

FUjilTSU

Static RAM Products

1990

Data
Book

Fujitsu Limited
Tokyo, Japan
Fujitsu Microelectronics, Inc.
San Jose, California, U.S.A.
Fujitsu Mikroelectronik GmbH
Frankfurt, F.R. Germany
Fujitsu Microelectronics Asia PTE Limited
Singapore

Copyright© 1990 Fujitsu Microelectronics, Inc., San Jose, California

All Rights Reserved.
Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Fujitsu Microeiectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A.

Printed in the U.S.A.
Edition 1.0

Contents and Alphanumeric Product List

SRAM Products

Introduction - SRAM Products vii
Section 1 - High-Speed CMOS SRAMs - At a Glance 1-1
MB81C67-35/-45/-55 CMOS 16384×1 bit SRAM 1-3
MB81C68A-25/-30/-35 CMOS 4096×4 bits SRAM 1-15
MB81C69A-25/-30/-35 CMOS 4096×4 bits SRAM 1-27
MB81C71A-25/-35 CMOS 65536×1 bit SRAM 1-39
MB81C74-25/-35 CMOS 16384×4 bits SRAM 1-51
MB81C75-25/-35 CMOS 16384×4 bits SRAM 1-61
MB81C78A-35/-45 CMOS 8192×8 bits SRAM 1-73
MB81C79A-35/-45 CMOS 8192×9 bits SRAM 1-87
MB81C81A-35/-45 CMOS 262144×1 bit SRAM 1-101
MB81C84A-35/-45 CMOS 65536×4 bits SRAM 1-113
MB81C86-55/-70 CMOS 65536×4 bits SRAM 1-123MB8289-25/-35
CMOS 32768×9 bits SRAM 1-131
Section 2 - High-Speed BiCMOS SRAMs - At a Glance 2-1
MB82B001-25/-35 BiCMOS 1048576×1 bit SRAM 2-3
MB82B005-25/-35 BiCMOS 262144×4 bits SRAM 2-11
MB82B006-25/-35 BiCMOS 262144×4 bits SRAM 2-19
MB82B71-15/-20 BiCMOS 65536×1 bit SRAM 2-27
MB82B74-15/-20 BiCMOS 16384×4 bits SRAM 2-37
MB82B75-15/-20 BiCMOS 16384×4 bits SRAM 2-45
MB82B79-15/-20 BiCMOS 8192×9 bits SRAM 2-55
MB82B81-15/-20 BiCMOS 262144×1 bit SRAM 2-65
MB82B84-15/-20 BiCMOS 65536×4 bits SRAM 2-73
Section 3 - Low-Power CMOS SRAMs - At a Glance 3-1
MB8464A -80/LLL CMOS 8192×8 bits SRAM 3-3
MB84256-10/L/LL CMOS 32768×8 bits SRAM 3-15
-12/L/LL, -15/L/LLCMOS 32768×8 bits SRAM3-25
MB84256A-70/L/LL
-10/LLLL, -15/LLLMB84F256-25CMOS 32768×8 bits SRAM3-35
MB841000-80/-10/-12/L CMOS 131072×8 bits SRAM with Data Retention 3-47

Contents and Alphanumeric Product List (Continued)

SRAM PRODUCTS

Section 4 -Application Specific SRAMs - At a Glance 4-1
MB81C51-25/-30 CMOS $512 \times 4 / 1024 \times 2$ TAG RAM 4-3
MB81C79B-35/-45 CMOS 8192×9 bits SRAM 4-19
MB8279RT-20/-25 CMOS 8192×9 bits STRAM 4-31
MB8287-25/-35 CMOS 32768×8 bits SRAM with PE 4-43
MB8421-90/-12/L CMOS 2048×8 bits SRAM 4-55
MB8422-90/-12/LMB8431-90/-12/L/LLCMOS 2048×8 bits SRAM4-69
MB8432-90/-12/L/LL
Section 5 - Wide Temperature Range SRAM Products - At a Glance 5-1
MB81C68A-45W CMOS 4096×4 bits SRAM 5-3
MB81C78A-45W CMOS 8192×8 bits SRAM 5-11
MB81C79A-45W CMOS 8192×9 bits SRAM 5-23
MB8464A-10W/-15W CMOS 8192×8 bits SRAM 5-35
Section 6 - CMOS SRAM Modules - At a Glance 6-1
MB85402-30/-40 CMOS 16384×16 bits SRAM Module 6-3
MB85403-40/-50 CMOS 262144×8 bits SRAM Module 6-11
MB85410-30/-40 CMOS 65536×8 bits High Speed SRAM Module 6-19
MB85414-30/-40 CMOS 16384×32 bits High Speed SRAM Module 6-27
MB85420-40/-50 CMOS 252144×8 bits High Speed SRAM Module 6-35
Section 7 - Quality and Reliability - At a Glance 7-1
Quality Control at Fujitsu 7-3
Quality Control Processes at Fujitsu 7-4
Section 8 - Ordering Information - At a Glance 8-1
IC Product Marking 8-3
IC Ordering Code (Part Number) 8-3
IC Package Codes 8-3
IC Module Ordering Code (Part Number) 8-4
IC Module Package Codes 8-4
Wide Temperature IC Ordering Code (Part Number) 8-5
Wide Temperature IC Package Codes 8-5

Contents and Alphanumeric Product List (Continued)

SRAM PRODUCTS

Section 9 - Sales Information - At a Glance 9-1
Introduction to Fujitsu 9-3
Integrated Circuits Corporate Headquarters - Worldwide 9-7
FMI Sales Offices for North and South America 9-8
FMI Representatives - USA 9-9
FMI Representatives - Canada 9-11
FMI Representatives - Mexico 9-11
FMI Representatives - Puerto Rico 9-11
FMI Distributors - USA 9-12
FMI Distributors - Canada 9-16
FMG Sales Offices for Europe 9-17
FMG Distributors - Europe 9-18
FMA Sales Offices for Asia and Australia 9-20
FMA Representatives - Asia 9-21
FMA Distributors - Asia and Austraila 9-22
Section 10 - Appendices - Design Information 10-1
Appendix 1. Design Applications. Internally timed RAMs build fast writeable control stores 10-3
Appendix 2. Application Note: Separate Data Inputs and Outputs SRAMs Provide New Architectural Solutions for System Designers 10-7
Appendix 3. Application Handbook: The Effective Design of CMOS-based Caches in CISC- and RISC-based Architectures $10-27$

Contents and Alphanumeric Product List (Continued)

SRAM PRODUCTS

Alphanumeric List of Fujitsu Part Numbers

MB81C51-25/-30 4-3
MB81C67-35/-45/-55 1-3
MB81C68A-25/-30/-35 1-15
MB81C68A-45W 5-3
MB81C69A-25/-30/-35 1-27
MB81C71A-25/-35 1-39
MB81C74-25/-35 1-51
MB81C75-25/-35 1-61
MB81C78A-35/-45 1-73
MB81C78A-45W 5-11
MB81C79A-35/-45 1-87
MB81C79A-45W 5-23
MB81C79B-35/-45 4-19
MB81C81A-35/-45 1-101
MB81C84A-35/-45 1-113
MB81C86-55/-70 1-123
MB8279RT-20/-25 4-31
MB8287-25/-35 4-43
MB8289-25/-35 1-131
MB82B001-25/-35 2-3
MB82B005-25/-35 2-11
MB82B006-25/-35 2-19
MB82B71-15/-20 2-27
MB82B74-15/-20 2-37
MB82B75-15/-20 2-45
MB82B79-15/-20 2-55
MB82B81-15/-20 2-65
MB82B84-15/-20 2-73
MB8421-90/-12/L 4-55
MB8422-90/-12/L 4-55
MB8431-90/-12/L/LL 4-69
MB8432-90/-12/L/LL 4-69
MB8464A-10W/-15W 5-35
MB8464A-80/L/LL, -10/L/LL, -15/L/LL 3-3
MB84256A-70/L/LL, -10/L/LL, -12/L/LL, -15/L/LL . . 3-25
MB84256-10/L/LL, -12/L/LL,
-15/L/LL 3-15
MB84F256-25 3-35
MB841000-80/-10/-12/L 3-47
MB85402-30/-40 6-3
MB85403-40/-50 6-11
MB85410-30/-40 6-19
MB85414-30/-40 6-27
MB85420-40/-50 6-35

Introduction

Fujitsu's Static RAM Products

Introduction

Fujitsu manufactures a wide range of integrated circuits that includes linear products, microprocessors, telecommunications circuits, ASICs, high-speed ECL logic, power components (consisting of both discrete transistors and transistor arrays), and both static and dynamic RAMs.

The static RAM product line offers devices for use in a wide range of applications. These memories are manufactured to meet the high standard of quality and reliability that is found in all Fujitsu products.

This data book includes product information on the following SRAM products:

High-speed CMOS SRAMs

Fujitsu's high-speed CMOS SRAMs offer the advantages of low power dissipation, low cost, and high performance. Features include TTL compatibility and a separate chip-select pin that simplifies multipackage systems design.

High-speed BiCMOS SRAMs

Advanced BiCMOS technology adds ultra-fast access times to CMOS low power dissipation in Fujitsu's new family of static RAMs. Most devices feature an automatic power-down mode and are generally available in small outline packages with J-leads (SOJ).

Low-speed CMOS SRAMs

Our low-power CMOS SRAMs are ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. The memories use asynchronous circuitry and may be maintained in any state for an indefinite period of time.

Application-Specific SRAMs

To address the system needs of cache memory chips, Fujitsu's application-specific memory line includes both cache TAG RAM and high-speed static RAM, as well as port RAMs for multiprocessor systems.

Fujitsu's Static RAM Products (Continued)

Wide Temperature Range SRAMs

For applications requiring MIL-STD-883 processing, Fujitsu offers a selection of high-performance, TTL-compatible CMOS static RAM products. All of these devices operate in the "W" temperature range, generally 55° to $125^{\circ} \mathrm{C}$. (See product specifications for specific temperature range.)

CMOS SRAM Modules

Fujitsu manufactures a complete family of reliable CMOS static RAM memory modules for those applications requiring high density and large memory storage capability. Fujitsu's family of memory modules are pin-compatible with JEDEC standards.

Section 1

High-Speed CMOS SRAMs - At a Glance

Page	Device	Maximum Access Time (ns)	Capacity	Package Options		
1-3	$\begin{array}{r} \text { MB81C67-35 } \\ -45 \\ -55 \end{array}$	$\begin{aligned} & 35 \\ & 45 \\ & 55 \end{aligned}$	16384 bits (16384w $\times 1$ b)	20-pin 20-pin 20-pad	Plastic Ceramic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \\ & \text { LCC } \end{aligned}$
1-15	$\begin{array}{r} \text { MB81C68A-25 } \\ -30 \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$	16384 bits (4096w $\times 4$ b)	$\begin{aligned} & 20 \text {-pin } \\ & 20-\mathrm{pin} \end{aligned}$	Plastic Ceramic	DIP, ZIP DIP
1-27	$\begin{array}{r} \text { MB81C69A-25 } \\ -30 \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$	16384 bits (4096w $\times 4$ b)	$\begin{aligned} & 20-\mathrm{pin} \\ & 20-\mathrm{pin} \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \end{aligned}$
1-39	$\begin{array}{r} \text { MB81C71A-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	65536 bits (65536w x 1b)	22-pin 24-pin 22-pad	Plastic Plastic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { LCC } \\ & \text { LCC } \end{aligned}$
1-51	$\begin{array}{r} \text { MB81C74-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	65536 bits (16384w $\times 4$ b)	$\begin{aligned} & \text { 22-pin } \\ & \text { 22-pad } \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { LCC } \end{aligned}$
1-61	$\begin{array}{r} \text { MB81C75-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	65536 bits (16384w $\times 4$ b)	$\begin{aligned} & \text { 24-pin } \\ & 24 \text {-pin } \end{aligned}$	Plastic Plastic	$\begin{aligned} & \text { DIP } \\ & \text { LCC } \end{aligned}$
1-73	$\begin{array}{r} \text { MB81C78A-35 } \\ -45 \end{array}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	65536 bits (8192w $\times 8$ b)	$\begin{aligned} & 28 \text {-pin } \\ & 32 \text {-pad } \end{aligned}$	Plastic Ceramic	DIP, FPT LCC
1-87	$\begin{array}{r} \text { MB81C79A-35 } \\ -45 \end{array}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	73728 bits (8192w x 9b)	$\begin{aligned} & \text { 28-pin } \\ & \text { 32-pad } \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP, FPT } \\ & \text { LCC } \end{aligned}$
1-101	$\begin{array}{r} \text { MB81C81A-35 } \\ -45 \end{array}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	262144 bits (262144w x 1b)	$\begin{aligned} & 24 \text {-pin } \\ & 24 \text {-pin } \\ & 24 \text {-pad } \end{aligned}$	Plastic Ceramic Ceramic	DIP, LCC DIP LCC
1-113	$\begin{array}{r} \text { MB81C84A-35 } \\ -45 \end{array}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	262144 bits (65536w x 4b)	24-pin	Plastic	DIP, LCC
1-123	$\begin{array}{r} \text { MB81C86-55 } \\ -70 \end{array}$	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	262144 bits (65536w x 4b)	$\begin{aligned} & \text { 28-pin } \\ & 32 \text {-pad } \end{aligned}$	Ceramic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { LCC } \end{aligned}$
1-131	$\begin{array}{r} \text { MB8289-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	262144 bits (32768w x 9b)	32-pin	Plastic	DIP, FPT

16,384 WORDS $\times 1$ BIT HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY

The Fujitsu MB 81 C 67 is 16,384 words $\times 1$ bit static random access memory fabricated with a CMOS silicon gate process. All pins are TTLcompatible and a single 5 volts power supply is required.

For ease of use, chip select ($\overline{\mathrm{CS}}$) permits the selection of an individual package when outputs are OR-tied, and automatically power down the MB 81C67. All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 16,384 words x 1 bit
- Static operation: No clocks or refresh required
- Fast access time: 35 ns max. (MB 81C67-35)

45 ns max. (MB 81C67-45)
55 ns max. (MB 81C67-55)

- Single +5 V supply, $\pm 10 \%$ tolerance
- Separate data input and output
- TTL compatible inputs and output
- Three-state output with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- Standard 20-pin DIP package (Suffix: CZ, Suffix: P)
- Standard 20-pad Leadless Chip Carrier (Suffix: TV)
- Pin compatible with Fujitsu MB 8167A

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{CC}	-0.5 to +7.0	V
Input Voltage on any pin with respect to GND		$V_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage on any pin with respect to GND		$V_{\text {OUT }}$	-0.5 to +7.0	V
Output Current		lout	± 50	mA
Power Dissipation		P_{D}	1.2	W
Temperature under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Ceramic	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB 81C67 BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{W E}$	MODE	OUTPUT	POWER
H	X	NOT SELECTED	HIGH-Z	STANDBY
L	L	WRITE	HIGH-Z	ACTIVE
L	H	READ	DOUT	ACTIVE

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\right)$	C_{IN}		5	pF
$\overline{\mathrm{CS}}$ Capacitance $\left(\mathrm{V}_{\overline{\mathrm{CS}}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\overline{\mathrm{CS}}}$		7	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\mathrm{OUT}}$		8	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-3.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 H}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

*-3.0V Min. for pulse width less than 20 ns . ($\mathrm{V}_{\text {IL }} \mathrm{Min}=-1.0 \mathrm{~V}$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$V_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	$I_{L I}$	-2.0		2.0	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} . \\ & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$I_{\text {LO }}$	-2.0		2.0	$\mu \mathrm{A}$
Active Supply Current	$\begin{aligned} & \overline{C S}=V_{I L}, I_{O U T}=0 \mathrm{~mA} \\ & V_{I N}=V_{I L} \text { or } V_{I H} \end{aligned}$	$I_{\text {cc1 }}$		25	40	mA
Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=V_{I L}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{Cycle}=\mathrm{Min}, C_{L}=0 \mathrm{pF} \end{aligned}$	${ }^{\text {cce2 }}$		35	60	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leqq 0.2 \mathrm{~V} \end{aligned}$	$I_{\text {SB } 1}$		2	15	mA
Standby Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$	$I_{\text {SB2 }}$		15	25	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$			0.4	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	V_{OH}	2.4			V

FUJITSU
TMMIM
MB 81C67-35
MB 81C67-45

AC TEST CONDITIONS	
Input Pulse Levels:	0.6 V to 2.4 V
Input Pulse Rise And Fall Times:	5 ns
Timing Measurement Reference Levels :	Input : 1.5 V Output:1.5 V
Output Load: Fig. 2	
Load I	Load II
	(For $t_{H Z}, t_{L Z}, t_{W Z}$ and $t_{W W}$)

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* 1

Parameter	Symbol	MB 81-67-35		MB 81C67-45		MB 81C67-55		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time*2	t_{RC}	35		45		55		ns
Address Access Time*3	${ }^{t} A A$		35		45		55	ns
Chip Select Access Time*4	$t_{\text {ACS }}$		35		45		55	ns
Output Hold from Address Change	${ }^{\mathrm{OH}}$	5		5		5		ns
Chip Selection to Output in Low-Z*5	$t_{L Z}$	5		5		5		ns
Chip Deselection to Output in High-Z*5	t_{Hz}	0	25	0	25	0	30	ns
Chip Selection to Power Up	$t_{P U}$	0		0		0		ns
Chip Deselection to Power Down	t_{PD}		30		40		50	ns

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 All Read cycle are determined from the last address transition to the first address transition of the next address.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 All Read cycle are determined from the last address transition to the first address transition of the next address.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

WRITE CYCLE*1*2

Parameter	Symbol	MB 81C67-35		MB 81C67-45		MB 81-67-55		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time*3	${ }^{\text {twc }}$	35		45		55		ns
Chip Selection to End of Write	${ }^{\text {c }}$ W	30		35		50		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	30		35		50		ns
Address Setup Time	$t_{\text {AS }}$	0		0		0		ns
Write Pulse Width	$t_{\text {wp }}$	20		25		30		ns
Data Valid to End of Write	tow	20		20		25		ns
Write Recovery Time	${ }^{\text {W }}$ R	0		0		0		ns
Data Hold Time	${ }_{\text {t }}{ }_{\text {H }}$	0		0		0		ns
Write Enable to Output in High-Z*4	$t_{w z}$	0	25	0	25	0	30	ns
Output Active from End of Write*4	tow	0	25	0	25	0	30	ns

WRITE CYCLE TIMING DIAGRAM*1*2

区 : Undefined
Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transition.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
${ }^{*} 3$ All Write cycle are determined from the last address transition to the first address transition of next address.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transistion.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*3 All Write cycle are determined from the last address transistion to the first address transition of next address.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - NORMALIZED ACCESS TIME

Fig. 5 - NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 7 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 4 - NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 6 - NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 8 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 9 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 11 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 13 - OUTPUT VOLTAGE vs. OUTPUT CURRENT

Fig. 10 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 12 -OUTPUT VOLTAGE

Fig. 14 - NORMALIZED POWER SUPPLY CURRENT vs. FREQUENCY

Fig. 15 - NORMALIZED ACCESS TIME

Fig. 16 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

(Suffix: CZ)

PACKAGE DIMENSIONS

(Suffix: TV)

PACKAGE DIMENSIONS

(Suffix: P)

20-LEAD PLASTIC DUAL IN-LINE PACKAGE (CASE No.: DIP-20P-M01)

Dimensions in inches (millimeters)

[^0]
4K x 4 (16,384-BIT) STATIC RANDOM ACCESS MEMORY WITH SUPER HIGH SPEED AND AUTOMATIC POWER DOWN

The Fujitsu MB 81C68A is 4096 words $\times 4$ bits static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronous circuitry and all pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ($\overline{\mathrm{CS}}$) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}$, the other deselected packages automatically power down.

All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 4096 words $\times 4$ bits
- Static operation: No clocks or timing strobe required
- Fast access time: $t_{A A}=t_{A C S}=25 n s \max$. (MB 81C68A-25)

$$
t_{A A}=t_{A C S}=30 n s \text { max. }(M B 81 C 68 A-30)
$$

$$
\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS}}=35 \mathrm{~ns} \text { max. }(\mathrm{MB} 81 \mathrm{C} 68 \mathrm{~A}-35)
$$

- Low power consumption: 385 mW max. (Active)

138 mW max. (Standby, TTL level) 83 mW max. (Standby, CMOS level)

- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 20-pin DIP (Suffix -P(plastic)/Suffix: -Z(cerdip))
- Standard 20-pad LCC (Suffix: -TV)
- Standard 20-pin ZIP (Suffix: -PSZ)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{CC}	-0.5 to +7	V
Input Voltage on Any Pin with respect to GND		$V_{\text {IN }}$	-3.5 to +7	V
Output Voltage on Any I/O Pin with respect to GND		V OUT	-0.5 to +7	V
Output current		Iout	± 20	mA
Power dissipation		$P_{\text {D }}$	1.0	W
Temperature under Bias		TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	CERAMIC	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	PLASTIC		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^1]MB81C68A-25
MB81C68A-30
MB81C68A-35

Fig. 1 - MB 81C68A BLOCK DIAGRAM

CAPACITANCE ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 N}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 \mathrm{~N}}$		5	pF
$\overline{\mathrm{CS}}$ Capacitance $\left(\mathrm{V}_{\overline{\mathrm{CS}}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\overline{\mathrm{CS}}}$		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$		7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{C C}$	4.5	5.0	5.5	V
Input Low Voltage	$V_{1 L}$	-2.0^{*}		0.8	V
Input High Voltage	$V_{1 H}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note: * -2.0 V Min. for pulse width less than $20 \mathrm{~ns} .\left(\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=--0.5 \mathrm{~V}\right.$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	$I_{\text {LI }}$	-10		10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{H}}, \\ & \mathrm{~V}_{1 / \mathrm{O}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	ILO	-10		10	$\mu \mathrm{A}$
Active (DC) Supply Current	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IL}} \text { or } V_{I H} \end{aligned}$	$\mathrm{ICC1}$		25	50	mA
Operating Supply Current	$\begin{aligned} & \overline{C S}=V_{I L} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \mathrm{Cycle}=\mathrm{Min} \end{aligned}$	1 cc 2		40	70	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \leqq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathbb{I N}} \geqq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {SB1 }}$		0.5	15	mA
Standby Supply Current	$\overline{C S}=V_{I H}$	$\mathrm{I}_{\text {SB2 }}$		10	25	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$			0.4	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	V_{OH}	2.4			V

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* ${ }^{*}$

Parameter	Symbol	MB 81C68A-25		MB 81C68A-30		MB 81C68A-35		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\text {RC }}$	25		30		35		ns
Address Access Time*2	$t_{A A}$		25		30		35	ns
Chip Select Access Time*3	${ }^{\text {t }}$ ACS		25		30		35	ns
Output Hold from Address Change	${ }^{\text {toH }}$	3		3		3		ns
Output Hold from $\overline{C S}$	${ }^{\text {tohC }}$	0		0		0		ns
Chip Selection to Output in Low-Z*4	$t_{\text {Lz }}$	5		5		5		ns
Chip Deselection to Output in High-Z*4	t_{Hz}		10		13		15	ns
Power Up from $\overline{\mathrm{CS}}$	$t_{\text {pu }}$	0		0		0		ns
Power Down from $\overline{\mathrm{CS}}$	$t_{\text {PD }}$		20		25		30	ns

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}}$
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}$
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
${ }^{*} 4$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

WRITE CYCLE*1*2

Parameter	Symbol	MB 81C68A-25		MB 81C68A-30		MB 81C68A-35		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time	$t_{w c}$	25		30		35		ns
Chip Selection to End of Write	${ }^{\text {t }}$ cw	20		25		30		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	20		25		30		ns
Address Setup Time	${ }^{\text {A }}$ S	0		0		0		ns
Write Pulse Width	$t_{\text {wp }}$	20		25		30		ns
Data Setup Time	$t_{\text {DW }}$	13		15		15		ns
Write Recovery Time	$t_{\text {WR }}$	2		2		2		ns
Data Hold Time	${ }_{\text {t }}{ }^{\text {H }}$	0		0		0		ns
Output High-Z from $\overline{W E}{ }^{* 3}$	${ }^{\text {twz }}$		10		13		15	ns
Output Low-Z from $\overline{W E}^{* 3}$	tow	5		5		5		ns

WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE: $\overline{W E}$ CONTROLLED*1*2

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.
*3 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

WRITE CYCLE: $\overline{C S}$ CONTROLLED*1*2

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in a high impedance state.
*3 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

FUJITSU

TYPICAL CHARACTERISTICS CURVES

Fig. 3 OPERATING SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 5 STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 7 STANDBY SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 8 OPERATING SUPPLY CURRENT vs. FREQUENCY

TYPICAL CHARACTERISTICS CURVES (Cont'd)

Fig. 9 " $\mathrm{H}^{\prime \prime}$ LEVEL OUTPUT VOLTAGE

Fig. 11 ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 10 "L" LEVEL OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

Fig. 12 ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 13 ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

(Suffix: -Z)

(Suffix: -P)

PACKAGE DIMENSIONS

(Suffix: -PSZ)

(Suffix: -TV)

20.PAD CERAMIC (FRIT SEAL) LEADLESS CHIP CARRIER
(CASE No.: LCC-20C-FO1)

- pin no. 1 index

$4 \mathrm{~K} \times 4$ (16,384 -BIT) STATIC RANDOM ACCESS MEMORY WITH SUPPER HIGH SPEED

The Fujitsu MB 81C69A is 4096 words $\times 4$ bits static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronous circuitry and all pins are TTL compatible and a single 5 volts power supply is required.

A separate chip select ($\overline{\mathrm{CS}}$) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 4096 words $\times 4$ bits
- Static operation: No clocks or timing strobe required
- Fast access time: $\mathrm{t}_{\mathrm{AA}}=25$ ns max, $\mathrm{t}_{\mathrm{Acs}}=15 \mathrm{~ns} \max (\mathrm{MB}$ 81C69A-25)
$t_{A A}=30 \mathrm{~ns}$ max, $\mathrm{t}_{\mathrm{ACS}}=18 \mathrm{~ns} \max (\mathrm{MB}$ 81C69A-30)
$\mathrm{t}_{\mathrm{AA}}=35 \mathrm{~ns} \max , \mathrm{t}_{\mathrm{Acs}}=20 \mathrm{~ns} \max (\mathrm{MB} 81 \mathrm{C} 69 \mathrm{~A}-35)$
- Low power consumption: 385 mW max. (Active)
- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion
- All inputs and outputs have protection against static charge
- Standard 20-pin DIP (Suffix: -P(plastic)/Suffix: -Z(cerdip))
- Standard 20-pad LCC (Suffix: -TV)

AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit	
Supply Voltage	V_{CC}	-0.5 to +7	V	
Input Voltage on Any Pin with respect to GND	$\mathrm{V}_{\text {IN }}$	-3.5 to +7	V	
Output Volage on Any I/O Pin with respect to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7	V	
Output current	$\mathrm{I}_{\text {OUT }}$	± 20	mA	
Power dissipation	P_{D}	1.0	W	
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$	
Storage Temperature	CERAMIC	$\mathrm{T}_{\text {STG }}$	-65 to +150	
	${ }^{\circ} \mathrm{C}$			
	PLASTIC		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^2]MB81C69A-25
MB81C69A-30 MB81C69A-35

Fig. 1 - MB 81C69A BLOCK DIAGRAM

TRUTH TABLE

$\overline{C S}$	$\overline{W E}$	MODE	I/O
H	X	NOT SELECTED	HIGH-Z
L	L	WRITE	$D_{\text {IN }}$
L	H	READ	DOUT

CAPACITANCE $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\right)$	C_{IN}		5	pF
$\overline{\mathrm{CS}}$ Capacitance $\left(\mathrm{V}_{\overline{\mathrm{CS}}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\overline{\mathrm{CS}}}$		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$		7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-2.0°		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Note: $\quad{ }^{*}-2.0 \vee$ Min. for pulse width less than $20 \mathrm{~ns} .\left(\mathrm{V}_{1 \mathrm{~L}} \mathrm{Min} .=-0.5 \mathrm{~V}\right.$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}	I_{LI}	-10		10	$\mu \mathrm{~A}$
Output Leakage Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IIO}}=0 \mathrm{~V}$ to V_{CC}	I_{LO}	-10		10	$\mu \mathrm{~A}$
Active Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	$\mathrm{I}_{\mathrm{CC} 1}$		25	50	mA
Operating Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \mathrm{Cycle}=\mathrm{Min}$	$\mathrm{I}_{\mathrm{CC} 2}$		40	70	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OL}}$			0.4	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OH}}$	2.4		V	

AC TEST CONDITION

Input Pulse Levels
Input Pulse Rise and Fall Times:
Timing Reference Levels:
Output Load:

$0 \vee$ to 3.0 V
5 ns (Transient Time between 0.8 V and 2.2 V)
Input : 1.5 V
Output: 1.5 V
$C_{L}=30 \mathrm{pF}$
$C_{L}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{L}}, \mathrm{t}_{\mathrm{H}}, \mathrm{t}_{\mathrm{O}} \mathrm{and} \mathrm{t}_{\mathrm{W}} \mathrm{Z}$

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* 1

Parameter	Symbol	MB 81C69A-25		MB 81C69A-30		MB 81C69A-35		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time*2	t_{RC}	25		30		35		ns
Address Access Time*3	$t_{\text {A }}$		25		30		35	ns
Chip Select Access Time*4	${ }^{\text {t }}$ ACS		15		18		20	ns
Output Hold from Address Change	${ }^{\text {toh }}$	3		3		3		ns
Output Hold from $\overline{\mathrm{CS}}$	${ }^{\text {tohe }}$	0		0		0		ns
Chip Selection to Output in Low-Z*5	$t_{\text {Lz }}$	0		0		0		ns
Chip Deselection to Output in High-Z*5	${ }^{\text {t }} \mathrm{Hz}$		10		13		15	ns

Note: *1 $\overline{\text { WE }}$ is high for Raed cycle.
*2 All read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, $\overline{C S}=V_{1 L}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
${ }^{*} 5$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state Voltage with Load II in Fig. 2.

READ CYCLE TIMING DIAGRAM*1

READ CYCLE: ADDRESS CONTROLLED

READ CYCLE: $\overline{C S}$ CONTROLLED*3

Note: ${ }^{*} 1$ WE is high for Read cycle.
*2 All read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{1 \mathrm{~L}}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*5 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with Lead II in Fig. 2.

MB81C69A-25
FUJITSU MB81C69A-30 MB81C69A-35

WRITE CYCLE***

Parameter	Symbol	MB 81C69A-25		MB 81C69A-30		MB 81C69A-35		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time*3	${ }_{\text {twc }}$	25		30		35		ns
Chip Selection to End of Write	${ }^{t} \mathrm{cw}$	20		25		30		ns
Address Valid to End of Write	${ }_{\text {t }}^{\text {AW }}$	20		25		30		ns
Address Setup Time	${ }^{t}{ }_{\text {AS }}$	0		0		0		ns
Write Pulse Width	${ }^{\text {w }}$ P	20		25		30		ns
Data Setup Time	${ }^{\text {tow }}$	13		15		15		ns
Write Recovery Time*4	${ }^{\text {twr }}$	2		2		2		ns
Data Hold Time	${ }^{t}{ }_{\text {DH }}$	0		0		0		ns
Output High-Z from $\overline{W E}^{* 5}$	$t_{w z}$		10		13		15	ns
Output Low-Z from $\overline{W E}^{* 5}$	tow	5		5		5		ns

WRITE CYCLE TIMING DIAGRAM*1*2

WRITE CYCLE: $\overline{\text { WE }}$ CONTROLLED

Note: ${ }^{*} 1$ If $\overline{C S}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simulatneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 $t_{W R}$ is defined from the end point of WRITE Mode.
*5 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage, with Load II in Fig. 2.

Note: *1 If $\overline{\mathrm{CS}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 $t_{W R}$ is defined from the end point of WRITE Mode.
${ }^{*} 5$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with Load II in Fig. 2.

TYPICAL CHARACTERISTICS CURVES

Fig. 6 " H " LEVEL OUTPUT VOLTAGE

Fig. 4 OPERATING SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 "L" LEVEL OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

Fig. 5 OPERATING SUPPLY CURRENT vs. FREQUENCY

Fig. 8 ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 9 ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 10 ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

CERAMIC DIP (Suffix: -Z)

PACKAGE DIMENSIONS

PLASTIC DIP (Suffix: -P)

PACKAGE DIMENSIONS

CERAMIC LCC (Suffix: -TV)

20-PAD CERAMIC (FRIT SEAL) LEADLESS CHIP CARRIER (CASE No.: LCC-20C-F01)

* Shape of PIN NO. 1 INDEX: Subject to change without notice.

Dimension in
© FUJITSU LIMITED 1987 C20003S-1C

65,536 WORDS X 1 BIT HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY

The Fujitsu MB 81C71A is 65,536 words $\times 1$ bit static random access memory fabricated with a CMOS technology.
It uses fully static circuitry throughout and therefore requires no clocks or refreshing to operate.
The MB 81C71A is designed for memory applications where high performance, low cost, large bit storage and simple interfacing are required.
MB 81C71A is compatible with TTL logic families in all respects; input, output and a single +5 V supply.

- Organization : 65,536 words $\times 1$ bit
- Static operation : No clocks or refresh required
- Fast access time : $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS}}=25 \mathrm{~ns}(\mathrm{MB} 81 \mathrm{C} 71 \mathrm{~A}-25)$
$t_{A A}=t_{A C S}=35 \mathrm{~ns}(M B 81 C 71 A-35)$
- Single +5 V supply $\pm 10 \%$ tolerance
- Separate data input and output
- TTL compatible inputs and output
- Three-state output with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- Standard 22-pin DIP (300 mil) (Suffix: P)
- Standard 22-pad LCC (Suffix: CV)
- Standard 24-pin SOJ (300 mil) : (Suffix : PJ)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{CC}	-0.5 to +7	V
Input Voltage on any pin with respect to GND		$V_{\text {IN }}$	-3.5 to +7	V
Output Voltage on any pin with respect to GND		Vout	-0.5 to +7	V
Output Current		Iout	± 50	mA
Power Dissipation		P_{D}	1.0	W
Temperature Under Bias		TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Ceramic	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

February 1988
Edition 2.0

PIN ASSIGNMENT

[^3]

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\text { WE }}$	MODE	OUTPUT	POWER
H	X	NOT SELECTED	HIGH-Z	STANDBY
L	L	WRITE	HIGH-Z	ACTIVE
L	H	READ	DOUT	ACTIVE

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Value	Unit			
			Typ		Max
Input Capacitance $\left(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {IN }}$		7	pF	
$\overline{\mathrm{CS}}$ Capacitance $\left(\mathrm{V}_{\overline{\mathrm{CS}}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\overline{\mathrm{CS}}}$		7	pF	
Output Capacitance $\left(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\mathrm{OUT}}$		7	pF	

RECOMMENDED OPERATING CONDITIONS
 (Referenced to GND)

Parameter	Symbol	Value			Unit
			Min	Typ	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	-2.0^{*}		0.8	V
Input High Voltage	V_{IH}	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

${ }^{*}-2.0 \vee \mathrm{Min}$, for pulse width less than $20 \mathrm{~ns} .\left(\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=-0.5 \mathrm{~V}\right.$ at DC Level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Value			Unit
			Min	Typ	Max	
Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	$I_{\text {LI }}$	-10		10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}, \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	I Lo	-10		10	$\mu \mathrm{A}$
Operating Supply Current	$\begin{aligned} & \overline{C S}=V_{I L}, V_{C C}=\text { Max } . \\ & D_{\text {OUT }}=\text { Open }, \\ & \text { Cycle }=\text { Min. } . \end{aligned}$	$I_{\text {cc }}$			80	mA
Standby Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. to Max. } \\ & \mathrm{CS} \leqq \mathrm{~V}_{\mathrm{Cc}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \leqq 0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leqq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$	$I_{\text {SB1 }}$			10	mA
Standby Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. to Max. } \\ & \mathrm{CS}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\mathrm{I}_{\text {SB2 }}$			20	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	V_{OL}			0.45	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	V_{OH}	2.4			V
Peak Power on Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} . \\ & \mathrm{CS}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{V}_{\mathrm{IH}} \text { Min. } \end{aligned}$	Ipo			30	mA

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise And Fall Times:
0.6 V to 2.4 V
- Timing Measurement Reference Levels:

5 ns
Input : 1.5 V
Output: 1.5 V

- Output Load:

Load I: $C_{L}=30 \mathrm{pF}$
Load II: $C_{L}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{HZ}}, \mathrm{t}_{\mathrm{OW}}$ and t_{WZ}

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE*1

Parameter	Symbol	MB 81C71A-25		MB 81C71A-35		Unit
		Min	Max	Min	Max	
Read Cycle Time*2	t_{RC}	25		35		ns
Address Access Time*3	${ }^{\text {A }}$ A		25		35	ns
Chip Select Access Time*4*5	$\mathrm{t}_{\mathrm{ACS}}$		25		35	ns
Output Hold from Address Change	$\mathrm{tOH}^{\mathrm{OH}}$	5		5		ns
Chip Selection to Output in Low-Z*6*7	$t_{L z}$	5		5		ns
Chip Deselection to Output in High-Z*6*7	t_{Hz}	0	10	0	15	ns
Chip Selection to Power Up Time	t_{PU}	0		0		ns
Chip Deselction to Power Down time	$\mathrm{t}_{\text {PD }}$		20		30	ns

Note: *1 $\overline{\mathrm{WE}}$ is high for Read cycle.
*2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, $\overline{C S}=V_{I L}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
${ }^{*} 5$ Chip deselection for a finite time is less than t_{RC} prior to selection.
*6 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*7 This parameter is measured with specified loading Load II in Fig. 2.

READ CYCLE: ADDRESS CONTROLLED*3

READ CYCLE: $\overline{C S}$ CONTROLLED***5

Note: ${ }^{*} 1 \overline{W E}$ is high for Read cycle.
*2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
${ }^{*} 5$ Chip deselection for a finite time is less than $t_{R C}$ prior to selection.
*6 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*7 This parameter is measured with specified loading Load II in Fig. 2.

FUJITSU Hinminixill

MB81C71A-25
 MB81C71A-35

WRITE CYCLE*1*2

Parameter	Symbol	MB 81C71A-25		MB 81C71A-35		Unit
		Min	Max	Min	Max	
Write Cycle Time*3	${ }_{\text {twc }}$	25		35		ns
Chip Selection to End of Write	${ }^{\text {t }}$ W	20		30		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	20		30		ns
Address Setup Time	$t_{\text {AS } 1}$	0		0		ns
Address Setup Time	$\mathrm{t}_{\text {AS2 }}$	0		0		ns
Write Pulse Width	$t_{\text {wp }}$	20		30		ns
Data Valid to End of Write	tow	15		20		ns
Write Recovery Time	$t_{\text {WR }}$	2		2		ns
Data Hold Time	t_{DH}	2		2		ns
Write Enable to Output in High-Z*4*5	t_{wz}	0	10	0	15	ns
Output Active from End of Write* **5	tow	0		0		ns

WRITE CYCLE TIMING DIAGRAM***2

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Write cycles are determined from the last address transition to the first address transition of next cycle.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is measured with specified Load II in Fig. 2.

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Write cycles are determined from the last address transition to the first address transition of next cycle.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is measured with specified Load II in Fig. 2.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - OPERATING SUPPLY CURRENT
vs. SUPPLY VOLTAGE

Fig. 5 - STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 6 - STANDBY SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - OPERATING SUPPLY CURRENT
vs. FREQUENCY

TYPICAL CHARACTERISTICS CURVES (Cont'd)

Fig. 8 - " H " LEVEL OUTPUT VOLTAGE
vs. "H" LEVEL OUTPUT CURRENT

Fig. 10 - ACCESS TIME vs. SUPPLY

Fig. 9 - "L" LEVEL OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

Fig. 11 - ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 12 - ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

(Suffix: -P)

PACKAGE DIMENSIONS

(Suffix: -PJ)

FUJITSU

PACKAGE DIMENSIONS
 (Suffix: -CV)

22-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER (CASE No.: LCC-22C-A01)

*Share of PIN NO. 1 INDEX: Subject to changed without notice.

$16 \mathrm{~K} \times 4$ BIT (65,536 -BIT) HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB 81C74 is a 16,384-words by 4-bits static random access memory fabricated with a CMOS silicongate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required.
The MB 81C74 is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: 16,384 words $\times 4$ bits
- Fast access time: $t_{A A}=t_{A C S}=25 n s \max$. (MB 81C74-25)

$$
t_{A A}=t_{A C S}=35 n s \max .(M B 81 C 74-35)
$$

- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state output
- Common data input/output
- Single +5 V power supply $\pm 10 \%$ tolerance
- Low power standby: 440 mW max. (Active)

55 mW max. (Standby, CMOS level) 110 mW max. (Standby, TTL level)

- Standard 22-pin DIP (300 mil): Suffix: P
- Standard 22-pad LCC
: Suffix: CV
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{Cc}	-0.5 to +7.0	V
Input Voltage		$V_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage		$V_{\text {OUT }}$	-0.5 to +7.0	V
Output Current		Iout	± 20	mA
Power Dissipation		P_{D}	1.0	W
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ceramic	$T_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$\mathrm{A}_{7} \mathrm{Cl}_{1}$	\bigcirc	${ }^{22}$ 己 ccc
$A_{6} \square^{2}$		${ }_{12} \mathrm{~A}_{8}$
$\mathrm{A}_{5} \mathrm{~L}^{3}$		$20 A_{9}$
$\mathrm{A}_{4} \square_{4}$		19 P A_{10}
$A_{3} \square^{5}$		${ }_{8} \mathrm{PA}_{11}$
$A_{2} \square_{6}$	$\begin{aligned} & \text { TOP } \\ & \text { TIEW } \end{aligned}$	$17{ }^{1}$
$A_{1} \square^{7}$		${ }_{6} \mathrm{P}_{1 / \mathrm{O}}^{4}$
$\mathrm{A}_{0} \square^{8}$		${ }_{5}{ }^{1 / 0_{3}}$
$\mathrm{A}_{13} \square^{9}$		${ }_{1}$ P $1 / 0_{2}$
$\overline{\mathrm{Cs}} \square^{10}$		${ }^{2} \mathrm{~V} \mathrm{O}_{1}$
GND [${ }^{11}$		${ }_{2}$ 已 $\overline{W E}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MB81C74-25

Fig. 1 - MB $81 C 74$ BLOCK DIAGRAM

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=\mathrm{OV}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$			7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)$	C_{IN}			7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{cc}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	$-2.0^{*}{ }^{1}$		0.8	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

${ }^{*} 1-2.0 \vee \mathrm{Min}$. for pulse width less than 20 ns . $\left(\mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-0.5 \mathrm{~V}\right.$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Conditions
Standby Supply Current	$\mathrm{I}_{\text {SB1 }}$		10	mA	$\begin{aligned} & \overline{\mathrm{CS}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \leqq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
	$\mathrm{I}_{\text {S82 }}$		20	mA	$\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$
Active Supply Current	$\mathrm{I}_{\mathrm{cc} 1}$		60	mA	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \\ & V_{\text {IN }}=V_{I L} \text { or } V_{I H} \end{aligned}$
Operating Supply Current	$\mathrm{I}_{\mathrm{CC} 2}$		80	mA	Cycle $=$ Min., $\mathrm{I}_{\text {Out }}=0 \mathrm{~mA}$
Input Leakage Current	$I_{\text {LI }}$	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output Leakage Current	$I_{\text {LI/O }}$	-10	10	$\mu \mathrm{A}$	$\overline{C S}=V_{1 H}, V_{1 / O}=0 V$ to $V_{C C}$
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Output Low Voltage	V_{OL}		0.4	V	$\mathrm{IOL}=8 \mathrm{~mA}$

Note: All voltages are referenced to GND

Fig. 2 - AC TEST CONDITIONS

- Output Load

- Input Pulse Levels:
- Input Pulse Rise \& Fall Times:
- Timing Reference Levels:

5 ns (Transient between 0.8 V and 2.2 V)
Input: 1.5 V
Output: 1.5 V

* Including Scope and Jig Capacitance

	R1	R2	CL	Parameters Measured
Load I	480Ω	255Ω	30 pF	except ${ }^{\mathrm{t}} \mathrm{CLZ},{ }^{\mathrm{t}} \mathrm{CHZ}, \mathrm{t}_{\mathrm{WLZ}}$, and $\mathrm{t}_{\mathrm{WHZ}}$
Load II	480Ω	255Ω	5 pF	${ }^{\mathrm{t}} \mathrm{CLZ}^{\mathrm{t}} \mathrm{CHZ},{ }^{\mathrm{t}} \mathrm{WLZ}, \mathrm{t}_{\mathrm{WHZ}}$

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* 1

Parameter	Symbol	MB 81C74-25		MB 81C74-35		Unit
		Min	Max	Min	Max	
Read Cycle Time	t_{RC}	25		35		ns
Address Access Time*2	$t_{\text {AA }}$		25		35	ns
$\overline{\mathrm{CS}}$ Access Time*3	$t_{\text {Acs }}$		25		35	ns
Output Hold from Address Change	${ }^{\text {toh }}$	5		5		ns
Output Hold from $\overline{\mathrm{CS}}$	$\mathrm{t}_{\mathrm{OHC}}$	3		3		ns
Chip Selection to Output Low-Z*4*5	${ }_{\text {t }}^{\text {clz }}$	5		5		ns
Chip Deselection to Output High-Z*4*5	${ }^{\text {t }} \mathrm{CHz}$		10		15	ns
Power Up from $\overline{\mathrm{CS}}$	$\mathrm{t}_{\text {pu }}$	0		0		ns
Power Down from $\overline{\mathrm{CS}}$	$t_{\text {PD }}$		20		30	ns

READ CYCLE TIMING DIAGRAM*1

Note:
*1 $\overline{W E}$ is high for Read cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE* ${ }^{1}$

Parameter	Symbol	MB 81C74-25		MB 81C74-35		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{*}{ }^{2}$	${ }^{\text {twc }}$	25		35		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	20		30		ns
Chip Select to End of Write	${ }_{\text {t }}^{\text {cw }}$	20		30		ns
Data Valid to End of Write	${ }_{\text {t }}$ w	13		17		ns
Data Hold Time	${ }_{\text {t }}^{\text {DH }}$	2		2		ns
Write Pulse Width	$t_{\text {w }}$	20		30		ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0		0		ns
Write Recovery Time	${ }^{\text {twr }}$	2		2		ns
Output High-Z from $\overline{W E}^{* 3 * 4}$	${ }^{\text {twhz }}$		10		15	ns
Output Low-Z from $\overline{W E}^{* 3 * 4}$	${ }^{\text {twLz }}$	0	10	0	15	ns

WRITE CYCLE TIMING DIAGRAM

Note:

*1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 4$ This parameter is specified with Load II in Fig. 2.

FUJITSU

MB81C74-25

MB81C74-35

WRITE CYCLE II: $\overline{\mathrm{CS}}$ CONTROLLED*1*2

Don't Caro: \square

Note:
*1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - OPERATING SUPPLY CURRENT

Fig. 5 - STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 4 - OPERATING SUPPLY CURRENT

Fig. 6 - STANDBY SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - OPERATING SUPPLY CURRENT vs. FREQUENCY

TYPICAL CHARACTERISTICS CURVES (Cont'd)

Fig. 8 - "H" LEVEL OUTPUT VOLTAGE

I_{OH}, "H" LEVEL OUTPUT CURRENT (mA)

Fig. 10 - ACCESS TIME vs. SUPPLY

Fig. 9 - "‘" ${ }^{\prime \prime}$ LEVEL OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

IOL, "L" LEVEL OUTPUT CURRENT (mA)

Fig. 11 - ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 12 - ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

(Suffice: -P)

PACKAGE DIMENSIONS
 (Suffice: -CV)

CMOS 65,536-BIT STATIC RANDOM ACCESS MEMORY

16K x 4 BIT (65,536 -BIT) HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB81C75 is a 16,384 -words by 4 -bits static random access memory fabricated with a CMOS silicongate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required.

The MB 81C75 is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization : 16,384 words $\times 4$ bits

Fast access time : $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS}}=25 \mathrm{~ns} \max$. (MB 81C75-25)

$$
\begin{aligned}
& t_{O E}=10 \mathrm{~ns} \text { max. } \\
& t_{A A}=t_{A C S}=35 \mathrm{~ns} \text { max. (MB 81C75-35) } \\
& t_{O E}=15 \mathrm{~ns} \text { max. }
\end{aligned}
$$

- Completely static operation : No clock required
- TTL compatible inputs/outputs
- Three-state output
- Common data input/output
- Single +5 V power supply $\pm 10 \%$ tolerance
- Low power standby : 440 mW max. (Active)

55 mW max. (Standby, CMOS level)
110 mW max. (Standby, TTL level)

- Standard 24-pin DIP (300 mil) : Suffix: P
- Standard 28-pad LCC : Suffix: CV
- Standard 24-pin SOJ (300 mil) : Suffix : PJ
absolute maximum ratings (See Note)

Rating		Symbol	Value	Unit
Supply Voitage		V_{Cc}	-0.5 to +7.0	V
Input Voltage		$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	\checkmark
Output Voltage		V OUT	-0.5 to +7.0	V
Output Current		lout	± 20	mA
Power Dissipation		P_{D}	1.0	W
Temperature Under Bias		TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ceramic	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^4]Fig. 1 - MB 81C75 BLOCK DIAGRAM

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbo!	Value			Unit
		Min	Typ	Max	
I/O Capacitance $\left(\mathrm{V}_{1 / O}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / O}$			7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 \mathrm{~N}}$			7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	-2.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

* $-2.0 \vee \mathrm{Min}$, for pulse width less than 20 ns . $\left(\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=-0.5 \mathrm{~V}\right.$ at DC Level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Conditions	Symbol	Value		Unit
			Min	Max	
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \leqq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {SB1 }}$		10	mA
	$\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$	$\mathrm{I}_{\text {SB2 }}$		20	
Active Supply Current	$\begin{aligned} & \overline{C S}=V_{I L}, V_{I N}=V_{I L} \text { or } \\ & V_{I H}, I_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Icc1		60	mA
Operating Supply Current	Cycle $=$ Min., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{CC2}}$		80	
Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}	$I_{\text {LI }}$	-10	10	$\mu \mathrm{A}$
Output Leakage Current	$\overline{\mathrm{CS}}=\mathrm{V}_{1 H}, \mathrm{~V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	$\mathrm{I}_{\text {LI/O }}$	-10	10	$\mu \mathrm{A}$
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	V_{OH}	2.4		V
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	V_{OL}		0.4	V

Note: All voltages are referenced to GND

Fig. 2 - AC TEST CONDITIONS

- Output Load
- Input Pulse Levels:
: 0 V to 3.0 V
- Input Pulse Rise \& Fall Times :

5 ns (Transient between 0.8 V and 2.2 V)

- Timing Reference Levels

Input : 1.5 V
Output: 1.5 V

* Including Scope and Jig Capacitance

	R1	R2	CL	Parameters Measured
Load I	480Ω	255Ω	30 pF	except ${ }^{\mathrm{t}} \mathrm{CLZ},{ }^{\mathrm{t}} \mathrm{CHZ}, \mathrm{t}_{\mathrm{WLZ}},{ }^{\mathrm{t}} \mathrm{WHZ}$, tolz and t OHz
Load II	480Ω	255Ω	5 pF	${ }^{\mathrm{t}} \mathrm{CLZ},{ }^{\mathrm{t}} \mathrm{CHZ},{ }^{\mathrm{t}} \mathrm{WLZ},{ }^{\mathrm{t}} \mathrm{WHZ},{ }^{\mathrm{t}} \mathrm{OLZ}$ and tOHz^{2}

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

READ CYCLE* ${ }^{*}$

Parameter	Symbol	MB 81C75-25		MB 81C75-35		Unit
		Min	Max	Min	Max	
Read Cycle Time	t_{RC}	25		35		ns
Address Access Time*2	$t_{A A}$		25		35	ns
$\overline{\mathrm{CS}}$ Access Time ${ }^{* 3}$	$t_{\text {ACS }}$		25		35	ns
$\overline{\mathrm{OE}}$ Access Time*3	$\mathrm{t}_{\text {Oe }}$		10		15	ns
Output Hold fromAddress Change	t_{OH}	5		5		ns
Output Hold from $\overline{\mathrm{CS}}$	$\mathrm{t}_{\mathrm{OHC}}$	3		3		ns
$\overline{\mathrm{CS}}$ to output Low-Z ${ }^{* 4 * 5}$	${ }_{\text {t }}$ CLZ	5		5		ns
$\overline{\mathrm{OE}}$ to Output in Low-Z*4*5	$\mathrm{t}_{\mathrm{OLz}}$	0		0		ns
$\overline{\mathrm{CS}}$ to Output High-Z*4*5	${ }^{\text {t }} \mathrm{CHZ}$		10		15	ns
$\overline{\mathrm{OE}}$ to Output High-Z*4*5	$\mathrm{t}_{\mathrm{OHz}}$		10		15	ns
Power Up from $\overline{\mathrm{CS}}$	t_{PU}	0		0		ns
Power Dwown from $\overline{\mathrm{CS}}$	${ }_{\text {P }}$ D		20		30	ns

READ CYCLE TIMING DIAGRAM*1

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
${ }^{*} 4$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE*1

Parameter	Symbol	MB 81C75-25		MB 81C75-35		Unit
		Min	Max	Min	Max	
Write Cycle Time*2	$t_{w c}$	25		35		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	20		30		ns
Chip Select to End of Write End of Write	t_{CW}	20		30		ns
Data Valid to End of Write	$t_{\text {DW }}$	13		17		ns
Data Hold Time	t_{DH}	2		2		ns
Write Pulse Width	$t_{\text {wp }}$	20		30		ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0		0		ns
Write Recovery Time	$t_{\text {wr }}$	2		2		ns
Output High-Z from $\overline{W E}{ }^{* 3 * 4}$	$t_{\text {WHz }}$		10		15	ns
Output Low-Z from $\overline{W E}^{* 3 * 4}$	twLz	0	20	0	30	ns

WRITE CYCLE TIMING DIAGRAM

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{C S}$ CONTROLLED*1*2

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - OPERATING SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 5 - STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 4 - OPERATING SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 6 - STANDBY SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - OPERATING SUPPLY CURRENT
vs. FREQUENCY

FUJITSU
MB81C75-25 MB81C75-35

TYPICAL CHARACTERISTICS CURVES (Cont'd)

Fig. 8 - " $H^{\prime \prime}$ LEVEL OUTPUT VOLTAGE vs. "H" LEVEL OUTPUT CURRENT

Fig. 10 - ACCESS TIME vs. SUPPLY

Fig. 9 - "L" LEVEL. OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

Fig. 11 - ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 12 - ACCESS TIME vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

(Suffix: P)

PACKAGE DIMENSIONS

(Suffix: -PJ)

PACKAGE DIMENSIONS

(Suffix: CV)

28-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER (CASE No.: LCC-28C-A03)

*Shape of PIN NO. 1 INDEX: Subject to change without notice.
Dimensions in inches
© FUJITSU LIMITED 1987 C28009S-1C and (millimeters)

64K-BIT (8192x8) HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB 81C78A is 8192 words $\times 8$ bits static random access memory fabricated with a CMOS process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ($\overline{\mathrm{CS}}_{1}$) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$, the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 8$ bits
- Static operation: No clock or timing strobe required
- Fast access time: $t_{A A}=t_{A C S 1}=35 \mathrm{~ns}$ max. (MB 81C78A-35)
$t_{A A}=t_{A C S} 1=45 \mathrm{~ns}$ max. (MB 81C78A-45)
- Low power consumption: 495 mW max. (Operating)

138 mW max. (Standby, TTL level) 83 mW max. (Standby, CMOS level)

- Single +5 V supply, $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 28 -pin Plastic DIP package (Suffix: -P-SK)
- Standard 28 -pin Bend type Plastic Flat package (Suffix: -PF)
- Standard 32-pad Leadless Chip Carrier (Suffix: -CV)

AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{cc}	-0.5 to +7	V
Input Voltage on any pin with respect to GND		V IN	-3.5 to +7	V
Output Voltage on any I/O with respect to GND		$V_{\text {OUt }}$	-0.5 to +7	V
Output Current		Iout	± 20	mA
Power Dissipation		$P_{\text {D }}$	1.0	W
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	PLASTIC	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
	CERAMIC		-65 to +150	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^5]

CAPACITANCE $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{\mathrm{WE}})}\right.$	C_{11}		7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)($ Other Inputs $)$	C_{12}		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=\mathrm{OV}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$		8	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	-2.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

* -2.0 V Min. for pulse width less than 20 ns . ($\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=-0.5 \mathrm{~V}$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	I_{LI}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}

AC TEST CONDITIONS

Input Pulse Levels:
Input Pulse Rise And Fall Times:
Timing Measurement Reference Levels:
Input: 1.5 V
Output: 1.5 V

Fig. 2

Output Load I.
For all except $t_{L Z}, t_{H Z}, t_{W Z}, t_{o w}$, t_{OLZ}, and $\mathrm{t}_{\mathrm{OHz}}$.

Output Load II.
For $t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}$, and $t_{O H Z}$.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* ${ }^{1}$

Parameter	Symbol	MB 81C78A-35		MB81C78A-45		Unit
		Min	Max	Min	Max	
Read Cycle Time	t_{RC}	35		45		ns
Address Access Time ${ }^{*}$	${ }^{\text {ta }}$ A		35		45	ns
$\overline{\mathrm{CS}}_{1}$ Access Time ${ }^{*}{ }^{3}$	$\mathrm{t}_{\text {ACS }}$		35		45	ns
CS_{2} Access Time*3	$\mathrm{t}_{\text {ACS2 }}$		15		20	ns
Output Hold from Address Change	${ }^{\text {toH }}$	3		3		ns
$\overline{\mathrm{OE}}$ Access Time	${ }^{\text {toe }}$		15		20	ns
Output Active from $\overline{\mathrm{CS}}_{1} * 4 * 5$	$t_{\text {LZ1 }}$	5		5		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$t_{\text {LZ2 }}$	3		3		ns
Output Active from $\overline{\mathrm{OE}} *{ }^{*}{ }^{\text {a }}$	$\mathrm{t}_{\text {OLz }}$	3		3		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{* * * 5}$	$\mathrm{t}_{\mathrm{HZ} 1}$		20		25	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* * * 5}$	$\mathrm{t}_{\mathrm{Hz2}}$		20		25	ns
Output Disable from $\overline{\mathrm{OE}} *{ }^{*} 5$	${ }^{\text {tohz }}$		20		25	ns

Note: *1 $\overline{W E}$ is high for Read cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

Note: *1 $\overline{W E}$ is high for Read cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

MB81C78A-35
FUJITSU
MB81C78A-45

WRITE CYCLE* ${ }^{1}$

Parameter	Symbol	MB 81C78A-35		MB81C78A-45		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{*}{ }^{2}$	${ }^{\text {twc }}$	35		45		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{\text {t }}$ W1	30		40		ns
CS_{2} to End of Write	${ }^{\text {t }} \mathrm{CW} 2$	20		25		ns
Address Valid to End of Write	${ }^{\text {a }}$ W	30		40		ns
Address Setup Time	${ }^{\text {t }}$ AS	0		0		ns
Write Pulse Width	$t_{\text {wp }}$	20		25		ns
Data Setup Time	${ }^{\text {t }}$ W	17		20		ns
Write Recovery Time ${ }^{* 3}$	${ }_{\text {twr }}$	3		3		ns
Data Hold Time	${ }^{\text {d }}$ H	0		0		ns
Output High-Z from $\overline{W E}{ }^{*} 4{ }^{* 5}$	${ }^{\text {w }}$ w		15		20	ns
Output Low-Z from $\overline{\mathrm{WE}}{ }^{*}{ }^{* 5}$	tow	0		0		ns

Note: *1 If $\overline{\mathrm{CS}}_{1}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
${ }^{*} 2$ All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{w R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

Note: ${ }^{*} 1$ If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and CS_{2} are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycle are determined from the last address transition to the first address transition of next address.
*3 $t_{\text {WR }}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{W E}$ CONTROLLED

Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and CS_{2} are in the READ Mode during this period, I / O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next adciress.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

Fig. 3 - NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 5 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 4 - NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

Fig. 6 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

V_{CC}, SUPPLY VOLTAGE (V)

Fig. 8 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

V_{CC}, SUPPLY VOLTAGE (V)
Fig. 10 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

$C_{L}, ~ L O A D ~ C A P A C I T A N C E ~(p F)$

Fig. 9 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

C_{L}, LOAD CAPACITANCE (pF)
Fig. 11 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

C_{L}, LOAD CAPACITANCE (pF)

Fig. 12 - NORMALIZED POWER SUPPLY CURRENT vs. FREQUENCY

f, FREQUENCY (MHz)

FUJITSU
MB81C78A-35

PACKAGE DIMENSIONS

PLASTIC DIP (Suffix: P-SK)

28-LEAD PLASTIC DUAL-IN-LINE PACKAGE
 (CASE No.: DIP-28P-M04)

PACKAGE DIMENSIONS

PLASTIC FPT (Suffix: -PF)

PACKAGE DIMENSIONS

CERAMIC LCC (Suffix: -CV)

72K-BIT (8192x9) HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB 81C79A is 8192 words $\times 9$ bits static random access memory fabricated with a CMOS process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ($\overline{\mathrm{CS}}_{1}$) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$, the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 9$ bits
- Static operation: No clock or timing strobe required
- Fast access time: $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS} 1}=35 \mathrm{~ns}$ max. (MB 81C79A-35)
$t_{A A}=t_{A C S 1}=45 \mathrm{~ns} \max .(M B 81 C 79 A-45)$
- Low power consumption: 495 mW max. (Operating) 138 mW max. (Standby, TTL level) 83 mW max. (Standby, CMOS level)
- Single +5 V supply, $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 28-pin Plastic DIP package (Suffix: -P-SK)
- Standard 28 -pin Bend type Plastic Flat package (Suffix: -PF)
- Standard 32-pad Leadless Chip Carrier (Suffix: -CV)

AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{cc}	-0.5 to +7	V
Input Voltage on any pin with respect to GND		$V_{\text {IN }}$	-3.5 to +7	V
Output Voltage on any I/O with respect to GND		$V_{\text {OUt }}$	-0.5 to +7	V
Output Current		Iout	± 20	mA
Power Dissipation		P_{D}	1.0	W
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	PLASTIC	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
	CERAMIC		-65 to +150	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB 81C79A BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}_{1}$	CS_{2}	WE	$\overline{O E}$	MODE	$\begin{aligned} & \text { SUPPLY } \\ & \text { CURRENT } \end{aligned}$	$\begin{aligned} & \text { I/O } \\ & \text { STATE } \end{aligned}$
H	X	X	X	STANDBY	I'SB	HIGH-Z
L	L	x	X	DESELECT	${ }^{\text {c }} \mathrm{Cc}$	HIGH-Z
L	H	H	H	DOUT DISABLE	${ }^{\text {ccc }}$	HIGH-Z
L	H	H	L	READ	$I_{\text {cc }}$	DOUT
L	H	L	X	WRITE	${ }^{\text {c Cc }}$	$\mathrm{DIN}^{\text {N }}$

CAPACITANCE ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{W E})}\right.$	C_{11}		7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\right)($ Other Inputs $)$	C_{12}		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / 0}$		8	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-2.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		6.0	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

* -2.0 V Min. for pulse width less than 20 ns . ($\mathrm{V}_{1 \mathrm{~L}} \mathrm{Min}=-0.5 \mathrm{~V}$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	I_{LI}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}

AC TEST CONDITIONS

Input Pulse Levels:
Input Pulse Rise And Fall Times:
Timing Measurement Reference Levels:
Input: $\quad 1.5 \mathrm{~V}$
Output: 1.5 V

Fig. 2

Output Load I.

For all except $t_{L Z}, t_{H Z}, t_{w Z}, t_{o w}$,
$\mathrm{t}_{\mathrm{OLZ}}$, and $\mathrm{t}_{\mathrm{OHZ}}$.

Output Load II.
For $t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}$, and $t_{O H Z}$.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE ${ }^{1}$

Parameter	Symbol	MB 81C79A-35		MB 81C79A-45		Unit
		Min	Max	Min	Max	
Read Cycle Time	t_{RC}	35		45		ns
Address Access Time ${ }^{*}{ }^{2}$	$t_{\text {AA }}$		35		45	ns
$\overline{\mathrm{CS}}_{1}$ Access Time ${ }^{*}$	${ }^{\text {A }}$ ACS 1		35		45	ns
CS_{2} Access Time ${ }^{\text {3 }}$	${ }^{\text {ACS }}$ 2		15		20	ns
Output Hold from Address Change	${ }^{\text {tor }}$	3		3		ns
$\overline{\mathrm{OE}}$ Access Time	${ }^{\text {toe }}$		15		20	ns
Output Active from $\overline{\mathrm{CS}}_{1}{ }^{4} \cdot 5$	$t_{\text {LZ } 1}$	5		5		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$t_{\text {LZ2 }}$	3		3		ns
Output Active from $\overline{\mathrm{OE}}{ }^{*}{ }^{* 5}$	tolz	3		3		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{4 * 5}$	$\mathrm{t}_{\mathrm{HZ1}}$		20		25	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* * 5}$	$\mathrm{t}_{\mathrm{Hz2}}$		20		25	ns
Output Disable from $\overline{\mathrm{OE}} *{ }^{*} 5$	${ }^{\text {tohz }}$		20		25	ns

Note: *1 $\overline{\mathrm{WE}}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{C S}_{1}=V_{1 L}, C S_{2}=V_{I H}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

READ CYCLE TIMING DIAGRAM*1

READ CYCLE I: ADDRESS CONTROLLED* ${ }^{2}$

READ CYCLE II: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED* ${ }^{3}$

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
${ }^{*} 4$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE* ${ }^{1}$

Parameter	Symbol	MB 81C79A-35		MB 81C79A-45		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{*}{ }^{2}$	${ }^{\text {twc }}$	35		45		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{\text {c }}{ }_{\text {W }}$	30		40		ns
CS_{2} to End of Write	${ }^{t} \mathrm{CW}_{2}$	20		25		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	30		40		ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0		0		ns
Write Pulse Width	${ }^{\text {twp }}$	20		25		ns
Data Setup Time	${ }^{\text {DW }}$	17		20		ns
Write Recovery Time*3	${ }^{\text {w }}$ \%	3		3		ns
Data Hold Time	${ }^{\text {t }}$ DH	0		0		ns
Output High-Z from $\overline{\mathrm{WE}}{ }^{* 4 * 5}$	${ }^{\text {w }}$ w		15		20	ns
Output Low-Z from $\overline{\mathrm{WE}}{ }^{*}{ }^{* 5}$	tow	0		0		ns

Note: *1 If $\overline{\mathrm{CS}}_{1}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

FUJITSU Hixilumunumun

MB81C79A-35
MB81C79A-45

 signals of opposite phase to the outputs must not be applied.
*2 All write cycle are determined from the last address transition to the first address transition of next address.
*3 $t_{\text {WR }}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and CS_{2} are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

Fig. 3 - NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Fig. 5 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 4 - NORMALIZED ACCESSTIME vs. AMBIENT TEMPERATURE

Fig. 6 - NORMALIZED POWER SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

Fig. 8 - NORMALIZED POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE

V_{CC}, SUPPLY VOLTAGE (V)
Fig. 10 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

C_{L}, LOAD CAPACITANCE (pF)

Fig. 9 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

Fig. 11 - NORMALIZED ACCESS TIME vs. LOAD CAPACITANCE

$C_{L}, ~ L O A D ~ C A P A C I T A N C E(p F)$

Fig. 12 - NORMALIZED POWER SUPPLY CURRENT vs. FREQUENCY

PACKAGE DIMENSIONS
 PLASTIC DIP (Suffix: P-SK)

PACKAGE DIMENSIONS

PLASTIC FPT (Suffix: -PF)

TMUTMSU
FUJITSU
MB81C79A-35
HMMMM Mix
MB81C79A-45

PACKAGE DIMENSIONS
 CERAMIC LCC (Suffix: -CV)

* Shape of PIN NO. 1 INDEX: Subject to change without notice.

262,144 WORDS $x 1$ BIT HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY

The Fujitsu MB81C81A is 262,144 words $\times 1$ bit static random access memory fabricated with a CMOS technology.

Since MB81C81A consists of NMOS cells and CMOS peripherals, it is packaged in 300 mil DIP and reached low power dissipation such as 550 mW .

It uses fully static circuitry and therefore requires no clocks or refreshing to operate.
The MB81C81A is designed for memory applications where high performance, low cost, large blt storage and simple interfacing are required.
MB81C81A is compatible with TTL logic families in all respects; input, output and a single +5 V supply.

- Organization: 262,144 words $\times 1$ bit
- Static operation: No clocks or refresh required
- Fast access time: 35 ns max. (MB81C81A-35)

45 ns max. (MB81C81A-45)

- Single +5 V supply $\$ 0 \%$ tolerance
- Separate data input and output
- TTL compatible inputs and output
- Three-state output with OR-tle capabllity
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- 300 mil width 24-pin Dual In-Line Package (Sufflx: Plastic DIP; P-SK, Ceramic DIP; C-SK)
24 pad LCC (Suffix: CV)
24 pad SOJ (Suffix: PJ)
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		Vcc	-0.5 to +7	V
Input Voltage on any pin with to GND		VIN	-3.5 * to +7	V
Output Voltage on any pin with to GND		Vout	-0.5 to +7	V
Output Current		Iout	± 20	mA
Power Dissipation		PD	1.0	W
Temperature under Blas		Tbias	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	CERAMIC	Tstg	$\frac{-65 \text { to }+150}{-45 \text { to }+125}$	${ }^{\circ} \mathrm{C}$

* DC: min. $=-0.5 \mathrm{~V}$

NOTE:
Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detalled in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

May 1988
Edition 1.0

PLASTIC PACKAGE
(DIP-24P-M03)

(DIP-24C-A08)

PLASTIC PACKAGE
(LCC-24P-M02)
LCC-24C-A02, See page 11

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static
voltages or electric fields. However, it is voltages or electric precautions be taken to advised that normal precautions be taken to avold application of any voltage higher than
maximum rated voltages to this high impedarice circult.

[^6]FUJITSU

Fig. 1 - MB81C81A BLOCK DIAGRAM

TRUTH TABLE

$\overline{C S}$	$\overline{W E}$	Mode	Output	Power
H	X	Not Selected	High-Z	Standby
L	L	Write	High-Z	Active
L	H	Read	DouT	Active

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $(V \mathbb{N}=0 \mathrm{~V})$	CIN		6	pF
$\overline{C S}$ Capacitance $(\mathrm{VCS}=0 \mathrm{~V})$	CCS		8	pF
Output Capacitance $(\mathrm{VOUT}=0 \mathrm{~V})$	COUT		8	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input Low Voltage	VIL	-0.5^{\star}		0.8	V
Input High Voltage	VIH	2.2		6.0	V°
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

* -3.0 V Min. for pulse width less than 20 ns .

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition		Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\begin{aligned} & \mathrm{VIN}=0 \mathrm{~V} \text { to } \mathrm{Vcc} \\ & \mathrm{VCC}=\mathrm{Max} . \end{aligned}$		ILI	-10		10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \mathrm{CS}=\mathrm{VIH}, \\ & \text { VOUT }=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V} \\ & \mathrm{VCC}=\mathrm{Max} . \end{aligned}$		ILO	-50		50	$\mu \mathrm{A}$
Power Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIL}, \\ & \mathrm{IOUT}=0 \mathrm{~mA} \\ & \text { VCC }=\mathrm{Max} . \\ & \text { Cycle }=\mathrm{Min} . \end{aligned}$	MB81C81A-45 MB81C81A-35	ICC			100	mA
Standby Current	$\begin{aligned} & \overline{\mathrm{VCC}}=\mathrm{Min} \text {. to } \mathrm{Max} . \\ & \mathrm{CS} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{VIN} \leq 0.2 \mathrm{~V} \text { or } \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \end{aligned}$		ISB1			15	mA
	$\begin{aligned} & \overline{\mathrm{VCC}}=\text { Min. to } \operatorname{Max} . \\ & C S=V \mathbb{V} \end{aligned}$		ISB2			30	
Output Low Voltage	$\mathrm{IOL}=16 \mathrm{~mA}$		Vol			0.4	V
Output High Voltage	$1 \mathrm{OH}=-4 \mathrm{~mA}$		VOH	2.4			V
Peak Power on Current**	$\overline{\mathrm{VCC}}=0$ to Vcc Min. CS = Lower of Vcc or VIH Min.		IPO			30	mA

[^7] approaches Icc active.

FUJITSU
WHMMinmixil

AC TEST CONDITIONS

Input Pulse Levels:	0.6 V to 2.4 V
Input Pulse Rise and Fall Times:	5 ns
Timing Measurement Reference Levels:	Input: $\quad \mathrm{VIL}=0.8 \mathrm{~V} / \mathrm{VIH}=2.2 \mathrm{~V}$ Output: $\mathrm{VOL}=0.8 \mathrm{~V} / \mathrm{VOH}=2.2 \mathrm{~V}$

Output Load:
Fig. 2
(Including Scope and Jig)

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB81C81A-35		MB81 C81A-45		Unit
		Min.	Max.	Min.	Max.	
READ CYCEE						
Read Cycle Time *1	trc	35		45		ns
Address Access Time	taA		35		45	ns
Chip Select Access Time *2	tacs1		35		45	ns
Output Hold from Address Change	tor	5		5		ns
Chip Selection to Output in Low-Z *3	tLz	5		5		ns
Chip Deselection to Output in High-Z *3	tHZ	0	20	0	25	ns
Chip Selection to Power Up time	tPU	0		0		ns
Chip Deselection to Power Down	tPD		35		45	ns

[^8]
READ CYCLE TIMING DIAGRAM

READ CYCLE: ADDRESS CONTROLLED * 1 *2

READ CYCLE: © CS CONTROLLED *2

X : Undefined : Don't Care
*1 $\overline{C S}$ is Low.
*2 WE is high for Read cycles.
*3 transition is measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. II.
*4 Addresses valid prior to or coincident with CS transition low.

AC CHARACTERISTICS (coninuua)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB81C81A-35		MB81C81A-45		Unit
		Min.	Max.	Min.	Max.	
WBITE CYCLE						
Write Cycle Time	tw	35		45		ns
Chip Selection to End of Write	tcw	30		40		ns
Address Valid to End of Write	taw	30		40		ns
Address Setup Time	tAS1	5		5		ns
Address Setup Time	tas2	0		0		ns
Write Pulse Width	twp	25		30		ns
Data Valid to End of Write	tow	20		25		ns
Write Recovery Time	tWR	5		5		ns
Data Hold Time	tDH	0		0		ns
Write Enable to Output in High-Z *1	twz	0	20	0	25	ns
Output Active from End of Write *1	tow	0		0		ns

WRITE CYCLE TIMING DIAGRAM
WRITE CYCLE: $\overline{\text { WE }}$ CONTROLLED *2

*1 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage
*2 CS or WE must be high during address transition.

MB81C81A-35
MB81C81A-45
funtisu

WRITE CYCLE TIMING DIAGRAM
WRITE CYCLE: $\overline{C S}$ CONTROLLED *1

$X X$: Undefined Fअु : Don't Care

[^9]
PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

FUJITSU

PACKAGE DIMENSIONS (Continued)

24-LEAD PLASTIC LEADED CHIP CARRIER

(CASE No.: LCC-24P-M02)

Dimensions in inches (millimeters)
*: This dimension includes resin protrusion. (Each side: .006(0.15) MAX.) © 1980 FUJITSU LIMITED C24052S-1C

PACKAGE DIMENSIONS (Continued)

MB81C84A-35-45
 CMOS 256K-BIT HIGH SPEED SRAM

65,536 WORDS $\times 4$ BITS HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB81C84A is a 65,536-words by 4-bits static random access memory fabricated witn a ÜviŪs siiicon-gate process. To make power dissipation iower, penpherai circuits consist of CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors. MB81C84A has 300 mil plastic DIP and 300 mil plastic small outtine J-lead (SOJ) as package option. The memory utilizes asynchronous circuitly and requires +5 V power supply. All pins are TTL compatible.

The MB81C84A is ideally suited for use in latge computer systems and other applications where fast access time, large capacity and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: 65,536 words $\times 4$ bits

Fast access time: \quad tAA $=$ tACS $=35 \mathrm{~ns}$ max. (MB81C84A-35)
tAA $=$ tACS $=45$ ns max. $($ MB81C84A-45 $)$

- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state output
- Common data input/output
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby: 660mW max. (Active)

165 mW max. (Standby, TTL level)
83 mW max. (Standby, CMOS level)

- Standard 24-pin PLASTIC DIP package (300 mil): Suffix -P-SK
- Standard 24-pin PLASTIC SOJ package (300mil): Suffix -PJ

ABSOLUTE MAXIMUM RATINGS (see NOTE.)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	Vin	-3.0 to +7.0	V
Output Voltage	Vout	-0.5 to +7.0	V
Output Current	IOuT	± 20	mA
Power Dissipaiton	PD	1.0	W
Temperature Under Bias	TBIAs	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TsTG	-45 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. damage due to high static vortages or eiectic tiens.
However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated vollages to this high impedance circut

[^10]Fig. 1 - MB81C84A BLOCK DIAGRAM

CAPACITANCE (TA= $\left.25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
Output Capacitance (Vvo = OV)	Cout			8	pF
Input Capacitance ($\sqrt{C S}=0 \mathrm{~V}$)	CCS			8	pF
Input Capacitance ($\mathrm{VIN}=0 \mathrm{~V}$)	CIN			6	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTCDISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Condiliton
Standby Supply Current	IsB1		15	mA	$\begin{aligned} & V c c=\text { Min. to } M a x \\ & C S=V c c-0.2 V, V I N \geqq V c c-0.2 V \text { or } V i N \leqq 0.2 V \end{aligned}$
Standby Supply Current	ISB2		30	mA	$\begin{aligned} & V \text { VN }=V \text { VIN or } V \text { IL } \\ & C S=V_{I H}, V C C=\text { Min. to Max. } \end{aligned}$
Operating Supply Current	Icc		120	mA	Cycle $=$ Min., lout $=0 \mathrm{~mA}, \overline{\mathrm{CS}}=\mathrm{VIL}$
Input Leakage Current	ILI	-10	10	$\mu \mathrm{A}$	$\mathrm{VIN}=0$ to Vcc
Output Leakage Current	ILvo	-50	50	$\mu \mathrm{A}$	$\overline{C S}=V_{I H}$, VOUT $=0$ to VCC
Input Low Voltage	VIL	$-2.0 \cdot 1$	0.8	v	
Input High Voltage	VIH	2.2	6.0	v	
Output High Voltage	Vor	. 24		V	$1 \mathrm{OH}=-4 \mathrm{~mA}$
Output Low Voltage	Vol		0.4	V	$10 \mathrm{~L}=8 \mathrm{~mA}$

Note: All voltages are referenced to GND
*1-2.0V Min. for pulse width less than 20 ns . (Vil min. $=-0.5 \mathrm{~V}$ at DC level)

Fig. 2 - AC TEST CONDITIONS

- Output Load

- Input Pulse Levels: 0.6 V to 2.4 V
- Input Pulse Rise \& Fall Times: 5 ns (Transient between 0.8 V and 2.2 V)
- Timing Reference Levels: Input: $\mathrm{VIL}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$

Output: $\mathrm{VOL}=0.8 \mathrm{~V}, \mathrm{VOH}=2.2 \mathrm{~V}$

* Including Scope and Jig Capactance

	R1	R2	CL	Parameters Measured
Load I	480Ω	255Ω	$30 p F$	except ttz, thz, twz, and tow
Load ח	480Ω	255Ω	$5 p F$	t.Z, thz, twz, tow

AC CHARACTERISTICS

(Recommended operating condilitons unless otherwise noted.) READ CYCLE

Parameter	Symbol	MB81C84A-35		MB81C84A-45		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	35		45		ns
Address Access Time	taA		35		45	ns
Chip Selection Access Time	tacs		35		45	ns
Output Hold from Address Change	toh	0		0		ns
Output Hold from Chip Selection	tohe	0		0		ns
Chip Selection to Output Low-Z	t. 2	5		5		ns
Chip Deselection to Output High-Z	thz	0	20	0	25	ns
Power Up from Chip Selection	tPU	0		0		ns
Power Down from Chip Selection	tPD		35		35	ns

READ CYCLE TIMING DIAGRAM *1

READ CYCLE : $\overline{C S}$ CONTROLLED *4

Note: *1 $\overline{\mathrm{WE}}$ is high for Read cycle.
*2 All Read cycle timings are referenced from the last valid address to the first transtioning address.
*3 Device is continously selected, CS = ViL
*4 Address valid prior to or coincident with CS transition low.
*5 Transition is measured at $\pm 500 \mathrm{mV}$ from steady state voltage specified load in Fig. 2.

WRITE CYCLE

| Parameter | Symbol | MB81C84A-35 | | MB81C84A-45 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | Max | Min | Max |

WRITE CYCLE TIMING DIAGRAM $* 12 * 5$

Note: *1 CS or WE must be high during address transitions.
*2 If CS goes high simultaneously with WE high, the output remains in high impedance state.
*3 All Read cycle timings are referenced from the last valid address to the first transitioning address.

* 4 Transition measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. 2.
* 5 If CS is in the READ mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

WRITE CYCLE TIMING DIAGRAM (Continued) ${ }^{*} 1 \times 2 \times 4$
WRITE CYCLE Π : $\overline{C S}$ CONTROLLED $\cdot 1 * 2$

Note: *1 CS or WE must be high during address transitions.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.

* 3 All Write cycle timings are referenced from the last valid address to the first transitioning address.
* 4 If $\overline{C S}$ is in the READ mode during this period, $1 / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

TYPICAL CHARACTERISTICS CURVES

Fig. 3 - OPERATING SUPPLY CURRENT
vs. SUPPLY VOLTAGE

Fig. 5 - STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGE

Vcc, SUPPLY VOLTAGE (V)

Fig. 4 - OPERATING SUPPLY CURRENT

Fig. 6 - STANDBY SUPPLY CURRENT vs. AMBIENT TEMPERATURE

Fig. 7 - OPERATING SUPPLY CURRENT vs. FREQUENCY

TYPICAL CHARACTERISTICS CURVES (Continued)

Fig. 8 - "H" LEVEL OUTPUT VOLTAGE
vs. "H" LEVEL OUTPUT CURRENT

IOH, "H" LEVEL OUTPUT CURRENT (mA)
Fig. 10 - ACCESS TIME
vs. SUPPLY VOLTAGE

Fig. 9 - "L" LEVEL OUTPUT VOLTAGE vs. "L" LEVEL OUTPUT CURRENT

loL, "L" LEVEL OUTPUT CURRENT (mA)
Fig. 11 - ACCESS TIME
vs. AMBIENT TEMPERATURE

Fig. 12 - ACCESS TIME
vs. LOAD CAPACITANCE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

24-LEAD PLASTIC LEADED CHIP CARRIER
 (CASE No.: LCC-24P-M02)

Dimensions in inches (millimeters)

* : This dimension includes resin protrusion. (Each side: . $006(0.15)$ MAX.)

01999 FUJITSU LIMITED C24052S-1C STATIC RANDOM ACCESS MEMORY

$64 \mathrm{~K} \times 4$ BIT(262,144 -BIT) HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

 memory fabricated with a CMOS silicon gate process. To make power dissipation lower, peripheral circuits consist of CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors. The memory utilizes asynchronous and requires single +5 V power supply. All pins are TTL compatible.
The MB 81C86 is ideally suited for use in large computer systems and other applications where fast access time, large capacity and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: 65,536 words $\times 4$ bits
- Fast access time: $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS}}=55 \mathrm{~ns}$ max. $(\mathrm{MB} 81 \mathrm{C86-55})$
$t_{A A}=t_{A C S}=70 \mathrm{~ns}$ max. $(\mathrm{MB} \mathrm{81C86-70})$
- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state output
- Separate data input/output
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby: 550 mW max. (Active) 55 mW max. (Standby)
- Standard 28-pin DIP: (Suffix:-C)
- Standard 32-pad LCC: (Suffix: -CV)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.0 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Output Current	$\mathrm{I}_{\text {OUT }}$	± 20	mA
Power Dissipation	P_{D}	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^11]MB 81C86-55 MB 81C86-70

Fig. 1 - MB 81C86 BLOCK DIAGRAM

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
Output Capacitance $\left(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\text {OUT }}$			8	pF
Input Capacitance $\left(\mathrm{V}_{\overline{\mathrm{CS}}}=\mathrm{OV}\right)$	$\mathrm{C}_{\overline{\mathrm{CS}}}$			7	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}\right)$	$\mathrm{C}_{I N}$			6	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{Cc}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	$-3.0^{\circ}{ }^{1}$		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		0.0	\because
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

*1 -3.0 V Min. for pulse width less than 20 ns . $\left(\mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-0.5 \mathrm{~V}\right.$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Conditions
Standby Supply Current	$I_{\text {SB }}$		10	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
Operating Supply Current	$I_{\text {cc }}$		100	mA	$\begin{aligned} & \text { Cycle }=\text { Min., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \overline{C S}=V_{I L} \end{aligned}$
Input Leakage Current	$I_{L I}$	-5	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
Output Leakage Current	I Lo	-5	5	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } V_{\mathrm{CC}} \end{aligned}$
Output High Voltage	V_{OH}	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Output Low Voltage	V_{OL}		0.4	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
Peak Power-on Current	I_{PO}		40	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=0 V \text { to } V_{\mathrm{CC}} \mathrm{MAX} . \\ & \overline{\mathrm{CS}}=\text { Lower of } V_{\mathrm{CC}} \text { or } \mathrm{V}_{1 H} \mathrm{Min} . \end{aligned}$

Note: All voltages are referenced to GND

Fig. 2 - AC TEST CONDITIONS
Input Pulse Levels:
0.6 V to 2.4 V

Input Pulse Rise \& Fall Times: 5 ns (Transient between 0.8 V and 2.2 V)
Timing Reference Levels: Input: $\quad V_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$
Output Load

* Including Scope and Jig Capacitance

	R_{1}	R_{2}	C_{L}	Parameters Measured
Load I	480Ω	255Ω	$30 p F$	except $t_{L Z}, t_{H Z}, t_{W Z}$, and $t_{O W}$
Load II	480Ω	255Ω	$5 p F$	$t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}$

FUJITSU
MB 81C86-55

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* 1

Parameter	Symbol	MB 81C86-55		MB 81C86-70		Unit
		Min	Max	Min	Max	
Read Cycle Time* ${ }^{2}$	t_{RC}	55		70		ns
Address Access Time ${ }^{* 3}$	$t_{A A}$		55		70	ns
$\overline{\mathrm{CS}}$ Access Time ${ }^{*} 4$	$t_{\text {Acs }}$		55		70	ns
Output Hold from Address Change	${ }^{\text {tor }}$	5		5		ns
Output Hold from CS	${ }^{\text {O }}$	5		5		ns
Chip Selection to Output Low-Z*5	$t_{\text {LZ }}$	10		10		ns
Chip Deselection to Output High-Z*5	t_{Hz}	5	25	5	25	ns
Power Up from $\overline{\mathrm{CS}}$	$t_{\text {pu }}$	0		0		ns
Power Down from $\overline{C S}$	$t_{\text {PD }}$		40		40	ns

READ CYCLE TIMING DIAGRAM*1

Note: *1 $\overline{\text { WE }}$ is high for Read cycle.
*2 All Read cycle timings are referenced from the last valid address to the first transitioning address.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*5 Transition is specified $\pm 500 \mathrm{mV}$ from steady state voltage with specified load II in Fig. 2.

WRITE CYCLE*1*2

Parameter	Symbol	MB 81-86-55		MB 81-86-70		Unit
		Min	Max	Min	Max	
W!rite	+	55		70		ns
Address Valid to End of Write	$\mathrm{t}_{\text {AW }}$	45		50		ns
Chip Select to End of Write	${ }^{\text {c }}$ cw	45		50		ns
Data Valid to End of Write	${ }_{\text {t }}{ }_{\text {w }}$	25		30		ns
Data Hold Time	${ }^{\text {DH }}$	5		5		ns
Write Pulse Width	${ }^{\text {twp }}$	30		35		ns
Address Setup Time	${ }_{t}{ }_{\text {AS }}$	5		5		ns
Write Recovery Time*4	${ }^{\text {w }}$ \%	5		5		ns
Output High-Z from $\overline{W E}{ }^{*} 5$	$t_{w z}$	0	25	0	25	ns
Output Low-Z from $\overline{\mathrm{WE}}{ }^{*} 5$	tow	5	30	5	35	ns

WRITE CYCLE TIMING DIAGRAM*1*2

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Read cycle timings are referenced from the last valid address to the first transitioning address.
*4 $t_{W R}$ is defined from the end point of WRITE Mode.
${ }^{*} 5$ Transition is specified $\pm 500 \mathrm{mV}$ from steady state voltage with specified load II in Fig. 2.

Write cycle II: $\overline{\mathrm{CS}}$ CONTROLLED* ${ }^{1 * 2}$

Note: *1 $\overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with WE high, the output remains in high impedance state.
*3 All Write cycle timings are referenced from the last valid address to the first transitioning address.
*4 $t_{\text {WR }}$ is defined from the end point of WRITE Mode.
*5 Transition is specified $\pm 500 \mathrm{mV}$ from steady state voltage with specified Load III in Fig.2.

PACKAGE DIMENSIONS

(Suffix: -C)

PACKAGE DIMENSIONS

(Suffix: -CV)

32-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER (CASE No.: LCC-32C-A02)

Dimensions in inches (millimeters)

32K x 9-BIT STATIC RANDOM ACCESS MEMORY WITH PARITY GENERATOR AND CHECKER

The Fujitsu MB8289 is 32768 words $\times 9$ bits high speed static random access memory with parity generator and checker, fabricated with CMOS technology.
 this device is assembled in 300 mil DIP and has such small power dissipation as 605 mW max.
All pins are TTL compatible and single 5 volt power supply is required.
A separate chip select ($\overline{\mathrm{CS}}_{1}$) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$ the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 32768 words $\times 9$ bits
- Static operation: no clocks or timing strobe required
- Fast access time:
$t_{A A}=t_{A C S 1}=25$ ns max,
$\mathrm{t}_{\mathrm{ACS} 2}=14 \mathrm{~ns}$ max (MB8287-25)
$t_{A A}=t_{A C S 1}=35 \mathrm{~ns}$ max,
$t_{\text {ACS2 }}=15 \mathrm{~ns} \max (\mathrm{MB8287-35})$
- Low power consumption:

715 mW max. (Operating) for 25 ns 605 mW max. (Operating) for 35 ns 138 mW max. (TTL Standby) 83mW max. (CMOS Standby)

- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- Internal parity generator and checker.
- All inputs and outputs have protection against static charge
- Standard 32-pin DIP package (300 mil): (Suffix: P-SK)
- Standard 32-pin FPT package (450 mil): (Suffix: PF)
- Single +5 V supply $\pm 10 \%$ tolerance

AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7	V
Input Voltage on any pin with respect to GND	$\mathrm{V}_{\text {IN }}$	-3.5 to +7	V
Output Voltage on any I/O pin with respect to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	± 20	mA
Power Dissipation	P_{D}	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-45 to 125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

$\mathrm{A}_{5} \mathrm{C} \square$	32 v cc
$\mathrm{A}_{4} \mathrm{Cl}_{2}$	$31 \square \mathrm{~A}_{6}$
$\mathrm{A}_{3} \mathrm{C}^{3}$	${ }^{3} \square^{-1} \mathrm{~A}_{7}$
$\mathrm{A}_{2} \mathrm{H} 4$	$29 . A_{8}$
$\mathrm{A}_{1} \mathrm{C}_{5}$	$28 . \mathrm{A}_{9}$
$A_{0} 0^{6}$	$27 \mathrm{P}_{10}$
$\mathrm{A}_{12} \mathrm{H}_{7}$	$26 . \mathrm{A}_{11}$
$\mathrm{A}_{13} \mathrm{C}^{8}$ TOP VIEW	25 N.C.
$\mathrm{A}_{14} \mathrm{Cl}^{9}$	$24 \mathrm{D} \overline{\mathrm{CS}}_{1}$
OEC10	$23 \square \overline{\text { WE }}$
CS_{2}-11	${ }_{22} 1 / O_{9}$
$1 / O_{1}-12$	$21 \mathrm{Pl} 1 \mathrm{O}_{8}$
$1 / \mathrm{O}_{2} \mathrm{H} 13$	$20 \mathrm{Pl} \mathrm{O}_{7}$
$1 / \mathrm{O}_{3}$-14	$19 \mathrm{l} / \mathrm{O}_{6}$
$1 / \mathrm{O}_{4} \mathrm{C} 15$	$18 \mathrm{PI} / \mathrm{O}_{5}$
GNDC 16	17]GNDQ

[^12]Fig. 1 - MB8289 BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{W E}$	$\overline{\mathrm{OE}}$	MODE	SUPPLY CURRENT	I/O STATE
H	\times	x	X	STANDBY	$I_{\text {SB }}$	HIGH-Z
L	L	X	\times	DESELECT	${ }^{\text {cc }}$	HIGH-Z
L	H	H	H	Dout DISABLE	I_{cc}	HIGH-Z
L	H	H	L	READ	1 cc	Dout
L	H	L	x	WRITE	$I_{\text {cc }}$	$\mathrm{D}_{\text {IN }}$

CAPACITANCE ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Input Capacitance $\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{\mathrm{WE}})}\right.$	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}$	C_{11}			8	pF
Input Capacitance (Other Input)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	C_{12}			7	pF
I/O Capacitance	$\mathrm{V}_{1 / 0}=0 \mathrm{~V}$	$\mathrm{C}_{1 / 0}$			8	pF

manminil

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions unless otherside noted.)

Parameter		Symbol	Test Conditions	Min	Max	Unit
Standby Supply Current		$I_{\text {SB1 }}$	$\begin{aligned} & \overline{\mathrm{CS}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		15	mA
		$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \mathrm{CS}_{1}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$		25	mA
Operating Supply Current	25ns	Icc	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}} \\ & \mathrm{Cycle}=\mathrm{Min} . \end{aligned}$		130	mA
	35ns				110	
Input Leakage Current		$I_{L I}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-5	5	$\mu \mathrm{A}$
Output Leakage current		$I_{\text {LI/O }}$	$\begin{aligned} & \overline{\mathrm{C}}_{1}=V_{1 H}=\text { or } \overline{\mathrm{CS}}_{2}=V_{1 \mathrm{~L}} \text { or } \\ & \overline{W E}=V_{I L} \text { or } \overline{\mathrm{OE}}=V_{1 \mathrm{H}} . \\ & V_{1 / \mathrm{O}}=0 \mathrm{~V} \text { to } V_{\mathrm{CC}} \end{aligned}$	-5	5	$\mu \mathrm{A}$
Input Low Voltage		$V_{\text {IL }}$		$-2.0{ }^{* 1}$	0.8	V
Input High Voltage		$V_{1 H}$		2.2	6.0	V
Output High Voltage		V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4		V
Output Low Voltage		V_{OL}	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.4	V

Note: *1 -2.0 V Min. for pulse width less than 20 ns . ($\mathrm{V}_{\mathrm{IL}} \min .=-0.5 \mathrm{~V}$ at DC level) All voltages are referenced to GND.

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise \& Fall Times:
- Timing Reference Levels:
- Output Load:
0.6 V to 2.4 V

3 ns (Transient between 0.8 V and 2.2 V)
Input: $\quad V_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$

	R_{1}	R_{2}	C_{L}	Parameters Measured
Load I	480Ω	255Ω	30 pF	except $\mathrm{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{HZ}}, \mathrm{t}_{\mathrm{WZ}}, \mathrm{t}_{\mathrm{OW}}, \mathrm{t}_{\mathrm{OLZ}}$ and $\mathrm{t}_{\mathrm{OHZ}}$
Load II	480Ω	255Ω	5 pF	$\mathrm{t}_{\mathrm{LZ}}, \mathrm{t}_{\mathrm{HZ}},{ }^{\mathrm{t} W Z}, \mathrm{t}_{\mathrm{OW}}, \mathrm{t}_{\mathrm{OLZ}}$ and $\mathrm{t}_{\mathrm{OHZ}}$

AC CHARACTERISTICS

READ CYCLE* 1
(Recommended operating conditions unless otherwise noted)

Parameter	Snymbol	MB8289-25		MB8289-35		Unit
		Min	Max	Min	Max	
Read Cycle Time	t_{RC}	25		35		ns
Address Access Time* ${ }^{\text {2 }}$	${ }^{t}{ }_{\text {A }}$		25		35	ns
$\overline{\mathrm{CS}}_{1}$ Access Time*3	${ }^{\text {tacs }} 1$		25		35	ns
CS_{2} Access Time*3	$\mathrm{t}_{\text {ACS } 2}$		14		15	ns
$\overline{\mathrm{OE}}$ Access Time	$t_{\text {toe }}$		12		14	ns
Output Hold from Address Change	${ }^{\text {toH }}$	3		3		ns
Output Active from $\overline{\mathrm{CS}}_{1}{ }^{* * 5}$	$\mathrm{t}_{\mathrm{LZ1}}$	5		8		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$\mathrm{t}_{\text {LZ2 }}$	2		3		ns
Output Active from $\overline{\mathrm{OE}}^{*} \mathbf{4 * 5}^{* 5}$	$\mathrm{t}_{\text {OLz }}$	2		3		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{* * 5}$	$\mathrm{t}_{\mathrm{Hz} 1}$	1	15	1	15	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$\mathrm{t}_{\mathrm{Hz2}}$	1	15	1	15	ns
Output Disable from $\overline{\mathrm{OE}}{ }^{*} 4 * 5$	$\mathrm{t}_{\mathrm{OHz}}$	1	15	1	15	ns

Note: *1 $\overline{W E}$ is high for Read Cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{C S}_{1}=V_{1 L}, \mathrm{CS}_{2}=\mathrm{V}_{I H}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

READ CYCLE TIMING DIAGRAM*1

READ CYCLE: ADDRESS CONTROLLED*2

READ CYCLE: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED*3

Note: *1 $\overline{W E}$ is high for Read Cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

WRITE CYCLE*1

Parameter	Symbol	MB8289-25		MB8289-35		Unit
		Min	Max	Min	Max	
Write Cycle Time*2	${ }^{\text {tw }}$ w	25		35		ns
Address Valid to End of Write	${ }^{\text {taw }}$	18		28		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{\text {c }}{ }_{\text {W }}$	16		26		ns
CS_{2} to End of Write	$\mathrm{t}_{\mathrm{cW} 2}$	13		20		ns
Data Setup Time	tow	8		12		ns
Data Hold Time	${ }^{\text {t }}$ DH	0		0		ns
Write Pulse Width	$t_{\text {wp }}$	15		20		ns
Write Recovery Time ${ }^{* 3}$	$t_{\text {WR }}$	0		0		ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0		0		ns
	tow	0		0		ns
Output High-Z from $\overline{\text { WE }}{ }^{* * 5}$	$t_{\text {wz }}$	0	8	0	14	ns

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{w R}$ is defined from the end point of Write Mode.
${ }^{*} 4$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

WRITE CYCLE No. 2 ($\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED)

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

MB8289-25
MB8289-35

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (continued)

Section 2

High-Speed BiCMOS SRAMs - At a Glance

Page	Device	Maximum Access Time (ns)	Capacity	Package Options		
2-3	$\begin{array}{r} \text { MB82B001-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	1048576 bits (1048576w $\times 1$ b)	28-pin	Plastic	LCC
2-11	$\begin{array}{r} \text { MB82B005-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	1048576 bits (262144w $\times 4$ b)	28-pin	Plastic	LCC
2-19	$\begin{array}{r} \text { MB82B006-25 } \\ -35 \end{array}$	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	1048576 bits (262144w $\times 4$ b)	32-pin	Plastic	LCC
2-27	$\begin{array}{r} \text { MB82B71-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	65536 bits ($65536 \mathrm{~b} \times 1 \mathrm{~b}$)	$\begin{aligned} & 22 \text {-pin } \\ & 24 \text {-pin } \end{aligned}$	Pastic Plastic	DIP, LCC LCC
2-37	$\begin{array}{r} \text { MB82B74-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	65536 bits $(16384 w \times 4 b)$	$\begin{aligned} & \text { 22-pin } \\ & 22 \text {-pad } \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP } \\ & \text { LCC } \end{aligned}$
2-45	$\begin{array}{r} \text { MB82B75-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	65536 bits (16384w x 4b)	$\begin{aligned} & 24 \text {-pin } \\ & 28 \text {-pad } \end{aligned}$	Plastic Ceramic	DIP, LCC LCC
2-55	$\begin{array}{r} \text { MB82B79-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 73728 \text { bits } \\ & \text { (8192w } \times 9 b) \end{aligned}$	28-pin	Plastic	DIP, FPT
2-65	$\begin{array}{r} \text { MB82B81-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	262144 bits (262144w $\times 1$ b)	24-pin	Plastic	DIP, LCC
2-73	$\begin{array}{r} \text { MB82B84-15 } \\ -20 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	262144 bits ($65536 \mathrm{w} \times 4 \mathrm{~b}$)	24-pin	Plastic	DIP, LCC

1,048,576 WORDS x 1 BIT HIGH SPEED BI-CMOS STATIC RANDOM ACCESS MEMORY

 a $\mathrm{Bi}-\mathrm{CMOS}$ process technology. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors.

The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required. The MB82B001 has 400 mil plastic small out-line J -lead(SOJ) as package option.

The MB82B001 is ideally suited for use in dataprocessing systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high peformance.

- Organization: 1,048,576 words $\times 1$ bit
- Static operation: No clocks or refresh required
- Fast access time: 25ns max. (MB82B001-25)

35ns max. (MB82B001-35)

- Single $+5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain

Active operation $=120 \mathrm{~mA}$ max .
Standby operation $=15 \mathrm{~mA}$ max. (CMOS level)
Standby operation $=25 \mathrm{~mA}$ max. (TTL level)

- Separate data input and output
- TTL compatible inputs and output
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- 400 mil width 28 -pin SOJ package (Suffix: -PJ)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol $^{c \mid}$	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage on any pin with to GND	V_{IN}	-0.5 to +7.0	V
Output Voltage on any pin with to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Power Dissipation	P_{D}	1.0	W
Output Current	$\mathrm{I}_{\text {OUT }}$	± 20	mA
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^13]Fig. 1 - MB82B001 BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Mode	Output	Power
H	X	Not Selected	High-Z	Standby
L	L	Write	High-Z	Active
L	H	Read	Dout	Active

Legend: $H=$ High level $L=$ Low level $\mathrm{X}=$ Don't Care

CAPACITANCE $\left(T \mathrm{~A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $(V \operatorname{Vin}=0 \mathrm{~V})$	CIN		6	pF
$\overline{\mathrm{CS}}$ Capacitance $(\overline{\mathrm{CS}}=0 \mathrm{~V})$	CCS		7	pF
Output Capacitance $($ Vout $=0 \mathrm{~V})$	CouT		pF	

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
AO to A9	Address Input	$\overline{\text { WE }}$	Write Enable
DIN	Data Input	VcC	Power Supply $(+10 \%)$
DouT	Data Output	GND	Ground
$\overline{\mathrm{CS}}$	Chip Select	NC	No Connect

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\begin{aligned} & V \mathbb{N}=O V \text { to } V c c \\ & V c c=M a x . \end{aligned}$	1.1	-1		1	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{C S}=V_{I H}, \\ & \text { Vout }=O V \text { to } \mathrm{Vcc} \\ & \mathrm{VcC}=\text { Max. } \end{aligned}$	ILO	-1		1	$\mu \mathrm{A}$
Active Supply Current	$\begin{aligned} & \overline{C S}=V_{\text {IL }}, \text { Iout }=0 \mathrm{~mA} \\ & V_{C C}=M_{\text {Mx }}, V_{I N}=V_{\mathbb{L L}} \text { or } V_{\mathbb{H}} \end{aligned}$	$\mathrm{lcC1}$		50	80	mA
	$\begin{aligned} & \text { Vcc }=\text { Max., } \overline{C S}=V_{I L} \\ & \text { Cycle }=\text { Min., } \text { lout }=0 \mathrm{~mA} \end{aligned}$	ICC2		80	120	
Standby Current	$\begin{aligned} & \mathrm{Vcc}=\text { Min. to Max. } \\ & \overline{\mathrm{CS}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \mathrm{V} \mathbb{N} \leq 0.2 \mathrm{~V} \end{aligned}$	ISB1		2	15	mA
	$\begin{aligned} & \mathrm{VCC}=\text { Min. to Max. } \\ & C \mathrm{CS}=\mathrm{V}_{I H} . \end{aligned}$	Isb2		10	25	
Output Low Voltage	$1 \mathrm{OL}=16 \mathrm{~mA}$	VoL			0.45	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	Vон	2.4			V
Peak Power on Current	$\mathrm{Vcc}=\mathrm{OV}$ to Vcc Min. $\overline{C S}=$ Lower of Vcc or VIH Min.	IPO			50	mA
Input Low Voltage		VIL	$-0.5 * 2$		0.8	V
Input High Voltage		VIH	2.2		6.0	V

[^14]
AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
- Timing Reference Levels:
- Output Load:
0.6 V to 2.4 V
$3 \mathrm{~ns}(0.8 \mathrm{~V}$ to 2.2 V$)$
Input: $\quad \mathrm{V}_{\mathrm{IL}}=0.8, \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Output: $\mathrm{VoL}=0.8, \mathrm{VOH}=2.2 \mathrm{~V}$
Fig. 2

*Including Scope and Jig capacitance

	R1	R2	CL	Parameters Measured
Load I	480Ω	255Ω	30 pF	except tLZ, tHZ, tOW and tWZ
Load II	480Ω	255Ω	5 pF	$\mathrm{tLZ}, \mathrm{tHZ}$, tOW and tWZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B001-25		MB82B001-35		
		Min.	Max.	Min.	Max.	Unit

READ CYCUE:M!

Read Cycle Time *2	tsc	25		35		ns
Address Access Time *3	taA		25		35	ns
Chip Select Access Time *4	tacs		25		35	ns
Output Hold from Address Change	tor	5		5		ns
Chip Selection to Output in Low-Z *5 *6	thz	5		5		ns
Chip Deselection to Output in High-Z *5 *6	thz	2	15	2	15	ns
Chip Selection to Power Up time	tPu	0		0		ns
Chip Deselection to Power Down	tPD		20		30	ns

[^15]
READ CYCLE TIMING DIAGRAM

READ CYCLE: ADDRESS CONTROLLED * 1 * 3

READ CYCLE: $\overline{\mathrm{CS}}$ CONTROLLED *1*4

${ }^{*} 1 \overline{W E}$ is high for Read cycle.
*2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{VIL}$.
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

* 5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
-6 This parameter is measured with specified Load Hin Fig.2.

AC CHARACTERISTICS ${ }_{(\text {Coninumea })}$

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B001-25		MB82B001-35		Unit
		Min.	Max.	Min.	Max.	
WPITE CYCLE: $1 * 2$						
Write Cycle Time *3	twc	25		35		ns
Chip Selection to End of Write	tcw	16		26		ns
Address Valid to End of Write	taw	18		28		ns
Address Setup Time	tAS	0		0		ns
Write Pulse Width	twp	15		20		ns
Data Valid to End of Write	tow	10		15		ns
Write Recovery Time	twR	0		0		ns
Data Hold Time	tDH	0		0		ns
Write Enable to Output in High-Z *4*5	twz	0	10	0	15	ns
Output Active from End of Write * 4 *5	tow	0		0		ns

PACKAGE DIMENSIONS

\qquad

MB82B005-25/-35
 1M BIT HIGH SPEED BI-CMOS SRAM

262,144 WORDS x 4 BITS HIGH SPEED BI-CMOS STATIC RANDOM ACCESS MEMORY

 $\mathrm{Bi}-\mathrm{CMOS}$ process technology. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors.

The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 voits power supply is required. The MB82B005 has 400 mil plastic small out-line J-lead(SOJ) as package option.

The MB82B005 is ideally suited for use in datapracessing systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high peformance.

- Organization: 262,144 words $\times 4$ bits
- Static operation: No clocks or refresh required
- Fast access time: 25ns max. (MB82B005-25)

35ns max. (MB82B005-35)

- Single $+5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain
Active operation $=120 \mathrm{~mA} \max$.
Standby operation $=15 \mathrm{~mA} \max .(\mathrm{CMOS}$ level $)$
Standby operation $=25 \mathrm{~mA} \max .($ TTL level $)$
- Common data input and output
- TTL compatible inputs and outputs
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- 400 mil width $28-$ pin SOJ package (Suffix: -PJ)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage on any pin with to GND	$\mathrm{V}_{\mathbb{N}}$	-0.5 to +7.0	V
Output Voltage on any pin with to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Power Dissipation	P_{D}	1.0	W
Output Current	$\mathrm{I}_{\text {OUT }}$	± 20	mA
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^16]

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance (VIN $=0 \mathrm{~V}$)	CIN		6	pF
$\overline{\mathrm{CS}}$ Capacitance ($\mathrm{VCS}=0 \mathrm{~V}$)	Ccs		7	pF
Output Capacitance ($\mathrm{Vout}=0 \mathrm{~V}$)	Cout		7	pF

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
AO to A 17	Address Input	$\overline{\mathrm{WE}}$	Write Enable
$\mathrm{I} / \mathrm{O} 1$ to $/ \mathrm{O4}$	Data Input/Output	Vcc	Power Supply $(+10 \%)$
$\overline{\mathrm{OE}}$	Output Enable	GND	Ground
$\overline{\mathrm{CS}}$	Chip Select	NC	No Connect

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Test Condition \& Symbol \& Min \& Typ \& Max \& Unit \\
\hline Input Leakage Current \& \[
\begin{aligned}
\& V I N=O V \text { to } V c c \\
\& V c c=\text { Max. }
\end{aligned}
\] \& ILI \& -1 \& \& 1 \& \(\mu \mathrm{A}\) \\
\hline Output Leakage Current \& \[
\begin{aligned}
\& \overline{\mathrm{CS}}=\mathrm{VIH}, \text { or } \overline{\mathrm{OE}=\mathrm{V}_{I H}} \\
\& \text { Vout }=0 \mathrm{~V} \text { to } \mathrm{VCc} \\
\& \text { Vcc }=\text { Max. }
\end{aligned}
\] \& ILO \& -1 \& \& 1 \& \(\mu \mathrm{A}\) \\
\hline Active Supply Current \& \& \begin{tabular}{l}
ICC1 \\
Icc2 \\
\\
\hline
\end{tabular} \& \& 50
80 \& 80
120 \& mA \\
\hline Standby Current \& \[
\begin{aligned}
\& \mathrm{Vcc}=\text { Min. to Max. } \\
\& \overline{\mathrm{CS}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \\
\& \mathrm{VIN}_{\mathrm{IN}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\
\& \mathrm{VCC}=\text { Min. to Max. } \\
\& \overline{\mathrm{CS}}=\mathrm{VIH}^{2}
\end{aligned}
\] \& ISB1

ISB2 \& \& 2
10 \& 15
25 \& mA

\hline Output Low Voltage \& $10 \mathrm{~L}=8 \mathrm{~mA}$ \& VOL \& \& \& 0.4 \& V

\hline Output High Voltage \& $1 \mathrm{OH}=-4 \mathrm{~mA}$ \& VOH \& 2.4 \& \& \& V

\hline Peak Power on Current \& $$
\begin{aligned}
& \mathrm{VCC}=\mathrm{OV} \text { to } \mathrm{Vcc} \text { Min. } \\
& \mathrm{CS}=\text { Lower of } \mathrm{Vcc} \text { or } \\
& \mathrm{VIH}_{I H} \text { Min. }
\end{aligned}
$$ \& IPO \& \& \& 50 \& mA

\hline Input Low Voltage \& \& VIL \& $-0.5^{* 2}$ \& \& 0.8 \& V

\hline Input High Voltage \& \& $\mathrm{V}_{\text {IH }}$ \& 2.2 \& \& 6.0 \& V

\hline
\end{tabular}

[^17]
AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
- Timing Reference Levels:
- Output Load:

*Including Scope and Jig capacitance

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B005-25		MB82B005-35		Unit
		Min.	Max.	Min.	Max.	
REAB EYCUE \square						
Read Cycle Time *2	trc	25		35		ns
Address Access Time *3	tAA		25		35	ns
Chip Select Access Time *4	tacs		25		35	ns
Output Enable Access Time	toe		10		15	ns
Output Hold from Address Change	tor	5		5		ns
Chip Selection to Output in Low-Z *5 *6	tCLZ	5		5		ns
Chip Selection to Output in High-Z *5 *6	tchz	2	15	2	15	ns
Output Enable to Output in Low-Z *5*6	tolz	0		0		ns
Output Enable to Output in High-Z *5 *	tohz	0	15	0	15	ns
Chip Selection to Power Up time	tPU	0		0		ns
Chip Deselection to Power Down	tPD		20		30	ns

*1 WE is high for Read cycle.
*2 All Read cycles are determined from the last address transition to the first address transition of next cycle.

* 3 Device is continuously selected, $\overline{C S}=V \mathrm{IL} \overline{\mathrm{OE}}=\mathrm{VIL}$.
* 4 Address valid prior to or coincident with CS transition low.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*6 This parameter is measured with specified Load II in Fig. 2.

READ CYCLE TIMING DIAGRAM

READ CYCLE: ADDRESS CONTROLLED *1 *3

READ CYCLE: CS CONTROLLED*1*4

[^18]
AC CHARACTERISTICS (Conitinea)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B005-25		MB82B005-35		Unit
		Min.	Max.	Min.	Max.	
Write Cycle Time *3	twc	25		35		ns
Chip Selection to End of Write	tcw	16		26		ns
Address Valid to End of Write	taw	18		28		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	twp	15		20		ns
Data Valid to End of Write	tow	8		12		ns
Write Recovery Time	twr	0		0		ns
Data Hold Time	tDH	0		0		ns
Write Enable to Output in High-Z *4*5	twz	0	8	0	14	ns
Output Active from End of Write * 4 *5	tow	0		0		ns

PACKAGE DIMENSIONS

MB82B006-25/-35

1M BIT HIGH SPEED BI-CMOS SRAM

262,144 WORDS $\times 4$ BITS HIGH SPEED BトCMOS STATIC RANDOM ACCESS MEMORY

The Fujitsu MB82B006 is 262,144 woras $\times 4$ bits static rancom access memvi y iavivaivú withià $\mathrm{Bi}-\mathrm{CMOS}$ process technology. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors.

The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required. The MB82B006 has 400 mil plastic small out-line J-lead(SOJ) as package option.

The MB82B006 is ideally suited for use in dataprocessing systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high peformance.

- Organization: 262,144 words $\times 4$ bits
- Static operation: No clocks or refresh required
- Fast access time:

> 25ns max.(MB82B006-25)
> 35ns max.(MB82B006-35)

- Single $+5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain

Active operation $=120 \mathrm{~mA}$ max.
Standby operation $=15 \mathrm{~mA}$ max. $($ CMOS level $)$
Standby operation $=25 \mathrm{~mA}$ max. (TTL level)

- Separate data input and output
- TTL compatible inputs and outputs
- Chip select for simplified memory expansion, automatic power down
- All inputs and output have protection against static charge
- 400 mil width 32-pin SOJ package (Suffix: -PJ)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage on any pin with to GND	V_{IN}	-0.5 to +7.0	V
Output Voltage on any pin with to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Power Dissipation	P_{D}	1.0	W
Output Current	$\mathrm{I}_{\text {OUT }}$	± 20	mA
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^19]Fig. 1 - MB82B006 BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Mode	Output	Power
H	X	Not Selected	High-Z	Standby
L	H	Read	DouT	Active
L	L	Write	High-Z	Active

Legend: $H=$ High level
$L=$ Low level
$X=$ Don't Care
CAPACITANCE $\left(T \mathrm{~A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $(V \mathbb{N}=0 \mathrm{~V})$	CIN		6	pF
$\overline{\mathrm{CS}}$ Capacitance $(\mathrm{VCS}=0 \mathrm{~V})$	CCS		7	pF
Output Capacitance (VOUT $=0 \mathrm{~V})$	CouT		pF	

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
AO to A 17	Address Input	$\overline{\mathrm{WE}}$	Write Enable
11 to 14	Data Input	Vcc	Power Supply $(+10 \%)$
O 1 to O 4	Data Output	GND	Ground
$\overline{\mathrm{CS}}$	Chip Select	NC	No Connect

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\begin{aligned} & \mathrm{VIN}=0 \mathrm{~V} \text { to } \mathrm{Vcc} \\ & \mathrm{Vcc}=\mathrm{Max} . \end{aligned}$	ILI	-1		1	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{C S}=V_{I H} \\ & \text { VoUT }=0 V \text { to } V c c \\ & \text { VcC }=\text { Max. } \end{aligned}$	120	-1		1	$\mu \mathrm{A}$
Active Supply Current	$\begin{aligned} & \overline{C S}=V_{I L}, I_{\text {OUT }}=0 \mathrm{~mA} \\ & V_{C C}=M a x_{\ldots} V_{I N}=V_{H} \text { or } V_{H H} \end{aligned}$	Iccı		50	80	mA
	$\begin{aligned} & \text { Vcc }=\text { Max., } \overline{\mathrm{CS}}=\mathrm{VIL} \\ & \text { Cycle }=\text { Min., lout }=0 \mathrm{~mA} \end{aligned}$	Icc2		80	120	
Standby Current	$\begin{aligned} & \mathrm{Vcc}=\text { Min. to } \text { Max } . \\ & \overline{C S} \geq V c c-0.2 \mathrm{~V} \\ & V_{I N} \geq V c c-0.2 \mathrm{~V} \text { or } V_{I N} \leq 0.2 \mathrm{~V} \end{aligned}$	ISB1		2	15	mA
	$\begin{aligned} & \mathrm{Vcc}=\text { Min. to Max. } \\ & \mathrm{CS}=V_{I H} \end{aligned}$	ISB2		10	25	
Output Low Voltage	$1 \mathrm{loL}=8 \mathrm{~mA}$	VoL			0.4	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4			V
$\bullet 1$ Peak Power on Current	$\begin{aligned} & \mathrm{Vcc}=O V \text { to } \mathrm{Vcc} \text { Min. } \\ & \mathrm{CS}=\text { Lower of } \mathrm{Vcc} \text { or } \\ & \mathrm{V}_{\mathrm{IH}} \text { Min. } \end{aligned}$	IPO			50	mA
Input Low Voltage		VIL	$-0.5{ }^{*}$		0.8	V
Input High Voltage		VIH	2.2		6.0	V

*1 A pull-up resistor to Vcc on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected; otherwise, power-on current approaches loc active.
*2 $-3.0 \mathrm{~V} \mathrm{Min}$.for pulse width less than 20 ns .

AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
- Timing Reference Levels:
- Output Load:

Fig. 2

	R1	R2	CL	Parameters Measured
Load I	480Ω	255Ω	$30 p F$	except tLZ, tHZ, tOW and tWZ
Load II	480Ω	255Ω	$5 p F$	$t L Z, t H Z, t O W$ and tWZ

*Including Scope and Jig capacitance

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B006-25		MB82B006-35		Unit
		Min.	Max.	Min.	Max.	
Read Cycle Time *2	tRC	25		35		ns
Address Access Time *3	ta		25		35	ns
Chip Select Access Time *4	tacs		25		35	ns
Output Hold from Address Change	tor	5		5		ns
Chip Selection to Output in Low-Z *5 *	tız	5		5		ns
Chip Selection to Output in High-Z *5 *6	thz	2	15	2	15	ns
Chip Selection to Power Up time	tPu	0		0		ns
Chip Deselection to Power Down	tPD		20		30	ns

[^20]
READ CYCLE TIMING DIAGRAM

READ CYCLE: ADDRESS CONTROLLED * 1 * 3

READ CYCLE: $\overline{C S}$ CONTROLLED * 1 * 4

$X X$: Undefined
Y) : Don't Care
*1 WE is high for Read cycle.
*2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
*3 Device is continuously selected, CS=VIL
*4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.

* 5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage. *6 This parameter is measured with specified Load II in Fig. 2.

AC CHARACTERISTICS (continued)

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB82B006-25		MB82B006-35		Unit
		Min.	Max.	Min.	Max.	
棵 \qquad						
Write Cycle Time *3	twc	25		35		ns
Chip Selection to End of Write	tcw	16		26		ns
Address Valid to End of Write	taw	18		28		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	twp	15		20		ns
Data Valid to End of Write	tow	10		15		ns
Write Recovery Time	twn	0		0		ns
Data Hold Time	tDH	0		0		ns
Write Enable to Output in High-Z *4*5	tWZ	0	10	0	15	ns
Output Active from End of Write * 4 *5	tow	0		0		ns

All Rights Reserved. Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given. The information contained in this document has been carefully checked and is believed to be reliable. However, Fuitsu assumes no responsīility for inaccuracies.

The Information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fuitsu. Fujitsu reserves the right to change products or specifications without notice. No part of this publication may be copled or reoroduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

MB82B71-15/-20 64K BIT HIGH SPEED BI-CMOS SRAM

65,536-WORD $\times 1$-BIT Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY

 CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of Bi -CMOS technology, and to obtain amaller chip size, cells consist of NMOS transistors and resistors.

MB82B71 has 300 mil plastic DIP, leadless chip carrier (LCC) and 300 mil plastic small out-line J-lead (SOJ) package as package option. The memory utilizes asynchronous circuitry and requires +5 V power supply. All pins are TTL compatible.

The MB82B71 is ideally suited for use in large computer and other applications where fast access time, large-capacity and ease of use are required.
All devices offer the advantages of low power dissipation, low cost high performance.

- Organization: 65,536 words $\times 1$ bit
- Static operation: No clocks or refresh required
- Fast access time:
tAA $=$ tACS $=15$ ns max. (MB82B71-15)
tAA $=$ tACS $=20$ ns max. (MB82B71-20)
- Single $=5 \mathrm{~V}(+10 \%)$ power supply with low current drain: Active operation $=120 \mathrm{~mA}$ max. Standby operation $=15 \mathrm{~mA}$ max. (CMOS level) Standby operation $=30 \mathrm{~mA}$ max. (TTL level)
- Bi-CMOS peripheral
- TTL compatible inputs/outputs
- Three-state output
- 300 mil width 22 -pin plastic Skinny DIP package (Suffix: -P-SK)
- 300 mil width 24 -pin plastic SOJ package (Suffix: -PJ)
- 22-pad Leadless Chip Carrier package (Suffix:-CV)
- Pin compatible with MB81C71A

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	VCC	-0.5 to +7.0	V
Input Voltage on any pin with to GND	VIN	-0.5 to +7.0	V
Output Voltage on any pin with to GND	Vio	-0.5 to +7.0	V
Power Dissipation	PD	1.0	W
Output Current	IOUT	± 20	mA
Temperature under Bias	TBIAS	-10 to +85	${ }^{\text {P }} \mathrm{C}$
Storage Temperature	Plastic	TsTG	-40 to +125

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PLASTIC PACKAGE DIP-22P-M04

PLASTIC PACKAGE LCC-24P-M02

PIN ASSIGNMENT
$1{ }^{22}$
${ }_{A_{3}} \square_{2}$
$\mathrm{A}_{2} \mathrm{H}_{3}{ }^{\text {a }}$
$A_{1} \mathrm{H}_{4}$
$A_{0} \mathrm{C}_{5}{ }^{\text {cos }}{ }^{18} \mathrm{P}^{A_{6}}$
Dourti ${ }^{14}{ }^{14} \mathrm{~A}^{\text {a }}$
$\overline{\text { wet }}$ [10 ${ }^{13}$
onor ${ }^{11}$ 12]cs
${ }_{A_{4} 5} 5$
${ }_{A_{2}} A_{1}$
${ }^{A_{0}} \mathrm{C} 5{ }^{5}$
$A_{12}{ }^{2}$
${ }^{\text {anoc }}$ [12 ${ }^{13}{ }^{\text {cs }}$

[^21][^22]
Fig. 1 - MB82B71 BLOCK DIAGRAM

> T.B.D

CAPACITANCE ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O $=0 \mathrm{~V})$	CI/0			7	pF
Input Capacitance $(\mathrm{VIN}=0 \mathrm{~V})$	CIN			7	pF

PIN DISCRIPTION

Symbo1	Pin name	Symbol	Pin name
A0 to A15	Address input.	$\overline{\text { WE }}$	Write Enable.
DIN	Data input.	VCC	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$.
DOUT	Data output.	GND	Ground.
$\overline{\text { CS }}$	Chin Solort		

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Mode	Output	Power Supply Current
H	X	NottSelected	High-Z	Standby
L	L	Write	High-Z	Active
L	H	Read	DOUT	Active

Legend: $H=H i g h$ leve1, $L=$ Low level, $X=$ Don't care

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

(Recommended operating conditions otherwise noted.)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	$\begin{aligned} & \text { VIN=GND to VCC } \\ & \text { VCC=max. } \end{aligned}$	ILI	-5	5	$\mu \mathrm{A}$
Output Leakage Current	VOUT=GND to VCC $\overline{\mathrm{CS}}=\mathrm{VIH}$ or $\overline{\mathrm{WE}}=\mathrm{VIL}$	ILI/ 0	-5	5	$\mu \mathrm{A}$
Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIL}, \text { DOUT=Open } \\ & \text { Cycle=min. } \end{aligned}$	ICC		120	mA
Standby Supply Current	$\begin{aligned} & \mathrm{VCC}=\min . \text { to } \max . \\ & \mathrm{CS}=\mathrm{VCC}-0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \text { or VIN } \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	ISB1		15	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIH} \\ & \mathrm{VCC}=\min \text {. to } \max . \end{aligned}$	ISB2		30	mA
Input High Voltage		VIH	2.2	6.0	V
Input Low Voltage		VIL	$\begin{array}{r} *_{1} \\ -0.5 \end{array}$	0.8	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4		V
Output Low Voltage	$\mathrm{IOL}=8 \mathrm{~mA}$	VOL		0.4	V
Peak Power-on Current $* 2$	VCC=GND to 4.5 V $\overline{\mathrm{CS}}=$ Lower of VCC or VIH min.	IPO		50	mA

Note: *1 -2.0 V min. for pulse width less than 20ns.
*2 The $\overline{C S}$ input should be connected to VCC to keep the device deselected.
Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels: $\quad 0.6 \mathrm{~V}$ to 2.4 V
- Input Pulse Rise \& Fall Time: 1ns (Transient between 0.8 V and 2.2 V)
- Timing Reference Levels: Input: VIL=0.8V, VIH=2.2V
- Output: VOL=0.8V, VOH=2.2V
- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
Load I	30 pF	except tLZ, tHZ, tOW and tWZ
Load II	5 pF	tLZ, tHZ, tOW and tWZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB82B71-15		MB82B71-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	15		20		ns
Address Access Time	tAA		15		20	ns
/CS Access Time	tACS		15		20	ns
Output Hold from Address Change	tOH	3		3		ns
Output Low-Z from / CS	tLZ	3		3		ns
Oüput Mighira fivu ics	Linz		$\hat{0}$		i0	ns
Power Up from /CS	tPU	0		0		ns
Power Down from /CS	tPD		15		15	ns

READ CYCLE TIMING DIAGRAM $* 1$

READ CYCLE -3

READ CYCLE : $\overline{C S}$ CONTROLLED*4

Note: $*_{1} \overline{W E}$ is high for Read cycle.
*2 Device is continously selected, $\overline{\mathrm{CS}}=\mathrm{VIL}$.
*3 Address valid prior to or coincident with $\overline{C S}$ transition low.
${ }^{*} 4$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE

Parameter	Symbol	MB82B71-15		MB82B71-20		Unit
		Min	Max	Min	Max	
Write Cycle Time	tWC	15		20		ns
Address Valid to End of Write	tAW	12		17		ns
/CS to End of Write	tCW	12		17		ns
Data Setup Time	tDW	4		9		ns
Data Hold Time	tDH	0		2		ns
Write Pulse Width	tWP	11		16		ns
Write Recovery Time	tWR	1		3		ns
Address Setup Time	tAS	0		0		ns
Output Low-Z from /WE	tOW	0		0		ns
Output High-Z from /WE	tWZ		6		8	ns

WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE I: $\overline{W E}$ CONTROLLED

Note: ${ }^{1} 1$ If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All Write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE TIMING DIAGRAM (Continued) $\cdot 1 \times 2 \cdot 4$

WRITE CYCLE Π : $\overline{C S}$ CONTROLLED $\cdot 1 \cdot 2$

2

Note: $\cdot 1 \mathbf{C S}$ or WE must be high during address transitions.

- 2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
$\cdot 3$ All Write cycle timings are referenced from the last valid address to the first transitioning address.

PACKAGE DIMENSIONS
(Suffix:-PJ)
 -1989 FUJITSU LIMITED C24052S-1C

PACKAGE DIMENSION

(Suffix:-CV)
Suffix:-CV)
CERAMIC PACKAGE
LCC-22C-A01

22-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER (CASE No.: LCC-22C-A01)

-Shere of PIN NO. : INDEX: Subject to changed without notice.
O FUJITSU LIMITED 1987 C22002s. 2 C
Dimensions in
inches (millimerert)

MB82B74-15/-20 64K-BIT HIGH SPEED BI-CMOS SRAM

16,384 WORDS $\times 4$ BITS Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC PONNㅡㄹ RONA

The Fujitsu MB82B74 is a 16,384 -words by 4 -bits static random access memory fabricated with a CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors.

MB82B74 has 300 mil plastic DIP and leadless chip carrier (LCC) as package option. The memory utilizes asynchronous circuitly and requires +5 V power supply. All pins are TTL compatible.
The MB82B74 is ideally suited for use in large computer and other applications where fast access time, large capacity and ease of use are required. All devices offer the advantages of low power dissipation, low cost high performance.

- 16,384 words $\times 4$ bits organization
- Fast access time:
$t_{M}=t_{\text {ncs }}=15$ ns max. (MB82B74-15)
$\mathrm{t}_{\mathrm{A}}=\mathrm{t}_{\mathrm{Acs}}=20 \mathrm{~ns}$ max. (MB82B74-20)
- Bi-CMOS peripheral
- TTL compatible inputs/outputs
- Completely static operation: No clock required
- Three-state output
- Common data input/output
- Single $=5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain

Active operation $=120 \mathrm{~mA}$ max.
Standby operation $=15 \mathrm{~mA} \max$. (CMOS level)
Standby operation=25mA max. (TTL level)

- Standard 22-pin plastic DIP package: Suffix -P
- Standard 22-pad Leadless Chip Carrier: Suffix -CV
- Pin compatible with MB81C74

ABSOLUTE MAXIMUM RATINGS (see Note)

Rating		Symbol	Values	Unit
Supply Voltage		$V_{C C}$	-0.5 to +7.0	V
Input Voltage		$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage		V_{10}	-0.5 to +7.0	V
Output Current		lout	± 20	mA
Power Dissipation		P_{D}	1.0	W
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Ceramic	$\mathrm{T}_{\text {sta }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. Hamage due to high static Vorages or electic imen to avold application of any volkage higher than maximum rated avoid application of any voltage higher than maximum rated voltages to this high impedance circult

[^23]
Fig. 1 - MB82B74 BLOCK DIAGRAM

T.B.D.

CAPACITANCE $\left(T \mathrm{Ta}=5^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{\mathrm{VO}}=\mathrm{OV}\right)$	C_{10}			7	pF
Input Capacitance $\left(\mathrm{V}_{\mathbb{N}}=\mathrm{OV}\right)$	$\mathrm{C}_{\mathbb{N}}$			7	pF

PIN DESCRIPTION

Symbol	Pin name	Symbol	Pin name
A_{0} to A_{13}	Address input	$\overline{\mathrm{WE}}$	Write Enable
$\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{4}$	Data input/output	V_{cc}	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$
$\overline{\mathrm{CS}}$	Chip Select 1	GND	Ground

TRUTH TABLE

$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	Mode	I/O pin	Power Supply Curent
H	X	Standby	High-Z	Standby
L	L	Write	DiN	Active
L	H	Read	Dour	Active

Legend: $H=$ High level L=Low level
X=Don't care

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{cc}	4.5	5.0	5.5	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions otherwise noted)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	$\begin{aligned} & V_{\mathbb{I N}}=G N D \text { to } V_{c c} \\ & V_{c c}=M a x . \end{aligned}$	Iu	-5	5	$\mu \mathrm{A}$
Output Leakage Current	$V_{\text {Lo }}=$ GND to $V_{c c}$ $\overline{C S}=V_{\text {IH }}$ or $\overline{W E}=V_{1 L}$	luo	-5	5	$\mu \mathrm{A}$
Operating Supply Current	Cycle=Min.	lcc		120	mA
Standby Supply Current	$\begin{aligned} & V_{c C}=\text { Min. to Max. } \\ & C S=V_{c c}-0.2 \mathrm{~V}, V_{1 N} \leq 0.2 \mathrm{~V} \\ & \text { or } V_{1 W} \geq V_{c c}-0.2 \mathrm{~V} \end{aligned}$	1_{381}		15	mA
Standby Supply Current	$\begin{aligned} & \overline{C S}=V_{1 H,} V_{W w}=V_{1 H} \text { or } V_{I L} \\ & V_{c c}=\operatorname{Min} \text {. to } \mathrm{Max} . \end{aligned}$	$\mathrm{I}_{\text {SB2 }}$		30	mA
Input High Voltage		$V_{\text {W }}$	2.2	6.0	V
Input Low Voltage		v_{1}	-0.5*	0.8	v
Output High Voltage	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\text {OH }}$	2.4		v
Output Low Voltage	$1 \mathrm{l}=8 \mathrm{~mA}$	Va_{a}		0.4	V
Peak Power-on Current *2	$\mathrm{V}_{\mathrm{cc}}=\mathrm{GND}$ to 4.5 V CS=Lower of V_{cc} or V_{H} Min.	lpo		50	mA

Note: *1 -2.0V Min. for pulse width less than 20 ns .
*2 The $\overline{\mathrm{CS}}$ input should be connected to $\mathrm{V}_{\text {cc }}$ to keep the device deselected.

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise \& Fall Time:
- Timing Reference Levels:
0.6 V to 2.4 V

1 ns (Transient between 0.8 V and 2.2 V)
Input: $\mathrm{V}_{1 \mathrm{~L}}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$

- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
Load I	30 pF	except $\mathrm{t}_{\mathrm{Z}}, t_{H Z}, t_{W}$ and $\mathrm{t}_{W Z}$
Load II	5 pF	$\mathrm{t}_{\mathrm{Z}}, \mathrm{t}_{\mathrm{Hz}}, t_{\mathrm{O}}$ and $t_{W Z}$

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB82B74-15		MB82B74-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	$t_{\text {HC }}$	15		20		ns
Address Access Time *2	$t_{\text {AA }}$		15		20	ns
$\overline{C S}$ Access Time *3	$t_{\text {acs }}$		15		20	ns
Output Hold from Address Change	L_{OH}	3		3		ns
Output Low-Z from $\overline{C S}$ * 4 *	$\mathrm{t}_{\mathrm{CLz}}$	3		3		ns
Output High-Z from CS *4*5	$\mathrm{t}_{\mathrm{CHZ}}$		8		10	ns
Power Up from CS	tpu	0		0		ns
Power Down from CS	$t_{\text {PD }}$		15		15	ns

READ CYCLE TIMING DIAGRAM *1

Note: "1 $\overline{W E}$ is high for Read cycle.
*2 Device is continously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{h}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE* *

Parameter	Symbol	MB82B74-15		MB82B74-20		Unit
		Min	Max	Min	Max	
Write Cycle Time *2	twc	15		20		ns
Address Valid to End of Write	taw	12		17		ns
$\overline{\mathrm{CS}}$ to End of Write	$\mathrm{t}_{\text {cw }}$	12		17		ns
Data Setup Time	tow	4		9		ns
Data Hold Time	t_{OH}	0		2		ns
Write Pulse Width	$t_{\text {wp }}$	11		16		ns
Write Pemeven, Time	${ }_{4}$	$!$		2		-is
Address Setup Time	$\mathrm{tas}^{\text {a }}$	0		0		ns
Output Low-Z from $\overline{W E}$ *3 *4	twiz	0		0		ns
Output High-Z from WE *3*4	$t_{\text {whz }}$		6		8	ns

WRITE CYCLE TIMING DIAGRAM

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

* 4 This parameter is specified with Load II in. Fig2.

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write cycle are determined from last address transition to the first address transition of the next address.

PACKAGE DIMENSIONS

22-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-22P-M04)

*Share of PIN NO. 1 INDEX: Subject to changed without notice.

64K-BIT(16,384 x 4) Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB82B75 is a 16,384 -words by 4-bits static random access memory fabricated with a CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist of NMOS transistors and resistors.

MB82B75 has 300 mil plastic DIP and plastic small outline J-lead(SOJ) as package option. The memory utilizes asynchronous circuitly and requires +5 V power supply. All pins are TTL compatible.

The MB82B75 is ideally suited for use in large computer and other applications where fast access time, large capacity and ease of use are required. All devices offer the advantages of low power dissipation, low cost high performance.

- 16,384 words $\times 4$ bits organization
- Fast access time: $t A A=t A C S=15 n s \max . / t 0 E=10 n s \max .(M B 82 B 75-15)$ $\mathrm{t} A \mathrm{~A}=\mathrm{t} A \mathrm{CS}=20 \mathrm{~ns} \max . / \mathrm{t} 0 \mathrm{E}=12 \mathrm{~ns} \max .(\mathrm{MB} 82 \mathrm{~B} 75-20)$
- Bi-CMOS peripheral
- TTL compatible inputs/outputs
- Completely static operation: No clock required
- Three-state output
- Common data input/output
- Single $=5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain $\begin{aligned} \text { Active operation } & =120 \mathrm{~mA} \max . \\ \text { Standby operation } & =15 \mathrm{~mA} \text { max. (CMOS level) }\end{aligned}$ Standby operation $=25 \mathrm{~mA}$ max. (TTL level)
- Standard 24 -pin plastic DIP package : Suffix -P-SK
- Standard 28-pad Leadless Chip Carrier:Suffix -CV
- Standard 24 -pin plastic SOJ package : Suffix -PJ
- Pin compatible with MB81C75

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating		Symbol	Values
Supply Voltage	VCC	-0.5 to +7.0	V
Input Voltage	VIN	-3.5 to +7.0	V
Output Voltage	VI $/ 0$	-0.5 to +7.0	V
Output Current	IOUT	± 20	mA
Power Dissipation		PD	1.0
Temperature Under	Bias	TBIAS	-10 to +85
Storage Temperature Range	Ceramic	Plastic	C

PLASTIC PACKAGE DIP-24P-M03

PLASTIC PACKAGE LCC-24P-M02

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - MB82B75 BLOCK DIAGRAM

CAPACITANCE (Ta=25 $\left.{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O=0V)	$\mathrm{CI} / 0$			8	pF
Input Capacitance $(\mathrm{V} / \mathrm{CS}=0 \mathrm{~V})$	C / CS			6	pF
Input Capacitance(VIN=0V)	CIN			5	pF

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
A0 to A13	Address input.	$\overline{\text { WE }}$	Write Enable.
I/01 to I/04	Data input/output.	VCC	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$.
$\overline{\mathrm{CS}}$	Chip Select 1.	GND	Ground.
NC	No Connect		

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	$\overline{\mathrm{OE}}$	Mode	I/O pin	Power Supply Current
H	X	X	Not Selected	High-Z	Standby
L	H	H	Output Disable	High-Z	Active
L	H	L	Read	DOUT	Active
L	L	X	Write	DIN	Active

Legend: H=High level, L=Low level, $X=$ Don't care

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

(Recommended operating conditions otherwise noted.)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	VIN=GND to VCC VCC=max.	ILI	-5	5	$\mu \mathrm{A}$
Output Leakage Current	VI/O=GND to VCC $\overline{\mathrm{CS}}=\mathrm{VIH}$ or $\overline{\mathrm{WE}}=\mathrm{VIL}$	ILI/ 0	-5	5	$\mu \mathrm{A}$
Operating Supply Current	$\begin{aligned} & \overline{C S}=V I L, ~ I / O=0 \text { pen } \\ & \text { Cycle=min. } \end{aligned}$	ICC		120	mA
Standby Supply Current	$\begin{aligned} & \mathrm{VCC}=\min . \text { to max. } \\ & \mathrm{CS}=\mathrm{VCC}-0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \text { or VIN } \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	ISB1		15	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIH} \\ & \mathrm{VCC}=\mathrm{min} . \text { to } \max . \end{aligned}$	ISB2		25	mA
Input High Voltage		VIH	2.2	6.0	V
Input Low Voltage		VIL	-0.5	0.8	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4		V
Output Low Voltage	$\mathrm{IOL}=8 \mathrm{~mA}$	VOL		0.4	V
Peak Power-on Current *2	$\mathrm{VCC}=\mathrm{GND}$ to 4.5 V $\overline{C S}=$ Lower of VCC or VIH min.	IPO		50	mA

Note: ${ }^{*} 1-2.0 \mathrm{~V}$ min. for pulse width less than 20 ns .
*2 The $\overline{C S}$ input should be connected to VCC to keep the device deselected.
Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels: $\quad 0.6 \mathrm{~V}$ to 2.4 V
- Input Pulse Rise \& Fall Time: 3ns (Transient between 0.8 V and 2.2 V)
- Timing Reference Levels: Input: VIL=0.8V, VIH=2.2V
- Output: VOL=0.8V, $\mathrm{VOH}=2.2 \mathrm{~V}$
- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
Load I	30 pF	except tCLZ, tCHZ, tWLZ, tWHZ, tOLZ and tOHZ
Load II	5 pF	tCLZ, tCHZ, tWLZ, tWHZ, tOLZ and tOHZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

READ CYCLE

Parameter	Symbol	MB82B75-15		MB82B75-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	15		20		ns
Address Access Time	tAA		15		20	ns
/CS Access Time	tACS		15		20	ns
/OE Access Time	tOE		10		12	ns
Output Hold from Address Change	tor	3		3		ns
Output Hold from /CS	tOHC	2		2		ns
Output Low-Z from / CS	tCLZ	3		3		ns
Output Low-Z from /OE	tOLZ	2		2		ns
Output High-Z from /CS	tCHZ		8		10	ns
Output High-Z from /OE	tOHZ		8		10	ns
Power Up from /CS	tPU	0		0		ns
Power Down from /CS	tPD		15		15	ns

READ CYCLE TIMING DIAGRAM *1

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continously selected, $\overline{C S}=V I L, \overline{O E}=V I L$.
*3 Address valid prior to or coincident with $\overline{C S}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE

Parameter	Symbol	MB82B75-15		MB82B75-20		Unit
		Max	Min	Max	ns	
Write Cycle Time	tWC	15		20		ns
Address Valid to End of Write	tAW	10		15		ns
/CS to End of Write	tCW	10		15		ns
Data Setup Time	tDW	7		10		ns
Data Hold Time	tDH	3		3		ns
Write Pulse Width	tWP	8		10		ns
Write Recovery Time	tWR	2		2		ns
Address Setup Time	tAS	0		0		ns
Output Low-Z from /WE	tWLZ	0		0		ns
Output High-Z from /WE	tWHZ		8		10	ns

WRITE CYCLE TIMING DIAGRAM

Note: ${ }^{1} 1$ If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All Write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{\mathrm{CS}}$ CONTROLLED ${ }^{1 \cdot 2}$

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write cycle are determined from last address transition to the first address transition of the next address.

PACKAGE DIMENSIONS

24-LEAD PLASTIC LEADED CHIP CARRIER (CASE NO.: LCC-24P-M02)

 - 1989 FUJITSU LIMITED C24052S-1C

PACKAGE DIMENSIONS

28-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER
(CASE No.: LCC-28C-A03)

-Shape of PIN NO. 1 INDEX: Subject to change without notice.
Dimensions in inches
© FUJITSU LIMITED 1987 C28009S-1C

MB82B79-15-20

72 K BIT HIGH SPEED BI-CMOS SRAM

8,192-WORD x 9-BIT Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY

The rujtsu MB82b/9 is a ४, 192 woras by ४ dits static ranciom access memory rabricaied wiü a CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain amaller chip size, cells consist of NMOS transistors and resistors.

MB82B79 has 300 mil plastic DIP and plastic flat (SOIC) as package option. The memory utilizes asynchronous circuitly and requires +5 V power supply. All pins are TTL compatible.

The MB82B79 is ideally suited for use in large computer and other applications where fast access time, large-capacity and ease of use are required.
All devices offer the advantages of low power dissipation, low cost high performance.

- Organization: 8,192 words $\times 9$ bits
- Static operation: No clocks or refresh required
- Fast access time:
tAA $=$ tACS $1=15$ ns max. $/$ tACS2 $=$ tOE $=8$ ns max. (MB82B79-15)
$\mathrm{t} A \mathrm{~A}=\mathrm{tACS} 1=20 \mathrm{~ns} \max . / \mathrm{tACS} 2=\mathrm{tOE}=10 \mathrm{~ns}$ max. (MB82B79-20)
- Single $=5 \mathrm{~V}(+10 \%)$ power supply with low current drain:

> Active operation $=120 \mathrm{~mA} \max$.
> Standby operation $=15 \mathrm{~mA} \max .(\mathrm{CMOS}$ level $)$
> Standby operation $=25 \mathrm{~mA} \max .(\mathrm{TLL}$ level $)$

PLASTIC PACKAGE FPT-28P-M02

PLASTIC PACKAGE DIP-28P-M04

[^24]
ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	VCc	-0.5 to +7.0	V
Input Voltage on any pin with to GND	VIN	-0.5 to +7.0	V
Output Voltage on any pin with to GND	Vvo	-0.5 to +7.0	V
Power Dissipation	PD	1.0	W
Output Current	IOUT	± 20	mA
Temperature under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$

[^25]

- Bi-CMOS peripheral
- TTL compatible inputs/outputs
- Three-state output
- 300 mil width 28 -pin plastic Skinny DIP package (Suffix: -P-SK)
- 450 mil width 28 -pin plastic SOP package (Suffix: -PF)

Fig. 1 - MB82B79 BLOCK DIAGRAM

CAPACITANCE ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O=0V)	CI/0			8	pF
Input Capacitance(VIN=0V) (/CS1, CS2, /WE, /OE)	$\mathrm{CI1}$			7	pF
Input Capacitance(VIN=0V) (Other inputs)	CI2			6	pF

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
AO to A12	Address input.	$\overline{W E}$	Write Enable.
I/O1 to I/09	Data input/output.	VCC	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$
$\overline{\mathrm{CS} 1}$	Chip Select 1.	GND	Ground.
CS2	Chip Select 2.	GNDQ	Ground for output.
$\overline{\mathrm{OE}}$	Output Enable.	NC	No Connection.

TRUTH TABLE

$\overline{W E}$	$\overline{\mathrm{CS}} 1$	CS 2	$\overline{\mathrm{OE}}$	Mode	I/O pin	Power Supply Current
X	H	X	X	Standby	High-Z	Standby
X	L	L	X	Not selected	High-Z	Active
H	L	H	H	Dout disable	High-Z	Active
H	L	H	L	Read	Data out	Active
L	L	H	X	Write	Data in	Active

Legend: $H=H i g h$ level, L=Low level, $X=$ Don't care

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

(Recommended operating conditions otherwise noted.)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	$\begin{aligned} & \text { VIN=GND to VCC } \\ & \text { VCC=max. } \end{aligned}$	ILI	-10	10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \mathrm{VI} / O=\mathrm{GND} \text { to } \mathrm{VCC} \\ & \mathrm{CS} 1=\mathrm{VIH} \text { or } \mathrm{CS} 2=\mathrm{VIL} \text { or } \\ & \mathrm{WE}=\mathrm{VIL} \text { or } \mathrm{OE}=\mathrm{VIH} \end{aligned}$	ILI/O	-10	10	$\mu \mathrm{A}$
Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CS}} 1=\mathrm{VIL}, \mathrm{I} / 0=0 \text { pen } \\ & \text { Cycle=min. } \end{aligned}$	ICC		120	mA
Standby Supply Current	$\begin{aligned} & \mathrm{VCC}=\min . \text { to max. } \\ & \mathrm{CS} 1=\mathrm{VCC}-0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	ISB1		15	mA
Standby Supply Current	$\overline{\mathrm{CS}} 1=\mathrm{VIH}$	ISB2		25	mA
Input High Voltage		VIH	2.2	6.0	V
Input Low Voltage		VII	$\begin{gathered} { }^{*_{1}} \\ -0.5 \end{gathered}$	0.8	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4		V
Output Low Voltage	IOL $=8 \mathrm{~mA}$	VOL		0.4	V
Peak Power-on Current ${ }^{*} 2$	$\mathrm{VCC}=$ GND to 4.5 V $\overline{\mathrm{CS}} 1=$ Lower of VCC or VIH min.	IPO		50	mA

Note: ${ }^{*} 1-2.0 \mathrm{~V}$ min. for pulse width less than 20 ns .
$\dot{*}$ The $\overline{C S} 1$ input should be connected to VCC to keep the device deselected.

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels: 0.6 V to 2.4 V
- Input Pulse Rise \& Fall Time: 3ns (Transient between 0.8 V and 2.2 V)
- Timing Reference Levels: Input: VIL=0.8V, VIH=2.2V
- Output: VOL=0.8V, $\mathrm{VOH}=2.2 \mathrm{~V}$
- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
load I	30 pF	except tLZ, tHZ, tOW, tOLZ and tOHZ
Load II	5 pF	tLZ, tHZ, tOW, tOLZ and tOHZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE *1

Parameter	Symbol	MB82B79-15		MB82B79-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	15		20		ns
Address Access Time *2	tAA		15		20	ns
/CS1 Access Time $* 3$	tACS1		15		20	ns
CS2 Access Time	tACS2		8		10	ns
/OE Access Time	tOE		8		10	ns
Output Hold from Address Change	tOH	3		3		ns
Output Low-Z from /CS1 $* 4 * 5$	tLZ1	3		3		ns
Output Low-Z from CS2 $* 4 * 5$	tLZ2	2		2		ns
Output Low-Z from /UE * $* 4 * 3$	tưuz	2		2		ns
Output High-2 from /CS1 $* 4 * 5$	tHZ1		8		10	ns
Output High-2 from CS2 $* 4 * 5$	tHZ2		8		10	ns
Output High-Z from /OE *4*5	tOHZ		8		10	ns

READ CYCLE TIMING DIAGRAM \mathfrak{r}_{1}

[^26]WRITE CYCLE *1

Parameter	Symbol	MB82B79-15		MB82B79-20		Unit
		Min	Max	Min	Max	
Write Cycle Time	tWC	15		20		ns
Address Valid to End of Write	tAW	10		15		ns
/CS1 to End of Write	tCW1	10		15		ns
CS2 to End of Write	tCW2	6		8		ns
Data Setup Time	tDW	7		10		ns
Data Hold Time	tDH	3		3		ns
Write Pulse Width	tWP	8		10		ns
Write Recovery Time ${ }^{\text {\% } 2}$ / $/$ CS1,/WE	tWR1	3		3		ns
Write Recovery Time ${ }^{\text {a }}$	tWR2	5		5		ns
/CS1,/WE	tAS1	0		0		ns
CS2	tAS2	2		2		ns
Output Low-Z from /WE * $3^{*} \times 4$	tOW	0		0		ns
Output High-Z from /WE $* 3 * 4$	tWZ		8		10	ns

WRITE CYCLE TIMING DIAGRAM $* 1$
WRITE CYCLE I: $\overline{\mathrm{WE}}$ CONTROLLED

]:Don't care X: Undefined

Note: ${ }_{1} 1$ If $\overline{C S} 1, \overline{O E}$ and CS2 are in the READ Mode during this period, I/O pins are in the out put state so that the input signals of opposite phase to the outputs must not be applied.
*2 tWR is defined from the end point of WRITE Mode.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{\mathrm{CS}} 1$ CONTROLLED

2
$\overline{W E}$

\square :Don't care \triangle :Undefined

WRITE CYCLE III: $\overline{W E}$ CONTROLLED

PACKAGE DIMENSIONS

PLASTIC DIP (Suffix: P-SK)

PACKAGE DIMENSIONS

PLASTIC FPT (Suffix: •PF)

MB82B81-15-20
 256K BIT HIGH SPEED BI-CMOS SRAM

262,144-WORD x 1-BIT Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY

The Fujitsu MB82881 is a 65,536 words by 1 bits static random access memory tabricateowith a CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of $\mathrm{Bi}-\mathrm{CMOS}$ technology, and to obtain amaller chip size, cells consist of NMOS transistors and resistors.

MB82B81 has 300 mil plastic DIP and 300 mil plastic small out-line J-lead (SOJ) package as package option. The memory utilizes asynchronous circuitry and requires +5 V power supply. All pins are TTL compatible.

The MB82B81 is ideally suited for use in large computer and other applications where fast access time, large-capacity and ease of use are required.
All devices offer the advantages of low power dissipation, low cost high performance.

- Organization: 262,144 words $\times 1$ bit
- Static operation: No clocks or refresh required
- Fast access time:
$\mathrm{tAA}=\mathrm{tACS}=15 \mathrm{~ns} \max$. $(\mathrm{MB82B81} 15$)
$\mathrm{tAA}=\mathrm{tACS}=20$ ns max. (MB82B81-20)
- Single $=5 \mathrm{~V}(+10 \%)$ power supply with low current drain:

> Active operation $=120 \mathrm{~mA} \max$. Standby operation $=15 \mathrm{~mA} \max$. (CMOS level) Standby operation $=30 \mathrm{~mA} \max$. (TTL level)

- $\mathrm{Bi}-\mathrm{CMOS}$ peripheral
- TTL compatible inputs/outputs
- Three-state output
- 300 mil width 24 -pin plastic Skinny DIP package (Suffix: -P-SK)
- 300 mil width 24 -pin plastic SOJ package (Suffix: -PJ)
- Pin compatible with MB81C81A

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage on any pin with to GND	VIN	-0.5 to +7.0	V
Output Voltage on any pin with to GND	Vvo	-0.5 to +7.0	V
Power Dissipation	PD	1.0	W
Output Current	lout	± 20	mA
Temperature under Bias	TBIAS	-10 to +85	i C
Storage Temperature	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

[^27][^28]

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O $=0 \mathrm{~V}$)	CI/O			7	pF
Input Capacitance (VIN $=0 \mathrm{~V})$	CIN			7	pF

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
A0 to A17	Address input.	$\overline{W E}$	Write Enable.
DIN	Data input.	VCC	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$.
DOUT	Data output.	GND	Ground.
$\overline{\text { CS }}$			

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\text { WE }}$	Mode	Output	Power Supply Current
H	X	Not Selected	High-Z	Standby
L	L	Write	High-Z	Active
L	H	Read	DOUT	Active

Legend: H=High level, L=Low level, $X=$ Don't care

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

(Recommended operating conditions otherwise noted.)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	$\begin{aligned} & \text { VIN=GND to VCC } \\ & \text { VCC=max. } \end{aligned}$	ILI	-5	5	$\mu \mathrm{A}$
Output Leakage Current	VOUT=GND to VCC $\overline{\mathrm{CS}}=\mathrm{VIH}$ or $\overline{\mathrm{WE}}=\mathrm{VIL}$	ILI/0	-5	5	$\mu \mathrm{A}$
Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIL}, \text { DOUT=Open } \\ & \text { Cycle=min. } \end{aligned}$	ICC		120	mA
Standby Supply Current	$\begin{aligned} & \mathrm{VCC}=\min . \text { to max. } \\ & \mathrm{CS}=\mathrm{VCC}-0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	ISB1		15	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIH} \\ & \text { VCC }=\text { min. to } \max . \end{aligned}$	ISB2		30	mA
Input High Voltage		VIH	2.2	6.0	V
Input Low Voltage		VII	-0.5	0.8	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4		V
Output Low Voltage	IOL $=8 \mathrm{~mA}$	VOL		0.4	V
Peak Power-on Current *2	$\mathrm{VCC}=\mathrm{GND}$ to 4.5 V $\overline{\mathrm{CS}}=$ Lower of VCC or VIH min.	IPO		50	mA

Note: $\boldsymbol{*}_{1}-2.0 \mathrm{~V}$ min. for pulse width less than 20 ns .
$* 2$ The $\overline{C S}$ input should be connected to VCC to keep the device deselected.
Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
0.6 V to 2.4 V
- Input Pulse Rise \& Fall Time:

1ns (Transient between 0.8 V and 2.2 V)

- Timing Reference Levels:

Input: VIL=0.8V, VIH=2.2V
Output: $\mathrm{VOL}=0.8 \mathrm{~V}, \mathrm{VOH}=2.2 \mathrm{~V}$

- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
Load I	30 pF	except tLZ, tHZ, tOW and tWZ
Load II	5 pF	tLZ, tHZ, tOW and tWZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB82B81-15		MB82B81-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	15		20		ns
Address Access Time	tAA		15		20	ns
/CS Access Time	tACS		15		20	ns
Output Hold from Address Change	tOH	3		3		ns
Output Low-Z from /CS	tLZ	3		3		ns
Outnut High-7. from / CS	+ + 7		8		10	ns
Power Up from /CS	tPU	0		0		ns
Power Down from /CS	tPD		15		15	ns

READ CYCLE TIMING DIAGRAM $*_{1}$

READ CYCLE * 3

READ CYCLE : $\overline{\mathrm{CS}}$ CONTROLLED*4

Note: ${ }^{1} \overline{W E}$ is high for Read cycle.
*2 All Read cycle timings are referenced from the last valid address to the first transitioning address.
*3 Device is continously selected, $\overline{C S}=V I L$.
*4 Address valid prior to or coincident with $\overline{C S}$ transition low.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

WRITE CYCLE

Parameter	Symbol	MB82B81-15		MB82B81-20		Unit
		Min	Max	Min	Max	
Write Cycle Time	tWC	15		20		ns
Address Valid to End of Write	tAW	12		17		ns
/CS to End of Write	tCW	12		17		ns
Data Setup Time	tDW	4		9		ns
Data Hold Time	tDH	0		2		ns
Write Pulse Width	tWP	11		16		ns
Write Recovery Time	tWR	1		3		ns
Address Setup Time	tAS	0		0		ns
Output Low-Z from/WE	tOW	0		0		ns
Output High-Z from /WE	tWZ		6		8	ns

WRITE CYCIE TIMING DIAGRAM $* 1$

Note: ${ }^{1} 1 \overline{C S}$ or $\overline{W E}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Read cycle timings are referenced from the last valid address to first transitioning address.
ψ_{4} Transition measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. 2.

WRITE CYCLE TIMING DIAGRAM (Continued) * $1 * 2 * 4$

WRITE CYCLE Π : $\overline{\mathrm{CS}}$ CONTROLLED $\cdot 1 \cdot 2$

2

Note: ${ }^{1}$ CS or WE must be high during address transitions.

* 2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
* 3 All Write cycle timings are referenced from the last valid address to the first transitioning address.

PACKAGE DIMENSIONS
(Suffix:-P-SK)

(Suffix:-PJ)

CMOS 262144-BIT BI-CMOS

256K-BIT($65,536 \times 4)$ Bi-CMOS HIGH SPEED STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

TS268-B893
March 1989

The Fujitsu MB82B84 is a 65,536 -words by 4-bits static random access memory fabricated with a CMOS silicon gate process. To make power dissipation lower and high speed, peripheral circuits consist of Bi-CMOS technology, and to obtain smaller chip size, cells consist

MB82B84 has 300 mil plastic DIP and plastic small outline $J-1 e a d(S O J)$ as package option. The memory utilizes asynchronous circuitly and requires +5 V power supply. All pins are TTL compatible.

The MB82B84 is ideally suited for use in large computer and other applications where fast access time, large capacity and ease of use are required. All devices offer the advantages of low power dissipation, low cost high performance.

- 65,536 words $\times 4$ bits organization

- Fast access time:
$t A A=t A C S=15 n s$ max. (MB82B84-15)
$\mathrm{tAA}=\mathrm{tACS}=20 \mathrm{~ns} \max .($ MB82B84-20)
- Bi-CMOS peripheral
- TTL compatible inputs/outputs
- Completely static operation: No clock required
- Three-state output
- Common data input/output
- Single $=5 \mathrm{~V}(\pm 10 \%)$ power supply with low current drain

$$
\begin{aligned}
& \text { Active operation }=120 \mathrm{~mA} \max . \\
& \text { Standby operation }=15 \mathrm{~mA} \max .(\text { CMOS leve1) }
\end{aligned}
$$

$$
\text { Standby operation }=25 \mathrm{~mA} \max \cdot(\text { TIL level })
$$

- Standard 24-pin plastic DIP package : Suffix -P-SK
- Standard 24-pin plastic SOJ package : Suffix -PJ
- Pin compatible with MB81C84A

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Values	Unit
Supply Voltage	VCC	-0.5 to +7.0	V
Input Voltage	VIN	-3.5 to +7.0	V
Output Voltage	VI/0	-0.5 to +7.0	V
Output Current	IOUT	± 20	mA
Power Dissipation	PD	1.0	W
Temperature Under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$

(DIP \& SOJ Package)

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximurn rated voltages to this high impedance circuit.

Fig. 1 - MB82B84 BLOCK DIAGRAM

CAPACITANCE $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $(\mathrm{VI} / \mathrm{O}=0 \mathrm{~V})$	$\mathrm{CI} / 0$			8	pF
Input Capacitance $(\mathrm{V} / \mathrm{CS}=0 \mathrm{~V})$	C / CS			6	pF
Input Capacitance $(\mathrm{VIN}=0 \mathrm{~V})$	CIN			5	pF

PIN DISCRIPTION

Symbol	Pin name	Symbol	Pin name
A0 to A15	Address input.	$\overline{W E}$	Write Enable.
I/O1 to I/04	Data input/output.	VCC	Power Supply $(+5 \mathrm{~V} \pm 10 \%)$.
$\overline{\mathrm{CS}}$	Chip Select 1.	GND	Ground.

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Mode	I/O pin	Power Supply Current
H	X	Standby	High-Z	Standby
L	L	Write	DIN	Active
L	H	Read	DOUT	Active

Legend: $H=H i g h$ level, L=Low level, $X=$ Don't care

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

(Recommended operating conditions otherwise noted.)

Parameter	Test Conditions	Symbol	Min	Max	Unit
Input Leakage Current	$\begin{aligned} & \text { VIN=GND to VCC } \\ & \text { VCC=max. } \end{aligned}$	ILI	-5	5	$\mu \mathrm{A}$
Output Leakage Current	VI/O=GND to VCC $\overline{\mathrm{CS}}=\mathrm{VIH}$ or $\overline{\mathrm{WE}}=\mathrm{VIL}$	ILI/O	-5	5	$\mu \mathrm{A}$
Operating Supply Current	$\overline{\mathrm{CS}}=\mathrm{VIL}, \mathrm{I} / 0=0$ pen Cycle=min .	ICC		120	mA
Standby Supply Current	$\begin{aligned} & \mathrm{VCC}=\min . \text { to max. } \\ & \mathrm{CS}=\mathrm{VCC}-0.2 \mathrm{~V}, \mathrm{VIN} \leq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	ISB1		15	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIH} \\ & \mathrm{VCC}=\mathrm{min} \text {, to } \max . \end{aligned}$	ISB2		25	mA
Input High Voltage		VIH	2.2	6.0	V
Input Low Voltage		VIL	-0.5	0.8	V
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4		V
Output Low Voltage	IOL $=8 \mathrm{~mA}$	VOL		0.4	V
Peak Power-on Current *2	VCC=GND to 4.5 V $\overline{\mathrm{CS}}=$ Lower of VCC or VIH min.	IPO		50	mA

Note: ${ }^{*} 1-2.0 \mathrm{~V}$ min. for pulse width less than 20 ns .
*2 The $\overline{C S}$ input should be connected to VCC to keep the device deselected.
Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
0.6 V to 2.4 V
- Input Pulse Rise \& Fall Time:

3 ns (Transient between 0.8 V and 2.2 V)

- Timing Reference Levels:

Input: $\mathrm{VIL}=0.8 \mathrm{~V}, \mathrm{VIH}=2.2 \mathrm{~V}$

- Output Load

* Including Scope and jig capacitance

	CL	Parameters measured
Load I	30 pF	except tLZ, tHZ, tOW and tWZ
Load II	5 pF	tLZ, tHZ, tOW and tWZ

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB82B84-15		MB82B84-20		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	15		20		ns
Address Access Time	tAA		15		20	ns
/CS Access Time	tACS		15		20	ns
Output Hold from Address Change	tOH	3		3		ns
Output Low-Z from /CS	tLZ	3		3		ns
	\pm + 7		8		10	ns
Power Up from / CS	tPU	0		0		ns
Power Down from /CS	tPD		15		15	ns

READ CYCLE TIMING DIAGRAM *1

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 All Read cycle timings are referenced from the last valid address to the first transitioning address.
*3 Device is continously selected, $\overline{C S}=V I L$.
$\dot{*} 4$ Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
$* 5$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

MB82B84-15

WRITE CYCLE

Parameter	Symbol	MB82B84-15		MB82B84-20		Unit
		Min	Max	Min	Max	
Write Cycle Time	tWC	15		20		ns
Address Valid to End of Write	tAW	10		15		ns
/CS to End of Write	tCW	10		15		ns
Data Setup Time	tDW	7.		10		ns
Data Hold Time	tDH	3		3		ns
Write Pulse Width	tWP	8		10		ns
Write Recovery Time	tWR	2		2		ns
Address Setup Time	tAS	0		0		ns
Output Low-Z from /WE	tOW	0		0		ns
Output High-Z from /WE	tWZ		8		10	ns

WRITE CYCLE TIMING DIAGRAM ${ }^{1} 1$
WRITE CYCLE I: $\overline{\text { WE CONTROLLED }}$

Note: *1 $\overline{C S}$ or $\overline{W E}$ must be high during address transitions.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Read cycle timings are referenced from the last valid address to first transitioning address.
*4 Transition measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. 2.
*5 If $\overline{\mathrm{CS}}$ is in the Read Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

WRITE CYCLE II: $\overline{C S}$ CONTROLLED*1*2

Undefined: X
Don't Care:

Note: $\psi_{1} \overline{C S}$ or $\overline{W E}$ must be high during address transitions.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All Read cycle timings are referenced from the last valid address to first transitioning address.
*4 Transition measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. 2.
*5 If $\overline{C S}$ is in the Read Mode during this period, $\mathrm{I} / 0$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

PACKAGE DIMENSIONS

24-LEAD PLASTIC LEADED CHIP CARRIER (CASE No.: LCC-24P-M02)

* : This dimension includes resin protrusion. (Each side: .006(0.15)MAX.) -1999 FUJITSU LIMITED C24052S-1C

Section 3

Low Power CMOS SRAMs - At a Glance

Page	Device	Maximum Access Time (ns)	Capacity	Package Options		
3-3	$\begin{array}{r} \hline \text { MB8464A-80/LLLL } \\ -10 / L / L L \\ -15 / L / L L \end{array}$	$\begin{aligned} & 80 \\ & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 65536 \text { bits } \\ & \text { (8192w } \times 8 \text {) } \end{aligned}$	$\begin{aligned} & \text { 28-pin } \\ & \text { 32-pad } \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP, FPT } \\ & \text { LCC } \end{aligned}$
3-15	$\begin{array}{r} \text { MB84256-10/LLL } \\ -12 / \mathrm{LLL} \\ -15 / \mathrm{LLL} \end{array}$	$\begin{aligned} & 100 \\ & 120 \\ & 150 \end{aligned}$	262144 bits (32768w $\times 8$ b)	$\begin{aligned} & \text { 28-pin } \\ & \text { 32-pad } \end{aligned}$	Plastic Ceramic	$\begin{aligned} & \text { DIP, FPT } \\ & \text { LCC } \end{aligned}$
3-25	$\begin{array}{r} \text { MB84256A-70/LLL } \\ -10 / L L L \\ -12 / L L L \\ -15 / L L L \end{array}$	$\begin{aligned} & 70 \\ & 100 \\ & 120 \\ & 150 \end{aligned}$	262144 bits (32768w $\times 8$ b)	28-pin	Plastic	DIP, FPT
3-35	MB84F256-25	250	262144 bits (32768w $\times 8$ 8)	28-pin	Plastic	DIP, FPT
3-47	$\begin{array}{r} \text { MB841000-80/L } \\ -10 / \mathrm{L} \\ -12 / \mathrm{L} \end{array}$	$\begin{aligned} & 80 \\ & 100 \\ & 120 \end{aligned}$	1048576 bits (131072w x 8b)	32-pin	Plastic	DIP, FPT

CMOS 65536-BIT
 STATIC RANDOM ACCESS MEMORY

8,192 WORDS $\times 8$ BIT CMOS STATIC RAM WITH LOW POWER AND DATA RETENTION

The Fujitsu MB 8464A is a 8192 -word by 8 -bit static random access memory fahricated with a CMOS sillicon aate process. The memorv utilizes asvnchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required.

The MB 8464A is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 8$ bits
- Fast access time: 80 ns max. (MB 8464A-80/80L/80LL) 100 ns max. (MB 8464A-10/10L/10LL) 150 ns max. (MB 8464A-15/15L/15LL)
- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state output
- Common data input/output
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby: 11 mW max. (MB 8464A-80/10/15) 0.55 mW max. (MB 8464A-80L/10L/15L) 0.55 mW max. (MB 8464A-80LL/10LL/15LL)
- Data retention current: 1 mA max. (MB 8464A-80/10/15)
$25 \mu \mathrm{~A}$ max. (MB 8464A-80L/10L/15L)
$2 \mu \mathrm{~A}$ max. at $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
(MB 8464A-80LL/10LL/15LL)
- Data retention: 2.0 V min.
- Standard 28-pin DIP (300mil width) (Suffix: P-SK) (600 mil width) (Suffix: P)
- Standard 28-pin bend-type Flat package (450 mil width) (Suffix: PF)
- Standard 32-pad LCC (Suffix: CV)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{CC}	-0.5 to +7.0	V
Input Voltage		$V_{\text {IN }}$	-0.5^{*} to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V
Output Voltage		$V_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	CERAMIC	$T_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	PLASTIC		-45 to +125	

* -2.0 V for pulse width less than 20 ns .

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^29]Fig. 1 - MB 8464A BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}_{1}$	CS_{2}	$\overline{\mathrm{OE}}$	$\overline{W E}$	MODE	SUPPLY CURRENT	I/O PIN
H	X	X	\times	NOT SELECTED	${ }^{\text {ISB }}$	HIGH-Z
X	L	X	X	NOT SELECTED	${ }^{\text {I }}$ S	HIGH-Z
L	H	H	H	DOUT DISABLE	${ }^{\prime} \mathrm{Cc}$	HIGH-Z
L	H	L	H	READ	${ }^{\text {I CC }}$	DOUT
L	H	X	L	WRITE	${ }^{\text {c }}$ C	DIN

CAPACITANCE $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{1 / O}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$			8	pF
Input Capacitance $\left(\mathrm{V}_{1 N}=\mathrm{OV}\right)$	$\mathrm{C}_{I N}$			6	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	4.5	5.0	5.5	V
Input Low Voltage	V_{IL}	-2.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

*-2.0 V Min for pulse width less than 20 ns . V_{IL} Min. $=-0.3 \mathrm{~V}$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	$\begin{gathered} \text { MB 8464A- } \\ 80 / 10 / 15 \end{gathered}$		MB 8464A-80L/80LL 10L/10LL/15L/15LL			Unit	Test Condition
		Min	Max	Min	Typ	Max		
Standby Supply Current	$I_{\text {SB1 }}$		2		$1 \mu \mathrm{~A}$	0.1	mA	$\begin{aligned} & \mathrm{CS}_{2} \leqq 0.2 \mathrm{~V}, \overline{\mathrm{CS}}_{1} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \left(\mathrm{CS}_{2} \leqq 0.2 \mathrm{~V} \text { or } \mathrm{CS}_{2} \leqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V}\right) \end{aligned}$
	$\mathrm{I}_{\text {SB2 }}$		3			3	mA	$\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{H}}$ or $\mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{~L}}$
Active Supply Current	$\mathrm{I}_{\mathrm{CC} 1}$		50			50	mA	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{I \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{I H} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{I H} \text { or } \mathrm{V}_{I L}, I_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$
Operating Supply Current	$\mathrm{I}_{\mathrm{CC} 2}$		60			60	mA	$\begin{aligned} & \text { Cycle }=\text { Min., } \text { Duty }=100 \% \\ & \text { I Out }=0 \mathrm{~mA} \end{aligned}$
Input Leakage Current	$I_{\text {LI }}$	-1	1	-1		-1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$
Output Leakage Current	$\mathrm{I}_{\mathrm{LI} / \mathrm{O}}$	-2	2	-2		2	$\mu \mathrm{A}$	$\begin{aligned} & V_{1 / \mathrm{O}}=0 \mathrm{~V} \text { to } V_{C C} \\ & \mathrm{CS}_{1}=V_{1 H} \text { or } C S_{2}=V_{1 L} \text { or } \\ & \overline{\mathrm{OE}}=V_{I H} \text { or } \overline{W E}=V_{I L} \end{aligned}$
Output High Voltage	V_{OH}	2.4		2.4			V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output Low Voltage	V_{OL}		0.4			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$

Note: All voltages are referenced to GND

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
- Timing Reference Levels:
- Output Load:
0.6 V to 2.4 V

5 ns (Transient Time between 0.8 V and 2.2 V)
Input: $\quad V_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$

	R_{1}	R_{2}	C_{L}	Parameters Measured
Load I	$1.8 \mathrm{~K} \Omega$	990Ω	100 pF	except $\mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OLZ}}, \mathrm{t}_{\mathrm{CHZ}},{ }^{\mathrm{t} O H Z}, \mathrm{t}_{\mathrm{WLZ}}$ and $\mathrm{t}_{\mathrm{WHZ}}$
Load II	$1.8 \mathrm{~K} \Omega$	990Ω	5 pF	${ }^{\mathrm{t}} \mathrm{CLZ}, \mathrm{t}_{\mathrm{OLZ}},{ }^{\mathrm{t}} \mathrm{CHZ}, \mathrm{t}_{\mathrm{OHZ}},{ }^{\mathrm{t}} \mathrm{WLZ}$ and $\mathrm{t}_{\mathrm{WHZ}}$

* Including jig and stray capacitance

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)
READ CYCLE

Parameter	Symbol	MB 8464A80/80L/80LL		MB 8464A10/10L/10LL		MB 8464A15/15L/15LL		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	${ }^{\text {t }} \mathrm{RC}$	80		100		150		ns
Address Access Time	$\mathrm{t}_{\text {A }}$		80		100		150	ns
$\overline{\mathrm{CS}}_{1}$ Access Time	${ }^{\text {A }}$ (${ }^{\text {1 }}$		80		100		150	ns
CS_{2} Access Time	$\mathrm{t}_{\mathrm{AC2}}$		80		100		150	ns
Output Enable to Output Valid	${ }^{\text {toee }}$		35		45		55	ns
Output Hold from Address Change	${ }^{\text {t }} \mathrm{OH}$	10		10		10		ns
Chip Select to Output Low-Z**	${ }^{\text {t }}$ Lz	10		10		10		ns
Output Enable to Output Low-Z*1	${ }^{\text {tolz }}$	5		5		5		ns
Chip Select to Output High-Z*1	${ }^{\text {t }} \mathrm{CHZ}$		35		35		40	ns
Output Enable to Output High-Z*1	${ }^{\text {tohz }}$		30		35		40	ns

READ CYCLE TIMING DIAGRAM*2

Note: *1 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*2 $\overline{W E}$ is high for Read Cycle.
*3 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{IH}}$.
*4 Address vaild prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, CS_{2} transition high.

WRITE CYCLE

Parameter	Symbol	$\begin{gathered} \text { MB 8464A- } \\ 80 / 80 \mathrm{~L} / 80 \mathrm{LL} \end{gathered}$		$\begin{gathered} \text { MB 8464A- } \\ 10 / 10 \mathrm{~L} / 10 \mathrm{LL} \end{gathered}$		MB 8464A15/15L/15LL		Unit
		Min	Max	Min	Max	Min	Max	
Wuite Cyule Tiñe	${ }^{\text {i }} \mathrm{Wc}$	80		100		150		$\therefore 3$
Address Valid to End of Write	${ }^{\text {t }}$ AW	60		80		100		ns
Chip Select to End of Write	${ }^{\text {c }} \mathrm{CW}$	60		80		100		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	30		35		40		ns
Data Hold Time	t_{DH}	5		5		5		ns
Write Pulse Width	$t_{\text {WP }}$	60		70		90		ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0		0		0		ns
Write Recovery Time	${ }^{\text {W }}$ WR	10		10		10		ns
Write Enable to Output Low- $\mathbf{Z}^{* 1}$	${ }^{\text {W WLZ }}$	5		5		5		ns
Write Enable to Output High-Z*1	${ }^{\text {twhz }}$		30		35		40	ns

WRITE CYCLE TIMING DIAGRAM ${ }^{*} 2$

Note: * 1 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 2$ If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$ and CS_{2} are in the READ Mode during this period, $1 / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

WRITE CYCLE II: $\overline{\mathrm{CS}}_{1}$ CONTROLLED* ${ }^{1}$

WRITE CYCLE III: CS_{2} CONTROLLED*2

Note: *1 If $\overline{\mathrm{OE}}, \mathrm{CS}_{2}$ and $\overline{\mathrm{WE}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 $\overline{\text { If }} \overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{WE}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Typ	Max	Unit
Data Retention Supply Voltage		$V_{\text {DR }}$	2.0		5.5	V
Data Retention Supply Current* ${ }^{2}$	Standard	$I_{\text {DR }}$			1.0	mA
	L-Version			1.0	25	$\mu \mathrm{A}$
	LL-Version*3			1.0	2.0	$\mu \mathrm{A}$
Data Retention Setup Time		$t_{\text {DRS }}$	0			ns
Operation Recovery Time		t_{R}	t_{RC}			ns

Note: ${ }^{*} 2 \quad \mathrm{CS}_{2}$ controlled: $\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \mathrm{CS}_{2} \leqq 0.2 \mathrm{~V}$
$\overline{\mathrm{CS}}_{1}$ controlled: $\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \overline{\mathrm{CS}}_{1} \geqq \mathrm{~V}_{\mathrm{DR}}-0.2 \mathrm{~V}\left(\mathrm{CS}_{2} \leqq 0.2 \mathrm{~V}\right.$ or $\left.\mathrm{CS}_{2} \geqq \mathrm{~V}_{\mathrm{DR}}-0.2 \mathrm{~V}\right)$
${ }^{*} 3 V_{D R}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

DATA RETENTION TIMING

DATA RETENTION I: $\overline{\mathrm{CS}}_{1}$ CONTROLLED

DATA RETENTION II: CS_{2} CONTROLLED

PACKAGE DIMENSIONS

(Suffix: P)

PACKAGE DIMENSIONS

(Suffix: P-SK)

PACKAGE DIMENSIONS

(Suffix: PF)

MB 8464A-80/80L/80LL

PACKAGE DIMENSIONS

(Suffix: CV)

256K-BIT ($32,768 \times 8$) CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION AND LOW POWER

The Fujitsu MB 84256 is a 32,768 -word by 8 -bit static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronouse circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5 volts power supply is required.

The MB 84256 is ideally suited for use in microprocesser systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: $32,768 \times 8$ bits
- Fast access time: 100 ns max. (MB 84256-10/10L/10LL)

120 ns max. (MB 84256-12/12L/12LL)
150 ns max. (MB 84256-15/15L/15LL)

- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three-state outputs
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby:
$\left.\begin{array}{rll}\text { CMOS level: } & 5.5 \mathrm{~mW} \text { max. } & (\mathrm{MB} \mathrm{84256-10/12/15)} \\ & 0.55 \mathrm{~mW} \max . & (\mathrm{MB} 84256-10 \mathrm{~L} / 10 \mathrm{LL} / 12 \mathrm{~L} / 12 \mathrm{LL} / \\ & & 15 \mathrm{~L} / 15 \mathrm{LL} \text {) }\end{array}\right)$
- Data retention: 2.0V
- Standard 28-pin DIP (600 mil) (Suffix: -P)
- Standard 28-pin Bend-type Plastic Flat Package (450 mil) (Suffix: -PF)
- Standard 32-pad LCC (Suffix: -CV)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		V_{Cc}	-0.5 to +7.0	V
Input Voltage		$V_{\text {IN }}$	-0.5 to $V_{C C}+0.5$	V
Output Voltage		V OUT	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Temperature Under Bias		$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	CERAMIC	$T_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	PLASTIC		-40 to +125	

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^30]MB 84256-10/10L/10LL
MB 84256-12/12L/12LL MB 84256-15/15L/15LL

Fig. 1 - MB 84256 BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	WE	MODE	SUPPLY CURRENT	I/O PIN
H	X	X	NOT SELECTED	$I_{\text {SB }}$	HIGH-Z
L	H	H	DOUT DISABLE	${ }^{\text {ICC }}$	HIGH-Z
L	L	H	READ	ICC	DOUT
L	X	L	WRITE	$I_{\text {cc }}$	$\mathrm{D}_{\text {IN }}$

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$			8	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}\right)$	C_{IN}			7	pF

RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{Cc}	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-2.0^{*}		0.8	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.2		$\mathrm{~V}_{\mathrm{Cc}}+0.3$	V
Ambient Temperature	T_{A}	0		70	${ }^{\circ} \mathrm{C}$

*-2.0 V Min. for pulse width less than 20 ns . (V_{IL} Min $=-0.3 \mathrm{~V}$ at DC level)

DC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter	Symbol	MB 84256-10/12/15		MB 84256-10L/10LL/ 12L/12LL/15L/15LL		Unit	Test Conditions
		Min	Max	Min	Max		
Standby Supply Current	$\mathrm{I}_{\text {SB1 }}$		1		0.1	mA	$\overline{\mathrm{CS}} \geqq \mathrm{V}_{\text {cc }}-0.2 \mathrm{~V}$
	$\mathrm{I}_{\mathrm{SB} 2}$		3		3		$\overline{\mathrm{CS}}=\mathrm{V}_{1 H}$
Active Supply Current	$\mathrm{I}_{\mathrm{cc} 1}$		45		45	mA	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\text {IN }}=V_{\text {IH }} \text { or } V_{I L} \\ & \text { I OUT }=0 \mathrm{~mA} \end{aligned}$
Operating Supply Current	Icc2		70		70		$\begin{aligned} & \text { Cycle }=\text { Min., } \\ & \text { Duty }=100 \%, I_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$
Input Leakage Current	$I_{\text {L }}$	-1	1	-1	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{Cc}
Output Leakage Current	$\mathrm{I}_{\text {LI/O }}$	-1	1	-1	1	$\mu \mathrm{A}$	$\begin{aligned} & V_{I / O}=O V \text { to } V_{C c}, \overline{C S}=V_{I H}, \\ & O E=V_{I H} \text { or } \overline{W E}=V_{I L} \end{aligned}$
Output High Voltage	V_{OH}	2.4		2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output Low Voltage	$\mathrm{V}_{\text {OL }}$		0.4		0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$

Note: All voltages are referenced to GND

AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE* 1

Parameter	Symbol	$\begin{gathered} \text { MB 84256-10/ } \\ \text { 10L/10LL } \end{gathered}$		$\begin{gathered} \text { MB 84256-12/ } \\ 12 \mathrm{~L} / 12 \mathrm{LL} \end{gathered}$		$\begin{gathered} \text { MB 84256-15/ } \\ 15 \mathrm{~L} / 15 \mathrm{LL} \end{gathered}$		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t_{RC}	100		120		150		ns
Address Access Time*2	$t_{\text {AA }}$		100		120		150	ns
$\overline{\mathrm{CS}}$ Access Time* ${ }^{\text {a }}$	$t_{\text {ACS }}$		100		120		150	ns
Output Enable to Output Valid	${ }^{\text {toe }}$		40		50		60	ns
Output Hold from Address Change	${ }^{\text {tor }}$	20		20		20		ns
Chip Select to Output Low-2**5	$\mathrm{t}_{\mathrm{CLZ}}$	10		10		10		ns
Output Enable to Output Low-Z*4*5	$\mathrm{t}_{\mathrm{OLZ}}$	5		5		5		ns
Chip Select to Output High-Z*4*5	$\mathrm{t}_{\mathrm{CHZ}}$		40		40		50	ns
Output Enable to Output High-Z*4*5	$\mathrm{t}_{\mathrm{OHZ}}$		40		40		50	ns

READ CYCLE TIMING DIAGRAM ${ }^{* 1}$
READ CYCLE I: ADDRESS CONTROLLED*2

READ CYCLE II: $\overline{\mathrm{CS}}$ CONTROLLED*3

区 : Undenfined

Note: *1 $\overline{\mathrm{WE}}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE*1*2

Parameter	Symbol	$\begin{gathered} \hline \text { MB 84256-10/ } \\ 10 \mathrm{~L} / 10 \mathrm{~L} \end{gathered}$		$\begin{gathered} \text { MB 84256-12/ } \\ 12 \mathrm{~L} / 12 \mathrm{LL} \end{gathered}$		$\begin{gathered} \text { MB 84256-15/ } \\ 15 \mathrm{~L} / 15 \mathrm{LL} \end{gathered}$		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time*3	$t_{\text {wc }}$	100		120		150		ns
Address Valid to End of Write	${ }^{\text {taw }}$	80		85		100		ns
Chip Select to End of Write	${ }^{\text {t }}$ W	80		85		100		ns
Data Valid to End of Write	${ }_{\text {t }}$ W	40		45		50		ns
Data Hold Time	${ }^{\text {t }}{ }_{\text {DH }}$	0		0		0		ns
Write Pulse Width	$t_{\text {wp }}$	60		70		90		ns
Address Setup Time	${ }_{\text {t }}$ S	0		0		0		ns
Write Recovery Time*4	${ }^{\text {t }}$ WR	5		5		5		ns
$\overline{\text { WE }}$ to Output Low-Z*5*6	$t_{\text {wLz }}$	5		5		5		ns
$\overline{\mathrm{WE}}$ to Output High-Z*5*6	$\mathrm{t}_{\mathrm{WHz}}$		40		40		50	ns

WRITE CYCLE TIMING DIAGRAM*1*2

Note: *1 If $\overline{O E}, \overline{\mathrm{CS}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined form last address transition to the first address transition of the next address.
*4 $t_{\text {WR }}$ is defined from the end point of WRITE Mode.
${ }^{*} 5$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*6 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{C S}$ CONTROLLED*1*2

Х : Undefined

Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}$ are in the READ Mode during this period, I / O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 $t_{W R}$ is defined from the end point of WRITE Mode.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*6 This parameter is specified with Load II in Fig. 2.

DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter		Symbol	Min	Max	Unit
Data Retention Supply Voltage*1		$V_{\text {DR }}$	2.0	5.5	V
Data Retention*2 Supply Current	Standard	$\mathrm{I}_{\text {DR }}$		1	mA
	L-Version			50	
	LL-Version*3			5	$\mu \mathrm{A}$
Data Retention Setup Time		$t_{\text {DRS }}$	0		ns
Operation Recovery Time		t_{R}	t_{RC}		ns

Note: ${ }^{*} 1 \overline{\mathrm{CS}} \geqq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}$

* $2 \mathrm{~V}_{D R}=3.0 \mathrm{~V}, \overline{\mathrm{CS}} \geqq \mathrm{V}_{D R}-0.2 \mathrm{~V}$
${ }^{*} 3 \mathrm{~V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$
DATA RETENTION TIMING

PACKAGE DIMENSIONS
(Suffix: P)

PACKAGE DIMENSIONS

(Suffix: PF)

PACKAGE DIMENSIONS

(Suffix: CV)

32-Pad Ceramic (METAL sEaL) leadless ćhip carrier

 (CASE No.: LCC-32C-A02)

256K-BIT $(32,768 \times 8)$ CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION AND LOW POWER

The Fujitsu MB84256A is a 32,768 -word by 8 -bit static random access memory fabricated with a CMOS sillicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5 V power supply is required.

The MB84256A is ideally suited for use in microprocesser systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization : $32,768 \times 8$ bits
- Fast access time : $70 \mathrm{~ns} \max$. (MB84256A-70/70L/70LL)
$100 \mathrm{~ns} \max$. (MB84256A-10/10L/10LL)
120 ns max. (MB84256A-12/12L/12LL)
150 ns max. (MB84256A-15/15L/15LL)
- Completely static operation: No clock required
- TTL compatible inputs/outputs
- Three state outputs
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby :

CMOS level: $\quad 5.5 \mathrm{~mW}$ max. (MB84256A-70/10/12/15)
0.55 mW max. (MB84256A-70L/70LL/10L/10LL/ 12L/12LL/15L/15LL)
TIL level: 16.5 mW max. (MB84256A-70/70L/70LL/10/10L/ 10LL/12/12L/12LL/15/15L/15LL)

- Data retention: 2.0 V min.
- Standard 28-pin DIP (600mil) (Suffix: P)
- Standard 28-pin DIP (300mil) (Suffix: P-SK)
- Standard 28-pin Bend-type FPT (450mil) (Suffix: PF)

ABSOLUTEMAXIMUM RATINGS (see Note)

Rating	Symbol	Value	Unit
Supply Voltage	VCC	-0.5 to +7.0	V
Input Voltage	VIN	-0.5 to VCC +0.5	V
Output Voltage	VI/0	-0.5 to VCC +0.5	V
Temperature under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - MB84256A BLOCK DIAGRAM

TRUTH TABLE

$\overline{\mathrm{CS}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{WE}}$	MODE	SUPPLY CURRENT	I/O PIN
H	X	X	Not Selected	ISB	High-Z
L	H	H	DOUT Disable	ICC	High-Z
L	L	H	Read	ICC	DOUT
L	X	L	Write	ICC	DIN

CAPACITANCE ($\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O $=0 \mathrm{~V}$)	CI/O			8	pF
Input Capacitance (VIN $=0 \mathrm{~V}$)	CIN			7	pF

MB84256A-70/70L/70LL
MB84256A-10/10L/10LL
MB84256A-12/12L/12LL
MB84256A-15/15L/15LL

RECOMMENDED OPERATING CONDITION

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter	Symbol	$\begin{aligned} & \text { MB84256A- } \\ & 70 / 10 / 12 / 15 \end{aligned}$		$\begin{gathered} \hline \text { MB84256A-70L/70LL } \\ \text { /10L/10LL/12L } \\ \text { /12LL/15L/15LL } \\ \hline \end{gathered}$		Unit	Test Condition
		Min	Max	Min	Max		
Standby Supply Current	ISB1		1		0.1	mA	$\overline{\mathrm{CS}} \geq \mathrm{VCC}-0.2 \mathrm{~V}$
	ISB2		3		3	mA	$\overline{\mathrm{CS}}=\mathrm{VIH}$
Active Supply Current	ICC1		55		55	mA	$\begin{array}{ll} \mathrm{VIN}=\mathrm{VIH} & \text { or } V I L \\ \mathrm{CS}=\mathrm{VIL}, & \text { IOUT }=0 \mathrm{~mA} \end{array}$
Operating $\quad-70$	ICC2		80		80	mA	$\begin{aligned} & \text { Cycle=Min. } \\ & \text { Duty }=100 \% \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$
Supply Current			70		70		
Input Leakage Current	ILI	-1	1	-1	1	$\mu \mathrm{A}$	VIN $=0 \mathrm{~V}$ to VCC
Output Leakage Current	ILI/0	-1	1	-1	1	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VI} / O=O \mathrm{~V} \text { to } \mathrm{VCC} \\ & \mathrm{CS}=\mathrm{VIH} \\ & \hline \mathrm{OE}=\mathrm{VIH} \text { or } \overline{\mathrm{WE}}=\mathrm{VII} \end{aligned}$
Input High Voltage	VIH	2.2	$\begin{aligned} & \text { VCC } \\ & +0.3 \end{aligned}$	2.2	$\begin{aligned} & \text { VCC } \\ & +0.3 \end{aligned}$	V	
Input Low Voltage	VIL	-3.0 \%	0.8	-3.0*	0.8	V	
Output High Voltage	VOH	2.4		2.4		V	IOH $=-1.0 \mathrm{~mA}$
Output Low Voltage	VOL		0.4		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$

Note: All voltages are referenced to GND.
\%: -3.0 V min. for pulse width less than 20 ns. (VIL min. $=-0.3 \mathrm{~V}$ at DC level.)
Fig. 2 - AC TEST CONDITIONS

$\begin{aligned} & \mathrm{D}_{\text {OUT }} \\ & (\mathrm{I} / 0) \end{aligned}$	0$\mathrm{C}_{\mathrm{L}}{ }^{*}$			Incl	- Input Pulse Levels: 0.6 V to 2.4 V - Input Pulse Rise \& Fall Times: 5 ns (Transient between 0.8 V and 2.2 V) - Timing Reference Levels Input: VIL=0.8V, VIH=2.2V Output: $\mathrm{VOL}=0.8 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$ - Output Load ding Jig and stray capacitance
		R1	R2	CL	Parameters Measured
	Load1	$1.8 \mathrm{~K} \Omega$	990Ω	100 pF	except tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ
	Load2	$1.8 \mathrm{~K} \Omega$	990Ω	5pF	tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ

MB84256A-70/70L/70LL
MB84256A-10/10L/10LL MB84256A-12/12L/12LL MB84256A-15/15L/15LL

AC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)
READ CYCLE *1

Parameter	Symbol	$\begin{aligned} & \hline \text { MB84256A- } \\ & 70 / 70 \mathrm{~L} / 70 \mathrm{LI} \end{aligned}$		$\begin{aligned} & \hline \text { MB84256A- } \\ & 10 / 10 \mathrm{~L} / 10 \mathrm{LI} \end{aligned}$		$\begin{aligned} & \hline \text { MB84256A- } \\ & 12 / 12 \mathrm{~L} / 12 \mathrm{LI} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { MB84256A- } \\ & 15 / 15 \mathrm{~L} / 15 \mathrm{LL} \end{aligned}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	tRC	70		100		120		150		ns
Address Access Time *2	tAA		70		100		120		150	ns
$\overline{\mathrm{CS}}$ Access Time *3	tACS		70		100		120		150	ns
Output Enable to Output Valid	tOE		35		40		50		60	ns
Output Hold from Address Change	tOH	20		20		20		20		ns
Chip Select to Output Low-Z *4*5	tCLZ	10		10		10		10		ns
Output Enable to Output Low-Z $\% 4 \% 5$	tOLZ	5		5		5		5		ns
Chip Select to Output High-Z *4*5	tCHZ		25		40		40		50	ns
Output Enable to Output High-Z *4*5	tOHZ		25		40		40		50	ns

READ CYCLE TIMING DIAGRAM *1
READ CYCLE 1: ADDRESS CONTROLLED *2

READ CYCLE 2: $\overline{\mathrm{CS}}$ CONTROLLED *3

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{VIL}$.
*3 Address valid prior to or coincident with $\overline{C S}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load 2 in Fig. 2.

WRITE CYCLE $* 1 * 2$

Parameter	Symbol	$\begin{aligned} & \hline \text { MB84256A- } \\ & 70 / 70 \mathrm{~L} / 70 \mathrm{LL} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \text { MB84256A- } \\ & 10 / 10 \mathrm{~L} / 10 \mathrm{LI} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { MB84256A- } \\ & 12 / 12 \mathrm{~L} / 12 \mathrm{LL} \end{aligned}$		$\begin{array}{\|l\|} \hline \text { MB84256A- } \\ 15 / 15 \mathrm{~L} / 15 \mathrm{LI} \\ \hline \end{array}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time *3	tWC	70		100		120		150		ns
Address Valid to End of Write	tAW	50		80		85		100		ns
Chip Select to End of Write	tCW	50		80		85		100		ns
Data Valid to End of Write	tDW	25		40		45		50		ns
Data Hold Time	tDH	0		0		0		0		ns
Write Pulse Width	tWP	50		60		70		90		ns
Address Setup Time	tAS	0		0		0		0		ns
Write Recovery Time *4	tWR	5		5		5		5		ns
$\overline{\mathrm{WE}} \text { to Output Low-Z }$	tWLZ	5		5		5		5		ns
$$	tWHZ		25		40		40		50	ns

WRITE CYCLE TIMING DIAGRAM * $1 * 2$
WRITE CYCLE 1: $\overline{\mathrm{WE}}$ CONTROLLED

Note: *1 If $\overline{O E}, \overline{C S}$ are in the READ Mode during this period, I / O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
\%4 tWR is defined from the end point of WRITE Mode.
$\% 5$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
$\% 6$ This parameter is specified with Load 2 in Fig. 2.

WRITE CYCLE TIMING DIAGRAM $* 1 * 2$
WRITE CYCLE 2: $\overline{C S}$ CONTROLLED

: Undenfined

Note: *1 If $\overline{O E}, \overline{C S}$ are in the READ Mode during this period, I / O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 tWR is defined from the end point of WRITE Mode.
*5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*6 This parameter is specified with Load 2 in Fig. 2.

MB84256A-70/70L/70LL
MB84256A-10/10L/10LL
MB84256A-12/12L/12LL

DATA RETENTION CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Data Retention Supply Voltage *1	VDR	2.0		5.5	V
Data Retention MB84256A-70/10/12/15	IDR			1.0	mA
Supply \quad MB84256A-70L/10L/12L/15L			1.0	50	$\mu \mathrm{A}$
Current *2 2 M 2 (${ }^{\text {a }}$			1.0	5.0 *3	
Data Retention Setup Time	tDRS	0			ns
Operation Recovery Time	tR	tRC			ns

Note: *1 $\overline{\mathrm{CS}} \geq \mathrm{VDR}-0.2 \mathrm{~V}$
*2 $\mathrm{VDR}=3.0 \mathrm{~V}, \overline{\mathrm{CS}} \geq \mathrm{VDR}-0.2 \mathrm{~V}$
*3 $\mathrm{VDR}=3.0 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$

DATA RETENTION TIMING
DATA RETENTION

PACKAGE DIMENSIONS

(Suffix: P)

FUJITSU

MB84256A-70/70L/70LL MB84256A-10/10L/10LL MB84256A-12/12L/12LL MB84256A-15/15L/15LL

PACKAGE DIMENSIONS

(Suffix: P-SK)

PACKAGE DIMENSIONS

(Suffix: PF)

MB84F256-25

CMOS 256K BIT LOW POWER SRAM

32,768-WORD x 8-BIT FULL CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION

The Fujitsu MB84F256 is a 32,768-word by 8-bit static random access memory. Fabricated with full CMOS circuit, MB84F256 realizes extremely low data retention current compared with that of MB84256, which can allows MB84F256 to use non-volatile memory using a back up battery.

The MB84F256 has 600 mil 28 -pin plastic DIP package and 28 -pin plastic SOP package as package option.

The device suits for application where, low and wide supply voltage and low power comsumption are required.

- Organization: 32,768 words $\times 8$ bits
- Static operation: No clocks or refresh required
- Fast access time:

250ns max. @Vcc=5V
2000ns max. @Vcc=3V

- Low power comsumption:

$\mathrm{Vcc}=3 \mathrm{~V}:$	$5.0 \mu \mathrm{~A}$ (CMOS standby)
	0.5 mA (TTL standby)
	20 mA (Active)
$\mathrm{Vcc}=5 \mathrm{~V}:$	$10 \mu \mathrm{~A}$ (CMOS standby)
	2 mA (TTL standby)
	40 mA (Active)

- Data retention voltage: 2.0 V min.
- Full CMOS
- 600 mil width 28 -pin plastic DIP package (Suffix: -P)
- 450 mil width 28 -pin plastic SOP package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage on any pin with to GND	VIN	-0.5 to VCC +0.3	V
Output Voltage on any pin with to GND	VIo	-0.5 to VCC +0.3	V
Power Dissipation	PD	1.0	W
Output Current	lout	± 20	mA
Temperature under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^31]Fig. 1 - MB84F256 BLOCK DIAGRAM

TRUTH TABLE

$\overline{C S}$	$\overline{O E}$	$\overline{W E}$	MODE	SUPPLY	
CURRENT	I/O PIN				
H	X	X	Not Selected	ISB	High-Z
L	H	H	DOUT Disable	ICC	High-Z
L	L	H	Read	ICC	DOUT
L	X	L	Write	ICC	DIN

CAPACITANCE ($\mathrm{TA}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}$)

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O $=0 \mathrm{~V}$)	CI/0			8	pF
Input Capacitance (VIN $=0 \mathrm{~V}$)	CIN			7	pF

RECOMMENDED OPERATING CONDITION

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supp1y Voltage	VCC	2.2	3.0	3.6	V
		4.0	5.0	5.5	
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter	Symbol	Supply Voltage VCC (V)	Min	Max	Unit	Condition
Standby Supply	ISB1	2.2 V to 3.6 V		5.0	$\mu \mathrm{A}$	$\overline{\mathrm{CS}} \geq \mathrm{VCCx} 0.9 \mathrm{~V}$
		4.0 V to 5.5 V		10.0		
	ISB2	2.2 V to 3.6 V		0.5	mA	$\overline{\mathrm{CS}}=\mathrm{VIH}$
		4.0 V to 5.5 V		2.0		
Active Supply	ICC1	2.2 V to 3.6 V		5.0	mA	$\begin{aligned} & \mathrm{VIN}=\mathrm{VIH} \text { or } \quad \mathrm{VIL} \\ & \text { IOUT }=0 \mathrm{~mA}, \quad \overline{\mathrm{CS}}=\mathrm{VIL} \end{aligned}$
Current		4.0 V to 5.5 V		10.0		
Operating Supply	ICC2	2.2 V to 3.6 V		20.0	mA	$\begin{aligned} & \text { Cycle }=\text { Min } \\ & \text { Duty }=100 \%, \text { IOUT }=0 \mathrm{~mA} \end{aligned}$
Current		4.0 V to 5.5 V		40.0		
InputnLeakage	ILI	2.2 V to 3.6 V		0.5	$\mu \mathrm{A}$	VIN $=0 \mathrm{~V}$ to VCC
Current		4.0 V to 5.5 V		1.0		
Output Leakage	ILI/O	2.2 V to 3.6 V		0.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VI} / O=0 \text { to } \mathrm{VCC}, \mathrm{CS}=\mathrm{VIH} \\ & \mathrm{OE}=\mathrm{VIH} \text { or } \overline{\mathrm{WE}}=\mathrm{VIL} \end{aligned}$
Current		4.0 V to 5.5 V		1.0		
Input High	VIH	2.2 V to 3.6 V	VCCx0.8	VCC+0.3	V	
Voltage		4.0 V to 5.5 V	2.2	VCC+0.3		
Input Low	VIL	2.2 V to 3.6 V	-0.3	0.3	V	
Voltage		4.0 V to 5.5 V	-0.3	0.6		
Output High	VOH	2.2 V to 3.6 V	2.0		V	$\mathrm{IOH}=-0.5 \mathrm{~mA}$
Voltage		4.0 V to 5.5 V	2.4			$\mathrm{IOH}=-1.0 \mathrm{~mA}$
Output Low	VOL	2.2 V to 3.6 V		0.3	V	$\mathrm{IOL}=1.0 \mathrm{~mA}$
Voltage		4.0 V to 5.5 V		0.4		IOL= 2.1 mA

Note: All voltages are referenced to GND.

AC CHARACTERISTICS TEST CONDITIONS

Parameter	$\begin{gathered} \text { Supply Voltage } \\ \text { VCC (V) } \\ \hline \end{gathered}$	Conditions
Input Pulse Level	2.2 V to 3.6 V	VIH $=$ VCC, VIL $=0 \mathrm{~V}$
	4.0 V to 5.5 V	VIH $=2.4 \mathrm{~V}, \mathrm{VIL}=0.5 \mathrm{~V}$
Input Pu1se Rise \& Fall Times	2.2 V to 3.6 V	5 ns (Transient between 0.3 V and VCCx0.8)
	4.0 V to 5.5 V	5 ns (Transient between 0.7 V and 2.2V)
Timing Reference Leve1	2.2 V to 3.6 V	Input: $\mathrm{VIH}=\mathrm{VCCx} 0.8, \mathrm{VIL}=0.3 \mathrm{~V}$ Output: $\mathrm{VOH}=\mathrm{VCCx} 0.7$, VOL $=0.4 \mathrm{~V}$
	4.0 V to 5.5 V	Input: $\mathrm{VIH}=2.2 \mathrm{~V}, \mathrm{VIL}=0.7 \mathrm{~V}$ Output: $\mathrm{VOH}=2.2 \mathrm{~V}, \mathrm{VOL}=0.8 \mathrm{~V}$
Output Load	2.2 V to 3.6 V	$\mathrm{VL}=3.0 \mathrm{~V}$
	4.0 V to 5.5 V	$\mathrm{VL}=5.0 \mathrm{~V}$

Fig. 2 - AC TEST CONDITIONS

	R1	R2	CL	Parameters Measured
Load1	$1.8 \mathrm{~K} \Omega$	990Ω	100 pF	except tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ
Load2	$1.8 \mathrm{~K} \Omega$	990Ω	5 pF	tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ

AC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)
READ CYCLE *1

Parameter	Symbol	$\begin{aligned} & \mathrm{VCC}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \text { VCC }= \\ & 4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$		Unit
		Min	Max	Min	Max	
Read Cycle Time	tRC	2000		250		ns
```Address Access Time *2```	tAA		2000		250	ns
$\overline{\text { CS Access Time *3 }}$	tACS		2000		250	ns
Output Enable to Output Valid	tOE		500		100	ns
Output Hold from Addresss Change	tOH	100		50		ns
$\begin{array}{r} \overline{\mathrm{CS}} \text { to Output Low-Z } \\ * 4 * 5 \end{array}$	tCLZ	70		30		ns
Output Enable to Output Low-Z *4*5	tOLZ	100		20		ns
$\overline{\overline{\mathrm{CS}}}$ to OutputHigh-Z   $* 4 * 5$	tCHZ	40	100	5	50	ns
$\begin{aligned} & \text { Output Enable to } \\ & \text { Output High-Z } \quad * 4 * 5 \\ & \hline \end{aligned}$	tOHZ		100		50	ns

Note: $*_{1} \overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{VIL}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is measured at the following points from steady state voltage.

- VCC $=2.2 \mathrm{~V}$ to 3.6 V : $\pm 200 \mathrm{mV}$
- $\mathrm{VCC}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}: \pm 500 \mathrm{mV}$
*5 This parameter is specified with Load 2 in Fig. 2.

READ CYCLE TIMING DIAGRAM *1
READ CYCLE 1: ADDRESS CONTROLLED *2
$\overline{C S}$
$\overline{\mathrm{OE}}$

DOUT


区: Undenfined

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{C S}=\overline{\mathrm{OE}}=\mathrm{VIL}$.
*3 Address valid prior to or coincident with $\overline{C S}$ transition low.
*4 Transition is measured at the following points from steady state voltage.

- $\mathrm{VCC}=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}: \pm 200 \mathrm{mV}$
- VCC=4.0V to $5.5 \mathrm{~V}: \pm 500 \mathrm{mV}$
*5 This parameter is specified with Load 2 in Fig. 2.


## AC CHARACTERISTICS

(Recomended operating conditions otherwise noted.)
WRITE CYCLE $* 1 * 2$

Parameter	Symbol	$\begin{aligned} & \mathrm{VCC}= \\ & 2.2 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \mathrm{VCC}= \\ & 4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$		Unit
		Min	Max	Min	Max	
Write Cycle Time *3	tWC	2000		250		ns
Address Valid to End of Write	tAC	1500		200		ns
Chip Select to End of Write	tCW	1500		200		ns
Data Valid to End of Write	tDW	800		100		ns
Data Hold Time	tDH	0		0		ns
Write Pulse Width	tWP	1000		150		ns
Address Setup Time	tAS	0		0		ns
Write recovery Time $*_{4}$	tWR	0		0		ns
$\overline{\text { WE }}$ to Output Low-Z   $* 5 * 6$	tWLZ	30		10		ns
$\overline{\text { WE }}$ to Output High-Z ${ }^{(1) 5 * 6}$	tWHZ		100		50	ns

Note: $* 1$ If $\overline{O E}, \overline{C S}$ are in the READ Mode during this period, $I / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
$\% 3$ All write cycle are determined from last address transition to the first address transition of the next address.
*4 tWR is defined from the end point of WRITE Mode.
*5 Transition is measured at the following points from steady state voltage.

- $\mathrm{VCC}=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}: \pm 200 \mathrm{mV}$
- $\mathrm{VCC}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}: \pm 500 \mathrm{mV}$
*6 This parameter is specified with Load 2 in Fig. 2.


## AC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)
WRITE CYCLE TIMING DIAGRAM $* 1 * 2$


Note: ${ }^{1} 1$ If $\overline{O E}, \overline{C S}$ are in the READ Mode during this period, $I / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
$*_{4}$ tWR is defined from the end point of WRITE Mode.
*5 Transition is measured at the following points from steady state voltage.

- VCC $=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}: \pm 200 \mathrm{mV}$
- $\mathrm{VCC}=4.0 \mathrm{~V}$ to 5.5 V : $\pm 500 \mathrm{mV}$
*6 This parameter is specified with Load 2 in Fig. 2.


## AC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)
WRITE CYCLE TIMING DIAGRAM $* 1 * 2$
WRITE CYCLE 2: $\overline{C S}$ CONTROLLED


Note: ${ }^{1} 1$ If $\overline{O E}, \overline{\mathrm{CS}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 tWR is defined from the end point of WRITE Mode.
*5 Transition is measured at the following points from steady state voltage.

- $\mathrm{VCC}=2.2 \mathrm{~V}$ to $3.6 \mathrm{~V}: \pm 200 \mathrm{mV}$
- $\mathrm{VCC}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}: \pm 500 \mathrm{mV}$
*6 This parameter is specified with Load 2 in Fig. 2.


## DATA RETENTION CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter	Symbol	Min	Max	Unit
Data Retention Supply Voltage $* 1$	VDR	1.1	5.5	V
Data Retention Supply Current $* 2$	IDR		1.0	$\mu \mathrm{~A}$
Data Retention Setup Time	tDRS	0		ns
Operation Recovery Time	tR	$\mathrm{tRC} * 3$		ns

Note: *1 VDR+0.3V $\geq \overline{C S} \geq V D R x 0.9$
$*_{2} \mathrm{VDR}=1.8 \mathrm{~V}, \mathrm{VDR} \geq \overline{\mathrm{CS}} \geq \mathrm{VDRx} 0.9$
*3 tRC: Read Cycle

DATA RETENTION TIMING
DATA RETENTION

VCC
$\overline{\mathrm{CS}}$


* VIH $=2.2 \mathrm{~V}$ min. at $\mathrm{VCC}=4.0 \mathrm{~V}$ to 5.5 V


## PACKAGE DIMENSIONS

(Suffix: P)


## PACKAGE DIMENSIONS

(Suffix: PF)

3


## 1M-BIT (131,072x8) CMOS STATIC RANDOM ACCESS MEMORY WITH DATA RETENTION AND LOW POWER

The Fujitsu MB841000 is a 131,072 -word $\times 8$-bit static random access memory fabricated with a CMOS sillicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single +5 V power supply is required.

The MB841000 is ideally suited for use in microprocesser systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization : 131,072 x 8 bits
- Fast access time : $80 \mathrm{~ns} \max$. (MB841000-80/80L)

100 ns max. (MB841000-10/10L)
120 ns max. (MB841000-12/12L)

- Complete static operation: No clock required
- TTL compatible inputs/outputs
- Three state outputs

PLASTIC PACKAGE
(DIP-32P-MO1)

PLASTIC PACKAGE (FPT-32P-M03)

- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power standby :

CMOS level: 5.5 mW max. (MB841000-80/10/12)
1.1 mW max. (MB841000-80L/10L/12L)

TIL level : 16.5 mW max. (MB841000-80/80L/10/10L/12/12L)

- Data retention: 2.0 V min.
- Standard 32-pin DIP (600mil) (Suffix: P)
- Standard 32-pin FPT (525mil) (Suffix: PF)


## ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	VCC	-0.5 to +7.0	V
Input Voltage	VIN	-0.5 to VCC +0.5	V
Output Voltage	VI $/ 0$	-0.5 to VCC +0.5	V
Temperature under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-40 to +125	${ }^{\circ} \mathrm{C}$



NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.


## RECOMMENDED OPERATING CONDITION (Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VCC	4.5	5.0	5.5	V
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

## FUNCTION TRUTH TABLE

$\overline{\mathrm{CS} 1}$	CS2	$\overline{\text { OE }}$	$\overline{\text { WE }}$	MODE	SUPPLY	
CURRENT	I/O PIN					
H	X	X	X	Not Selected	ISB	High-Z
X	L	X	X	Not Selected	ISB	High-Z
L	H	H	H	DOUT Disable	ICC	High-Z
L	H	L	H	Read	ICC	DOUT
L	H	X	L	Write	ICC	DIN

CAPACITANCE (TA=25 ${ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance (VI/O=0V)	CI/O			10	pF
Input Capacitance (VIN=0V)	CIN			8	pF

## DC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	$\begin{aligned} & \text { MB841000 } \\ & -80 / 10 / 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { MB841000 } \\ & -80 \mathrm{~L} / 10 \mathrm{~L} / 12 \mathrm{~L} \\ & \hline \end{aligned}$		Unit
			Min	Max	Min	Max	
Standby Supply Current	$\begin{aligned} & \mathrm{CS} 2 \leq 0.2 \mathrm{~V} \text { or } \\ & \mathrm{CS} 1 \geq \mathrm{VCC}-0.2 \mathrm{~V} \\ & \text { (with } \mathrm{CS} 2 \leq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{CS} 2 \geq \mathrm{VCC}-0.2 \mathrm{~V} \text { ) } \end{aligned}$	ISB1		1		0.2	mA
	$\overline{\mathrm{CS}} 1=\mathrm{VIH}$ or CS2 $=\mathrm{VIL}$	ISB2		3		3	mA
Active Supply Current	$\begin{aligned} & \mathrm{VIN}=\mathrm{VIH} \text { or } \mathrm{VIL}, \\ & \mathrm{CS} 1=\mathrm{VIL}, \quad \mathrm{CS} 2=\mathrm{VIH} \\ & \text { IOUT }=0 \mathrm{~mA} \end{aligned}$	ICC1		5		5	mA
Operating Supply Current	$\begin{aligned} & \text { Cycle }=\text { Min. } \\ & \text { Duty }=100 \%, \text { IOUT }=0 \mathrm{~mA} \\ & \hline \end{aligned}$	ICC2		80		80	mA
Input Leakage Current	VIN $=0 \mathrm{~V}$ to VCC	ILI	-1	1	-1	1	$\mu \mathrm{A}$
Output Leakage Current	$\mathrm{VI} / 0=0 \mathrm{~V}$ to VCC $\overline{C S} 1=V I H$ or CS2=VIL or $\overline{\mathrm{OE}}=\mathrm{VIH}$ or $\overline{\mathrm{WE}}=\mathrm{VIL}$	ILI/O	-2	2	-2	2	$\mu \mathrm{A}$
Input High Voltage		VIH	2.2	VCC+0.3	2.2	VCC +0.3	V
Input Low Voltage		VIL	-0.3*	0.8	-0.3*	0.8	V
Output High Voltage	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	VOH	2.4		2.4		V
Output Low Voltage	IOL $=2.1 \mathrm{~mA}$	VOL		0.4		0.4	V

Note: All voltages are referenced to GND.
$\%:-3.0 \mathrm{~V}$ min. for pulse width less than 20 ns . (VIL min. $=-0.3 \mathrm{~V}$ at DC level.)

Fig. 2 - AC TEST CONDITIONS
Output Load - Input Pulse Levels: 0.6V to 2.4 V


- Input Pulse Rise \& Fall Times:

5 ns (Transient between 0.8 V and 2.2 V )

- Timing Reference Levels

Input: $V I L=0.8 \mathrm{~V}, \mathrm{VIH}=2.2 \mathrm{~V}$
Output: $\mathrm{VOL}=0.8 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$

* Including Jig and stray capacitance

	R1	R2	CL	Parameters Measured
Load1	$1.8 \mathrm{~K} \Omega$	$990 \Omega$	100 pF	except tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ
Load2	$1.8 \mathrm{~K} \Omega$	$990 \Omega$	5 pF	tCLZ, tOLZ, tCHZ, tOHZ, tWLZ and tWHZ



AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)
READ CYCLE * 1

Parameter	Symbol	MB841000-80/801		MB841000-10/10I	MB841000-12/12I	Unit		
		Max	Min	Max	Min	Max		
Read Cycle Time	tRC	80		100		120		ns
Address Access Time	tAA		80		100		120	ns
$\overline{\text { CS1 Access Time }}$	tAC1		80		100		120	ns
CS2 Access Time	tAC2		80		100		120	ns
Output Enable to   Output Valid	tOE		35		40		50	ns
Output Hold from   Address Change	tOH	10		10		10		ns
Chip Select to   Output Low-Z $* 2 * 3$	tCLZ	10		10		10		ns
Output Enable to   Output Low-Z $* 2 * 3$	tOLZ	5		5		5		ns
Chip Select to   Output High-Z $* 2 * 3$	tCHZ		30		35		40	ns
Output Enable to   Output High-Z $* 2 * 3$	tOHZ		30		35		40	ns

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*3 This parameter is specified with Load 2 in Fig. 2.

## AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

READ CYCLE TIMING DIAGRAM $* 1$
READ CYCLE 1: ADDRESS CONTROLLED *2


READ CYCLE 2: $\overline{\mathrm{CS}} 1$, CS2 CONTROLLED $* 3$


区X: Undefined

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}} 1=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{CS} 2=\mathrm{VIH}$.
*3 Address valid prior to or coincident with CS1 transition low, CS2 transition high.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)
WRITE CYCLE *1*2

Parameter	Symbol	MB841000-80/80L		MB841000-10/10工		MB841000-12/12I		Unit
		Min	Max	Min	Max	Min	Max	
Write Cycle Time *3	twC	80		100		120		ns
Address Valid to End of Write	taW	60		80		85		ns
Chip Select to End of Write	tCW	60		80		85		ns
Data Valid to End of Write	tDW	30		40		45		ns
Data Hold Time	tDH	0		0.		0		ns
Write Pulse Width	twP	50		60		70		ns
Address Setup Time	tas	0		0		0		ns
Write Recovery   Time *4	tWR	5		5		5		ns
Write Enable to Output Low-Z $* 5 * 6$	tWLZ	5		5		5		ns
Write Enable to Output High-Z $* 5 * 6$	tWHZ		30		35		40	ns

Note: $* 1$ If $\overline{O E}, \overline{C S} 1$ and CS2 are in the READ Mode during this period, $I / 0$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If CS1 goes high or CS2 goes low simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*3 All write cycle are determined from last address transition to the first address transition of the next address.
*4 tWR is defined from the end point of WRITE Mode.
$* 5$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*6 This parameter is specified with Load 2 in Fig. 2.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)
WRITE CYCLE TIMING DIAGRAM $* 1 * 2$


Note: $\psi_{1}$ If $\overline{O E}, \overline{C S} 1$ and CS2 are in the READ Mode during this period, $I / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 If CS1 goes high or CS2 goes low simultaneously with $\overline{W E}$ high, the output remains in high impedance state.

## AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

WRITE CYCLE TIMING DIAGRAM
WRITE CYCLE 2: $\overline{\mathrm{CS}} 1$ CONTROLLED ${ }^{1} 1$


Note: *1 If $\overline{O E}, \quad \operatorname{CS} 2$ and $\overline{W E}$ are in the READ Mode during this period, $I / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

AC CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)
WRITE CYCLE TIMING DIAGRAM
WRITE CYCLE 3: CS2 CONTROLLED *1


Note: $\psi_{1}$ If $\overline{O E}, \overline{C S} 1$ and $\overline{W E}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

## DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Typ	Max	Unit
Data Retention Supply Voltage		VDR	2.0		5.5	V
Data Retention Supply Current *	MB841000-80/10/12	IDR			0.5	mA
	MB841000-80L/10L/12L				$0.1 * 2$	mA
Data Retention Setup Time		tDRS	0			ns
Operation Recovery Time *2		tR	tRC			ns

Note: *1 VCC=VDR=3.0V
$\overline{\mathrm{CS}} 1 \geq \mathrm{VDR}-0.2 \mathrm{~V}, \mathrm{CS} 2 \geq \mathrm{VDR}-0.2 \mathrm{~V}$ or $\mathrm{CS} 2 \leq 0.2 \mathrm{~V}$ (at $\overline{\mathrm{CS}} 1$ CONTROLLED) CS2 50.2 V (at CS2 CONTROLLED)
*2 tRC: Read Cycle Time

DATA RETENTION TIMING
$\overline{\mathrm{CS}} 1$ CONTROLLED


CS2 CONTROLLED


## PACKAGE DIMENSIONS

(Suffix: P)

## 32-LEAD PLASTIC DUAL IN-LINE PACKAGE

(Case No. : DIP-32P-MOI)

© 1988 FUIITSU LIMITED D32007S-IC

## PACKAGE DIMENSIONS

## (Suffix: PF)



## Section 4

Application Specific SRAMs - At a Glance

Page	Device	Maximum   Access   Time ( ns )	Capacity	Package Options		
4-03	MB81C51-25	25	2048 bits	64-pin	Ceramic	PGA
	$-30$	30	$512 \times 4$-way or $1024 \times 2$-way			
4-19	MB81C79B-35	35	73728 bits	28-pin	Plastic	DIP, FPT
	-45	45	(8192w x 9b)			
4-31	MB8279RT-20	20	73728 bits	32-pin	Plastic	DIP, FPT
	-25	25	(8192w $\times$ 9b)			
4-43	MB8287-25	25	262144 bits	32-pin	Plastic	DIP, FPT
	-35	35	(32768w $\times 8 \mathrm{~b}$ )			
4-55	MB8421-90/L	90	$\begin{aligned} & 16384 \text {-bits } \\ & (2048 w \times 8 b) \end{aligned}$	48-pin	Plastic	DIP
	-12/L	120		52-pin	Plastic	DIP
	MB8422-90/L	90		64-pin	Plastic	FPT
	-12/L	120				
4-69	MB8431-90/L/LL	90	$\begin{aligned} & 16384 \text {-bits } \\ & (2048 w \times 8 b) \end{aligned}$	48-pin 52-pin 64-pin	Plastic   Plastic   Plastic	$\begin{aligned} & \text { DIP } \\ & \text { DIP } \\ & \text { FPT } \end{aligned}$
	-12/LLLL	120				
	MB8432-90/L/LL	90				
	-12/L/LL	120				

## CMOS TAG RANDOM ACCESS MEMORY

The Fujltsu MB81C51 is 512 entry $\times 4$ way/1024 entry $\times 2$ way TAG Random Access Memory (TAG RAM) fabricated with a CMOS technology.

MB81C51 has been developed aiming to be used in an easily handled cache system with the other DATA RAMs (ex. MB81C79A). Especially this device offers the advantages on designing compact and high performance cache system which will be used in a system adopting 32-bit CPU.

- Organization: | 512 Entry $\times 4$ Way or |
| :--- |
| 1024 Entry $\times 2$ Way |
- Fast access time: | $25 / 30 \mathrm{~ns}$ max from Address Inputs |
| :--- |
| 18 ns max from Compare Data Inputs |
- Power Consumption: 1100 mW max.
- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- LRU (Least Recently Used) Replacement Logic
- Purge Function (All-purge \& Partlal-purge)
- Internal Parity Generator/Checker
- 64 pin Pin-Grid-Array (Suffix: CR)
- 68 pin Plastic LCC (Suffix: PD)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating		Symbol	Value	Unit
Supply Voltage		Vcc	-0.5 to +7.0	$\checkmark$
Input Voltage on any pin with respect to GND		VIN	-3.0 to +7.0	V
Output Voltage on any pin with respect to GND		Vout	-0.5 to +7.0	V
Output Current		Iout	$\pm 20$	mA
Power Dissipation		PD	1.5	W
Temperature under Blas		Tbias	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Ceramic	Tsta	-65 to +125	${ }^{\circ} \mathrm{C}$
	Plastic		-45 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^32]Fig. 1 - MB81C51 BLOCK DIAGRAM 1
Fig. 1 MB81C51 BLOCK DIAGRAM


Hixtway


CAPACMTANCE（TA $\left.=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHZ}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $(\mathrm{V} \mathbb{N}=0 \mathrm{~V})$	CIN		10	pF

PIN ASSIGNMENT
64 PIN PIN GRID ARRAY(PGA-64C-A02)


BOTTOM VIEW

PIN FUNCTION

Pin No.	Function	Pin No.	Function	Pin No.	Function
1	N.C.	23	A4	45	TD6
2	MHIT	24	A5	46	TD9
3	HITO/REPO	25	A7	47	Vcc
4	HIT2/REP2	26	A9	48	TD13
5	HIT3/REP3	27	N.C.	49	TD15
6	TDO	28	N.C.	50	TD17
7	TD2	29	$\overline{\text { PINV }}$	51	TD19
8	EXTH	30	SBLK	52	A0
9	MHENBL	31	SB1	53	A2
10	N.C.	32	INH	54	GND
11	TD7	33	INVL	55	A6
12	TD8	34	SET	56	A8
13	TD10	35	H/R	57	PURGE
14	TD11	36	HIT	58	MODE
15	TD12	37	HCO/RCO	59	$\overline{\mathrm{VINV}}$
16	TD14	38	HC1/RC1	60	SB0
17	TD16	39	HIT1/REP1	61	Vcc
18	TD18	40	GND	62	WRITE
19	N.C.	41	TD1	63	RLATCH
20	N.C.	42	TD3	64	PERR
21	A1	43	TD4		
22	A3	44	TD5		



PIN FUNCTION (continued)

Pin No.	Function	Pin No.	Function	Pin No.	Function
1	GND	24	TD17	47	$\overline{\text { PINV }}$
2	TDO	25	TD18	48	SBLK
3	TD1	26	TD19	49	SBO
4	TD2	27	N.C.	50	SB1
5	TD3	28	N.C.	51	$\overline{\mathrm{INH}}$
6	EXTH	29	N.C.	52	Vcc
7	TD4	30	A0	53	INV
8	N.C.	31	A1	54	WRITE
9	N.C.	32	A2	55	$\overline{\text { SET }}$
10	MHENBL	33	A3	56	RLATCH
11	TD5	34	A4	57	H/R
12	TD6	35	GND	58	$\overline{\text { PERR }}$
13	TD7	36	A5	59	HIT
14	TD8	37	A6	60	HCO/RCO
15	TD9	38	A7	61	N.C.
16	TD10	39	A8	62	N.C.
17	TD11	40	A9	63	HC1/RC1
18	Vcc	41	N.C.	64	MHIT
19	TD12	42	N.C.	65	HITO/REPO
20	TD13	43	N.C.	66	HIT1/REP1
21	TD14	44	PURGE	67	HIT2/REP2
22	TD15	45	MODE	68	HIT3/REP3
23	TD16	46	$\overline{\text { VINV }}$		

## PIN DESCRIPTION

OUTPUTS	HIT	HIT OUTPUT. "NOR" OF HITO TO HIT3
	$\mathrm{HCn} / \mathrm{RCn}$	CODED OUTPUTS OF HIT OR REPLACE INFORMATION ( $\mathrm{n}=0 \sim 1$ )
	HITn/REPn	UNCODED OUTPUTS OF HIT OR REPLACE INFORMATION ( $n=0 \sim 3)$
	$\overline{\text { PERR }}$	PARITY ERROR
	$\overline{\text { MHIT }}$	HIT OUTPUT MODIFIED BY MHENBL AND EXTH
INPUTS	MODE	MODE SELECTION   MODE $=1: 512$ Entry $\times 4$ Way   MODE $=0$ : 1024 Entry $\times 2$ Way
	A0-A9	ADDRESS INPUTS (A9 is not used for 4 way)
	TD0-19	TAG INFORMATION INPUTS
	$\overline{\text { PURGE }}$	ALL-PURGE TIMING PULSE
	$\overline{\text { INVL }}$	PARTIAL-PURGE, V-BIT FORCED TO "0". LRU IS REVERSIVELY UPDATED
	SBLK	ENABLE WAY-SELECTION EXTERNALLY AT REPLACEMENT AND INVALIDATION
	SB0, SB1	EXTERNAL WAY-ADDRESS INPUTS
	$\overline{\text { WRITE }}$	WRITE CYCLE SIGNAL
	$\overline{\text { SET }}$	TIMING PULSE   Write : Registrate TAG, V-bit "H", LRU update   Read : LRU updated   PARTIAL PURGE : LRU reversively update, V-bit "L"
	$\overline{\mathrm{NH}}$	ALL FUNCTIONS EXCEPT PURGE ARE INHIBITED
	H/R	OUTPUT SELECTION   $H / R=1$ : Hit Information   $H / R=0$ : Replace Information
	RLATCH	LATCH CONTROL FOR REPLACE INFORMATION
	$\overline{\text { PINV }}$	USE FOR "TESTING" ONLY (GENERALLY "H")
	$\overline{\text { VINV }}$	USE FOR "TESTING" ONLY (GENERALLY " ${ }^{\text {" }}$ )
	MHENBL	ENABLE MHIT OUTPUT
	EXTH	FORCE MHIT OUTPUT TO "L"

## FUNCTION TABLE

1) BASIC FUNCTION (Any combination except below are inhibited.)

Input					TAG Info.	Control Info.		LRU	Function Mode
$\overline{\text { INH }}$	PURGE	$\overline{\mathrm{SET}}$	WRITE	$\overline{\text { INVL }}$	TAG	P bit	$\checkmark$ bit	LRU	
L	H	X	$x$	$x$	N-CNG	N-CNG	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	INHIBIT ${ }^{3}$
H	H	H	X	X	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	TAG READ
H	H	T	H	H	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	$\mathrm{N}-\mathrm{CNG}$	N-CNG ${ }^{1}$ or UP-D	tag read
H	H	T	L	H	TD0 to TD19	SET	H	UP-D	TAG WRITE
X	L	H	X	X	UNDEFINED	UNDEFINED	L (All)	INCLZ	ALL PURGE
H	H	T	H	L	$\mathrm{N}-\mathrm{CNG}$	N-CNG	$\mathrm{N}-\mathrm{CNG} / \mathrm{L}^{2}$	$\mathrm{N}-\mathrm{CNG}^{1}$ or RUP-D	PARTIAL PURGE

X:"H" or "L"
N-CNG: No Change
UP-D : Up Dated

INCLZ : INITIALIZE
RUP-D : Reversively Updated

1. When SBLK = " $L$ " and no-HIT, then LRU is no change ( $N-C N G$ ).
2. When SBLK $=$ " $L$ " and no-HIT, then $V$-Bit is no change ( $N-C N G$ )
3. During INHIBIT mode, HIT and PERR outputs are " H " but the other outputs are " L ".

## 2) OUTPUT PIN FUNCTION

Input		Internal info. 1,2				Output							Mode
Mode	A9	hit0/ rep0	hit1/   rep1	$\begin{aligned} & \text { hit2/ } \\ & \text { rep2 } \end{aligned}$	hit3/ rep3	HITOI REPO	$\begin{aligned} & \text { HIT1/ } \\ & \text { REP1 } \end{aligned}$	$\begin{aligned} & \text { HIT2/ } \\ & \text { REP2 } \end{aligned}$	HIT3/ REP3	$\begin{aligned} & \mathrm{HCO} \\ & \mathrm{RCO} \end{aligned}$	$\begin{aligned} & \mathrm{HC1/} \\ & \mathrm{RC1} \end{aligned}$	$\frac{31}{\mathrm{HIT}}$	
H	$x$	L	L	L	L	L	$L$	L	$L$	L	L	H	
H	$x$	H	L	L	L	H	L	L	L	L	L	L	4
H	$x$	L	H	L	L	L	H	L	L	H	L	$L$	W
H	$x$	L	L	H	L	$L$	L	H	L	L	H	L	A
H	X	L	L	L	H	L	L	L	H	H	H	$L$	$Y$
L	L	$L$	X	L	$x$	$L$	L	L	L	L	L	H	
L	L	H	$x$	L	X	H	L	L	L	L	L	L	2
L	L	L	$X$	H	X	L	L	H	$L$	L	H	$L$	W
L	H	X	L	$x$	L	L	L	L	L	L	L	H	A
L	H	$x$	H	$x$	L	L	H	L	$L$	H	$L$	L	Y
L	H	X	L	X	H	L	L	L	H	H	H	L	

X: "H" or "L"

1. Internal information, rep0 to rep3 are determined by on-chip LRU logic when SBLK = "L". When SBLK = "H", the internal information are determined by external signal of SB0 \& SB1.
2. Correct operation is not guaranteed if 2 ways or more become HIT at the same time.
3. Output of $\overline{H I T}$ is valid when $H / R=$ " H ".
3) PARTIAL PURGE ( $\overline{\text { INVL }}=$ " $L$ ")

INPUT					INTERNAL INFO.				PURGE BLOCK					MODE
MODE	A9	SBLK	SBO	SB1	HIT				BLOCK					
					0	1	2	3	0	1	2	3		
H	X	L	X	X	L	$L$	L	L	-	-	--	-	---	4
H	X	L	X	X	H	L	L	L	Q	-	-	-	RUP-D	
H	X	L	X	$x$	L	H	L	L	-	Q	-	二	RUP-D	
H	X	$L$	$x$	X	L	L	H	L	-	-	Q	-	RUP-D	W
H	X	L	X	X	$L$	$L$	$L$	H	-	-	-	Q	RUP-D	A
H	$x$	H	L	L	X	$x$	$x$	X	Q	-	-	-	RUP-D	Y
H	X	H	H	L	X	$x$	$x$	$x$	-	Q	-	-	RUP-D	
H	X	H	L	H	X	X	$x$	$x$	-	-	Q	-	RUP-D	
H	X	H	H	H	X	X	X	X	-	-	-	Q	RUP-D	
L	L	L	X	X	L	$x$	L	$x$	-	-	-	-	---	2
$L$	L	$L$	X	X	H	X	L	$x$	Q	-	-	-	RUP-D	
L	L	L	X	X	$L$	X	H	$x$	-	-	Q	-	RUP-D	
L	L	H	L	L	X	X	X	$x$	Q	-	-	-	RUP-D	
L	L	H	$L$	H	X	X	$x$	X	-	-	Q	-	RUP-D	W   A
L	H	L	$x$	X	$x$	$L$	X	$L$	-	-	-	-	--	
$L$	H	$L$	X	X	X	H	X	L	-	Q	-	-	RUP-D	Y
L	H	L	X	X	$x$	$L$	X	H	-	-	-	Q	RUP-D	
$L$	H	H	H	L	X	X	X	X	-	Q	-	-	RUP-D	
L	H	H	H	H	X	$\times$	$\times$	X	-	-	-	Q	RUP-D	

Note: Correct operation is not guaranteed if 2 ways or more become HIT at the same time.
4) PARITY ERROR \& V-BIT ${ }^{1}$

pen	vno	vn1 0 to 3 )	PEn	HIT Info. ${ }^{2}$
L	L	L	L	---
L	L	$H$	$H$	HIT
L	$H$	L	$H$	HIT
L	$H$	$H$	L	HIT
$H$	L	L	L	---
$H$	L	$H$	$H$	HIT
$H$	$H$	L	$H$	HIT
$H$	$H$	$H$	$H$	HIT

1. PERR is "NOR" of PEO to PE3
2. Output information when internal "HIT" is valid.

## BASIC FUNCTIONS

## TAG READ

A comparison between the TAG input data (TDO-19) and the contents of the addressed location is performed. If both data are the same, that is "FOUND". Then HIT will be "LOW" and outputs of HCn, HITn indicate hitted "Associative way". In the case of "NOT-FOUND", the TAG RAM will specify the "way", which should be replaced, by using the LRU logic automatically.

The replacement information will be presented at the outputs of RCn and REPn by forcing the H/R input into "LOW". These signals will be latched and used for the data Memory move-in operation.

## TAG WRITE

When "NOT-FOUND" is occurred, the TAG-RAM also should be updated. The write operation is performed by WRITE "LOW" and $\overline{\text { SET }}$ pulse input. The TAG data will be written into the proper "way" by the internal LRU logic.
TAG-WRITE mode, V-bit (Validity bit) and the parity are set, and LRU logic is updated.

On the other hand, it will be able to specify the "way" externally by using SBLK, SB0 and SB1 inputs.
pen : Internal parity error of way "n"
vn0/vn1 : Duplicate validity bits.
PEn : Determined by the following equation.

$$
\mathrm{PEn}=(\mathrm{vn0}+\mathrm{vn} 1) \cdot \text { pen }+(\mathrm{vn0} \oplus \mathrm{vn} 1)
$$

## ALL PURGE

By asserting $\overline{\text { PURGE input "LOW", the V-bit are reset and LRU }}$ logic is initialized.

In this operation, the contents of each TAG and its parity will not be identified.

## PARTIAL PURGE

The partial purge operation is performed by $\overline{\mathrm{INVL}}$ "LOW" and $\overline{\text { SET }}$ pulse input.

The V-bit, which is specified by the address inputs, will be reset, and LRU logic will be reversively updated.

RECOMMENDED OPERATING CONDITIONS (Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input Low Voltage	VIL	$-0.5^{*}$		0.8	V
Input High Voltage	VIH	2.2		6.0	
Ambient Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

Note:
*-3.0V min. for pulse width less than 20 ns .

DC CHARACTERISTICS
(Recommended operating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Max
Input Leakage Current	$\mathrm{VIN}=0 \mathrm{~V}$ to Vcc	ILI	-10	10
Operating Supply Current	DOUT $=$ Open, Cycle $=\min$.	ICC		$\mu \mathrm{A}$
Output Low Voltage	$\mathrm{IOL}=8 \mathrm{~mA}$	VoL		mA
Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	VOH	2.4	00

Fig. 3 - AC TEST CONDITION

INPUT PULSE LEVELS
$: 0.0 \mathrm{~V}$ to 3.0 V
INPUT PULSE RISE AND FALL TIMES
TIMING REFERENCE LEVELS
Input : 1.5V
OUTPUT LOAD:


## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
 $4, ~ T N H=\| H 1$

Parameter	Symbol	MB81C51-25		MB81C51-30		Unit
		Min	Max	Min	Max	
Read Cycle Time	tre	50		50		ns
Address Valid to HIT, HCn, HITn	tah		25		30	ns
Address Valid to MHIT	tamb		27		32	ns
TAG Data Valid to $\overline{H I T}, \mathrm{HCn}, \mathrm{HITn}$	tTH		18		18	ns
TAG Data Valid to MHIT	TTMH		20		20	ns
$\overline{\text { HIT, HCn, HITn Hold Time }}$	the	0		0		ns
Address Valid to RCn, REPn	taR		35		40	ns
Address Valid to $\overline{\text { PERR }}$	tap		35		40	ns
Address Setup Time for $\overline{\text { SET }}$	tas	25		25		ns
TAG Data Setup Time for $\overline{\text { SET }}$	tTs	25		25		ns
$\overline{\text { SET Pulse Width }}$	tsw	20		20		ns
$\overline{\text { SET Recovery Time }}$	tsR	5		5		ns
RLATCH Setup Time	tris	10		10		ns
RCn, REPn Hold Time for RLATCH	tRH	0		0		ns
SBLK, SB0, SB1 Setup Time for RCn, REPn	tsbR		25		25	ns
SBLK, SB0, S81 Hold Time	tSBH	5		5		ns
RCn, REPn Hold Time for SBLK, SB0, SB1	tsh	0		0		ns
SBLK, SB0, SB1 Setup Time for SET	tsBS	25		25		ns
$\overline{\text { PERR Hold Time }}$	tph	0		0		ns
H/R to Multiplex output change	thr		10		12	ns
MHENBL, EXTH to $\overline{\text { MHIT }}$ output	tMMH		10		12	ns



Parameter	Symbol	MB81C51-25		MB81C51-30		Unit
		Min	Max	Min	Max	
Write Cycle Time	twe	50		50		ns
Address Valid to RCn, REPn	taR		35		40	ns
Address Setup Time for $\overline{\text { SET }}$	tas	25		25		ns
TAG Data Setup Time for $\overline{\text { SET }}$	tTs	25		25		ns
$\overline{\text { SET Pulse Width }}$	tsw	20		20		ns
$\overline{\text { SET Recovery Time }}$	tsa	5		5		ns
RLATCH Setup Time	tRLS	10		10		ns
SBLK, SB0, SB1 Setup Time for $\overline{\text { SET }}$	tsbs	25		25		ns
SBLK, SB0, SB1 Setup Time for PCn, REPn	tsbr		25		25	ns
PCn, REPn Hold Time for SBLK, SB0, SB1	tsh	0		0		ns
SBLK Hold Time	tSBH	5		5		ns
$\overline{\text { PINV, }}$ VINV Setup Time for $\overline{\text { SET }}$	tis	25		25		ns
$\overline{\text { PINV, }} \overline{\text { VINV }}$ Recovery Time for $\overline{\text { SET }}$	tir	5		5		ns


Parameter	Symbol	MB81C51-25		MB81C51-30		Unit
		Min	Max	Min	Max	
Pertial Purge Cycle	tPPC	50		50		ns
Address Setup Time for $\overline{\text { SET }}$	tas	25		25		ns
TAG Data Setup Time for $\overline{\text { SET }}$	tTs	25		25		ns
$\overline{\text { SET Pulse Width }}$	tsw	20		20		ns
$\overline{\text { SET Recovery Time }}$	tSR	5		5		ns
SBLK, SB0, SB1 Setup Time for $\overline{\text { SET }}$	tsBS	25		25		ns
SBLK, SB0, SB1 Hold Time	tSBH	5		5		ns



Parameter	Symbol	MB81C51-25		MB81C51-30		Unit
		Min	Max	Min	Max	
All Purge Cycle Time	tapc	100		100		ns
Purge Pulse Width	tPPW	50		50		ns
Purge Recovery Time	tPR	50		50		ns



Notes 1: Valid at $H / R=" H "$.
2: Valid at $H / R=$ " $L$ ".
3: LRU is updated at $\overline{S E T}=$ " $L$ ".
4: Replace latched at RLATCH $=$ " $H$ ".
5: Valid at $S B L K=$ "L".
6: Valid at SBLK $=$ " $H$ ".


Notes 1. Registrate TAG, V-bit "H", LRU update.
2. Replace latched at $\overline{\text { RLATCH }}=$ " $H$ ".
3. Valid at $\operatorname{SBLK}=$ "L".
4. Valid at SBLK $=" H$ ".

PARTIAL PURGE CYCLE (MODE $={ }^{*} H^{\prime \prime}$ or "L" $\overline{\text { PURGE }}=" H ", \overline{W R I T E}=" H ", \overline{I N V L}=" L ", H / R=" H "$ or "L", $\overline{\operatorname{INH}}=" H "$, RLATCH $=" L ", \overline{\text { PINV }}=" H "$ or "L", $\overline{V I N V}=" H "$ or " $L$ ")


Notes:

1. Valid at $\operatorname{SBLK}=$ "L".
2. LRU is reversively updated, V-bit "L".
3. Valid at $\operatorname{SBLK}=$ " H ".

All purge ( $\overline{\mathrm{SET}}=$ " H ", OTHER CONTROL INPUTS ARE " H " or " L ")
$A 0 ~ A 9$
$\overline{\text { PURGE }}$


## PACKAGE DIMENSIONS



## PACKAGE DIMENSIONS (continued)



## MB81C79B-35/-45 <br> CMOS 72K-BIT HIGH SPEED SRAM

## 8192-WORDS x 9-BIT HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB81C79B is 8192 words $\times 9$ bits static random access memory fabricated with a CMOS process. Because of 9 bit organization, this device is convenient to be used for parity check function and also this device has two fast column addresses, therefore MB81C79B is very suitable to used as cache buffers. To make power dissipation lower, peripheral circuits consist of CMOS technology, and to obtain smaller chip size, cells consisit of NMOS transistors and resistors. All pins are TTL compatible and a single 5 volts power supply is required.

All devices offer the advantages of low power dissipation, low cost and high performance.

- Organization: 8192words $\times$ 9bits
- Static operation: No clock or timing strobe required
- Fast access time: $t_{A A}=t_{A c s 1}=35$ ns max, $t_{O E}=10$ ns max

A11, A12 access time $=12$ ns max. (MB81C79B-35)
$t_{A A}=t_{A C S 1}=45$ ns $\max , t_{O E}=15$ ns max.
A11, A12 access time $=15$ ns max. (MB81C79B-45)

- Low power consumption: 550 mW (Operation)

138 mW (TTL Standby)
83mW (CMOS Standby)

- Single +5 V supply, $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state inputs and outputs
- Chip selects for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 28-pin 300mil Plastic DIP package (Suffix: -P-SK)
- Standard 28-pin 450 mil Gull wing flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7	V
Input Voltage on any pin with respect   to GND	$\mathrm{V}_{\mathrm{IN}}$	-3.5 to +7	V
Output Voltage on any I/O with respect   to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7	V
Output Current	$\mathrm{l}_{\text {OuT }}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAs }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storag Temperature	$\mathrm{T}_{\text {STG }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


This device contains circultry to protect the inputs against damage due to high static voltages of electric fields. However, it is advised that normal precautions be taken to avold application of any votage higher than maximum rated volages to this high impedance circult.

[^33]Fig. 1 - MB81C79B BLOCK DIAGRAM


TRUTH TABLE

$\overline{\mathrm{CS}_{1}}$	$\mathrm{CS}_{2}$	WE	$\overline{O E}$	MODE	SUPPLY CURRENT	$\begin{aligned} & \text { I/O } \\ & \text { STATE } \\ & \hline \end{aligned}$
H	X	X	x	STANDBY	$1_{\text {se }}$	HIGH-Z
L	L	X	X	DESELECT	$l_{\text {cc }}$	HIGH-Z
L	H	H	H	Dout DISABLE	$l_{\text {cc }}$	HIGH-Z
L	H	H	L	READ	${ }_{\text {cc }}$	Dout
L	H	L	X	WRITE	lcc	$\mathrm{D}_{\text {IN }}$

* Fast address

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance ( $\left.\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\right)\left(\overline{\mathrm{CS}_{1}} . \mathrm{CS}_{2}, \overline{\mathrm{OE}}, \overline{\mathrm{WE}}\right)$	$\mathrm{C}_{11}$		7	pF
Input Capacitance ( $\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$ ) (Other Inputs)	$\mathrm{C}_{12}$		6	pF
I/O Capacitance ( $\mathrm{V}_{10}=0 \mathrm{~V}$ )	$\mathrm{Cl}_{10}$		8	pF

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{cC}}$	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	$-2.0^{*}$		0.8	
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.2		6	
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	0		V	

*-2.0V Min. for pulse width less than $20 n s$. ( $\mathrm{V}_{\mathrm{K}}$ Min $=-0.5 \mathrm{~V}$ at DC level $)$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	Iu	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=O \mathrm{~V}$ to $\mathrm{V}_{\text {cC }}$
Output Leakage Current	ILO	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}_{1}}=\mathrm{V}_{\mathrm{HH}} \text { or } \mathrm{CS}_{2}=V_{1 \mathrm{~L}} \text { or } \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{LL}} \text { or } \\ & \overline{\mathrm{OE}}=\mathrm{V}_{1 H}, \mathrm{~V}_{\text {our }}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}} \end{aligned}$
Operating Supply Current	Icc		130	mA	$\begin{aligned} & \overline{\mathrm{CS}_{1}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I} / \mathrm{O}=\mathrm{Open}, \text { Cycle }=\mathrm{Min} \end{aligned}$
Standby Supply Current	$\mathrm{I}_{\text {SB } 1}$		15	mA	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$ to Max. $\overline{\mathrm{CS}_{1}}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$   $\mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$
	$\mathrm{I}_{\text {SB2 }}$		25	mA	$\overline{\mathrm{CS}_{1}}=\mathrm{V}_{1 H}$
Output Low Voltage	$V_{O L}$		0.4	V	$\mathrm{l}_{\mathrm{ol}}=8 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Peak Power-on Current	Ipo		50	mA	$\begin{aligned} & V_{C C}=0 V \text { to } V_{C C} M i n . \\ & {C S_{1}}_{1}=\text { Lower of } V_{C C} \text { or } V_{I H} \text { Min. } \end{aligned}$

## AC TEST CONDITIONS

Input Pulse Levels:
Input Pulse Rise And Fall Times: $\quad$ 5ns (Transient time between 0.8 V and 2.2 V )
Timing Measurement Reference Levels:Input: 1.5V
Output:1.5V

Fig. 2

Output Load I.
For all except $t_{L z}, t_{H z}, t_{w z}, t_{W}, t_{0 L z}$, and $t_{\text {ohz }}$.


Output Load II.
For $t_{L z}, t_{H z}, t_{W z}, t_{W}, t_{O L z}$, and $t_{O H z}$.


## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.) READ CYCLE*1

Parameter	Symbol	MB81C79B-35		MB81C79B-45		Unit
		Min	Max	Min	Max	
Read Cycle Time	$t_{\text {Ac }}$	35		45		ns
Address Access Time *2	tan		35\#1		45\#2	ns
$\overline{\mathrm{CS}}$, Access Time *3	tacs ${ }^{\text {a }}$		35		45	ns
$\mathrm{CS}_{2}$ Access Time *3	tacs2		15		20	ns
Output Hold from Address Change	$\mathrm{L}_{\mathrm{OH}}$	3		3		ns
$\overline{\mathrm{OE}}$ Access Time	toe		10		15	ns
Output Active from $\overline{\mathrm{CS}_{1}} * 4 * 5$	tizi	5		5		ns
Output Active from $\mathrm{CS}_{2}{ }^{* * * 5}$	472	2		2		ns
Output Active from $\overline{\mathrm{OE}} * 4 * 5$	tolz	2		2		ns
Output Disable from $\overline{\mathrm{CS}_{1}} * 4 * 5$	4/21		20		25	ns
Output Disable from $\mathrm{CS}_{2} * 4 * 5$	4172		20		25	ns
Output Disable from $\overline{\mathrm{OE}} * 4 * 5$	$\mathrm{t}_{\mathrm{OHz}}$		20		25	ns

Note: * $\overline{\text { WE }}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}_{1}}=\mathrm{V}_{\mathrm{L}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{HH}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{LL}}$.
*3 Address valid prior to or coincident with $\mathrm{CS}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.

* 4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.
\#1 A11, A12 address access time is 12 ns max.
\#2 A11, A12 address access time is 15 ns max.


## MB81C79B-35

MB81C79B-45

## READ CYCLE TIMING DIAGRAM ${ }^{* 1}$

READ CYCLE I: ADDRESS CONTROLLED *2


READ CYCLE II: $\overline{C S}_{1}$, CS $_{2}$ CONTROLLED *3


Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{IH}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## WRITE CYCLE**

Parameter	Symbol	MB81C79B-35		MB81C79B-45		Unit
		Min	Max	Min	Max	
Write Cycle Time *2	twc	35		45		ns
$\overline{\mathrm{CS}}$, to End of Write	tcw 1	30		40		ns
$\mathrm{CS}_{2}$ to End of Write	tcw ${ }^{\text {a }}$	20		25		ns
Address Valid to End of Write	$t_{\text {aw }}$	30		40		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	twp	20		25		ns
Data Setup Time	tow	17		20		ns
Write Recovery Time *3	twn	3		3		ns
Data Hold Time	ton	0		0		ns
Output High-Z from $\overline{\text { WE ***5 }}$	twz		15		20	ns
Output Low-Z from $\overline{W E}$ *4*5	tow	0		0		ns

Note: *1 If $\overline{\mathrm{CS}_{1}}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All write cycles are determined from the last address transition to the first address transition of next address.

* $3 t_{\text {WR }}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.


## WRITE CYCLE TIMING DIAGRAM ${ }^{\circ}$

WRITE CYCLE I: $\overline{\mathrm{CS}_{1}}, \mathrm{CS}_{2}$ CONTROLLED

: Undefined Don't Care

Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}_{1}}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.


Note: * 1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 twe is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## PACKAGE DIMENSIONS

## 28-LEAD PLASTIC DUAL IN-LINE PACKAGE <br> (Case No.: DIP-28P-M04)


(C) 1988 FUIITSU LIMITED D28018S-2C inches (millimeters)

## PACKAGE DIMENSIONS



## FUJITSU

## 72K-BIT ( $8192 \times 9$ ) SYNCHRONOUS CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB8279RT is a 8,192 -words by 9 -bits synchronous static random access memory fabricated with a CMOS silicon gate process.
Write operation is initiated by internal write pulse generator, which is driven by the clock signal given through the CLK pin therefore external control of write pulse width is not necessary. Compared to the traditional RAM, MB8279RT drastically improves the system level cycle time because signal skews are not necessarily concerned.
The MB8279RT has a 32 -pin plastic skinny DIP package and 32 -pin plastic flat package as 'package options.
All pins are TTL compatible, and a single +5 V power supply is required.

- 8,192 words $\times 9$ bits organization
- Fast access time:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{ACL}}= & 20 \mathrm{~ns} \text { max. } / \\
\mathrm{t}_{\mathrm{ACS} 2}= & \mathrm{t}_{\mathrm{PE} 2}=10 \mathrm{~ns} \text { max. } \\
& \text { (MB8279RT-20) } \\
\mathrm{t}_{\mathrm{ACL}}= & 25 \mathrm{~ns} \text { max. } / \\
\mathrm{t}_{\mathrm{ACS}}= & \mathrm{t}_{\mathrm{PE} 2}=12 \mathrm{~ns} \text { max. } \\
& \text { (MB8279RT-25) }
\end{aligned}
$$

- Registered addresses, $\overline{\mathrm{CS}}_{1}, \overline{\mathrm{WE}}$ and Data inputs
- Write cancel function by asynchronous $\mathrm{CS}_{2}$ pin
- On-chip write pulse generator
- On-chip parity checker
- CMOS peripheral
- Single $=5 \mathrm{~V}( \pm 10 \%)$ power supply with low current drain
Active operation $=120 \mathrm{~mA}$ max. Standby operation $=30 \mathrm{~mA} \max$.
- Common data inputs/outputs
- TTL compatible inputs/outputs
- Three-state data output and open drain parity error output
- Standard 32 -pin plastic DIP package: (Suffix P-SK) Standard 32 -pin plastic flat package (Suffix PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage	$\mathrm{V}_{1 / \mathrm{O}}$	-0.5 to +7.0	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to 125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

March 1989
Edition 2.0


[^34]Fig. 1 - MB8279RT BLOCK DIAGRAM


CAPACITANCE $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{1 / O}=0 \mathrm{~V}\right)$	$\mathrm{C}_{1 / O}$			8	pF
Input Capacitance $\left(\mathrm{V}_{1 N}=0 \mathrm{~V}\right)$	$\mathrm{C}_{I N}$			6	pF

## PIN DESCRIPTION

Symbol	Pin name	Input/ Output	Function
CLK	Clock	Input	Address, $\quad \overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{WE}}$ are fetched at the rising edge of the CLK, and $D_{I N}$ is fetched at falling edge of the CLK.
INH	Inhibit	Input	While INH = " $\mathrm{H}^{\prime \prime}$, a low level of CLK is disabled.
$\overline{C L R}$	Clear	Input	When $\overline{C L R}=$ " $L$ ", the contents of $\overline{C S}_{1}$ and $\overline{W E}$ register are cleared to standby.
$A_{0}$ to $A_{12}$	Address Input	Input	Synchronous address inputs.
$\overline{\mathrm{CS}_{1}}$	Chip Select 1	Input	Synchronous Chip Select $1\left(\overline{\mathrm{CS}}_{1}\right)$ input.   (This pin can be used as power down.)
$\mathrm{CS}_{2}$	Chip Select 2	Input	Asynchronous high-speed Chip Select $2\left(\mathrm{CS}_{2}\right)$ input. (This pin can be used as write cancel.)
$\overline{W E}$	Write Enable	Input	Synchronous Write Enable ( $\overline{\mathrm{WE}}$ ) input.
$\mathrm{I} / \mathrm{O}_{1}$ to $\mathrm{I} / \mathrm{O}_{9}$	Data Input/Output	Input/ Output	Data inputs/outputs.   (Synchronous data inputs/Asynchronous data outputs)
$\overline{\text { PE }}$	Parity Error	Output	Asynchronous parity error output: $\overline{\mathrm{PE}}$ output remains High-Impedance state through undefined area.
$\mathrm{V}_{\mathrm{cc}}$	Power Supply	-	$+5 \mathrm{~V} \pm 10 \%$ power supply.
GNDQ	Ground for Output	-	Ground for output circuits.
GND	Ground for Others	-	Ground for other circuits.

## TRUTH TABLE

$\overline{\text { CLR }}$	$\overline{C S}_{1}$	CS $_{2}$	$\overline{\text { WE }}$	MODE	I/O PIN	$\overline{\text { PE OUTPUT PIN }}$	SUPPLY CURRENT
L	$X$	$X$	$X$	STANDBY	HIGH-Z	HIGH-Z	STANDBY
$H$	$H$	$X$	$X$	STANDBY	HIGH-Z	HIGH-Z	STANDBY
$H$	L	L	$X$	CHIP DISABLE	HIGH-Z	HIGH-Z	ACTIVE
$H$	L	H	H	READ	DOUT	$\overline{\text { PE OUTPUT }}$	ACTIVE
$H$	L	H	L	WRITE	DIN	HIGH-Z	ACTIVE

[^35]RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	0		70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions otherwise noted.)

Parameter		Test Conditions	Symbol	Min	Max	Unit
Standby Supply Current		$\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{H}}$	$I_{\text {SB }}$		30	mA
Operating Supply Current		$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I} / \mathrm{O}=\mathrm{Open} \\ & \mathrm{Cycle}=\min . \end{aligned}$	Icc		120	mA
Input Leakage Current		$V_{\text {IN }}=G N D$ to $V_{\text {CC }}$	$I_{\text {L }}$	-10	10	$\mu \mathrm{A}$
Output Leakage Current		$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{H}} \text { or } \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{~L}} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$I_{\text {LI/O }}$	-10	10	$\mu \mathrm{A}$
Input Low Voltage			$V_{\text {IL }}$	$-2.0{ }^{* 1}$	0.8	V
Input High Voltage			$V_{1 H}$	2.2	6.0	V
Output High Voltage		$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OH}}$	2.4		V
Output Low Voltage	Dout	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	$\mathrm{V}_{\text {OL }}$		0.4	V
	$\overline{P E}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$				
Peak Power-on Current* ${ }^{*}$		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{GND} \text { to } 4.5 \mathrm{~V} \\ & \mathrm{CLR}=\mathrm{GND} \end{aligned}$	Ipo		90	mA

Note: *1 -2.0 V Min. for pulse width less than 20 ns . $\left(\mathrm{V}_{1 \mathrm{~L}}=-0.3 \mathrm{~V}\right.$ at DC level)
*2 The $\overline{C L R}$ input should be connected to GND to keep the device deselected.

Fig. 2 - AC TEST CONDITIONS

- input pulse levels:
- timing reference levels:
0.6 V TO 2.4 V

INPUT: $\quad V_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$
OUTPUT: $V_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$

- OUTPUT LOAD

*iNCLUDING JIG AND STRAY CAPACITANCE.
( $C_{L}=5 p F$ for $t_{L Z}, t_{H Z}, t_{L Z 2}, t_{H Z 2}$ and $t_{C R H Z}$ )

$$
\left(C_{L}=5 p F \text { for } t_{P L Z}, t_{P H Z}, t_{P L Z 2}, t_{P H Z 2} \text { and } t_{C R H Z}\right)
$$

## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter			Symbol	MB8279RT-20		MB8279RT-25		Unit	
			Min	Max	Min	Max			
Read Cycle Time	When no uses $\overline{\mathrm{PE}}$			$\mathrm{t}_{\mathrm{BC}}$	20		25		ns
	When uses $\overline{\mathrm{PE}}$		$\mathrm{t}_{\mathrm{RC}}$	25		30		ns	
Clock "H" Level Pulse Width			$\mathrm{t}_{\mathrm{CLH}}$	8		10		ns	
Clock "L" Level Pulse Width			$\mathrm{t}_{\mathrm{CLL}}$	8		10		ns	
Input Setup Time			$\mathrm{t}_{5}$	4		4		ns	
Input Hold Time			$\mathrm{t}_{\mathrm{H}}$	2		2		ns	
Clock Access Time		Dout	$\mathrm{t}_{\mathrm{ACL}}$		20		25	ns	
		$\overline{\text { PE }}$	$\mathrm{t}_{\text {PE }}$		25		30	ns	
$\mathrm{CS}_{2}$ Access Time		Dout	$\mathrm{t}_{\mathrm{ACS} 2}$		10		12	ns	
		$\overline{\text { PE }}$	$\mathrm{t}_{\text {PE2 }}$		10		12	ns	
$\mathrm{CS}_{2}$ to Output Low-Z		Dout	$\mathrm{t}_{\mathrm{LZ2}}$	2		2		ns	
		$\overline{\mathrm{PE}}$	$\mathrm{t}_{\text {PLZ2 }}$	2		2		ns	
$\mathrm{CS}_{2}$ to Output High-Z		Dout	$\mathrm{t}_{\mathrm{Hz2}}$	2	8	2	10	ns	
		$\overline{\mathrm{PE}}$	$\mathrm{t}_{\text {PHZ2 }}$	2	8	2	10	ns	
Output Hold from Clock		Dout	${ }^{\text {tor }}$	2		2		ns	
		$\overline{\text { PE }}$	$\mathrm{t}_{\mathrm{PH}}$	2		2		ns	
Output Hold from $\mathrm{CS}_{2}$		$\mathrm{D}_{\text {OUT }}$	$\mathrm{t}_{\mathrm{OH} 2}$	2		2		ns	
		$\overline{\mathrm{PE}}$	$\mathrm{t}_{\text {PH2 }}$	2		2		ns	



Note 1: $\overline{\mathrm{PE}}$ output remains High-Impedance state through undefined area.

WRITE CYCLE

Parameter		Symbol	MB8279RT-20		MB8279RT-25		Unit	
		Min	Max	Min	Max			
Write Cycle Time			$\mathrm{t}_{\text {wc }}$	20		25		ns
Clock "H" Level Pulse Width		$\mathrm{t}_{\mathrm{CLH}}$	8		10		ns	
Clock "L" Level Pulse Width		${ }^{\text {chel }}$	8		10		ns	
Input Setup Time		$\mathrm{t}_{5}$	4		4		ns	
Input Hold Time		$\mathrm{t}_{\mathrm{H}}$	2		2		ns	
$\mathrm{CS}_{2}$ Setup Time		${ }^{\text {t }}$ cs	2		2		ns	
$\mathrm{CS}_{2}$ Hold Time		${ }^{\text {t }}$ CH	8		10		ns	
Data Setup Time		$\mathrm{t}_{\mathrm{DS}}$	0		0		ns	
Data Hold Time		$\mathrm{t}_{\mathrm{DH}}$	6		6		ns	
CLK to Output High-Z	Dout	$\mathrm{t}_{\mathrm{HZ}}$	2	8	2	10	ns	
	$\overline{\text { PE }}$	$t_{\text {PHZ }}$	2	8	2	10	ns	
CLK to Output Low-Z	D OUT	$\mathrm{t}_{\text {LZ }}$	2		2		ns	
	$\overline{\text { PE }}$	$t_{\text {PLZ }}$	2		2		ns	

CLOCK INHIBIT TIMING

Parameter	Symbol	MB8279RT-20		MB8279RT-25		Unit
			Min	Max	Min	
Clock Inhibit Setup Time	$\mathrm{t}_{\text {CLIS }}$	2		2		ns
Clock Inhibit Hold Time	$\mathrm{t}_{\text {CLIH }}$	2		2		ns
Clock Enable Setup Time	$\mathrm{t}_{\text {CLES }}$	2		2		ns
Clock Enable Hold Time	$\mathrm{t}_{\text {CLEH }}$	0		0		ns

## REGISTOR CLEAR TIMING

Parameter	Symbol	MB8279RT-20		MB8279RT-25		Unit
			Min	Max	Min	
Clear Pulse Width	$\mathrm{t}_{\text {CRW }}$	7		7		ns
Clear Hold Time	$\mathrm{t}_{\text {CRH }}$	10		10		ns
Clear Recovery Time	$\mathrm{t}_{\text {CRR }}$	10		10		ns
Clear to Output High-Z	$\mathrm{t}_{\text {CRHZ }}$	2	8	2	10	ns

## FUJITSU <br> MB8279RT-20 MB8279RT-25



Note 1: When $\mathrm{CS}_{2}=\mathrm{H}$ level, write operation is excuted and when $\mathrm{CS}_{2}=\mathrm{L}$ level, write operation is cancelled.



## PACKAGE DIMENSIONS



## PACKAGE DIMENSIONS (continued)



## 32K x 8-BIT STATIC RANDOM ACCESS MEMORY WITH PARITY GENERATOR AND CHECKER

The Fujitsu MB8287 is 32768 words $\times 8$ bits high speed static random access memory with parity generator and checker, fabricated with CMOS technology. To obtain smaller chip, cell consists of NMOS transistors and resistors therefore this device is assembled in 300 mil DIP and has such small power dissipation as 605 mW max.
All pins are TTL compatible and single 5 volt power supply is required.
A separate chip select ( $\overline{\mathrm{CS}}_{1}$ ) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$ the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 32768 words $\times 8$ bits
- Static operation: no clocks or timing strobe required
- Fast access time:

$$
t_{A A}=t_{A C S 1}=25 \mathrm{~ns} \text { max }
$$

$\mathrm{t}_{\mathrm{ACS} 2}=14 \mathrm{~ns} \max (\mathrm{MB8287-25})$
$t_{A A}=t_{A C S 1}=35 \mathrm{~ns}$ max,
$\mathrm{t}_{\mathrm{ACS} 2}=15 \mathrm{~ns}$ max (MB8287-35)

- Low power consumption: 715 mW max. (Operating) for 25 ns 605 mW max. (Operating) for 35 ns 138 mW max. (TTL Standby) 83mW max. (CMOS Standby)
- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- Internal parity generator and checker.
- All inputs and outputs have protection against static charge
- Standard 32-pin DIP package ( 300 mil): (Suffix: P-SK)
- Standard 32-pin FPT package ( 450 mil): (Suffix: PF)


## AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7	V
Input Voltage on any pin   with respect to GND	$\mathrm{V}_{\text {IN }}$	-3.5 to +7	V
Output Voltage on any I/O   pin with respect to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-45 to 125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



CAPACITANCE ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Input Capacitance $\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{\mathrm{WE}})}\right.$	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	$\mathrm{C}_{11}$			8	pF
Input Capacitance (Other Input)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	$\mathrm{C}_{12}$			7	pF
$\mathrm{I} / \mathrm{O}$ Capacitance (with $\overline{\mathrm{PE}})$	$\mathrm{V}_{1 / 0}=0 \mathrm{~V}$	$\mathrm{C}_{1 / 0}$			8	pF

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	0		70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherside noted.)

Parameter		Symbol	Test Conditions	Min	Max	Unit
Standby Supply Current		$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \overline{\mathrm{CS}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		15	mA
		$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \mathrm{CS}_{1}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$		25	mA
Operating Supply Current	25ns	$I_{\text {cc }}$	$\begin{aligned} & \text { 'out }=0 \mathrm{~mA}, \overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}} \\ & \text { Cycle }=\text { Min. } . \end{aligned}$		130	mA
	35ns				110	
Input Leakage Current		$I_{L I}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$	-5	5	$\mu \mathrm{A}$
Output Leakage current		$\mathrm{I}_{\text {LI/O }}$	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{H}}=\text { or } \overline{\mathrm{CS}}_{2}=V_{I L} \text { or } \\ & \mathrm{WE}=V_{I L} \text { or } O E=V_{I H} . \\ & V_{1 / O}=0 \mathrm{~V} \text { to } V_{\mathrm{CC}} \end{aligned}$	-5	5	$\mu \mathrm{A}$
Input Low Voltage		$V_{\text {IL }}$		$-2.0{ }^{* 1}$	0.8	V
Input High Voltage		$V_{1 H}$		2.2	6.0	V
Output High Voltage		$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.4		V
Output Low Voltage		$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$		0.4	V

Note: *1 -2.0 V Min. for pulse width less than 20 ns . ( $\mathrm{V}_{\mathrm{IL}}$ min. $=-0.5 \mathrm{~V}$ at DC level)
All voltages are referenced to GND.
Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise \& Fall Times:
- Timing Reference Levels:
- Output Load:
0.6 V to 2.4 V

3 ns (Transient between 0.8 V and 2.2 V )
Input: $\quad V_{I L}=0.8 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=2.2 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.2 \mathrm{~V}$


	$R_{1}$	$R_{2}$	$C_{L}$	Parameters Measured
Load I	$480 \Omega$	$255 \Omega$	$30 p F$	except $t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}, t_{O H Z}, t_{P H Z}$ and $t_{P O H Z}$
Load II	$480 \Omega$	$255 \Omega$	$5 p F$	$t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}, t_{O H Z}, t_{P H Z}$ and $t_{P O H Z}$

## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)
READ CYCLE*1

Parameter	Symbol	MB8287-25		MB8287-35		Unit
		Min	Max	Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{RC}}$	25		35		ns
Address Access Time*2	${ }^{t} A$		25		35	ns
$\overline{\mathrm{CS}}_{1}$ Access Time ${ }^{* 3}$	$t_{\text {ACS1 }}$		25		35	ns
$\mathrm{CS}_{2}$ Acces Time ${ }^{\text {* }}$	$t_{\text {ACS } 2}$		14		15	ns
$\overline{\mathrm{OE}}$ Access Time	toe		12		14	ns
Output Hold from Address Change	$\mathrm{t}_{\mathrm{OH}}$	3		3		ns
Output Active from $\overline{\mathrm{CS}}_{1}{ }^{*}{ }^{* 5}$	$t_{L Z 1}$	5		8		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$t_{\text {LZ2 }}$	2		3		ns
Output Active from $\overline{\mathrm{OE}}^{* 4 * 5}$	$\mathrm{t}_{\text {OLZ }}$	2		3		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{*}{ }^{* 5}$	$\mathrm{t}_{\mathrm{HZ1}}$	1	15	1	15	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$t_{\text {HZ2 }}$	1	15	1	15	ns
Output Disable from $\overline{\mathrm{OE}}{ }^{*}{ }^{* 5}$	$\mathrm{t}_{\mathrm{OHz}}$	1	15	1	15	ns
Parity Error Access from Address*2	${ }^{t}$ APA		28		40	ns
Parity Error Access from $\overline{\mathrm{CS}}_{1}{ }^{* 3}$	$\mathrm{t}_{\text {APCS1 }}$		28		40	ns
Parity Error Access from $\mathrm{CS}_{2}{ }^{* 3}$	$\mathrm{t}_{\text {APCS2 }}$		14		15	ns
Parity Error Access from $\overline{\mathrm{OE}}$	$t_{\text {APOE }}$		12		14	ns
Parity Error Hold from Address Change	$\mathrm{t}_{\mathrm{POH}}$	3		3		ns
Parity Error Disable from Address Change ${ }^{* * 5}$	$t_{\text {PHZA }}$	1	20	1	25	ns
Parity Error Disable from $\overline{\mathrm{CS}}_{1}{ }^{* 4 * 5}$	${ }^{\text {P }}{ }^{\text {Hz1 }}$	1	15	1	15	ns
Parity Error Disable from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	${ }^{\text {t }}{ }^{\text {Hz2 }}$	1	15	1	15	ns
Parity Error Disable from $\overline{\mathrm{OE}} *{ }^{*}{ }^{5}$	$t_{\text {POHz }}$	1	15	1	15	ns

Note: *1 $\overline{\mathrm{WE}}$ is high for Read Cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{C S}_{1}=V_{I L}, \mathrm{CS}_{2}=V_{I H}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

READ CYCLE: ADDRESS CONTROLLED*2


READ CYCLE: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED*3


Note: *1 $\overline{W E}$ is high for Read Cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{IH}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
${ }^{*} 4$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

## MB8287-25

 MB8287-35
## PARITY READ FUNCTION TIMING DIAGRAM*1,6

1) ADDRESS CONTROLLED*2

2) $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED*3


Note: *1 $\overline{W E}$ is high for Read Cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=$ " L ", $\mathrm{CS}_{2}=$ " H " and $\overline{\mathrm{OE}}=$ " L ".
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.
*6 When error occurred, $\overline{\mathrm{PE}}$ pin outputs " $L$ ". But when no error, $\overline{\mathrm{PE}}$ pin is in High-Z state.

## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)
WRITE CYCLE* ${ }^{1, * 6, * 7}$

Parameter	Symbol	MB8287-25		MB8287-35		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{*}{ }^{2}$	${ }^{\text {tw }}$ c	25		35		ns
Address Valid to End of Write	${ }^{\text {A }}$ W	18		28		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{t} \mathrm{CW}_{1}$	16		26		ns
$\mathrm{CS}_{2}$ to End of Write	${ }^{\text {t }}$ W ${ }^{\text {2 }}$	13		20		ns
Data Setup Time	${ }^{\text {t }}$ W	8		12		ns
Data Hold Time	${ }^{\text {t }}$ DH	0		0		ns
Write Pulse Width	${ }_{\text {t }}^{\text {w }}$ P	15		20		ns
Write Recovery Time*3	$t_{\text {WR }}$	0		0		ns
Address Setup Time	${ }^{\text {t }}$ AS	0		0		ns
Output Low-Z from $\overline{\mathrm{WE}}{ }^{*}{ }^{* 5}$	tow	0		0		ns
Output High-Z from $\overline{\mathrm{WE}}{ }^{* 4 * 5}$	${ }^{\text {w }}$ z	0	8	0	14	ns

Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.
*6 In normal Write Cycle, $\overline{\mathrm{PE}}$ pin must be pulled-up to High.
*7 If data " $L$ " is written in $\overline{P E}$ pin under the same timing as data input on I/O pins, "Error" information is written in the parity bit addressed forcibly.

## WRITE CYCLE TIMING DIAGRAM *1,*6,*7

WRITE CYCLE No. 1 ( $\overline{\text { WE }}$ CONTRORRED)


Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
${ }^{*} 4$ Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.
*6 In normal Write Cycle, $\overline{\text { PE }}$ pin must be pulled-up to High.
*7 If data " $L$ " is written in $\overline{P E}$ pin under the same timing as data input on I/O pins, "Error" information is written in the parity bit addressed forcibly.

## WRITE CYCLE TIMING DIAGRAM *1,*6,*7

WRITE CYCLE No. $2\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS} 2\right.$ CONTROLLED)


Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All Write Cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{\text {WR }}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.
*6 In normal Write Cycle, $\overline{\text { PE }}$ pin must be pulled-up to High.
*7 If data " $L$ " is written in $\overline{P E}$ pin under the same timing as data input on I/O pins, "Error" information is written in the parity bit addressed forcibly.

FUJITSU
Hinlixinnwinw

## PACKAGE DIMENSIONS



## PACKAGE DIMENSIONS (continued)



## DUAL PORT STATIC RAM 2K X 8-BIT CMOS

The Fujitsu MB8421/MB8422 are 2 K by 8 dual-port high-performance Static Random Access Memorles (SRAMs) fabricated in CMOS. The SRAMs use asynchronous circuits; thus, no external clocks are required. The MB8421 and MB8422 provide the user with two separately controlled I/O ports with independent addresses, Chip Select (CS), Write Enable (WE), Output Enable $(\overline{O E})$, and I/O functions. This arrangement permits independent access to any memory location for either a Read or Write operation - a useful feature for shared data processing applications. These devices have. an automatic power-down feature controlled by CS.

To avoid data contention on the same address, a ( $\overline{B U S Y}$ ) flag is provided for address arbltration; in addition, the MB8421 utllizes an (INT) flag which allows communication between systems on either side of the RAM. Both devices use a single 5 -volt power supply and all pins are TTL-compatible.

Some typical applications for these memory devices are multiprocessing systems, distributed networks, external register files, and peripheral controllers.

- Organization: 2048 words by 8 bits.
- Static operation: No clocks or timing strobes required.
- Fast Access Time: $\left.\begin{array}{l}\text { MB8421/22-90 } \\ \text { MB8421/22-90L } \\ \text { MB8421/22-12 }\end{array}\right\} t_{A A}=t_{A C S}=90 \mathrm{~ns}$ (max) $\left.\begin{array}{l}\text { MB8421/22-12 } \\ \text { MB8421/22-12L }\end{array}\right\} t_{A A}=t_{A C S}=120 \mathrm{~ns}(\max )$
- Low Power Consumption: Both ports active Standard Version One port active Both ports standby/ CMOS Both ports standby/ TTL
$=660 \mathrm{~mW}$ (max)
Low Power Version
495 mW (max)
275 mW (max)
$=11 \mathrm{~mW}(\max )$
$1.1 \mathrm{~mW}(\max )$
- TTL-Compatible Inputs and Outputs.
$=38.5 \mathrm{~mW}$ (max)
27.5 mW (max)
- Three-State Outputs with Or-tie Capability.
- Electrostatic Protection for All Inputs and Outputs.
- Address Arbitration: (BUSY) flag.
- Interrupt Function for Communication Between Systems (MB8421 only): (INT) flag.
- Data Retention Voltage: 2.0V min.
- Single $+5 \mathrm{~V}( \pm 10 \%)$ Supply.

ABSOLUTE MAXIMUM RATINGS 1, 2

Parameter	Designator	Value	Unit
Supply Voltage	$V_{\text {cc }}$	-0.5 to +7	V
Input Voltage on any pin with respect to Vss	VIN	$\begin{aligned} & -0.5 \text { to } \\ & V_{c c}+0.5 \end{aligned}$	V
Output Voltage on any I/O pin with respect to $V_{S S}$	VOUT	$\begin{aligned} & -0.5 \text { to } \\ & V_{C C}+0.5 \end{aligned}$	V
Output Current	IOUT	$\pm 20$	mA
Power dissipation	PD	1.0	W
Temperature Under Bias	TBIAS	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-45 to +125	

 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

NOTE:
Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


I/O CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $(\mathrm{VIN}=\mathrm{OV})$	CIN		10	pF
$\mathrm{I} / \mathrm{O}$ Capacitance $(\mathrm{VI} / \mathrm{O}=\mathrm{OV})$	$\mathrm{CI} / \mathrm{O}$		10	pF

## PIN ASSIGNMENTS



## PIN DESCRIPTIONS

Left Port	Right Port	Function	Left Port	Right Port	Function
$\overline{W E}_{L}$	$\overline{W E}_{R}$	Write Enable	$\overline{I N T}_{L}$	$\overline{I N T}_{R}$	Interrupt Flag
$\overline{\mathrm{CS}}$	$\overline{C S}_{R}$	Chip Select	$\mathrm{AO}_{\mathrm{L}}-\mathrm{C}^{\text {a }}$	$A 0{ }^{--A 10}$	Address
$\overline{O E}_{L}$	$\overline{O E}_{R}$	Output Enable	$\mathrm{AO}_{\mathrm{L}} \quad \mathrm{AlO}$	${ }^{10}$	Address
$\overline{B U S Y_{L}}$	$\overline{B U S Y}_{R}$	Busy Flag	$1 / 00_{L}^{--1 / O 7}$	$1 / 00{ }_{R}-1 / 07_{R}$	Data Input/Output
Vcc					Power (Common)
Vss					Ground (Common)

## FUNCTIONAL OPERATION

The MB8421 and MB8422 provide two ports with separate control signals, address inputs, and input/output data pins that allow asynchronous read and write operations to any memory location. Each device has an on-chip automatic power-down feature controlled by टS that places the respective port in the standby mode when the chip is deselected $\overline{(C S}$ is $H I G H)$.

When a port is enabled, access to the entire memory array is permitted. Each port has an independent Output Enable ( $\overline{O E}$ ) control that is active in the read mode and enables the output drivers. Non-contention Read/Write conditions are shown in the following Truth Table; a simplified block diagram of the dual-port SRAM is shown in Figure 1.

## NON-CONTENTION READ/WRITE CONTROL

LEFT PORT INPUTS ${ }^{1}$			RIGHT PORT INPUTS ${ }^{1}$			FLAGS		FUNCTION
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\overline{C S}_{L}$	$\overline{O E}_{L}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	$\overline{C S}_{R}$	$\overline{O E}_{R}$	$\overline{B U S Y}^{\text {L }}$	BUSY $_{\text {R }}$	
X	H	X	X	X	X	H	H	Left Port in Power Down Mode
X	X	X	X	H	X	H	H	Right Port in Power Down Mode
L	L	X	X	X	X	H	H	Data on Left Port Written Into Memory
H	L	L	X	X	X	H	H	Data in Memory Output on Left Port
X	X	X	L	L	X	H	H	Data on Right Port Written Into Memory
X	X	X	H	L	L	H	H	Data in Memory Output on Right Port

NOTES:

1. $A 0_{L}-A 10_{L} \neq A 0_{R}-A 10_{R}$
2. $\mathrm{H}=\mathrm{HIGH}, \mathrm{L}=$ LOW, $\mathrm{X}=$ Don't Care

## ARBITRATION LOGIC

The arbitration logic resolves an address match or chip-enable match and determines the access priority. In both cases, an active $\overline{B U S Y}$ flag is set for the port-in-waiting. Since both ports are asynchronous, there is the possibility of accessing the same memory location from both sides. In the read mode, this condition is not a problem. However, this is a problem when both ports are in a write mode with different data words or when one port is reading and the other is writing. When both ports access the same memory location, the on-chip arbitration logic determines which port has access and the $\overline{B U S Y}$ flag for the delayed port is set active LOW and all operations on that port are inhibited. The delayed port can be accessed when the $\overline{B U S Y}$ flag becomes inactive. Basic modes of abitration are described in subsequent paragraphs.

1. When addresses for both the left and right ports match and are valid before $\overline{\mathrm{CS}}$ is active, the on-chip control logic arbitrates between $\overline{\mathrm{CS}}_{\mathrm{L}}$ and $\overline{\mathrm{CS}} R$ for device access. Refer to the following Truth Table for signal states; timing detail is shown later in this data sheet under "Data Contention Cycle No. $2 \quad(\overline{\mathrm{CS}}$ controlled)."
2. When $\overline{C S}_{L}$ and $\overline{C S}_{R}$ are LOW before an address match, on-chip control logic arbitrates between the left and right addresses for device access. Signal states for this condition are shown in the following Truth Table; timing detail is shown under "Data Contention Cycle No. 1 (Address Controlled)."

ARBITRATION WITH ADDRESS MATCH BEFORE $\overline{C S}$

LEFT PORT				RIGHT PORT				FLAGS		FUNCTION
R/ $\bar{W}_{\text {L }}$	$\overline{\mathbf{C S}}_{L}$	$\overline{O E}_{L}$	$\mathrm{AO}_{L}-\mathrm{Al0} \mathrm{~L}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	$\overline{\mathrm{CS}}_{\mathrm{R}}$	$\overline{\mathrm{O}} \mathrm{E}_{\mathrm{R}}$	$\mathrm{AO}_{\mathrm{R}}-\mathrm{Al0} \mathrm{R}_{\mathrm{R}}$	$\overline{\overline{B U S Y}_{L}}$	$\overline{B U S Y}_{R}$	
X	LBR	X	MATCH	X	L	X	MATCH	H	L	Left Operation Permitted Right Operation Not Permitted
X	L	X	MATCH	X	LBL	X	MATCH	L	H	Right Operation Permitted Left Operation Not Permitted
X	LST	X	MATCH	X	LST	X	MATCH	H	L	Arbitration Resolved

NOTES: $\mathrm{X}=$ Don't Care, $\mathrm{L}=$ Low, $\mathrm{H}=$ High, LST = Low Same Time, LBR = Low Before Right, LBL = Low Before Left
ADDRESS ARBITRATION WITH $\overline{C S}$ LOW BEFORE ADDRESS MATCH

LEFT PORT				RIGHT PORT				FLAGS		FUNCTION
$\mathrm{R} / \bar{W}_{\text {L }}$	$\overline{\mathrm{CS}} \mathrm{L}$	$\overline{O E L}$	A 0 L-A10 L	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	$\overline{\mathrm{CS}}_{\mathrm{R}}$	$\overline{O E E R}^{\text {O }}$	A0 $\mathrm{R}^{\text {- }}$ - $100_{\text {R }}$	$\overline{B U S Y L}$	$\overline{B U S Y}_{R}$	
X	L	X	VBR	X	L	X	VALID	H	L	Left Operation Permitted Right Operation Not Permitted
X	L	X	VALID	X	L	X	VBL	L	H	Right Operation Permitted Left Operation Not Permitted
X	L	X	VST	X	L	X	VST	H	L	Arbitration Resolved

NOTES: $\mathrm{X}=$ Don't Care, $\mathrm{L}=\mathrm{Low}, \mathrm{H}=$ High, VST $=$ Valid Same Time, VBR $=$ Valid Before Right, VBL = Valid Before Left

When both $\overline{C S}{ }_{L}$ and $\overline{C S}_{R}$ are low at the same time ( $\overline{\mathrm{CS}}$ controlled) or when both left-and-right addresses are valld at the same time (address controlled), the $\overline{B U S Y}_{R}$ flag for the right port is set to the active LOW state and access is granted to the left port.

For the Intel 8086 and Fujltsu's MBL8086 as well as most other microprocessors, the asynchronous $\overline{B U S Y}$ signal can be directly tied to the READY input, providing setup-and-hold time requirements are met.

## INTERRUPT FUNCTION

The interrupt (INT) function provides communication between systems on both sides of the dual-port RAM. $\overline{\mathbb{N} T_{L}}$ is set LOW when the processor on the right port writes to address 7FE ( $A 0=L$ and $A 1-A 10=H$ ). When the left port acknowledges by reading address $7 \mathrm{FE}, \overline{I N T}$ is then reset to HIGH. In essence, address 7FE serves as an 8-bit mallbox that transfers information from the right port to the left port. When $\overline{\mathrm{INT}}_{\mathrm{R}}$ is set LOW, the processor on the left port writes to address 7FF $(A 0-A 10=H)$. When the right port
acknowledges by reading address $7 \mathrm{FF}, \overline{\mathrm{NT}}_{\mathrm{R}}$ is then reset to HIGH. Hence, address 7FF serves as a second 8-blt mallbox, transferring information from the left port to the right port.

On power-up, ${\overline{\mathbb{N}} T_{L}}$ and ${\overline{\mathbb{N} T_{R}}}$ are set to a HIGH state. However, If one port is in the standby mode, the standby port can still be interrupted by the processor on the other port. But If the $\overline{B U S Y}$ flag is set to the LOW state, the port associated with that flag cannot set or reset the INT flag.

## RECOMMENDED OPERATING CONDITIONS

(Referenced to Vss)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2		$\mathrm{Vcc}+0.3$	V
Input Low Voltage	VIL	-0.3		0.8	V
Operating Temperature	TA	0		70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended Operating Conditions unless otherwise noted.)

Parameter	Symbol	Condition	$\begin{aligned} & \text { MB8421-90/12 } \\ & \text { MB8422-90/12 } \end{aligned}$		$\begin{aligned} & \text { MB8421-90L/12L } \\ & \text { MB8422-90L/12L } \end{aligned}$		Unit
			Min	Max	Min	Max	
Operating Supply Current (Both ports Active)	ICC	Cycle $=\mathrm{Min}$   Duty $=100 \%$   $10 U T=0 \mathrm{~mA}$		120		90	mA
Standby Supply Current	ISB1	Both ports at Standby $\mathrm{CS}_{1} \& \mathrm{CS}_{\mathrm{R}}=\mathrm{VIH}$		7		5	mA
	ISB2	One port at Standby $\mathrm{CS}_{\mathrm{L}}$ or $\mathrm{CS}_{\mathrm{R}}=\mathrm{VIH}$, $1 O U T=0 \mathrm{~mA}$		70		50	mA
	ISB3	Both ports at Full Standby $\overline{\mathrm{CS}}_{\mathrm{L}} \& \overline{\mathrm{CS}}_{\mathrm{R}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$		2		0.2	mA
	ISB4	One port at Full Standby $\overline{\mathrm{CS}} \mathrm{L}_{\mathrm{L}}$ or $\overline{\mathrm{CS}}_{\mathrm{R}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}$ IOUT $=0 \mathrm{~mA}$		70		50	mA
Input Leakage Current	ILI	$\mathrm{VIN}=O \mathrm{~V}$ to Vcc	-10	10	-10	10	$\mu \mathrm{A}$
Output Leakage Current	ILO	$\overline{\mathrm{CS}}=\mathrm{VIH}, \text { VOUT }=O \mathrm{~V}$ to Vcc	-10	10	-10	10	$\mu \mathrm{A}$
Output High Voltage	$\begin{aligned} & \mathrm{VOH} \\ & \text { (Note) } \\ & \hline \end{aligned}$	IOUT $=-1.0 \mathrm{~mA}$	2.4		2.4		V
Output Low Voltage	VOL	$1 O U T=3.2 \mathrm{~mA}$		0.4		0.4	V
Output Low Voltage for Open-Drain	VOL	IOUT $=8 \mathrm{~mA}$		0.4		0.4	V

NOTE: The $\overline{B U S Y}$ and $\overline{\mathbb{N T}}$ pins require pull-up resistors because they are open-drain outputs.

## AC CHARACTERISTICS

(Recommended Operations Conditions unless otherwise noted.)

Parameter	Symbol	MB8421-90/90L MB8422-90/90L		$\begin{aligned} & \text { MB8421-12/12L } \\ & \text { MB8422-12/12L } \\ & \hline \end{aligned}$		Unit
		Min	Max	Min	Max	
Nik						
Read Cycle Time	$\mathrm{t}_{\mathrm{BC}}$	90		120		ns
Address Access Time	$t_{A A}$		90		120	ns
Chip Select Access Time	$t_{\text {ACS }}$		90		120	ns
Output Enable Access Time	$t_{\text {AOE }}$		40		50	ns
Output Hold from Address Change	${ }^{\text {tor }}$	10		10		ns
Chip Select to Output Low-Z (Note 1)	$\mathrm{t}_{\mathrm{CLZ}}$	5		5		ns
Output Enable to Output Low-Z (Note 1)	$\mathrm{t}^{\text {L }}$	5		5		ns
Chip Select to Output High-Z (Note 1)	$\mathrm{t}_{\mathrm{CHz}}$		40		50	ns
Output Enable to Output High-Z (Note 1)	torz		40		50	ns
Power up from Chip Select	$\mathrm{t}_{\mathrm{PU}}$	0		0		ns
Power down from Chip Select	$t_{P D}$		50		60	ns



Read Cycle No. $2{ }^{2}$ :


## NOTES:

1. Transition is measured at a point of $\pm 500 \mathrm{mV}$ from steady-state voltage with an output capacitance of 5 pF .
2. WE is High during read cycle.
3. Device is continuously selected $(\overline{C S}=\overline{O E}=V I L)$.

## AC CHARACTERISTICS (Continued)



## NOTES:

1. The Write Enable ( $\overline{\mathrm{WE}})$ signal must be high during an address transition.
2. If the Output Enable ( $\overline{O E}$ ) and Chip Select $(\overline{C S})$ signals are in the Read Mode, the associated I/O pins are in the output state; accordingly, input signals of opposite phase must not be applied to the outputs.
3. If $\overline{C S}$ goes high prior to or coincident with the low-to-high transition of $\overline{W E}$, the output remains in high-impedance state.
4. This parameter is specified at a point $\pm 500 \mathrm{mV}$ from steady-state voltage with an output capacitance of 5 pF .

## AC CHARACTERISTICS (Continued)

Parameter	Symbol	MB8421-90/90L MB8422-90/90L		MB8421-12/12L MB8422-12/12L		Unit
		Min	Max	MIn	Max	
BUSY Access Time from Address	$t_{\text {BAA }}$		45		60	ns
BUSY Output High-Z from Address	$t_{\text {BDA }}$		45		60	ns
	$t_{\text {BAC }}$		45		60	ns
BUSY Output High-Z from $\overline{\mathrm{CS}}$	$\mathrm{t}_{\text {BRC }}$		45		60	ns
Arbitration Priority Set up Time	$t_{\text {APS }}$	20		25		ns

Data Contention Cycle No. 1 (Address Controlled) ${ }^{1,2}$ :


Data Contention Cycle No. 2 ( $\overline{\text { CS }}$ Controlled) $)^{1,3}$ :


NOTES:

1. In case of dual-access at the same memory location, the port that accesses the RAM first sets the BUSY flag HIGH.
2. Chip Select $(\overline{\mathrm{CS}})$ signal must be low before or coincident with an address transition.
3. Address is valid prior to or coincidence with the high-to-low transition of $\overline{\mathrm{CS}}$.

## AC CHARACTERISTICS (Continued)




## AC CHARACTERISTICS (Continued)

Parameter	Symbol	MB8421-90/12   MB8422-90/12		MB8421-90L/12L MB8422-90L/12L		Unit
		Min	Max	Min	Max	
Data Retention Supply Voltage	VDR	2.0	5.5	2.0	5.5	V
Data Retention Supply Current (Note)	IDR		0.2		0.02	mA
Data Retention Setup Time	tors	0		0		ns
Operation Recovery Time	$\mathrm{t}_{\mathrm{R}}$	$\mathrm{t}_{\text {RC }}$		$\mathrm{t}_{\mathrm{RC}}$		ns

NOTE: $\mathrm{Vcc}=\mathrm{VDR}=3 \mathrm{~V}$
$\overline{\mathrm{C}} \mathrm{S}_{\mathrm{L}} \& \overline{\mathrm{C}} \mathrm{S}_{\mathrm{R}} \geq \mathrm{Vcc}-0.2$

AC TEST CONDITIONS

Input Pulse Levels: 0 to 3.0V
Input Pulse Rise \& Fall Times: $t_{R}, t_{F}=5 n s$
Timing Reference Levels: 1.5 V
Output Loads:


NOTE: Includes Jlg and stray capacitance.

MB8421/22-12 MB8421/22-12L

## PACKAGE DIMENSIONS

48-LEAD PLASTIC DUAL IN-LINE PACKAGE
(CASE NO.: DIP-48P-M02)

(C) 1988 FUJITSU LIMITED D48003S-3C

Dimensions in inches (millimeters)

## PACKAGE DIMENSIONS (Continued)



## PACKAGE DIMENSIONS (Continued)

52-LEAD PLASTIC DUAL IN-LINE PACKAGE
(CASE No.: DIP-52P-M01)


(C) 1988 FUJITSU LIMITED $052002 S-2 C$

Dimensions in inches (millimeters)

MB8431/32-90/-90L/-90LL/-12/-12L/-12LL CMOS 16K-BIT DUAL PORT SRAM

## 2K X 8-BIT CMOS DUAL PORT STATIC RANDOM ACCESS MEMORY

The Fujitsu MB8431/32 are 2 K words $\times 8$ bits Dual port high-performance-static Random Access Memories (SRAMs) fabricated in CMOS. The SRAMs use asynchronous circuits; thus no external clockes are required.
The MB8431 and MB8432 provide the user with two separately contorolled I/O ports with independent address, Chip select (CS), Write Enable (WE), Output Enable (סE) and I/O functions.

This arrangement permits independent access to any memory location for either a Read or Write operation - a useful feature for shared data processing applications. These devices have an automatic power-down feature controlled by (CS).
To avoide data contention on the same address, a (BUSY) input is provided for address arbitration; In addition, MB8431 utilizes (INT) fiag which allows communication between systems on either side of the RAM.
Both devices use a single +5 volt power supply and all pins are TTL-compatible. A simplified block diagram of the SRAM is shown in Figure 1.
Some typical applications for these memory devices are multiprocessing systems, distributed networks, external register files and peripheral controllers.

- Organization: 2048 words $\times 8$ bits
- Static operation: No clocks or timing strobe required
- Fast access time: $t_{A}=t_{\text {acs }}=90$ ns max. (MB8431/32-90

MB8431/32-90L-90LL)
$t_{A A}=t_{A C s}=120$ ns max. (MB8431/32-12
MB8431/32-12L/-12LL)

- Low power consumption: 660 mW max. (Both ports active)

385 mW max. (One port active)
38.5 mW max. (Both ports standby, TTL)

11 mW max. (Both ports standby, CMOS)
L-version/LL-version: 495 mW max. (Both ports active)
275 mW max. (One port active)
27.5 mW max. (Both ports standby, TTL)
1.1mA max. (Both ports standby, CMOS)

- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- All inputs and outputs have protection against static charge
- Data Retention Voltage: 2V min.
- Address Arbitration Function: $\overline{B U S Y}$ input
- Interrupt Function for Communication between Systems (MB8431 only): INT flag
- Expanding capability using MB842,1/22 (Master)-MB8431/32 (Slave)


MB8431/32-90/-90L/-90LL
MB8431/32-12/-12L-12LL

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$V_{c c}$	-0.5 to +7	V
Input Voltage on any pin with respect to $V_{s s}$	$V_{\text {IN }}$	$\begin{aligned} & -0.5 \text { to } \\ & V_{c c}+0.5 \end{aligned}$	V
Output Voltage on any I/O pin with respect to $\mathrm{V}_{\text {ss }}$	$V_{\text {OUt }}$	$\begin{aligned} & -0.5 \text { to } \\ & V_{c c}+0.5 \end{aligned}$	V
Output Current	lout	$\pm 20$	mA
Power dissipation	$P_{0}$	1.0	W
Temperature Under Bias	TBias	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {ste }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN NAMES

LEFT PORT	RIGHT PORT	NAMES
$\overline{C S_{L}}$	$\overline{\mathrm{CS}_{\mathrm{B}}}$	Chip Select Input
$\overline{W E}_{L}$	$\overline{W E}_{\text {R }}$	Write Enable input
$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable Input
$\overline{\mathbb{N T}}_{L}$	$\overline{N T T}_{\text {R }}$	Interrupt * Flag Output
$\overline{B U S Y}^{\text {L }}$	$\overline{\mathrm{BUSY}}_{\mathrm{R}}$	Busy Flag Input
$\mathrm{AO}_{\mathrm{L}}$ to $\mathrm{AlO}_{\mathrm{L}}$	$\mathrm{AO}_{\mathrm{R}}$ to $\mathrm{A} 10_{R}$	Address Input
$1 / O 0_{L}$ to $/ / O 7_{L}$	$\mathrm{I} / \mathrm{O} 0_{\mathrm{R}}$ to $\mathrm{I} / \mathrm{O} 7_{\mathrm{R}}$	Data Input/Output
$V_{\text {cc }}$		Power
GND		Ground

*: Applies to MB8431 only.

FIg. 1 - MB8431/32/31L/32L BLOCK DIAGRAM


Note: MB8431 only.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance (VIN=OV)	$\mathrm{C}_{\mathrm{N}}$		10	pF
I/O Capacitance (V//O $=0 \mathrm{~V}$ )	$\mathrm{C}_{w}$		10	pF

## RECOMMENDED OPERATING CONDITIONS

(Referenced to VSS)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{cc}}$	4.5	5.0	5.5	V
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	0		70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Condition	$\begin{aligned} & \hline \text { MB8431/ } \\ & \text { MB8432-90/12 } \end{aligned}$		MB8431/   MB8432-90L/90LL12L/12LL		Unit
			Min	Max	Min	Max	
Operating   Supply Current (Both ports Active)	lcc	$\begin{aligned} & \text { Cycle }=\text { Min. } \\ & \text { Duty }=100 \% \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$		120		90	mA
Standby   Supply Current	${ }_{\text {ssB }}$	$\begin{aligned} & \text { Both ports=Standby } \\ & C S_{L} \& C S_{R}=V_{I H} \end{aligned}$		7		5	mA
	$\mathrm{l}_{\text {SB2 }}$	One port=Standby $\overline{\mathrm{CS}} \mathrm{Cor}_{\mathrm{C}} \overline{\mathrm{CS}}_{\mathrm{A}}=\mathrm{V}_{\mathrm{H}}$, lout $=0 \mathrm{~mA}$		70		50	mA
	$1 \mathrm{se3}$	Both ports=Full standby $\mathrm{CS}_{\mathrm{L}} \& \mathrm{CS}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$		2		0.2	mA
	$\mathrm{I}_{\text {SB4 }}$	One port=Full standby $\overline{\mathrm{CS}_{\mathrm{L}}}$ or $\overline{\mathrm{CS}}_{\mathrm{A}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}$, $l_{\text {OUT }}=0 \mathrm{~mA}$		70		50	mA
Input Leakage Current	Iu	$\mathrm{V}_{\mathrm{W}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$	-10	10	-10	10	$\mu \mathrm{A}$
Output Leakage Current	Lo	$\overline{C S}=V_{\text {IH }}, 1 / \mathrm{O}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$	-10	10	-10	10	$\mu \mathrm{A}$
Input High Voltage	$\mathrm{V}_{\text {IH }}$		2.2	$v_{c c}+0.3$	2.2	$\mathrm{V}_{\mathrm{cc}}+0.3$	v
Input Low Voltage	$\mathrm{V}_{1}$		-0.3*1	0.8	$-0.3 * 1$	0.8	$\checkmark$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{*}$	$\mathrm{l}_{\text {Out }}=-1.0 \mathrm{~mA}$	2.4		2.4		V
Output Low Voltage	V oL	$\mathrm{l}_{\text {OUT }}=3.2 \mathrm{~mA}$		0.4		0.4	$\checkmark$
Output Low Voltage for Open-Drain	Vol	$\mathrm{l}_{\text {out }}=8 \mathrm{~mA}$		0.4		0.4	V

*1 Undershoot -3.0 V min at less than 20 ns pulse width.
*2 The INT pins require pull-up resistors because they are open-drain outputs.


## AC CHARACTERISTICS

## (Recommended operating conditions uniess otherwise noted)

READ CYCLE

Parameter	Symbol	MB8431-90/90L/90LL MB8432-90/90L90LL		$\begin{array}{\|l} \text { MB8431-12/12L/12LL } \\ \text { MB8432-12/12L/12LL } \end{array}$		Unit
		Min	Max	Min	Max	
Read Cycle Time	$t_{\text {mi }}$	90		120		ns
Address Access Time	$t_{\text {an }}$		90		120	ns
Chip Select Access Time	tacs		90		120	ns
Output Enable Access Time	$\mathrm{thos}^{\text {a }}$		40		50	ns
Output Hold from Address Change	tor	10		10		ns
Chip Select to Output Low-Z *2	$\mathrm{t}_{\text {CLZ }}$	5		5		ns
Output Enable to Output Low-Z *2	$\mathrm{t}_{\mathrm{Lz}}$	5		5		ns
Chip Select to Output High-Z *2	$\mathrm{t}_{\mathrm{CHz}}$		40		50	ns
Output Enable to Output High-Z *2	$\mathrm{t}_{\mathrm{OHz}}$		40		50	ns
Power up from Chip Select	tpu	0		0		ns
Power down from Chip Select	tpo		50		60	ns

READ CYCLE TIMING DIAGRAMS ( $\overline{W E}=V_{I H}$ )


Note: *1 Address should be fixed before high-to-low transition of CS.
*2 This parameter is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with output capacitance 5 pF .

WRITE CYCLE

Parameter	Symbol	MB8431-90/90L/90LL MB8432-90/90L90LL		$\begin{array}{\|l} \text { MB8431-12/12L/12LL } \\ \text { MB8432-12/12L/12LL } \end{array}$		Unit
		Min	Max	Min	Max	
Write Cycle Time	twc	90		120		ns
Address Valid to End of Write	taw	85		100		ns
Chip Select to End of Write	$\mathrm{t}_{\text {cw }}$	85		100		ns
Address Setup Time	tas	0		0		ns
Write Pulse Width	$t_{\text {wp }}$	60		70		ns
Write Recovery Time	$t_{\text {WR }}$	0		0		ns
Data Valid to End of Write	tow	40		40		ns
Data Hold Time	$\mathrm{t}_{\text {DH }}$	0		0		ns
Write Enable to Output Low-Z*4	tow	0		0		ns
Write Enable to Output High-Z * 4	twz		40		50	ns

## WRITE CYCLE TIMING DIAGRAMS ( $\overline{\mathrm{OE}}=$ Don't care)



Note: $\quad{ }^{1} \overline{\text { WE must be high during address transition. }}$
*2 If OE , CS are in the READ Mode, $/ / O$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*3 If CS goes high prior to or coincident with $\overline{\text { WE }}$ transition to high, the output remains in high impedance state.

* 4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.


Note: *1 WE must be high during address transition.
*2 If $\overline{O E}, \overline{C S}$ are in the READ Mode, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*3 If $\overline{C S}$ goes high prior to or coincident with $\overline{W E}$ transition to high, the output remains in high impedance state.

* 4 This parameter is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with output capacitance 5 pF .

SLAVE BUSY TIMING

Parameter	Symbol	$\begin{aligned} & \text { MB8431-90/90L/90LL } \\ & \text { MB8432-90/90L/90LL } \end{aligned}$		$\begin{array}{\|l} \text { MB8431-12/12L12LL } \\ \text { MB8432-12/12L/12LL } \end{array}$		Unit
		Min	Max	Min	Max	
Busy Access Time	$t_{B O}$		0		0	ns
Write Set Up Time To Busy	tws	-10		-10		ns
Write Hold Time From Busy	${ }_{\text {LWH }}$	20		25		ns

## CONTENTION CYCLE TIMING DIAGRAMS ( $\overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$ )

CONTENTION READ CYCLE No. $1 * 1 * 2$ : (ADDRESS CONTROLLED) $\left.\overline{C S}=\overline{O E}=V_{I L}\right)$


CONTENTION READ CYCLE No. $11 * 1 * 3$ : (CS CONTROLLED)


Note: $\quad{ }^{*} 1$ In case of dualaccess at the same memory location, the port that access the RAM first sets the BUSY flag high.
*2 CS must be low before or coincident with transition of address.
*3 Address is valid prior to cincident with high-to-low transition of $\overline{\mathrm{CS}}$.
*4 This parameter is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with output capacitance 5 pF .

## MB8431/32-90/-90L/-90LL MB8431/32-12/-12L/-12LL

## CONTENTION CYCLE TIMING DIAGRAMS

CONTENTION WRITE CYCLE No. $1 * 1 * 2 * 3$ (WE CONTROLLED)


CONTENTION WRITE CYCLE No. II * 3 : * 1 * 2 * 3 ( $\overline{C S} C O N T R O L L E D)$


Note: $\quad$ * $\overline{W E}$ must be high during address transition.
*2 I/O pins are in the output state, so the input signals of opposite phase must not be applied.
*3 During BUSY input is low, write operation can not be excuted even if $\bar{W} E$ is low.

INTERRUPT TIMING *1

Parameter	Symbol	MB8431-90/90L/90LL MB8432-90/90L90LL		MB8431-1212L12LL MB8432-12/12L12LL		Unit
		Min	Max	Min	Max	
INT Set Time	tws		80		100	ns
INT Reset Time	tine		80		100	ns

INTERRUPT CYCLE TIMING DIAGRAMS *1


Note: *1 Applies to MB8431 only.

## DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter		Symbol	Min	Typ	Max	Unit
Data Retention Supply Voltage		$V_{\text {DR }}$	2.0		5.5	V
Data Retention Supply Current *1	Standard	$\mathrm{I}_{\mathrm{OA}}$			0.2	mA
	L-Version				20	$\mu \mathrm{A}$
	LL-Version *2				2	$\mu \mathrm{A}$
Data Retention Setup Time		tops	0			ns
Operation Recovery Time		$t_{\text {H }}$	$\mathrm{tac}_{\text {c }}$			ns

Note: $\quad{ }^{*} 1 \quad V_{C C}=V_{D R}=3 V, \overline{C S} \& \overline{C S}_{R} \geq V_{C C}-0.2 V$
*2 $V_{D A}=3 V, T_{A}=0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

## DATA RETENTION TIMING

## data retention



## POWER ON/RESET CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB8431-90/90L 90 LL MB8432-90/90L/90LL		MB8431-12/12L12LL MB8432-12/12L12LL		Unit
		Min	Max	Min	Max	
Power Up Time *1	$t_{v a}$	0.05	50	0.05	50	ms
Power Off Time *2	toff	1		1		S

*1 This is required to keep normal operation for power on/reset circuit which initialize $\overline{\mathbb{N T}}$ output to " H " automatically when $V_{c c}$ is applied.
*2 This is required to keep normal operation for power on/reset circuit which $\mathrm{V}_{c c}$ is repeatly turn on/off.

## POWER ON/RESET TIMING



## Function Description:

## 1. ORGANIZATION:

MB8431/32 are 2K words x 8 bit Dual port Static Random Access Memory.
Each port has independent addresses, chip select $\overline{(\overline{C S})}$, write enable $(\overline{\mathrm{WE}})$, output enable $\overline{(\overline{O E})}$ and data input/output (I/O) functions.
2. SLAVE BUSY FUNCTION:

In order to do bit expansion using 8 bit width dual port RAM such as MB8421/22, two or more parts should be connected paralel. But such case, there is a possibility, which depends on arbitration timing, of outputting $\overline{B U S Y}$ signal to different ports and put both CPUs in waiting state. This causes a trouble. Using MB8431/32 which have slave busy function (busy input) is one of the solutaion for such trouble. Bit expansion is easily achievable to pair-use slave type dual port RAM such as MB8431/32 and master type dual port RAM such as MB8421/22.

## (Example)

As an example, Fig1 shows 16 bit dual port memory system.
In this system, master type Dual port RAM (MB8421/22) judge arbitration for address contention and output result of the judgement from $\overline{B U S Y}$ pin. This output returned to CPU and make the CPU in waiting state and also the output is applied to slave type dual port RAM (MB8431/32).
Though slave type dual port RAM (MB8431/32) do not judge for arbitration, they have $\overline{B U S Y}$ input pin and inhibit write operation of the correspondent port during "L" signal form $\overline{B U S Y}$ output of master type dual port RAM (MB8421/22) is applied to the BUSY input. A system consists of one master dual port RAM (MB8421/22) and three slave dual port RAMs (MB8431/32) is harmonized for 32 bit application.

3. INTERRUPT FUNCTION:

The interrupt function (INT) is provided to allow communication between the systems on either sides of the dual-port RAM. $\overline{I N T}_{L}$ is set to low, when the processor on the right port writes to address 7FE ( $A 0=L$ and $A 1$ to $A 10=H$ ). $\mathbb{N T}_{L}$ is then reset to High, when the left port acknowledges by reading the same address 7FE. Thus the address 7FE is like a 8 bit word mail-box transferring information from the right-port to the left-port.
$\overline{\operatorname{INT}}_{\mathrm{R}}$ on the other hand is set to low, when processor on the left port writes to the address 7FF ( $\mathrm{A}=0$ to $\mathrm{A} 10=\mathrm{H}$ ). $\overline{\mathrm{NT}}_{\mathrm{B}}$ is reset to High, when the right port acknowledges by reading this address. Hence, the address 7FF is a second 8 bit word mail-box transferring information form the left port to the right port.

The $\overline{\mathrm{NT}}_{\mathrm{L}}$ and $\overline{\mathrm{NT}}_{\mathrm{R}}$ are set to High on power-up. If the port is in the standby mode, it can still get interrupted by the processor on the other side.

In case he $\overline{\mathrm{BUSY}}$ flag is set to low, then the pertinent port can not set or reset the $\overline{\mathbb{N T}}$ flag.


## MB8431/32-90/-90L/-90LL

52-LEAD PLASTIC DUAL IN-LINE PACKAGE
(Case No. : DIP-52P-MOI)




## Section 5

Wide Temperature Range SRAMs - At a Glance

Page	Device	Maximum Access Time ( ns )	Capacity	Package Options	
5-3	MB81C68A-45W	45	$\begin{aligned} & 16384 \text { bits } \\ & (4096 w \times 4 b) \end{aligned}$	20-pin	Ceramic DIP
5-11	MB81C78A-45W	45	$\begin{aligned} & 65536 \text { bits } \\ & (8192 \mathrm{w} \times 8 \mathrm{~b}) \end{aligned}$	$\begin{aligned} & \text { 28-pin } \\ & 32 \text {-pad } \end{aligned}$	Ceramic DIP Ceramic LCC
5-23	MB81C79A-45W	45	$\begin{aligned} & 73728 \text { bits } \\ & (8192 w \times 9 b) \end{aligned}$	$\begin{aligned} & \text { 28-pin } \\ & \text { 32-pad } \end{aligned}$	Ceramic DIP Ceramic LCC
5-35	$\begin{array}{r} \text { MB8464A-10W } \\ -15 W \end{array}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 65536 \text { bits } \\ & (8192 \mathrm{w} \times 8 \mathrm{~b}) \end{aligned}$	$\begin{aligned} & \text { 28-pin } \\ & 32 \text {-pad } \end{aligned}$	Ceramic DIP Ceramic LCC

## MB81C68A-45-W

CMOS 16K-BIT HIGH SPEED SRAM

## 4096 WORDS $x 4$ BITS SRAM WITH HIGH SPEED AND AUTOMATIC POWER DOWN

The Fujitsu MB81C68A-W is 4096 words $\times 4$ bits static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ( $\overline{\mathrm{CS}}$ ) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}$, the other deselected packages automatically power down.

All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization : 4096 words $\times 4$ bits
- Static operation : No clocks or timing strobe required
- Fast acces time : $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS}}=45 \mathrm{~ns}$ max. (MB81C68A-45-W)
- Low power consumption : 495mW max. (Operating)

193 mW max. (TTL standby)
110 mW max. (CMOS standby)

- Single +5 V supply $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 20-pin DIP (Suffix : CZ)

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to 6.0	V
Input Voltage on Any Pin with respect   to GND	$\mathrm{V}_{\mathrm{IN}}$	-0.5 to $\mathrm{V} \mathrm{CC}+0.5$	V
Output Voltage on Any I/O Pin with   respect to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output current	$\mathrm{I}_{\text {ouT }}$	$\pm 20$	mA
Power dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This devioe contains circultry to protect the inputs against damage due to high static voltages or electic fields. however, il is advised hat normal precautions be taken to voltages to this high impedance circut.

Fig. 1 - MB81C68A BLOCK DIAGRAM


CAPACITANCE ( $\left.\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{f}=\mathbf{1 M H z}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance ( $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ )	$C$ in		6	pF
$\overline{\mathrm{CS}}$ Capacitance ( $\mathrm{V}_{\overline{\mathrm{CS}}}=0 \mathrm{~V}$ )	$\mathrm{C} \overline{\mathrm{CS}}$		7	pF
$1 / \mathrm{O}$ Capacitance ( $\left.\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)$	C vo		8	pF

PIN DESCRIPTION
(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\text {cc }}$	4.5	5.0	5.5	$\checkmark$
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	$-0.3 * 1$		0.6	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.4		$\mathrm{V}_{\mathrm{cc}}+0.3$	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-55		125	${ }^{\circ} \mathrm{C}$

Note : * -2.0 V Min. for pulse width less than 20 ns . $\left(\mathrm{V}_{\mathrm{IL}} \mathrm{Min}=-0.3 \mathrm{~V}\right.$ at DC level)

## DC CHARACTERISTICS

(Recommended opereating conditions unless otherwise noted.)

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$V_{\text {IN }}=O V_{\text {to }} V_{\text {cc }}$	$\mathrm{I}_{\text {L }}$	-10		10	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \overline{C S}=V_{I H} \\ & V_{V O}=O V \text { to } V_{C C} \end{aligned}$	${ }^{\text {Lo }}$	-50		+50	$\mu \mathrm{A}$
Active (DC) Supply Current	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=\mathrm{OmA} \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}} \end{aligned}$	${ }^{\text {ccl } 1}$		25	70	mA
Operating Supply Current	$\begin{aligned} & \overline{C S}=V_{\text {IL }} \\ & I_{\text {OUT }}=0 \mathrm{~mA}, \text { Cycle }=\mathrm{Min} \end{aligned}$	$\mathrm{I}_{\text {cc2 }}$		40	90	mA
Standby Supply Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}} \leqq 0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathbb{I N}} \geqq \mathrm{V}_{\mathrm{cC}}-0.2 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\text {SB } 1}$		0.5	20	mA
Standby Supply Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\mathbb{H}}$	${ }^{\text {SB2 }}$		10	35	mA
Output Low Voltage	$\mathrm{I}_{\mathrm{oL}}=8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{OL}, 1}$			0.4	V
Output Low Voltage	$\mathrm{I}_{\mathrm{oL}}=100 \mu \mathrm{~A}$	$V_{\text {OL2 }}$			0.2	V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	$\mathrm{V}_{\text {OH1 }}$	2.4			V
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OH} 2}$	2.6			V

## AC TEST CONDITION



Input Pulse Levels: Input Pulse Rise and Fall Times: Timing Reference Levels:
0.4 to 2.6 V

5 ns (Ttansient Time between 0.8 V and 2.2 V ) Input:1.5V
Output:1.5V
Output Load
$C_{L}=30 \mathrm{pF}$
$C_{L}=5 p F$ for $t_{L Z}, t_{H Z}, t_{o w}$ and $t_{W Z}$

## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)
READ CYCLE * ${ }^{1}$

Parameier	Symbol	MB81C68A-45-W		Unit
		Min	Max	
Read Cycle Time	${ }^{t}{ }_{\text {RC }}$	45		ns
Address Access Time ${ }^{+2}$	${ }^{t}{ }_{\text {AA }}$		45	ns
Chip Select Access Time* ${ }^{3}$	${ }^{1}$ ACS		45	ns
Output Hold from Address Charge	${ }^{1} \mathrm{OH}$	0		ns
Output Hoid from $\overline{\mathrm{CS}}$	${ }^{t} \mathrm{OHC}$	0		ns
Chip Selection to Output in Low-Z*4	${ }^{\text {LZ }}$	0		ns
Chip Deselection to Output in High --Z*4	${ }^{\text {t }} \mathrm{HZ}$	0	20	ns
Power Up from $\overline{\mathrm{CS}}$	${ }^{\text {t }} \mathrm{PU}$	0		ns
Power Down from $\overline{C S}$	${ }^{\text {t }}$ PD		45	ns

Note: * $1 \overline{W E}$ is high for Read cycle.

* 2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
- 3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
* 4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.


## READ CYCLE TIMING DIAGRAM ${ }^{\boldsymbol{1}}$

READ CYCLE: ADDRESS CONTROLLED*2


READ CYCLE: $\overline{\mathrm{CS}}$ CONTROLLED *3


Note: * $1 \overline{W E}$ is high for Read cycle.

* 2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$
* 3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
* 4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.

WRITE CYCLE * 1 * 2

Parameter	Symbol	MB81C68A-45-W		Unit
		Min	Max	
Write Cycle Time	${ }^{t_{\text {wc }}}$	45		ns
Chip Selection to End of Write	${ }^{t} \mathrm{CW}$	35		ns
Address Valid to End of Write	${ }^{t}$ AW	35		ns
Address Setup Time	${ }^{t}$ AS	3		ns
Write Pulse Width	$t_{\text {wp }}$	35		ns
Data Setup Time	${ }^{1}$ DW	25		ns
Write Recovery Time	${ }^{t_{\text {WR }}}$	5		ns
Data Hold Time	${ }^{t} \mathrm{DH}$	0		ns
Output High-Z from $\overline{\text { WE * }} 3$	$t_{\text {WZ }}$	0	20	ns
Output Low-Z from $\overline{\mathrm{WE}}$ * 3	tow	0		ns

## WRITE CYCLE TIMMING DIAGRAM

WRITE CYCLE: $\bar{W} E$ CONTROLLED* ${ }^{* 2}$


Notes : * $1 \overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.

* 2 If $\overline{\mathrm{CS}}$ goes simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in a high impedance state.
*3 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.


## WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE: $\overline{\operatorname{CS}}$ CONTROLLED*1*2


Notes : * $1 \overline{\mathrm{CS}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.

* 2 If $\overline{\mathrm{CS}}$ goes high simulyaneously with $\overline{\mathrm{WE}}$ high, the output remains in a high impedance state.
* 3 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.


## PACKAGE DIMENSIONS



## 64K-BIT (8192x8) HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB81C78A-W is 8192 words $\times 8$ bits static random access memory fabricated with a CMOS process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ( $\overline{\mathrm{CS}}_{1}$ ) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$, the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 8$ bits
- Static operation: No clock or timing strobe required
- Fast access time: $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS} 1}=45 \mathrm{~ns}$ max. (MB81C78A-45-W)
- Low power consumption: 660 mW max. (Operating)

165 mW max. (Standby, TTL level)
110 mW max. (Standby, CMOS level)

- Single +5 V supply, $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 28-pin Ceramic DIP package (Suffix: -C)
- Standard 32-pad Leadless Chip Carrier (Suffix: -CV)


## ABSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7	V
Input Voltage on any pin   with respect to GND	$\mathrm{V}_{\text {IN }}$	-0.5 to +7	V
Output Voltage on any I/O   with respect to GND	$\mathrm{V}_{\mathrm{OUT}}$	-0.5 to +7	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-65 to +135	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fig. 1 - MB 81C78A BLOCK DIAGRAM


CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{mHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{\mathrm{WE}})}\right.$	$\mathrm{C}_{11}$		7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)($ Other Inputs)	$\mathrm{C}_{12}$		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / \mathrm{O}}=\mathrm{OV}\right)$	$\mathrm{C}_{1 / \mathrm{O}}$		8	pF

##  <br> FUJITSU <br> MB81C78A-45-W <br> minumanil

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-0.5		0.4	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.6		6.0	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-55		125	${ }^{\circ} \mathrm{C}$

* -2.0 V Min. for pulse width less than 20 ns . ( $\mathrm{V}_{1 \mathrm{~L}} \mathrm{Min}=-0.5 \mathrm{~V}$ at DC level)


## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	$I_{L I}$	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{cc}}$
Output Leakage Current	ILo	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{C S}_{1}=V_{I H} \text { or } C S_{2}=V_{I L} \text { or } \overline{W E}=V_{I L} \text { or } \\ & \overline{O E}=V_{I H}, V_{O U T}=O V \text { to } V_{C C} \end{aligned}$
Operating Supply Current	Icc		120	mA	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{~L}} \\ & \mathrm{I} / \mathrm{O}=\text { Open, } \mathrm{Cycle}=\mathrm{Min} \end{aligned}$
Standby Supply Current	IsB1		20	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\text { Min to } \mathrm{Max.} \overline{\mathrm{CS}}_{1}=\mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \leqq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geqq \mathrm{~V}_{\mathrm{cc}}-0.2 \mathrm{~V} \end{aligned}$
	$I_{\text {SB2 }}$		30	mA	$\overline{C S}_{1}=\mathrm{V}_{1 \mathrm{H}}$
Output Low Voltage	Vol		0.45	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Peak Power-on Current	Ipo		50	mA	$\begin{aligned} & V_{\mathrm{cc}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}} \text { Min. } \\ & \mathrm{CS}_{1}=\text { Lower of } V_{\mathrm{Cc}} \text { or } \mathrm{V}_{\mathrm{IH}} \text { Min. } . \end{aligned}$

## AC TEST CONDITIONS

Input Pulse Levels:
Input Pulse Rise And Fall Times:
Timing Measurement Reference Levels:
Input: 1.5 V
Output: 1.5 V

Fig. 2

## Output Load I.

For all except $t_{L Z}, t_{H Z}, t_{W Z}, t_{o w}$,
$t_{\mathrm{OLZ}}$, and $\mathrm{t}_{\mathrm{OHz}}$.


Output Load II.
For $t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}$, and $t_{O H Z}$.


## AC CHARACTERISTICS

read cycle* ${ }^{1}$

Parameter	Symbol	MB81C78A-45-W		Unit
		Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{RC}}$	45		ns
Address Access Time**	${ }^{t} A$		45	ns
$\overline{\mathrm{CS}}_{1}$ Access Time ${ }^{*}$	${ }^{\text {tacs }}$		45	ns
$\mathrm{CS}_{2}$ Access Time*3	${ }^{\text {t }}$ ACS2		20	ns
Output Hold from Address Change	${ }^{\text {toh }}$	3		ns
$\overline{\mathrm{OE}}$ Access Time	$\mathrm{t}_{\text {OE }}$		20	ns
Output Active from $\overline{\mathrm{CS}}_{1}{ }^{* 4 * 5}$	${ }_{\text {t }}^{\text {LZ1 }}$	5		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$\mathrm{t}_{\mathrm{LZ2}}$	0		ns
Output Active from $\overline{\mathrm{OE}}^{* * * 5}$	tolz	0		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{* * 5}$	$\mathrm{t}_{\mathrm{HZ1}}$		25	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* * * 5}$	$\mathrm{t}_{\mathrm{HZ2}}$		25	ns
Output Disable from $\overline{\mathrm{OE}} *{ }^{*} 5$	${ }^{\text {tohz }}$		25	ns

Note: *1 $\overline{\mathrm{WE}}$ is high for Read cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{C S}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\mathrm{CS}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transistion is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

READ CYCLE I: ADDRESS CONTROLLED ${ }^{2}$


READ CYCLE II: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED* ${ }^{3}$


Note: *1 $\overline{W E}$ is high for Read cycle.
${ }^{*} 2$ Device is continuously selected, $\overline{C S}_{1}=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{CS}_{2}=\mathrm{V}_{1 \mathrm{H}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\mathrm{CS}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2.

WRITE CYCLE* ${ }^{1}$

Parameter	Symbol	MB81C78A-45-W		Unit
		Min	Max	
Wirte Cycle Time* ${ }^{*}$	${ }^{\text {tw }}$	45		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{\text {t }}$ W1	40		ns
$\mathrm{CS}_{2}$ to End of Write	${ }^{\text {t }}$ W2	25		ns
Address Valid to End of Write	${ }^{\text {t }}$ W	40		ns
Address Setup Time	$t_{\text {AS }}$	2		ns
Write Pulse Width	$t_{\text {wp }}$	25		ns
Data Setup Time	$t_{\text {DW }}$	20		ns
Write Recovery Time*3	${ }^{\text {twr }}$	3		ns
Data Hold Time	${ }^{\text {t }}$ H	3		ns
Output High-Z from $\overline{W E}{ }^{* 4 * 5}$	${ }^{\text {t }}$ wz		20	ns
Output Low-Z from $\overline{W E}^{*}{ }^{* 5}$	tow	0		ns

Note: *1 If $\overline{\mathrm{CS}}_{1}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 5$ This parameter is specified with Load II in Fig. 2. Hinniminnin


Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, $\mathrm{I} / \mathrm{O}$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycle are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE II: $\overline{\text { WE CONTROLLED }}$


Note: *1 If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, $\mathrm{I} / \mathrm{O}$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

FUJITSU


## PACKAGE DIMENSIONS



FUJITSU

## PACKAGE DIMENSIONS (continued)

 CERAMIC LCC (Suffix: -CV)32-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER
(CASE No.: LCC-32C-A02)


[^36]
## 72K-BIT (8192x9) HIGH SPEED CMOS STATIC RANDOM ACCESS MEMORY WITH AUTOMATIC POWER DOWN

The Fujitsu MB81C79A-W is 8192 words $\times 9$ bits static random access memory fabricated with a CMOS process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible and a single 5 volts power supply is required.
A separate chip select ( $\overline{\mathrm{CS}}_{1}$ ) pin simplifies multipackage systems design. It permits the selection of an individual package when outputs are OR-tied, and furthermore on selecting a single package by $\overline{\mathrm{CS}}_{1}$, the other deselected packages automatically power down.
All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 9$ bits
- Static operation: No clock or timing strobe required
- Fast access time: $\mathrm{t}_{\mathrm{AA}}=\mathrm{t}_{\mathrm{ACS} 1}=45 \mathrm{~ns}$ max. (MB81C79A-45-W)
- Low power consumption: 660 mW max. (Operating)

165 mW max. (Standby, TTL level)
110 mW max. (Standby, CMOS level)

- Single +5 V supply, $\pm 10 \%$ tolerance
- TTL compatible inputs and outputs
- Three-state outputs with OR-tie capability
- Chip select for simplified memory expansion, automatic power down
- All inputs and outputs have protection against static charge
- Standard 28 -pin Ceramic DIP package (Suffix: -C)
- Standard 32-pad Leadless Chip Carrier (Suffix: -CV)


## AbSOLUTE MAXIMUM RATINGS (See NOTE)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7	V
Input Voltage on any pin   with respect to GND	$\mathrm{V}_{\text {IN }}$	-0.5 to +7	V
Output Voltage on any I/O   with respect to GND	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7	V
Output Current	$\mathrm{I}_{\mathrm{OUT}}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	1.0	W
Temperature Under Bias	$\mathrm{T}_{\text {BIAS }}$	-65 to +135	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\mathrm{STG}}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum, rated voltages to this high impedance circuit.

Fig. 1 - MB 81C79A BLOCK DIAGRAM

truth table

$\overline{\mathrm{CS}}_{1}$	$\mathrm{CS}_{2}$	$\overline{W E}$	$\overline{O E}$	MODE	SUPPLY CURRENT	$\begin{aligned} & \text { I/O } \\ & \text { STATE } \end{aligned}$
H	X	x	x	STANDBY	$\mathrm{I}_{\text {SB }}$	HIGH-Z
L	L	X	X	deselect	I'c	HIGH-Z
L	H	H	H	Dout DISABLE	${ }^{\text {ccc }}$	HIGH-Z
L	H	H	L	READ	${ }^{\text {cc }}$	Dout
L	H	L	X	WRITE	'cc	$\mathrm{D}_{\text {IN }}$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Typ	Max	Unit
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)\left(\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}, \overline{\mathrm{OE}, \overline{\mathrm{WE}})}\right.$	$\mathrm{C}_{11}$		7	pF
Input Capacitance $\left(\mathrm{V}_{1 \mathrm{~N}}=\mathrm{OV}\right)($ Other Inputs $)$	$\mathrm{C}_{12}$		6	pF
I/O Capacitance $\left(\mathrm{V}_{1 / O}=\mathrm{OV}\right)$	$\mathrm{C}_{1 / O}$		8	pF

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{1 \mathrm{~L}}$	-0.5		0.4	V
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.6		6.0	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-55		+125	${ }^{\circ} \mathrm{C}$

*-2.0V Min. for pulse width less than $20 \mathrm{ns}.\left(\mathrm{~V}_{1 \mathrm{~L}} \mathrm{Min}=-0.5 \mathrm{~V}\right.$ at DC level)

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Min	Max	Unit	Test Condition
Input Leakage Current	$I_{\text {LI }}$	-10	10	$\mu \mathrm{A}$	$V_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$
Output Leakage Current	ILo	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=V_{I H} \text { or }{C S_{2}}_{2}=V_{I L} \text { or } \overline{W E}=V_{I L} \text { or } \\ & \overline{\mathrm{OE}}=V_{I H}, V_{O U T}=O V \text { to } V_{C C} \end{aligned}$
Operating Supply Current	Icc		120	mA	$\begin{aligned} & \overline{\mathrm{CS}}_{1}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I} / \mathrm{O}=\text { Open, } \mathrm{Cycle}=\mathrm{Min} \end{aligned}$
Standby Supply Current	$I_{\text {SB1 }}$		20	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min to } \operatorname{Max} . \overline{\mathrm{CS}}_{1}=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \leqq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \geqq \mathrm{~V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$
	$I_{\text {SB2 }}$		30	mA	$\overline{\mathrm{CS}}_{1}=\mathrm{V}_{1 \mathrm{H}}$
Output Low Voltage	$V_{\text {OL }}$		0.45	V	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}$	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Peak Power-on Current	$I_{\text {PO }}$		50	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \mathrm{Min} . \\ & \mathrm{CS}_{1}=\text { Lower of } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{IH}} \mathrm{Min} . \end{aligned}$

FUJITTSU


## AC TEST CONDITIONS

Input Pulse Levels:
Input Pulse Rise And Fall Times:
Timing Measurement Reference Levels:
Input: 1.5 V
Output: 1.5 V

Fig. 2

Output Load I.
For all except $t_{L Z}, t_{H Z}, t_{w Z}, t_{o w}$,
$\mathrm{t}_{\mathrm{OLZ}}$, and $\mathrm{t}_{\mathrm{OHz}}$.


Output Load II.
For $t_{L Z}, t_{H Z}, t_{W Z}, t_{O W}, t_{O L Z}$, and $t_{O H Z}$.


MB81C79A-45-W

## AC CHARACTERISTICS <br> READ CYCLE* 1

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	MB81C79A-45-W		Unit
		Min	Max	
Read Cycle Time	$\mathrm{t}_{\mathrm{RC}}$	45		ns
Address Access Time ${ }^{*}$	${ }^{t} A A$		45	ns
$\overline{\mathrm{CS}}_{1}$ Access Time ${ }^{\text {³}}$	${ }^{\text {A }}$ ACS1		45	ns
$\mathrm{CS}_{2}$ Access Time*3	${ }^{\text {A }}$ ACS2		20	ns
Output Hold from Address Change	${ }_{\text {tor }}$	3		ns
$\overline{\mathrm{OE}}$ Access Time	toe		20	ns
Output Active from $\overline{\mathrm{CS}}_{1}{ }^{* 4 * 5}$	$t_{\text {LZ1 }}$	5		ns
Output Active from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$t_{\text {LZ2 }}$	0		ns
Output Active from $\overline{\mathrm{OE}} *{ }^{*} \times 5$	tolz	0		ns
Output Disable from $\overline{\mathrm{CS}}_{1}{ }^{4 * 5}$	$\mathrm{t}_{\mathrm{HZ1}}$		25	ns
Output Disable from $\mathrm{CS}_{2}{ }^{* 4 * 5}$	$\mathrm{t}_{\mathrm{Hz2}}$		25	ns
Output Disable from $\overline{\mathrm{OE}}{ }^{*}{ }^{* 5}$	${ }^{\text {torz }}$		25	ns

Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{IH}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
*3 Address valid prior to or coincident with $\mathrm{CS}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transistion is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## READ CYCLE TIMING DIAGRAM*1

READ CYCLE I: ADDRESS CONTROLLED* ${ }^{2}$


READ CYCLE II: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED* ${ }^{3}$


Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{C S}_{1}=\mathrm{V}_{1 L}, \mathrm{CS}_{2}=\mathrm{V}_{1 H}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
*3 Address valid prior to or coincident with $\mathrm{CS}_{1}$ transition low, $\mathrm{CS}_{2}$ transition high.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

WRITE CYCLE* ${ }^{1}$

Parameter	Symbol	MB81C79A-45-W		Unit
		Min	Max	
Wirte Cycle Time ${ }^{\text {- }}$	${ }_{\text {twc }}$	45		ns
$\overline{\mathrm{CS}}_{1}$ to End of Write	${ }^{t}{ }^{\text {cW }}$	40		ns
$\mathrm{CS}_{2}$ to End of Write	${ }^{\text {c }}$ W2	25		ns
Address Valid to End of Write	$t_{\text {AW }}$	40		ns
Address Setup Time	${ }^{\text {t }}$ AS	2		ns
Write Pulse Width	${ }^{\text {twp }}$	25		ns
Data Setup Time	${ }^{\text {b }}$ W	20		ns
Write Recovery Time ${ }^{* 3}$	$t_{\text {WR }}$	3		ns
Data Hold Time	${ }^{\text {t }}$ D	3		ns
Output High-Z from $\overline{\mathrm{WE}}{ }^{*}{ }^{* 5}$	${ }^{\text {t }}$ w		20	ns
Output Low-Z from $\overline{W E * 4 * 5}$	tow	0		ns

Note: *1 If $\overline{\mathrm{CS}}_{1}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of Write Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## WRITE CYCLE TIMING DIAGRAM* ${ }^{*}$

WRITE CYCLE I: $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{2}$ CONTROLLED


Note: ${ }^{*} 1$ If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, $\mathrm{I} / \mathrm{O}$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycle are determined from the last address transition to the first address transition of next address.
${ }^{*} 3 t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## WRITE CYCLE TIMING DIAGRAM*1

WRITE CYCLE II: $\overline{W E}$ CONTROLLED


Note: ${ }^{*} 1$ If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}_{1}$, and $\mathrm{CS}_{2}$ are in the READ Mode during this period, $\mathrm{I} / \mathrm{O}$ pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
*2 All write cycles are determined from the last address transition to the first address transition of next address.
*3 $t_{W R}$ is defined from the end point of WRITE Mode.
*4 Transition is specified at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## PACKAGE DIMENSIONS

28-LEAD CERAMIC (METAL SEAL) DUAL IN-LINE PACKAGE (CASE No.: DIP-28C-A08)


[^37]
## PACKAGE DIMENSIONS (continued) <br> CERAMIC LCC (Suffix: -CV)



[^38]
## MB8464A-10-W/-15-W

CMOS 64K-BIT LOW POWER SRAM

## 8,192WORDS x 8BIT CMOS STATIC RAM WITH LOW POWER AND DATA RETENTION

The Fujitsu MB8464A is a 8192-word by 8-bit static random access memory fabricated with a CMOS silicon gate process. The memory utilizes asynchronous circuitry and may be maintained in any state for an indefinite period of time. All pins are TTL compatible, and a single 5 volts power supply is required.

The MB8464A is ideally suited for use in microprocessor systems and other applications where fast access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost, and high performance.

- Organization: 8192 words $\times 8$ bits
- Fast access time: 100ns max. (MB8464A-10-W)

150ns max. (MB8464A-15-W)

- Completely static operation: No clock required
- TTL compatible input/output
- Three-state output
- Common data input/output
- Single +5 V power supply, $\pm 10 \%$ tolerance
- Low power standby: 11 mW max.
- Data retention: 2.0 V min .
- 28-pin Ceramic package ( 300 mil width)
( 600 mil width)
- 32-pad Leadless Chip Carrier

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Storage Temperature Range	$\mathrm{T}_{\text {sTc }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Temperature Under Bias	$\mathrm{T}_{\text {BAA }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{T}_{\mathrm{IN}}$	-0.5 to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V
Output Voltage	$\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Ceramic Package ( 600 mil ) DIP-28C-A07


Ceramic Package ( 300 mil ) DIP-28C-A08


Ceramic Package LCC-32C-A02

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. damage due
However, l is advised that normal precautions be taken to avold application of any vothage higher than maximum rated avolid app to this high impedance dricuit.
voltages to

[^39]Copyright© 1989 by FUJITSU LIMITED

Fig. 1 - MB8464A BLOCK DIAGRAM


TRUTH TABLE

$\overline{\mathrm{CS}}$	$\mathrm{CS}_{2}$	$\overline{\mathrm{OE}}$	WE	MODE	SUPPLY CURRENT	I/O PIN
H	X	x	x	NOT SELECTED	$l_{\text {sB }}$	HIGH-Z
X	L	X	X	NOT SELECTED	$1{ }_{\text {sb }}$	HIGH-Z
L	H	H	H	Dout DISABLE	lcc	HIGH-Z
L	H	L	H	READ	lcc	Dour
L	H	X	1	WRITE	lcc	$\mathrm{D}_{1 \times}$

CAPACITANCE $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$

Parameter	Symbol	Min	Typ	Max	Unit
I/O Capacitance $\left(\mathrm{V}_{\mathrm{K}}=0 \mathrm{~V}\right)$	$\mathrm{C}_{10}$			10	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{N}}=\mathrm{OV}\right)$	$\mathrm{C}_{\mathbb{N}}$			7	pF

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	$V_{\mathrm{cc}}$	4.5	5.0	5.5	V
Input Low Voltage	$\mathrm{V}_{\mathrm{IL}}$	$-0.3 \cdot 1$		0.6	V
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$	2.4		$\mathrm{~V}_{\mathrm{cc}}+0.3$	V
Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-55		+125	${ }^{\circ} \mathrm{C}$

*1 $-3.0 \mathrm{~V} \min$. for pulse width less than 20 ns . ( $\mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-0.3 \mathrm{~V}$ at DC level $)$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	$\begin{aligned} & \text { MB8464A- } \\ & 10-W / 15-W \end{aligned}$		Unit	Test Condition
		Min	Max		
Standby Supply Current	$\mathrm{l}_{\text {sB1 }}$		2	mA	$\begin{aligned} & \text { CS250.2V, } \overline{C S 1} \geq V_{c c}-0.2 \mathrm{~V} \\ & \left(\mathrm{CS} 2 \leq 0.2 \mathrm{~V} \text { or } \mathrm{CS} 2 \geq \mathrm{V}_{c c}-0.2 \mathrm{~V}\right. \text { ) } \end{aligned}$
	$\mathrm{l}_{\text {SB2 }}$		5	mA	$\overline{\mathrm{CS}} 1=\mathrm{V}_{\text {IH }}$ or $\mathrm{CS} 2=\mathrm{V}_{\text {IL }}$
Active Supply Current	lcCl		70	mA	
Operating Supply Current	$l_{\text {cc2 }}$		90	mA	$\begin{aligned} & \text { Cycle=Min., Duty=100\%, } \\ & \text { lout=OmA } \end{aligned}$
Input Leakage Current	l	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {w }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$
Output Leakage Current	1 \%	-50	50	$\mu \mathrm{A}$	$\begin{aligned} & V_{1 O}=O V \text { to } V_{c C} \\ & C S 1=V_{H H} \text { or } C S 2=V_{I L} \text { or } \overline{O E}=V_{I H} \text { or } \overline{W E}=V_{I L} \end{aligned}$
Output Hligh voltage	$\mathrm{V}_{\text {OH }}$	2.4		V	$\mathrm{l}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output Low voltage	$\mathrm{V}_{\mathrm{OL}}$		0.4	V	$\mathrm{loL}^{2} 2.1 \mathrm{~mA}$

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels:
- Input Pulse Rise and Fall Times:
- Timing Reference Levels:
: 0.4 V to 2.6 V
: 5 ns (Transition Time between 0.6 V and 2.4 V )
: Input: $\mathrm{V}_{\mathrm{IL}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathbb{H}}=2.4 \mathrm{~V}$
Output: $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=2.0 \mathrm{~V}$
- Output Load:

	$R_{1}$	$R_{2}$	$C_{L}$	Parameters Measured
Load I	$1.8 \mathrm{~K} \Omega$	$990 \mathrm{~K} \Omega$	100 pF	except $t_{C L Z}, t_{O L Z}, t_{C H Z}, t_{O H z}, t_{W L Z}$ and $t_{W H Z}$
Load II	$1.8 \mathrm{~K} \Omega$	$990 \mathrm{~K} \Omega$	5 pF	$t_{C L Z}, t_{\text {OLZ }}, t_{C H Z}, t_{O H z}, t_{W I Z}$ and $t_{W H Z}$

< Output Load >

* Including jig and stray capacitance


## AC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted) READ CYCLE

Parameter	Symbol	MB8464A-10-W		MB8464A-15-W	
		Min	Max	Min	Max
Read Cycle Time	$t_{\text {nc }}$	100		150	
Address Access Time	$t_{\text {M }}$		100		150
CS1 Access Time	taci		100		150
CS2 Access Time	$\mathrm{t}_{4 \mathrm{Cl}}$		100		150
Output Enable to Output Valid	Loe		45		60
Output Hold from Address Change	$\mathrm{t}_{\mathrm{OH}}$	10		10	
Chip Select to Output Low-Z *1	$\mathrm{t}_{\mathrm{CLz}}$	10		10	
Output Enable to Output Low-Z *1	$\mathrm{t}_{0}$	5		5	
Chip Select to Output High-Z*1	$\mathrm{t}_{\mathrm{CHZ}}$		40		50
Output Enable to Output High-Z *1	$\mathrm{t}_{\mathrm{OHz}}$		40		50

*1 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from stady state voltage.

## READ CYCLE TIMING DIAGRAM



Note:

1) $\overline{W E}$ is high for Read Cycle.
2) Device is continuously selected, $\overline{\mathrm{CS}_{1}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CS}_{2}=\mathrm{V}_{\mathrm{IH}}$.

WRITE CYCLE

Parameter	Symbol	MB8464A-10-W		MB8464A-15-W	
		Min	Max	Min	Max
Write Cycle Time	twc	100		150	
Address Valid to End of Write	Law	80		100	
Chip Select to End of Write	$\mathrm{t}_{\text {cw }}$	80		100	
Data Valid to End of Write	tow	40		50	
Data Hold Time	$\mathrm{t}_{\mathrm{DH}}$	5		5	
Write Pulse Width	$t_{\text {wP }}$	80		100	
Address Set Up Time	$t_{\text {as }}$	0		0	
Write Recovery Time	twR	10		10	
Write Enable to Output Low-Z*1	twiz	5		5	
Write Enable to Output High-Z *1	$t_{\text {WHz }}$		40		50

*1 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from stady state voltage.

WRITE CYCLE TIMING DIAGRAM


Note: 1) If $\overline{\mathrm{OE},} \overline{\mathrm{CS}}_{1}$ and $\mathrm{CS}_{2}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.


WRITE CYCLE III ( $\mathrm{CS}_{2}$ CONTROLLED)


Note: 1) If $\overline{O E}, C S_{2}$ and $\overline{W E}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
2) If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}_{1}}$ and $\overline{\mathrm{WE}}$ are in the READ Mode during this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.

## DATA RETENTION CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter	Symbol	Min	Typ	Max
Data Retention Supply Voltage *1	$\mathrm{V}_{\mathrm{DR}}$	2.0	5.5	V
Data Retention Supply Current *2	$\mathrm{I}_{\mathrm{DR}}$		0.5	mA
Data Retention Setup Time	tors	0		ns
Operation Recovery Time	$\mathrm{t}_{\mathrm{H}}$	tRC		ns

DATA RETENTION TIMING


Note:
${ }^{*} 1 \mathrm{CS}_{2}$ controlled: $\mathrm{CS}_{2} \leq 0.2 \mathrm{~V}$
$\overline{\mathrm{CS}_{1}}$ controlled: $\overline{\mathrm{CS}_{1}} \geq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}\left(\mathrm{CS}_{2} \leq 0.2 \mathrm{~V}\right.$ or $\left.\mathrm{CS}_{2} \geq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}\right)$
${ }^{*} 2 \mathrm{CS}_{2}$ controlled: $\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \mathrm{CS}_{2} \leq 0.2 \mathrm{~V}$
$\overline{\mathrm{CS}_{1}}$ controlled: $\mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \overline{\mathrm{CS}_{1}} \geq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}\left(\mathrm{CS}_{2} \leq 0.2 \mathrm{~V}\right.$ or $\left.\mathrm{CS}_{2} \geq \mathrm{V}_{\mathrm{DR}}-0.2 \mathrm{~V}\right)$

## PACKAGE DIMENSIONS

## 32-PAD CERAMIC (METAL SEAL) LEADLESS CHIP CARRIER

 (CASE No.: LCC-32C-A02)

Dimensions in inches
*Shape of PIN NO. 1 INDEX: Subject to change without notice.

## PACKAGE DIMENSIONS (Continued)



## PACKAGE DIMENSIONS (Continued)



## Section 6

CMOS SRAM Modules - At a Glance

Page	Device	Maximum Access Time (ns)	Capacity	Package Options		
6-3	$\begin{array}{r} \text { MB85402-30 } \\ -40 \end{array}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	262144 bits   (16384w x 16b)	36-pin	Ceramic	SIP
6-11	$\begin{array}{r} \text { MB85403A-40 } \\ -50 \end{array}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	2097152 bits   (262144w x 8b)	44-pin	Ceramic	SIP
6-19	$\begin{array}{r} \text { MB854 10-30 } \\ -40 \end{array}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 524288 \text { bits } \\ & (65536 w \times 8 b) \end{aligned}$	60-pin	Plastic	ZIP
6-27	$\begin{array}{r} \text { MB854 14-30 } \\ -40 \end{array}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	524288 bits   (16384w $\times 32 b$ )   or   (32768w $\times 16 \mathrm{~b}$ )	64-pin	Plastic	ZIP
6-35	$\begin{array}{r} \text { MB85420-40 } \\ -50 \end{array}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	2097152 bits   (262144w x 8b)	60-pin	Plastic	ZIP

## OMOS 16,384 Words $x$ 16-Bit STATIC RANDOM ACCESS MEMORY MODULE

The Fujitsu MB85402 is a fully decoded, CMOS Static random access memory module comprised of four MB81C75 devices mounted on a 36-pin ceramic board. Organized as four $16 \mathrm{~K} \times 4$ devices, the MB85402 is optimized for those applications requiring high speed, high performance, low power and high density. A separate output enable function provides maximum control for those systems where bus contention may be a problem.

- Organized as $16,384 \times 16$-bit Words
- Memory : MB81C75, 4 pcs
- Access Time : $30 \mathrm{~ns} \max$ (MB85402-30)
$40 \mathrm{~ns} \max$ (MB85402-40)
- Low Power Dissipation

Standby: $220 \mathrm{~mW} \max$ (CMOS leve1) $440 \mathrm{~mW} \max$ (TTL level)
Active : $1760 \mathrm{~mW} \max$

- Single +5V Power Supply, $\pm 10 \%$ Tolerance
- Automatic Power Down
- TTL Compatible Input/Output Pins
- 3-State Output
- 36-Pin 100 MIL Ceramic DIP/SIP


## ABSOLUTE MAXIMUM RATING (See Note.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Short Circuit   Output Current	$\mathrm{I}_{\text {OUT }}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	4.0	W
Temperature   under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


This device contains circuitry to protect the inputs against damage due to high static volt ages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - BLOCK DIAGRAM


Fig. 2 - BLOCK DIAGRAM for EACH MEMORY


CAPACITANCE ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Typ	Max	Unit
Input1Capacitance $\left(V_{\text {IN }}=0 \mathrm{~V}\right)$	$\mathrm{C}_{\mathrm{IN}}$		50	pF
I/O Capacitance $\left(\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{O}\right)$	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$		15	pF

FUNCTIONAL TRUTH TABLE

MODE	ADDRESS	$\overline{\text { CS }}$	WE	$\overline{\mathrm{OE}}$	I/0	POWER
STANDBY	DON'T CARE	$\mathrm{V}_{\text {IH }}$	DON'T CARE	DON'T CARE	HIGH-Z	STANDBY
READ	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	DOUT	ACTIVE
OUTPUT DESABLE	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	HIGH-Z	ACTIVE
WRITE	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	DON'T CARE	$\mathrm{D}_{\text {IN }}$	ACTIVE

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbol	Value			Unit
		Typ	Max	V	
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Supply Voltage	GND		0		V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	25	70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter (conditions)		Symbol	Value			Unit	
		Min	Typ	Max			
INPUT LEAKAGE CURRENT ( $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )			$\mathrm{I}_{\text {LI }}$	-40		40	$\mu \mathrm{A}$
OUTPUT LEAKAGE CURRENT ( $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )		$\mathrm{I}_{\text {LO }}$	-10		10	$\mu \mathrm{A}$	
STANDBY POWER SUPPLY CURRENT	CMOS level	$\mathrm{I}_{\text {SB1 }}$			40	mA	
	TIL level	$\mathrm{I}_{\text {SB2 }}$			80	mA	
ACTIVE POWER SUPPLY CURRENT $\left(\overline{C S}=V_{\text {IL }}, I_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{CC}}\right)$		$\mathrm{I}_{\mathrm{CC1}}$			240	mA	
OPERATING POWER SUPPLY CURRENT ( $I_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{t}_{\text {CYCLE }}=\mathrm{Min}$.)		$\mathrm{I}_{\mathrm{CC} 2}$			320	mA	
INPUT HIGH LEVEL		$\mathrm{V}_{\text {IH }}$	2.2		6.0	V	
INPUT LOW LEVEL* ${ }^{1}$		$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
OUTPUT HIGH LEVEL ( $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ )		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	
OUTPUT LOW LEVEL ( $\left.\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}\right)$		$\mathrm{V}_{\text {OL }}$			0.4	V	

Note: $\boldsymbol{*}^{1}-2.0 \mathrm{~V}$ level with a maximum pulse width of 20 ns .

Fig. 2 - AC TEST CONDITIONS

- Input Pulse Levels
- Input Rise and Fall Times
- Timing Reference Levels
- Output Load :

: 0 V to 3.0 V
: 5ns (Transient between 0.8 V and 2.2 V )
: 1.5 V (Input and Output)

	R 1	R 2	$\mathrm{C}_{\mathrm{L}}$
Load I	$480 \Omega$	$255 \Omega$	30 pF
Load II	$480 \Omega$	$255 \Omega$	5 pF

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
READ CYCLE ${ }^{1}$

Parameter	Symbol	MB85402-30		MB85402-40		Unit
		Min	Max	Min	Max	
Read Cycle Time	${ }^{\text {R }}$ RC	30		40		ns
Address Access Time *2	${ }^{\text {ta }}$		30		40	ns
CS Access Time * ${ }^{3}$	${ }^{\text {t }}$ ACS		30		40	ns
OE Access Time ${ }^{3}{ }^{3}$	${ }^{\text {toE }}$		13		15	ns
Output Hold from Address Change	${ }^{t} \mathrm{OH}$	5		5		ns
Output Hold from CS	${ }^{\text {t }}$	3		3		ns
CS to Output Low-Z $*^{4} *^{5}$	${ }^{t}$ CLS	5		5		ns
OE to Output Low-Z $*^{4} *^{5}$	${ }^{5} \mathrm{OLZ}$	0		0		ns
CS to Output High-Z $*^{4} *^{5}$	${ }^{\text {E }}$ CHZ		13		15	ns
OE to Output High-Z $*^{4} *^{5}$	${ }^{\text {t }}$		13		15	ns
Power Up from CS	${ }^{\dagger} \mathrm{PU}$	0		0		ns
Power Down from CS	${ }^{t} \mathrm{PD}$		25		30	ns

READ CYCLE TIMING DIAGRAM *1


Note: *1 $\overline{W E}$ is high for Read cycle.
*2 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$.
*3 Address valid prior to or coincident with CS transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 2.

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
WRITE CYCLE * ${ }^{1}$

Parameter	Symbol	MB85402-30		MB85402-40		Unit
		Min	Max	Min	Max	
Write Cycle Time *2	${ }^{\text {W }}$ WC	30		40		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	25		35		ns
CS to End of Write	${ }^{\text {chw }}$	25		35		ns
Data Valid to End of Write	${ }^{\text {E }}$ DW	13		17		ns
Data Hold Time	${ }^{\text { }}$ DH	2		2		ns
Write Pulse Width	${ }^{\text {t }}$ WP	25		35		ns
Address Setup Time	${ }^{\text {t }}$ AS	0		0		ns
Write Recovery Time	${ }^{\text {t }}$ WR	2		2		ns
Output High-Z from WE $*^{3} *^{4}$	${ }^{\text {W }}$ WHZ		13		15	ns
Output Low-Z from WE $*^{3} *^{4}$	${ }^{\text {TLL }}$		25		35	ns

WRITE CYCLE TIMING DIAGRAM


[^40]AC CHARACTERISTICS (Continued)
(At recommended operating conditions unless otherwise noted.)
WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE II: $\overline{\mathrm{CS}}$ CONTROLLED ${ }^{\bullet 1 \cdot 2}$


Note: $*_{1}$ If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.

## FUJITSU <br> MB85402-30

MB85402-40

## PACKAGE DIMENSIONS

(Suffix: CVCT)


## CMOS 262,144 Words x 8-Bit STATIC RANDOM ACCESS MEMORY MODULE

The Fujitsu MB85403A is a fully decoded, CMOS static random access memory module consists of eight MB81C81A devices mounted on a 44-pin ceramic board. Organized as eight $256 \mathrm{~K} \times 1$ devices, the MB85403 is optimized for those applications requiring high speed, high performance, large memory storage, and high density.

- Organized as $262,144 \times 8$-bit Words
- Memory : MB81C81A, 8 pcs
- Access Time : 40 ns max (MB85403A-40)

$$
50 \mathrm{~ns} \max (\mathrm{MB} 85403 \mathrm{~A}-50)
$$

- Low Power Dissipation

Standby: $660 \mathrm{~mW} \max$ (CMOS level) 1320 mW max (TTL level)
Active : 5280 mW max

- Single +5 V Power Supply, $\pm 10 \%$ Tolerance
- Automatic Power Down
- Dual Chip Select (x8 or x4 organization)
- TTL Compatible Input/Output Pins
- 3-State Output
- 44-Pin 100 MIL Ceramic Twin SIP (TSIP)


## ABSOLUTE MAXIMUM RATING (See NOTE.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Short Circuit   Output Current	$\mathrm{I}_{\text {OUT }}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	8.0	W
Temperature   under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Fig. 1 - BLOCK DIAGRAM


Fig. 2 - BLOCK DIAGRAM for EACH MEMORY


CAPACITANCE ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Typ	Max	Unit
Input Capacitance (except $\left.\overline{\mathrm{CS}}_{\mathrm{A}}, \overline{\mathrm{CS}}_{\mathrm{B}}\right)$	$\mathrm{C}_{\text {IN }}$		100	pF
Input Capacitance $\left(\overline{\mathrm{CS}}_{\mathrm{A}}+\overline{\mathrm{CS}}_{\mathrm{B}}\right)$	$\mathrm{C}_{\mathrm{CS}}$		120	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		20	pF

FUNCTIONAL TRUTH TABLE

MODE	ADDRESS	$\overline{\mathrm{CS}}_{\mathbf{A}}$	$\overline{\mathrm{CS}}_{\mathbf{B}}$	$\overline{\mathrm{WE}}$	INPUT	OUTPUT	POWER
STANDBY	DON'T CARE	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	DON' T CARE	HIGH-Z	HIGH-Z	STANDBY
WRITE	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	D $_{\text {IN }}$	HIGH-Z	ACTIVE
READ	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	HIGH-Z	D $_{\text {OUT }}$	ACTIVE

RECOMMENDED OPERATING CONDITIONS
(Referenced to GND)

Parameter	Symbo1	Value			Unit
		Typ	Max	-	
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Supply Voltage	GND		0		V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	25	70	${ }^{\circ} \mathrm{C}$

FUJITSU


MB85403A-40 MB85403A-50

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter (conditions)		Symbol	Value			Unit	
		Min	Typ	Max			
INPUT LEAKAGE CURRENT $\left(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$			$\mathrm{I}_{\text {LI }}$	-80		80	$\mu \mathrm{A}$
OUTPUT LEAKAGE CURRENT ( $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )		$\mathrm{I}_{\text {LO }}$	-50		50	$\mu \mathrm{A}$	
STANDBY POWER SUPPLY CURRENT	CMOS level	$\mathrm{I}_{\text {SB1 }}$			120	mA	
	TTL level	$\mathrm{I}_{\text {SB2 }}$			240	mA	
ACTIVE POWER SUPPLY CURRENT$\left(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \quad \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}\right)$	MB85403A-40	$\mathrm{I}_{\mathrm{CC}}$			960		
	MB85403A-50				800		
PEAK POWER ON SUPPLY CURRENT ( $\overline{\mathrm{CS}}=$ Lower of $\mathrm{V}_{\mathrm{CC}}$, or $\mathrm{V}_{\mathrm{IH}}$ )		$\mathrm{I}_{\mathrm{PO}}$			240	mA	
Input High Level		$\mathrm{V}_{\text {IH }}$	2.2		6.0	V	
Input Low Level $*^{1}$		$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
OUTPUT HIGH LEVEL ( $\left.\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	
OUTPUT LOW LEVEL ( $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$ )		$\mathrm{V}_{\text {OL }}$			0.4	V	

Note: $*^{1}-3.0 \mathrm{~V}$ min. for pulse width less than 20 ns .

Fig. 3 - AC TEST CONDITIONS

- Input Pulse Levels
- Input Rise and Fall Times
- Timing Reference Levels
- Output Load :

: 0.6 V to 2.4 V
: 5ns
$: \mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{OH}}=2.2 \mathrm{~V}$

	$\mathrm{R}_{\mathrm{L}}$	$\mathrm{C}_{\mathrm{L}}$
Load I	$100 \Omega$	30 pF
Load II	$100 \Omega$	5 pF

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
READ CYCLE * ${ }^{1}$

Parameter	Symbol	MB85403A-40		MB85403A-50		Unit
		Min	Max	Min	Max	
Read Cycle Time * ${ }^{2}$	${ }^{t_{R C}}$	40		50		ns
Address Access Time	${ }^{\text {t }}$ AA		40		50	ns
CS Access Time $*^{3}$	${ }^{\text {t }}$ ACS		40		50	ns
Output Hold from Address Change	${ }^{\text {}}$ OH	5		5		ns
CS to Output Low-Z $*^{4} * 5$	${ }^{\text {L }}$ LZ	5		5		ns
CS to Output High-Z $*^{4} * 5$	${ }^{\text {t }} \mathrm{HZ}$	0	25	0	30	ns
Power Up from CS	${ }^{t} \mathrm{PU}$	0		0		ns
Power Down from CS	${ }^{\text {t }}$ PD		40		50	ns

READ CYCLE TIMING DIAGRAM *1


Note: ${ }^{1} \overline{\mathrm{WE}}$ is high during Read cycle.
*2 Device is continuously selected, $\overline{C S}=V_{\text {IL }}$.
*3 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*5 This parameter is specified with Load II in Fig. 3.

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) WRITE CYCLE * ${ }^{1}$

Parameter	Symbol	MB85403A-40		MB85403A-50		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{\text {* }}$	${ }^{\text {W }}$ WC	40		50		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	35		45		ns
CS to End of Write	${ }^{\text {c }}$ CW	35		45		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	25		30		ns
Data Hold Time	${ }^{\text {t }}$ DH	0		0		ns
Write Pulse Width	${ }^{\text {t }}$ WP	25		30		ns
Address Setup Time	${ }^{\text {t }}$ AS1	5		5		ns
Address Setup Time	${ }^{\text {t }}$ AS2	0		0		ns
Write Recovery Time	${ }^{\text {t }}$ WR	5		5		ns
Output High-Z from WE $*^{3} *^{4}$	${ }^{\text {t }}$ WZ	0	25	0	30	ns
Output Low-Z from WE $*^{3} \%^{4}$	${ }^{\text { }} \mathrm{OZ}$	0		0		ns

WRITE CYCLE TIMING DIAGRAM


Note: ${ }^{*} 1$ If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
*2 All write cycle are determined from last address transition to the first address transition of the next address.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 3.

## AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)
WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE: $\overline{C S}$ CONTROLLED


Note: $*_{1} \overline{C S}$ or $\overline{W E}$ must be high during address transitions.
*2 All write cycle are determined from last address transition to the first address transition of the next address.

## PACKAGE DIMENSIONS

(Suffix: CVCT)


## MB85410-30/-40

## 64K x 8 CMOS SRAM MODULE

## CMOS 65,536 WORDS x 8-BIT HIGH SPEED STATIC RANDOM ACCESS MEMORY MODULE

The Fujitsu MB85410 is a fully decoded, CMOS static random access memory module consists of eight MB81C71A devices mounted on a 60 -pin plastic board.
Organized as eight $64 \mathrm{~K} \times 1$ devices, the MB85410 is optimized for those applications requiring high speed, high performance, large memory storage, and high density.

- Organized as $\mathbf{6 5 , 5 3 6} \times 8$-bit Words
- Memory: MB81C71A, 8 pcs
- Access Time: 30 ns max (MB85410-30)
$40 \mathrm{~ns} \max$ (MB85410-40)
- Low Power Dissipation

Standby : $\mathbf{4 4 0 \mathrm { mW }}$ max (CMOS level) 880 mW max (TTL level)
Active : $\mathbf{3 2 0 0} \mathrm{mW}$ max

- Single +5V Power Supply, $\pm 10 \%$ Tolerance
- Automatic Power Down
- Dual Chip Select (x8 or $x 4$ organization)
- TTL Compatible Input/Output Pins
- 3-State Output
- Decoupling Capacitor: . $22 \mu \mathrm{~F}, 8 \mathrm{pcs}$
- 60-Pin Plastic(FR-4) ZIP


## ABSOLUTE MAXIMUM RATINGS (see NOTE.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Ouput Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Output Current	$\mathrm{I}_{\text {OUT }}$	$\pm 50$	mA
Power Dissipation	$\mathrm{P}_{\text {D }}$	8.0	W
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-45 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


FIg. 1 - BLOCK DIAGRAM


Fig. 2 - BLOCK DIAGRAM FOR EACH MEMORY


## CAPACITANCE

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Typ	Max	Unit
Input Capacitance, Address and $\overline{\mathrm{WE}}$	$\mathrm{C}_{\mathrm{N} 1}$		80	pF
Input Capacitance, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$	$\mathrm{C}_{\mathrm{N} 2}$		40	pF
Input Capacitance, $\mathrm{D}_{\mathbb{N}}$	$\mathrm{C}_{\mathbb{N} 3}$		10	pF
Output Capacitance, $\mathrm{D}_{\text {OUT }}$	$\mathrm{C}_{\text {OUT }}$		10	pF

## FUNCTIONAL TRUTH TABLE

Mode	Address	$\overline{C S}$	$\overline{C S}_{2}$	$\overline{W E}$	Input	Output	Power
Standby	Don't Care	$V_{\mathbb{H}}$	$V_{\text {IH }}$	Don't Care	High-Z	High -Z	Standby
Write	Valid	$\mathrm{V}_{\text {IL }}$	$V_{\text {IL }}$	$\mathrm{V}_{1 \mathrm{~L}}$	$\mathrm{D}_{\mathrm{IN}}$	High-Z	Active
Read	Valid	$V_{\text {IL }}$	$\mathrm{V}_{11}$	$V_{\text {H }}$	High-Z	$\mathrm{D}_{\text {OUT }}$	Active

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage		4.5	5.0	5.5	$V$
Supply Voltage	GND		0		$V$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	25	70	${ }^{\circ} \mathrm{C}$

MB85410-30 MB85410-40

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter (conditions)	Symbol	Values			Unit
		Min	Typ	Max	
Input Leakage Current ( $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {cc }}$ )	$I_{\text {LI }}$	-80		80	$\mu \mathrm{A}$
Output Leakage Current ( $\overline{C S}=V_{\mathbb{H}}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )	$I_{\text {LO }}$	-10		10	$\mu \mathrm{A}$
Standby Power Supply Current	${ }^{\text {SB1 }}$			80	mA
	$I_{\text {SB2 }}$			160	mA
Active Power Suppry Current ( $\left.\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}\right)$	$I_{\text {cc }}$			640	mA
Peak Power on Supply Current ( $\overline{\mathrm{CS}}=$ Lower of $\mathrm{V}_{\mathrm{CC}}$, or $\mathrm{V}_{\mathbb{H}}$ )	$\mathrm{I}_{\mathrm{PO}}$			240	mA
Input High Level	$\mathrm{V}_{\mathrm{IH}}$	2.2		6.0	V
Input Low Level ${ }^{1}$	$\mathrm{V}_{\mathrm{H}}$	-0.5		0.8	V
Output High Level ( $\left.\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{OH}}$	2.4			V
Output Low Level ( $\left.1_{0 L}=16 \mathrm{~mA}\right)$	$\mathrm{v}_{\mathrm{oL}}$			0.4	V

Note : $\cdot 1-2.0 \mathrm{~V}$ min. for pulse width less than 20 ns .

FIg. 3 - AC TEST CONDITIONS

- Input Pulse Levels
- Input Rise and Fall Times
- Timing Reference Levels - Output Load:

	$C_{L}$
Load I	30 pF
Load $\Pi$	5 pF

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB85410-30		MB85410-40		Unit
		Min	Max	Min	Max	
Read Cycle Time ${ }^{1} 1$	${ }^{t}{ }_{\text {RC }}$	30		40		ns
Address Access Time	${ }^{\text {t }}$ AA		30		40	ns
$\overline{\mathrm{CS}}$ Access Time $\cdot 2$	$t_{\text {ACS }}$		30		40	ns
Output Hold from Address Change	$\mathrm{t}_{\mathrm{OH}}$	5		5		ns
$\overline{C S}$ to Output Low-Z $3 \cdot 4$	$\mathrm{t}_{\mathrm{Lz}}$	5		5		ns
$\overline{\mathrm{CS}}$ to Output High-Z $3 \cdot 4$	${ }^{\text {t }} \mathrm{HZ}$	0	10	0	15	ns
Power Up from $\overline{\mathrm{CS}}$	$t_{\text {Pu }}$	0		0		ns
Power Down from $\overline{\mathrm{CS}}$	${ }^{\text {t }}$ PD		20		30	ns

READ CYCLE TIMING DIAGRAM


Note: • 1 Device is continuously selected, $\overline{C S}=V_{\underline{I L}}$.

- 2 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
$\cdot 3$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
$\bullet 4$ This parameter is specified with Load $\Pi$ in Fig. 3.


## AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)
WRITE CYCLE* 1

Parameter	Symbol	MB85410-30		MB85410-40		Unit
		Min	Max	Min	Max	
Write Cycle Time * 2	${ }^{\text {t w }}$ c	30		40		ns
Address Valid to End of Write	${ }_{\text {t }}^{\text {aw }}$	25		35		ns
$\overline{C S}$ to End of Write	${ }^{\text {t }} \mathrm{CW}$	25		35		ns
Data Hold Time	${ }^{\text {t }}$ DH	2		2		ns
Write Pulse Width	${ }^{\text {t }}$ + ${ }^{\text {P }}$	20		30		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	15		20		ns
Address Setup Time	${ }_{\text {t }}^{\text {AS } 1}$	0		0		ns
	$t_{\text {AS2 }}$	0		0		ns
Write Recovey Time	${ }^{t}$ WR	2		2		ns
Output High-Z from $\overline{W E} \cdot 3 \cdot 4$	${ }^{\text {t wz }}$	0	10	0	15	ns
Output Low-Z from $\overline{W E}+3 \cdot 4$	${ }^{\text {t ow }}$	0		0		ns

## WRITE CYCLE TIMING DIAGRAM



Note: • 1 If $\overline{C S}$ goes high simultaneously with $\overline{\text { WE }}$ high, the output remains in high impedance state.

- 2 All write cycle are determined from last address transition to the first address transition of the next address.
$\cdot 3$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
${ }^{*} 4$ This parameter is specified with Load $\Pi$ in Fig. 3.


## AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)

## WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE: $\overline{C S}$ CONTROLLED


## MB85410-30

MB85410-40

## PACKAGE DIMENSIONS

(Suffix: -PJPZ)
60-LEAD PLASTIC MODULE
(Case No.: MZP-60P-P02)


## GMOS 16,384 Words $x$ 32-Bit HIGH SPEED STATIC RANDOM ACCESS MEMORY MODULE

The Fujitsu MB85414 is a fully decoded, CMOS static random access memory module consists of nine MB81C75A devices mounted on a $64-$ pin plastic board.
Organized as eight 16K x 4 devices, the MB85414 is optimized for those applications requiring high speed, high performance, wide word width, and high density.

- Organized as $16,384 \times 32$-bit Words
- Optional organization as $32,768 \times 16$-bit
- Memory : MB81C75A, 8 pcs
- Access Time : $30 \mathrm{~ns} \max$ (MB85414-30)
$40 \mathrm{~ns} \max$ (MB85414-40)
- Low Power Dissipation

Standby: $440 \mathrm{~mW} \max$ (CMOS level)
880 mW max (TTL level)
Active : 3520 mW max

- Single +5V Power Supply, $\pm 10 \%$ Tolerance
- Automatic Power Down
- TTL Compatible Input/Output Pins
- 3-State Output
- Decoupling Capacitor : . $22 \mu \mathrm{~F}, 8$ pcs
- 64-Pin Plastic(FR-4) ZIP


## ABSOLUTE MAXIMUM RATING (See Note.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\mathrm{IN}}$	-3.5 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Short Circuit   Output Current	$\mathrm{I}_{\text {OUT }}$	$\pm 50$	mA
Power Dissipation	$\mathrm{P}_{\mathrm{D}}$	8.0	W
Temperature   under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage   Temperature	$\mathrm{T}_{\text {STG }}$	-45 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.




CAPACITANCE ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Typ	Max	Unit
Input Capacitance, ADDRESS	$\mathrm{C}_{\text {IN1 }}$		80	pF
Input Capacitance, $\overline{\mathrm{CS}}$	$\mathrm{C}_{\text {IN2 }}$		30	pF
Input Capacitance, $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$	$\mathrm{C}_{\text {IN3 }}$		80	pF
Input Capacitance, $\mathrm{I} / 0$	$\mathrm{C}_{\mathrm{I} / 0}$		12	pF

FUNCTIONAL TRUTH TABLE

MODE	ADDRESS	$\overline{\mathbf{C S}}$	$\overline{W E}$	$\overline{\mathbf{O E}}$	$\mathrm{I} / 0$	POWER
STANDBY	X	$\mathrm{V}_{\text {IH }}$	X	X	HIGH-Z	STANDBY
OUTPUT DISABLE	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	HIGH-Z	ACTIVE
WRITE	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	X	HIGH-Z	ACTIVE
READ	VALID	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{D}_{\text {OUT }}$	ACTIVE

$X$ can be either $V_{I H}$ or $V_{I L}$.

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Value			Unit
		Typ	Max		
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	4.5	5.0	5.5	V
Supply Voltage	GND		0		V
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	25	70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter (conditions)		Symbol	Value			Unit	
		Min	Typ	Max			
INPUT LEAKAGE CURRENT$\left(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right)$			$\mathrm{I}_{\text {LI }}$	-80		80	$\mu \mathrm{A}$
OUTPUT LEAKAGE CURRENT ( $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )		$\mathrm{I}_{\mathrm{LO}}$	-10		10	$\mu \mathrm{A}$	
STANDBY POWER SUPPLY CURRENT	CMOS leve1	$\mathrm{I}_{\text {SB1 }}$			80	mA	
	TTL level	$\mathrm{I}_{\text {SB2 }}$			160	mA	
ACTIVE POWER SUPPLY CURRENT $\left(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}\right)$		$\mathrm{I}_{\text {CC1 }}$			480	mA	
OPERATING SUPPLY CURRENT (Cycle=Min., $I_{\text {OUT }}=0 \mathrm{~mA}$ )		$\mathrm{I}_{\mathrm{CC} 2}$			640	mA	
Input High Level		$\mathrm{V}_{\text {IH }}$	2.2		6.0	V	
Input Low Level *1		$\mathrm{V}_{\text {IL }}$	-0.5		0.8	V	
OUTPUT HIGH LEVEL ( $\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$ )		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	
OUTPUT LOW LEVEL ( $\mathrm{I}_{\text {OL }}=8 \mathrm{~mA}$ )		$\mathrm{V}_{\mathrm{OL}}$			0.4	V	

Note: $*^{1}-2.0 V$ min. for pulse width less than 20 ns .

Fig. 3 - AC TEST CONDITIONS

- Input Pulse Levels
- Input Rise and Fall Times : 5ns (Transient between 0.8 V and 2.2V)
- Timing Reference Levels : 1.5V (Input and Output)
- Output Load :

(Including Scope and Jig Capacitance)


## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB85414-30		MB85414-40		Unit
		Min	Max	Min	Max	
Read Cycle Time *1	${ }^{\text {t }}$ RC	30		40		ns
Address Access Time	${ }^{t}$ AA		30		40	ns
CS Access Time *2	${ }^{\text {taCS }}$		30		40	ns
OE Access Time *2	${ }^{\text {t }}$		15		20	ns
Output Hold from Address Change	${ }^{5} \mathrm{OH}$	5		5		ns
Output Hold from Output Disable	tOHC	3		3		ns
CS to Output Low-Z *3*4	${ }^{\text {t }}$ CLZ	5		5		ns
OE to Output Low-Z ${ }^{* 3 * 4}$	${ }^{\text {t OLZ }}$	0		0		ns
CS to Output High-Z *3*4	${ }^{\text {t }} \mathrm{CHZ}$		10		15	ns
OE to Output High-Z *3*4	${ }^{\text {t }} \mathrm{OHZ}$		10		15	ns
Power Up from CS	${ }^{\text {tpu }}$	0		0		ns
Power Down from CS	tPD		20		30	ns

## READ CYCLE TIMING DIAGRAM

READ CYCLE I


READ CYCLE II

$\boxtimes$ Undefined
$\square$ Don't Care

Note: *1 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\text {IL }}$.
*2 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
*3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
*4 This parameter is specified with Load II in Fig. 3.

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.) WRITE CYCLE * ${ }^{1}$

Parameter	Symbol	MB85414-30		MB85414-40		Unit
		Min	Max	Min	Max	
Write Cycle Time ${ }^{\text {* }}$	${ }^{\text {WhC }}$	30		40		ns
Address Valid to End of Write	${ }^{\text {t }}$ AW	25		35		ns
CS to End of Write	${ }^{\text {c }}$ CW	25		35		ns
Data Hold Time	${ }^{\text {t }}$ DH	2		2		ns
Write Pulse Width	${ }^{\text {W }}$ WP	20		30		ns
Data Valid to End of Write	${ }^{\text {t }}$ DW	15		20		ns
Address Setup Time	${ }^{\text {t }}$ AS	0		0		ns
Write Recovery Time	${ }^{\text {t }}$ WR	2		2		ns
Output High-Z from WE $*^{3} *^{4}$	${ }^{\text {t }}$ WHZ		10		15	ns
Output Low-Z from WE $*^{3} \%^{4}$	${ }^{\text {TLZ }}$	0	20	0	30	ns

WRITE CYCLE TIMING DIAGRAM


[^41]FUJITSU
MB85414-30
MB85414-40

## AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)

## WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE II: $\overline{\mathrm{CS}}$ CONTROLLED


6

## PACKAGE DIMENSIONS



## CMOS 262,144 WORDS x 8-BIT HIGH SPEED STATIC RANDOM ACCESS MEMORY MODULE

The Fujitsu MB85420 is a fully decoded, CMOS static random access memory module consists of eight MB81C81A devices mounted on a 60 -pin plastic board. Organized as eight $256 \mathrm{~K} \times 1$ devices, the MB85420 is optimized for those applications requiring high speed, high performance, large memory storage, and high density.

- Organized as $262,144 \times 8$-bit Words
- Memory: MB81C81A, 8 pcs
- Access Time: 40 ns max (MB85420-40)

50 ns max (MB85420-50)

- Low Power Dissipation

Standby : 660 mW max (CMOS level) 1320 mW max (TTL level)
Active : 5280 mW max (MB85240-40) 4400 mW max (MB85420-50)

- Single +5 V Power Suppry, $\pm 10 \%$ Tolerance
- Automatic Power Down
- Dual Chip Select (x8 or $\times 4$ organization)
- TTL Compatible Input/Output Pins
- 3-State Output
- Decoupling Capacitor: . $22 \mu$ F, 8pcs
- 60-Pin Plastic(FR-4) ZIP
- Upgrade version of MB85410

ABSOLUTE MAXIMUM RATINGS (see NOTE.)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	-0.5 to +7.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	-3.5 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.5 to +7.0	V
Output Current	$\mathrm{I}_{\text {OUT }}$	$\pm 20$	mA
Power Dissipation	$\mathrm{P}_{\text {D }}$	8.0	W
Temperature under Bias	$\mathrm{T}_{\text {BIAS }}$	-10 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-45 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Fig. 1 - BLOCK DIAGRAM


Fig. 2 - BLOCK DIAGRAM FOR EACH MEMORY


## CAPACITANCE

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ )

Parameter	Symbol	Typ	Max	Unit
Input Capacitance, Address and $\overline{\mathrm{WE}}$	$\mathrm{C}_{\mathbb{N} 1}$		70	pF
Input Capacitance, $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$	$\mathrm{C}_{\mathbb{N} 2}$		45	pF
Input Capacitance, $\mathrm{D}_{\mathbb{N}}$	$\mathrm{C}_{\mathbb{N} 3}$		9	pF
Outout Capacitance, $\mathrm{D}_{\text {OUT }}$	$\mathrm{C}_{\mathrm{OUT}}$		pF	

FUNCTIONAL TRUTH TABLE

Mode	Address	$\overline{\mathrm{CS}}$	$\overline{\mathrm{CS}}_{2}$	$\overline{W E}$	Input	Output	Power
Standby	Don't Care	$\mathrm{V}_{\mathrm{IH}}$	$\mathrm{V}_{1 H}$	Don't Care	High-Z	High -Z	Standby
Write	Valid	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{D}_{\text {IN }}$	High-Z	Active
Read	Valid	$\mathrm{V}_{1 L}$	$\mathrm{V}_{1}$	$\mathrm{V}_{\mathrm{H}}$	High-Z	$\mathrm{D}_{\text {OUT }}$	Active

## RECOMMENDED OPERATING CONDITIONS

(Referenced to GND)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Supply Voltage		4.5	5.0	5.5	V
Supply Voltage	GND		0		$V$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0	25	70	${ }^{\circ} \mathrm{C}$

## DC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted)

Parameter (Conditions)		Symbol	Values			Unit	
		Min	Typ	Max			
Input Leakage Current ( $\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}$ )			$I_{\text {LI }}$	-80		80	$\mu \mathrm{A}$
Output Leakage Current ( $\overline{\mathrm{CS}}=\mathrm{V}_{\mathbb{H}}, \mathrm{V}_{\text {OUT }}=O \mathrm{~V}$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$		1 LO	-50		50	$\mu \mathrm{A}$	
Standby Power Supply Current	CMOS level	${ }^{\text {SB1 }}$			120	mA	
	TTL level	${ }^{\prime}$ SB2			240	mA	
Active Power Suppry Current$\left(\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}, I \text { OUT }=0 \mathrm{~mA}\right)$	MB85420-40	$\mathrm{I}_{\mathrm{cc}}$			960	mA	
	MB85420-50				800	mA	
Peak Power on Supply Current ( $\overline{\mathrm{CS}}=$ Lower of $\mathrm{V}_{\mathrm{CC}}$, or $\mathrm{V}_{\mathbb{I H}}$ )		$I_{\text {PO }}$			240	mA	
Input High Level		$\mathrm{V}_{\mathrm{IH}}$	2.2		6.0	V	
Input High Level•1		$\mathrm{V}_{\mathrm{IL}}$	-0.5		0.8	V	
Output High Level ( $\left.\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}\right)$		$\mathrm{V}_{\mathrm{OH}}$	2.4			V	
Output Low Level ( $\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$ )		$\mathrm{V}_{\mathrm{OL}}$			0.4	V	

Note: * $1-3.0 \mathrm{~V}$ min. for pulse width less than 20 ns .

Fig. 3 - AC TEST CONDITIONS

- Input Pulse Levels
- Input Rise and Fall Times
- Timing Reference Levels
- Output Load:
: 0.6 V to 2.4 V
$: 5 \mathrm{~ns}$
$: \mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}} N_{\mathrm{OH}}=2.2 \mathrm{~V}$


	$R_{L}$	$C_{L}$
Load I	$100 \Omega$	30 pF
Load $\Pi$	$100 \Omega$	5 pF

## AC CHARACTERISTICS

(At recommended operating conditions unless otherwise noted.)
READ CYCLE

Parameter	Symbol	MB85420-40		MB85420-50		Unit
		Min	Max	Min	Max	
Read Cycle Time ${ }^{1}$	${ }^{\text {t }}$ RC	40		50		ns
Address Access Time	${ }^{\text {t }}$ A ${ }^{\text {a }}$		40		50	ns
$\overline{\mathrm{CS}}$ Access Time $\cdot 2$	$t_{\text {ACS }}$		40		50	ns
Output Hold from Address Change	${ }^{\text {t }} \mathrm{OH}$	5		5		ns
$\overline{\mathrm{CS}}$ to Output Low-Z $3 \cdot 3$	$t_{L Z}$	5		5		ns
$\overline{\mathrm{CS}}$ to Output High-Z $3 \cdot 3$	${ }^{\text {t }} \mathrm{HZ}$	0	20	0	25	ns
Power Up from $\overline{\mathrm{CS}}$	${ }^{\text {t }}$ PU	0		0		ns
Power Down from $\overline{\mathrm{CS}}$	${ }^{\text {P PD }}$		40		50	ns

READ CYCLE TIMING DIAGRAM

READ CYCLE I: ADDRESS CONTROLLED


READ CYCLE $\Pi$ : $\overline{C S}$ CONTROLLED


Note: $\cdot{ }_{1}$ Device is continuosly selected, $\overline{C S}=V_{\mathrm{IL}}$
$\cdot 2$ Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
$\cdot 3$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
$\cdot 4$ This parameter is specified with Load $\Pi$ in Fig. 3.

## AC CHARACTERISTICS (Continued) <br> \section*{(At recommended operating conditions unless otherwise noted.)}

WRITE CYCLE* 1

Parameter	Symbol	MB85420-40		MB85420-50		Unit
		Min	Max	Min	Max	
Write Cycle Time $\cdot 2$	${ }^{\text {t w }}$	40		50		ns
Address Valid to End of Write	${ }^{t}$ AW	35		45		ns
$\overline{C S}$ to End of Write	${ }^{\text {c }} \mathrm{CW}$	35		45		ns
Data Valid to End of Write	${ }^{\text {t }}{ }_{\text {DW }}$	20		25		ns
Data Hold Time	${ }^{\text {d }}$ DH	0		0		ns
Write Pulse Width	${ }^{\text {t }}$ WP	30		35		ns
Address Setup Time	${ }_{\text {t }}^{\text {AS } 1}$	5		5		ns
	${ }_{\text {t }}^{\text {AS2 }}$	0		0		ns
Write Recovery Time	${ }^{1}$ WR	5		5		ns
Output High-Z from $\overline{W E} \cdot 3 \cdot 4$	t WZ	0	20	0	25	ns
Output Low-Z from $\overline{\mathrm{WE}} \cdot 3.4$	t ow	0		0		ns

## WRITE CYCLE TIMING DIAGRAM

WRITE CYCLE: $\overline{\text { WE }}$ CONTROLLED


Note: • 1 If $\overline{C S}$ goes high simultaneously with $\overline{W E}$ high, the output remains in high impedance state.
$\cdot 2$ All write cycle are determined from last address transition to the first address transition of the next address.
$\cdot 3$ Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
$\cdot 4$ This parameter is specified with Load $\Pi$ in Fig. 3.

## AC CHARACTERISTICS (Continued)

(At recommended operating conditions unless otherwise noted.)
WRITE CYCLE TIMING DIAGRAM


## PACKAGE DIMENSIONS

(Suffix: -PJPZ)

## 60-LEAD PLASTIC MODULE

(Case No. : MZP-60P-P02)


## Section 7

## Quality and Reliability - At a Glance

7-3 Quality Control at Fujitsu
7-4 Quality Control Processes at Fujitsu

## Quality Control at Fujitsu

## Bullt-in Quality and Rellability

Fujitsu's integrated circuits work. The reason they work is Fujitsu's single-minded approach to built-in quality and reliability, and its dedication to providing components and systems that meet exacting requirements allowing no room for failure.

Fujitsu's philosophy is to build quality and reliability into every step of the manufacturing process. Each design and process is scrutinized by individuals and teams of professionals dedicated to perfection.

The quest for perfection does not end when the product leaves the Fujitsu factory. It extends to the customer's factory as well, where integrated circuits are subsystems of the customer's final product. Fujitsu emphasizes meticulous interaction between the individuals who design, manufacture, evaluate, sell, and use its products.

Quality control for all Fujitsu products is an integrated process that crosses all lines of the manufacturing cycle. The quality control process begins with inspection of all incoming raw materials and ends with shipping and reliability tests following final test of the finished product. Prior to warehousing, Fujitsu products have been subjected to the scrutiny of man, machine, and technology, and are ready to serve the customer in the designated application.

## Quality Control Processes at Fujitsu



Probing Test
nspection of Wafers, Masks, Packages, Piece Parts, Chemicals, Etc
Wafer Surface Inspection and Sample Tests of Thickness, Surface Resistance, Diffusion Depth, Electrical Parameters, and Doping


Visual and Surface Inspection
Sample Surface Inspection
Visual and Surface Inspection
Sample Surface Inspection
Bond-Wetting and Surface Inspection, Monitor Test of Pilot Run for Machine Calibration Bond-Position and Surface Inspection, $\begin{gathered}\text { Sample Wire Bond Strength Test, } \\ \text { Monitor Test of Sample run for Machine Calibration }\end{gathered}$ Bond-Position and Surface Inspection, $\begin{gathered}\text { Sample Wire Bond Strength Test, } \\ \text { Monitor Test of Sample run for Machine Calibration }\end{gathered}$

Internal Visual Inspection


Internal Merchant

Internal Sampling Visual Inspection



Pre-Cap Visual Inspection
Inspection


Continued on next page

## Quality Control Processes at Fujitsu (Continued)


Legend:
Production Process
and Test/Inspection
Note: Gate (Sampling)
The flow sequence may vary slightly
with individual product type.

## Section 8

## Ordering Information - At a Glance

Page

8-3	IC Product Marking
8-3	IC Ordering Code (Part Number)
8-3	IC Package Codes
8-4	IC Module Ordering Code (Part Number)
8-4	IC Module Package Codes
8-5	Wide Temperature IC Ordering Code (Part Number)
8-5	Wide Temperature IC Package Codes

## IC Product Marking

Part Number


Note: Marking formats may vary, depending on the product. The country of origin appears on all finished parts.

## IC Ordering Code (Part Number)



MB Identifies an IC designed and manufactured by Fujitsu that uses a Fujitsu-designated device number. MBM Identifies an IC designed and manufactured by Fujitsu that uses a device number designated by the industry to be the industry standard number.
Note: Please contact your nearest Fujitsu sales office, representative, or distributor for exact part number/order information.

## IC Package Codes

Ceramic	
Package Type	Package Code
LCC (Leadless Chip Carrier)	TV,CV
PGA (Pin Grid Array)	CR
DIP (Side Brazed)	C
DIP (CERDIP)	
Shrink DIP	Z
Flatpack, Metal Seal	CSH
Flatpack, Glass Seal	CF
SOJ (Single Outline Junction)	ZF


Plastic	
Package Type	Package Code
LCC (Leadiess Chip Carrier)	PV
PLCC (Leaded Chip Carrier)	PD
PGA (Pin Grid Array)	PR
DIP (Dual In-line Package)	P,M
Shrink DIP	PSH
Flatpack	PF
Single In-line, straight leads	PS
Single in-line, zig-zag leads	PSZ, PZ
SOJ (Single Outline Junction)	PJ

## IC Module Ordering Code (Part Number)



## IC Module Package Codes

Ceramic	
Package Type	Module Code
Ceramic dual leads	CDL


Plastic	
Package Type	Module Code
Single in-line, leads	PL
Single in-line, zig-zag leads	PZ
Single in-line, pads	PS

## Wide Temperature Range IC Ordering Codes (Part Number)



MB Identifies an IC designed and manufactured by Fujitsu that uses a Fujitsu-designated device number.
*W Indicates wide temperature range; see product specifications for exact temperature information.
Note: Please contact your Fujitsu sales office for exact part number/order information.

## Wide Temperature Range IC Package

Ceramic	
Package Type	Package Code
DIP (CERDIP)	z
DIP (Side Brazed)	C
Flatpack	F (ZF),
LCC (Leadless Chip Carrier)	V (CV), TV

## Section 9

## Sales Information - At a Glance

Page
9-3 Introduction to Fujitsu
9-7 Integrated Circuits Corporate Headquarters - Worldwide
9-8 FMI Sales Offices for North and South America
9-9 FMI Representatives - USA
9-11 FMI Representatives - Canada
9-11 FMI Representatives - Mexico
9-11 FMI Representatives - Puerto Rico
9-12 FMI Distributors - USA
9-16 FMI Distributors - Canada
9-17 FMG Sales Offices for Europe
9-18 FMG Distributors - Europe
9-20 FMA Sales Offices for Asia and Australia
9-21 FMA Representatives - Asia and Australia
9-22 FMA Distributors - Asia and Australia

## Introduction to Fujitsu

## Fujitsu Limited

Fujitsu Limited, headquartered near Tokyo, Japan, is the largest supplier of computers in Japan and is among the top ten companies operating in Japan. Fujitsu is also one of the world's largest suppliers of telecommunications equipment and semiconductor devices.

Established in 1935 as the Communications Division spinoff of Fuji Electric Company Limited, Fujitsu Limited, in 1985, celebrated 50 years of service to the world through the development and manufacture of state-of-the-art products in data processing, telecommunications and semiconductors.

Fujitsu has five plants in key industrial regions in Japan covering all steps of semiconductor production. Five wholly-owned Japanese subsidiaries provide additional capacity for production of advanced semiconductor devices. Two additional facilities operate in the U.S. and one in Europe to help meet the growing worldwide demand for Fujitsu semiconductor products.

## Introduction to Fujitsu (Continued)

## Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. (FMI), with headquarters in San Jose, California, was established in 1979 as a wholly-owned Fujitsu Limited subsidiary for the marketing, sales, and distribution of Fujitsu integrated circuit and component products. Since 1979, FMI has grown to include one research and development division, two marketing divisions, two manufacturing divisions and a subsidiary. FMI offers a complete array of semiconductor products for its customers.

The Advanced Products Division (APD) is responsible for the complete product development cycle, from design through operations support and worldwide marketing and sales. Products are the result of both internal development and external relationships, such as joint development agreements, technology licenses, and joint ventures. The SPARCTM RISC processor was developed by both APD and Sun Microsystems, Inc.

In addition to designing and selling a full line of SPARC processors and peripheral chips, APD also designed and is selling the EtherStarTM LAN controller - the first VLSI device to integrate both StarLAN ${ }^{\text {TM }}$ and Ethernet® ${ }^{\circledR}$ protocols into one device. The core of APD's EtherStar chip was the result of APD's cooperative venture with Ungermann-Bass.

The Microwave and Optoelectronics Division (MOD) markets GaAs, FETs, and FET power amplifiers, lightwave and microwave devices, optical devices, emitters, and SI transistors.

The largest FMI marketing division is the Integrated Circuits Division (ICD).

Memory and programmable devices marketed by ICD include the following:

DRAMs and DRAM Modules
EPROMs
EEPROMs
NOVRAMs
CMOS masked ROMs
CMOS SRAMs and CMOS SRAM Modules
BiCMOS SRAMs
Bipolar PROMs
ECL RAMs
STRAMs (self-timed RAM)
Hi-Rel PROMs and SRAMs
Ulira High-speed ECL/ECL-TTL Translator Circuits
Linear ICs and Transistors

## Introduction to Fujitsu (Continued)

ASIC products offered by ICD include the following:
CMOS, ECL, and BiCMOS gate arrays
CMOS standard cells
Design Software Support
Design Software Support
Customer support and customer training for ASIC products are available through the following FMI design centers:

San Jose	Gresham
Dallas	Chicago
Atlanta	Boston

Microcomputer and communications products offered by ICD include the following:

4-bit MCUs
8 - and 16-bit MPUs
SCSI and controllers
DSPs
Prescalers
PLLs
Memory Cards
FMI's manufacturing divisions are in San Diego, California and Gresham, Oregon. The San Diego Manufacturing Division assembles and tests memory devices. In 1988, the Gresham Manufacturing Division began manufacturing ASIC products and DRAM memories. This facility, when completed, will have one million square feet of manufacturing-the largest Fujitsu manufacturing plant outside Japan.

FMI's subsidiary, Fujitsu Components of America, markets connectors, keyboards, plasma displays, relays, and hybrid ICs.

## Fujitsu Mikroelektronik GmbH (European Sales Operation)

Fujitsu Mikroelektronik GmbH (FMG) was established in June, 1980, in Frankfurt, West Germany, and is a wholly-owned subsidiary of Fujitsu Limited, Tokyo. FMG is the sole representative of the Fujitsu Electronic Device Group in Europe. The wide range of ICs, LSI memories, microprocessors, and ASIC products are noted throughout Europe for design excellence and unmatched reliability. Branch offices are located in Munich, London, Paris, Stockholm, and Milan.

## Introduction to Fujitsu (Continued)

Fujitsu Microelectronics Ireland, Ltd. (European Production Operation)
Fujitsu Microelectronics Ireland, Ltd. (FME) was established in 1980, in the suburbs of Dublin, as Fujitsu's European Production Center for integrated circuits. FME assembles DRAMs, EPROMs, and other LSI memory products.

Fujitsu Microelectronics, Ltd. (European ASIC Design Operation)
Fujitsu Microelectronics, Ltd., Fujitsu's European VLSI Design Center, opened in October of 1983 in Manchester, England. The Design Center is equipped with highly sophisticated CAD systems to ensure fast and reliable processing of input data. An experienced staff of engineers is available to assist in all phases of the design process.

Fujitsu Microelectronics Asla PTE Ltd. (Asian/Oceanlan Sales Operation)
Fujitsu Microelectronics Asia PTE Ltd. (FMA) opened in August 1986 in Hong Kong as a wholly-owned Fujitsu subsidiary for sales of electronic devices to Asian and Southwest Pacific markets.

## Integrated Circuits Corporate Headquarters - Worldwide

## International Corporate Headquarters

FUJITSU LIMITED
Marunouchi Headquarters
6-1, Marunouchi 1-chome
Chiyoda-ku, Tokyo 100
Japan
Tel: (03) 216-3211
Telex: 781-22833
FAX: (03) 213-7174
For integrated circuits marketing information please contact the following:

Headquarters for Japan
FUJITSU LIMITED
Integrated Circuits and Semiconductor Marketing
Furukawa Sogo Bldg.
6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100
Japan
Tel: (03) 216-3211
Telex: 781-2224361
FAX: (03) 211-3987

## Headquarters for North and South America

FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street
San Jose, CA 95134-1804
USA
Tel: (408) 922-9000
Telex: 910-338-0190
FAX: (408) 432-9044

## Headquarters for Europe

FUJITSU MIKROELEKTRONIK GmbH
Lyoner Strasse 44-48
Arabella Centre 9. OG
D-6000 Frankfurt 71
Federal Republic of Germany
Tel: (069) 66320
Telex: 441963
FAX: (069) 6632122
Headquarters for Asia and Australia
FUJITSU MICROELECTRONICS ASIA PTE LIMITED
06-04/06-07 Plaza by the Park
No. 51 Bras Basah Road
Singapore 0719
Tel: (65) 336-1600
Telex: 55573
FAX: (65) 336-1609

## Fujitsu Microelectronics, Inc. (FMI) Sales Offices for North and South America

## NORTHERN CALIFORNIA

Fujitsu Microelectronics, Inc. 10600 N. De Anza Blvd. Suite 225
Cupertino, CA 95014
Tel: (408) 996-1600
FAX: (408) 725-8746
SOUTHERN CALIFORNIA
Fujitsu Microelectronics, Inc. Century Centre 2603 Main Street Suite 510
Irvine, CA 92714
Tel: (714) 724-8777
FAX: (714) 724-8778

GEORGIA (Atlanta)
Fujitsu Microelectronics, Inc. 3500 Parkway Lane
Suite 210
Norcross, GA 30092
Tel: (404) 449-8539
FAX: (404) 441-2016

## MASSACHUSETTS (Boston)

Fujitsu Microelectronics, Inc. 75 Wells Avenue
Suite 5
Newton Center, MA 02159-3251
Tel: (617) 964-7080
FAX: (617) 964-3301
MINNESOTA (Minneapolis)
Fujitsu Microelectronics, Inc. 3460 Washington Drive
Suite 209
Eagan, MN 55122-1303
Tel: (612) 454-0323
FAX: (612) 454-0601
NEW JERSEY (Mit. Laurel)
Fujitsu Microelectronics, Inc.
Horizon Corporate Center
3000 Atrium Way
Suite 100
Mt. Laurel, NJ 08054
Tel: (609) 727-9700
FAX: (609) 727-9797

## NEW YORK (Hauppauge)

Fujitsu Microelectronics, Inc. 601 Veterans Memorial Highway Suite P
Hauppauge, NY 11788-1054
Tel: (516) 361-6565
FAX: (516) 361-6480

## OREGON (Portland)

Fujitsu Microelectronics, Inc. 5285 SW Meadows Road
Suite 222
Lake Oswego, OR 97035-9998
Tel: (503) 684-4545
FAX: (503) 684-4547

## TEXAS (Dallas)

Fujitsu Microelectronics, Inc. 14785 Preston Road
Suite 670
Dallas, TX 75240
Tel: (214) 233-9394
FAX: (214) 386-7917

## ILLINOIS (Chicago)

Fujitsu Microelectronics, Inc. One Pierce Place
Suite 910
Itasca, IL 60143-2681
Tel: (708) 250-8580
FAX: (708) 250-8591


## FMI Representatives - USA

For product information, contact your nearest Representative.

## Alabama

The Novus Group, Inc. 2905 Westcorp Blvd. Suite 120 Huntsville, AL 35805 Tel: (205) 534-0044 FAX: (205) 534-0186

## Arizona

Aztech Component Sales Inc. 15230 N 75th Street
Suite 1031
Scottsdale, AZ 85260
Tel: (602) 991-6300
FAX: (602) 991-0563

## Callfornia

Harvey King, Inc. 6393 Nancy Ridge Drive
San Diego, CA 92121
Tel: (619) 587-9300
FAX: (619) 587-0507
Infinity Sales, Inc.
4500 Campus Drive
Suite 300
Newport Beach, CA 92660
Tel: (714) 833-0300
FAX: (714) 833-0303

## Norcomp

3350 Scott Blvd.,
Suite 24
Santa Clara, CA 95054
Tel: (408) 727-7707
FAX: (408) 986-1947

## Norcomp

2140 Professional Drive
Suite 200
Roseville, CA 95661
Tel: (916) 782-8070
FAX: (916) 782-8073

## Colorado

Front Range Marketing
3100 Arapahoe Road
Suite 404
Boulder, CO 80303
Tel: (303) 443-4780
FAX: (303) 447-0371

Connecticut
Conntech Sales, Inc.
182 Grand Street
Suite 318
Waterbury, CT 06702
Tel: (203) 754-2823
FAX: (203) 573-0538

## Florlda

Semtronic Associates, Inc.
657 Maitland Avenue
Altamonte Springs, FL 32701
Tel: (407) 831-8233
FAX: (407) 831-2844
Semtronic Associates, Inc.
1467 S. Missouri Avenue
Clearwater, FL 33516
Tel: (813) 461-4675
FAX: (813) 442-2234
Semtronic Associates, Inc.
3471 NW 55th Street
Ft. Lauderdale, FL 33309
Tel: (305) 731-2484
FAX: (305) 731-1019

## Georgla

The Novus Group, Inc. 6115-A Oakbrook Pkwy
Norcross, GA 30093
Tel: (404) 263-0320
FAX: (404) 263-8946

## Idaho

Cascade Components 2710 Sunrise Rim Road
Suite 130
Boise, ID 83705
Tel: (208) 343-9886
FAX: (208) 343-9887
IIIInols
Beta Technology 1009 Hawthom Drive Itasca, IL 60143
Tel: (708) 256-9586
FAX: (708) 256-9592

Indiana
Fred Dorsey \& Associates
3518 Eden Place
Carmel, IN 46032
Tel: (317) 844-4842
FAX: (317) 844-4843

## lowa

Electromec Sales
1500 2nd Avenue
Suite 205
Cedar Rapids, IA 52403
Tel: (319) 362-6413
FAX: (319) 362-6535

## Maryland

Arbotek Associates
102 W. Joppa Road
Towson, MD 21204
Tel: (301) 825-0775
FAX: (301) 337-2781

## Massachusetts

Mill-Bern Associates
2 Mack Road
Woburn, MA 01801
Tel: (617) 932-3311
FAX: (617) 932-0511

## Michigan

Greiner Associates, Inc.
15324 E. Jefferson Avenue
Suite 12
Grosse Point Park, MI 48230
Tel: (313) 499-0188
FAX: (313) 499-0665

## Minnesota

Electromec Sales
1601 E Highway 13
Suite 200
Burnsville, MN 55337
Tel: (612) 894-8200
FAX: (612) 894-9352

## FMI Representatives - USA (Continued)

New Jersey
BGR Associates
Evesham Commons
525 Route 73
Suite 100
Marton, NJ 08053
Tel: (609) 983-1020
FAX: (609) 983-1879
Technical Applications \& Marketing
91 Clinton Road
Suite 1D
Fairfield, NJ 07006
Tel: (201) 575-4130
FAX: (201) 575-4563

New York
Quality Components
3343 Harlem Road
Buffalo, NY 14225
Tel: (716) 837-5430
FAX: (716) 837-0662
Quality Components
116 Fayette Street
Manlius, NY 13104
Tel: ( 315 ) 682-8885
FAX: (315) 682-2277
Quality Components
2318 Titus Ave.
Rochester, NY 14622
Tel: (716) 342-7229
FAX: (716) 342-7227

## North Carolina

The Novus Group, Inc. 1026 Commonwealth Court Cary, NC 27511
Tel: (919) 460-7771
FAX: (919) 460-5703
Ohio
Spectrum ESD 3947 Ray Court Road
Morrow, OH 45152
Tel: (513) 899-3260
FAX: (513) 899-3260
Spectrum ESD
8925 Galloway Trail
Novelty, OH 44072
Tel: (216) 338-5226
FAX: (216) 338-3214
Oregon
L-Squared Limited
15234 NW Greenbrier Pkwy
Beaverton, OR 97006
Tel: (503) 629-8555
FAX: (503) 645-6196

## Texas

Technical Marketing, Inc. 3320 Wiley Post Road Carrollton, TX 75006
Tel: (214) 367-3601
FAX: (214) 387-3605

Technical Marketing, Inc. 2901 Wilcrest Drive
Suite 139
Houston, TX 77042
Tel: (713) 783-4497
FAX: (713) 783-5307
Technical Marketing, Inc.
1315 Sam Bass Circle

## Suite B-3

Round Rock, TX 78681
Tel: (512) 244-2291
FAX: (512) 338-1596

## Washington

L-Squared Limited
105 Central Way
Suite 203
Kirkland, WA 98033
Tel: (206) 827-8555
FAX: (206) 828-6102

## Wisconsin

Beta Technology 9401 W Beloit Street
Suite 304C
Milwaukee, WI 53227
Tel: (414) 543-6609
FAX: (414) 543-9288

## FMI Representatives - Canada, Mexico and Puerto Rico

## Canada

Pipe-Thompson Limited 5468 Dundas Street W. Suite 206
Islington, Ontario M9B 6E3
Tel: (416) 236-2355
FAX: (416) 236-3387
Pipe-Thompson Limited
RR2 North Gower
Ottawa, Ontario KOZ 2 TO
Tel: (613) 258-4067
FAX: (613) 258-7649

## Mexico

## Solano Electronica

Ermita 1039-10
Colonia Chapalita
Guadalajara, JAL. 45042
Tel: (36) 47-4250
FAX: (36) 473433
Solano Electronicas
Thiers 100
Colonia Anzures
Mexico City, D.F. 11590
Tel: (55) 31-5915
FAX: (55) 31-5915

## Puerto Rico

Semtronic Associates
Mercantil Plaza Building
Suite 816
Hato Rey, Puerto Rico 00918
Tel: (809) 766-0700

## FMI Distributors - USA

Alabama
Marshall Industries 3313 S. Memorial Highway Suite 121
Huntsville, AL 35801 (205)881-9235

Repton Electronics 4950 Corporate Drive
Suite 105C
Huntsville, AL 35805
(205) 722-9565

## Arizona

Insight Electronics 1515 W. University Drive Suite 103
Tempe, AZ 85281
(602) 829-1800

Sterling Electronics 3501 E. Broadway Road
Phoeniz, AZ 85040
(602) 268-2121

Marshall Industries 9830 S. 51st Street Suite B121
Phoenix, AZ 85044
(602) 496-0290

Callfornia
Insight Electronics 28035 Dorothy Drive
Suite 220
Agoura, CA 91301
(818) 707-2100

Insight Electronics
15635 Alton Parkway
Suite 120
Irvine, CA 92718
(714) 727-2111

Insight Electronics 6885 Flanders Drive Suite G
San Diego, CA 92126
(619) 587-9757

Marshall Industries 9710 Desoto Ave. Chatsworth, CA 91311 (818) 407-4100

Marshall Industries 9674 Telstar Ave. El Monte, CA 91731 (818) 459-5500

Marshall Industries
One Morgan
Invine, CA 92718
(714) 458-5308

Marshall Industries
336 Los Coches Street
Milpitas, CA 95035
(408) 942-4600

Marshall Industries 3039 Kilgore Ave. Rancho Cordova, CA 95670 (916) 635-9700

Marshall Industries 10105 Carroll Canyon Road
San Diego, CA 92131
(619) 578-9600

Merit Electronics 2070 Ringwood Avenue
San Jose, CA 95131
(408) 434-0800

Sterling Electronics 55310 Derry
Unit $X$
Agoura, CA 91301
(818) 707-0911

Sterling Electronics 9410 Topanga Canyon Rd.
Chatsworth, CA 91311
(818) 407-8850

Sterling Electronics 1342 Bell Avenue
Tustin, CA 92680 (714) 259-0900

Western Microtechnology 28720 Roadside Dr.
Suite 175
Agoura Hills, CA 91301
(818) 356-0180

Western Microtechnology 1637 North Brian Orange, CA 92667 (714) 637-0200

Western Microtechnology 6837 Nancy Ridge Drive San Diego, CA 92121 (619) 453-8430

Westem Microtechnology 12900 Saratoga Ave. Saratoga, CA 95070 (408) 725-1660

## Colorado

Marshall Industries
12351 N. Grant Road
Suite A
Thornton, CO 80241
(303) 451-8383

Sterling Electronics 8200 South Akron Street
Suite 111
Englewood, CO 80112
(303) 792-3939

## Connecticut

Marshall Industries
20 Sterling Drive
Wallingford, CT 06492
(203) 265-3822

Milgray Electronics
326 W. Main Street
Milford, CT 06460
(203) 795-0711

Western Microtechnology, Inc.
731 Main Street
Suite B2
Lantern Ridge Monroe, CT 06468
(203) 452-0533

## Florida

Marshall Industries
380 S. Northlake Blvd
Suite 1024
Altamonte Springs, FL 32701
(407) 767-8585

Marshall Industries
2700 W. Cypress Creek Rd.
Suite C 106
Ft. Lauderdale, FL 33309
(305) 977-4880

Marshall Industries
2840 Sherer Drive
St. Petersburg, FL 33716
(813) 573-1399

Milgray Electronics
1850 Lee Road
Suite 104
Winter Park, FL 32789
(407) 647-5747

## FMI Distributors — USA (Continued)

Florida (Continued)	Kansas
Reptron Electronics	Marshall Industries
ЗЗ320 N.W. 53rd Street	10413 W. 84th Terrace
Suite 206	Lenexa, KS 66214
Ft. Lauderdale, FL 33309	(913) 492-3121
(305) 735-1112	Milgray Electronics
Reptron Electronics	6901 W. 63rd Street
14501 McCormick Drive	Overland Park, KS 66202
Tampa, FL 33626   (813) 855-2351	(913) 236-8800
	Maryland
Georgia	Marshall Industries
Marshall Industries	2221 Broadbirch
5300 Oakbrook Pkwy	Suite G
Suite 146	Silver Springs, MD 20910
Norcross, GA 30093	(301) 622-1118
(404) 923-5750	Milgray Electronics 9801 Broken Land Parkway
Milgray Electronics	(301) 995-6169
3000 Northwoods Parkway   Suite 270   Norcross, GA 30071   (404) 446-9777	Vantage Components, Inc. 6925-R Oakland Mills Road Columbia, MD 21045 (301) 720-5100
Reptron Electronics	
3040 H Business Park Drive	Massachusetts
$\begin{aligned} & \text { Norcross, GA } 30071 \\ & \text { (404) 446-1300 } \end{aligned}$	Interface Electronic Corp. 228 South Street
Illinols	Hopkinton, MA 01748   (617) 435-6858
Classic Components 3336 Commercial Ave. Northbrook, IL 60062 (312) 272-9650	Marshall Industries 33 Upton Drive Wilmington, MA 01887 (508) 658-0810
Marshall Industries   50 E. Commerce Dr. Suite I   Schaumburg, IL 60173   (312) 490-0155	Milgray Electronics 187 Ballardvale Street Wilmington, MA 01887 (508) 657-5900
Milgray Electronics 3223 N. Wilkey Road Arlington Heights, IL 60004 (312) 253-1573	Vantage Components, Inc. 200 Bulfinch Drive Andover, MA 01810 (508) 687-3900
Reptron Electronics 1000 E. State Hwy Suite K Schaumburg, IL 60173 (312) 882-1700	Western Microtechnology 20 Blanchard Road 9 Corporate Place Burlington, MA 01803 (617) 273-2800
Indiana	Michigan
Marshall Industries 6990 Corporate Drive Indianapolis, IN 46278 (317) 297-0483	Marshall Industries 31067 Schoolcraft Rd. Livonia, M1 48150 (313) 525-5850

## Michigan

Reptron Electronics
34403 Glendale
Livonia, MI 48150
(313) 525-2700

## Minnesota

Marshall Industries
3955 Annapolis Lane Plymouth, MN 55447 (612) 559-2211

Reptron Electronics
5929 Baker Road
Minnetonka, MN 55345
(612) 938-0000

## Missourl

Marshall Industries
3377 Hollenberg Drive
Bridgeton, MO 63044
(314) 291-4650

## New Jersey

Marshall Industries 101 Fairfield Road Fairfield, NJ 07006
(201) 882-0320

Marshall Industries
158 Gaither Drive
Mt. Laurel, NJ 08054
(609) 234-9100

Milgray Electronics
3002 Greentree Exec. Campus
Suite B
Marton, NJ 08053
(609) 983-5010

Vantage Components, Inc.
23 Sebago Street
P.O. Box 2939

Clifton, NJ 07013
(201) 777-4100

Western Microtechnology, Inc. 387 Passaic Avenue
Fairfield, NJ 07006
(201) 882-4999

## New Mexico

Stering Electronics 3450-D Pan American Freeway Albuquerque, NM 87107 (505) 884-1900

## FMI Distributors - USA (Continued)

## New York

Marshall Industries 275 Oser Avenue Hauppauge, NY 11788 (516) 273-2424

Marshall Industries 129 Brown Street Johnson City, NY 13790 (607) 798-1611

## New York

Marshall Industries 1280 Scottsville Road Rochester, NY 14624
(716) 235-7620

Mast Distributors
95 Oser Avenue
P.O. Box 12248

Hauppauge, NY 11788
(516) 273-4422

Micro Genesis 90-10 Colin Drive
Holbrook, NY 11741
(516) 472-6000

Milgray Electronics
77 Schmitt Blvd.
Farmingdale, NY 11735
(516) 420-9800

Milgray Electronics 1200 A Scottsville Rd.
Rochester, NY 14624
(716) 235-0830

Vantage Components, Inc. 1041-G West Jericho Turnpike Smithtown, NY 11787 (516) 543-2000

North Carolina
Marshall Industries 5224 Greens Dairy Road
Raleigh, NC 27604
(919) 878-9882

Reptron Electronics
5954-A Six Fork Road
Raleigh, NC 27609
(214) 783-0800

## Ohio

Marshall Industries 3520 Park Center Drive
Dayton, OH 45414
(513) 898-4480

Marshall Industries 30700 Bain Bridge Road Unit A
Solon, OH 44139
(216) 248-1788

Milgray Electronics 6155 Rockside Road Cleveland, OH 44131 (216) 447-1520

Reptron Electronics 404 E. Wilson Bridge Road Suite $A$
Worthington, OH 43085
(614) 436-6675

Oklahoma
Radio Inc.
1000 South Main
Tulsa, OK 74119
(918) 587-9123

## Oregon

Marshall Industries 9705 S.W. Gemin Drive Beaverton, OR 97005 (503) 644-5050

Western Microtechnology 1800 N.W. 169th Place Suite B300 Beaverton, OR 97006 (503) 629-2082

## Pennsylvania

Interface Electronic Corp.
7 Great Valley Parkway
Malvern, PA 19355 (215) 889-2060

Marshall Industries 701 Alpha Drive Pittsburg, PA 15237 (412) 788-0441

## Texas

Insight Electronics, Inc. 1778 Plano Road
Suite 320
Richardson, TX 75081
(214) 783-0800

Marshall Industries 8504 Cross Park Drive
Austin, TX 78754
(512) 837-1991

Marshall Industries 2045 Chenault Carrollton, TX 75006 (214) 233-5200

Marshall Industries
2635 South Highway 77
Harlingen, TX 78550
(512) 421-4621

Marshall Industries
7250 Langtry
Houston, TX 77040
(713) 895-9200

Milgray Electronics 16610 N. Dallas Pkwy
Suite 1300
Dallas, TX 75248
(214) 248-1603

Reptron Electronics 3410 Midcourt Carrollton, TX 75006
(214) 702-9373

Western Microtechnology, Inc. 18333 Preston Road Suite 460
Dallas, TX 75252
(214) 248-3775

Western Microtechnology, Inc. 2500 Wikrest, 3rd Floor Houston, TX 77042
(713) 954-4850

## FMI Distributors - USA (Continued)

Utah
Marshall Industries 466 Lawndale Drive Suite C
Salt Lake City, UT 84115 (801) 485-1551

Milgray Electronics 4190 S. Highland Drive Suite 102 Salt Lake City, UT 84124 (801) 272-4999

## Washington

Insight Electronics, Inc. 12002 115th Avenue, NE Kirkland, WA 98034
(206) 820-8100

Marshall Industries	Marsh Electronics
11715 N. Creek Parkway	1563 S. 101st Street
Suite 112	Milwaukee, WI 53214
Bothell, WA 98011	(414) 475-6000
(206) 486-5747	Marshall Industries
Western Microtechnology	20900 Swenson Drive
14636 N.E. 95th Street	Suite 150
Redmond, WA 98052	Waukesha, WI 53186
(206) 881-6737	
Wisconsin	
Classic Compenents	
2925 S. 160th Street	
New Berlin, WI 53151	
(414) 786-5300	

## FMI Distributors - Canada

British Columbla
ITT Industries 3455 Gardner Court Burnaby, B.C. V5G 4J7
(604) 291-1227

Space Electronics
1695 Boundry Road
Vancouver, B.C. V5K 4X7
(604) 294-1166

## Ontario

ITT Industries 300 North Rivermede Road Concord, ON L4K 2 Z4 (416) 736-1114

## Marshall Industries <br> 4 Paget Road <br> Unit 10 \& 11 <br> Framton, ON L6T 5G3 <br> (416) 458-8046 <br> Milgray Electronics <br> 150 Consumers Road <br> Suite 502 <br> Willowdale, ON M2J 4R4 <br> (416) 756-4481

## Quebec

Marshall Industries 3869 Sources Blvd Suite 207
D.D.O., QUE H9B 2A2
(514) 683-9440

Space Electronics 5651 Rue Ferrier Street Montreal, QUE H4P 2K5 (514) 697-8676

## Fujitsu Mikroelektronik GmbH (FMG) Sales Offices for Europe

## France

Fujitsu
Immeuble le Trident
3-5, Voie Felix Eboue
F-94024 Creteil Cedex
Tel: (1)4-207-8200
Telex: 262861
FAX: (1)4-207-7933

## F.R. Germany

Fujitsu Mikroelektronik GmbH
Lyoner Strasse 44-48
Arabella Center 9. OG
D-6000 Frankfurt am Main 71
Tel: (69)66320
Telex: 411963
FAX: (69)66321
Fujitsu Mikroelektronik GmbH
Am Joachimsberg 10-12
D-7033 Herrenberg
Tel: (07032) 4085
FAX: (07032) 4088

Fujitsu Mikroelektronik GmbH
Carl-Zeiss-Ring 11
D-8045 Ismaning
bei Munchen
Tel: (89)960-9440
Telex: 8974464
FAX: (89)960-9442

## Italy

Fujitsu Microelectronics Italia S.R.L.
Centro Direzionale Milanofior Strada 4 - Palazzo A/2
|-20094 Milano
Tel: (39)(2)824-6170/176
Telex: 318546
FAX: (39)(2)824-6189

## Sweden

Fujitsu Microelectronics Ltd
Torggatan 8
17154 Solna
Tel: (8)764-6365
Telex: 13411
FAX: (8)28-0345

## United Kingdom

Fujitsu Microelectronics Ltd. Hargrave House
Belmont Road
Maidenhead
Berkshire SL6 6NE
Tel: (0628)76100
Telex: 848955
FAX: (0628)781484

## Netherlands

Fujitsu Benelux
Europalaan 6/B
5623 LJ Eindhoven
Tel: (31)44-7440
Telex: 59265
FAX: (31)44-4158


## FMG Distributors - Europe

Austria
Eljapex Handelsges. MBH
Eitnergasse 6
1232 Wien
Tel: (222)861531
Telex: 112344
FAX: (222)863211200
MHV/EBV Elektronik
Diefenbachgasse 35/6
1150 Wien
Tel: (222)838519
Telex: 134946
FAX: (222) 838530
Belgium
Eriat SA
83, Rue des Fraisiers
4410 Herstal Vottem
Tel: (41)271993
Telex: 41782
FAX: (41)278085
MHV/EBV Elektronik
Excelsiorlaan 35
Avenue Excelsion 35
1930 Zaventem
Tel: (2)7209936
Telex: 62590
FAX: (2)7208152
Denmark
Nordisk Elekironik AS
Transormervej 17
2730 Herlev
Tel: (2)842000
Telex: 35200
FAX: (2)921552
Finland
Gadelius OY
Kaupintie 18
00440 Helsinki
Tel: (90)5626644
Telex: 121274
FAX: (90)5626196

Aspecs OY
Myyrmaentie 2 A
01600 Vantaa
Helsinki
Tel: (90)5668686
France
DPA
12, Avenue des Pres
78180 Montigny le Bretonneux
Tel: (1)30575040
Telex: 689423
FAX: (1)30571863
Microram
6, Rue le Corbusier
Silic 424
94583 Rungis Cedex
Tel: (1)46868170
Telex: 2265909
FAX: (1)45605549

## Germany

Eljapex GmbH
Felsenauerstr. 18
7890 Waldshut-Tiengen
Tel: (07751)2035
Telex: (07751)6603
Micro Halbleiter GmbH
Jagerweg 10
8012 Ottobrunn
Tel: (089)6096068
Telex: 5213807
FAX: (089)6093758

Italy
Unidis Group Bologna
Malpassi SRL
Via Baravelli, 1
40012 Calderara di Reno
Tel: (051)727252
Telex: 583118
FAX: (051)727515

Unidis Group Torino
PCM SnC
Via Piave 54/B
10099 Rivoli
Tel: (011)9532256
FAX: (011)9534238

## Netherlands

MHV/EBV Elektronik
Planetenbaan 2
3606 AK-Maarssenbroek
Tel: (3465)62353
Telex: 76089
FAX: (3465)64277
P \& T Electronics B.V.
Esse Baan 77
P.O. Box 329

2908 LJ Capelle AD ljssel
Tel: 104501444
Telex: 26096
FAX: 104507092

## Norway

Odin Electronics AS
Postboks 72
Edv. Griegsvei 2
1472 Fjellhamar
Tel: (02)703730
Telex: 19732
FAX: (02)700310

## Republic of Ireland

Allied Semiconductors International Ltd.
Unit 1
Distribution Park
Shannon Industrial Estate
Shannon
Co. Clare
Tel: (61)61777
Telex: 70358
FAX: (61)363141

## FMG Distributors - Europe (Continued)

## Spain

Comelta S.A.
Pedro IV-84, 5 PI
08005 Barcelona
Tel: (93)3007712
Telex: 51934
FAX: (93)3005156
Comelta S.A
Emilio Munoz 41
Nave 1-1-2
28037 Madrid
Tel: (1)7543001
Telex: 42007
FAX: (1)7542151

Sweden
Martinsson Elektronik AB
Box 9060
Instrumentvagen 16
12609 Hagersten
Tel: (8)7440300
Telex: 13077
FAX: (8)7443403
Switzerland
Eljapex AG
Hardstrasse 72
5430 Wettingen
Tel: (56)275777
Telex: 826300
FAX: (56)261486

United Kingdom
Hawke Components
Amotex House
45 Hanworth Road
Sunbury on Thames
Middlesex
TW16 5DA
Tel: (0197)97799
Telex: 923592
FAX: (9327)87333
Pronto Electronic Systems Ltd.
City Gate House
399/425 Eastern Avenue
Gants Hills
Ilford
Essex IG2 6LR
Tel: (15)546222
Telex: 8954213
FAX: (15)183222

## Fujitsu Microelectronics Asia PTE Limited (FMA) Sales Offices for Asia and Australia

## Taiwan

Fujitsu Microelectronics Asia PTE Ltd 1906 No. 333 Keelung Road Sec. 1
Taipei, Taiwan 10548 Republic of China Tel: (02) 757-6548 Telex: 17312 FMPTPI FAX: (02) 757-6571

## Singapore

Fujitsu Electronics PTE Ltd.
7500A Beach Road
05-301/2, The Plaza
Singapore 0719
Tel: (65) 296-1818
Telex: RS55573 FESPL
FAX: (65) 298-1571


## FMA Representatives - Asia and Australia

Australia<br>Pacific Microelectronics<br>Unit A20, 4 Central Ave.<br>Thornleigh. NSW 2120<br>Australia<br>Tel: (2)481-0065<br>Telex: 24844460

## Korea

KML Corporation 3RD/F, Bangbae Station Bldg 981-15 Bangbae 3-Dong Shucho-gu, Seoul C.P.O. Box 7981

Korea
Tel: (2)588-2011/6
Telex: K25981 KMLCORP
FAX: (2)588-2017

## FMA Distributors - Asia

## Hong Kong

Famint Ltd.
Room 1502, No. 111 Leighton Road
Causeway Bay, Hong Kong
Tel: 5-760130 / 5-760146
FAX: 5-765619
Tektron Electronics Ltd.
1702, Bank Centre, 636 Nathan Road
Kowloon, Hong Kong
Tel: 3-880629
Telex: 38513 TEKHL
FAX: 123-40746 / 3-7234029

Singapore
Cony Electronics PTE Ltd.
10 Jalan Besar 03-25
Sim Lim Tower
Singapore 0820
Tel: 2962111
Telex: CONY RS34808
FAX: 2960339

Famint Electronics Ltd.
7500A Beach Road, 01/302
The Plaza
Singapore 0719
Tel: 2984566
Telex: RS37295 FAMINT
FAX: 2972597

Taiwan
Advance Microelectronics Co., Ltd.
5/F., No. 52 Tien Tsin Street
Taipei, Taiwan
Republic of China
Tel: (02) 5613361
Telex: 12284 ADVMICRO
FAX: (02) 5635958

Fametech Inc.
2/F, No. 298, Sec. 5
Nanking E. Road
Taipei, Taiwan,
Republic of China
Tel: (02) 7670101
Telex: 27271 COMMOTEK
FAX: (02) 7617743
Famint Co., Ltd.
Room 9-3, 9/F. No. 106 Sec 2
Chang An East Road
Taipei, Taiwan
Republic of China
Tel: (02) 5051963
FAX: (02) 5080385

## Section 10

Design Information - At a Glance
Page Ttte   $10-3 \quad$Appendix   1. Design Applications. Internally timed RAMs build   fast writable control stores    10-9 Appendix 2. Application Note: Separate Data Inputs and Outputs,    SRAMs Provide New Architectural Solutions
10-27 Appendix 3. Applicaltion Handbook: The Effective Design of   CMOS-based Caches in CISC- and RISC-based   Architectures

10-1

## Appendix 1

Self-Timed RAMs

10-3

# Internally timed RAMs build fast writable control stores 

## Mohammad Shakaib Iabal

Fujitsu Microelectronics Inc., 3545 N. First St., San Jose, CA 95134-1804; (408) 922-9000.

The increasing speed of mainframes and minicomputers produces a need for memory access even faster than that supplied by ECL RAMs. One way to cut into 15 -ns memory-access times is through process improvements, but this avenue quickly reaches its limits. Another method is to rework the architecture of the writable control store, which holds the microinstructions that implement the machine's assembly-language instructions. For instance, adding registers in the address and data lines to the control memory causes a pipeline effect that speeds up both read and write operations.
But the number of registers needed to process the size of control words in some of today's minicomputers can be prohibitive. The solution lies in the new
self-timed RAMs (STRAMs)-pipelined memory devices containing on-board registers or latches, as well as a write-pulse generator. STRAMs not only shrink access times to 7 ns , but they also cut board space and reduce the number of lengthy connections between discrete parts. The latter is important because at ECL speeds these leads act as transmission lines, generating reflections and crosstalk.
To better understand how a STRAM can help a designer perform a specific task, consider a minicomputer's basic architecture. Both mainframes and minicomputers use microprogrammed processors in their CPUs. A microprogram is a flexible way to generate the control signals that implement assembly language. These control sequences or microinstructions reside in a control memory, usually a set of PROMs addressed by a microprogram counter.

In a microprogrammable machine, however, the control memory consists of fast RAMs, so a user can alter the control signals and modify the instructions. For example, a typical minicomputer CPU


1. In a typical microprogrammed CPU, a control unit holds a control word employed for register loading, identification, and reading.

## DESIGN APPLICATIONS ■ Increase memory speed

contains 12 kbytes of microprogrammable memory in its writable control store to diagnose problems, perform certain instructions, and change the microcode. For the sophisticated user, the CPU has an extra 12 kbytes of writable control store. This architecture lets a user change the way the computer responds to machine-language instructions.

A microprogrammable CPU usually contains generalpurpose registers, an instruction register, a memory data register, a memory address register, a program counter, a 16 -function arithmetic logic unit, a temporary register called an accumulator, and a control unit (Fig. 1). The memory data register holds the data word to be sent to the memory, and the memory address register holds the address to the memory. The control unit sends a control word for register identification, loading, and reading. It generates signals like memory read and write, accumulator read and load, and ALU operations. The accumulator holds the ALU inputs and outputs.

The writable control store is implemented within the

2. Adding registers to a writable control store's data and address paths speeds up the computer but at a steep price in board space. An alternative is to replace the components in the highlighted area with a self-timed RAM, which contains a write-pulse generator and registers.
control unit (Fig. 2). Its task is to generate the correct sequence of steps to execute the assembly-language instruction. Included in the controller are a starting address generator, microprogram counter, control memory, and control register. The control memory, addressed by the microprogram counter, stores the microinstructions. The control register holds the control word.

The process begins when the CPU fetches a machinelanguage instruction from the main memory and loads it into the instruction register. Microprogramming then takes over. The instruction register puts the instruction into the starting address generator, which decodes the address of the first microinstruction in the control memory and loads this address into the microprogram counter. Next, the contents of the control memory pointed to by the microprogram counter are fetched and loaded into the control-word register. The microprogram counter is then updated to point to the next microinstruction in the desired sequence.

Minicomputers have control words 10 to 100 bits long. Each bit placed into the control-word register controls a part of the computer, including the instruction register, program counter, accumulator, memory, and ALU control. Hence, each bit is connected to a specific destination. The various control signals open or close data paths to these destinations or instruct the locations to perform an operation. For example, to transfer data between two registers, a control signal must instruct the source register to place the data on the bus, and a second signal must tell the destination register to read the data on the bus.

If the control store is writable, there must be a multiplexer between the microprogram counter and the control memory, because the address can come from either the microprogram counter or the system address bus. The system address bus's only task is to write to the control memory.

This is where a register between the counter and control memory input is beneficial. While the microprogram counter is generating an address during a read cycle (when it increments), the previous address can be in the register pointing to the control memory. That's the desired pipeline effect.

The computer gains a similar advantage during write cycles-that is, when the instructions in the microprogram are being altered. In this case, the new data is carried over the system bus and written in the control memory. If the memory consists of standard ECL RAMs and no registers, the address-hold time requirement will slow down the process.

Adding a register again creates a pipeline effect because the address and the data are both placed in the register. The address remains valid on the register's outputs until a new clock edge arrives, bringing a new address from the microprogram counter. The data and the address inputs are placed in the register on the true ongoing
edge of the clock. The Write Enable signal is also placed in the register (Fig. 3a).

The several nanoseconds saved on each read and write cycle can add up to a considerable speed increase during normal computer operation. As noted, using STRAMs gives the designer this speed boost without the space penalty exacted by discrete registers.

In the example noted, a totally pipelined architecture was desired, so the registered STRAMs were used. This configuration yields the highest bit rate at the system level because the succeeding cycle can begin while the output signal is slewing and propagating. The data isn't available at the outputs until the next clock edge.
In some computers, however, the control store might have to read data from the RAM in one memory cycle. When this is the case, the control memory's inputs must have latches to hold the input data and address for saving the hold times. The output lines are also latched so that data can be placed on the data bus in one cycle. A latched STRAM fills the bill. This device's timing diagrams show that in read cycles the data is read in the same memory cycle (Fig. 3b).

In a STRAM, the Address, Data In, Chip Enable, and

Write Enable signals are latched into the on-chip registers or latches by the true-going edge or level of the clock pulse at the start of the memory cycle. All these signals remain valid throughout the memory cycle until the next true-going clock edge or level. As a result, signals need not be held stable during the entire cycle. They can slew down during one cycle to prepare for the next one.

It's advantageous to trigger the write operation at the true going clock edge by latching the Address, Data, and Write Enable signals. Then the new Data and Address signals can be placed at the inputs while the old data is being written to the RAM cells. Also, this technique eliminates address skew because all the timing is clock-edge driven.

The basic difference between the registered and the latched STRAM, in fact, is that the former is clock-edge sensitive, while the latter is level sensitive (Fig. 4). During a registered STRAM's read cycle, the data is available in the next clock cycle. For the latched STRAM, the data is available during the same memory cycle.

An advantage of both the latched and the register STRAM, however, is the built-in write-pulse generator, which eliminates an annoying problem associated with

3. Timing diagrams show that in a registered STRAM (a) the control word is read in the second clock cycle, while a latched STRAM (b) reads the data in the same clock cycle.

4. Both the registered (a) and latched versions (b) of the STRAM include a write-pulse generator. The devices have differential clock inputs-Clock and Clock-but single-ended operation is possible by connecting either clock line to an internal reference voltage.
fast ECL RAMs-the generation of a narrow write pulse. This on-board capability not only simplifies the designer's task, since creating very narrow pulses can be difficult, but it also speeds up the write cycle.
For instance, the length of a write cycle for a typical static RAM, MBM10474-15, employed without input and output latches is the sum of the minimum setup time, 2 ns ; the write-pulse length, 12 ns ; and the minimum hold time, 1 ns . That comes to 15 ns . For a latched STRAM with an internal write pulse generator, MBM10476LL-9, the write cycle time is the minimum setup time, 1 ns , plus the minimum high or low clock time, 6 ns -a total of 7 ns .

Another advantage of the STRAM is that the data written in the RAM is transparent to the outputs. This boosts the speed of the system for a cache write-through and improves the write-cycle timing for the writable control store. Also, the input data is transparent to the output in the same clock cycle for the latched STRAM and in the next cycle for the registered version. The transparent feature is helpful in diagnostic tasks and for writing back the data into the next location.

In both types of STRAMs the setup and hold times are identical for all inputs, simplifying the timing. The sum of the setup and hold times, also called the required valid window, is only $30 \%$ of the overall cycle time. For example, a 1 k -by-4 latched STRAM, the MBM10476LL, has a clock cycle of 10 ns and a setup time plus hold time of 3 ns . This low ratio leaves enough time for the inputs to get ready for the next cycle.

The read and write cycles also have the same timing, because the data-input registers and latches are loaded at the start of each cycle, regardless of the type of cycle. This balanced read-write configuration is helpful for systems integration. When Write Enable is low at the beginning of a cycle, an internal write operation writes the data into memory and restores internal write lines to their original values.

The devices have differential clock inputs-Clock and Clock-to increase timing accuracy. They can be connected in either the differential or single-ended mode. In the differential mode, data is latched at the cross point of the rising edge of Clock and at the falling edge of Clock. Connecting either Clock or Clock to the internal reference voltage configures the STRAM in the single-ended mode, latching data at the true going edge of the clock.

Mohammad Shakaib Iqbal, an application engineering supervisor at Fujitsu Microelectronics Inc., works on localarea networks, microcontrollers, small computer system interfaces, and memory products. He holds a BSEE from NED University, in Karachi, Pakistan, and an MSEE from Oregon State University:

## Static RAMs

## Static RAMs

# Separate Data Inputs and Outputs SRAMs Provide New Architectural Solutions for System Designers 

Applications Engineering Department Fujitsu Microelectronics, Inc.<br>Integrated Circuits Division<br>Copyright© 1990 by Fujitsu Microelectronics, Inc.


#### Abstract

Traditionally, Static Random Access Memories (SRAMs) which can store greater than one-bit-wide words are available in packages with common data inputs and outputs. This is a consequence of the package size constraints, for wider word widths. Fujitsu also offers byte wide and word-wide devices such as MB81C78A, MB81C79 and MB81C40. In the case of SRAMs with four-bit wide words or less, the increase in package size is not significant. Instead, the advantages of separate I/Os for system designers more than outweigh the slight increase in package size. The basic benefit of having separate data inputs and outputs is that it does not require the data bus direction to be changed during a read-modify write cycle. Thus, the need for multiplexing and demultiplexing in the data paths is eliminated. This application note deals with some specific usage areas which take advantage of the separate data input and output SRAMs. A large variety of new applications, as well as some old memory designs have a need for separate data input and output pins on the SRAMs. Some of the key application areas are as follows: writeable ritual microprogram control stores, cache memory systems, and deep FIFO data buffers for disks and LANs. The following discussion covers each of these application areas, highlighting the importance of the separate data input and output SRAMs.


## All Rights Reserved.

Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A.

Application Notes are provided by the Applications Engineering Department of Fujitsu Microelectronics, Inc.
Printed in the U.S.A.
Edition 1.1

## Contents

Chapter Page
Abstract ..... 10-11
Microprogramming and Writeable Control Store ..... 10-15
The Main Parts of a Control Store ..... 10-16
Some Thoughts on Application Areas ..... 10-18
Cache Memory Systems ..... 10-18
Basic Blocks of a Cache Memory ..... 10-19
Buffer Block ..... 10-20
Tag/Directory Block ..... 10-20
Priority Update List ..... 10-20
Control Logic ..... 10-20
Building a Large Disk Cache ..... 10-22
Building Deep FIFO Buffers ..... 10-23
Conclusion ..... 10-25
References ..... 10-25

## Illustrations

Figures ..... Page

1. Arrangement of a Control Store Memory ..... 10-16
2. Writeable Control Store Memory ..... 10-17
3. Common Memory Hierarchies: (a) Two-level, (b) Three-level ..... 10-19
4. Typical Cache Memory Structure ..... 10-19
5. Cache Capacity Trends by Typical Cache Size ..... 10-21
6. Cache Capacity Trends by Typical Cache Performance ..... 10-21
7. A Large Disk Cache for a Disk Drive Enhances System Performance ..... 10-23
8. Basic FIFO Design ..... 10-24

## Microprogramming and Writeable Control Store

Microprogramming has become one of the most powerful tools currently available to designers of high-speed, microprocessor-based systems. It provides a degree of flexibility previously unattainable in sophisticated processors and controllers.

Microprogramming is actually accomplished by execution of a machine language program that is made up of a sequence of microinstructions. This execution is performed at a microinstruction level by having each microinstruction interpreted on the host machine hardware through a microprogram ${ }^{1}$

Microprograms comprise a sequence of microinstructions that activate the control primitives of the host machine. Individual sequences contain all the elemental steps required to perform system function. The microprogram is kept in a high-speed, random access storage unit that is called a control store or control memory. Control storage is normally found implemented as a ROM. However, control storage may also exist as a dynamically alterable memory known as a writeable control store. A read only memory cannot be modified by an executing microprogram. The contents of the control ROM are unalterable and provide a fixed interpretation sequence for a given microinstruction set. On the other hand, the contents of the writeable control store can be modified by executing a microprogram. This allows the architecture of the host machine to be redefined under microprogram control since a different microprogram module may be loaded in the writeable control store under the control of the user program. A processor having this capability is called a flexible architecture machine.

A writeable control store memory provides the main application for the static RAM with separate data inputs and outputs. This will be evident from the arrangement of the control store as shown in Figure 1.


Figure 1. Arrangement of a Control Store Memory

## The Main Parts of a Control Store

## 1. Microprogram Counter

The microprogram counter contains the address of the next microinstruction which is loaded in the control store. Usually, it is incremented by one, and the program sequencing is done by adding one (1) to the current contents of the microprogram counter.
2. Microprogram Instruction Register

The microinstruction register contains the current microinstruction being executed by the host machine. For a read only store, the microinstruction register would not provide leads for data to be written into the control memory - it would only receive data from the control store.
3. Control Store Data Register

Since many microprogrammed machines use a combination of read only storage and writeable storage, another register must be provided to supply data to be written in the writeable control memory. This register can be called the control store data register.
4. Control Store Address Register

Generally, the microcode which is loaded in the writeable control store is not written into the same location as that of the next instruction; therefore, a fourth register is needed. This register is called the control store address register. It points to the location in the writeable control store where the data word in the microcode is to be stored.

It is possible to combine the functions of the microprogram counter and the control address register as well as the functions of the microinstruction register and the control store data register. In general, these four registers will be kept separated, with the control store address register and
the control store data register forming a pair that references writeable control store and functions independently of the register pair formed by the microprogram counter and the microinstruction register. The microprogram counter and the microinstruction register, in turn, reference read-only control storage in terms of microprogram execution. Thus, a block of microcode could be loaded from a system peripheral, such as a floppy disk, into the writeable control store for usage by a specific microprogram. Similarly, data from either writeable control store or control ROM could be copied by control memory over into the main storage. The precise reasons for performing these operations would be dictated by the requirements of the user. In this application it is desirable to us an SRAM, with separate data inputs and outputs to avoid the multiplexing and demultiplexing in the data paths.

Some systems use only writeable control store as control memory. In this case, the sequencer needs the addresses for read cycles of the RAM, while the microprocessor sends the addresses for the write cycle of the RAM. Typically the outputs of the writeable control store are to be configured in a very wide microword, anywhere between 64 to 96 bits wide. This is a horizontal microword implementation. The term horizontal here implies that the microword has enough bits to directly control all the significant machine resources without additional decoding, encoding or other hardware interpretation. The inputs, however, are configured into an 8 - or 16-bit wide data bus, in order to be loaded directly from the host microprocessor. This is evident from Figure 2 presenting the more detailed arrangement in as typical system, which uses only a writeable control store.


Figure 2. Writeable Control Store Memory

For this type of architecture, a static RAM with separate data inputs and outputs is required. If this design is implemented by devices having a common data input and output bus, then the design would require numerous buffers, or transceivers to accomplish this function. Thus, by using the separate data input and output static RAM, like the Fujitsu MB81C86 which is $64 \mathrm{~K} \times 4$ bits wide, the designer realizes a significant savings in IC count, as well as PC board real estate.

## Some Thoughts on Application Areas

Due to the flexibility and cost reductions throughout the design development and maintenance, microprogrammed (MP) systems extend across large product and application areas, ranging from simple control functions to complex real time control systems.

Aside from the more common applications, such as emulation of other systems, and upward/downward compatibility among series configured minicomputer systems, microprogram control units (because of their cost effectiveness) can be applied to functions previously performed only by special circuits or custom made devices. For example:

1. Process control systems (factory automation).
2. Instrumentation systems (signal generators, synthesizers etc.).
3. Intelligent terminal for off-line editing (supermarket checkouts, terminals of investment houses).
4. Real time data processing (spectral analysis, pattern recognition, etc.).
5. Data communications systems have MP systems controlling polling, scheduling tasks, buffer management (front end processors, communication processors, etc.).

Applications of MP systems are virtually unlimited because of their high performance/low cost implementation. Hence, the availability of static RAMs with separate data inputs and outputs has a substantial impact on the design of MP systems which, in turn, find their way into a wide variety of applications, as discussed previously. Another area of system architecture which benefits from the separate data inputs and outputs on the static RAMs is the cache memory system design.

## Cache Memory Systems

In a cache-based system, a small, fast memory known as the buffer or the cache, (with roughly the same speed as the processor registers) is interposed between the processor and the main memory. This cache serves as a transparent bridge between their speeds. The "cache bridge" is transparent in the sense that is is invisible, making it inaccessible to the users, since it is completely hidden from them and not directly addressable (cache means "a hiding place"). However, by providing the processor with all the current information it requires at a faster speed, the cache creates an illusion of having a large main memory operating. ${ }^{3}$

During the era of early computing, the main memory technology was quite slow compared to the speed of the CPU. In order to overcome the slow access of the main memory, a small high performance cache buffer memory was placed between the CPU and the main memory. Figure 3 shows two of the most common memory hierarchy.

The two-level cache has already been discussed; i.e., slow memory communicates with a fast CPU. The three-level case takes into account the advantages of having a cache. With this memory hierarchy scheme, the CPU would execute data from the very fast cache buffer and would only have to slow down when this
buffer required new data from the slow main memory. Thus, with a small fast buffer, the overall performance of the large, slow main memory approaches that of the buffer.


Figure 3. Common Memory Hierarchies: (a) Two-level, (b) Three-level

## Basic Blocks of a Cache Memory

As already discussed, the philosophy behind the concept of buffering or caching is to use a fast, relatively small memory between the processor and the main memory. Figure 4 shows a typical way of implementing a cache memory system.


Figure 4. Typical Cache Memory Structure

## Buffer Block

A cache memory is basically a small, high-speed memory with main memory information. This information may be addresses, data or instructions. Hence, the cache can be an address cache, data cache or an instruction cache. Its speed is typically an order of magnitude faster than that of the main memory, while its capacity is typically one or two orders of magnitude less than that of the main memory.

## Tag/Directory Block

A cache memory system requires an identifier or tag store to indicate which entries of main memory have been copied into the cache store. Data in the large main memory has to be mapped into the smaller cache buffer, where it is partitioned or subdivided into small segments called blocks. Each block is identified with a label called the tag address. These tag addresses are stores in an associative RAM called the tag/directory RAM. It operates like a search memory.

## Priority Update List

A buffered memory requires a logical network that selects words or blocks to be removed when the new entries (words or blocks) need to be brought into the cache. This structure is called the priority update list.

## Control Logic

A cache memory system also requires control logic to generate all timing for synchronizing various activities; for example: searching the tag store, getting the data out of the cache, and replacing proper entries in the cache.

The operation of the total system is quite simple. Whenever the CPU requests the data from the main memory, the first operation that takes place is the matching of addresses coming from the CPU with the addresses inside the directory RAM. If this matches, then the data associated with this tag address is sent to the CPU. This is known as "hit" or address match. If the directory RAM does not contain the address being accessed by the CPU, then a "miss" takes place. When this happens then the data from the main memory is sent to the CPU. It will also be simultaneously stored in the buffer RAM. Hence, if this address is accessed again then the data will come from the cache.

The cache buffer design involve many parameters such as type of memory mapping schemes,(fully associative, direct and set associative), cache size, block size, data replacement algorithm, and a variety of other features which will not be covered in this paper.

In the earlier cache-based systems. the capacity and performance of main memory were modest in comparison to today's systems. Designers were using expensive bipolar RAM technology for performance considerations. Due to the improvements in semiconductor process technology, both bipolar and MOS, the size and performance of cache memories have continued to grow as shown in Figures 5 and 6. ${ }^{2}$


Figure 5. Cache Capacity Trends by Typical Cache Size


Figure 6. Cache Capacity Trends by Typical Cache Performance

As shown in Figure 6, the typical CPU cache times are approaching 55 ns or less. As far as the performance or hit rate of the cache is concerned, it is primarily determined by the buffer size. Consequently, if a cache buffer size is large, in the order of 256 K or 512 K , the miss rate is low (see Figures 5 and 6.) Hence, a RAM 64 K deep, will be an excellent choice. The third most important thing in the selection is the word width. Historically, a RAM with a large number of output drivers is slower than a device with fewer outputs because of high ground noise. Also, with wider word widths, the system designer usually winds up with a large number of unused bits/word. A by-1-organization would provide the highest performance and exact word widths but it will use a large number of devices. Therefore, a by-4-organization usually provides a more optimum alternative. This choice also affects the board layout.

The majority of by-4-bits and by-8-bits wide SRAMs have their inputs and outputs multiplexed over the same pins. This arrangement, however, increases turnaround and settling delays, thereby slowing system performance. As shown in Figure 4, if the tag and data RAM have a separate data input and output channel, then the glue logic for comparisons will not be followed by multiplexers and demultiplexers. Thus, a SRAM with a separate data input and output bus is ideal for this case. The Fujitsu MB81C86 is a CMOS $64 \mathrm{~K} \times 4$ SRAM, with an access time of 55 ns , and a separate data input and output bus. For systems which require very high performance, without board layout constraints, MB81C71A (the $64 \mathrm{~K} \times 1 \mathrm{CMOS}$ SRAM with access times as fast as 25 ns ) from Fujitsu provides a unique solution. It is also useful for high-speed minicomputers and mainframe applications.

## Building a Large Disk Cache

Real time interactive graphics and CAD systems are two high-speed computing applications which require a large on-line data base. Only mass storage can deal with such huge quantities of data. Disk drives, as well as the mag tapes are extremely slow, although their capacity is sufficient. These devices transfer data much too slowly for today's high performance mainframes, minicomputers, or microcomputers.

One solution is to place a semiconductor cache memory between the CPU and the disk subsystem. The cache should be large enough to hold a significant percentage of the data the CPU requires from an I/O device. This cache not only improves the disk data transfer rate, but also more closely matches the speed of the central processing unit of the host system. Incidentally, this cache will not place a heavy demand on the power from either the system or battery back-up. ${ }^{4}$

The Fujitsu MB81C81A-35/45 is a prime candidate since the cache would be several megawords in size. This is a $256 \mathrm{~K} \times 1$ CMOS SRAM. This device has separate data inputs and outputs. In order to design a 512 K bytes of disk cache, for an 8 -bit wide data bus, only 16 of these devices are needed. If the host's main memory access time is 80 ns , then a 45 ns device shortens the system throughput time. A typical system is shown in Figure 7.


Figure 7. A Large Disk Cache for a Disk Drive Enhances System Performance

## Building Deep FIFO Buffers

Separate data input and output SRAMs have a wide variety of applications. They are useful in building deep FIFO buffers. FIFO is a First-In-First-Out memory which can be implemented in different ways. The main function of this type of memory is to read out the data in the same order that it was written. The basic design of a FIFO implemented from the separate data input and output SRAM is shown in Figure 8.


Figure 8. Basic FIFO Design
The FIFO control logic consists of two ring counters for generating read and write addresses. When the FIFO is empty, then both of these counters are initialized to location zero in the SRAM. In the case of a write to the SRAM, the write counter is incremented, thus pointing to the next empty location. The read counter always points to the full location; i.e., the location which has data written into it. When all the data has been read, and the read and write counters point to the same location, the FIFO control logic generates an empty flag. A full flag is generated when the write counter points to an address on less than the read counter. At this point no further data dumps ar allowed in the FIFO. This FIFO control block is commercially available as FIFO RAM controller, which can easily create 64 K deep buffers from the separate data input and output SRAMs.

FIFO devices are marketed with onboard RAMs. These commercially available FIFO devices provide asynchronous operation, but are not deep enough for such applications as buffers for disk systems, printers, and local area networks where the data usually comes in the form of large blocks. Designers cannot afford to lose the data, consequently, the FIFO buffer should be large enough to hold the complete block. The deepest commercially available devices are 2 K words deep.

In order to implement a deep FIFO buffer, it is desirable to have a SRAM with separate data inputs and outputs. This avoids the turnaround delays and muxes/demuxes. Another advantage of using the SRAMs over commercially available devices is that the data can be accessed by the CPU. Therefore, in the disk environment the error correction can be done on the fly. This is not possible in commercially available FIFO devices as they do not have an address Bus.

## Conclusion

Fujitsu offers a CMOS 64K x 4 SRAM (MB81C86, with 55 ns access speed), 64K x 1 SRAM (MB81C71A, 25 ns access speed), $256 \mathrm{~K} \times 1$ SRAM (MB81C81A-35 access speed) with separate data inputs and outputs. Also, all Fujitsu ECL SRAMs (deepest configuration available $=256 \mathrm{~K} \times 1$ at 15 ns and the fastest available is 5 ns at 4 K and 1 k depth) have separate data inputs and outputs. The availability of separate data inputs and outputs SRAMs, help system designers develop not only an efficient system, but also a less expensive system because of smaller board space. The important application areas which exploit this feature are writeable control stores, cache memory systems, and deep FIFO buffers for disk controller boards and LANs.

## References

1. Brick, Jim and John Mick. "Microprogramming Ups Your Options in Microprocessor System Design", EDN. January 20, 1978.
2. Brunner, Dick. "High Performance Cache Memory". IEEE Conference Proceedings. WesCon 1986
3. Pohm, A.V. and O.P. Agrawal. High Speed Memory Systems. Reston Publishing Company.
4. Hartwig, Knorpp., Mears and Osman. "Large Disk Cache Uses Fast 64 K by 1 SRAMs to Speed Database Accesses". Electronic Design. September 19, 1985.

Intelligent Cache Tag RAMs

# The Effective Design of CMOS-based Caches in CISC- and RISC-based Architectures 

by J. Scott Runner<br>Manager, Applications Engineering

Fujitsu Microelectronics, Inc.
Integrated Circuits Division

Copyright® 1990 by Fujitsu Microelectronics, Inc.

## Introduction, An Overview

This manual is intended to serve two purposes: to provide an extensive tutorial on cache design and to aid in the process of designing a tag buffer, Fujitsu's MB81C51, into the engineer's high-performance end system. This guide focuses on cache design, various cache architectures and system requirements. The appendix to this handbook supplies details on Fujitsu's cache tag RAM, the MB81C51. Theory and performance analysis of cache are covered in moderate detail; they are covered in greater depth in the references found at the conclusion of this Application Handbook.

The information contained within this Application Handbook, supplemented with the appropriate data sheet, is intended to address the majority of typical design-in issues related to cache design with Fujitsu's RAMs. However, if additional information is necessary for the designer's successful application of these devices, please contact the nearest Fujitsu Sales Office. (See the Sales Information Section.)

Copyright© 1990 Fujitsu Microelectronics, Inc., San Jose, California

## All Rights Reserved.

Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information conveyed in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.

This document is published by the Publications Department, Fujitsu Microelectronics, Inc., 3545 North First Street, San Jose, California, U.S.A. 95134-1804; U.S.A.

Printed in the U.S.A.
Edition 1.1
10-30

## Contents

Section Page

1. Caches: Growing in Popularity, Mysterious in Definition ..... 10-37
1.1 Motivations for Using a Cache ..... 10-38
1.2 Cache Terminology and Implementation ..... 10-38
1.3 Cache Association, Storage and Control ..... 10-38
1.4 Cache Performance Justification: The Principle of Locality ..... 10-39
1.5 Determining Cache Residency ..... 10-40
1.5.1 Direct Mapped ..... 10-40
1.5.2 Fully Associative ..... 10-41
1.5.3 Set Associative ..... 10-42
1.6 Cache Coherency ..... 10-44
1.7 The Concept of Virtual and Real Caches ..... 10-45
1.8 Summary and Introduction ..... $10-45$
2. Supporting Operations Initiated by the Processor ..... 10-46
2.1 Responding to Processor Bus Actions ..... $10-46$
2.2 Performing a Cache Cycle10-48
2.2.1 The Sequence of Performing a Cache Cycle ..... 10-48
2.2.2 Executing the Cache Cycle on Hit ..... 10-48
2.2.3 Cache Hit Sequence (81C51 to 68020) ..... 10-49
2.2.4 Executing the Cache Cycle on a Miss ..... 10-49
2.3 Selecting the Optimal Replacement Way: the LRU Algorithm ..... 10-50
2.3.1 Initializing the LRU ..... 10-50
2.3.2 Forward Updating of the LRU Table ..... 10-51
2.3.3 Inverse Updating of the LRU Table ..... 10-52
3. Constructing the Cache Tag Buffer ..... 10-54
3.1 Choosing the Index and Tag Size ..... 10-54
3.2. Effect of the MMU on Hit Access Time ..... 10-54
3.3 Configuring the Tag Buffer Given the Tag Size ..... 10-55
3.3.1 HIT Detection on the Read Operation ..... 10-56
3.3.2 Updating the LRU ..... 10-56
3.4 Relating the Index and Tag to Main Memory Mapping ..... 10-57
4. Construction of the Cache Data Buffer ..... 10-58
4.1 Interface Between the Data and Tag Buffers ..... 10-58
4.2 Fast Selection of the Proper Set Element (Way) ..... 10-58
4.2.1 Element Selection: Chip Select or Output Enable ..... 10-58

## Contents (Continued)

Section Page
4. Construction of the Cache Data Buffer (Continued) ..... 10-58
4.2.2 Element Selection: Encoded Address Inputs ..... 10-59
4.2.3 Element Selection: Application Specific Devices ..... 10-60
4.3 The Implementation of Split Caches ..... 10-60
4.3.1 Data/Instruction Caches ..... 10-61
4.3.2 User/Supervisor Caches ..... 10-61
5. Implementation of Coherency Protocols ..... 10-62
5.1 Write-through Cache Schemes ..... 10-62
5.1.1 Straight Write-through Updating ..... 10-62
5.1.2 Buffered Write-through Updating ..... 10-62
5.2 Copyback Schemes ..... 10-64
5.2.1 Approaches to Copyback ..... 10-65
5.2.2 Centralized versus Distributed Control in Copyback Cache ..... 10-66
5.3 Evaluation of Performance Efficiency ..... 10-66
5.3.1 Evaluation of Straight Write-through Systems ..... 10-66
5.3.2 Evaluation of Buffered Write-through Systems ..... 10-67
5.4 Bus Monitors ..... 10-68
5.5 Constructing a Buffered Write-through Monitor ..... 10-70
5.5.1 Buffer Management ..... 10-72
5.5.2 Queue Latency Controller ..... 10-72
5.5.3 Determining Optimal Buffer Depth ..... 10-73
5.6 Effect of Allocating Slots on Write Misses ..... 10-74
6. Real and Virtual Cache ..... 10-77
6.1 Virtual Cache Construction: Address Correlation ..... 10-77
6.2 Virtual Cache Construction: Address Aliasing ..... 10-78
6.3 Conditional Selective Flushes ..... 10-80
6.4 Other Techniques for Virtual Cache Coherency Control ..... 10-81
6.4.1 I/O through Cache ..... 10-81
6.4.2 Fixed Main Memory Partitions ..... 10-81
6.4.3 Flushing to Avoid Aliasing ..... 10-81
6.5 Summary of Virtual Memory Operations ..... 10-81
References ..... 10-82

## Illustrations

Figures Page
1-1. Fujitsu's Role in the Functions of a Computer-based System ..... 10-38
1-2. Typical "Clustering" of Instructions and Data Address References ..... 10-40
1-3. Mapping Methods: Direct Mapped ..... 10-41
1-4. Mapping Methods: Fully Associative ..... 10-42
1-5. Mapping Methods: Set Associative ..... 10-43
1-6. Efficiency of a Cache System ..... 10-44
2-1. State Diagram of Cache Controller ..... 10-47
2-2. Cache Timing of a 68020 Environment ..... 10-49
$2-3$. Initializing the LRU ..... 10-51
2-4. Forward Updating the LRU ..... 10-52
2-5. Inversely Updating the LRU ..... 10-53
3-1. Address Bus Fields ..... 10-55
3-2. Implementation Example for Wide Tags (>20 Bits) ..... 10-56
3-3. Effect of Tag and Index Fields on Main Memory Partitions ..... 10-57
4-1. Cache Data Buffer Set Element Selection by Decoded Enables ..... 10-59
4-2. Cache Data Buffer Set Element Selection by Encoded Address ..... 10-60
5-1. Buffered Write-through System ..... 10-63
5-2. State Diagram of a Buffered Write-through Bus Monitor ..... 10-64
5-3. Cached System with Dual Tag Buffers for Asynchronous Tag Inquire, Read and Write ..... 10-69
5-4. Buffered Write-Through ..... 10-71
5-5. Model of Buffered Write-through ..... 10-73
5-6. Venn Diagram of Bus Cycles ..... 10-75
6-1. Virtual Cache Address Field Partitioning ..... 10-78
6-2a. Address Aliasing with Virtual Cache ..... 10-79
6-2b. Avoidance of Address Aliasing through Address Partitioning ..... 10-79
6-2c. Avoiding Address Aliasing through Direct Cache ..... 10-80

## Contents (Continued)

Section ..... Page
Appendix 1
A-1. MB81C51 Functions and Uses ..... 10-83
A-1.1 Cache Tag RAM Features ..... 10-83
A-1.2 Expandability of the MB81C51 ..... 10-84
A-1.3 Internal Architecture and Block Diagram ..... 10-84
A-1.4 Differences Between Two-way and Four-way Configuration ..... 10-86
A-1.5 General Functional Modes of the MB81C51 ..... 10-86
A-1.5.1 Read Cycle ..... 10-86
A-1.5.2 Write Cycle ..... 10-87
A-1.5.3 Selective Invalidation (Partial Purge) ..... 10-88
A-1.5.4 All Purge ..... 10-89
A-1.6 T The Tag and Control Bits: Use and Response ..... 10-89
A-1.6.1 Description of the Tag Memory Entry ..... 10-89
A-1.6.2 The Tag Field ..... 10-90
A-1.6.3 Control Bits (Validity And Parity) ..... 10-90
A-1.6.4 Tag or Validity Bit Parity Errors ..... 10-90
A-1.7 The HIT, Its Detection, and Related Signals and Functions ..... 10-91
A-1.7.1 Generating HIT from Multiple CTRAMs ..... 10-91
A-1.7.2 Selection of Hit/Replace Information ..... 10-91
A-1.7.3 Circuit Example (to Generate H/R) ..... 10-94
A-1.7.4 RLATCH - Its Function and Use ..... 10-94
A-1.7.5 LRU Logic and Replacement ..... 10-96
A-1.8 The Signals of the MB81C51 ..... 10-96
A-1.8.1 Pin Description Table and Discussion of Signals ..... 10-96
A-1.8.2 The INH' Signal and Its Effect ..... 10-96
A-1.8.3 SBLK and External Way Selection ..... 10-97
A-1.9 Device Mode State Table ..... 10-97
A-1.10 Configuring the MB81C51 for Various Applications ..... 10-98
A-1.11 Defining the Tag and Index ..... 10-98
A-1.11.1 Choosing the Index and Tag Size ..... 10-98
A-1.11.2 Configuring the Tag Buffer Given the Index Size ..... 10-99
A-1.11.3 Gate Signals to Implement Multiple 81C51s in Depth ..... 10-99
A-1.11.4 Configuring Multiple MB81C51s Using MHIT' ..... 10-101
A-1.12 Unused Inputs/Outputs ..... 10-101
A-1.13 Supporting Copyback with the MB81C51 ..... 10-101

## Appendix Illustrations

Figures ..... Page
A-1-1. MB81C51 Block Diagram ..... 10-85
A-1-2. Tag Read Cycle ..... 10-86
A-1-3. Tag Write Cycle ..... 10-88
A-1-4. Partial Purge Cycle (Selective Invalidation) ..... 10-88
A-1-5. All Purge Cycle ..... 10-89
A-1-6. Tag Memory Array ..... 10-90
A-1-7. Mux Circuit for Selecting Hit or Replace Information ..... 10-93
A-1-8. Example of Circuit to Generate H/R ..... 10-93
A-1-9. Address Bus Fields ..... 10-98
A-1-10. Example Implementation of a Tag Buffer with Extended Depth ..... 10-100
Tables ..... Page
A-1-1. Encoding of Hit and Replace Locations for 4-Way Buffers ..... 10-92
A-1-2. Encoding of Hit and Replace Locations for 2-Way Buffers ..... 10-92
A-1-3. Functional Pin Description of the MB81C51 ..... 10-95
A-1-4. Output States for $\mathrm{INH}^{\prime}=$ "L" ..... 10-96
A-1-5. External Element Selection Using SBLK ..... 10-97
A-1-6. MB81C51 Functional Modes ..... 10-97

## 1. Caches: Growing in Popularity, Mysterious in Definition

As depicted in Figure 1-1, Fujitsu supports a number of devices for the implementation of cache in computers ranging from high-end ECL-based mainframes through ECL- and MOS-based minicomputers to rapidly advancing desktop 32-bit microprocessor-based computers. Fujitsu's broad line of standard and application specific MOS and ECL SRAMs are designed to address the needs of today's designers who are facing the memory implementation problems faced in years past only by mainframe and minicomputer designers. This new wave of design requirements and resulting innovations are largely due to the introduction of second generation 32-bit microprocessors, the growing popularity of micro-based multiprocessing systems, and the commercial acceptance of RISC processors, which boast unusually fast clock rates, and require one or two memory accesses per cycle. Consequently, memory performance, the fundamental bottleneck for most CPUs, must keep up with processor technology if the system performance is to improve. Even if main memory could keep pace, it can only match the speed performance of a dedicated processor. In multiprocessor systems, coprocessor systems and systems that best utilize DMA for I/O, sharing bandwidth is still the critical issue.


Figure 1-1. Fujitsu's Role in the Functions of a Computer-based System

### 1.1 Motivations for Using a Cache

Cache memory is an additional level of the memory hierarchy that performs two functions. First, it provides a cost effective way to perform a memory cycle in a time that approximates that of the local processor's memory cycle time. Secondly, by providing an additional level to the memory subsystem hierarchy, the cache isolates the local processor's high-speed bus from that of main memory. This extra level of high-speed memory permits main memory to be implemented with inexpensive DRAMs, and to continue to provide a wide bandwidth for other devices that access the main buffer, such as other multiprocessors, DMA channels, graphics processors and math coprocessors.

### 1.2 Cache Terminology and Implementation

Cache is implemented by mapping a subset of the main memory into another memory subsystem whose cycle time is less than the minimum bus cycle time of the local processor to avoid wait states. Cached entries reside in this high speed cache data buffer, which is usually implemented with CMOS or ECL Static RAMs (SRAMs).

### 1.3 Cache Association, Storage and Control

Since cache supports only a subset of main memory, some way of identifying the original, or parent location in main memory from which the cached data originated is necessary, so that residency of a referenced instruction or datum can be determined (instructions and data will often collectively be termed data). A valid memory address will reference data located in one or more locations: local cache, main memory, or secondary storage (disk). To determine which is the case for a given memory access, cached data is stored with its associated address or tag. The tag is compared against the requested address to determine cache residency. Just as a request for data in a page that is not in main memory produces a page fault, so a cache reference that is not resident is termed a miss, while its counterpart is the always desired hit.

The tag buffer, best implemented with CMOS or ECL tag RAMs, interfaces to the cache data buffer, with which it is tightly coupled, and both are controlled by the cache controller that interfaces to the processor and the cache. The controller, responding to a processor memory cycle, initiates the interrogation of the tag RAM to determine residency, then takes the appropriate action, depending on whether the result was a hit or miss. These hardware functions and their relationship are represented in Figure 1-1, which also reveals the breadth of Fujitsu devices available to implement the tag and data buffers in both ECL and CMOS systems.

The last major cache system element is the bus monitor/bus controller, which observes the system bus (under most protocols) and controls access to and from the cache to main memory. To summarize, there are four functional blocks that make up the typical cache subsystem:

## 1. tag buffer

2. cache data buffer
3. cache controller
4. bus monitor

The implementation of the tag and data buffers will be thoroughly covered in this Application Handbook, while the controller and monitor will receive an overview.

### 1.4 Cache Performance Justification: The Principle of Locality

Because the cache is a subset of the main memory, it is susceptible to misses. These misses result in main memory accesses to read or write the missing data (usually by allocating and updating a line entry in cache). However, access to main memory suffers a delay penalty and, if such misses are frequent, cache may provide no obvious advantage except to isolate the processor from main memory. So why does cache work for buffers of surprisingly small size? Figure 1-2 shows a histogram of a program execution sequence that plots the frequency (mode) of specific, logical address references for a single task over a period of time. The results are not too surprising: the references tend to cluster, a phenomenon described as the principle of locality. Since programs often execute in loops or recurrently referenced procedures, and as instruction fetches are sequential in nature, the probability that a subsequent reference will be nearby in the logic address space is fairly high. While data references are not quite as orderly, they also tend to cluster because of frequent operations on data structures such as arrays, records and stacks.


Figure 1-2. Typical "Clustering" of Instructions and Data Address References

### 1.5 Determining Cache Residency

Cache is defined by a number of protocols and parameters which explains its many and varied implementations in today's systems, each having unique requirements. These requirements include depth, block or line size, coherency and protocols, and mapping method of look-up. The latter impacts the structure of cache and the implementation technology, as well as performance, warranting its discussion in this introduction. There are three fundamental methods of look-up: direct mapped, fully associative, and set associative. Another, less popular method called sector mapped, which was pioneered for the IBM 360, uses a fully associative tag buffer mapping into large data blocks.

### 1.5.1 Direct Mapped

Direct mapped (Figure 1-3) cache uses an index as an address into two standard static random access memories (SRAMs). One stores the data/instructions and the other stores tags that correspond to the data buffer contents at the same address (index). The tag buffer data at that address is compared against the tag of the pending request. A successful comparison results in a hit, and a miss indicates the tag at that index differs. (The index represents the lower order address bits of the cache address while the tag represents the higher order bits, as illustrated in Figure 1-3).

The disadvantage with this scheme is that multiple code or data lines (a line is one or more words of data associated with a particular tag, also called a block) which map to the same index will exclude all but one line from being resident in cache at a given time. Potentially, this may lead to an alternating miss scenario similar to the problem of thrashing in paged virtual memory systems. The advantages of this scheme are that the implementation is simple and access to the data is fast, since the index addresses both the tag buffer and the data buffer simultaneously.


Figure 1-3. Mapping Methods: Direct Mapped

### 1.5.2 Fully Associative

Fully associative mapped caches, illustrated in Figure 1-4, solve the problem of index contention introduced by direct mapped caches by storing the entire address (sum of the tag and index) in a content addressable memory (CAM) which simultaneously compares the requested address against all entries. Therefore, a number of commonly referenced lines may be stored in cache up to the depth of the cache, and may be located anywhere in the mapped main memory without contention.

One disadvantage of this scheme is that before the line entry from the cache data buffer may be accessed, the determination of the hit and its location must first occur. Compared to direct mapped, this increases the overall cache access time by the access (hit determination) time of the tag buffer. Furthermore, because CAMs tend to be expensive, slow and small, they are more commonly used for Translation Lookaside Buffer (TLB) implementations and much less often used for cache tags. However, a more effective scheme exists: set associative cache.


Figure 1-4. Mapping Methods: Fully Associative

### 1.5.3 Set Assoclative

A set associative cache (Figure 1-5) of N set elements (degree of associativity, or ways), permits N different line entries to map to the same index. As with direct mapped caches, set associative stores only the tag in a RAM and uses the index as the address for this tag buffer. By contrast, the index selects N different ways which are simultaneously compared against the tag to determine if a hit occurred, and at which set element it occurred. Since the set size is manageably small ( 2 to 4 elements), standard static RAM (SRAM) technology may be employed for both the tag and data buffer, thereby reducing cost, decreasing look-up time, and supporting large caches. Its primary disadvantage is that the selection of the set element in the data buffer is stalled until the tag buffer look-up is performed. Fujitsu has helped solve this problem with the development of fast SRAMs specifically designed for data buffer implementations (see Section 4.2).


Figure 1-5. Mapping Methods: Set Associative
The most popular and generally accepted cache implementation is set associative, since it can be made to meet performance goals (average access time, hit rate and hit detection time) while still maintaining reasonable cost. Furthermore, although studies have shown that hit rate increases with degree of associativity, Figure 1-6 suggests that the greatest improvement in hit rate occurs when changing from degree equals one to two or four. The set size on the independent axis of Figure 1-6 indicates the degree of associativity, which is two or more for set associative mapping, but more commonly two or four. A degree of one is the case of direct mapping, while degree of $N$ is the case of the fully associative implementation where N is the depth of the tag buffer.


Figure 1-6. Efficiency of a Cache System
Fujitsu has implemented set associative mapping with the MB81C51. Therefore, it will be assumed that set associativity is being employed throughout our discussions.

### 1.6 Cache Coherency

Incoherency may result in bad side effects due to inconsistency between copies of the same data. Although it is not necessarily an error for cache and main memory to possess differing copies of the same line, if at any time the most current copy is not the one referenced or is mistakenly overwritten, then we have lost data integrity. There are primarily two situations in which coherency may be compromised if corrective or preventive policies are not imposed.

1. The local processor causes cache and main memory copies, as well as any other copies in the system, to differ by writing to the local cache buffer. This problem of locally affecting incoherency can be resolved by updating.
2. Another processor or an I/O device writes to main memory data that references a line cached somewhere else in the system. One method of avoiding this globally affecting incoherency is by bus monitoring.

Although the goal of cache design is to enhance system performance, more specific goals that can be empirically measured are often used as guidelines for design. One goal is to minimize average cache cycle time and a second is to maximize available system bus bandwidth (use as little of it as possible).

These interdependent yardsticks of cache performance, along with practical issues such as design complexity and cost, are responsible for the division in the two fundamental protocols of cache coherency: write-through and copyback (or write-back). Write-through schemes are simpler and inherently exhibit higher data integrity, while providing moderate performance. This makes them ideal for the high performance desktop and deskside workstations and business computers which require low cost blended with high performance. A variation known as buffered write-through is well suited for the very high performance desktop/deskside systems such as workstations, because it provides for optimal average cycle times. There are so many factors associated with and impacted by any given coherency protocol that Section 5.0 has been dedicated to this subject.

### 1.7 The Concept of Virtual and Real Caches

Virtual cache is one that is referenced by virtual addresses, while a real cache is one that accepts real addresses such as those addressing physical main memory. Therefore, in virtual memory systems using a real cache, a memory management unit (MMU) resides between the cache and the processor. A virtual cache, by contrast, does not translate the address unless main memory is to be referenced, (although the translation normally proceeds concurrent with the tag inquiry to minimize delay, should a miss occur). The placement of the MMU, determined by the use of a real or virtual cache, was shown in Figure 1-1.

Whether virtual or real caches are employed affects the coherency protocol as well as the address translation and the overall construction and operation of cache. Section 6.0 provides application recommendations which consider the effect of virtual or real cache on the design of the cache subsystem.

### 1.8 Summary and Introduction

The cache, as a high-speed local memory storing a subset of main memory, offers the advantages of zero wait state memory cycles at a cost that benefits from permitting DRAM primary memory to store the bulk of the data. As an added level of memory hierarchy, it isolates the processor from demands for the system bus and restricts system bus accesses to miss-induced replacements, I/O space accesses, non-cachable data references and other general system bus routines.

Having reviewed some of the basic cache concepts and terminology of cache, as well as the fundamental theory and mapping mechanisms, we are now prepared to investigate the operation and function of the Intelligent Cache Tag RAM, followed by its system integration.

## 2. Supporting Operations Initiated by the Processor

Certain general operations that the cache must perform are dependent upon processor-generated states and system bus-generated states. This section briefly addresses these operations, their detection and invocation. Set associativity is the assumed protocol unless otherwise indicated. Fujitsu's MB81C51 Cache Tag RAM is used to illustrate the buffer construction. For more information on this device, refer to Appendix 1.

### 2.1 Responding to Processor Bus Actions

The cache system must perform the following functions in interfacing the local processor:

1. The cache system must be able to determine whether the current bus cycle initiated by the processor is one in which cache should participate (a cache cycle).
2. If the current bus cycle is a cache cycle, the cache system must respond appropriately to the request by either executing a cache cycle or suspending the processor until the request can be satisfied.
3. In the case of a non-cache cycle (such as a graphics I/O port operation that is not cached), the cache system must become dormant or inhibited and must not provide contention when the processor wishes to bypass the cache.
4. The cache system must perform all necessary functions, requested by the processor and/or its co-processors that may access the local cache (read, write, cache flush, invalidate entry, disable cache). These functions may be performed with or without the processor's direct control, depending on system requirements (whether software or hardware controlled functions are implemented).

The state diagram in Figure 2-1 describes a generic controller that can perform such operations. These operations, such as selective invalidation, may not always be initiated by the processor, but the example should provide an understanding of the initiation of operations and their function.


Figure 2-1. State Diagram of Cache Controller

### 2.2 Performing a Cache Cycle

Cache, because of its performance requirements and complex timing considerations, is tightly coupled with the processor in use. Therefore, this section will discuss how processor and cache signals are coordinated to perform read and write functions.

### 2.2.1 The Sequence of Performing a Cache Cycle

During processor data/instruction cycles, the processor initiates the cycle by driving address and control signals (READ/WRITE, FUNCTION CODES, MEMORY/I/O indicator) and an ADDRESS STROBE, CLOCK and/or other qualifying signals to sample the CONTROL and ADDRESS lines. At this time, the cache must quickly determine whether the current bus cycle is one it should participate in, or whether it should back off.

If the access is to cache, then the cache controller enables the processor address to the index and tag inputs of the tag buffer while also driving the index, block address and byte select signals to the cache data buffer. As the tag buffer is performing an interrogation to determine residency of the requested entry, the data buffer is being addressed by the index, block and byte addresses.

### 2.2.2 Executing the Cache Cycle on a Hit

When the tag buffer indicates a hit has occurred by asserting HIT' the HIT/REP (set element selection) is used to select data that corresponds to the set element forcing the tag hit. Depending on the timing requirements of the processor, an ACKNOWLEDGE signal (which will generically be called ACK) is usually generated from the HIT' at this time. Once the data is selected from the data buffer, it is set up on the processor's data bus with sufficient set-up time to be clocked by the edge terminating the bus cycle.

In the read cycle, the timing of the ACK to the processor and the data from the cache data buffer are the most critical. An example of cache timing in a 68020 environment is depicted in Figure 2-3 using the synchronous timing mode of the 68020 . Since set associative caches do not generate set element selection information until the time a hit is determined, the data buffer enable time is quite important. Section 4.2 deals with alternatives in the construction of the data buffer to minimize this delay.

In the case of a processor memory write cycle, the tag buffer is also interrogated but, when HIT' is asserted, the data buffer (already enabled for a write) is written to as the HIT/REP signals select the set element. If a write-through coherency scheme is employed, then main memory is written to concurrently with the cache write.


Figure 2-2. Cache Timing of a 68020 Environment

### 2.2.3 Cache Hit Sequence (81C51 to 68020)

An example of interface timing is shown in Figure 2-2, which illustrates the important timing relationships in interfacing Fujitsu's 81C51 to a processor such as the 68020. The address, which appears after $t_{6}$, drives the cache buffer directly, saving the delay of waiting till AS' appears $t_{11}$ later (though there is no reason the address could not be registered by the qualifying AS and CLK'). The HIT' and HIT/REPLACE information appear $t_{A H}$ later and generate the acknowledge (DSACK') and data buffer enable signals, as well as others. teLQV, the chip select access time is, at this point, the only major component of delay remaining before data is retrieved and set up on the processor $t_{27}$ in advance of the falling edge of the $\mathrm{S4}$ CLK. The inequality shown at the bottom of Figure $2 \mathbf{2}$ represents the requirement to meet zero wait-state cache operation, given the described configuration and timing.

### 2.2.4 Executing the Cache Cycle on a Miss

When a cache read cycle results in a miss, the requested data must be retrieved from main memory and written to the cache and the processor. A slot, or new line, must be allocated in the tag and data buffers to accommodate the missing tag and line. The determination of this slot is performed by the cache tag buffer or cache controller using an algorithm in hardware. To retrieve the data, cache requests access to main memory and fetches the line containing the missing data. The tag is then (or often concurrently) written to the tag buffer to validate the cache line. The fetched line is then written to the data buffer and
the requested word is set up on the processor. The ACK , which has remained deasserted up to this point, is now asserted, thereby terminating the bus cycle.

In the case of a write cycle that misses, precisely the same sequence occurs, including the fetch of the line from main memory (unless the block size equals one). Since a write operation is of one word, the other words in the block are unaffected; they must be copied into the data buffer and then the write may be performed on the affected line entry. For a higher performance, there are existing variations that involve registering the data to be written and updating the data buffer after the processor's bus cycle has been terminated.

### 2.3 Selecting the Optimal Replacement Way: the LRU Algorithm

$\mathrm{H} / \mathrm{R} \#$ is a signal that determines whether the tag inquiry references a replacement or searches for a hit. When a miss occurs, the H/R\# input is cleared (LOW) in order to select replacement data for two purposes. The first purpose is to select the set element to be written into the data buffer (using the external HIT/REP outputs) and the second purpose is to enable the way in the tag buffer to overwrite (using the internal HIT/REP signals). The H/R\# signal selects a 2:1 mux which passes either the hit information about the individual way's hit, or the replacement data which is driven by the least recently used (LRU) logic. This LRU logic maps data from the LRU table into enable signals that indicate which set element at that index is the "oldest" and thus prime for replacement. The inverse of this logic function also updates this table when read, write, and selective invalidation operations are executed, as shown earlier in Figure 2-1. There are three updates that are performed on the LRU table: initialization, forward update, and inverse update; a more detailed discussion of these updates follows.

### 2.3.1 Initializing the LRU

When the tag RAM is initialized by asserting the PURGE' signal, the validity bits for each entry (and all set elements) are reset to indicate cache is empty; thereby making all set elements invalid. At the same time, the LRU table is reset to a known, defined state shown in Figure 2-3.


Figure 2-3. Initializing the LRU

### 2.3.2 Forward Updating of the LRU Table

When an inquire mode read cycle occurs (SET' kept high during the read), it has no effect on the LRU table: nothing ages, nothing regresses. However, an update mode read operation in which a hit occurs or a write operation, both modify the table to reflect that the referenced element in the set is the most recently referenced. As an example, assume the LRU table has been initialized as shown in Figure 2-3. The processor initiates a cycle and the tag buffer is interrogated at index 001 H . The tag on TD0..TD19 matches that of set element \#2, indicating a hit that, as SET' is asserted, modifies the LRU state to reflect that \#2 is the youngest, or most recently used. This is illustrated in Figure 2-4.


Figure 2-4. Forward Updating the LRU

### 2.3.3 Inverse Updating of the LRU Table

Selective invalidation clears the validity bits of the set element selected by either explicit invalidation (selecting the set element from signal pins, such as the SB0/SB1 signals of the MB81C51) or implicit invalidation (performing a tag comparison to determine the set element, then incuding it). Since the element that is invalidated is the preferred one to replace, the invalidation cycle modifies the LRU table so that the invalid element is now the oldest. Since this ages the element and has an effect that is the complement of the forward update, it is termed an inverse update, because the update algorithm is essentially applied in reverse.

Using the existing example (after the forward update), let's say that we implicitly invalidate a tag that hits element $\# 2$ of index $=001 \mathrm{H}$. The element hit is inversely updated and the LRU table is modified at the assertion of SET' to the state indicated by Figure 2-5.


Figure 2-5. Inversely Updating the LRU

## 3. Constructing the Cache Tag Buffer

This section will discuss the hardware configuration based on the specification of parameters such as set size, depth, and tag size.

### 3.1 Choosing the Index and Tag Size

The size of cache is defined in terms of its depth $(D)$, block size $(B)$ and degree of associativity $(W)$ in the following way:

Eq 3.1

$$
\text { cache size }=D * B * W
$$

Since the index is used to address the cache in depth, the size of the index address field should be (in bits):

Eq 3.2

$$
\text { index size }=L O G_{2}(D)
$$

As an example, if we have a two-way cache with a block size of 4 words, an 18 -bit tag, (2-bit byte select) and a 10-bit index, we then have a cache buffer that is $2 * 4 * 2 * 2^{10}$ ) $=8 \mathrm{~K} 32$-bit words, with a tag buffer depth of 2 K tags. This 32 K byte cache can be implemented with a single 81 C 51 .

### 3.2. Effect of the MMU on Hit Access Time

For systems that use virtual memory, the address consists of two fields, a page number and an offset. The page number is virtual and must be translated into a page frame number that maps to main memory, and the offset is real or not translated. In the TLB translation, the page number field incurs a delay relative to the offset. This delay does not occur when the MMU is on board the processor and the entire address becomes valid simultaneously.

Set associative tag buffers generally provide a faster hit access time from tag transition than from the index. If the index, lower order bits and page offset share the same bit field of the address, as shown in Figure A-1-9, then the TLB translation delay can be effectively reduced by up to ( $t_{A H}-T_{T H}$ ), the difference in the index and tag access times. Therefore, the worst case hit access time, including the MMU delay, is defined as:

Eq 3.3
if
then

$$
\begin{gathered}
t_{M M U}>\left(t_{A H}-t_{T H}\right) \\
t_{H I T}=t_{A H}+\left(t_{M M U}-\left(t_{A H}-t_{T H}\right)\right) \\
t_{M M U} \leq\left(t_{A H}-t_{T H}\right) \\
t_{H I T}=t_{A H}
\end{gathered}
$$

Eq 3.4
if
then
where $t_{M M U}$ is the delay (translate) time of the MMU, and $t_{A H}$ and $t_{T H}$ are the index address to hit and the tag field to hit times, respectively).

However, if any part of the page number maps into the index field, then that part of the index field must propagate through the MMU. In the event of such a propagation, the worst case cache access time becomes:

Eq 3.5

$$
t_{H I T}=t_{A H}+t_{M M U}
$$

Thus, in real cache implementations where a MMU skews the higher order address bits, optimal hit access time occurs when the page offset is at least the size of the index field plus the byte and line address (all in bits per address field).

Eq 3.6

$$
P A G E _O F F S E T \geq I N D E X+B Y T E _S E L+B L O C K _A D D R
$$

### 3.3 Configuring the Tag Buffer Given the Tag Size

As discussed in Appendix A-1, the address is comprised of a tag field, an index field, and a block and byte select field. Thus there is a proportionality between the field sizes and the address width (see Figure 3-1). For a given address width, say 32 bits, increasing the cache tag buffer size results in reducing the tag size, because the index field increases while the address size remains fixed. For these reasons, a tag size of 20 bits is, typically, more than adequate. However, cases may arise in which larger tags are needed. One case that may be an example is the new RISC processors which drive the virtual address space field with a page number and offset to be translated. If the cache is virtual, it may well see an unusually large address which requires a larger tag. Fujitsu's MB81C51, for example, supports a 20-bit tag field. If larger tags should be necessary, they should pose no particular hardship on the MB81C51, as the following application information will show.


Figure 3-1. Address Bus Fields
By applying all inputs to multiple tag RAMs in common, with the exception of the unique tag fields, the width of the tag buffer and, consequently, the tag size can be enlarged. Figure 3-2 provides an example of a circuit that supports a 40-bit tag and a cache size of 2 K lines configured as two-way. Notice that the outputs must now be gated and the timing sequence will change, since the LRU update on the read cycle (and the implicit selective invalidation) now require a hit to occur in both tag RAMs in parallel before the entire buffer is considered to be "hit." The operation of this circuit is described as follows.


Figure 3-2. Implementation Example for Wide Tags (>20 Bits)

### 3.3.1 HIT Detection on the Read Operation

Index, decoded tag (split fields as shown) and other inputs, except $\mathrm{SET}^{\prime}$, are applied in the same way as in the single width case. The individual HIT' lines are ORed to produce the global cache hit signal (GHIT') and used in the same manner as HIT' to generate system control signals. Notice that the gating of HIT' is such that all devices in parallel must assert their respective outputs to assert a system $\mathrm{HIT}^{\prime}$. This is necessary since all parts of the tag field must match in order to have a complete match. This is different from the method described in Appendix A-1.10 (stacking devices in depth) in which a hit in any one device indicates a complete cache hit.

### 3.3.2 Updating the LRU

The LRU table should only be updated when both RAMs, in parallel, are hit (GHIT' asserted). Since SET' updates the LRU, its assertion can be delayed until the global hit is detected. The effect of this approach is to increase the hold times of the tag, index and the other input signals.

Furthermore, selective invalidation that depends on a hit for execution (implicit invalidation) must wait for GHIT' to assert SET' If the invalidation is initiated but SET' is never asserted (as the result of one or more of the tag fields not matching), then no invalidation will occur.

The purge and write operations can be performed in the same manner as in the single width case; therefore, the WRITE' and PURGE' signals can be tied common, as can INVL' and all inputs except the tag data.

Since the LRU table of all devices in parallel is modified in unison, the tables will be identical. Therefore, the HIT/REP outputs of either device can select the data buffer set element. In fact, the duplication in the LRU buffers could be utilized in fault tolerant systems with the aid of hardware comparison circuitry.

### 3.4 Relating the Index and Tag to Main Memory Mapping

Index and tag field sizes relate to main memory because they create a type of partitioning of main memory (similar to the way that paging partitions memory into frames). Figure 3-3 illustrates how the choice of index and tag size affects this segmentation. These field sizes, combined with the way in which data and instructions are stored in main memory, influence the hit rate and establish that there is an important relationship between the compiler, the operating system and the hardware architecture; i.e., the combination gains an optimal performance. Therefore, this can be a helpful model not only for hardware engineers, but compiler, linker and loader writers as well. Furthermore, this model is quite useful for the designer when defining fixed function memory segments (I/O space, frame buffers or other buffers) and fixed shared memory spaces.


Figure 3-3. Effect of Tag and Index Flelds on Main Memory Partitions
Using this model, a vertical line drawn down through all the sectors represents the largest set of tags that can have the same index. If, during program execution, the "working set" of main memory pages happens to include data or instructions having the same index, then some cache entries may be replaced by other data (if the number having the same index exceeds the set size of the cache). This is demonstrated in the model in Figure 3-3 by observing that the constant index line (vertical) "cuts" more addresses in the working set than the degree of associativity of the cache. Therefore, the choice of the tag and index size, as well as the degree of associativity, are all interdependent with software and quite important in guaranteeing a successful cache implementation and utilization.

## 4. Construction of the Cache Data Buffer

Up to this point, the focus has been on the implementation and characteristics of the tag buffer. Once a hit or miss has occurred, upon interrogating the tag buffer, the next action usually involves reading from or writing to the data buffer. This coordination requires a close coupling of the two buffers, an important consideration in the construction of the tag and data buffers.

### 4.1 Interface Between the Data and Tag Buffers

The tag buffer stores addresses which correspond to data contained within the cache data buffer. Therefore, it is the data buffer, comprised of SRAMs (such as Fujitsu's MB81C69A, MB81C78A, or MB81C79A) or special purpose data buffer device (such as the MB81C79B), which stores the actual instructions and data.

For example, in order to select a data entry, an index address, a set element (generated by the tag buffer) and a block, address and byte enables are used to define where the referenced data resides. The index applied to the tag buffer simultaneously addresses the data buffer. While the tag comparison in a read cycle is being performed, the known addresses are used to access the data buffer (a read cycle will be used throughout this section as an example). The known addresses are the index, block, and byte enable signals. However, since the HIT information is not generated until the HIT access time after address transition, tAH becomes a gating factor in retrieving data from the buffer when it is present in cache. The following schemes of constructing buffers attempt to minimize this delay.

### 4.2 Fast Selection of the Proper Set Element (Way)

The time to select the set element after hit determination is critical enough to warrant a discussion of tradeoffs in speed, convenience, memory size granularity, and implicitly, cost. The following are three fundamental approaches to data buffer design that consider the set element selection delay.

### 4.2.1 Element Selection: Chip Select or Output Enable

Figure 4-1 depicts a scheme in which the outputs of all set elements for all common data bits are wire-ORed and depend on the output enable signals ( $G^{\prime}$ ) or chip selects ( $\mathrm{E}^{\prime}$ ) to select the particular element using the HIT select outputs of the tag buffer. Each HIT drives a group of chip selects that select the set element; then each group is further qualified by the byte enables. This method selects the element in a time constrained by the chip select access time. CMOS SRAMs such as Fujitsu's MB81C69A, with chip select access time faster than address access times, are ideal for this implementation.


Figure 4-1. Cache Data Buffer Set Element Selection by Decoded Enables

### 4.2.2 Element Selection: Encoded Address Inputs

If the HIT/REP signals are encoded, they may be used to directly drive address inputs of the data buffer RAMs, provided the last address access time of the RAMs is sufficient to guarantee data selection time (see Figure 4-2). (See Figure 4-2). This would also permit finer granularity of the memory devices used for cache memory since four ways (or two) would be combined into one memory device, reducing the depth by that same factor.


Figure 4-2. Cache Data Buffer Set Element Selection by Encoded Address
This approach may be useful in systems which can afford the address access time in addition to the HIT access time, need finer granularity of the cache memory depth or utilize innovative "nibble access" SRAMs by Fujitsu.

### 4.2.3 Element Selection: Application Specific Devices

Fujitsu's MB81C79B is an example of a memory designed especially for cache implementations (though it suits other implementations). It supports a wide word width ( 9 bits), fast column address for fast addressing of line elements at a faster access than the remaining address bits. Fujitsu will continue to develop devices architecturally suited for specific cache implementation.

### 4.3 The Implementation of Split Caches

In systems based on the Harvard architecture in which data and instruction buses are disjointed and simultaneous fetches can occur on both, dual caches exist to support the buses independently. The same is true of modern Von Neumann processors that possess multiple bus paths and caches for data and instruc-
tions, such as the Motorola 68030 or the Intergraph Clipper ${ }^{\text {TM. These }}$. The examples of split caches that discriminate by data type (data or instruction). Split caches may also separate user from supervisor space, or a four-way split cache may distinguish both types of characteristics.

### 4.3.1 Data/Instruction Caches

Many general studies have failed to show conclusively that split instruction/data caches in Von Neumann machines are necessarily better than combined caches [Alexander, '86]. However, studies have shown that instruction references are more localized over time averaging than are their data counterparts. The discussion of this phenomenon will not be addressed here. but the references at the conclusion of this Applications Handbook offer additional sources. The construction of split caches and consideration of their performance merits follows.

As Section 5 will describe, the control of modifiable data is complex and ties up the cache with additional overhead. By splitting the caches, the control of the instruction cache (assuming code cannot be modified) becomes much simpler since instructions will not be locally modified, thereby reducing the opportunities for incoherency and simplifying the cache control logic. Additionally, the reduced logic overhead may provide for faster instruction fetch times, particularity important for RISC architectures employing single-cycle instruction execution. Furthermore, with proper bus isolation, it is possible for the processor to access the instruction cache while the bus monitor accesses the data cache. The very sequential nature of the instruction addressed could also be used to the best advantage. Certainly if the processor is Harvard-based, the split caches would be the natural implementation choice. Obviously, there are many advantages of split caches when one looks beyond the single issue of hit rate to other issues such as those discussed above.

The implementation of split caches is not difficult and can be transparent to software. Unlike main memory, cache is demand fetched at the time of processor fetch. During a bus cycle, most processors signal whether data or instruction, or user or supervisor data is being referenced. These signals control which of the split caches is to be selected. When designing these caches, the arbiter/controller that coordinates processor and system accesses must carefully arbitrate the caches and ensure no bus contention occurs. This is aided by the use of bus isolation to provide separate bus paths for the caches to the system, and perhaps registers to isolate the cache from the local processor.

### 4.3.2 User/Supervisor Caches

Split caches separating the user and supervisor spaces can be implemented to provide elegant solutions to coherency control. In virtual memory systems requiring cache to be flushed on context switches, a simple solution is to flush the entire cache. However, since this approach invalidates valid entries as well, it is not optimal. By separating user and supervisor code, the user space may be flushed independently, leaving the supervisor space intact. This is advantageous since the supervisor space often maintains the same virtual space (perhaps even a real space) and therefore need not be flushed.

## 5. Implementation of Coherency Protocols

There is a plethora of protocol and implementation alternatives for coherency control falling into two basic categories. The two catagories are write-through (or immediate) and copyback (or delayed update, also called write-back). Both are implemented by hardware and, perhaps, assisted by software. This section will begin by briefly discussing the coherency protocols.

### 5.1 Write-through Cache Schemes

The write-through protocol dictates that every cache write operation should also be directed to main memory. This permits all cache modifications to be visible to any unit interfacing to the system bus and assures that main memory and cache copies are identical at all times.

This method is simple and reliable, and intrinsically protects against coherency violations in cases where I/O or another processor may read from main memory. However, the issue of I/O or other processor writes to main memory presents a problem which is resolved in Section 5.4 on bus monitoring mechanisms.

The write-through update method guarantees coherency by ensuring that main memory copies are always consistent with cache copies, for all cached data. Furthermore, write-through is the simplest to implement and requires the least hardware. There are two basic variations to write-through, depending on whether the write to main memory is immediate (straight write-through) or delayed (buffered writethrough).

### 5.1.1 Straight Write-through Updating

A simple approach in securing coherency is to force the processor to wait while the data is written to the local cache and main memory. When the processor write is detected, the tag buffer is interrogated to determine residency while the write cycle to main memory commences. By delaying the acknowledgement to the local processor, the controller may acquire the system bus and write data to the main memory and local cache (often done concurrently).

In the case that the written data is not cached, there is no performance penalty in directing the write to main memory, since the entire block must be retrieved in any case. A technique motivated by this fact is one in which cache slots are not allocated on cache write misses, only hits. Although interrogation is still required, additional slots are freed for read-only and read-first, read/write entries. Furthermore, if a slot is allocated for a missing entry, the entire block must be copied into cache from main memory after the write data has been written to the system bus. Therefore, in the case of straight write-through, avoiding allocation reduces the write time by an amount equal to the main memory block transfer time.

### 5.1.2 Buffered Write-through Updating

The two drawbacks associated with the write-through scheme are 1) a long cache write cycle time and 2) high system bus bandwidth consumption. Buffered write-through reduces the write cycle time to that of the read cycle by releasing the processor from having to wait until the main memory write cycle is complete. Figure 5-1 illustrates a block diagram of a buffered write-through system at the heart of which is a buffer and controller that stores the written data and its associated address for subsequent transfer to main memory. With written data in the buffer, the controller then accesses the system bus and updates
main memory. Should the processor perform a subsequent write while the previous one is pending, it is also buffered. This may continue until the buffer's capacity is exhausted.


Figure 5-1. Buffered Write-through System
Though implementing a buffer and controller for buffered write-through may appear complex, it can be as simple as using a register for both the data and corresponding address. The write data is then registered, the processor freed to continued and the data transferred to main memory by cycle stealing. If a subsequent write happens to appear before the latent write data is transferred to main memory, the processor is then halted. Alternatively, the buffer may be extended in depth. If the maximum time to transfer a write is less than the minimum time between successive writes by the processor, the buffer will never force the processor to wait. More realistically, however, is a probable determination of average cycle time; an issue discussed in Section 5.3 regarding quantitative analysis of the coherency schemes.

The function of the buffered bus monitor is depicted in the state diagram in Figure 5-2. Several variations of the scheme are possible, depending on the protocol choices made by the designer. For example, if cache slots are allocated on cache misses during writes, a block transfer after the main memory write is required. A more detailed discussion of buffered write-through is presented in Section 5.5.


Figure 5-2. State Dlagram of a Buffered Write-through Bus Monitor

### 5.2 Copyback Schemes

While buffered write-through shows great promise by supporting fast cache write cycle times, it still degrades available system bandwidth since every write must eventually reach main memory. Consequently, parallel processing systems may be inclined to employ copyback schemes, which reduce bandwidth requirements by updating the store only when necessary.

Although popular in mainframe computers, copyback schemes are complex to implement, requiring more overhead logic and more complicated analysis to ensure coherency reliability when compared to write-through or buffered write-through systems. Furthermore, although bus bandwidth is gained with the use of copyback, many high performance desktop computers, including high-end workstations, utilize the more economical write-through or buffered write-through approaches. While the bandwidth issue has often driven designers of multiprocessor implementations to copyback schemes, write-through and its variations find their way into many highly parallel systems, even those with up to 32 processors. For this reason, Fujitsu has designed the MB81C51 to be used in write-through and buffered write-through systems which demand fairly large, high-speed caches. This section, therefore, is provided for the interested designer as an introduction to copyback and its various implementations.

### 5.2.1 Approaches to Copyback

There are a vast number of approaches to copyback which vary in control (distributed versus centralized), allocation of data, monitoring other requests for data, etc. Examples are write-once, the Goodman public/private cache, and the snoopy cache by Rudolph and Segall. Generally, copyback schemes require additional descriptors which are associated with each line and indicate the privilege (level of local access) and update condition of the line. These descriptors are managed and kept in the local caches (or main memory if centralized control is employed). Although varied, most of the methods have some commonality in their access permission and update approach; these are:

1. Requests for data to be cached are directed to main memory (as with typical misses).
2. Read or Write (or equivalently public or owner) privileges to the data are assigned to the requested line. The privileges are often implemented as another field along with the tag.
3. Other caches holding the same line may have to change the rights of the local line to be consistent with the granted rights.
4. Any dirty lines (containing data that has been modified in cache but not in main memory) in cache must be updated before a new copy is granted. This may involve suspending the current system request and updating main memory.

Even with copyback implementations, there are still several occasions when main memory access is required, but the frequency of these accesses is generally much less than exhibited by write-through schemes where typically 18 percent to 33 percent of the total number of memory accesses are writes and, consequently, must go to main memory. RISC processors, however, tend to have different requirements that may make copyback somewhat less advantageous than write-through. Due to the large register files that have defined RISC machines, many writes never go to the external bus. In fact, the Fujitsu RISC processor SPARC ${ }^{\text {TM }}$ typically accesses the external bus only about 5 percent of the time when compared to the frequency of instruction and data fetches. This reduces the penalty for writes and makes write-through systems nearly equal in bandwidth performance with copyback. Conditions that may force a main memory access when copyback is employed are:

1. Cache miss on read requires reading a line from memory (perhaps assigning read-only, or public access privileges to the cached line).
2. Cache miss on a write means a line may be provided to the local cache under read/write privileges (meaning exclusive or private ownership).
3. A cached line has write privileges and a main memory request is made for the same line. In some schemes the line is always written to main memory and either invalidated locally (if the request is
for a write) or local rights are reduced to read-only (if the successor received read-only privileges). A more efficient scheme is to update main memory only if the local copy is dirty, though this requires tracking a dirty bit.
4. When context switches in a virtual cache scheme, it is usually necessary to flush out entries in the virtual space of the swapped task. This may require writing dirty data out to main memory.
This is a function that the MB81C51 cannot directly support, since the tag, once written, cannot be read back out, only compared against another tag. However, future Fujitsu tag RAMs should provide expanded functionality to support these and other operations.

Notice that I/O may operate given the above protocol, but without holding its own privileges, since all caches will be monitoring the system bus with I/O operates.

### 5.2.2 Centralized versus Distributed Control in Copyback Cache

If centralized control is implemented, then main memory must store the access level bits of each line and coordinate the assignment of the lines. Additionally, in some way, local caches must be capable of responding to update cached lines to main memory, as well as invalidating them as necessary. There are two drawbacks to centralized copyback control. First, a centralized controller can not determine consistency (dirty data), since local accesses to the data are hidden from the system bus and, therefore, main memory must always be updated when read/write privileges are reduced. Second, the local cache must still manage the privilege level and, in particular, enforce the read-only level by intercepting the writes to these restricted lines and treat them as misses.

Distributed systems require a bus monitor, similar to that used for write-through systems, with the exception that it must detect system bus reads as well as writes. Distributed copyback must also be capable of enforcing read-only protection.

### 5.3 Evaluation of Performance Efficiency

Having determined the optimal coherency protocol to employ, the designer must consider cost, reliability, ease of design, and of course, performance. In this section, two performance measures will be evaluated for each of the coherency protocols previously discussed. These are average cycle time and bus bandwidth utilization.

### 5.3.1 Evaluation of Straight Write-through Systems

When all cache writes are being directed to main memory, the cache write cycle time becomes constrained by the average main memory write cycle time, which includes arbitration time to acquire the system bus. Furthermore, since an entire line must be transferred into cache from main memory, the block transfer time is critical to the overall average cycle time of a system, regardless of the update protocol employed. Assuming that H , the average cache hit rate for both reads and writes, has been reasonably determined, the average memory cycle time can be represented as the following equation (assuming zero wait state operation):

Eq 5.1a

$$
\begin{array}{rl}
t_{M W C T}=H & *\left[t_{R C} *(1-W)+t_{M W C} * W\right](1-H) *\left[(1-W) * t_{B T}(L)+W *\left(t_{B T}(L)+t_{M W C}\right)\right] \\
& =\mathrm{H} *\left[t_{R C} *(1-\mathrm{W})+t_{M W C} * \mathrm{~W}\right]+(1-\mathrm{H}) *\left[t_{B T}(\mathrm{~L})+\mathrm{W} * t_{M W C}\right]
\end{array}
$$

where a fraction $W$ of the memory cycles are writes and incur a main memory write cycle time of tMWC, which reflects the system bus arbitration time. tBT is the time to transfer a block of size $L$, which includes the time to acquire the system bus and transfer an entire line in burst fashion. $t R C$ is the cache read cycle time. The ( $1-H$ ) term is fairly complex, since in the case of a write miss, it must include $t M W C$ and may or may not include the block transfer time, depending on the chosen protocol. This operation is more fully described in Section 5.6. Equation 5.1a assumes the transfer takes place on write misses.

Since write-through may consume much of the available main memory bandwidth, it is important that the utilization be quantified so that system behavior can be properly modelled. Using the same notation as equation 5.1a, and representing the average available main memory bandwidth by FSB (in words/ sec , assuming main memory and the processor bus are of the same size), the average main memory bus utilization can be approximated by:

Eq $5.1 b$

$$
\begin{gathered}
U_{B W}=F_{P U} / F_{S B} \\
\approx 1 /\left[F_{S B} *\left[F_{B} * H *\left[t_{R C} *(1-W)+t_{M W C} * W\right]+(1-H) *\left[t_{B T}(L)+W * t_{M W C} I\right]\right]\right.
\end{gathered}
$$

where $F P U$ is the average system bus frequency of utilization by the local processor. $F_{B}$, which is the local processor's average memory cycle frequency (accesses per second), can be calculated by averaging the total number of reads and writes over time (regardless of whether or not they are cache resident, an issue considered by the average hit rate).

The calculation of FSB for use in equation 5.1 b is important and should include burst transfer modes for DMA and cache line transfers, if the system supports such a function. This utilization estimate, being simply an average, may not anticipate the most catastrophic scenarios in which the bus is most heavily utilized. Modelling buses more completely is covered by texts on computer architecture, and typically involves modelling the bus by applying queuing theory and assuming that bus cycles are sufficiently represented by a Poisson or other distribution. This approach is used in Section 5.5.3 to determine FIFO size for buffered write-through systems.

### 5.3.2 Evaluation of Buffered Write-through Systems

Buffered write-through will reduce the average memory cycle time by reducing the cache write cycle time to that (or nearly that) of the cache read cycle (i.e., $t W C->t R C$ ). Therefore, the average memory cycle time is now (again assuming zero wait state operation):

Eq 5.2a

$$
\left.t_{M C B W T(1)}=H * t_{R C}+(1-H) *\left[(1-W) * t_{B T}(L)+W * t_{B T}(L)+t_{M W C}\right)\right]
$$

By design, it is also possible to free the processor up in case of a write miss, as long as the time to transfer the remaining line elements is less than the average time to a subsequent read, since the processor must halt if the transfer is not complete by the time of the next read or write of that line. If this approach is taken, the average cycle time approaches:

Eq $5.2 b$

$$
t_{M C B W T(2)} \approx H * t_{R C}+(1-H) *\left[(1-W) * t_{B T}(L)\right]
$$

Note that equations 5.2 a and 5.2 b assume that the time to transfer a write to the buffer is no more than the cache read cycle time.

Although the added buffer reduces the average memory cycle time, it does not reduce the number of main memory cycles. Therefore, assuming identical block transfer and write cycle times, as well as main memory frequency, the average bus utilization time is the same as for straight write-through. However, the distribution of writes, that is, the time at which specified writes occur in time, is not necessarily the same due to the buffer's effect.

Due to the variety of methods, implementation dependency and sensitivity to program behavior, copyback performance criteria are difficult to determine and therefore, are not evaluated in this Application Handbook. In general the average cycle time for a copyback system lies somewhere between that of a straight and that of a buffered write-through, since there are times when the processor may be preempted in order for a line to be flushed from the local cache, and time is also required for handling read and write misses. However, bandwidth utilization can be reduced by an amount proportional to the frequency of write hits.

### 5.4 Bus Monitors

All of the protocols discussed so far, straight write-through, buffered write-through and copyback, require that the system bus be monitored to determine when the parent (in main memory) of a cached location is being modified or read in a situation (such as copyback) where data in the local cache may be dirty. The bus monitor, therefore, is a critical function, but because of all the possible coherency protocol variations, bus protocols and special data transfer modes, the best bus monitors are generally those that are customized for the entire system. However, the following are some considerations for design with the MB81C51 interfacing to a bus monitor in a write-through system; Section 5.5 provides additional detail for buffered write-through monitors.

First, when interrogating the tag buffer in response to a main memory (system) bus cycle, do not perform an updating interrogation, but rather an inquire, which is performed without asserting SET'. This prevents the LRU from being updated when the cache is not being accessed under normal operation.

Second, interleaving the bus monitor and processor cycles may require a tag RAM that has nearly twice the bandwidth of the processor's bus in order to perform a processor-initiated interrogation and a system bus reference in the same cycle. It is, however, possible to interleave the contending system and processor tag accesses by comparing the system bus address with the processor's bus address to determine if preemption is warranted. If interleaving is inadequate to the task, a technique may be employed that has been used in mainframe and minicomputers for some time, duplicate tag buffers. This technique requires a duplicate tag buffer for interrogation by the bus monitor, which is concerned only with residency and not with replacement ways. Figure 5-3 illustrates the dual buffer scheme and its integration into the system.


Figure 5-3. Cached System with Dual Tag Buffers for Asynchronous Tag Inquire, Read and Write
This shadow buffer is modified any time the primary buffer is updated, relative to the tag and validity bits. Primary buffer operations that must also be performed by the shadow tag buffer are the following: replacement writes, purge cycles and selective invalidation cycles; reads are independent. There are two optional responses when it is determined that a main memory write references cached data, (1) invalidation or (2) update of the data buffer. Invalidation requires that both the primary and shadow buffer be
selectively invalidated. If the update approach is taken, the corresponding local cache entry is updated, which could force the local processor to suspend a current bus cycle.

Since the LRU tables are not consistent between the two buffers, the shadow LRU table is ordinarily not used for any purpose. Let us use the MB81C51 as an example. For shadow buffer operations initiated by the primary buffer (replacement writes and selective invalidation), SBLK of the shadow buffer is enabled (high) and SBO/SBI of the shadow buffer is driven by $\mathrm{HC} 0 / \mathrm{HC1}$ of the primary buffer so that only the appropriate set element is written or invalidated. When routing main memory operations to the shadow buffer, however, SBLK is disabled (low) and $\mathrm{HC} 0 / \mathrm{HC} 1$ of the shadow buffer drives SB0/SB1 of the primary buffer. The SBLK of the primary buffer is generally the complement of the state of the shadow buffer's SBLK.

The tags in both buffers must be consistent in their index location, set element position and state (valid or invalid) at all times to guarantee coherency.

### 5.5 Constructing a Buffered Write-through Monitor

In the previous section, the fundamental requirements and operation of a bus monitor were presented, preparing the designer for implementation of such a circuit. Because of tight performance requirements, and the fact that most systems with Standard Bus implementations utilize a broad variety of cache protocols, standard bus monitors and interfaces are rarely available to suit the application. This places the difficulties of implementation upon the designer. In this section, the considerations of constructing a buffered write-through monitor are presented in an attempt to simplify the design process.

The write-through buffer relies on the system bus protocol for main memory interfacing and for supporting the local cache. Given the functions of the bus monitor, it is only natural that these two functions should be integrated, so that the buffered write-through monitor is made up of the following functional elements.

Bus monitor	Senses system bus writes and invalidates or updates cache
Burst transfer	Transfers a line from main to cache memory
Bus protocol controller	Arbitrates the system bus
Queue latency control	Senses system bus reads and compares buffered addresses
Buffer management	Supports FIFO reads, writes,and flag generation

These functions are represented in the block diagram of Figure 5-4. Implementing the function of the queue latency controller and buffer manager will be topics of this section.


Figure 5-4. Buffered Write-Through

## Functions of the Buffer

1. Operates as a FIFO to accept data and corresponding addresses from the processor after a processor write.
2. Transfers data in FIFO order to main memory by writing it to the address specified by the corresponding address FIFO.
3. Determines whether system bus access of main memory data is also latent in the FIFO by performing address comparison. For virtual caches, either the translated address may be buffered (since it must be translated at some point anyway) or only the real part of the address compared.
4. Pre-empts the system bus access and updates main memory in the case of a system read of an address stored or latent in the FIFO. This requires a RAM approach to the FIFO buffer.
5. When the system bus access is a write of data latent in the FIFO, the buffer decides whether the FIFO entry and the corresponding local cache entry are invalidated or the system bus operation is halted. In any case, two writes from different origins may be a condition to be prevented, not just resolved.

Due to the integration of a number of related functions sharing the same signals, it is usually desirable to implement the bus monitor circuit in a semi-custom VLSI such as gate array or standard cell.

Fujitsu's ASIC technology provides various levels of integration, a variety of packaging options, very high-speed CMOS and ECL technologies, and high drive, all necessary for bus monitors typically requiring $4 \mathrm{~K}-8 \mathrm{~K}$ logic gates, high I/O count and high output drive capability.

### 5.5.1 Buffer Management

When a write is performed, it must be buffered and transferred to main memory without holding up the processor or interrupting system bus activity. To do this, two small-depth, wide FIFOs are used, one which buffers the written data and one which buffers the corresponding addresses. Addresses must be buffered because the processor is driving the address bus when the transfer to main memory occurs. In addition to the FIFOs, control logic is needed to accept the written data, request the system bus and transfer the data to main memory when access is gained. Since the FIFOs may be greater than one word in depth, the controller must be capable of performing a write and transfer simultaneously. Handling the condition of overflow (FIFO buffer full) is a critical operation involving suspending the processor, if a current write cycle is in operation, and transferring the contents (all or at least one word) of the FIFO to Main Memory. Avoidance of this issue by early transfer from the buffer prevents the processor from waiting, but may require preemption of a current bus cycle if a long transfer such as DMA is in progress. It is the physical address that is usually buffered, since the address must then reference main memory, as shown in Figure 5-1, in which the MMU precedes the buffer.

### 5.5.2 Queue Latency Controller

There is a single anomaly making the design of the controller somewhat tedious. While a written word is being buffered, it is in limbo for a period of time equal to queue latency. Any read cycle of main memory referencing this location is in danger of reading bad data. Further, it is unreasonable to route system bus reads to the cache tag, since only the buffer is aware of which addresses are dirty and latent. Therefore, the buffer must monitor system bus cycles, and determine if they reference any of the buffered addresses - a type of mini-cache operation. However, it is not necessary to employ a CTRAM, since the buffer depth is usually very short ( 1 to 4 words). As Figure 5-4 illustrates, the address comparison access can be implemented as long as all addresses in the buffer are available in parallel for simultaneous comparison (which is the case if the FIFOs used to construct the buffer are built with registers). If a hit is detected from this comparison, then appropriate action must be taken.

If a system bus read was in progress when the hit was detected, it must be preempted so that the update may take place. The update can either be of the single word only, all words up to and including the referenced word, or the entire buffer. Since buffers are usually short, it is often better to dump the entire buffer, although burst transfer cannot be used since the buffered data are randomly located.

If the system bus cycle was a write, then several possibilities exist. However, the designer should first determine the implication of near simultaneous writes. Is I/O simply overwriting old data which is no longer valid? Is another processor updating a shared semaphore, or a shared variable? In other words, should this situation be permitted and if so, is the order of arrival of the writes significant?

If the order is not important, the designer may opt to simply invalidate both the buffered entry and the local entry in cache (since the system bus write would otherwise create a discrepancy with the local cache). This requires a buffer that can selectively shift forward all entries below a given position, retaining all other entries at their current position. This will overwrite the lowest entry held static, thereby nullifying its write operation and removing it.

However, if order of multiple writes is important, it is necessary to design a buffer that attempts to transfer all buffered entries at the earliest opportunity. Furthermore, it must always ensure that the last write initiated is reflected in main memory. And last, the bus monitor in conjunction with the latency controller must ensure that any other subsequent overwrite results in invalidation of the cached entry.

### 5.5.3 Determining Optimal Buffer Depth

The buffer, or more fundamentally the data and address FIFOs, can be as simple as a single register pair, or it can be 2,4 or 8 entries deep. Its purpose is twofold; to store the data and address of a write in order to free the processor to continue, and to buffer one or more words until the data can be written to main memory. To determine the best depth for the FIFO, we will rely on a little queuing theory, but first, some definitions are necessary.

As shown in Figure 5-5, the buffer can be modeled as a queue with an arrival time characteristic $(\lambda(t))$ dependent on the behavior of local processor writes and a service time characteristic $(\mu(t))$ dependent on system bus activity and main memory. If $\lambda$ is the average arrival period, and $L$ is the average service period (wait time plus transfer time), the following relationships hold for steady state buffer behavior:

$$
L=1 / \mu, 1 / \mu=W
$$



Figure 5-5. Model of Buffered Write-through
The average utilized buffer length $(L)$ is the product of the arrival rate and the waiting time $(W)$. Note that this assumes that the average service time is less than the average arrival time ( $\lambda>\mu$ ), otherwise the buffer would usually be overflowed.

By considering the worst case conditions, the maximum queue length may be defined as:

$$
L_{\max }=\lambda_{\max } * W_{\max }+L_{p r e}
$$

where $L_{p r e}$ is the number of queued entries already waiting, which will be assumed zero.

If a protocol exists in which a bus request has a maximum waiting time before it is granted, this may be added to the main memory write cycle time and used for $W_{\max }$. As for $\lambda_{\max }$, the inverse of the minimum back-to-back write cycle time is a worst case for maximum arrival rate. For example, if 1000 ns is the maximum wait time and 200 ns is the main memory write cycle time with a minimum back-to-back processor write cycle time of 250 ns , the necessary buffer is:

$$
L_{\max }=\frac{(1000+200) n s}{250 \mathrm{~ns}}=4.8 \text { entries }
$$

The buffer serves to provide a type of averaging, or cushioning, of bursts in system bus traffic and processor writes. Therefore, though under transient conditions transfers from the buffer may not keep up, as long as the steady state behavior is satisfied and long bursts are considered, the buffer should prevent the processor from waiting. The exception is the case where system bus utilization is 80 to 100 percent. In this case, special bus architectures such as multiple split buses may be necessary.

### 5.6 Effect of Allocating Slots on Write Misses

In certain cases, it has been proven more efficient not to replace a cache entry on a cache miss during a write operation. This design practice involves directing the write operation to main memory, but not allocating a slot or transferring the referenced line to cache. The effect is to save the time necessary to transfer the line into cache while avoiding the replacement of a line that may be referenced. On a write miss it is not a requirement to replace the line in cache, only to write the data supplied by the processor.

There are three notable advantages of non-allocation on write misses which should be considered before determining whether to use this technique. The first is that more available slots are effectively freed, since a resident slot is saved for every write cycle forcing a miss. If LRU is used, then this number can be thought of as the number of write-first entries that exist, since a read-first entry is likely to already be resident in cache. This implies that a line which is first written, then read receives a lower priority than a line which is read-only or a read-first read/write line. Verifying the validity of this approach relies on the evaluation of some fundamentally conditional probabilities; the probability of a subsequent read or write given a primary (first) write (PWR) and the probability of a subsequent read or write given a primary read ( $t_{R R}$ ). The latter may be more easily evaluated if thought to be the sum of the probability of a read-only reference plus the probability of a read/write reference in which the first reference is a read. Figure 5-6 is a Venn Diagram illustrating these probabilities, where the universe is all references by the local processor. If the PRR is greater than the PWR, then this approach may be reasonable.


Figure 5-6. Venn Diagram of Bus Cycles
The second advantage is the reduction of the write cycle time. Supposing that a miss on a write did force a replace, not only must the entry being written enter the cache, but the other members of the referenced line must also be copied to the cache. Non-allocation, therefore, removes the contribution of the block transfer time to the overall write cycle time. Equation 5.1a can be evaluated for the effect of non-allocation on write misses, though in its original form, allocation of slots for write misses was assumed:

Eq 5.2

$$
t_{M C W T}=H *\left[t_{R C} *(1-W)+t_{M C W} * W\right]+(1-H) *\left[(1-W) * t_{B T}(L)+W *\left(t_{B T}(L)+t_{M W C)}\right)\right]
$$

If, however, write misses go unreplaced, the average memory cycle time becomes:
Eq 5.3

$$
t_{M C W T(N A)}=H *\left[t_{R C} *(1-W)+t_{M C W} * W\right]+(1-H) *\left[(1-W) * t_{B T}(L)+t_{M W C)}\right]
$$

The fractional improvement becomes:

## Eq 5.4

$$
I M P=-\left[t_{M C W T}-t_{M C W T(N A)}\right] / t_{M C W T}
$$

For example, if the hit rate $(H)$ is 95 percent, the write:read mix $(W)$ is 20 percent, the average time to transfer a block of 4 words is 720 ns ( $t_{B T}(L)$, which includes bus acquisition time), and the average cycle time with allocation on write misses is 95 ns , the improvement is $7.2 / 95$, reducing the average cycle time to 87.8 ns . Though not extraordinary, it is easily accomplished by a simple state sequence and with little increase in hardware.

The last advantage of non-allocation to be discussed is system bus bandwidth, an important issue in particular for write-through systems. Since only the single main memory write cycle is performed and not the block transfer, the system bus is tied up for a shorter period of time. However a degradation in performance may be suffered if the line is subsequently referenced on a read miss. The improvement in
band width is, therefore, related to the percentage of write-first lines that are never read and to the line size. The bandwidth utilization for the replacement case can be approximated as (modifying equation 5.1b from Section 5.3.1):

Eq 5.5

$$
\begin{gathered}
U_{B W(N A)}=F_{P U(N A)} / F_{S B} \\
=1 /\left[F _ { S B } * \left[H * W * t_{M W C}+(1-H) *\left[(1-W) * t_{B T}(L)+W * t_{M W C} I l\right]\right.\right.
\end{gathered}
$$

So with little, or no additional hardware, the non-allocation technique may be effectively employed to reduce average cache cycle time and reduce the utilized bandwidth. The above equations are intended to aid in the evaluation of this technique, given the characteristics of the designer's end-system. Though determination of some of the parameters used in the equations may be difficult, these equations should nevertheless provide a reasonable guideline.

## 6. Real and Virtual Cache

Virtual cache, as discussed in Section 1.7, is one addressed by virtual addresses, while a real cache is preceded by some form of address translation such as an MMU, if virtual addressing is employed. With the rapid advancement of 32 -bit microprocessors with clock periods of $50 \mathrm{~ns}, 40 \mathrm{~ns}$ and faster, as well as the success of RISC processors that demand single-cycle instruction fetches, the turnaround time of the cache (its access) is critical. Therefore, it should not be surprising that virtual caches are gaining in popularity, even in the workstation arena. Our discussions thus far have been centered around real cache implementations, which have the advantage of simpler and typically cheaper cache coordination.

Implementations of virtual cache are quite varied, but all must address the following potential coherency hazards:

1. Real and virtual address correlation with regard to bus monitoring
2. Address aliasing
3. Virtual address space switches and other conditional addressing problems.

The construction of cache typically varies with the way these issues are handled; therefore, they will be addressed one at a time.

### 6.1 Virtual Cache Construction: Address Correlation

Correlation refers to the correspondence between virtual addresses which access cache and their translated real addresses, which reference main memory. It is often necessary to determine if two addresses, a virtual and its translated real address, are equivalent. For instance, in a common scenario, the system bus monitor may see real addresses referencing main memory and must determine which of these are resident in the local cache which is virtually addressed. To do this, the bus monitor may inverse translate the real address, perform a partial (real) field comparison or perform some other technique of coordinating the addresses.

A popular way of invalidating all cache lines that may be copies of a modified main memory location is to invalidate all of those that have matching page offsets. Since virtual addresses have a real field which is common, all real addresses in cache with matching offsets are purged. If the index is at least the size of the page offset, then this amounts to selectively invalidating (explicitly) all set elements at the index address contained in the page offset (see Figure 6-1). In the case of four set elements, this would require four clock cycles while counting through the individual set element select lines. Though this method purges $W * B$ entries, where $W$ is the degree of the cache and $B$ is the block size, it does work effectively for moderately small blocks ( $1-8$ ) and large caches.


Figure 6-1. Virtual Cache Address Field Partitioning

### 6.2 Virtual Cache Construction: Address Aliasing

Aliasing occurs when two different virtual addresses map onto a single real address, which presents problems in monitoring main memory addresses, and opens the possibility that local cache contains two copies of the same data. These duplicate addresses form pseudonyms (aliases) that may result in inconsistent data copies. This side-effect of virtual caches is applicable to both write-through and copyback schemes. For example, suppose that data is cached under virtual address \#1 for a given process (A). A task switch is performed in which the cache remains intact (i.e., not flushed). A successive task (B) requests the same line under a different virtual address, virtual address \#2, and modifies it. If write-through is used, main memory will always be updated to the most recent state, but the local cache copies can be different. Therefore, if process $A$ is restarted under the same virtual address space, it is not referencing the most recent copy of the data in the local cache, since that would reside at virtual address \#2. Figures 6-2a, b, and cillustrate this and demonstrate the impact of index size and associativity on aliasing.


Figure 6-2a. Address Allasing with Virtual Cache


Figure 6-2b. Avoldance of Address Allasing through Address Parttioning
Although it is possible to permit aliasing and manage it, for the reasons discussed above, most systems engineers building virtual caches design to prevent or avoid aliasing from occurring. Avoidance can be implemented by ensuring that no task running on a processor may leave valid (not invalidated) data from its virtual address space in cache when it is switched. This prevents the new data from being as-
signed to a succeeding task's space. This requires that either 1) the entire cache is flushed on context switches, or 2) only entries associated with the blocked task's virtual space are flushed. Another technique, shown in Figure 6-2c, prevents aliasing with use of a direct mapped cache having an index + line + byte select size not less than the page offset size. In this case, only one entry with a common real address field may reside in cache at the same time, mutually excluding possible pseudonyms. However, the consequence is that the less efficient direct mapping technique must be employed, perhaps nullifying the advantage, though it does yield a simple implementation.


Figure 6-2c. Avoiding Address Allasing through Direct Cache

### 6.3 Conditional Selective Flushes

Conditional flushing by virtual address space ID or page number may be useful in some systems to remedy the aliasing problem and may be controlled by hardware or software, depending on the system design. However, the 81C51 does not easily support such selective flushes since a given tag, or part of it, cannot be conditionally flushed. However, since the purpose of this flush is to flush all entries contained in the virtual address space of a blocked, or swapped task, there are several solutions when implementing the tag buffer.

First, the entire cache could be indiscriminately flushed upon the detection of a context switch. Context switches can be detected in a variety of ways, such as sensing a transition from user to supervisor space. Alternatively, if the page tables are located in a fixed region of memory, a write to this area signals the probability of an address space change, indicating cache should be flushed.

If the cache is large, flushing it entirely may reduce performance greatly. However, flushing only user mode entries on context switches will preserve the supervisor's code/data cache and prevent aliasing (assuming the supervisor does not create aliases that are hazardous), yet only requires the implementation of a split user/supervisor cache and hardware to sense the context switch.

### 6.4 Other Techniques for Virtual Cache Coherency Control

The following are techniques that can simplify the problems of coherency maintenance in virtual cache systems by imposing system restrictions to limit the required range of monitoring and address correlation problems.

### 6.4.1 I/O through Cache

Inverse address translation and selective invalidation by offset are mechanisms that can detect I/O reads and writes on copies of cached data. However, it is also possible to bring I/O transfers through the local cache requesting it, then broadcast them to main memory.

### 6.4.2 Fixed Main Memory Partitions

I/O spaces and buffers that are memory mapped could be made to occupy fixed locations in the address space and use hardwired translated (fixed mapping) or even direct real addresses. This prevents address aliasing and facilitates address correlation by inverse translation, since references to these regions are made by common addresses with a known inverse mapping algorithm. This common set of addresses could then easily be monitored and aliasing prevented. Another, perhaps more extreme application of hardwired, fixed address spaces is that of assigning specific regions in the memory space for shared pages. This simplifies the monitoring and coherency issues that make managing shared data so complex, yet it may be unduly restrictive to limit the physical size of data that can be shared. Only the designer can rationalize these issues.

### 6.4.3 Flushing to Avoid Allasing

The idea of selectively or indiscriminately flushing cache on a context switch can be used to guarantee coherency due to I/O writes as well. Let's assume a task is always blocked and its cache space flushed on the request of an I/O resource. I/O then writes to main memory locations to be addressed by the blocked task. When the task is restarted, accessing these locations will force main memory access of the new data, bringing them into the cache.

### 6.5 Summary of Virtual Memory Operations

Discussed were two primary and a variety of other mechanisms to resolve the problems presented by address correlation and aliasing in virtual cache implementations. Incomplete addressing and inverse translation were discussed as solutions to the problem of correlating real and virtual addresses. Flushing on context switch was shown to be an excellent approach to preventing aliasing, with split caches providing a higher performance option. Other aliasing solutions posed were I/O through cache and hardwired, fixed memory spaces. For additional information, the reader is encouraged to research the references at the end of this document.

## References

C. Alexander, W. Keshlear, F. Cooper, and F. Briggs. "Cache Memory Performance in a UNIX Environment." Computer Architecture News, June 1986, Vol. 14, No. 3.

Chandy, K. Mani, Reiser, Martin. "Computer Performance." Proceedings of the International Symposium on Computer Modelling, Measurement and Evaluation. Yorktown Heights, N.Y.: IBM Thomas J. Watson Research Center, Aug. 10-18, 1977

Fairchild Corporation. Clipper Module Product Description. 1985
J. R. Goodman. "Using Cache Memory to Reduce Processor-Memory Traffic." 10th Annual Symposium on Computer Architecture. 1983.
M. Hill and A. J. Smith. "Experimental Evaluation of On-chip Processor Cache Memories." Proceedings of the 11th Annual Symposium on Computer Architecture. June 1984.

Intel Corporation. 80386 Hardware Reference Manual. 1986
Motorola Corporation. MC68020 User's Manual. Englewood Cliffs, N.J.: Prentice-Hall, 1984, 1985
M. S. Papamarcos and J. M. Patel. "A Low Overhead Coherency Solution for Multiprocessors with Private Cache Memories." 11th Annual Symposium on Computer Architecture. 1984.
A. V. Pohm and O. P. Agrawal. High Speed Memory Systems. Reston Publishing Company, Inc. 1983.
A. J. Smith, "Cache Memories." Computing Surveys. September 1982, Vol. 14, No. 3.
P. Sweazey and A. J. Smith, "A Class of Compatible Consistency Protocols and their Support by the IEEE Futurebus." 13th Annual Symposium on Computer Architecture. June 1986.
A. W. Wilson, "Hierarchical Cache/ Bus Architecture for Shared Memory Multiprocessors." 14th Annual Symposium on Computer Architecture. June 1987.

## Fujitsu's MB81C51 Intelligent Cache Tag RAM

## A-1. MB81C51 Functions and Uses

The Fujitsu Intelligent Cache Tag RAM, the MB81C51, is designed to address a broad range of cache implementations in MOS-based uniprocessing or multiprocessing system environments by employing a building block approach. By incorporating important autonomous functions (such as look-up, replacement, selective invalidation, purge and parity), but purposely omitting circuits that are often centralized and integrated with other functions, Fujitsu has positioned the MB81C51 to support large cache spaces in a variety of system configurations.

## A-1.1 Cache Tag RAM Features

The features of the Fujitsu MB81C51 Intelligent Cache Tag RAM are as follows:

- Provides high density: 2K lines each; may be cascaded
- Supports 512-by-4-way set associative cache or 1024-by-2-way set associative cache
- Provides single-cycle, single-entry invalidation (selective invalidation)
- Executes a single cycle all purge (cache clear)
- Provides circuitry to quickly determine a cache hit (hit time from address change is $25 / 30 \mathrm{~ns}$ )
- Generates both encoded and decoded set element selection lines concurrent with HIT' generation
- Supports an efficient implementation of the least recently used (LRU) algorithm for replacement resulting from a cache miss
- Offers an ideal environment for write-through and buffered write-through systems
- Assures data integrity by providing parity generation and checking for both tag data and validity bits
- Permits other external selective invalidation and replacement schemes through free selection of the way
- Offers low-cost packaging with 68-pin PLCC and 64-pin PGA packages
- Uses the high-performance 1.0 m (drawn) process


## A-1.2 Expandability of the MB81C51

The MB81C51 is designed to support today's faster 32-bit processors, with longer, more demanding caches. It is designed to permit simple expansion of the tag RAM depth by the fastest and simplest means.

The MHIT' output is driven by the internal HIT' signal gated with an input, EXTH. This function is enabled by the MHENBL input. A pull-up resistor is included on the EXTH input, with a pull-down resistor on MHENBL, so they may be left open.

## A-1.3 Internal Architecture and Block Diagram

Figure A-1-1 is the block diagram of the 81C51 cache configured as four-way. The major components are the tag and control memory storage array ( $512 \times 23 \times 4$ ), the tag data comparator and hit generator, the LRU state table ( $512 \times 6$ bit memory array) and replacement logic, and the parity generator and checker.


10

Figure A-1-1. MB81C51 Block Diagram

## A-1.4 Differences Between Two-way and Four-way Configuration

Figure A-1-1 describes a four-way configuration. If the device is to be configured as a two-way configuration, the only deviations are as follows: the address inputs are now A0 through A9 ( 10 bits), the TAG and control memory cell array becomes $1024 \times 23 \times 2$ bits and the LRU state table becomes $1024 \times 2$ bits. The four-way configuration will typically be referenced in this Application Handbook unless otherwise noted.

Although its functionality is extended beyond other tag RAMs and its performance is unsurpassed, high volume manufacture and availability in the industry standard 68-pin PLCC package makes the MB81C51 the most inexpensive cache tag RAM in its performance class.

## A-1.5 General Functional Modes of the MB81C51

Cache, as a subset of main memory, requires management hardware to determine whether data resides in cache or the main memory. It must also be able to retrieve and store in cache data that is requested, but missing. Since cached data has a duplicate copy (or parent copy) in main memory, cache management hardware must also ensure that, over time, the copies remain identical; i.e., coherency is maintained. To implement these management functions, the following types of device operation are provided by the MB81C51. These device functions are illustrated by the waveforms of Figures A-1.2 through A-1.5, described in corresponding order below.


Figure A-1-2. Tag Read Cycle

## A-1.5.1 Read Cycle

The read cycle is invoked when WRITE', PURGE' and INVL' are all high, as shown in Figure A-1.2. This cycle accepts an index address and a tag for comparison to determine whether the requested tag is resident in cache. A tag is resident if the tag provided to the TD0..TD19 inputs matches one of the tags
stored at any set element selected by the index (A0..A9). From this search and compare, a hit or miss is generated. The hit is then used to signal the processor that the bus cycle will successfully complete without wait states (typical). Hit information outputs denoting the set element that was hit are then used to select data from the data buffer.

To avoid potential confusion, keep in mind that whether the cache cycle to be performed is a read or a write, the tag operation to be performed will first be a read to determine whether the data is resident in cache.

The read cycle supports two modes (depending whether or not the least recently used (LRU) state table is updated). The LRU table tracks the age of each set element relative to the others at that same index to determine which is the best candidate for replacement. Whether or not the LRU table is updated is determined by SET'. Asserting SET' (UPDATE mode) forces the LRU UPDATE, while maintaining SET' high inhibits the LRU update, whether a hit or miss occurred (termed an inquire cycle). The read cycle in general, regardless of the mode, is termed interrogation. (See Section 2.3 for more details on the LRU.)

Read cycle may be initiated by the processor when reading or writing, in which case the LRU update mode is used. The read cycle may also be initiated by the system bus in the case of bus monitoring, during which the inquire cycle would be invoked because an update of the LRU is not desired. (Bus monitors are discussed in Section 5.4.) A processor-invoked read or write will first perform a cache tag read to determine residency. If the read cycle determined a miss, then a line in cache (termed a slot) is usually allocated requiring the tag to be written to the tag buffer. Therefore, a processor read or write cycle resulting in a miss is usually followed by a tag write cycle.

## A-1.5.2 Write Cycle

A write is initiated following a missing read cycle by asserting WRITE' (low) and SET' according to the waveforms shown in Figure A-1-3, which also shows that INVL', PURGE' and INH' should all be deasserted throughout the cycle (high). During the operation of the write, the MB81C51 writes the tag and the internally generated parity bit to the line specified by the index (A0..A9) at the set element location specified by HITn/REPn or SB0 and SB1 (see Section A-1.6.2). The write operation updates the LRU table to show that this entry is now the newest one (details given in Section A-1.5.3). As a result of the write operation, the previous data is overwritten.


Figure A-1-3. Tag Write Cycle

## A-1.5.3 Selective Invalidation (Partial Purge)

When the bus monitor initiates an inquiry to determine if a system bus cycle is referencing cached data, the option of invalidation versus updating is confronted if the entry is resident. If an update is to be performed, then the tag read cycle is used to determine residency, followed by a data buffer write to update the entry. However, if invalidation is the preferred approach, then selective invalidation is performed (see Figure A-1-4).


Figure A-1-4. Partial Purge Cycle (Selective Invalidation)
To invalidate specified entries, the MB81C51 supports a selective invalidation (or partial purge) for which two modes exist, explicit and implicit invalidation. In the case of implicit invalidation, the system
need only supply the index address, as it normally would for a read cycle, and, if the 81C51 determines the entry is resident, invalidates it. The invalidation is executed in one cycle,and updates the LRU state to indicate that this invalidated location is the preferred one for subsequent replacement. If a miss occurs when invalidation is attempted, then no entry is invalidated and the tag buffer and LRU state remain the same.

Explicit invalidation always invalidates the set element selected by SB0 and SB1, while implicit invalidation requires a tag to successfully compare against. Both modes require an index to select the line however, and the result of either invalidation operation is to clear the validity bits to indicate that the entry has been invalidated. Note that neither the data nor the tag is ever modified during invalidation; only the validity bit which marks the entry absent is modified.

## A-1.5.4 All Purge

The All Purge, also termed an indiscriminate flush, or clear, cycle initializes the cache to reflect that there are no entries resident and resets the LRU state table (see Figure A-1-5). In virtual cache systems (see Section 6.0), it may be necessary to flush cache when changes in the virtual address space occur (as during context switches). Flushing is also required for power-on reset and, perhaps, following the detection of certain bus errors (such as cache parity errors).


Figure A-1-5. All Purge Cycle
The PURGE' signal which invokes this mode is an asynchronous input which inhibits all other inputs except SET'. Therefore, all other inputs are don't care, while SET' remains de-asserted (high) throughout the purge operation. Any cache request will result in a miss following the indiscriminate flush, since the validity bits of all lines and all set elements have been cleared.

## A-1.6 The Tag and Control Bits: Use and Response

This section presents the structure of the tag array words, how operations affect these words and how to use the outputs controlled by them.

## A-1.6.1 Description of the Tag Memory Entry

Referring to Figure A-1-6 (the structure of the tag buffer entries), you will note that each entry consists of three fields:

1. the tag field
2. the validity bits
3. the parity bit


Figure A-1-6. Tag Memory Array

## A-1.6.2 The Tag Field

The tag entry, TD0..TD19, is a field of the address that corresponds to data residing in the associated data buffer. There are a number of tags at a given index address equal to the number of ways in which the cache is configured (or degree of associativity) in the tag buffer. When an index is applied in read mode, it is the tag field of all set elements that are fed to the comparators, along with the TD0..TD19 inputs, that define the tag for which we are searching.

## A-1.6.3 Control Bits (Validity And Parity)

Validity bits exist for every set element at all index addresses to indicate which are invalid and which are valid. An invalid entry will force a miss, even if its tag matches the requested tag. These bits are active high (low indicates an invalid entry), while mutually exclusive bits indicate a bit error in one of the validity bits. Thus, duplicate validity bits are provided for data integrity. Without duplicate validity bits, a sing-le-bit error, altering the state from low to high, could occur. The single-bit error could interpret an invalid entry as a valid entry resulting in an erroneous instruction/data fetch. With duplicate bits, a double-bit error must occur. Validity bits are cleared in the all purge and selective invalidation cycles and set during the tag write cycle.

Figure A-1-6 also shows the location of the duplicate validity bits of each entry, as well as a parity bit. This is a tag parity bit which is minimizes the possibility of tag corruption. The parity bit is generated and stored along with the tag and validity bits during the tag write operation. When a tag read or selective flush operation is performed, the tag parity bit is again generated and compared against the stored parity bit for discrepancy.

## A-1.6.4 Tag or Validity Bit Parity Errors

If a parity or validity bit error occurs (perhaps due to an alpha particle induced soft error), then corruption has occurred. If the affected entry is a valid one, this false tag may match during a look-up, resulting in false instruction/data fetches. Therefore, the signal PERR' is used to indicate validity bit errors and, if the tag is not invalidated, tag parity errors as well. The Boolean equation for this PERR' signal is:

Eq A-1-1
PERR $=$ the NOR of PE0..PE3
where


NOTE: $V 0 n$ and $V 1 n$ are the $0^{\text {th }}$ and $1^{\text {st }}$ validity bits of the $n^{\text {th }}$ set element, and $P E n$ is the parity error bit for the $n^{\text {th }}$ set element.
When a parity error does occur, the access should be treated as a miss. Furthermore, since there is no way of isolating the set element that introduced the parity error, we may either treat all further accesses of this location as a miss and essentially inhibit the use of the set element until the next flush occurs or, alternatively, we may choose to respond with a more effective action. This action may be performed in hardware or software and performs one of the following functions:

1. Flush all set elements at the affected index.
2. Flush the entire cache, or at least the affected device.

To invoke this error recovery, the PERR' signal may be used to generate a bus error signal for either operating system resolution or as a signal for a hardware controlled flush. (In either case, the acknowledgement to the processor may have to be delayed to allow time for the fault resolution.)

## A-1.7 The HIT, Its Detection, and Related Signals and Functions

When an address is supplied to A0..A9, it will access the tag memory array, as well as the LRU state table. In the case of the tag memory, the address will access all set elements simultaneously. After the internal SRAM access time from the address transition, all set elements at that line are presented to the comparators. The tag fields of each element are then compared with the tag data applied to inputs TD0..TD19. A match of any set element asserts HIT' which, along with the PERR' signal, should be used to determine if a true cache hit has occurred. The Boolean equation for $\mathrm{HIT}^{\prime}$ is:

Eq A-1-2
HIT = the NOR of hit0..hit 3
where
HITn is the HIT result of th $n^{\text {th }}$ set element.

## A-1.7.1 Generating HIT from Multiple CTRAMs

As will be shown in Appendix A-1.10.3, when integrating more than one MB81C51 into the tag buffer, it becomes necessary to gate the HIT' outputs of the individual tag RAMs to generate a single tag buffer HIT' signal. In the MB81C51, when MHENBL (Modified Hit ENaBLe) is asserted (high), MHIT' will be asserted (low); if either the internal HIT' or the external HIT (EXTH, active high) are asserted, MHIT' is deasserted (high). When MHENBL is driven low or floats (its input has a pull-down resistor) and EXTH is high or left floating (it has a pull-up resistor), MHIT' defaults to a low. The use of this feature is described in Appendix $\mathrm{A}-1.10 .3$.

## A-1.7.2 Selection of Hit/Replace Information

When a hit occurs, it is necessary to select the proper set element from the data buffer to be read or written. The HITn/REPn outputs ( 4 bits, active HIGH, which indicate the set element that was hit) are used for selection of the proper set element. These signals are also encoded and output on $\mathrm{HC} 0 / \mathrm{RC} 0$, $\mathrm{HC1} / \mathrm{RC} 1$, as illustrated by Table A-1-1. The decoded information (HITn/REPn) is designed to drive chip or output enable signals to banks of RAMs whose data outputs are dotted; the encoded outputs are ideal as address inputs to the data buffer RAMs.

Table A-1-1. Encoding of Hit and Replace Locations for 4-Way Buffers

INPUT		INTERNAL INFO.				OUTPUT							MODE				
		DECODED	ENCODED														
MODE	A9					$\begin{aligned} & \text { hit o/ } \\ & \text { repo } \end{aligned}$	hit1/ rep1	hit2/ rep2	hit3/ rep3	$\begin{aligned} & \text { HIT O/ } \\ & \text { REPO } \end{aligned}$	HIT1/ REP1	$\begin{array}{\|l\|l\|} \hline \text { HIT2/ } \\ \text { REP2 } \end{array}$		HIT3/ REP3	$\begin{array}{\|l\|l\|l} \mathrm{HCO} \\ \mathrm{RCO} \end{array}$	$\begin{aligned} & \mathrm{HC} 1 / \\ & \mathrm{RC} 1 \end{aligned}$	HIT*
H H H H H	$\begin{aligned} & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \\ & \mathbf{x} \end{aligned}$	L L L L	$L$ $L$ $H$ $L$ $L$	$L$ $L$ $L$ $H$ $L$		$L$ $H$ $L$ $L$ $L$	$L$ $L$ $H$ $L$ $L$	$L$ $L$ $L$ $H$ $L$	L L L H	$L$ $L$ $H$ $L$ $H$	$L$ $L$ $L$ $H$ $H$ $H$	$H$ $L$ $L$ $L$ $L$	4-Way				

*Ouput of HIT is Valid when H/R = " H ".
If two degrees of associativity are employed, the HITn/REPn or HCn/RCn outputs must be gated to generate simple signals for set element selection of the data buffer. Table A-1-2 illustrates the coding of the HITn/REPn and HC0/RC0, HC1/RC1 outputs for the two-way case. However, gating these signals in the following way produces the desired results:

Eq A-1-3a

$$
\text { GHIT0/GREP0 }=(\text { HIT0/REP0 }+ \text { HIT1/REP1 })
$$

Eq A-1-3b

$$
\text { GHIT1/GREP1 }=(H I T 2 / R E P 2+H I T 3 / R E P 3
$$

and if encoded signals are used:
Eq A-1-4
GHC0/GRC0 $=(H C 1 / R C 1)$
Table A-1-2. Encoding of Hit and Replace Locations for 2-Way Buffers

INPUT		INTERNAL INFO.				OUTPUT							MODE				
		DECODED	ENCODED														
MODE	A9					hit $0 /$ repo	hit1/   rep1	hit2/   rep2	hit3/   rep3	HIT O/ REPO	HIT1/ REP1	HIT2/ REP2		HIT3/ REP3	$\begin{aligned} & \text { HCO/ } \\ & \text { RCO } \end{aligned}$	$\begin{aligned} & \mathrm{HC1/} \\ & \mathrm{RC1} \end{aligned}$	HIT*
L	L	L	X	L	X	L	L	L	L	L							
L	L	H	X	L	X	H	L	L	L	L	L	L					
L	L	L	X	H	X	L	L	H	$L$	L	H	L	2-Way				
L	H	X	L	X	L	L	L	L	L	L	L	H	2-Way				
L	H	X	H	-	$L$	$L$	H	L	L	H	$L$	L					
L	H	X	L	X	H	L	L	$L$	H	H	H	L					

* Ouput of HIT is valid when $\mathrm{H} / \mathrm{R}=$ " H ".

In the case of a miss, we need to know which element should be replaced, based on the LRU algorithm implemented internally. For convenience this information is also output on HITn/REPn and $\mathrm{HC} 0 / \mathrm{RC} 0, \mathrm{HC} 1 / \mathrm{RC} 1$. To differentiate hit information from replace information, the $\mathrm{H} / \mathrm{R}^{\prime}$ signal is provided as a select for both encoded and decoded outputs (refer to Figure A-1-7 showing the internal mux structure).


Figure A-1-7. Mux Circuit for Selecting Hit or Replace Information
When a miss is detected, a delay occurs because the cache controller must request the missing data from main memory. This request suspends the processor by inserting wait states. Therefore, the time to detect a miss is not as critical as it is for detecting a hit and suggests that the state of the $H / R^{\prime}$ signal should default to high, as demonstrated by the sample circuit in Figure A-1-8. H/R' is then reset after a miss is detected, in order to select the replacement information. The replacement information then appears $\mathrm{t}_{\mathrm{HR}}$ (Hit/Replace select time) after H/R' goes low.


Figure A-1-8. Example of Circuit to Generate $\mathbf{H} / \mathbf{R}$

## A-1.7.3 Circult Example (to Generate H/R)

At the beginning of the bus cycle, CLK (1) samples the status lines M/IO' and OTHER', which are used to qualify the cacheable address space (contingent on the assertion of ADS') and (2) generates cache cycle in progress (CCP), if all are active. CCP going high enables HIT' to the D input of flip-flop \#2, whose output is high by default. These two activities permit hit information to be selected as quickly as possible, while enabling replace information to be selected one cycle after the initiation of the cache access (in case of a miss). Consequently, the cache hit time (tAH), plus the prop delays and set-up of HIT' on flip-flop \#2 are less than the CLK period. $\mathrm{HIT}^{\prime}$ may directly generate the acknowledge to the processor while $H / \mathrm{R}^{\prime}$ drives the H/R' and WRITE of the 81C51 tag RAMs. H/R' and the WE' from the processor are ANDed to drive the WE(M)' of the data buffer SRAMs. The WE(M)' is synchronized by a D flip-flop clocked by CLK, (not shown).

If a miss occurs, $H / R^{\prime}$ falls on the second cycle of the cache operation, enabling the wait-state counter (already loaded on reset or previous wait-state completion) with $2^{N}-R+1$ (where $N$ is the size of the counter, in bits, and $R$ is the number of cycles to wait). Successive CLKs will increment the counter until the outputs are all high. At that time wait state terminates (WST') and triggers, setting up a CLEAR on flip-flop \#1, a PRESET on flip-flop \#2 and a LOAD on the counter (all synchronous to the same rising edge of CLK). The replace information is then selected throughout the write to the data and tag buffers.

CCP, indicating a current active cache cycle, could be gated with $\mathrm{WE}(\mathrm{M})^{\prime}$ to control the bus transceivers and registers for data transfer from/to main memory, as well as a device enable for the data buffer RAMs. Notice that $H / R^{\prime}$ will disable the clock of flip-flop \#1 in the case of a replace, thus maintaining CCP at a high state until the replace is complete.

Different designs will employ different replacement strategies and use different processors with varying control signals and timings. This example is useful only as a generic guideline for the generation of important signals used to control cache. For example, this circuit assumes a miss will always be replaced within the same number of clock cycles $(R)$ although it is usually necessary to gain access first to the system bus, which may not be idle.

## A-1.7.4 RLATCH - Its Function and Use

After a miss is detected, the replace information needs to be internally latched since a subsequent tag write cycle will cause a change in the LRU table and, consequently, a change in the replacement information. As noted in Table A-1-3, the Pin Description Table, the RLATCH signal is used to stabilize the replace information because its rising edge will latch the information (which remains valid until RLATCH goes low again) plus a disable time (tRH). RLATCH rising should lead the rising edge of SET' (during the tag write cycle following the miss) by tRLS and remain asserted until the replace information is no longer needed externally.

Table A-1-3. Functional Pin Description of the MB81C51

Signal	IVO	Type	Active	Sync to Set	Function
AO-A9	Input	Data	High	Yes	INDEX address inputs to the TAG buffer and LRU table.
TDO - TD19	Input	Data	High	Yes	TAG data for comparison against internal TAG entries at the applied INDEX address (AO . . A9)
MODE	Input	Select	-	Yes	Selects TAG RAM organization:
WRITE	Input	Enable	Low-Level	Yes	Active only in cycles in which SET is asserted. This signal defines a WRITE (active low) or READ (high) cycle.
PURGE	Input	Control	Low-Level	No	This asynchronous signal resets the V bits for all entries in the TAG RAM, and initializes the LRU.
INVL	Input	Control	Low-Level	Yes	This level sensitive signal, sampled by SET, is used to initiate the Selective Invalidation ("PARTIAL PURGE") mode. This operation invalidates the "V" bits and reversibly updates the LRU table for a single entry.
TNH	Input	Disable	Low-Level	No	This level sensitive signal, asynchronous to SET. Inhibits all operations except for the PURGE function, when asserted.
H/R	Input	Select	-	No	This signal determines whether HITn/REPn and HCn/RCn are selected to output hit information, or replace information
RLATCH	Input	Clock	Latch Enable $\uparrow$	Yes	This signal enables the internal latch that clocks the LRU replacement data.
SBLK	Input	Select	-	No	This signal controls whether the way selection for replacement or invalidation comes from an outside source, described by SB0 and SB1, or whether the internal replacement way is selected according to the LRU algorithm.
SB0, SB1	Input	Data	High	Yes	These signais are "don't care" in the case of SBLK = L. However, when the external replacement source is enabled, they select which way is to be replaced or invalidated.
SET	Input	Clock	Latch   Enable $\uparrow$	-	This clock signal is used to update the LRU table and stabilize replacement data. In READ mode, if it is not asserted, a tag compare can occur without a LRU update.
HIT	Output	FLAG	Low-Level	-	This output is the NOR of the 4-way comparators thus, when asserted, indicates that the tag applied to TDO..TD19 matches at least one set element at the line specified index
HITn/REPn	Output	Data	High	-	These signals indicate which way was hit (if any) or which way should be replaced. The selection of the hit or replacement is controlled by the $\mathrm{H} / \mathrm{R}^{1}$ signal. (See Tables A-1-1 and A-1-2.)
HCn/RCn	Output	Data	High	-	These are the encoded HITn/REPn signals. (See Tables A-1-1 and A-1-2.)
MINIT	Output	Flag	Low	—	Indicates internal (HIT) or external (EXTH) HIT is detected. This output is low when disabled. Used for multiple device configuration to expand cache depth.
MHENBL	Input	Select	High	-	Enables multiple HIT logic by setting MHIT to the NOR of EXTH and HIT signals. Disabled by floating or pulling low.
EXTH	Input	Flag	High	-	External HIT signal (driven from another 81C51 by an inverter) when unused, should float or be pulled high.

A simple way to generate RLATCH is to use SET', qualified by the WRITE' signal. The designer $^{\prime}$ should be careful that $t R L S$ is satisfied. Satisfaction is guaranteed as long as the qualifying WRITE' signal lags SET' going low by no more than $t S W-t R L S-t L$ (where $t L$ is the propagation delay in generating RLATCH from SET $^{\prime}$ and WRITE').

## A-1.7.5 LRU Logic and Replacement

The LRU logic (its algorithm is described in Section 2.3) is designed to track the age of each tag since its last reference and relative to the other tags in the same set. The age information is used to determine which set element, at a given index, is to be replaced when a miss occurs. The replacement data specified by the 81C51 corresponds to that set element specified by the LRU as the least recently used; i.e., a good candidate for replacement. As the state table (Table A-1-6) reveals, the LRU table is either forwardly or reversibly updated (it remains unaffected by certain CTRAM cycles) to reflect any change in the relative age of the element as a result of the operation.

## A-1.8 The Signals of the MB81C51

This section discusses the use and purpose of chip level signals, referring to the pin description table (Table A-1-3.). The use and effect of the INH' and SBLK (including SB0 and SB1) are discussed in detail.

## A-1.8.1 Pin Description Table and Discussion of Signals

Table A-1-3 lists all the device pins, their basic timing nature (synchronous or asynchronous) and other pertinent information. Since the storage arrays (tag buffer and LRU table) of the MB81C51 are constructed by a mixed MOS SRAM approach, it should not be surprising that similar timing and signals are required for its operation, along with timing related to comparison, update and flush operations.

## A-1.8.2 The INH' Signal and Its Effect

The INH' signal, as determined from the pin description table, serves primarily two purposes:

1. Inhibits all functions including tag read (either update or inquire), tag write, and selective flush. It does not inhibit the all purge operation.
2. INH' sets all outputs to predetermined levels that are most suitable for permitting multiple devices to be stacked in depth, and generally preventing any side effects arising from devices that have been disabled. It does NOT place the outputs into a high impedance state since, typically, the outputs will feed combinational logic. Table A-1-4 illustrates the output states and conditions of the inputs when $\mathrm{INH}^{\prime}$ is asserted.

Table A-1-4. Output States for INH' = "L"

Signal Name	State
HITn/REPn	L
HCn/RCn	L
HIT	H
PERR'	H

Note: ALL inputs are inhibited by the INH' active except PURGE' which is asynchronous.

## A-1.8.3 SBLK and External Way Selection

The SBLK signal selects between internal and external replacement information and is in effect only during the tag write cycle or invalidation (selective flush). When SBLK is asserted, SB0 and SB1 signals (or simply SB0 in the two-way case) become the external set element selection lines for the tag RAM, as specified in Table A-1-5. This mode is very useful for flushing all set elements at a particular index or implementing another replacement method.

Table A-1-5. External Element Selection Using SBLK

Cycle   Type	SBLK	Set Element Selection   Scheme	Effect on LRU   Table
Write	L	LRU Selects Way	Always   Updated
	H	SB0 \& SB1 Select Way	Always   Updated
Selective   Invalidation	L	LRU Selects Way	Update on   a Hit
	H	SB0 \& SB1 Select Way	Always   Updated

## A-1.9 Device Mode State Table

The MB81C51 performs all basic operations necessary to support cache operations initiated by hardware and software including interrogation (look-up), retrieval control, replacement, update, and coherency by selective and indiscriminate flush functions. The function table, Table A-1-6, provides a description of the input states required to invoke these operations, and the effect of these modes on the internal states, such as the tag array and the LRU table.

Table A-1-6. MB81C51 Functional Modes Table

Input Signals					$\begin{aligned} & \hline \text { Tag } \\ & \text { Data } \\ & \hline \end{aligned}$	Control Data		Replace Data	Cycle Type
INH	PURGE	SET	WRITE	INVL	Tag	P Bits	V Bits	LRU Data	Function Mode
L	H	X	X	x	No Chg	No Chg	No Chg	No Chg	Inhibit
H	H	H	X	X	No Chg	No Chg	No Chg	No Chg	Tag Read without LRU Update
H	H	$\downarrow$	H	H	No Chg	No Chg	No Chg	No Chg Update ${ }^{1}$	Tag Read with LRU Update
H	H	$\downarrow$	L	H	$\begin{gathered} \text { TDO } \\ \text { to } \\ \text { TD19 } \\ \hline \end{gathered}$	SET	H	Update	TAG Write
X	L	$\downarrow$	X	X	X	X	$\begin{gathered} \mathrm{L}(\text { all }) \\ \text { or } \\ \mathrm{L}^{2} \end{gathered}$	Reset or RUpotate ${ }^{1}$	Cache Clear
H	H	H	H	L	No Chg	No Chg	$L^{2}$	R'Update ${ }^{1}$	Partial Purge Selective Invalidation
Notes:   ${ }^{\text {'W }}$ When (SBLK $=$ "L" S ( $\mathrm{HIT}=$ " H "), LRU $\rightarrow$ NO CHG   ${ }^{2}$ (SBLK $=$ "L" S (HIT $=$ " H "), V BITS $\rightarrow$ NO CHG								KEY    X Und   No Chg Da   Update LRU   Reset LRU   R'Update LRU  	ned   Remains Unchanged   orward Update   itialized   eversibly Updated

10

## A-1.10 Configuring the MB81C51 for Various Applications

The configuration of the number of set elements in the MB81C51 is controlled by the MODE pin, which selects between two-way or four-way set associativity. MODE controls the internal organization of the tag array, LRU table and associated logic. Since all affected internal logic is also reconfigured to support the selected organization, MODE provides for a simple hardware reconfiguration option.

The initial organization of tag array and the LRU table is as follows:

	Ways	Entries
Internal Tag	2	$1024 \times 23$ bits
		$4512 \times 23$ bits
LRU Table	2	$1024 \times 1$ bit
	4	$512 \times 6$ bits

## A-1.11 Defining the Tag and Index

The address bus interfacing to cache is composed of several distinct fields. The descending order of significance for these fields are the tag, index and block. Figure A-1-9 illustrates the relative significance of each field and the relationship of these to the virtual memory fields.


Figure A-1-9. Address Bus Fields

## A-1.11.1 Choosing the Index and Tag Size

The MB81C51 permits tags up to 20 bits in size, and index sizes of 10 bits per each device (configured as two-way implementation) or 9 bits per device (configured as four-way implementation). However, the 81 C 51 may be expanded in depth in multiples of 1024 (two-way) or 512 (four-way) lines. Furthermore, any line or block size may be used, therefore providing for large caches to be implemented with a single MB81C51.

The size of cache is defined in terms of its depth (D), block size $(B)$ and degree of associativity $(W)$ in the following way:

Eq A-1-5a

$$
\text { cache size }=D * B * W
$$

Since the index is used to address the cache in depth, the size of the index address field should be (in bits):

Eq A-1-5b

$$
\text { index size }=\text { LOG2(D) }
$$

For example, if we have a two-way cache with a block size of 4 words, an 18 -bit tag (2-bit byte select) and a 10-bit index, we then have a cache buffer that is $2 \bullet 4 \cdot 2 \bullet 2^{10}$ ) $=8 \mathrm{~K}$ words, with a tag buffer depth of 2 K tags. This 32 K byte can be implemented with a single 81 C 51 .

## A-1.11.2 Configuring the Tag Buffer Given the Index Size

In certain implementations, if caches of larger than 2 K lines are desired, multiple 81C51s will be needed to construct the tag buffer. If a larger cache is desired, it is easily implemented by extending the 81C51s in depth.

There are fundamentally two ways to "stack" multiple 81C51s in depth to increase the number of available tags. One way is to gate the signals. The second way is to use MHIT'. A discussion of both implementations is in the following sections.

## A-1.11.3 Gate Signals to Implement Multiple 81C51s in Depth

The most significant bits of the index address are decoded and used to generate inhibit signals (INH') when gating the signals. In the inhibit state, the outputs go to values that permit simple interfacing of multiple devices, as was shown in Table A-1-4. Therefore, we need only gate the individual HIT' and the individual PERR' signals, and multiplex the HITn/REPn or HCn/RCn signals (depending on which data buffer selection scheme we are utilizing). Figure A-1-10 illustrates this control and mux logic with an example of a four-way set associative implementation that has a depth of 2 K and supports 8 K blocks. To extend beyond this configuration, realize that the $\mathbf{N}$ most significant index bits are used to address 2 N different 81 C 51 s , each with a size of 2 K blocks and a depth of 512 ( 4 -way) or 1 K (2-way). Two 2 N -wide AND gates are used to generate the system GPERR' and GHIT' outputs. The N most significant index bits feeds N of 2 N decoder which drives the $\mathrm{INH}^{\prime}$ signals of the individual devices. The most significant index bits are also used to select a W -wide (where W is the number of ways) 2 N -to- 1 mux which selects from the individual HITn/REPn lines that drive the data buffer. If the NCn/RCn (encoded) signals are used, then a LOG2 ( W ) wide 2 N mux is needed. However, if individual data buffer RAMs are driven by the $\mathrm{HCn} / \mathrm{RCn}$ lines of each individual tag RAM, this muxing is not necessary.


Figure A-1-10. Example Implementation of a Tag Buffer with Extended Depth
As an example, to construct a 2-way tag buffer with 16 K tags and a block size of 8 K to yield a 64 K word tag buffer that uses the encoded hit/replace select lines ( $\mathrm{HCn} / \mathrm{RCn}$ ), the implementation would be as follows:

$$
W=2 \text { ways } \Rightarrow>1 \mathrm{~K} \text { depth per device } 2 N=16 \mathrm{~K} / 1 \mathrm{~K}=16 \mathrm{MB} 81 \mathrm{C} 51 \mathrm{~s}
$$

Notice that since INH' inhibits all device functions except ALL PURGE, (usually performed on the entire cache simultaneously), it can be easily used to isolate devices for any operation. Therefore, it can extend the TAG in depth with no change in function and an addition of only a mux, a decoder and two ANDs. Since $\mathrm{INH}^{\prime}$ is the device selector and inhibits/enables all functions except ALL PURGE, the functions of reading (with update or simply inquiry), writing (in the case of replacement) and selective invalidation are performed as if only one 81C51 were utilized.

## A-1.11.4 Configuring Multiple MB81C51s Using MHIT'

The MB81C51 supports expansion of cache by gating the internal HIT' signal with an external HIT signal called EXTH (active high) when the MHENBL input is asserted (high). This permits a system hit (MHIT', active low) to be quickly generated from multiple devices without the use of external logic, except an inverter that complements and drives the HIT' output of the other MB81C51(s).

It is also possible to support more than two cache tag RAMs by feeding the MHIT' output of the second device to the EXTH input of a third via an inverter, and so on in "daisy chain" fashion. The method of parallel gating presented in Figure A-1-10 provides a high-speed solution when many tag RAMs are arranged in depth. For implementations requiring two or three tag RAMs, the "daisy chain" provides the highest speed solution with minimum hardware.

## A-1.12 Unused Inputs/Outputs

If four-way associativity is selected by the MODE pin, then only nine address bits are required, as opposed to the ten required for the two-way case. In the case of a four-way implementation, the designer should then use address pins AD0..AD8 and tie AD9 high (since better noise margin exists when it is pulled high). Additionally, the tag inputs TD0..TD19 comprise a 20-bit word in which the unused bits should be tied high (VIH as the minimum or higher), preferably to the power rail.

In general, no input signals of CMOS devices should float, but rather should reference some valid voltage level (VIL (max) or VIH (min)). Unused outputs, however, such as HCn when HITn is used instead, should be left open.

## A-1.13 Supporting Copyback with the MB81C51

The local cache must support functions initiated by the local bus monitor or central controller, such as change of privilege, invalidation, and update. These operations are detected as system bus activity and are routed to the local cache tag buffers to determine residency and then respond appropriately if resident. Implementing copyback within the cache tag buffer requires integrating the privilege bits and dirty bits into the tag buffer and providing support hardware to read and modify these bits. To perform an invalidation of a line, for example, the bus monitor/cache controller would perform a selective invalidation on the tag buffer with the system bus address. Since the $\mathrm{HC} 0 / \mathrm{HC} 1$ information is output for invalidation cycles, this information would be used to select the associated descriptor bits in an external descriptor RAM. If the dirty bit was set, the line could then be updated to main memory. Read-only protection can be enforced in a similar way by using $\mathrm{HC} 0 / \mathrm{HC1}$ to select the descriptor bits and generating the acknowledge to the processor depending on the state of the read-only status bit.

Since the MB81C51, as previously explained, does not directly support the flushing of dirty entries that must be written to main memory, the user may find that implementation of write-through and buffered write-through caches (either real or virtual) to be more efficient and simpler to implement. If performance is of utmost importance, buffered write-through has proven to be faster in average cache time than copyback options except in those systems where bus traffic makes write-through an impossibility.

## Notes

Static RAM Data Book

Notes

Notes

## Notes

# High-Speed CMOS SRAMs 

# High Temperature Range SRAM Products 

## 6

CMOS SRAM Modules

Quality and Reliability

## 8

Ordering Information
Sales Information
Appendices - Design Information

## FUJITSU LIMITED

Marunouchi Headquarters
6-1, Marunouchi 1-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: (03) 216-3211
Telex: 781-22833
FAX: (03) 213-7174
For further information, please contact:

## Japan

FUJITSU LIMITED
Integrated Circuits and Semiconductor Marketing
Furukawa Sogo Bldg.
6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: (03) 216-3211
Telex: 781-2224361
FAX: (03) 211-3987

## Europe

FUJITSU MIKROELEKTRONIK GmbH
Lyoner Strasse 44-48
Arabella Centre 9. OG
D-6000 Frankfurt 71
Federal Republic of Germany
Tel: (49) (069) 66320
Telex: 441-963
FAX: (069) 663-2122

## Asia

FUJITSU MICROELECTRONICS ASIA PTE. LTD.
06-04/06-07 Plaza By the Park
No. 51 Bras Basah Road
Singapore
Tel: (65) 336-1600
Telex: 55573
FAX: (65) 336-1609

## North and South America

FUJITSU MICROELECTRONICS, INC.
Integrated Circuits Division
3545 North First Street
San Jose, CA 95134-1804 USA
Tel: (408) 922-9000
Telex: 910-338-0190
FAX: (408) 432-9044


[^0]:    © 1986 FUJITSU LIMITED D20005S-1C

[^1]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^2]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^3]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^4]:    This device contains circuitry to protect the inputs against damage due to high static' volt ages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^5]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^6]:    Copyright © 1988 by FUJITSU LIMITED and Fujltsu Microelectronics, Inc.

[^7]:    *1 A pull-up resistor to Vcc on the CS input is required to keep the device deselected; otherwise, power-on current

[^8]:    *1 All Read cycles are determined from the last valid address transitioning to the first address transitioning of next cycle.
    *2 Addesses valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
    *3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Figure 2.

[^9]:    *1 $\overline{C S}$ OR $\overline{W E}$ must be high during address transitions.
    *2 All write cycle are determined from last valid address transitioning to the first address transitioning of next cycle.
    *3 Transition is measured at $\pm 500 \mathrm{mV}$ from steady state voltage with specified load in Fig. II.

[^10]:    Quick ProTM is a trademark of FUJITSU LIMITED
    Copyright © I $_{987 \text { by }}$ FUJITSU LIMITED and Fujltsu Microelectronics, Inc.

[^11]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^12]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^13]:    Copyright ${ }^{\complement} 1989$ FUJITSU LIMITED

[^14]:    *1 A pull-up resistor to Vcc on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected; otherwise, power-on current approaches Icc active.
    *2 -3.0 V Min. for pulse width less than 20 ns .

[^15]:    * $1 \overline{\mathrm{WE}}$ is high for Read cycle.
    *2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
    *3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V} / \mathrm{L}$.
    *4 Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition low.
    *5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *6 This parameter is measured with specified Load !! in Fig. 2.

[^16]:    Copyright © 1989 FUJITSU LIMITED

[^17]:    *1 A pull-up resistor to VCC on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected; otherwise, power-on current approaches lcc active.
    *2 -3.0 V Min. for pulse width less than 20 ns .

[^18]:    * $1 \overline{\mathrm{WE}}$ is high for Read cycle.
    *2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
    *3 Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}} \overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$.
    *4 Address valid prior to or coincident with CS transition low.
    * 5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *6 This parameter is measured with specified Load Il in Fig. 2.

[^19]:    Copyright ${ }^{〔} 1989$ FUUITSU LIMITED

[^20]:    *1 WE is high for Read cycle.
    *2 All Read cycles are determined from the last address transition to the first address transition of next cycle.
    *3 Device is continuously selected, CS=VIL
    *4 Address valid prior to or coincident with CS transition low.
    *5 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *6 This parameter is measured with specified Load II in Fig. 2.

[^21]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fieids. However, th is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^22]:    Copyright ${ }^{\text {© }} 1989$ FUUITSU LIMITED

[^23]:    Copyright© 1989 by FUJITSU LIMITED

[^24]:    This device contains circuitry to protect the inputs against damage due to high static vollages or electric kelds. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^25]:    NOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^26]:    Note: *1 /WE is high for Read cycle.
    $\dot{*}$ Device is continuously selected, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{VIL}$.
    *3 Address valid prior to or coincident with $\overline{C S}$ transition low.

    * 4 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *5 This parameter is specified with Load II in Fig. 2.

[^27]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^28]:    Copyright ${ }^{\text {© }} 1989$ FUJITSU LIMITED

[^29]:    This device contains circuitry to protect the inputs against damage due to high static volt ages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^30]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^31]:    Copyright ${ }^{〔} 1989$ FUJITSU LIMITED

[^32]:    Copyright ${ }^{\circledR} 1988$ FUJITSU LIMITED

[^33]:    Copyright* 1989 by FUJITSU LIMITED

[^34]:    This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^35]:    Legend: $H=$ High level, $L=$ Low level, $X=$ Don't care.
    Notes: $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{WE}}$ are input at the rising edge of the CLK.
    $\overline{P E}$ output remains High-Impedance state through undefined area.

[^36]:    * Shape of PIN NO. 1 INDEX: Subject to change without notice.
    © 1987 FUJITSU LIMITED C32011S-3C

    Dimensions in inches (millimeters)

[^37]:    © 1987 FUJITSU LIMITED D28020S-2C

[^38]:    * Shape of PIN NO. 1 INDEX: Subject to change without notice.
    © 1987 FUJITSU LIMITED C32011S-3C

    Dimensions in inches (millimeters)

[^39]:    Quick ProTM is a trademark of FUJITSU LIMITED

[^40]:    Note: *1 If $\overline{C S}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
    *2 All write cycle are determined from last address transition to the first address transition of the next address.
    *3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *4 This parameter is specified with Load II in Fig. 2.

[^41]:    Note: *1 If $\overline{\mathrm{CS}}$ goes high simultaneously with $\overline{\mathrm{WE}}$ high, the output remains in high impedance state.
    *2 All write cycle are determined from last address transition to the first address transition of the next address.
    *3 Transition is measured at the point of $\pm 500 \mathrm{mV}$ from steady state voltage.
    *4 This parameter is specified with Load II in Fig. 3.

