0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	
	CCITT G. 712 Method 1	-10 to -50 dBmo -50 to -55 dBmo -55 to -60 dBmo		$\begin{aligned} & -0.25 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.4 \\ 0.8 \end{gathered}$	dB dB dB	
Gain Tracking (D to A)	CCITT G. 712 Method 2 1020 Hz tone	+3 to -40 dBmo -40 to -50 dBmo -50 to -55 dBmo	GTR	$\begin{aligned} & -0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.8 \end{aligned}$	dB dB dB	
	CCITT G. 712 Method 1	-10 to -50 dBmo -50 to -55 dBmo -55 to -60 dBmo		$\begin{aligned} & -0.25 \\ & -0.4 \\ & -0.8 \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.4 \\ 0.8 \end{gathered}$	dB dB dB	
Frequency Response (A to A)	```0 to 60 Hz 60 to 300 Hz 300 to 3000 Hz 3000 to 3400 Hz 3400 to 4600 Hz 4.6 to 12 kHz Relative to \(0 \mathrm{dBmO}, 820 \mathrm{~Hz}\)```		FRA	$\begin{gathered} 24.0 \\ -0.2 \\ -0.2 \\ -0.2 \\ \text { Note } 1 \\ 64.0 \end{gathered}$	-	$\begin{aligned} & 0.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
Frequency Response (A to D)	0 to 6 60 to 300 to 3000 3400 4.6 to Relativ	z $\mathrm{mO}, 820 \mathrm{~Hz}$	FRX	$\begin{gathered} 24.0 \\ -0.1 \\ -0.1 \\ -0.1 \\ \text { Note } 2 \\ 32.0 \end{gathered}$	-	$\begin{gathered} 0.15 \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
Frequency Response (D to A)	0 to 3 300 to 3000 3400 4.6 to Relativ	z $\mathrm{mO}, 820 \mathrm{~Hz}$	FRR	$\begin{gathered} -0.1 \\ -0.1 \\ -0.1 \\ \text { Note } 2 \\ 32.0 \end{gathered}$	-	$\begin{gathered} 0.15 \\ 0.8 \end{gathered}$	dB $d B$ $d B$ $d B$ $d B$	

Notes: 1. $29\left(1-\operatorname{Sin} \frac{\pi(4000-f)}{1200}\right)$
2. $14.5\left(1-\operatorname{Sin} \frac{\pi(4000-f)}{1200}\right)$

TRANSMISSION CHARACTERISTICS OF A-LAW (MB6022) (Continued)

Parameter	Conditions	Symbol	Value			Unit
			Min.	Typ.	Max.	
Idie Channel Noise (A to A)	P Message	ICNA	-	-80	-72.0	dBmop
Idie Channel Noise (A to D)	P Message	ICNX	-	-83	-74.0	dBmop
Idle Channel Noise (D to A)	P Message	ICNR	-	-83	-78.0	dBm0p
Crosstalk (A to A)	1020 Hz , OdBm0	CTA	-	-	-66	dB
Crosstalk (D to D)	1020 Hz , OdBm0	CTD	-	-	-66	dB
Absolute Level	Overload Level $3.14 \mathrm{dBm0}$	VABS	-	2.500	-	$\mathrm{V}_{\text {OP }}$
Analog Input Level	1020 Hz, OdBm0 Internal VREF $\pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}$	AIL	-	1.231	-	$\mathbf{V}_{\text {mm }}$
Analog Output Level	1020 Hz, OdBm0 Internal VREF $\pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}$	AOL	1.210	1.231	1.252	$\mathrm{V}_{\text {ms }}$
Gain Accuracy (A to A)	1020 Hz , OdBm0 Internal VREF $\pm \mathrm{VS}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}$	GAA	$\begin{aligned} & -0.5 \\ & -0.3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.3 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Gain Accuracy (A to D)	$\begin{array}{\|l} 1020 \mathrm{~Hz}, 0 \mathrm{dBmO} \\ \text { Internal VREF } \\ \pm \text { VS }= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C} \\ \text { Variation with Power Supply } \\ \text { Variation with Temperature } \\ \hline \end{array}$	GAX	$\begin{aligned} & -0.25 \\ & -0.15 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \pm 0.02 \\ \pm 0.001 \end{gathered}$	$\begin{aligned} & +0.25 \\ & +0.15 \end{aligned}$	$\begin{gathered} d B \\ d B \\ d B \\ d B /{ }^{\circ} \mathrm{C} \end{gathered}$
Gain Accuracy (D to A)	$\begin{array}{\|l} 1020 \mathrm{~Hz}, 0 \mathrm{dBmo} \\ \text { Internal VREF } \\ \pm \text { VS }= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C} \\ \text { Variation with Power Supply } \\ \text { Variation with Temperature } \\ \hline \end{array}$	GAR	$\begin{aligned} & -0.25 \\ & -0.15 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \pm 0.02 \\ \pm 0.001 \end{gathered}$	$\begin{aligned} & +0.25 \\ & +0.15 \end{aligned}$	$\begin{gathered} d B \\ d B \\ d B \\ d B /{ }^{\circ} \mathrm{C} \end{gathered}$
Propagation Delay (A to A)	$F C \geq 1544 \mathrm{kHz}$	PDA	-	-	540	$\mu \mathrm{s}$

TRANSMISSION CHARACTERISTICS OF A-LAW (MB6022) (Continued)

Parameter	Conditions	Symbol	Value			Unit
			Min.	Typ.	Max.	
Delay to Distortion (A to A)	$\begin{array}{\|l} 500 \text { to } 600 \mathrm{~Hz} \\ 600 \text { to } 1000 \mathrm{~Hz} \\ 1000 \text { to } 2600 \mathrm{~Hz} \\ 2600 \text { to } 2800 \mathrm{~Hz} \\ 1020 \mathrm{~Hz}, 0 \mathrm{dBmO} \\ \text { Relative to Minimum Delay } \\ \hline \end{array}$	DDA	-	-	$\begin{gathered} 1.5 \\ 0.75 \\ 0.25 \\ 1.5 \end{gathered}$	ms ms ms ms
PSRR (+VS) (A to A)	$0<f \leq 50 \mathrm{kHz}$ Idle Channel Noise (P Message) $+V S+50 \mathrm{~m} \mathrm{~V}_{\mathrm{OP}}$ AIN $=A G$	PSRRA+	25	30	-	dB
PSRR (-VS) (A to A)	$0<\mathrm{f} \leq 50 \mathrm{kHz}$ Idle Channel Noise (P Message) $+V S+50 \mathrm{~m} V_{O P}$ AIN = AG	PSRRA-	35	40	-	dB
Intermoduration (A to A)	AIN a. $0.47 \mathrm{kHz},-10 \mathrm{dBmo}$ b. $0.32 \mathrm{kHz},-10 \mathrm{dBmo}$ AOUT (2a-b)	IMA1	-	-	-38	dB
Intermoduration (A to A)	AIN a. $1.02 \mathrm{kHz},-9 \mathrm{dBm0}$ b. $0.05 \mathrm{kHz},-23 \mathrm{dBm0}$ AOUT (a-b)	IMA2	-	-	-52	dBm0
Single Frequency Noise (A to A)	0 to 4 kHz 4 kHz to 200 kHz $A I N=A G$	SFNA	-	-	$\begin{aligned} & -70 \\ & -50 \end{aligned}$	$\begin{aligned} & \mathrm{dBmo} \\ & \mathrm{dBmO} \end{aligned}$
Discrimination (A to A)	AIN $=\mathrm{dBm0}$ 4.6 kHz to 200 kHz	DISA	30	-	-	dB
In Band Spurious (A to A)	2nd, 3rd Harmonic AIN $=\mathrm{dBmO}, 700$ to 1100 kHz	IBSA	43	-	-	dB

PACKAGE DIMENSIONS

Section 9

Quality and Reliability - At a Glance Page

9-3 Quality Control at Fujitsu
9-4 Quality Control Processes at Fujitsu

Quality Control at Fujitsu

Built-In Quality and Reliability

Fujitsu's integrated circuits work. The reason they work is Fujitsu's single-minded approach to built-in quality and reliability, and its dedication to providing components and systems that meet exacting requirements allowing no room for failure.

Fujitsu's philosophy is to build quality and reliability into every step of the manufacturing process. Each design and process is scrutinized by individuals and teams of professionals dedicated to perfection.

The quest for perfection does not end when the product leaves the Fujitsu factory. It extends to the customer's factory as well, where integrated circuits are subsystems of the customer's final product. Fujitsu emphasizes meticulous interaction between the individuals who design, manufacture, evaluate, sell, and use its products.

Quality control for all Fujitsu products is an integrated process that crosses all lines of the manufacturing cycle. The quality control process begins with inspection of all incoming raw materials and ends with shipping and reliability tests following final test of the finished product. Prior to warehousing, Fujitsu products have been subjected to the scrutiny of man, machine, and technology, and are ready to serve the customer in the designated application.

Quality Control Processes at Fujitsu

Continued on next page

Quality Control Processes at Fujitsu (Continued)

Legend:
Production Process
Test/Inspection
and Test/Inspection
ac Gate (Sampling)
Note:
The flow sequence may vary slightly
with individual product type.

Section 10

Ordering Information - At a Glance
Page Title

10-3 IC Packages, Inserted Types
10-4 IC Packages, Surface Mounted Types
10-6 Part Number System

10

IC Packages

This section on Fujitsu packages is arranged as follows:

1. Package technology: inserted or surface mount types.
2. Package types within the technology.
3. Package type illustration and description with (a) package width(s) and (b) lead pitch (when applicable).
4. Package material.
5. Package ordering code. This code appears as a suffix to the product part number. See Part Number System in this section.

For the most up-to-date device and packaging information, including available packages and exact ordering code, please contact your nearest Fujitsu Sales Office, Sales Representative, or Distributor. (See the Sales Information section of this book.)

Inserted Packages

Inserted Packages (Continued)

Package Type		Description	Package Material	Fujltsu Ordering Code (Suffix)
		Zig-zag In-line Package Package width: 100 mil Lead pitch:50 mil 100 mil (modules)	Plastic	PSZ
ZIP	ξ_{i+1}			

Surface Mount Packages

Surface Mount Packages (Continued)

Memory Cards

Package Type		Description	Package Material	Fujlisu Ordaring Code (Suffix)
		68 -Pin Card	Plastic	-
68-Pin Card				

Part Number System

Standard Products Part Number

 Found on most Standard Products: Memory, Analog, Logic, Telecommunications, Microprocessor, and Special Controller Products

8-Pin SMT Piezoelectric SAW Filter

Examples:

Memory Product, MB81C1001A-60 PFTN
MB Fujitsu

81C1001 DRAM Device
A Die Revision
$60 \quad$ Access Speed (60 ns)
L Low Power Feature
PFTN Plastic SOP (Package) with normal leads

Telecommunications Product, MB87086AP

MB	Fujitsu
87086	PLL Device
A	Die Revision
P	Plastic DIP (Package)

Analog Product, MB3731PS
MB Fujitsu
3731 Audio Power Amplifier
PS Plastic SIP (Package)

Controller Product, MB8876AC
MB Fujitsu
8876 Floppy Disk Controller
A Die Revision
C Ceramic DIP (Package) with metal seal

Section 11

Sales Information - At a Glance

Page Title

$11-3$	Introduction to Fujitsu
$11-3$	Fujitsu Limited (Japan)
$11-4$	Fujitsu Microelectronics, Inc. (U.S.A.)
$11-6$	Fujitsu Electronic Devices Europe
$11-8$	Fujitsu Microelectronics Asia PTE Ltd. (Singapore)
$11-9$	Integrated Circuits Corporate Headquarters - Worldwide
$11-10$	FMI Sales Offices for North and South America
$11-11$	FMI Representatives - USA
$11-14$	FMI Representatives - Canada, Mexico, and Puerto Rico
$11-15$	FMI Distributors - USA
$11-17$	FMI Distributors - Canada
$11-18$	FMG, FML, and FMIL Sales Offices for Europe
$11-19$	FMG, FML, and FMIL Distributors - Europe
$11-20$	FMAP Sales Offices for Asia, Australia and Oceania
$11-21$	FMAP Representatives - Asia and Australia
$11-21$	FMAP Distributors - Asia

Introduction to Fujitsu

Fujitsu Limited (Japan)

Fujitsu Limited was founded as a telecommunications equipment manufacturer in 1935, and today is not only one of Japan's leading telecommunications companies, but also one of the world's largest computer manufacturers.

This leadership has resulted, at least in part, from the superb quality of the company's semiconductors and electronic components. Manufactured by the company's Electronics Devices Operations Group, these vital electronic devices also contribute to the high reliability and performance of products made by many other manufacturers around the world.
Today, Fujitsu is one of the world's top manufacturers of semiconductors and electronic components. In Japan, Fujitsu's R\&D laboratories for semiconductor and electronic components are situated in Kawasaki and Mie, and manufacturing works are located in Iwate, Aizu, Wakamatsu and Suzaka. Fujitsu also has six affiliated manufacturing works in the country. Overseas facilities in the U.S, Europe, and Asia also help to meet the growing global demand for Fujitsu semiconductors and electronic components.

Fujitsu enforces strict quality control at all stages of production, from materials selection through manufacturing to final testing. As a result, Fujitsu's electronic devices are known for their extremely high reliability and excellent cost-to-performance ratio.

Fujitsu manufactures a fuil line of semiconductors and electronic components to meet the diverse applications of a wide variety of customers. Backed by Fujitsu's extensive R\&D commitment equal to over 10 percent of annual sales, Fujitsu's electronic devices stay on the cutting edge of electronics technology.

Introduction to Fujitsu

Fujitsu Microelectronics, Inc. (U.S.A.)

Fujitsu Microelectronics, Inc. (FMI), with headquarters in San Jose, California, was established in 1979 as a wholly-owned Fujitsu Limited subsidiary for the marketing, sales, and distribution of Fujitsu integrated circuit and component products. Since 1979, FMI has grown to four marketing divisions and two manufacturing divisions. FMI offers a complete array of components including semiconductor products for its customers throughout North and South America.

The Advanced Products Division (APD) is responsible for designing and selling a full line of SPARC processors, peripheral chips, and the EtherStarTM LAN controller that it designed. The EtherStar LAN controller is the first VLSI device to integrate both StarLAN ${ }^{\top M}$ and Ethernet ${ }^{\circledR}$ protocols into one device. The core of APD's EtherStar chip was the result of a cooperative venture with Ungermann-Bass.

The Microwave and Optoelectronics Division (MOD) markets GaAs FETs and FET power amplifiers, lightwave and microwave devices, optical devices, emitters, and SI transistors.

The Electronic Components Division (ECD) markets connectors, keyboards, thermal printers, plasma displays, and relays.

The largest FMI marketing division is the Integrated Circuits Division (ICD) which markets the following standard devices, components, and ASICs.

Memory Products	BiCMOS SRAMs
	Bipolar PROMs
	CMOS Masked ROMs
	CMOS SRAMs
	DRAMs
	ECL RAMs
	EEPROMs
	EPROMs
	NOVRAMs
	STRAMs (self-timed RAMs)
Memory Module Products	DRAM modules
Memory Card Products	Memory Cards:
	EPROM, Flash, OTPROM, and SRAM
	Controller
	Design kits
	Programming adaptors
Telecommunication Products	CODECs
	Modems
	Piezoelectric devices
	PLLs
	Prescalers
	Telephone ICs
	VCOs

Introduction to Fujitsu

Microprocessor Products

Logic Products

Analog Products

4-bit microcontrollers DSPs

Interface devices Translator circuits Ultra high-speed ECL

Audio ICs Comparators
Converters, AD and D/A
Darlington transistor arrays
Disk drive ICs
Linear devices
MOSFET arrays
Motor drivers
Operational amps
Power supply control ICs
RETs
VCOs
Custom modules
Multi-chip modules
Thick- and Thin-film
T^{2}
Special Purpose Controller Products

ASIC Products

SCSI controllers
Data communication controllers:
ECC, Ethernet, Floppy disk, Multiprotocol, and DMA
Video controllers:
CRT, PIP, and TV display
CMOS gate arrays (channeled and channelless)
ECL gate arrays
BiCMOS gate arrays
GaAs gate arrays
CMOS standard cells
ASIC Gallery ${ }^{\text {TM }}$ (SuperMacros ${ }^{\text {TM }}$, Compiled Cells)
CAD Reference Environment that integrates with third-party CAD tools

Introduction to Fujitsu

Design and customer support for ASIC products are available throughout the country and at FMI Sales Offices located in Atlanta, Boston, Chicago, Dallas, Denver, Irvine, Minneapolis, Portland, and San Jose,

FMI's manufacturing divisions are in San Diego, California and Gresham, Oregon. The San Diego Manufacturing Division (SMD) assembles and tests memory devices. The Gresham Manufacturing Division (GMD) began manufacturing in 1988. GMD fabricates wafers, and produces ASIC products and DRAM memories.

Introduction to Fujitsu

Fujitsu Electronic Devices Europe:

Fujitsu Mikroelektronik GmbH (FMG), West Germany
Fujitsu Microelectronics Limited (FML), U.K.
Fujitsu Microelectronics Italla S.R.L (FMIL), Italy
Fujitsu Microelectronics Ireland, Ltd. (FME), Ireland
Fujitsu Mikroelektronik GmbH (FMG) was established in June 1980 in Frankfurt, West Germany, as Fujitsu's European headquarters and is a totally owned subsidiary of Fujitsu Limited, Tokyo. Fujitsu Microelectronics Limited (FML) is a sister company based in Maidenhead, England and dedicated to serving the U.K., Ireland, and Scandanavia. Fujitsu Microelectronics Italia (FMIL) is based in Milan, Italy and serves Italy, Spain, Portugal, and the rest of Southern Europe. Together, FMG, FML, and FMIL supply the European market with a full range of semiconductors and electronic components. Sales offices are located in Munich, Frankfurt, Stuttgart, Paris, Eindhoven, Milan, Maidenhead, and Stockholm.

Fujitsu Microelectronics Ireland, Ltd. (FME) was established in 1980, in Dublin, Ireland, as Fujitsu's European Assembly Center for integrated circuits. FME produces DRAMs, EPROMs, and other LSI memory products.
Fujitsu has two European VLSI design centers, both in the U.K. The Manchester Design Center, in operation since 1983, is equipped with two mainframe computers and is linked by satellite to production plants in Japan and the U.S. Staffed with a team of experienced engineers, the center is involved in the design of VLSI standard products, SuperMacros, CAD tools and ASICs. A second design center was set up in London in 1990 for designing telecommunication ICs. Additionally, Fujitsu offers a network of 17 ASIC design centers in eight European countries.

Fujitsu has further demonstrated its commitment to the European market by commencing construction of a full wafer fabrication plant in Durham in the North of England. The new plant is due to start production of 4 megabyte DRAMs and ASICs in 1991.

Introduction to Fujitsu

The range of semiconductor products offered by FMG, FML, and FMIL for the European market includes:

Memory Products	DRAMs SRAMs EPROMs EEPROMs Mask ROMs Bipolar PROMs Video RAMs ECL RAMs Memory modules Memory cards
ASIC Products	CMOS gate arrays BiCMOS gate arrays Bipolar (ECL) gate arrays Gallium Arsenide gate arrays CMOS standard cells ECL gate masterslice devices Wide range of ASIC design software
Microprocessor Products	4-Bit Microcontrollers 4-8- and 16-bit F^{2} MC flexible Microcontrollers 32-Bit SPARC ${ }^{\text {¹ }}$ RISC microprocessors 32-Bit Gmicro ${ }^{\text {TM }}$ TRON-based CISC microprocessors
Telecommunication Products	Prescalers PLLs CODECs LAN devices DSPs SCSI and LAN devices ISDN products Telecom devices for the GSM Pan-European digital cellular telephone system.
Analog Products	OP Amps Comparators A/D and D/A Converters Application Specific ICs
The range of electronic co incudes relays, connectors liquid crystal displays, hyb	onents offered by FMG, FML, and FMIL eyboards, thermal printers, plasma displays, ICs, and piezoelectric devices.

Introduction to Fujitsu

Fujltsu Microelectronics Asla PTE Ltd. (Singapore)
Fujitsu Microelectronics Asia PTE Ltd. (FMAP) opened in August 1986, in Hong Kong, as a wholly-owned Fujitsu subsidiary for sales of electronic devices to the Asian, Australian, and Southwest Pacific markets. In 1990, FMAP moved to a new location in Singapore.

FMAP offers memory, ASIC, microprocessor, and telecommunication products along with Fujitsu's wide range of electronic components.

[^42]
Integrated Circuits Corporate Headquarters - Worldwide

International Corporate Headquarters

FUJITSU LIMITED
Marunouchi Headquarters
6-1, Marunouchi 1-chome
Chiyoda-ku, Tokyo 100
Japan
Tel: (03) 3216-3211
Telex: 781-22833
FAX: (03) 3213-7174
For integrated circuits marketing information please contact the following:

Headquarters for Japan

FUJITSU LIMITED

Integrated Circuits and Semiconductor Marketing
Furukawa Sogo Bldg.
6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100
Japan
Tel: (03) 3216-3211
Telex: 781-2224361
FAX: (03) 3211-3987
Headquarters for North and South America
FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street
San Jose, CA 95134-1804
USA
Tel: (408) 922-9000
Telex: 910-338-0190
FAX: (408) 432-9044

Headquarters for Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
6072 Dreieich-Buchschlag
Germany
Tel: (06) 1036900
Telex: 411963
FAX: (06) 103690122
Headquarters for Asia, Australia and Oceania
FUJITSU MICROELECTRONICS ASIA PTE LIMITED
06-04/-07 Plaza By The Park
No. 51 Bras Basah Road
Singapore 0718
Tel: (65) 336-1600
Telex: RS 55573 FESPL
FAX: (65) 336-1609

Fujitsu Microelectronics, Inc. (FMI) Sales Offices - North and South America

NORTHERN CALIFORNIA

Fujitsu Microelectronics, Inc. 10600 N. De Anza Blvd. Suite 225
Cupertino, CA 95014
Tel: (408) 996-1600
FAX: (408) 725-8746
SOUTHERN CALIFORNIA
Fujitsu Microelectronics, Inc.
Century Centre
2603 Main Street
Suite 510
Irvine, CA 92714
Tel: (714) 724-8777
FAX: (714) 724-8778

COLORADO (Denver)

Fujitsu Microelectronics, Inc.
5445 DTC Parkway
Suite 300
Englewood, CO 80111
Tel: (303) 740-8880
FAX: (303) 740-8988

GEORGIA (Atlanta)

Fujitsu Microelectronics, Inc.
3500 Parkway Lane
Suite 210
Norcross, GA 30092
Tel: (404) 449-8539
FAX: (404) 441-2016

ILLINOIS (Chicago)

Fujitsu Microelectronics, Inc. One Pierce Place
Suite 1130 West
Itasca, IL 60143-2681
Tel: (708) 250-8580
FAX: (708) 250-8591
MASSACHUSETTS (Boston)
Fujitsu Microelectronics, Inc.
Bay Colony Corp. Center
Suite 2500
1000 WInter Street
Waltham, MA 02154
Tel: (617) 487-0029
FAX: (617) 890-9002
MINNESOTA (Minneapolis)
Fujitsu Microelectronics, Inc. 3460 Washington Drive
Suite 209
Eagan, MN 55122-1303
Tel: (612) 454-0323
FAX: (612) 454-0601

NEW YORK (Hauppauge)

Fujitsu Microelectronics, Inc. 601 Veterans Memorial Highway Suite P
Hauppauge, NY 11788-1054
Tel: (516) 361-6565
FAX: (516) 36!-6480
OREGON (Portland)
Fujitsu Microelectronics, Inc.
15220 NW Greenbrier Pkwy
Suite 360
Beaverton, OR 97006
Tel: (503) 690-1909
FAX: (503) 690-8074

TEXAS (Dallas)

Fujitsu Microelectronics, Inc. 14785 Preston Road
Suite 274
Dallas, TX 75240
Tel: (214) 233-9394
FAX: (214) 386-7917

FMI Sales Representatives - USA

For product information, contact your nearest Fujitsu representative.

Alabama
CSR Electronics
Huntsville, AL
Tel: (205) 533-2444
FAX: (205) 536-4031

Arizona

Aztech Component Sales Inc.
Scottsdale, AZ
Tel: (602) 991-6300
FAX:(602) 991-0563

Arkansas

Technical Marketing, Inc.
Carrollton, TX
Tel: (214) 387-3601
FAX:(214) 387-3605

California

Northern California
Norcomp
Santa Clara, CA
Tel: (408) 727-7707
FAX: (408) 986-1947
Norcomp
Roseville, CA
Tel: (916) 782-8070
FAX: (916) 782-8073
Southern California Infinity Sales, Inc.
Newport Beach, CA
Tel: (714) 833-0300
FAX: (714) 833-0303
San Diego County
Harvey King, Inc.
San Diego, CA
Tel: (619) 587-9300
FAX: (619) 587-0507

Colorado

Talisman Assoc.
Englewood, CO
Tel: (303) 773-2533
FAX: (303) 741-6312
Connecticut
Conntech Sales, Inc.
Cheshire, CT
Tel: (203) 272-1277
FAX: (203) 272-2790
Delaware
BGR Associates
Marlton, NJ
Tel: (609) 983-1020
FAX: (609) 983-1879
District of Columbia
Arbotek Associates
Towson, MD
Tel: (301) $825-0775$
FAX: $(301) 337-2781$

Florida

Semtronic Associates, Inc.
Altamonte Springs, FL
Tel: (407) 831-8233
FAX: (407) 831-2844
Semtronic Associates, Inc.
Clearwater, FL
Tel: (813) 461-4675
FAX: (813) 442-2234
Semtronic Associates, Inc.
Ft. Lauderdale, FL
Tel: (305) 731-2484
FAX: (305) 731-1019
Georgia
CSR Electronics
Atlanta, GA
Tel: (404) 396-3720
FAX: (404) 394-8387

Idaho

Northern Idaho
L-Squared, Ltd.
Kirkland, WA
Tel: (206) 827-8555
FAX: (206) 828-6102
Southern Idaho
Intermountain Technical Marketing
Meridan, ID
Tel: (208) 888-6071
FAX: (208) 888-6074
Illinols
Northern Illinois
Beta Technology
Itasca, IL
Tel: (708) 250-9586
FAX: (708) 250-9592
Southern Illinois
Rothkopf \& Assoc.
St. Louis, MO
Tel: (314) 961-4485
FAX: (314) 961-4736
Indiana
Fujitsu Microelectronics, Inc.
Itasca, IL
Tel: (708) 250-8580
FAX: (708) 250-8591
lowa
Electromec Sales
Cedar Rapids, IA
Tel: (319) 393-1637
FAX: (319) 393-1752

Kansas

Rothkopf \& Associates, Inc.
Olathe, KS
Tel: (913) 829-8897
FAX: (913) 829-1664

Kentucky

Fujitsu Microelectronics, Inc.

Itasca, IL

Tel: (708) 250-8580
FAX: (708) 250-8591

Louisiana

Technical Marketing, Inc.
Carrollton, TX
Tel: (214) 387-3601
FAX; (214) 387-3605
Technical Marketing, Inc.
Houston, TX
Tel: (713) 783-4497
FAX: (713) 783-5307

Maine

Mill-Bern Associates
Woburn, MA
Tel: (617) 932-3311
FAX: (617) 932-0511

Maryland

Arbotek Associates
Towson, MD
Tel: (301) 825-0775
FAX: (301) 337-2781
Massachusetts
Mill-Bern Associates
Woburn, MA
Tel: (617) 932-3311
FAX: (617) 932-0511

Michigan

R.C. Merchant \& Co., Inc.

Farmington Hills, MI
Tel: (313) 476-4600
FAX: (313) 476-3162
R.C. Merchant \& Co., Inc.

St. Joseph, MI
Tel: (616) 983-7378
FAX: (616) 983-3506

FMI Sales Representatives - USA (Continued)

Minnesota

Electromec Sales
Burnsville, MN
Tel: (612) 894-8200
FAX: (612) 894-9352
Mississippi
CSR Electronics
Huntsville, AL
Tel: (205) 533-2444
FAX: (205) 536-4031

Missourl

Rothkopf \& Associates, Inc.
St. Louis, MO
Tel: (314) 961-4485
FAX: (314) 961-4736

Montana

Eastern Montana
Talisman Assoc.
Englewood, CO
Tel: (303) 773-2533
FAX: (303) 741-6312
Western Montana
Intermountain Technical Marketing
Meridan, ID
Tel: (208) 888-6071
FAX: (208) 888-6074

Nebraska

Eastern Nebraska
Rothkopf \& Assoc.
Olathe, KS
Tel: (913) 829-8897
FAX: (913) 829-1664
Nebraska (Continued)
Western Nebraska
Talisman Assoc.
Englewood, CO
Tel: (303) 773-2533
FAX: (303) 741-6312

Nevada

Northern Nevada
Norcomp
Roseville, CA
Tel: (916) 782-8070
FAX: (916) 782-8073
Southern Nevada
Atech Component Sales, Inc.
Scottsdale, AZ
Tel: (602) 991-6300
FAX: (602) 991-0563

New Hampshire

Mill-Bern Assoc.
Woburn, MA
Tel: (617) 932-3311
FAX; (617-932-0511

New Jersey

Northern New Jersey
Technical Applications \& Marketing
Fairfield, NJ
Tel: (201) 575-4130
FAX: (201) 575-4563
Southern New Jersey
BGR Associates
Martion, NJ
Tel: (609) 983-1020
FAX: (609) 983-1879
New Mexico
Aztech Component Sales, Inc.
Scottsdale, AZ
Tel: (602) 991-6300
FAX: (602) 991-0563

New York

Northern New York
Quality Components
Buffalo, NY
TeI: (716) 837-5430
FAX: (716) 837-0662
Quality Components
Manlius, NY
Tel: (315) 682-8885
FAX: (315) 682-2277
Quality Components
Rochester, NY
Tel: (716) 342-7229
FAX: (716) 342-7227

Southern New York

Technical Applications \& Mktg.
Fairfield, NJ
Tel: (201) 575-4130
FAX: (201) 575-4563

North Carolina

CSR Electronics
Charlotte, NC
Tel: (704) 847-5806
FAX: (704) 847-0056
CSR Electronics
Raleigh, NC
Tel: (919) 878-9200
FAX: (919) 878-9117

North Dakota

Electromec Sales
Burnsville, MN
Tel: (612) 894-8200
FAX: (612) 894-9352
Ohio
Stegman Blaine Marketing, Inc.
Cincinnati, OH
Tel: (513) 729-1969
FAX: (513) 729-1984
Stegman Blaine Marketing, Inc.
Cleveland, OH
Tel: (216) 572-0003
FAX; (216) 238-3229
Stegman Blaine Marketing, Inc.
Vandalia, OH
Tel: (513) 890-7975
FAX: (513) 890-5191

Oklahoma

Technical Marketing, Inc.
Carrollton, TX
Tel: (214) 387-3601
FAX: (214) 387-3605

Oregon
L-Squared Limited
Beaverton, OR
Tel: (503) 629-8555
FAX: (503) 645-6196

Pennsylvania

Eastern Pennsy/vania
BGR Associates
Marlton, NJ
Tel: (609) 983-1020
FAX: (609) 983-1879
Western Pennsy/vania
Stegman Blaine Marketing, Inc.
Cincinnati, OH
Tel: (513) 729-1969
FAX: (513) 729-1984
Rhode Island
Mill-Bern Associates
Woburn, MA
Tel: (617) 932-3311
FAX: (617) 932-0511
South Carolina
CSR Electronics
Raleigh, NC
Tel: (919) 878-9200
FAX: (919) 878-9117

FMI Sales Representatives - USA (Continued)

South Dakota	Technical Marketing, Inc.
Electromec Sales	Round Rock, TX
Burnsville, MN	Tel: (512) 244-2291
Tel: (612) 894-8200	FAX; (512) 388-1596
FAX; (612) 894-9352	
	Utah
Tennessee	R-Squared Marketing
Eastern Tennessee	Salt Lake City, UT
CSR Electronics	Tel: (801) 595-0631
Knoxville, TN	FAX: (801) 595-0435
Tel: (615) 637-0293	
FAX: (615) 637-0466	Vermont
Western Tennessee	Mill-Bern Associates
CSR Electronics	Woburn, MA
Huntsville, AL	Tel: (617) 932-3311
Tel: (205) 533-2444	FAX: (617) 932-0511
FAX: (205) 536-4031	
	Virginia
Texas	Arbotek Associates
Technical Marketing, Inc.	Towson, MD
Carrollton, TX	Tel: (301) 825-0775
Tel: (214) 387-3601	FAX: (301) 337-2781
FAX: (214) 387-3605	
Technical Marketing, Inc.	Washington
Houston, TX	L-Squared Limited
Tel: (713) 783-4497	Kirkland, WA
FAX: (713) 783-5307	FAX; (206) 828-6102

Wisconsin
Eastern Wisconsin
Beta Technology
Milwaukee, WI
Tel: (414) 543-6609
FAX; (414) 543-9288
Western Wisconsin
Electromec Sales
Burnsville, MN
Tel: (612) 894-8200
FAX: (612) 894-9352
\section*{West Virginia}
Stegman Blaine Marketing, Inc.
Cincinnati, OH
Tel: (513) 729-1969
FAX: (513) 729-1984
\section*{Wyoming}
Talisman Assoc.
Englewood, CO
Tel: (303) 773-2533
FAX; (303) 741-6312

FMI Sales Representatives - Canada, Mexico, Puerto Rico, Central and South America

Canada
British Columbia L-Squared, LTD Kirkland, WA
Tel: (206) 827-8555
FAX: (206) 828-6102
Rest of Canada
Pipe-Thompson Limited
Islington, Ontario
Tel: (416) 236-2355
FAX: (416) 236-3387
Pipe-Thompson Limited
Kandata, Ontario
Tel: (613) 591-1821
FAX: (613) 591-0461

Mexico

Solano Electronica (Sonika)
Guadalajara, JAL.
Tel: (52) 3647-4250
FAX: (52) 3647-3433
Solano Electronics, S.A. De C.V.
07300 Mexico City, D.F.
Tel: (52) 57546480
FAX: (52) 5586-8443
Puerto Rico
Semtronic Associates, Inc.
Hato Rey, Puerto Rico
Tel: (809) 766-0700
FAX: (813) 442-2234

Central and South America All Countries
Fujitsu Microelectronics, Inc. Headquarter Sales San Jose, CA Tel: (408) 922-9310 FAX; (408) 432-9044

FMI Distributors - USA

Alabama
Marshall Industries
Huntsville, AL
(205) 881-9235
Reptron Electronics
Huntsville, AL
(205) 722-9565
Arizona
Insight Electronics
Tempe, AZ
(602) 829-1800
Marshall Industries
Phoenix, AZ
(602) 496-0290
California
Bell Microproducts
Fountain Valley, CA
(714) 963-0667
Bell Microproducts
Milpitas, CA
(408) 434-1150
Insight Electronics
Agoura, CA
(818) 707-2100
Insight Electronics
Invine, CA
(714) 727-2111
Insight Electronics
San Diego, CA
(619) 587-9757
Marshall Industries
Chatsworth, CA
(818) 407-4100
Marshall Industries
EI Monte, CA
(818) 307-60000z
Marshall Industries
Irvine, CA
(714) 458-5318
Marshall Industries
Milpitas, ,
(408 $942-4600$
Marshall Industries
Rancho Cordova, CA
(916) 635-9700
Marshall Industries
San Diego, CA
(619) 578-9600

Merit Electronics	Georgia
San Jose, CA	Marshall Industries
(408) 434-0800	Norcross, GA
Milgray Electronics	(404) 923-5750
$\begin{aligned} & \text { Camarillo, CA } \\ & \text { (805) 484-4055 } \end{aligned}$	Milgray Electronics Norcross, GA
Milgray Electronics	(404) 446-9777
$\begin{aligned} & \text { Irvine, CA } \\ & \text { (714) 753-1282 } \end{aligned}$	Reptron Electronics Norcross, GA
Western Microtechnology San Diego, CA (619) 453-8430	(404) 446-1300 Illinois
Western Microtechnology Saratoga, CA (408) 725-1660	Classic Components Northbrook, IL (312) 272-9650
Colorado Insight Electronics	Marshall Industries Schaumburg, IL (312) 490-0155
Aurora, CO (303) 693-4256	Milgray Electronics Palatine, IL
Marshall Industries	(708) 202-1900
$\begin{aligned} & \text { Thornton, CO } \\ & (303) 451-8383 \end{aligned}$	Reptron Electronics Schaumburg, IL (312) 882-1700
Connecticut	
Marshall Industries Wallingford, CT (203) 265-3822	Indiana Marshall Industries Indianapolis, IN^{2}
Milgray Electronics Milford, CT (203) 878-5538	(317) 297-0483 Kansas
Florida Marshall Industries	Marshall Industries Lenexa, KS (913) 492-3121
Altamonte Springs, FL (407) 767-8585	Milgray Electronics Overland Park, KS
Marshall Industries Ft. Lauderdale, FL (305) 977-4880	(913) 236-8800 Maryland
Marshall Industries St. Petersburg, FL (813) 573-1399	Marshall Industries Silver Springs, MD (301) 622-1118
Milgray Electronics Winter Park, FL (407) 647-5747	Milgray Electronics Columbia, MD (301) 995-6169
Reptron Electronics Ft. Lauderdale, FL (305) 735-1112	Vantage Components, Inc. Columbia, MD (301) 720-5100
Reptron Electronics Tampa, FL (813) 855-4656	

FMI Distributors - USA (Continued)

Massachusetts
Bell Microproducts
Wilmington, MA
(508) $658-0222$

Interface Electronic Corp. Hopkinton, MA
(508) 435-6858

Marshall Industries
Wilmington, MA
(508) 658-0810

Milgray Electronics
Wilmington, MA
(508) 657-5900

Vantage Components, Inc.
Andover, MA
(508) 687-3900

Western Microtechnology
Burlington, MA
(617) 273-2800

Michigan

Marshall Industries
Livonia, MI
(313) 525-5850

Reptron Electronics
Livonia, MI
(313) 525-2700

Minnesota

Marshall Industries
Plymouth, MN
(612) 559-2211

Reptron Electronics
Minnetonka, MN
(612) 938-3995

Missouri

Marshall Industries
Bridgeton, MO
(314) 291-4650

New Jersey
Interface Electronics
Marlton, NJ
(609) 988-5448

Marshall Industries
Fairfield, NJ
(201) 882-0320

Marshall Industries
Mt. Laurel, NJ
(609) 234-9100

Milgray Electronics Martion, NJ (609) 983-5010	Marshall Industries Solon, OH (216) 248-1788
Milgray Electronics Parsippany, NJ (201) 335-1766	Milgray Electronics Cleveland, OH (216) 447-1520
Vantage Components, Inc. Clifton, NJ (201) 777-4100	Reptron Electronics Solon, OH (216) 349-1415
Western Microtechnology, Inc. Fairfield, NJ (201) 882-4999	Reptron Electronics Worthington, OH (614) 436-6675
New York	Oregon
Marshall Industries Hauppauge, NY (516) 273-2424	Marshall Industries Beaverton, OR (503) 644-5050
Marshall Industries Johnson City, NY (607) 785-2345	Western Microtechnology Beaverton, OR (503) 629-2082
Marshall Industries Rochester, NY (716) 235-7620 Mast Distributors Ronkonkoma, NY (516) 471-4422	Pennsylvania Marshall Industries Pittsburg, PA (412) 788-0441 Texas
Milgray Electronics Farmingdale, NY (516) 420-9800	Insight Electronics, Inc. Richardson, TX (214) 783-0800
Milgray Electronics Pittsford, NY (716) 381-9700	Marshall Industries Austin, TX (512) 837-1991
Vantage Components, Inc. Smithtown, NY (516) 543-2000	Marshall Industries Carrollton, TX (214) 233-5200
North Carolina Marshall Industries	Marshall Industries El Paso, TX
Raleigh, NC (919) 878-9882	Marshall Industries Harlingen, TX
Reptron Electronics Raleigh, NC (919) 870-5189	(512) 421-4621 Milgray Electronics Dallas, TX
Ohio	(214) 248-1603
Marshall Industries Dayton, OH (513) 898-4480	Western Microtechnology, Inc. Dallas, TX (214) 416-0103

Dallas, TX

Western Microtechnology, Inc. (214) 416-0103

FMI Distributors - USA (Continued)

Utah
Marshall Industries
Salt Lake City, UT
(801) $973-2288$
Milgray Electronics
Salt Lake City, UT
(801) 272-4999

Washington

Insight Electronics, Inc. Kirkland, WA (206) 820-8100

Marshall Industries
Bothwell, WA
(206) 486-5747

Merit Electric
Redmond, WA
(206) 869-7557

Western Microtechnology
Redmond, WA
(206) 881-6737

Wisconsin

Classic Components New Berlin, WI
(414) 786-5300

Marsh Electronics
Milwaukee, WI
(414) 475-6000

Marshall Industries
Waukesha, WI
(414) 797-8400

FMI Distributors - Canada

Ontario

Marshall Industries
Bramton, ON
(416) 458-8046

Milgray Electronics
Willowdale, ON
(416) 756-4481

Quebec

Marshall Industries
Pointe Claire, QU
(514) 683-9440

Active Components
Point Claire, QU
(514) 694-7710

Fujitsu Electronic Devices Europe* Sales Offices - Europe

FMG - Benelux
Fujitsu Mikroelektronik, GmbH
Europalaan 26A
5623 LJ Eindhoven
The Netherlands
Tel: (40) 447440
Telex: 59265
FAX: (40) 444158
FMG - France
Fujitsu Mikroelektronik GmbH
Immeuble le Trident
3-5, voie Félix Eboué
94024 Creteil Cedex
France
Tel: (1) 45131212
Telex: 262861
FAX: (1) 45131213
FMG - Germany (Central)
Fujitsu Mikroelektronik GmbH
Am Siebenstein 6-10
6072 Dreieich-Buchschlag
Germany
Tel: (6103) 6900
Telex: 411963
FAX: (6103) 690122

FMG - Germany (Southwest)
Fujitsu Mikroelektronik GmbH
Am Joachimsberg 10-12
7033 Herrenberg
Germany
Tel: (7032) 4085
Telex: 7265485
FAX: (7032) 4088
FMG - Germany (South)
Fujitsu Mikroelektronik GmbH
Car-Zeiss-Ring 11
8045 Ismaning
Germany
Tel: (89) 9609440
Telex: (17) 897446
FAX: (89) 96094422
FMIL - Italy
Fujitsu Microelectronics Italia S.R.L. Centro Direzionale Milanofiori Strada 4 - Palazzo A/2 20094 Assago (Milano) Italy
Tel: (2) 8246170/176
Telex: 318546
FAX: (2) 8246189

FML - Scandinavia
Fujitsu Microelectronics Lid.
Torggatan 8
17154 Solna
Sweden
Tel: (8) 7646365
Telex: 13411
FAX: (8) 280345
FML - United Kingdom
Fujitsu Microelectronics Ltd.
Hargrave House
Belmont Road
Maidenhead
Berkshire SL6 6NE
England
Tel: (628) 76100
Telex: 848955
FAX: (628) 781484
*Fujitsu Mikroelektronik, GmbH (FMG)
Fujitsu Microelectronics, Ltd. (FML)
Fujitsu Microelectronic Italia S.R.L. (FMIL)

FMG, FML and FMIL Distributors - Europe

Austria

Eljapex Handelsges mbH
Wien
Tel: (222) 861531
Telex: 133128
FAX: (222) 861531300
MHV/EBV Elektronik
Wien
Tel: (222) 838519
Telex: 134946
FAX: (222) 8941775

Belgium

MHV/EBV Elektronik
Zaventem
Tel: (2) 7209936
Telex: 62590
FAX: (2) 7208152

Denmark

Nordisk Elektronik AS*

Herlev

Tel: (42) 842000
Telex: 35200
FAX: (44) 921552
Finland
Aspecs OY
Vantaa
Tel: (0)5668686
FAX: (0)5666051

France

EBV Elektronik
Champs Sur Marne
Tel: (1) 64688600
Telex: 694301
FAX: (1) 64682767
Elbatex
Bievres Cedex
Tel: (1) 69412800
FAX: (1) 69412846
F2S (Groupe ASAP)
Trappes
Tel: (1) 30438233
Telex: 698887
FAX: (1) 30570719
Microram (Groupe SCAIB)
Rungis Cedex
Tel: (1) 46868170
Telex: 204674
FAX: (1) 45605549

Germany

Eljapex GmbH
Waldshut-Tiengen
Tel: (7751) 2035
Telex: (7751) 6603
Micro Halbleiter GmbH^{*}
Haar
Tel: (89) 4601004
FAX: (89) 468808
Italy
Hantelec
Milano
Tel: (2) 66010569
FAX: (2) 66013311
Malpassi S.R.L.
Bologna
Tel: (51) 727252
Telex: 583118
FAX: (51) 727515

Ireland

Allied Semiconductors
International Ltd.
Shannon
Co. Clare
Tel: (61) 61777
Telex: 70358
FAX: (61) 363141
The Netherlands
MHV/EBV Elektronik
Maarssenbroek
Tel: (3465) 60791
Telex: 76089
FAX: (3465) 64277
Norway
Odin Electronics AS
Skedsmokorset
Tel: (6) 875480
FAX: (6) 875430
Portugal
Niposom J. Nabais LDA
Lisboa
Tel: (1) 894637
Telex: 14028
FAX: (1) 809517

Spain

Comelta S.A.
Barcelona
Tel: (3) 3007712
Telex: 51934
FAX: (3) 3005156
Comelta S.A.
Madrid
Tel: (1) 7543001
Telex: 42007
FAX: (1) 7542151

Sweden

Martinsson Elektronik AB
Hagersten
Tel: (8) 7440300
Telex: 13077
FAX: (8) 7443403
Switzerland
Eljapex AG*
Wettingen
Tel: (56) 275777
Telex: 826300
FAX: (56) 261486
United Kingdom
Hawke Component Distribution
Nr . Basingstoke
Hants
Tel: (256) 880800
FAX: (256) 880325
MMD*
Reading
Berkshire
Tel: (734) 752266
Telex: 846112
FAX: (734) 312728
Pronto Electronic Systems Ltd.
liford
Essex
Tel: (81) 5546222
Telex: 8954213
FAX: (15) 183222

*This Distributor has an ASIC Design Center

**Microcontrollers only
11-20

Fujitsu Microelectronics Asia PTE Limited (FMAP) Sales Offices Asia, Australia and Oceania

Taiwan

Fujitsu Microelectronics Pacific Asia Ltd. Taiwan Branch
Room 1906 No. 333 Keelung Road
Sec. 1 Taipei 10548
Taiwan, Republic of China
Tel: (886) 2-7576548
FAX: (886) 2-7576571

Singapore

Fujitsu Electronics Asia PTE Ltd. \#06-04/07 Plaza by the Park 51 Bras Basah Road Singapore 0718
Tel: (65) 336600
FAX: 3361609

Hong Kong
Fujitsu Microelectronics Pacific Asia Ltd. 616-617, Tower B
New Mandarin Plaza
14 Science Museum Road
Tsimshatsui East, Kowloon Hong Kong
Tel: (852) 7230393
FAX: (852) 7216555

FMAP Representatives - Asia and Australia

Australia

Pacific Microelectronics PTY Lid. Thornleigh,
Australia
Tel: (61) 2-481-0065
FAX: (61) 2-484-4460

Korea

KML Corporation
Seoul, Korea
Tel: (82) 2-588-2011
FAX: (82) 2-588-2017

Singapore

Fujitsu Devices (S) PTE Ltd.

Singapore

Tel: (65) 3361600
FAX: (65) 3361609

FMAP Distributors - Asia

Hong Kong

Famint (HK) Ltd.
Causeway Bay, Hong Kong
Tel: (852) 5760130
FAX: (852) 5765619

Taiwan
Famint (Taiwan) Co., Ltd
Taipei, Taiwan Tel. (65) 2962111 FAX: (65) 2960339

Singapore

Cony Electronics (S) PTE Ltd.
Singapore
Tel: (65) 2962111
FAX: (65) 2960339

Mobicon Electronic Supplies Company Kowloon, Hong Kong
Tel: (852) 3976628
FAX: (852) 2970339

Section 12

Telecommunication Products Design Information - At a Glance

Page Tite
12-3 Application Note. Prescalers and PLLs: Fujitsu Prescalers and Phase-Locked Loops for VHF and UHF Frequency Synthesis. A Tutorial with Selection Guides

Prescalers and PLLs

Fujitsu Prescalers and Phase-Locked Loops for VHF and UHF Frequency Synthesis

A Tutorial with Selection Guides

Fujitsu Microelectronics, Inc.
Field Applications Engineering

Abstract

This Application Note includes a broad introduction to the relevant high frequency synthesis theory and its application areas, a description of prescaler and phase-locked loop (PLL) components, and guidelines for selecting and designing with Fujitsu's extensive selection of prescaler and PLL IC products.

12

Contents

Introduction 13-9
PLL Tuning Systems 13-9
What is a PLL? 13-11
Frequency Synthesis With PLLs and Prescalers 13-12
The Pulse Swallow Method 13-13
Stand-alone PLLs and Integrated PLLs 13-14
Selecting the Right PLL IC 13-16
Selecting a PLL 13-17
Width of the counters 13-17
Selecting the N and A counters 13-18
PLL Counter Selection Guide 13-18
A Practical Example: Selecting the PLL IC for an FM Receiver 13-18
Example 13-18
Programming of the counters 13-19
Set-up and switching times of the counters and modulus control logic 13-19
Positive or negative edge triggering of counters 13-19
Phase detector 13-20
Charge pump 13-20
Charge pump waveforms and fr and fv 13-21
4-bit Microcontrollers with PLLs 13-22
What is a Prescaler? 13-22
Dual modulus prescalers 13-23
Single modulus prescalers 13-23
Microwave Prescalers 13-24
Stand-alone Prescaler Application 13-24
Selecting the Right Prescaler 13-25
Toggling speed 13-25
Termination resistor internal/external 13-26
Stability of Vout 13-26
Flexibility of the input voltage 13-27
ECL level 13-27
Flexibility of Vcc 13-27

Contents (Continued)

Modulus set-up time 13-27
Input impedance and reactance 13-27
Smith chart 13-27
Packaging 13-28
Signal propagation delay through the prescaler 13-30
Balanced inputs 13-30
Output duty cycles 13-30
Power dissipation 13-30
Conclusion 13-31
References 13-32
Books 13-32
Articles 13-32

Illustrations

Figures1. A Typical Heterodyne FM Receiver Tuned to the 88.1 MHz Signal 3-10
2. A Typical Heterodyne (Audio) Sender 3-11
3. A Basic PLL Configuration 3-11
4. Frequency Synthesis with a Programmable Counter 3-12
5. Prescaler Accommodating for a Slow Program Counter 3-12
6. Pulse Swallow 3-13
7. System Blocks 3-14
8. Fujitsu's Integrated PLL ICs 3-14
9. Varactor Diode in a VCO or a VCXO 3-15
10. A Varactor Diode Acting as a Voltage-controlled Variable Capacitance 3-16
11. PLL Program Counter Triggered by Opposite Edge 3-19
12. PLL Program Counter Triggered by Same Edge 3-20
13. Active Low Pass Filter 3-21
14. External Charge Pump Example 3-21
15. Frequency Division 3-22
16. Selection Guide to the Fujitsu Bipolar Prescaler Family 3-24
17. A Stand-alone Application of a Prescaler: Clock Rate Reduction 3-24
18. Input Signal Amplitude Versus Input Frequency for MB509 Dual Modulus Prescaler 3-26
19. Smith Chart Constant Resistance 3-28
20. Smith Chart Constant Reactance 3-28
21. Input Impedance of Fujitsu's MB501L Dual Modulus Prescaler as a Function of Frequency Shown on a Smith Chart 3-29
Tables Page

1. Fujitsu's Low Power CMOS PLLs 3-16
2. Fujitsu's Super PLLs 3-17
3. Fujitsu Prescalers 3-31

Introduction

Phase-locked loops (PLLs) and prescalers are used for synthesizing and controlling frequencies in a multitude of high frequency systems. These systems range from radio and television broadcasting, cellular phones, computer local area networks (LANs), and measurement instrumentation to satellite and microwave systems.

Dedicated PLL integrated circuits (ICs) are manufactured in CMOS technology and typically operate in the $20-30 \mathrm{MHz}$ range (maximum). Prescalers manufactured in bipolar ECL or GaAs technologies are considered interface ICs that allow the relatively slower PLLs to accurately control and select frequencies well into the microwave range ($>1 \mathrm{GHz}$).
Fujitsu manufactures a broad range of high frequency telecommunication ICs that includes prescalers, PLLs, integrated PLLs, as well as microcontrollers with onboard PLL and prescaler circuits.

PLL Tuning Systems

Tuning of telecommunication senders and receivers is, by far, the largest application area for today's PLLs and prescalers. High frequency PLLs have largely replaced older methods such as direct tuning an RC or LC oscillator to the desired local oscillator frequency.
At the expense of a quantized (instead of a continuous frequency) resolution, PLLs and the so-called digital tuning circuits into which they are incorporated provide a cheaper, faster, more compact and reliable solution to tuning circuitry. The fact that PLLs only allow selection of frequencies in discrete steps, rather than over a continuous range, is not a concern because the available frequencies (for airwaves, long distance telephone cables, satellites, microwave links, ISDN etc.) are heavily regulated and limited to preassigned channel frequencies.

The frequency position and spacing between channels depends on the physical carrier medium and the program material involved. For example, U.S. airwaves regulations of the Federal Communications Commission (FCC) specify that:

AM radio must be broadcast at $530,540,550$ to 1610 , or 1620 kHz
FM radio must be broadcast at $87.9,88.1$ to $107.7,107.9 \mathrm{MHz}$
TV (channels 2-69) must be broadcast at $55.25,61.25,67.25,77.25,83.25$ to $795.25,801.25 \mathrm{MHz}$.
These frequencies represent the center frequencies of each channel. The spacing of 10 KHz between assigned AM channels, 200 kHz between assigned FM channels, and 6 MHz between assigned TV channels reflects the progressively higher bandwidths necessary for FM and TV.
Other regulated frequencies worth mentioning within the VHF ($30-300 \mathrm{MHz}$) and UHF ($300 \mathrm{MHz}-3$ GHz) bands include: $46 / 49 \mathrm{MHz}$ for cordless telephones, $800-900 \mathrm{MHz}$ for cellular phones (also known as land mobile radio services), $0.1-1.5 \mathrm{GHz}$ for cable TV and $>2 \mathrm{GHz}$ for emerging Digital TV standards and Integrated Services Digital Network (ISDN). Fujitsu prescalers and PLL ICs are appropriate for most of these applications.

Figure 1 shows a superheterodyne FM broadcast receiver and some of the involved spectra and frequencies. For an example, let us examine the steps involved in tuning to the FM station at 88.1 MHz .

Figure 1. A Typical Heterodyne FM Receiver Tuned to the 88.1 MHz Signal
The antenna is exposed to a multitude of transmission frequencies. In order to retrieve the desired signal, several stages of amplification and progressive selective filtration must be applied. In FM broadcasting each radio station is allowed to use up to 150 kHz around the assigned center frequency. Since the spacing between the assigned channels is 200 kHz , this leaves a $50-\mathrm{kHz}$ wide isolation gap between the stations to avoid a spectral overlap. Thus, a $150-\mathrm{kHz}$ wide filter can be used in the final stage to isolate the desired station from all the others. Accurate tuning of such a narrow filter over the $20-\mathrm{MHz}$ wide FM frequency range is not an easy task. To achieve accurate tuning, the filter is kept at a constant frequency, the so-called Intermediate Frequency (IF), and the desired radio signal is shifted in frequency to fall exactly within the filter passband. 10.7 MHz is the broadly used value for IF in commercial FM tuners.

The antenna signal is converted to a lower frequency by mixing (or heterodyning) with an appropriately chosen local oscillator frequency $f_{l o c}$. A PLL is employed for synthesizing floc. In order to place the desired radio station (originally located at $f_{\text {in }}$) exactly at the center of the IF bandpass filter, the PLL frequency $f_{l o c}$ must be set so that IF $=f_{l o c}-f_{\text {in }}$. In other words, to tune to the 88.1 MHz signal, a $f_{\text {loc }}$ of $88.1+10.7$ $\mathrm{MHz}=98.8 \mathrm{MHz}$ is necessary. Tuning to another signal is accomplished by selecting a different $f_{\text {loc }}$.

An appropriate FM demodulator working at the IF provides the final restoration of the original signal.
On the sender side (see Figure 2) the sequence is reversed: a modulated IF signal is mixed with the local frequency oscillator up to the appropriate channel-frequency and broadcast.

Figure 2. A Typical Heterodyne (Audio) Sender
Near-ideal PSK, PM, or FM demodulators can be implemented with PLLs as well as local oscillators.

What is a PLL?

A PLL is a control loop consisting of a phase detector (PD), low pass filter (LPF), voltage controlled oscillator (VCO), program counter(s), and, as necessary, single- or dual-modulus prescalers. (See Figure 3.)

Figure 3. A Basic PLL Configuration
The output of the PD is a voltage indicating the phase difference between its two inputs.
The LPF smooths the PD output and determines the dynamic performance of the loop. The dynamic performance includes general servo loop issues, such as the capture and lock ranges, the noise suppression band width and the transient response.
When the loop is out of lock, the PD voltage changes the frequency of the VCO in a direction that reduces the phase difference between the input signal and the local oscillator signal. When the loop is locked, the signals at both inputs are in phase and have the same frequency.

Generally speaking, the output of the VCO is considered the desired PLL output. It should be mentioned, however, that in some instances (such as when a PLL is used as an FM de-modulator), the filtered output of the PD, rather than the output of the VCO, can be viewed as the system output.
The bandwidth of the low-pass loop filter is crucial to the dynamic- and noise-filtering performance of the loop. The two performance requirements are conflicting, since faster lock-up times require wider LP filters while better noise characteristics are achieved with narrower filters. Therefore, a reasonable compromise has to be met for each application.

Narrow filter bandwidths provide long-loop averaging times and are useful in applications where a noisy, intermittent, or varying reference source must be cleaned up.
For example, in digital LANs, a PLL is used to regenerate a local clock rate from frame synchronization bits, which appear intermittently on most asynchronous communications networks.

In a similar way, the "flywheel synchronizers" for vertical and horizontal scan in today's TV receivers, are operated using PLL circuits. In both cases the "slow" lowpass filter maintains a relatively constant VCO frequency between occurrences of synchronization patterns on the input.

In frequency synthesis applications, the reference frequency source will typically be a high quality, relatively noise-free, crystal oscillator. The loop filter can be extensively wide to provide for fast switching times without compromising noise performance.
A novel approach to PLL design is to electronically bypass the loop filter during the bulk of a frequency switching period and then to activate it back into the loop for final lock-in.

As previously mentioned, the loop filter is the single most important factor in determining the dynamic performance of the servo loop. A thorough theoretical treatment of servo loop analysis is beyond the scope of this publication. References 1 through 4 listed in the back of this note are recommended for more in-depth information.

Frequency Synthesis With PLLs and Prescalers

Figure 4 shows a simple frequency-synthesizing configuration employing a PLL and a single program counter.

Figure 4. Frequency Synthesis with a Programmable Counter
When the loop is in lock, the two input frequencies of the PD are equal, hence:

$$
f_{r e f}=f_{o} / N \Leftrightarrow f_{o}=N \bullet f_{r e f}
$$

A reprogramming of " N " by +1 or -1 will result in selection of a new output frequency with channel separation of $f_{\text {ref }}$.
The scheme of Figure 4, although attractive in its simplicity, is only applicable to output frequencies below 40 MHz , since higher VCO frequencies will exceed the program counter's toggling rate.

Figure 5 shows a widely used remedy to the high frequency problem: a $1 / M$ prescaler is inserted in the feedback loop as a buffer between the VCO and the program counter. This lowers the program counter's input frequency to $f_{\text {out }} / M$ instead of $f_{\text {out }}$.

Figure 5. Prescaler Accommodating for a Slow Program Counter
Figure 5 also shows a reference frequency divider, $1 / R$, inserted in the reference frequency path to allow more flexibility in output frequency programming. Without the reference frequency divider, the presence
of the prescaler would result in broadening the channel separation to $M \bullet f_{\text {ref }}$. A resolution of $f_{\text {ref }}$ is maintained by setting R equal to M.

In many cases, the scheme of Figure 5 is a satisfactory solution, with one drawback. Compared to Figure 4, the operational frequency of the phase detector is lowered by the prescaling factor M. A lowered PD frequency necessitates use of a narrower low-pass filter to suppress spurious output signals from the phase detector at the comparison frequency and its harmonics. Especially in very high frequency synthesizers, where the divide ratio of the prescaler becomes substantial, the loop's lock-in and switching speed characteristics will be severely degraded as a result of narrowing the lowpass filter.

The Pulse Swallow Method

The widely used "multi-modulus division", also known as pulse swallowing (see Figure 6), offers a solution to previously mentioned problems. This method employs two programmable counters and a dual modulus prescaler inside the loop. (For simplicity the reference frequency divider is not shown.)

Figure 6. Pulse Swallow

A description of the pulse swallow method is as follows:

N must be larger than $A(N>A)$. The dual modulus prescaler is initially set to divide by $M+1$. After " A " pulses out of the prescaler, the swallow counter is full and changes the prescaler modulus to M. After additional ($N-A$) pulses out of the prescaler, the program counter changes the prescaler modulus back to $M+1$, restarts the swallow counter and the cycle repeats.
In this way each cycle of the $1 / N$ counter is a result of:

$$
\begin{gathered}
A \bullet(M+1)+(N-A) \cdot M=N \bullet M+A \\
\text { cycles of the } f_{\text {pit }} .
\end{gathered}
$$

In other words:

$$
f_{\text {out }}=(N \cdot M+A) \cdot f_{\text {ref }}
$$

Since M is multiplied by N, but not A, the frequency will change by $f_{\text {ref }}$ when A is changed by 1 . In this way both the channel separation and the PD frequencies are maintained at $f_{\text {ref }}$ to provide for an uncompromised loop performance.

As previously mentioned, more complex variations of the multi-modulus theme include: $N / N+Z$ prescalers (as in MB508 with 128/130, 256/258 and 512/514) and quad-modulus schemes involving multiple swallow counters and special prescalers.

Stand-alone PLLs and Integrated PLLs

Figure 7 shows a general purpose high frequency synthesizer and the functional blocks. These blocks are: the PD, the reference counter, the A and the N counters and modulus control logic. The MB87014, manufactured entirely in CMOS, includes an onboard 180 MHz prescaler.

Figure 7. System Blocks
Advances in recent years in CMOS and BiCMOS (combined ECL and CMOS on one chip) have allowed integration of gigahertz prescalers on the same chip as the PLL. The architecture of these integrated PLL BiCMOS devices is illustrated in Figure 8.

Figure 8. Fujitsu's Integrated PLL ICs

Before discussing the blocks on the PLL chip, let us briefly mention the circuits not found on it. As stated earlier, the low-pass filter must yield a good compromise between accommodating the desired noise and switching characteristics on one side and removing spurious components from the phase detector output on the other side. A charge pump output (see Figure 14) from the PLL is provided in most cases, allowing direct connection of an external passive RC filter. The charge pump output is simply a very high impedance output ($\mathrm{Z}_{\text {out }} \geq 400 \mathrm{k} \Omega$) well suited to drive high-Q resonant circuits found in the VCO. Optionally, an unbuffered PD output is often also made available for connection of custom external active filter configurations. Typical filter bandwidths for frequency synthesis are $1-10 \mathrm{kHz}$.

The prescaler and the VCO are the only two devices actually operating at the high output frequency $f_{\text {out }}$. The VCO is frequently custom made for a specific application. Some popular oscillator types, in order of decreasing phase and frequency-stability, but increasing frequency coverage and linearity, are as follows:

- PLL IC with an on-chip inverter/buffer for an external reference frequency oscillator
- Voltage controlled crystal oscillator with varactor diode (also known as VCXO)
- LC oscillator with a varactor diode
- RC multivibrator

A list of crystal oscillator and VCXO manufacturers can be found in reference 11.

Figure 9. Varactor Diode in a VCO or a VCXO

Figure 10. A Varactor Diode Acting as a Voltage-controlled Variable Capacitance

Selecting the Right PLL IC

Table 1 lists Fujitsu's family of CMOS PLL ICs and Table 2 lists the BiCMOS integrated PLL ICs.
Table 1. Fujitsu's Low Power CMOS PLLs

P/N	Max Frequency (3 V/5 V)	Divide Ratio				Super Voltage	$\begin{gathered} \mathrm{I}_{\mathrm{DD}} \text { (Typ.) } \\ 3 \mathrm{~V} / 5 \mathrm{~V} \\ \hline \end{gathered}$	Package
		\mathbf{N}^{1}	A^{2}	Prescaler	\mathbf{R}^{3}			
MB87001A	$10 / 13 \mathrm{MHz}$	5-1023	0-127	-	8-ldnd ${ }^{4}$	2.7-5.5 V	2.0/3.0 mA	$\begin{gathered} 16 \text { Pin } \\ \text { DIP/FPT } \end{gathered}$
MB87006A	$10 / 17 \mathrm{MHz}$	5-1023	0-127	-	5-16383	3.0-6.0 V	2.5/3.5 mA	$\begin{aligned} & 16 \mathrm{Pin} \\ & \text { DIP/FPT } \end{aligned}$
MB87014A	$-/ 180 \mathrm{MHz}$	5-1023	0-63	64/65	5-65535	4.5-5.5 V	-18.0 mA	$\begin{gathered} 16 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB87073	10/13 MHz	5-2047	0-127	-	8-Idnd	2.7-5.5 V	$2.0 / 3.0 \mathrm{~mA}$	$\begin{gathered} 16 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB87076	10/15 MHz	5-2047	0-127	-	8-16383	$3.0-6.0 \mathrm{~V}$	2.5/3.0 mA	$\begin{gathered} 16 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB87086A	-/95 MHz	5-1023	-	-	5-65535	4.5-5.5 V	-18.0 mA	$\begin{aligned} & 16 \text { Pin } \\ & \text { DIP/FPT } \end{aligned}$
MB87087	10/13 MHz	5-1023	0-127	-	5-16383	$3.0-6.0 \mathrm{~V}$	2.5/3.5 mA	$\begin{gathered} 16 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB87090	$10 / 13 \mathrm{MHz}$	5-1023	0-127	-	8-Idnd	2.7-5.5 V	$3.0 / 4.0 \mathrm{~mA}$	$\begin{aligned} & 16 \text { Pin } \\ & \text { DIP/FPT } \end{aligned}$

Notes: ${ }^{1} \mathrm{~N}=$ Program counter divide factor.
${ }^{2} \mathrm{~A}=$ Swallow counter divide factor.
${ }^{3} \mathrm{R}=$ Programmable reference counter.
${ }^{4}$ Idnd $=8$ programmable combinations of $1 / 8,1 / 16,1 / 64,1 / 128,1 / 512,1 / 1024$, and $1 / 2048$.

Table 2. Fujitsu's Super PLLs

P/N	Prescaler			Program Counter Divide Ratio	Swallow Counter Divide Ratio	Reference Counter Divide Ratio	$\begin{gathered} \mathrm{I}_{\mathrm{Cc}} \\ (\mathrm{TYP}) \end{gathered}$	Sypply Voltage	Package
	$\mathrm{F}_{\text {IN }}$ (MAX)	$\mathrm{V}_{\text {IN }}(\mathrm{MIN})$	Divide Ratio						
MB1501	1100 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & \text { 64/65 } \\ & 128 / 129 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 8-16383 \end{aligned}$	15 mA	2.7-5.5 V	$\begin{aligned} & \text { 16-Pin } \\ & \text { SOP } \end{aligned}$
MB1502	1100 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	$5 \mathrm{v}_{ \pm} 10 \%$	$\begin{aligned} & \text { 16-Pin } \\ & \text { SOP } \end{aligned}$
MB1503	1100 MHz	$100 \mathrm{mVp}-\mathrm{p}$	128/129	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	4.5-5.5 V	$\begin{aligned} & \text { 16-Pin } \\ & \text { SOP } \end{aligned}$
MB1504	520 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	10 mA	2.7-5.5 V	16-Pin SOP
MB1505	600 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	6 mA	$5 \mathrm{v}_{ \pm} 10 \%$	$\begin{aligned} & \text { 16-Pin } \\ & \text { SOP } \end{aligned}$
MB1507	2000 MHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 128 / 129 \\ & 256 / 257 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-255 \end{aligned}$	Binary 8-16383	18 mA	$5 \mathrm{v}_{ \pm} 10 \%$	$\begin{aligned} & \text { 16-Pin } \\ & \text { SOP } \end{aligned}$
MB1508	2400 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 128 \\ & 256 \end{aligned}$	Binary 16-2047	-	$\begin{array}{\|c\|} \hline \text { Binary } \\ 256,512 \\ 1024,2048 \end{array}$	14 mA	$5 \mathrm{v} \pm 10 \%$	$\begin{aligned} & \text { 20-Pin } \\ & \text { SOP } \end{aligned}$
MB1509*	400 MHz	$200 \mathrm{mVp}-\mathrm{p}$	32/33	$\begin{aligned} & \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & 512 \\ & 1024 \end{aligned}$	12 mA	2.7-5.5 V	$\begin{aligned} & \text { 20-Pin } \\ & \text { SOP } \end{aligned}$
MB1511	1100 MHz	$200 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 16-2047 \end{aligned}$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & \hline \text { Binary } \\ & 8-16383 \end{aligned}$	8 mA	2.7-5.5 V	$\begin{aligned} & \text { 20-Pin } \\ & \text { SSOP } \end{aligned}$
MB1512	1100 MHz	$100 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	4.5-5.5 V	$\begin{aligned} & \text { 20-Pin } \\ & \text { SSOP } \end{aligned}$
MB1513	1100 MHz	$100 \mathrm{mVp}-\mathrm{p}$	128/129	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	Binary 8-16383	8 mA	4.5-5.5 V	20-Pin SSOP
MB1518	2500 MHz	$\begin{aligned} & 100 \text { to } 200 \\ & \mathrm{mVp}-\mathrm{p} \\ & \hline \end{aligned}$	512/528	Binary 32-511	$\begin{aligned} & \text { Binary } \\ & 0-31 \end{aligned}$	512	16 mA	4.5-5.5 V	$\begin{aligned} & \text { 16-Pin } \\ & \text { SSOP } \end{aligned}$
MB1519*	600 MHz	$200 \mathrm{mVp}-\mathrm{p}$	128/129	Binary $16-2047$	$\begin{aligned} & \text { Binary } \\ & 0-127 \end{aligned}$	$\begin{aligned} & 512, \\ & 1024 \end{aligned}$	16.5 mA	2.7-5.5 V	$\begin{aligned} & \text { 20-Pin } \\ & \text { SOP } \end{aligned}$

*Dual Device

Selecting a PLL

The specifications to consider when selecting a PLL are as follows:

Width of the counters

The most significant feature of the various PLL devices (since operating speed is practically the same for all), is the width of their counters. In general, the width (in bits) of the reference counter determines the frequency resolution ($\Delta f_{\text {channel }}=f_{\text {ref }} / R$) obtainable from the system. The width of the programmable counter, $(1 / N)$ (see Figure 7) and the swallow counter ($1 / A$) determine the number of channels that can be covered. Fujitsu devices are available with up to 18 -bit wide combined program and swallow counters, and 16 -bit wide reference counters.

Selecting the N and A counters

It is easily observed from the dual-modulus equation $\left[f_{\text {out }}=(N \cdot M+A) \cdot \Delta f_{\text {channel }}\right]$ that A need not assume values higher than the prescaler modulus M, since setting A equal to $M+X$ is equivalent to setting A equal to X and increasing N by 1 . Hence, all possible channels can be covered in a dual modulus configuration if the programmable swallow counter number (A) is allowed to assume all values from 0 to $M-1$, where M is the modulus of the $M / M+1$ prescaler:

$$
\bullet 0 \leq A \leq M-1
$$

Under all circumstances the condition $\mathrm{N} \geq \mathrm{A}$ must be satisfied:

$$
N_{\min }=A_{\max }=M-1
$$

To select the right PLL counters for your application, supply the information that is requested in the following guide.

PLL Counter Selection Guide

1. Identify maximum and minimum output frequency desired, $f_{\text {out }}$, max and $f_{\text {out }}$, min.
2. Select a $M / M+1$ prescaler, so that $f_{\text {out, } \max } / M$ can be accommodated by the PLL ($<20 \mathrm{MHz}$ typically).
3. Identify desired channel spacing(s), $\Delta f_{\text {channel }}$.
4. Let $A=0$, then $N_{\text {min }}=f_{\text {out }, \min } / \Delta f_{\text {channel }}$ and $N_{\max }=f_{\text {out }, \max } / \Delta f_{\text {channel }}$.
5. Verify that $N_{\min } \geq M-1$; if not, select a bigger prescaling modulus and go back to step 3 .
6. Select an N program counter with enough bit-width to accommodate the value of $N_{\max }$.
7. Select an A swallow counter with enough bit-width to accommodate the value M - ; set all higher bits to 0 .
8. Select the reference frequency divider (R) and a crystal reference frequency so that $f_{\text {ref }} / R=\Delta f_{\text {channel }}$.

A Practical Example: Selecting the PLL IC for an FM Receiver

We are going to select the appropriate PLL IC and prescaler for the local oscillator of the superheterodyne FM receiver shown earlier in Figure 1. In order to receive an FM station at $f_{i n}$, the local oscillator must be set to $f_{l o c}=f_{\text {in }}+10.7 \mathrm{MHz}$. For receiving all FM stations, $f_{l o c}$ has to be selectable between 98.6 MHz and 118.6 MHz in 0.2 MHz steps; that is 101 positions in total.

To select a PLL for our example FM Receiver, we used the PLL Selection Guide, supplied the required information (see Example), and selected the appropriate PLL.

Example

1. $f_{\text {out }, \max }=118.6 \mathrm{MHz} f_{\text {out }}=98.6 \mathrm{MHz}$
2. Choose the MB503 prescaler ($M=16$)

$$
f_{\text {out }, \max } / M=7.4 \mathrm{MHz}<20 \mathrm{MHz}
$$

3. $\Delta f_{\text {channel }}=0.2 \mathrm{MHz}$
4. $\quad N_{\text {min }}=f_{\text {out }, \text { min }} / \Delta f_{\text {channel }}=493$
$N_{\text {max }}=f_{\text {out }, \text { max }} / \Delta f_{\text {channel }}=593$
5. $N_{\max }>16, \mathrm{OK}$
6. $N_{\max }$ of 593 requires a 10 -bit wide N -counter

- A 4-bit wide (swallow) counter
- Either an MB87001A or an MB87006A
- Choose MB87001A

8. Choose an fref of 3.2 MHz and set the R-counter to 16 to yield $\Delta f_{\text {channel }}=0.2 \mathrm{MHz}$

Programming of the counters

In order to preserve board space, all Fujitsu PLLs have serially programmable counters. The divisor values are fed through a serial pin to a shift register and latched-in with a control pulse. This allows 16-pin packaging to be used for all devices.

Set-up and switching times of the counters and modulus control logic

These delays are important and can become a limiting factor, especially when operating in pulse swallow mode. When the circuit has counted down so that the N program counter is full, the whole counter system is reset. The reset function must be completed within the next cycle of the $M / M+1$ prescaler or,

$$
t_{\text {reset }}<M / f_{\text {out }, \max }
$$

Where $t_{\text {reset }}$ equals the sum of propagation delays through the A and N counters, (the required modulus set-up time of the prescaler and release time of the modulus control logic).

Positive or negative edge triggering of counters

As previously mentioned, when the modulus of a dual-modulus prescaler is changed from 64 to 65 , one half-cycle of the output (output low) will be extended to 33 input cycles. The other half-cycle will remain unchanged at 32 input cycles.
Therefore, modulus set-up time of the prescaler will be expressed relative to an edge of the affected halfcycle (in this case the negative-going edge). If the program counters and the modulus control logic are triggered on an opposite edge, valuable set-up time margin will be lost. (See Figures 11 and 12).
When necessary, insertion of a fast inverter between the prescaler and the program counter may provide some timing relief.

12
Figure 11. PLL Program Counter Triggered by Opposite Edge

Figure 12. PLL Program Counter Triggered by Same Edge

Phase detector

There are some differences between analog and digital phase detectors.
An analog phase detector works on a so-called integrating multiplier principle (Gilbert Cell multiplier is one example) and reflects not only timing differences, but also (if the signals are not purely sinusoidal or square) differences in the shape of the input signals. Analog phase detectors can offer superior signal-tonoise (S / N) ratios and can react almost instantaneously to minute changes in input waveforms. However, they are relatively complex and lend themselves poorly to high speed CMOS integration.
The digital phase-frequency detector is a simple and extremely fast sequential circuit (4 flip-flops). The circuit detects only positive-going threshold crossings and indicates which of the two inputs is ahead of the other one. It is not dependent on the shape of the signals. The digital phase-frequency detector is in all Fujitsu PLLs.

Charge pump

The single-ended output from the phase detector is called the internal charge pump. The three-state charge pump output goes high when $f_{r e f}>f_{v c o}$, low when $f_{r e f}<f_{v c o}$ and high-impedance state when $f_{\text {ref }}=f_{v c o}$. This output can be connected directly to an active or passive external filter. The MB87014 provides an inverted charge pump output as well.
The charge pump output is derived from two flip-flops out of the phase detector, $\phi \mathrm{r}$ and $\phi \mathrm{v}$. In the case of MB87006A, MB87014 and the MB87086 ${ }^{1}$ when the loop is unlocked, the appropriate output terminal, ϕ r or $\phi \mathrm{v}$, pulls low to indicate which of the two inputs $f_{\text {ref }}$ or f_{vco} is at a higher frequency.

The signals $\phi \mathrm{r}$ and $\phi \mathrm{v}$ would normally be considered an intermediate result; however, they are also made accessible on two output terminals allowing construction of an external charge pump.

A charge pump combines the two digital outputs ($\phi \mathrm{r}$ and $\phi \mathrm{v}$) into one output. (See Figure 13.) The external configuration shown here also directly implements the lowpass filter. Note that due to different polarity assignments, this configuration is not appropriate for MB87001A, 87073, 87076, and the integrated PLLs. Also note that often a large resistor is inserted following the op-amp output to increase the output impedance.

Figure 13. Active Low Pass Filter
A fast external charge pump implementation appropriate for the MB87001A, 87073, 87076 PLLs, ICs, and an integrated PLL is shown in Figure 14. The ϕ r and ϕv outputs on these devices are of the open-drain type. (The rest of the PLL family provides push-pull outputs for ϕ r and ϕv.)
${ }^{1}$ Note that the remaining Fujitsu PLLICs(MB87001A, 87073, and 87076), as well as the single-chip PLL/Prescaler family (MB1500), have a different phase detector design and a different truth table for ϕr and ϕv :

		ϕr	$\phi \mathrm{v}$
$f_{\mathrm{r}}>f_{\mathrm{v}}$	$:$	Low	Low
$f_{\mathrm{r}}=f_{\mathrm{V}}$	$:$	Low	High-Impedance
$f_{\mathrm{r}}<f_{\mathrm{v}}$	$:$	High	High-Impedance

The ϕ-outputs of these devices are open drain.
An external charge pump allows use of faster transistors or op-amps (higher slew rates) and may offer improvement in lock-in performance.

Figure 14. External Charge Pump Example

Charge pump waveforms and ϕr and ϕv

As previously mentioned, in the case of MB87006A, 87014 and 87086 (see footnote ${ }^{1}$ on the preceeding page), when the loop is unlocked, the appropriate output terminal, ϕ r or ϕv, pulls low to indicate which of the two inputs $f_{r e f}$ or $f_{v c o}$ is at a higher frequency. This active terminal, $\phi \mathrm{r}$ or $\phi \mathrm{v}$, will not stay at a steady low but will occasionally toggle to a high state. Basically, its output provides a pulse-width modulated representation of the frequency difference between the inputs.

When the loop is in lock, $\phi \mathrm{r}$ and $\phi \mathrm{v}$ will both be in the "high" state. However, synchronously with the phase comparison frequency, a short spurious negative pulse will occur at both outputs.
The same pulse anomalies will also appear on the output from the internal charge pump. One of the tasks of the loop lowpass filter is to remove all spurious signals (pulses) from the PD output. The loop filter bandwidth must, therefore, always be below the phase comparison frequency. Conversely the phase comparison frequency should be kept as high as possible.

4-bit Microcontrollers with PLLs

Fujitsu also offers a family of 4-bit microcontrollers, the MB88560 family with an on-chip PLL.The MB88560 family consists of two 4-bit CMOS microcomputers: the MB88561 with a liquid crystal display (LCD) controller/driver and the MB88562 with a vacuum fluorescent display (VFD) driver. Both devices contain 21 I/O lines, an 8-bit timer/counter, an A/D converter with 6-bit resolution, display drivers, and a PLL with prescalers suitable for all broadcast and shortwave frequencies. Each device has independent AM (up to 32 MHz) and FM (up to 120 MHz) inputs. Up to 4 K by 8 -bit ROM space and 256 K by 4 -bit static RAM space is available on-chip.
Both chips allow extremely compact designs of car radios, personal stereos, personal communication equipment, etc.
A two-part MB88560 design guide and a demo board are both available from Fujitsu.

What is a Prescaler?

A prescaler is an integrated circuit that divides the frequency of an incoming signal by an integer M (see Figure15). The divisor, M, is called the Modulus.

Internally, a prescaler is a specialized ripple counter, which counts incoming pulses and performs one output cycle for every M received input cycle. If M is an even number the output is toggled following every $M / 2$ input pulse. For M odd, one of the toggles is delayed an extra input cycle (e.g., 6 input pulses for output high and 5 input pulses for output low for $M=11$).

Figure15. Frequency Division
There are distinct differences between prescalers and general purpose divide-by-N counters. We will refer to the latter as program counters and substitute the letter N when referring to them for the remainder of this text.

Prescalers are comparatively simple devices. They contain a minimal amount of logic (less than approximately 100 gates) and offer a few, well chosen modulus numbers. This streamlined architecture allows implementation in the fastest bipolar and GaAs technologies without excessive power consumption or expense. For example, the MB510 dual modulus prescaler from Fujitsu offers a choice of four divide ratios
(128, 144, 256 and 272). Manufactured in $0.8 \mu \mathrm{~m}$ bipolar technology, this 8-pin device is ECL compatible, accepts input frequencies up to 2.7 GHz , and dissipates only 0.05 watts of power.

Program counters, on the other hand, contain a fair amount of programming and decoding logic in order to allow a wide selection of N (any value of N between 0 and $2 q^{-1}$ is made selectable using a q-bit wide program input). The relatively high internal gate count generally limits program counters to TTL or CMOS technology with toggling speeds of less than 40 MHz .
The important point to be made is that there is no need to make program counters faster, or prescalers more programmable. The distinction between the two types of devices is intentional. Once the frequency is brought down sufficiently by a prescaler, sophisticated frequency manipulation is performed with CMOS program counters and a PLL. Prescalers are generally classified as either single or dual modulus.

Dual modulus prescalers

Dual modulus prescalers allow a very rapid transition from a divide-by- M mode to a divide-by- $M+1$ mode (e.g., from 64 to 65); hence, they are often also called $M / M+1$ prescalers ($64 / 65$). In conjunction with PLLs and the pulse swallow method (discussed on page 14), dual modulus prescalers allow finer frequency resolution than single modulus prescalers.

Single modulus prescalers

Single modulus prescalers are fixed, or semi-fixed dividers that only divide by a fixed number M. A semifixed single modulus prescaler allows a choice of more than one modulus (e.g., 32,64 and 128), but is not necessarily optimized for fast switching between moduluses, and the modulus choices are not spaced one apart.

Less common varieties of prescalers include:

- $M / M+Z$ (where $Z \neq 1$) dual modulus prescalers
- Four modulus prescalers
- Decimal single modulus prescalers

Figure 16 shows Fujitsu's bipolar prescaler ICs.

Figure 16. Selection Guide to the Fujitsu Bipolar Prescaler Family

Microwave Prescalers

Microwave prescalers manufactured in GaAs technology are available from specialized vendors, including Fujitsu. The microwave prescalers have frequencies above 3 GHz (microwave range) and toggle speeds of up to 10 GHz . The cost of GaAs parts, however, is considered high when compared to ECL bipolar parts.

Stand-alone Prescaler Application

Prescalers can be used as stand-alone components without a PLL.
A stand-alone application does not involve feedback of signals around the prescaler. The most common stand-alone application for a prescaler is in digital clock distribution networks, where a prescaler simply reduces an incoming clock rate and distributes it to slower analog or digital circuitry. (See Figure17.)

Figure 17. A Stand-alone Application of a Prescaler: Clock Rate Reduction
Prescalers offer several advantages as stand-alone elements. For example, consider an application that requires a high quality $1-\mathrm{MHz}$ reference signal. For this application, a straightforward, high quality $1-\mathrm{MHz}$ crystal oscillator might seem the most obvious choice; however, the highest quality will be
achieved with a higher frequency reference signal (10 MHz) followed by a prescaler ($1 / 10$). This application is preferred because of the following reasons:

- Crystal resonators with higher oscillation frequency tend to have smaller dimensions, shorter oscillation stabilization times and narrower characteristic variations.
- A prescaler will clean up the incoming high frequency signal in two ways:
- It will totally remove variations in the amplitude noise (amplitude envelope of the incoming signal), since its output amplitude is independent of the input.
- It will reduce the phase noise (jitter of zero-crossings) of the incoming signal by approximately a factor of M since its output only switches synchronously with one out of every $M / 2$ input pulses.
The above reasons apply up to a certain point, or as long as the prescaling factor is moderate. The frequency of the crystal should not be increased to the point where RF shielding or board layout has to be changed. Increasingly small dimensions or the price of the crystal can also become a problem.

Numerous digital LSI ICs take advantage of the beneficial properties of prescaling; e.g., they have onboard prescalers that allow a direct connection of high frequency crystal clocks to slower internal logic. For example, Fujitsu's line of 4-bit microprocessors offers a built-in, divide-by-2 prescaler as a recommended option. This option allows the user to drive the $2-\mathrm{MHz}$ internal logic with a $4-\mathrm{MHz}$ crystal rather than a $2-\mathrm{MHz}$ crystal. With this option, the $4-\mathrm{MHz}$ crystal clock will turn on and be fully operational (as well as recover from any external disturbances) in half the time required for a $2-\mathrm{MHz}$ crystal.

Selecting the Right Prescaler

To select the appropriate prescaler, first determine the necessary modulus choices and input toggling speeds.

Toggling speed

One should be aware that a $1-\mathrm{GHz}$ ($f_{\text {in, max }}$ typically) prescaler does not abruptly stop functioning when fed frequencies above 1 GHz . The $1-\mathrm{GHz}$ prescaler will typically require higher input levels to trigger, and it may deliver a smaller output swing, but typically it will function up to a 20-50 percent higher frequency. See Figure 18.
These characteristics are important, since frequency switching in a PLL is normally accompanied by a fair amount of overshoot. A VCO intended to stabilize at 1 GHz may reach, for example, 1.4 GHz before settling down. It is important that the loop (including the prescaler) remains functional during that period. Charts like Figure 18 can be helpful in verifying such cases.

Figure 18. Input Signal Amplitude Versus Input Frequency for MB509 Dual Modulus Prescaler
Prescalers with higher frequency ratings will typically be associated with higher power dissipation and higher switching noise. For example, measurements of gallium arsenide dividers suggest noise performances 20 to 30 dB worse than for ECL dividers (reference 10).
Also note that the input coupling capacitance of a prescaler will limit the lowest useful frequency.

Termination resistor internal/external

All Fujitsu prescalers, except MB501LV, MB504LV, MB501SL, MB509, and MB510 have an open emitter output. Typically a $2.2 \mathrm{k} \Omega$ resistor to ground for a load capacitance of 12 pF is recommended. By choosing a smaller or a larger external resistor, the prescaler's output can be tailored to drive higher or lower loads, respectively.
The prescalers with on-chip termination can drive output load capacitances of up to 8 pF undistorted. A shunt resistance can be added for driving larger loads.
In some situations it is desirable to "overdesign" the termination resistor. The limited current driving ability will tend to smooth the output signal, thus reducing its harmonic content and switching noise induced into supply lines.
Stability of $V_{\text {out }}$
One of the purposes of prescaling is to eliminate amplitude modulation from the output of the VCO. Therefore, it is absolutely mandatory that the output high and low are stable and guaranteed over a wide range of $\mathrm{V}_{\mathrm{in}}, \mathrm{V}_{\mathrm{cc}}$ and temperature.

Flexibility of the input voltage

A prescaler should be able to toggle properly with relatively widely varying input voltage levels (anywhere between 0.15 to 2 Vp-p for the Fujitsu MB 504), while maintaining a constant output level.

ECL level

For most Fujitsu prescalers the maximum allowable input voltage swing is $2 \mathrm{Vp}-\mathrm{p}$. This means that a typical TTL voltage swing of 3 V will overload the prescaler, whereas ECL voltage levels can be accommodated without problems. The outputs of the prescaler are ECL compatible, too.
The statement "The outputs are 1.6 V peak on ECL level" found on the data sheet for MB501, 503, 504 etc. means that Fujitsu prescalers do not require negative supply voltages. In this sense they are not "true" ECL devices.

Flexibility of $V_{c c}$
A wide operational range of Vcc is essential (2.7 V to $4.5 \mathrm{~V}, 3.0 \mathrm{~V}$ typical for MB501LV), if a prescaler is to be used in a battery-powered system. Most Fujitsu prescalers, except the low voltage (LV-suffix) types which operate from a 3 V supply, operate from a single 5 V supply. The integrated PLLs, MB1501 and MB1504, however, operate from a 3 V supply (a higher supply voltage between V_{cc} and 8 V is required for the charge pump circuit).

Modulus set-up time

The time from application of appropriate voltage to the modulus select pin to appearance of the correctly prescaled waveform at the output is $10-50 \mathrm{~ns}$. As previously discussed in the PLL section, fast modulus set-up times are necessary for correct implementation of the pulse swallow method.

Input impedance and reactance

Excessive reactance may affect performance of the VCO and require buffer circuitry between it and the prescaler. For very high frequencies ($>500 \mathrm{MHz}$), the input impedance should be given on a Smith chart. The nominal input impedance of Fujitsu's high frequency prescalers is 50Ω.

Smith chart

Signals on a printed circuit board travel at approximately $2 / 3$ the speed of light. This means that at frequencies above 500 MHz , the signal wavelengths become less than 0.4 m and comparable in size to the board itself. At this point, circuit board traces start acting as transmission lines; i.e., the RMS voltage level will vary along the trace unless impedances of the termination and the trace are matched.

A Smith chart is a graphical impedance representation widely used in transmission theory. It is a tool allowing an easy assessment of impedance mismatch.
The chart consists of two sets of circles: the constant resistance circles (see Figure 19) and the constant reactance circles (see Figure 20). The values of these circles are normalized to the characteristic impedance of the system by dividing the actual value of resistance or reactance by the characteristic impedance, for example, in a 50Ω system, a resistance of 100 W is normalized to a value of 2.0.

A further series of circles may be plotted on the chart; these are the circles of constant voltage standing wave ratio (VSWR) and represent the degree of mismatch in the system. The VSWR is the ratio of the device impedance to the characteristic impedance. It is always expressed as a ratio greater than 1 (a 25Ω device in a 50Ω system gives rise to a 2:1 VSWR). See Figure 21.

Packaging

All Fujitsu prescalers are available in 8-pin DIP or surface mountable 8-pin plastic flat packages. Space saving and better stray capacitance performance are obtained with surface mounting.
CMOS PLLs and BiCMOS integrated PLLs are available in 16-pin DIP and Flatpacks.

Figure 19. Smith Chart Constant Resistance

Figure 20. Smith Chart Constant Reactance

Figure 21. Input Impedance of Fujitsu's MB501L Dual Modulus Prescaler as a Function of Frequency Shown on a Smith Chart

Signal propagation delay through the prescaler

Although a signal delay through the prescaler will affect the lock-in times of the loop, the prescaler is, in this respect, of little importance relative to the loop lowpass filter. Extensive phase shifts between the input and the output of the prescaler may, however, affect the PLL stability.
High capacitive loading will typically be the main cause for delays. This situation can be remedied by decreasing the output termination resistor value, thereby improving drive performance.
Self-oscillation problems can be caused by poor grounding, lack of decoupling, or cross-talk due to board layout. Fujitsu prescalers are guaranteed to be non-oscillatory under most conditions.

Balanced inputs

The ability to drive balanced inputs can be beneficial at high frequencies. All Fujitsu prescalers offer complementary inputs. The prescaler outputs, however, are single ended as they are intended to drive singleended PLL inputs.

Output duty cycles

The output duty cycle should be 50 percent when the modulus is an even number (such as three input clock periods high and three input clock periods low for division with modulus 6). Division by an odd number should cause minimal deviation from 50 percent duty cycle (such as four input clocks high and three input clocks low for division with modulus 7). Rise and fall times are, of course, load dependent and deviations from idealized waveforms will occur. Also, clearly specify which of the output half-cycles (output low or output high) is the one that is extended in the $\mathrm{M}+1$ mode of a dual modulus prescaler.

Power dissipation

Thanks to a proprietary, "third generation," $0.8 \mu \mathrm{~m}$ emitter self-align and polysilicon electrode and resistor (ESPER) manufacturing technology, Fujitsu can offer bipolar prescalers with the most beneficial frequency rating/power dissipation ratio available. See Table 3.

Table 3. Fujitsu Prescalers

P/N	$\mathrm{F}_{\text {IN }}$ (MAX)	$\mathrm{V}_{\text {IN }}$ (MIN)	Divide Ratio	Icc (TYP)	Supply Voltage	Package
MB467	200 MHz	150 mVp -p	10/20	6 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB501	1.0 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	30 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB501L	1.1 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	10 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB501LV	1.1 GHz	150 mVp -p	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	12 mA	$\begin{aligned} & 3 V \\ & -10-+50 \% \end{aligned}$	$\begin{gathered} 8 \text { Pin } \\ \text { DIP/FPT } \end{gathered}$
MB501SL	1.1 GHz	$100 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & \hline 64 / 65 \\ & 128 / 129 \end{aligned}$	5 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB503	200 MHz	$150 \mathrm{mVp}-\mathrm{p}$	32/33	8 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \text { Pin } \\ \text { DIP/FPT } \end{gathered}$
MB504	520 MHz	$150 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & \hline 32 / 33 \\ & 64 / 65 \end{aligned}$	10 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB504L	520 MHz	150 mVp -p	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	5 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \\ \hline \end{gathered}$
MB504LV	52.0 MHz	$150 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 32 / 33 \\ & 64 / 65 \end{aligned}$	6 mA	$\begin{aligned} & 3 V \\ & -10-+50 \% \end{aligned}$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB505-16	1.6 GHz	150 mVp -p	128/129	9 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB506	2.4 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 128 \\ & 256 \end{aligned}$	18 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$
MB507	1.6 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{array}{r} 128 / 129 \\ 256 / 257 \\ \hline \end{array}$	18 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \\ \hline \end{gathered}$
MB508	2.3 GHz	$400 \mathrm{mVp}-\mathrm{p}$	128/130 256/258 512/514	24 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \text { Pin } \\ \text { DIP/FPT } \end{gathered}$
MB509	1.1 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 64 / 65 \\ & 128 / 129 \end{aligned}$	11 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \\ \hline \end{gathered}$
MB510	2.7 GHz	$400 \mathrm{mVp}-\mathrm{p}$	$\begin{aligned} & 128 / 144 \\ & 256 / 272 \end{aligned}$	10 mA	$5 \mathrm{~V}_{ \pm} 10 \%$	$8 \mathrm{Pin}$ FPT
MB511	1.0 GHz	$60 \mathrm{mVp}-\mathrm{p}$	1/2/8	23 mA	$5 V_{ \pm} 10 \%$	$\begin{gathered} 8 \mathrm{Pin} \\ \text { DIP/FPT } \end{gathered}$

Conclusion

For further technical assistance and product information, including updates, please contact your nearest Fujitsu Microelectronics Sales Office. You will find a listing of the offices at the back of this paper.

References

Books

1. Berlin, Howard M. Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis: Howard W. Sams \& Co. 1978.
2. Blanchard, Alain. Phase-Locked Loops: Application to Coherent Receiver Design. New York: Wiley-Interscience, 1976.
3. Egan, William F. Frequency Synthesis by Phase Lock. New York: Wiley-Interscience, 1981.
4. Gardner, Floyd M. Phaselock Techniques. New York: John Wiley and Sons, 1979.
5. Kinley, Harold. The PLL Synthesizer Cookbook. Blue Ridge Summit: TAB Books, 1980.
6. Kroupa, V.F. Frequency Synthesis. New York: Wiley, 1973.

7 Lindsay, W. C. and M. K. Simon, eds. Phase-Locked Loops and Their Application. New York: IEEE Press, 1978.
8. Manassewitch, Vadim. Frequency Synthesizers. Theory and Design. New York: Wiley, 1976.
9. Plessey Semiconductors. Radio Telecoms IC Handbook. Irvine: Plessy Semiconductors, 1987.
10. Rohde, Ulrich L. Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs: PrenticeHall, 1983.

Articles

11. Hillstrom, Tim L. "Design method yields low-noise, wide-range crystal oscillators." EDN (March 1988).
12. Ormond, Tom. "Crystal Oscillators." EDN (October 17, 1985).

CATV	Cable Television.
CB RADIO	Citizen Band Radio. The frequency bands allocated for short-distance personal or business radio communication. Present USA bands are 26.965 to 17.405 kHz , 72 to 76 MHz , and 462.550 to 467.425 MHz .
CMOS	Complimentary Metal Oxide Semiconductor. A technology that is used for the manufacturing of low power consumption devices.
CODEC	COder/DECoder.
DTMF	Dual Tone Multifrequency
DIP	Dual In-line Package.
ECL	Emitter Coupled Logic. A technology that is used for the manufacturing of devices that operate at high frequencies.
Frequency	The number of oscillations or cycles per unit of time.
FPT	Flat Package Technology, usually referred to as Surface Mount Technology (SMT).
FSK	Frequency shift keying. The form of frequency modulation in which the modulating wave shifts the output frequency between or among pre-determined values, and the output wave has no phase discontinuity.
GaAs	Gallium Arsinide.
GHz	Gigahertz. A unit of frequency equal to one billion cycles per second.
ISDN	Integrated System Digital Network. A digital network in which all forms of communications, such as voice, data, and video, are converted to digital code and manipulated by computers serving as intelligent switching devices.
MHz	Megahertz. A unit of frequency equal to one million cycles per second.
MSK	Minimum shift keying.
Modem	MOdulator/DEModulator. An equipment that connects data terminal equipment to a communication line.
Modulus	The divide-by ratio of a prescaler counter.
PLL	A device that locks onto a particular frequency. It is typically used in applications that require the tuning or selecting of communication channels.
Prescaler	A device that divides the frequency of an incoming signal by a factor of $N . N$ is the divideby ratio of the counter and is called the modulus.
PSK	Phase shift keying. The form of phase modulation in which the modulating function shifts the instantaneous phase of the modulated wave among pre-determined discrete values.
RF	Radio Frequency. A frequency in the electromagnetic spectrum that is useful for radio transmission. Presently this refers to the limits of 10 kHz to $100,000 \mathrm{MHz}$.
UHF	Ultra High Frequency. This range is 300 MHz to 3 GHz .
VHF	Very High Frequency. This range is 30 MHz to 300 MHz .

Prescalers
Phase-Locked Loops (PLLs)
Single-Chip PLLs/Prescalers
Single-Chip VCOs/Prescalers
Piezoelectric Devices
Cordless Telephone Integrated Circuits
Telephone Integrated Circuits
Coders/Decoders (CODECs)
Quality and Reliability

11 Sales Information
12
Appendix: Design Information

FUJITSU LIMITED

Marunouchi Headquarters
6－1，Marunouchi 1－chome
Chiyoda－ku，Tokyo 100，Japan
Tel：（03）216－3211
Telex：781－22833
FAX：（03）213－7174
For further information，please contact：

Japan

FUJITSU LIMITED
Integrated Circuits and Semiconductor Marketing
Furukawa Sogo Bldg．
6－1，Marunouchi 2－chome
Chiyoda－ku，Tokyo 100，Japan
Tel：（03）216－3211
Telex：781－2224361
FAX：（03）216－9771

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstrein 6－10
6072 Dreieich－Buchschlay
Germany
Tel：（06103）690－0
Telex：441－963
FAX：（06103）691－122

Asia

FUJITSU MICROELECTRONICS ASIA PTE．LTD．
No． 51 Bras Basah Road
Plaza By the Park \＃06－04／07
Singapore 0718
Tel：（65）336－1600
Telex：RS 55573 FESPL
FAX：（65）336－1609

North and South America

FUJITSU MICROELECTRONICS，INC．
Integrated Circuits Division
3545 North First Street
San Jose，CA 95134－1804 USA
Tel：（408）922－9000
Telex：910－338－0190
FAX：（408）432－9044

[^0]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^1]: NOTE: * $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 ** Design Guarantee

[^2]: Copyright © 1990 by FUJITSU LIMITED

[^3]: Copyright© 1990 by FUJITSU LIMITED

[^4]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, k is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^6]: Copyright © 1990 by FUJITSU LIMITED

[^7]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^8]: Copyright © 1990 by FUJITSU LIMITED

[^9]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^10]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated
 voltages to this high impedance circuit.

[^11]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated
 voltages to this high impedance circuit.

[^12]: Copyright© 1990 by FUJITSU LIMITED

[^13]: S_{8} to S_{18} : Divide ratio of programmable counter setting bits (16 to 2047)
 S_{1} to S_{7} : Divide ratio of swallow counter setting bits (0 to 127)
 C : Control bit (Control bit is set to low.)
 Dara is input from MSB data.

[^14]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^15]: Copyright@ 1990 by FUJITSU LIMITED

[^16]: S_{8} to S_{18} : Divide ratio of programmable counter setting bits (16 to 2047)
 S_{1} to S_{7} Divide ratio of swallow counter setting bits (0 to 127)
 C : Control bit (Control bit is set to low.)
 Dara is input from MSB data.

[^17]: $f_{v c o}=[(P \times N)+A] \times f_{o s c} \div R$
 $\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
 N : Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
 A: Preset divide ratio of binary 7 -bit swallow counter ($0 \leq A \leq 63, A<N$)
 fosc: Output frequency of the external reference frequency oscillator
 R: Preset divide ratio of binary 14 -bit programmable reference counter (8 to16383)
 P: Preset modulus of external dual modulus prescaler (32 or 64)

[^18]: Copyright© 1991 FUJITSU LIMITED

[^19]: Depending upon VCO polarity, FC pin should be set accordingly:
 When VCO polarity are like (1) , FC should be set High or open circuit; When VCO polarity are like (2) , FC should be set Low.

[^20]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^21]: NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute

[^22]: Copyright© 1991 by FUJITSU LIMITED

[^23]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^24]: Note: $V_{P_{1}}, V_{P_{2}}$
 : 8 V max.
 C1, C2 :depends on the crystal oscillator.
 Clock, Data, LE
 :involve the schmitt circuit.
 When input pins are open, please insert the pull down/up resistor individually to prevent the oscillation.
 X'tal : 12.8 MHz

[^25]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, n is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high

[^26]: (C) $\mathbf{1 9 9 1}$ by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^27]: (C) 1991 by FUJITSULIMITED

[^28]: *Tx = Transmitter; Rx = Receiver

[^29]: (C) $\mathbf{1 9 9 0}$ by FUJITSU LIMITED

[^30]: Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^31]: (C) 1990 by FUJITSU LIMITED

[^32]: Copyright© 1990 by FUJITSU LIMITED

[^33]: *: Both the mute of Compressor and Expandor can be controlled by this terminal.

[^34]: © 1991 by FUJITSU LIMITED and Fuilsu Microelectronics, Inc.

[^35]: Copyright@ 1991 by FUJITSU LIMITED

[^36]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^37]: Note: Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operation sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods to high static votages or electric ielelds. However, itis advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^38]: Copyright© 1991 by FUJITSU LIMITED

[^39]: (C) 1991 by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^40]: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^41]: (C) $\mathbf{1 9 9 1}$ by FUJITSU LIMITED and Fujitsu Microelectronics, Inc.

[^42]: SPARC $^{\text {TM }}$ is a trademark of Sparc International.
 Ethernet ${ }^{p}$ is a registered trademark of Xerox Corporation.
 EtherStar ${ }^{\text {TM }}$ is a trademark of Fujitsu Microelectronics, inc.
 StarLAN ${ }^{\text {m }}$ is a trademark of AT\&T.
 $\mathrm{G}_{\mathrm{wacho}}{ }^{\mathrm{TM}}$ is a trademark of Hitachi
 SuperMacro ${ }^{\text {TM }}$ is a trademark of Fujitsu Microelectronics, Inc.
 ASICOpen ${ }^{\text {TM }}$ is a trademark of Fujitsu Microelectronics, Inc.
 ViewCAD ${ }^{\text {M }}$ is a trademark of Fujitsu Microelectronics, Inc.

