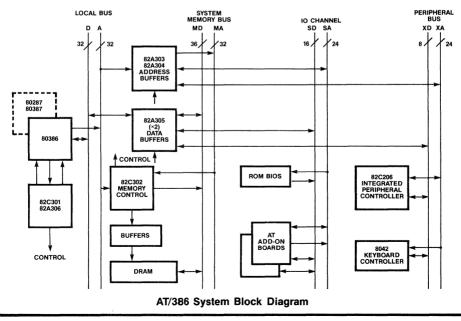


82C301, 82C302, 82A303, 82A304, 82A305, 82A306 CS8230: AT/386 CHIPSet™

- 100% IBM[™] PC AT compatible
- Flexible architecture allows usage in any iAPX 386[™] design
- Operates in Page mode with Interleave memory subsystem
- 16 MHz zero wait operation


The CS8230 AT/386 CHIPSet[™] is a seven chip VLSI implementation of most of the system logic to control an iAPX 386 based system. The CHIPSet is designed to offer a 100% PC AT compatible integrated solution. The flexible architecture of the CHIPSet allows it to be used in any iAPX386 based system design, such as CAD/CAE workstations, office systems, industrial and financial transaction systems.

CS8230 CHIPSet combined with CHIP's 82C206, Integrated Peripherals Controller, provides a complete PC AT compatible system using only 40 components plus memory devices.

- Independent clock to support correct AT bus timing
- 1MB to 16MB of DRAM memory support
- A complete PC AT requires only 40 IC's plus memory

The CS8230 CHIPSet[™] consists of one 82C301 Bus Controller, one 82C302 Page/ Interleave MemoryController, one each of 82A303 and 82A304 Address Bus Interfaces, two 82A305 Data Bus Interfaces, and a 82A306 Control Signal Buffer.

The CHIPSet supports a local CPU bus, a 32bit system memory bus, and AT buses as shown in the system diagram below. The 82C301 and 82A306 provide the generation and synchronization of control signals for all buses. The 82C301 also supports an independent AT bus clock, and allows for dynamic selection of the processor clock between the 16 MHz clock and the AT bus clock. The

CHIP5

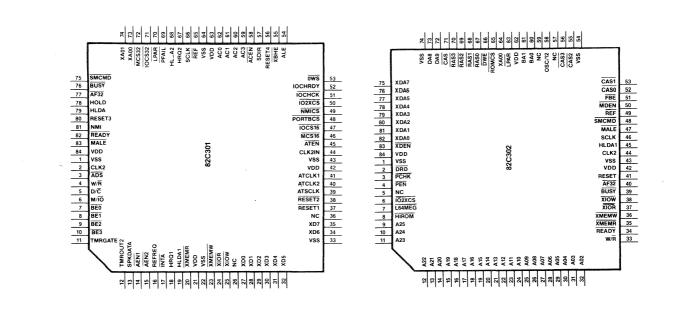
82A306 provides buffers for bus control signals in addition to other miscellaneous logic functions.

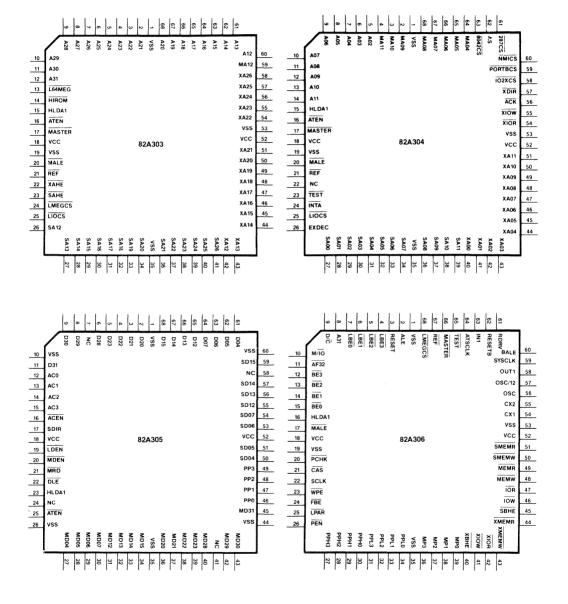
The 82C302 Page/Interleave Memory Controller provides an interleaved memory subsystem design with page mode operation. It supports 1 MB to 16 MB of DRAMs with combinations of 256Kbit and 1Mbit DRAMs. The processor can operate at 16 MHz with zero wait state memory accesses by using 100 nsec DRAMs.

The 82A303 and 82A304 interface between all address buses, generate RAS/CAS addresses for the system memory and the addresses needed for proper data path conversion. Two 82A305 are used to interface between the local, system memory, and AT data buses. In addition to having high current drive, they also perform the conversion necessary between the different sized data paths.

System Overview

The CS 8230 is designed for use in 80386based systems and provides complete support for the IBM PC AT bus. There are four buses supported by the CS 8230 as shown in the AT/386 system block diagram: CPU local bus (A and D), system memory bus (MA and MD), IO Channel bus (SA and SD), and X bus (XA and XD). The system memory bus is used to interface to DRAM's controlled by the 82C302. The IO channel bus refers to the bus supporting the AT bus adapters which could be either a 8 bit devices or 16 bit devices. The X bus refers to the peripheral bus to which the DMA controllers and timers are attached in an IBM PC AT. The X bus has only an 8-bit data path. The term "AT bus" is used to refer to the IO channel bus and X bus. Provisions are also made for user extension of the IO channel to 32 bit bus.


Notation and Glossary


The following notations are used to refer to the configuration and diagnostic registers internal to the 82C301 and 82C302.

REGnH denotes the internal register with the index n in hexadecimal notation.

REGnH \langle **x**:**y** \rangle denotes the bit field from bits y to x of the internal register with the index n in hexadecimal notation.

82C301 Pin Description

Pin No.	Symbol	Pin Type	Description
Clocks			
44	CLK2IN	I	CLOCK 2 INPUT from a packaged TTL crystal oscilla- tor having twice the rated frequency of the processor.
2	CLK2	0	CLK2 output to the Clock 2 input of 80386 and the memory controller. This clock output is derived from CLK2IN and has a 50% duty cycle. The clock can also be programmed to be the same as the BCLK.
66	SCLK	0	SCLK is CLK2 divided by two and is an output gener- ated as a reference to verify the phase relationship of the internal clock and CLK2.
41	ATCLK1	I	BUS CLOCK INPUT source from Crystal or Oscillator. This clock input is used for the AT Bus operation and is required only if the AT bus state machine clock (BCLK) will not be derived from the CLK2 input. This signal should be tied LO if not used.
40	ATCLK2	0	BUS CLOCK CRYSTAL OUTPUT is connected to the crystal oscillator circuit if a packaged oscillator is not used. A series resistor should be used to reduce the amplitude of the resonant circuit. It should be left unconnected if a packaged TTL oscillator is used.
39	ATSCLK	0	AT SYSTEM CLOCK is buffered to drive the clock signal SYSCLK on the AT bus I/O channel. It is half the frequency of BCLK and should have a nominal value in the range of 6 to 8 MHz for maintaining correct AT I/O bus timing with IBM PC AT.
Control			
37	RESET1	I	Active LO. RESET1 is connected to the power good signal generated by the PWRGOOD from the power supply. When LOW it will activate RESET3 and RESET4 for resetting the system.
38	RESET2	I	Active LO. RESET2 (8042RC) is an active LOW signal generated from the keyboard controller 8042 for a "warm reset" not requiring the system power to be shut off. It forces a CPU reset by activating RESET3 signal.
56	RESET4	0	Active HI. RESET4 is the System Reset used to reset the AT Bus, 82C206 IPC, 8042 keyboard controller 82C302 or 82C312 memory controller. RESET4 is synchronized with the processor clock.

Pin No.	Symbol	Pin Type	Description
CPU Inter	face		· ·
80	RESET3	Ο	Active HI. RESET3 is the reset to the 80386 when RESET1 or RESET2 is active. This is also activated when shutdown condition in the CPU is detected.
82	READY	I/O	Active LO. READY is driven LO during AT bus cycles indicating that the current CPU bus cycle is to be completed. It is also asserted if 'Time Out' condition is detected. During all other cycles it is an input to 82C301. Ready is an open collector output requiring an external pull up resistor. It connects to the 80386 READY pin.
3	ADS	I	Active LO. ADDRESS STATUS input connected to the 80386 ADS pin.
4	W/R	I/O	READ/WRITE STATUS input from the 80386 W/ \overline{R} signal. It indicates a write bus cycle if it is HI and a read cycle if it is LO.
5	D/C	I	DATA/CONTROL STATUS input from the 80386 D/ \overline{C} signal.
6	M/ĪŌ	I	MEMORY/IO STATUS input from the 80386 M/\overline{IO} signal.
78	HOLD	0	Active HI. HOLD REQUEST output to the 80386 HOLD input pin. This signal is used to request the CPU to relinquish the bus cycles to another requesting master such as HRQ1, HRQ2 and REFREQ.
79	HLDA	I	Active HI. HOLD ACKNOWLEDGE input connected to processor HLDA signal. When the signal is HIGH it indicates that the processor has relinquished the system bus in response to the HOLD request.
10-7	BE<3:0>	В	Active LO. BYTE ENABLE signals input from the 80386 BE $\langle 3:0 \rangle$ during a CPU cycle. BE3 controls the most significant while BE0 controls the least significant byte. BE $\langle 3:0 \rangle$ are generated by 82C301 during DMA cycles based on the status signals XA0, XA1 and XBHE.
81	NMI	0	Active HI. NON-MASKABLE INTERRUPT connects to the 80386 NMI pin and is generated by 82C301 to cause an NMI.

Pin No.	Symbol	Pin Type	Description
Decodes		-	
48	PORTBCS	I	Active LO. PORT B CHIP SELECT is the address decode input from the 82A304 as enable for the Port B register at address 061H.
49	NMICS	I	Active LO. NMI CHIP SELECT is the address decode input from the 82A304 as enable for the NMI enable bit at address 070H.
50	IO2XCS	I	Active LO. IO2X CHIP SELECT is the address decode input from the 82A304 as chip select for the IO regis- ters at 022H and 023H used to access the 82C301 internal configuration registers.
53	OWS	I	Active LO. ZERO WAIT STATE acknowledge input from the IO channel. When active it causes immediate termination of the current AT bus memory or IO cycle.
IO Channe	el Interface		
52	IOCHRDY	ł	Active HI. IO CHANNEL READY input from the AT bus. When LOW it indicates a 'not ready' condition and forces the insertion of wait states in I/O or memory accesses. When HIGH it will allow the com- pletion of the current memory or I/O access.
51	IOCHCK	I	Active LO. IO CHANNEL CHECK input from the AT bus which causes an NMI to be generated if enabled. It is used to signal an Error condition from a device residing on the AT bus.
70	LPAR	1	Active LO. PARITY ERROR input from local memory system which causes an NMI to be geneated if enabled.
69	PFAIL	1	Active LO. POWER FAIL WARNING signal input from the power supply.
54	ALE	0	Active HI. ADDRESS LATCH ENABLE to AT bus. This signal controls the address latches used to hold the address during a bus cycle. The signal should be buffered to drive the AT bus.
DMA Inter	face		
19	HLDA1	Ο	Active HI. HOLD ACKNOWLEDGE 1 is active when a bus cycle is granted in response to HRQ1.
68	HLDA2	0	Active HI. HOLD ACKNOWLEDGE 2 is active when a bus cycle is granted in response to HRQ2.

Pin No.	Symbol	Pin Type	Description
18	HRQ1	I	Active HI. HOLD REQUEST 1 is active when a DMA/ Master is requesting a bus cycle. For an AT compatible architecture it should be connected to the HOLD REQUEST signal from DMA1 and DMA2.
67	HRQ2	I	Active HI. HOLD REQUEST 2 is active when a DMA/ Master is requesting a bus cycle. This should be grounded if not used.
14	AEN1	I	Active LO. ADDRESS ENABLE for 8 bit DMA transfers.
15	AEN2	I	Active LO. ADDRESS ENABLE for 16 bit DMA transfers.
Control S	trobes		
46	MCS16	I	Active LO. MCS16 When active causes 16 bit memory accesses on IO channel.
72	MCS32	I	Active LO. MCS32 when active causes 32 bit memory accesses on IO channel.
47	IOCS16	I	Active LO. IOCS16 when active causes 16 bit IO accesses on IO channel.
71	IOCS32	I	Active LO. IOCS32 when active causes 32 bit IO accesses on IO channel.
75	SMCMD	0	Active LO. SYSTEM MEMORY COMMAND when active indicates the current access cycle is a memory cycle.
Refresh	22		
16	REFREQ	I	Active HI. REFresh REQuest when active initiates a DRAM refresh sequence be initiated. This signal is obtained from the timer controller, 8254, in a PC AT implementation.
65	REF	I/O	Active LO. REFresh is an open drain signal. It initiates a refresh cycle for the DRAMs. As an input it can be used to force a refresh cycle from an I/O device. An external pull up is required.
X Bus Inte	erface		
20	XMEMR	I/O	Active LO. X BUS MEMORY READ is a control strobe directing memory to place data on the data bus. It is sourced either from the 82C301 when the 80386 is the master or from the DMA.

Pin No.	Symbol	Pin Type	Description
23	XMEMW	I/O	Active LO. X BUS MEMORY WRITE is a control strobe directing memory to accept data from the data bus. It is sourced either from the 82C301 when the 80386 is the master or from the DMA.
24	XIOR	I/O	Active LO. X BUS IO READ is a control strobe direct- ing an IO port to place data on the data bus. It is sourced either from the 82C301 when the 80386 is the master or from the DMA.
25	XIOW	1/0	Active LO. X BUS IO WRITE is a control strobe directing an IO port to accept data from the data bus. It is sourced either from the 82C305 when the 80386 is the master or from the DMA.
55	XBHE	I/O	Active LO. X BUS BYTE HIGH ENABLE indicates that the high byte (bits <15:08>) on the bus has valid data. It is sourced from the 82C301 when 80386 or DMA2 (16 bit) is the master.
35-34	XD<7:6>	I/O	X DATA BUS bits <7:6>
32-27	XD<5:0>	I/O	X DATA BUS bits <5:0>
57	SDIR	0	SYSTEM BUS DIRECTION controls the direction of data transfer between the IO channel and the local bus. When LO the it enables data transfer from the IO channel to local bus.
58	ACEN	0	Active LO. ACTION CODE ENABLE when active vali- dates the action code signals AC<3:0>.
59-62	AC<3:0>	0	ACTION CODE is a four-bits encoded command for bus size control and byte assembly operations per- formed by the 82A305s.
Memory C	Control		
77	AF32	I	Active LO. AF32 when active indicates that a bus cycle is a local bus access without any data size conversion or AT cycle simulation treated as a 32-bit access.
76	BUSY	i	Active LO. BUSY from memory controller.
83	MALE	0	Active LO. Address Latch Enable for accesses to on board memory/IO. It also indicates start of a new CPU cycle.
11	TMRGATE	0	Active HI. TIMER GATE signal enables the timer on 8254 Timer to generate the tone signal for the speaker.
12	TMROUT2	I	Active HI. TIMER OUT 2 is the output from the timer 8254. It can be read from port B.

Pin No.	Symbol	Pin Type	Description
13	SPKDATA	0	Active HI. SPEAKER DATA is used to gate the 8254 tone signal to the speaker.
17	INTA	0	Active LO. Interrupt acknowledge output to the inter- rupt controller.
45	ATEN	0	Active LO. AT ENABLE when active indicates the current CPU access is an AT bus cycle.
73	XA00	I/O	Address bit 0. It is sourced from the 82C301 when 80386 or DMA (16 bit) is a bus master.
74	XA01	1/0	Address but 1. It is sourced from the 82C301 when 80386 is a bus master.
26,36	NC		Reserved
21,42 63,84	VDD VDD		Power
1 22,33 43,64	VSS VSS VSS		Ground

82C302 Pin Description

Pin No.	Symbol	Pin Type	Description
Clocks an	d Control		
44	CLK2	I	Processor Clock
46	SCLK	0	Generated CLK2/2 for reference.
41	RESET	I	Active HI. When active resets 82C302
49	REF	I	Active LO. DRAM refresh control signal.
47	MALE	I	Active LO. Address Latch Enable
33	W/R	I	System WRITE/READ status input
48	SMCMD	I	Active LO. System Memory Command. Indicates that the current command is for memory.
37	XIOR	I	Active LO. I/O READ command used to qualify IO2XCS.
38	XIOW	İ	Active LO. I/O WRITE command used to qualify IO2XCS.
35	XMEMR	I	Active LO. X Bus memory READ command.
36	XMEMW	I ,	Active LO. X Bus memory WRITE command.
45 ·	HLDA1	I	Active HI. HOLD ACKNOWLEDGE 1 input from 82C301.
63	LPAR	I	Active LO. Parity error indication during a DRAM read. The failing address will be latched inside the chip for diagnostic purposes.
8	HIROM	l	Active LO. High ROM address chip select asserted when the highest 16 MBytes of memory is addressed (A<31:A24>=FFH). Unlatched. This is used in conjunc- tion with the remaining address bits to generate the ROMCS signal.
7	L64MEG	I	Active LO. Low 64M address that is asserted when A<31:26>=00H. Unlatched.
65	ROMCS	0	Active LO. Chip select for the BIOS EPROMs that is qualified with W/\overline{R} and SMCMD.
6	IO2XCS	I	Active LO. IO address 22 and 23 chip selects. I/O port 22 is the index register for the configuration register set and and I/O 23 is accessed as the 8 bit configuration register selected by the index written to I/O port 22.
09-32	A<25:02>	I	Address from the CPU local bus.
64	XA00	I	Address from the X Bus

82C302	Pin	Description	(Continued)	
--------	-----	-------------	-------------	--

Pin No.	Symbol	Pin Type	Description
34	READY	I/O	Active LO. System ready indicating the end of current 386 bus cycle. It goes inactive when the requested memory transfer has been completed. It becomes an input when the current bus cycle is for the AT IO expansion channel ($\overline{AF32} = 0$).
39	BUSY	0	Active LO. Indicates that the memory controller is still servicing a previous request. This should be connected to IOCHRDY through an open collector buffer. This signal should not be confused with the BUSY of 80386.
40	AF32	Ο	Active LO, open drain. If asserted indicates that the current address is for local memory on the system board (DRAM or possibly EPROM). Otherwise the current address is assumed to be on the AT IO channel.
Memory E	xpansion		
61-60	BA<1:0>	0	Addresses that may be externally decoded to gate RAS to the correct block of 4 banks of DRAMs. These will always be zero.
2	DRD	0	Active LO. DRAM Read controls the direction of data transfer between the DRAM and local bus. When LO it controls the transfer from the memory data bus toward CPU and from the CPU to memory otherwise.
DRAM Int	erface		
70-67	RAS<3:0>	0	Active LO. Row Address Strobe. There is one for each bank.
71	CAS	0	Active LO. Column Address Strobe. Used to latch data in the 82A305 data buffer.
56-55 53-52	CAS<3:2> CAS<1:0>	0	Active LO. Column Address Strobe. A strobe per bank that must be externally gated with byte enables for each byte of DRAM chips.
58	OSC/12	I	1.19MHz Clock input used for RAS pulse width time- out. Replaces CA3 on Cache controller.
66	DWE	0	Active LO. DRAM Write Enable.
51	FBE	0	Active LO. Force Byte Enable. Will always be inactive.
72-73	DA<9:8>	0	Remaining DRAM address bits.

Pin No.	Symbol	Pin Type	Description
75-82	XDA<7:0>	Ι/Ο	Multiplexed bidirectional data pins for $XD < 7:0>$. DA $< 7:0>$ are the lower address bits for the DRAM array.
83	XDEN	0	Active LO. XD bus buffer Enable. XDEN is asserted during IO access cycles to 022H and 023H if 022H access is for an internal register of 82C302. XDEN is used to control the chip enable for the buffer between the XD and XDA buses.
3	РСНК	0	Active LO. Parity Check Strobe.
4	PEN	0	Active LO. Overall Parity Enable.
50	MDEN	0	Active LO. MEMORY DATA BUFFER ENABLE. This signal is by default always LO and is connected to MDEN of 82A305.
Miscellane	eous		
5,57,59	NC		Reserved
42,62,84	VDD		Power
1,43 54,74	VSS VSS		Ground

82A303 Pin Description

Pin No.	Symbol	Pin Type	Description
Control			
17	MASTER	I	Active LO. Bus MASTER is generated by a device that is active on the expansion bus. After MASTER is force LO by an I/O device, the I/O CPU must wait for one system clock period before forcing the address and data lines. MASTER must not be held LO for more than 15 microseconds, or else data in the system memory may be lost due to lack of a refresh cycle.
15	HLDA1	I	Active HI. HOLD ACKNOWLEDGE from 82C301.
20	MALE	I	Active LO. MEMORY ADDRESS LATCH ENABLE clocks addresses into the address registers on the rising edge.
21	REF	I	Active LO. REFRESH. Schmitt Trigger.
16	ATEN	I	Active LO. AT BUS ENABLE is active when the CPU makes an AT bus access.
25	LIOCS	0	Active LO. LOW IO ADDRESS CHIP SELECT is as- serted when A<15:12>=0.
24	LMEGCS	0	Active LO. LOW 1 MB SELECT is active when the access address decodes to the low 1MB address space: $A < 31:20 > = 0$.
13	L64MEG	0	Active LO. LOW 64 MB SELECT is active when the access address decodes to the low 64MB address space: A<31:26> = 0.
14	HIROM	0	Active LO. HI ROM SELECT is active when A<31:26> = 3FH.
Processor	/Bus Interface		
12-2	A<31:21>	I/O	Local Address Bus
68-60	A<20:12>	I/O	LUCAI AUGIESS DUS
58-54	XA<26:22>	1/0	X Address Bus
51-42	XA<21:12>	I/O	
22	XAHE	I	Active LO. Enable bits 26:24 from the XA bus. A pullup is provided so that the input can be left open if only 24 bits are sourced externally.
41-36	SA<26:21>	1/0	24mA. System Address Bus
34-26	SA<20:12>	I/O	24117. System Audress bus

Pin No.	Symbol	Pin Type	Description
23	SAHE	I	Active LO. Enable bits 26:24 from the SA bus. A pullup is provided so that the input can be left open if only 24 bits are sourced externally.
59	MA12	0	Memory Address Bus Latched on the trailing edge of MALE.
Miscellane	eous		
18,52	VCC		Power
1,19 35,53	VSS VSS		Ground

.

82A304 Pin Description

Pin No.	Symbol	Pin Type	Description
Control			
17	MASTER	I	Active LO. BUS MASTER is generated by a device active on the expansion bus.
15	HLDA1	1	Active HI. HOLD ACKNOWLEDGE 1 from 82C301.
20			Active LO. MEMORY ADDRESS LATCH ENABLE clocks addresses into the address registers on the rising (trailing) edge.
21	REF	I	Active LO. REFRESH Schmitt trigger.
16	ATEN	I	Active LO. AT BUS ENABLE is active when the CPU makes an AT bus access.
25	LIOCS	I	Active LO. LOW IO ADDRESS CHIP SELECT.
54	XIOR	l	Active LO. X BUS IO Read.
55	XIOW	I	Active LO. X BUS IO Write
57	XDIR	0	X BUS DIRECTION is used to control the drivers between the X bus and S bus. The drivers should be used such that S bus signals are driven toward X bus when XDIR is LO and in the other direction when HI.
26	EXDEC	I .	Active HI. EXTENDED IO DECODE. A strapping option that when LO ignores $A<11:10>$ and LIOCS (which is decoded based on $A<15:12>$) for decoding the system board IO ports. An internal pullup is provided.
58	IO2XCS	0	Active LO. IO 2x SELECT is decode of IO address 022H or 023H.
63	8042CS	0	Active LO. 8042 SELECT is decode of 8042 address at 060H or 064H.
59	PORTBCS	0	Active LO. PORTB SELECT is decode of Port B address at 061H
60	NMICS	0	Active LO. NMI SELECT is decode of NMI address at 070H.
61	287CS	0	Active LO. 80287 SELECT is decode of 287 address at 0E0-0FFH.
56	ACK	0	Active LO. ACKNOWLEDGE indicates that AEN1 OR AEN2 has been asserted. This signal is used to gener- ate AEN signal on the AT I/O channel.
62	AS	0	Active HI. Address Strobe for the RTC. IO address 7xH is conditioned with XIOW.

Pin No.	Symbol	Pin Type	Description			
24 INTA I			Active LO. INTERRUPT ACKNOWLEDGE bus cycle indication.			
Processor	/Bus Interface					
14-5	A<11:02>	I/O	Local address			
51-40	XA<11:00>	I/O	X bus address			
39-36	SA<11:08>	1/0	24mA. System address			
34-27	SA<07:00>	I/O	24IIA. System address			
4-2	MA<11:09>	0	Memory address			
68-64	MA<08:04>	0	Memory address			
23	TEST	I	Active LO. TEST when active resets the refresh counter to zero. A pullup is provided.			
22	NC		Reserved			
Miscellane	eous					
18,52	VCC		Power			
1,19 35,53	VSS VSS		Ground			

82A305 Pin Description

Pin No.	Symbol	Pin Type	Description
Control			
15-12	AC<3:0>	I	Action Code (bus size/assembly command)
16	ACEN	I	Active LO. Action Code Enable when active validates the action codes.
17	SDIR	I	System bus DIRection. When LO enables data transfers from the System to Local busn and in the other direction otherwise.
25	ATEN	I	Active LO. AT bus ENable
23	HLDA1	I	Active HI. HoLD Acknowledge.
20	MDEN	1	Active LO. MEMORY DATA BUFFER ENABLE. When LO enables the memory data buffers for transfer between the processor and memory subsystem. When HI disables these bus buffers. Should be connected to MDEN on the 82C302.
19	LDEN	I	Active LO. Selects LD as a source for the SD bus during MASTER or DMA reads. When HI selects MD. Asserting MRD overrides LDEN and gates MD to the SD bus. A pullup is provided.
21	MRD	I	Active LO. Memory Bus DIRection. When LO enables data movement for a processor read from the memory to local bus. MRD when HI enables drivers from local to memory bus.
22	DLE	I	Active LO. Data Latch Enable.

Data Paths (Bit numbers are for the upper 4 bits slice of each byte and should be 4 less for the lower nibble slice).

11, 9 8, 6 5-2 68-65 64-61	D<31:30> D<29:28> D<23:20> D<15:12> D<07:04>	I/O I/O I/O I/O	Local Data Bus
45,43 42,40 39-36 34-31 30-27	MD<31:30> MD<29:28> MD<23:20> MD<15:12> MD<07:04>	I/O I/O I/O I/O I/O	Memory Data Bus
49-46	PP<03:00>	0	Memory Partial Parity

Pin No.	Symbol	Pin Type	Description
59,57 56,55 54-53 51-50	SD<15:14> SD<13:12> SD<07:06> SD<05:04>	1/0 1/0 1/0 1/0	IO Channel Data Bus
7,24 41,58	NC NC		Reserved.
Power Sup	oplies		
18,52	VCC		Power
1,10 26,35 44,60	VSS VSS VSS		Ground

82A306 Pin Description

Pin No.	Symbol	Pin Type	Description	
64	ATSCLK	1	AT IO channel SYSCLK input.	
59	SYSCLK	0	24mA. Buffered SYSCLK to AT IO channel. Nominally one half of the bus state machine clock frequency.	
Control				
54	CX1	I	14.318MHz oscillator input from crystal.	
55	CX2	0	14.318MHz oscillator output to crystal.	
56	OSC	0	24mA. System 14.318MHz output.	
57	OSC/12	0	24mA. 14.318MHz/12 = 1.19MHz output.	
17	MALE	l	Active LO. Address Latch Enable for on board access.	
12-15	BE<3:0>	ł	Active LO. BYTE ENABLE.	
4-7	LBE<3:0>	0	Active LO. LATCHED BYTE ENABLE on the trailin edge of MALE.	
24	FBE	I	Active LO. FORCE BYTE ENABLE Forces all byte enables LBE active independent of MALE and the BE<3:0> inputs.	
67	REF	I	Active LO. REFRESH.	
8	A<31>	I	Local Address Bus bit 31.	
10	M/IO	I	80386 Status used to generate $\overline{\text{AF32}}$ for the 80387 and other 32 bit IO devices.	
9	D/C	I	80386 Status used to generate AF32 for the 80387 and other 32 bit IO devices.	
68	LMEGCS	1	Active LO. LOW MEGABYTE CHIP SELECT.	
11	AF32	0	Active LO, Tri-state output. $\overline{AF32}$ when active indicates a local bus memory access cycle on the system board. It is generated from M/IO, D/C, A<31>, and HLDA1.	
66	MASTER	I	Active LO. Bus MASTER input from the AT IO channel.	
3	RESET	1	Active HI. RESET input. Should be connected to RESET4 of 82C301.	
62	RESETB	0	Active HI. Buffered RESET to X bus.	
61	RDRV	0	Active HI. 24mA. RESET to AT bus.	
2	ALE	I	Active HI. ALE for AT bus.	
40	XBHE	I/O	Active LO. X Bus BHE.	
44	XMEMR	I/O	Active LO. X Bus Memory Read.	
43	XMEMW	I/O	Active LO. X Bus Memory Write.	

Pin No.	Symbol	Pin Type	Description	
42	XIOR	I/O	Active LO. X Bus IO Read.	
41	XIOW	I/O	Active LO. X Bus IO Write.	
60	BALE	0	Active HI. 24mA. Buffered ALE to AT bus.	
45	SBHE	I/O	Active LO. 24mA. System bus BHE.	
51	SMEMR	0	Active LO. 24mA. System bus MEMory Read.	
50	SMEMW	0	Active LO. 24mA. System bus MEMory Write.	
49	MEMR	I/O	Active LO. 24mA. Memory Read.	
48	MEMW	I/O	Active LO. 24mA. Memory Write.	
47	IOR	I/O	Active LO. 24mA. IO Read.	
46	ĪOW	I/O	Active LO. 24mA. IO Write.	
16	HLDA1	I	Active HI. HOLD ACKNOWLEDGE from 82C301.	
22	SCLK	I	CLK2/2 clock input. Should be connected to SCL output of 82C302.	
27-30	PPH<3:0>	I	PARTIAL PARITY HIGH computed by 82A305 for the high nibble data bits.	
31-34	PPL<3:0>	1	PARTIAL PARITY LOW computed by 82A305 for the low nibble data bits.	
36-39	MP<3:0>	I/O	Data Parity bits for the DRAMs.	
21	CAS	I	Active LO. Read Parity latch enable.	
20	РСНК	I	Active LO. PARITY CHECK STROBE for generating LPAR from the partial parity and data parity bits.	
26	PEN	l	Active LO. Overall PARITY CHECK ENABLE.	
23	WPE	Ι	Active LO. WRITE PARITY ENABLE. Enables the sourcing of write parity onto the MP bus. A pullup is provided.	
25	LPAR	0	Active LO. LATCHED PARITY ERROR signal.	
65	TEST	1	Active LO. Enables testing of the OSC/12 counter. A pullup is provided.	
63	IN1	Ι.	Input to an uncommitted 24mA non-inverting buffer.	
58	OUT1	0	24mA. Output of the IN1 buffer.	
Power Su	oply		· · · · ·	
18,52	VCC		Power	
1,19 35,53	VSS VSS		Ground	

82C301 BUS CONTROLLER

- Optional Independent AT Bus Clock
- Processor Clock Selection
- AT Bus Timing Configuration
- CPU Interface and Bus Control
- Port B Register

OVERVIEW

The 82C301 provides a clock generation circuitry to solve two basic problems. One is to provide system designers the choice of a particular AT bus clock most adequate for their applications. The other is to allow the processor to run at the full speed and optionally at a speed to match timing dependent application software. Because many AT adapter boards are designed with built in timing assumptions, independent programmable controls are provided for AT bus command timing and wait state generation for IO accesses and for 8, 16, and 32 bit memory accesses.

The 82C301 interfaces directly with the 80386 and implements the state machines required for controlling all bus accesses. It also features a status register known as Port B register used in a standard IBM PC AT.

FUNCTIONAL DESCRIPTION

The 82C301 has the following function blocks as illustrated in figure 1-1:

- Clock generation and reset control
- CPU bus access state machine
- AT bus access state machine
- Port B register and NMI logics
- Bus Arbitration and refresh logic

Clock Generation and Reset Control

The 82C301 provides three major system clocks: the processor clock CLK2, the BCLK clock for AT bus state machine of 82C301, and the AT bus clock SYSCLK. The BCLK

(SYSCLK \times 2) is a clock internal to the 82C301 and is used in this document to describe the system operation.

The clock generation circuitry shown in figure 1-2 contains two external clocks CLK2IN and ATCLK1 used as selectable clock sources. CLK2IN is assumed to be greater than 20MHz and should come from a packaged crystal oscillator while an oscillator circuit is provided for the ATCLK1 signal so that it can be connected to either a packaged oscillator or a crystal. This ATCLK1 input is required only if BCLK need be derived from an independent clock source other than CLK2IN. When required ATCLK1 frequency should be between 10 and 20 MHz for a typical PC AT. Notice that by design SYSCLK is always the BCLK divided by two.

The clock switching logic is guaranteed to provide a "clean" transition with no phases shorter than the minimum values or longer than the maximum values. This allows the clock selections be done dynamically.

Processor clock selection

Referring to figure 1-2, the CLK2 and SCLK signal can be selected from two sources:

This selection is made by programming bit 4 of the configuration register 4 which defaults to CLK2IN upon reset. By design, if SCLK is selected as the source for BCLK, CLK2 must not be sourced from BCLK. In all but some special cases, CLK2IN should match the rated processor speed, and the BCLK can be either subdivisions of CLK2IN or ATCLK1.

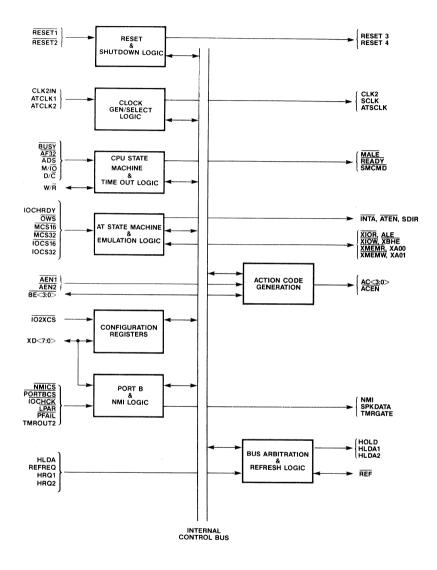


Figure 1-1. 82C301 Functional Block Diagram

CHIPS.

AT bus clock selection

The 82C301 provides flexible software controlled selection of the clock used for the AT bus state machine. The clock can be synchronous (related but not necessarily equal) to the processor CLK2 or unrelated (requiring synchronization between the AT and processor bus state machines). While synchronization logic has been provided in all interface signals between the CPU and the AT state machines, it is highly recommended that the AT bus state machine clock (BCLK) be sourced from SCLK. An internal programmable divider has been provided allowing BCLK frequency of CLK2/2 or CLK2/3. This eliminates the need for an additional oscillator for some system designs. If the divide by 3 option is selected the resulting waveform will have an approximately 50% duty cycle.

The SYSCLK signal generated by the 82C301 is one half of the AT bus state machine clock BCLK. Since this clock is used to drive the AT bus, it is recommended that the the divide

ratio be set for a SYSCLK of about 6 and 8MHz. The table 1-1 shows the combination of clock frequencies obtainable from CLK2IN with this selection scheme.

CLK2IN	SCLK	Ratio	BCLK	SYSCLK
24	12	/2	12	6
32	16	/2	16	8
32	16/3	10.7	5.4	

Table 1-1. Examples of BCLK and SYSCLK derived from CLK2

Reset control

When RESET1 signal is asserted 82C301 asserts RESET3 and RESET4 for a system reset. For warm restart not requiring the extensive reset, RESET2 can be asserted to generate the RESET3 for resetting only the processor and some specific devices. RESET3 is also asserted when CPU shut down condition is detected. This differentiation of reset is

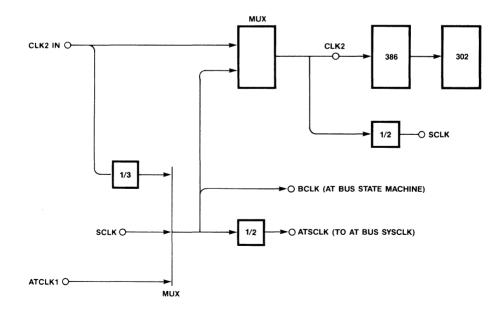


Figure 1-2. CLK2 and ATSCLK Clock Selection

provided so that some register states can be maintained through the reset if so desired.

Bus Arbitration, CPU bus and AT bus State Machines

The 82C301 performs the synchronization and control required between the local processor bus, the memory subsystem and the AT IO channel. It controls all bus activities and handles the HRQ1, HRQ2, and REFREQ by generating HOLD request to the CPU and arbitrating among these requests in a nonpreemptive manner. Upon CPU asserting HLDA the arbitration logic in turn responds by asserting HLDA1 (for HRQ1) or HLDA2 (for HRQ2), and the requesting DMA or master device has the control of the bus until it de-asserts HRQ1 (or HRQ2) to terminate the HLDA cycle. During the HLDA cycle, the 82C301 generates both SMCMD and action codes AC<3:0> to control the buffer enable and directions for the address and data buffers. Bus size conversions are not supported by 82C301 for these bus cycles and if necessary should be performed by the requesting device.

The CPU state machine and AT state machine control CPU accesses to the devices on the local bus and non-local buses respectively. The CPU state machine supports only 32 bit transfers between the 80386 and system memory (or memory mapped IO) and no bus size conversions are done. Thus BS16 input on the 80386 is not used in a CS8230 system and should be connected to a HI level. The AT state machine responsible for all nonlocal bus CPU accesses controls the AT bus and supports bus size matching.

All CPU access cycles are started by 82C301 asserting MALE. The CPU state machine then samples AF32 one SCLK clock cycle later. If AF32 is active, it is assumed to be a local bus cycle and the CPU state machine terminates this cycle when it detects READY signal active. In response to an MALE, if the AF32 is detected inactive the control is passed to AT state machine. At the end of the bus access cycle, the AT state machine generates READY to terminates the processor access cycle as well as the CPU state machine cycle.

CPU State Machine

Interface to the 80386 requires interpretation of the status lines upon assertion of ADS and synchronization and generation of a READY response to the CPU upon completion of the requested operation. By interpreting the CPU status lines and ADS, the 82C301 generates control signals MALE and SMCMD. In response to each ADS generated by CPU, an MALE is generated by the 82C301 to indicate the start of a new CPU access cycle. In a non-pipelined CPU cycle, MALE is generated in response to ADS being asserted by the 80386. In a pipelined cycle, MALE is generated when the assertion of READY is detected for the previous CPU cycle. If AF32 is not active one cycle after MALE is asserted, control is passed to the AT bus state machine. The CPU state machine then waits for READY becoming active to terminate the access cycle. In CS 8230 CHIPset, the READY can be generated by 82C302 which controls the system memory access.

SMCMD indicates a memory cycle for both CPU and non-CPU accesses. During CPU cycles it is generated for all memory cycles by decoding M/IO, D/C and W/R signals. During non-CPU cycles it is active when XMEMR or XMEMW is active.

NA Pipeline Control

The 82C301 supports both pipelined and non-pipelined cycles of the 80386. The NA (Next Address) input on the 80386 can be always asserted in a CS8230 system for higher performance.

Bus Timeout

An optional feature allows generation of an NMI if an internal memory cycle does not complete within a certain timeout period. This occurs if AF32 is asserted in response to MALE and READY is not returned to the 82C301 within 128 CLK2 cycles. A control bit in the 82C301 configuration registers enables this feature.

AT Bus State Machine

The AT state machine gains the control of the buses when $\overline{AF32}$ is detected inactive by the

CPU state machine. It uses BCLK having a frequency twice that of the IO channel clock SYSCLK. When ATCLK1 is selected as the source for BCLK, it also performs the necessary synchronization of control and status signals between the AT bus and the processor. The 82C301 supports 8, 16 or 32 bit transfers between the processor and 8, 16 or 32 bit memory or IO devices located on the IO channel.

An AT bus cycle is initiated by asserting ALE decoded from the CPU status signals and is terminated by asserting READY. On the falling (or trailing) edge of the ALE, MCS16, IOCS16, MCS32, IOCS32 are sampled to determine the bus size conversion required. It then enters the command cycle. The AT bus state machine provides the sequencing and timing controls for status and command phases of different AT bus cycles. These controls provide for timing emulation of lower speed IO channels to maintain compatibility with AT or PC/XT IO adapters and memory cards. The command cycle is terminated by detecting OWS or IOCHRDY active.

IO Channel Speed Control

The AT state machine can be programmed to insert wait states in units of ATSCLK and to delay the generation of XIOR, XIOW, XMEMR, and XMEMW commands in one half units of ATSCLK (BCLK) within the selected wait states. The command phase delay can be selectively defined for IO cycles and for 8, 16, and 32 bit wide memory cycles by setting the corresponding fields in REG05H. REG06H controls the IO Channel wait state generation for 8, 16, and 32 bit accesses.

The bus clock BCLK is selected by setting REG06H<1:0>. It should be noted that the processor clock source should be set to CLK2IN whenever the BCLK is selected to be SCLK.

Data Conversion

The AT bus access state machine performs data conversion for CPU accesses to devices not on the local bus when $\overline{\text{AF32}}$ is not as-

serted. AT bus data conversions are performed for the following types of transfers:

- ---32 bit to 8/16 bit, ---24 bit to 8/16 bit,
- -16 bit to 8/16 bit.

Larger transfers are broken into smaller AT bus reads or writes and the action code AC<3:0> to the 82A306 is generated. Byte addresses XA<01:00> are generated to drive the lower two bits of the AT address bus.

The 82C301 responds to $\overline{\text{IOCS16}}$, $\overline{\text{MCS16}}$, $\overline{\text{IOCS32}}$, and $\overline{\text{MCS32}}$ in determining what size of data the IO channel needs. If none of the above signals are asserted, 8 bit transfers are assumed and the request is converted into 2, 3 or 4 IO channel cycles based on $\overline{\text{BE}}<3:0>$. For either $\overline{\text{MCS16}}$ or $\overline{\text{IOCS16}}$, the AT bus state machine converts a 32-bit access into two 16 bit AT bus accesses.

The bus state machine also supports 32-bits transfer between the processor and memory and IO devices on the IO channel. IOCS32 and MCS32 inputs allow a device to request a 32-bits transfer. It is assumed that the necessary extensions to the AT bus are made to utilize this feature. IOCS32 and MCS32 override IOCS16 and MCS16.

In performing these data conversions, a 4-bits action code AC <3:0> is generated to control the buffers in 82A305 for the alignment of data path, and direction control between D, MD, and SD data buses. The definition for the action codes is given in the functional description of 82A305.

Port B Register

The 82C301 provides access to Port B defined for a PC AT as shown in figure 1-3. PORTBCS enables the access to Port B register and is provided as an output from 82A304. Table 1-2 gives the Port B register bit definition.

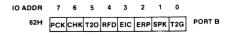


Figure 1-3. Port B register definition

Addr	Bits	Function	
62H		Port B Regist	er
	7	Read only.	PCK - System memory parity check.
	6	Read only.	CHK - IO channel check.
	5	Read only.	T2O - Timer 2 out
	4	Read only.	RFD - Refresh Detect.
	3	Read/write.	EIC - Enable IO channel check.
	2	Read/write.	ERP - Enable system memory parity check.
	1	Read/write.	SPK - Speaker Data
	0	Read/write.	T2G - Timer 2 Gate Speaker

Table 1-2. Port B Register Definition

CS 8230 Internal Register Access Ports

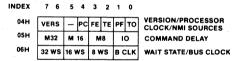

The CS 8230 have internal registers used for system configurations and for diagnostics. These are accessed through IO ports 22H and 23H normally found in the interrupt controller. An indexing scheme is used to reduce the number of IO addresses required to access all registers needed to configure and control CS 8230 chips. Each access (either read or write) to an internal register is done by first writing its index into port 22H. This index then controls the multiplexers gating the appropriate register data accessible as port 23H. Every access to port 23H must be preceded by writing the index value to port 22H even if the same data port is being accessed again.

Figure 1-4. Configuration Register Access Ports

Configuration Registers

There are 3 bytes of configuration and diagnostic registers in 82C301 as shown in figure 1-5. The definitions for these registers are given in table 1-3.

Index	Bits	Function
04H		Version/Processor clock select/NMI source
	7:6	Read only. Version
		0 Initial version
	5	Reserved
	4	Processor Clock Select. If SCLK is selected as the source for BCLK, CLK2 source must not be selected as BCLK.
		 Use processor oscillator input. Default. Use AT bus state machine clock (SYSCLKx2).
	3	Power Fail Warning Enable
		0 Power Fail NMI not enabled. Default.1 Power Fail NMI enabled
	2	Local Bus READY timeout NMI Enable
		 READY timeout NMI not enabled. Default. READY timeout NMI enabled
	1	Read only. Power Fail warning active during last NMI arbitration.
		0 Power Fail warning pin not active. Default.1 Power Fail warning pin was active.
	0	Read only. Local bus READY timeout
		0 READY timeout has not occurred. Default.1 READY timeout has occurred
05H		Command delay
		 The value for each one of the command delay field is defined as: 0 0 cycle delay 1 1 cycle delay 2 2 cycle delay 3 3 cycle delay
	7:6	AT Bus 32 bit memory command delay Specifies between 0 and 3 BCLK cycles for command delay during an AT bus 32 bit memory cycle. Default is 0.
	5:4	AT Bus 16 bit memory command delay Specifies between 0 and 3 BCLK cycles for command delay during an AT bus 16 bit memory cycle. Default is 0.

Table 1-3. 82C301 Configuration Register Definitions

Index	Bits	Function
05H	3:2	AT Bus 8 bit memory command delay Specifies between 0 and 3 BCLK cycles for command delay during an AT bus 8 bit memory cycle. Default is 1.
	1:0	AT Bus I/O Cycle command delay Specifies between 0 and 3 BCLK cycles for command delay during an AT bus IO cycle. Default is 1.
06H		Wait State/Bus Clock Source
	7:6	 32 bit AT Bus wait state select 0-3 wait states per 32 bit transfer on the AT bus. Each wait state is 2 BCLK cycles. Default is 3. 3 cycle delay 2 cycle delay 1 cycle delay 3 0 cycle delay
	5:4	 16 bit AT Bus wait state select 0-3 wait states per 16 bit transfer on the AT bus. Each wait state is 2 BCLK cycles. Default is 3. 3 cycle delay 2 cycle delay 1 cycle delay 3 0 cycle delay
	3:2	 8 bit AT Bus wait state select 2-5 wait states per 8 bit transfer on the AT bus. Each wait state is 2 BCLK cycles. Default is 5. 5 cycle delay 4 cycle delay 3 cycle delay 2 cycle delay
	1:0	 Bus Clock Source Select Use Proc Clock/3 for AT bus state machine. Default. Use Proc Clock/2 for AT bus state machine. Reserved. Use ATCLK input pin for the AT bus state machine.

Table 1-3. 82C301 Configuration Register Definitions (Continued)

82C301 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}		7.0	V
Input Voltage	VI	-0.5	5.5	V
Output Voltage	Vo	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{stg}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82C301 Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	4.75	5.25	v
Ambient Temperature	T _A	0	70	С

82C301 DC Characterisitcs

Parameter	Symbol	Min.	Max.	Units
Input Low Voltage	VIL		0.8	v
Input High Voltage	VIH	2.0		v
Output Low Voltage I _{OL} =8mA (Note 1)	V _{OL}		0.45	V
Output High Voltage I _{OH} =-200 μA	V _{OH}	2.4	- 1420	v
Input Current $0 < V_{IN} < V_{CC}$	I _{IL}		±10	μA
Output Short Circuit Current V _O =0V	I _{OS}	TBD	TBD	mA
Input Clamp Voltage	V _{IC}		TBD	V
Power Supply Current @ 16 MHz Clock	I _{CC}		40	mA
Output HI-Z Leak Current 0.45 < V _{OUT} < V _{CC}	I _{OZ1}		±10	μA
CLK2 Output Low Voltage @ I _{OL} = 5 mA	V _{OLC}		0.45	V
CLK2 Output High Voltage @ I _{OH} = -1 mA	V _{OHC}	4.0		V

NOTE:

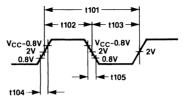
1. REF has $I_{OL} = 16$ mA. CLK2, MALE have $I_{OL} = 8$ mA. All other outputs and I/O pins have $I_{OL} = 4$ mA. In all cases all $I_{OL} = I_{OH}$ for the pin.

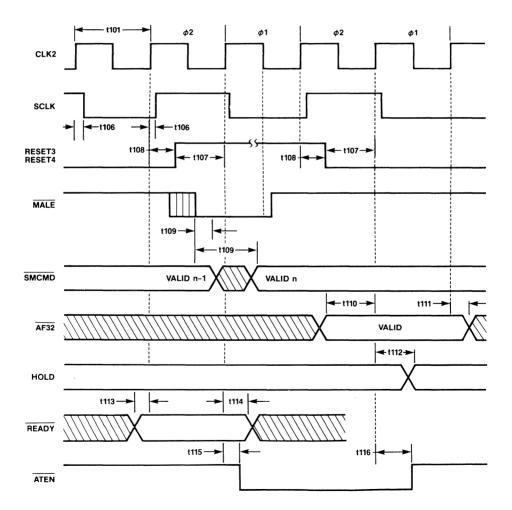
82C301 AC Characteristics (T_A = 0°C to 70°C, V_{CC} = 5V \pm 5%)

Sym	Description	Min.	Тур.	Max.	Units
t101	CLK2 period		31		ns
t102	CLK2 low time (at 32 MHz)	9			ns
t103	CLK2 high time (at 32 MHz)	9			ns
t104	CLK2 rise time			8	ns
t105	CLK2 fall time			8	ns
t106	SCLK delay from CLK21		4		ns
t107	RESET3, RESET4 set-up time		15		ns
t108	RESET3, RESET4 hold time		8		ns
t109	SMCMD delay from MALE active		7		ns
t110	AF32 set-up time to CLK21	22			ns
t111	AF32 hold time to CLK21	0			ns
t112	HOLD delay from CLK21		25		ns
t113	READY input set-up time to CLK21	13			ns
t114	READY input hold time from CLK21	5			ns
t115	ATEN active delay from CLK21		20		ns
t116	ATEN inactive delay from CLK21		20		ns
t117	MALE active delay from CLK21		15		ns
t118	MALE inactive delay from CLK21		15		ns
t119	READY output active delay from CLK21		20		ns
t120	READY output inactive delay from CLK21		20		ns
t121	ATSCLK period		125		ns
t122	ATSCLK low time		62		ns
t123	ATSCLK high time		62		ns
t124	ATSCLK rise time			8	ns
t125	ATSCLK fall time			8	ns
t126	ALE delay from ATSCLK († or ↓)		5		ns
t127	XIOR, XMEMR, INTA active delay from ATSCLK († or 1)		10		ns
t128	XIOR, XMEMR, INTA inactive delay from ATSCLK1		10		ns
t129	IOCHRDY set-up time to ATSCLK1		17		ns

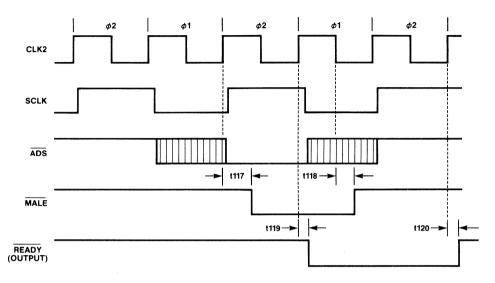
82C301 AC Characteristics (Continued)

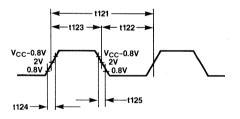
 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%)$

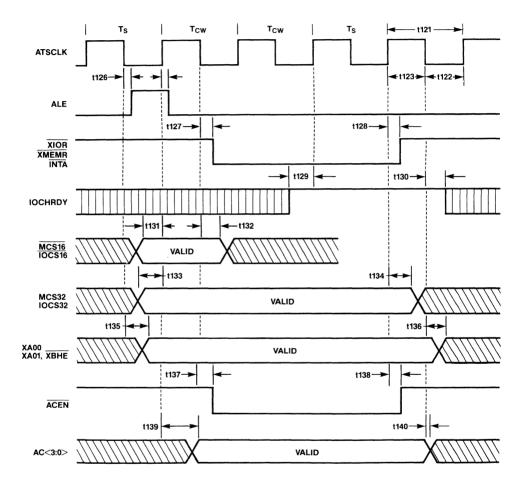

Sym	Description	Min.	Typ.	Max.	Units
t130	IOCHRDY hold time to ATSCLK	0			ns
t131	MCS16, IOCS16 set-up time to ATSCLK1	35			ns
t132	MCS16, IOCS16 hold time from ATSCLK		25		ns
t133	MCS32, IOCS32 set-up time to ATSCLK1	35			ns
t134	MCS32, IOCS32 hold time from ATSCLK		25		ns
t135	XA00, XA01, SBHE active delay from ATSCLK		20		ns
t136	XA00, XA01, SBHE inactive delay from ATSCLK		10		ns
t137	ACEN active delay (read cycle) from ATSCLKi		20		ns
t138	ACEN inactive delay (read cycle) from ATSCLK1		10		ns
t139	AC<3:0> active delay from ATSCLK1		20		ns
t140	AC<3:0> inactive delay from ATSCLKI		10		ns
t145	XMEMR, XMEMW active delay from ATSCLK1 (with zero command delay)		15		ns
t146	ACEN active delay (write cycle) from ATSCLK1		10		ns
t147	ACEN inactive delay (write cycle) from ATSCLK	0			ns
t148	OWS set-up time to ATSCLK		17		ns
t149	OWS hold time from ATSCLK1	0			ns
t151	NMICS set-up time to XIOW active	20			ns
t152	NMICS hold time from XIOW inactive	20			ns
t153	Data (XD7) set-up time to XIOW inactive	30			ns
t154	Data (XD7) hold time from XIOW inactive	20			ns
t155	NMI delay from XIOW inactive		25		ns
t156	PORTBCS set-up time to XIOR, XIOW active	20			ns
t157	PORTBCS hold time from XIOR, XIOW inactive	20			ns
t158	Data (XD<7:0>) valid delay from XIOR active	15			ns
t159	Data (XD<7:0>) hold time from XIOR inactive	15			ns
t160	IO2XCS set-up time to XIOR, XIOW active		10		ns
t161	IO2XCS hold time from XIOR, XIOW inactive		15		ns
t162	LPAR, IOCHK, PFAIL pulse width		15		ns
t165	REFREQ pulse width	15			ns


82C301 AC Characteristics (Continued) (T_A = 0°C to 70°C, V_{CC} = 5V \pm 5%)

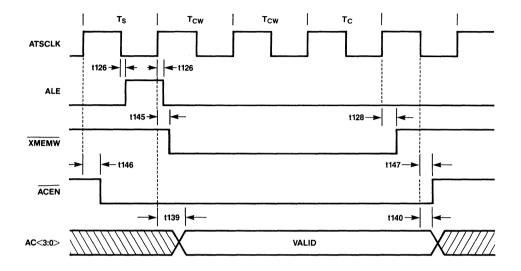
Sym	Description	Min.	Тур.	Max.	Units
t166	REF set-up time to ATSCLK1		10	_	ns
t167	XMEMR active delay (refresh cycle) from ATSCLK1		15		ns
t168	XMEMR inactive delay (refresh cycle) from ATSCLK1		15		ns
t169	IOCHRDY set-up time (refresh cycle) to ATSCLK1	25			ns
t170	IOCHRDY hold time (refresh cycle) from ATSCLK1	0			ns
t171	BE<3:0> active delay from XA0, XA1, XBHE valid		15		ns
t172	BE<3:0> inactive delay		15		ns
t173	SMCMD active delay from XMEMR, XMEMW active		20		ns
t174	SMCMD inactive delay from XMEMR, XMEMW inactive		20	-	ns
t175	ACEN active delay from HLDA1 active		20		ns
t176	ACEN inactive delay from HLDA1 inactive		20		ns
t177	AC<3:0> active <u>delay</u> from XA0, XA1, XBHE not valid		TBD		
t178	AC<3:0> inactive delay from XA0, XA1, XBHE valid		TBD	***	
t179	AC<3:0> active delay from XMEMR active		TBD	R B B B B B B B B B B B B B B B B B B B	
t180	AC<3:0> inactive delay from XMEMR inactive		TBD		

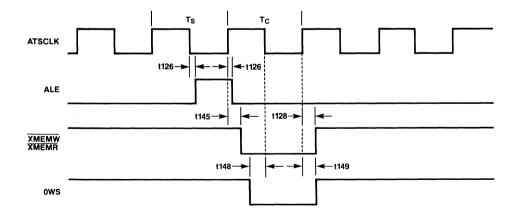

82C301 TIMING DIAGRAMS

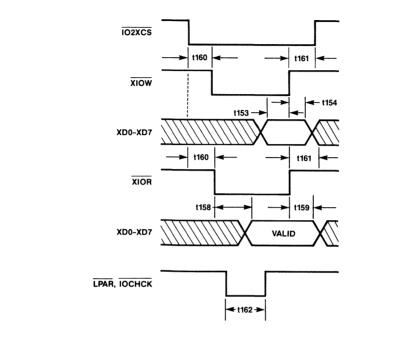


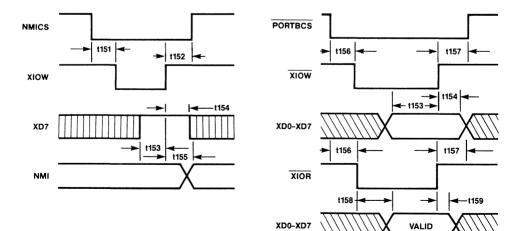


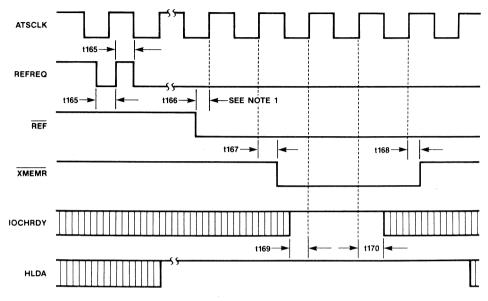
82C301 TIMING DIAGRAMS










82C301

NOTE

REF is an asynchronous signal and the setup time is specified only to guarantee starting a refresh cycle on that clock cycle instead of next one.

82C302 PAGE/INTERLEAVE MEMORY CONTROLLER

- Page mode access with interleaved memory banks achieves higher performance than conventional DRAM arrays.
- Zero wait state access at 16MHz using 100nS DRAMs.
- Minimum configuration of 1 bank of 36 bits, 1MB using 256K x 1 or 4MB using 1M × 1 DRAMs.
- Maximum configuration of 4 banks of 36 bits, 4MB using 256K × 1 or 16MB using 1M × 1 DRAMs.
- Memory configurations of 1, 2 and 4 banks.
- Staggered refresh to reduce power supply noise.

OVERVIEW

The 82C302 performs the memory control functions in a 80386-based systems that utilizes page mode access DRAMs. The memory configurations can be one bank (non-interleaved) or multiple banks (2 or 4) interleaved on 2KB-page basis.

Array Configuration

The 82C302 organizes memory as banks of 36 bits consisting of 32 bits of data and 4 bits of parity. A common design may use either 36 by-1 DRAMs or 8 by-4 and 4 by-1 DRAMs. The minimum configuration can be a single bank operating in non-interleaved mode or can be one to two pairs of banks operating in two-way page interleaved mode at higher performance.

The memory controller is designed such that the memory can be up-graded from one to two banks by making it a two-way interleaved organization. Because of the interleaved page operation, the third and fourth banks must be added as a pair. Furthermore, the DRAM types must be identical in each bank of a pair due to the interleaved configuration. However, each pair of banks can use different DRAM types. with one or two banks of smaller DRAM types and later upgraded with additional pairs of banks of larger DRAMs.

Page Interleaved Operation

The 82C302 uses a page interleaved design that is different from most interleaved memory designs. Normal two-way interleaving uses two banks of DRAMs with even (double word) addresses stored in one bank and odd addresses in the other. If accesses are sequential (or at least to alternating even and odd addresses) the RAS precharge time of one set can be overlapped with the access time of the second set. Typically the hit rate (fraction of times that the required bank is available) is 50%. This is especially true since operand accesses (which tend to be more random) can be interspersed with (most likely sequential) instruction fetches.

Page mode operation available with most DRAMs operates because the access to the row address of the internal DRAM array makes available a large number of bits (512 bits in a 256K \times 1) that are subsequently selected using the column address. Once a row access has been made higher speed random access can be made to any bit (1 of 512) within the row. The page mode access and cycle times are typically half that of the normal access and cycle times respectively. If 36 256K × 1 DRAMs are used to implement a bank, a page would have 512 × 4 bytes = 2KB. Thus memory could be interleaved on a 2KB page rather than 4B basis. Any access to the currently active RAS page would occur in the page access rather than the normal access time and any subsequent access could be to anywhere in the same 2KB without incurring any penalty due to RAS precharge.

When memory is configured to take advantage of this DRAM organization, significantly better performance can be achieved over normal interleaving. There are two reasons for this:

 The page mode access is faster than the normal access time. This permits more relaxed timing in order to achieve the same 0 wait-state "hit" access.

— The frequency of the next access being fast (same or alternate page vs. alternate address in interleaved mode) is significantly higher. This is because of the principle of locality of reference, instructions and data tend to be clustered together.

However, the complexity is somewhat higher in the page mode controller, making VLSI an ideal implementation vehicle.

FUNCTIONAL DESCRIPTION

The 82C302 performs four major functions as shown in figure 2-1:

- DRAM memory access arbitration
- DRAM memory access cycle control
- DRAM refresh
- Memory mapping

Memory Access State Machines and Arbitration

The 82C302 controls the DRAM memory access from three sources: CPU, DMA, and refresh requests. These accesses are arbitrated based on the inputs HLDA1 and REF and are handled by three state machines controlling each type of accesses. The CPU cycle state machine controls the memory operation for CPU accesses, the DMA cycle state machine for DMA accesses, and the refresh cycle state machine controls the DRAM refresh operation.

The refresh state machine is in control whenever REF is active. When HLDA1 is active the DMA state machine is in control. In all other cases, the CPU state machine is in control for valid DRAM memory accesses as defined by the memory map in the configuration registers. The arbitration is not preemptive in that the current active state machine always runs to completion before relinquishing the control. Therefore, it is possible for the HLDA1 with active XMEMW or XMEMR to prevent refresh cycles to take place.

CPU Access State Machine

The CPU initiated accesses are decoded according to the memory map defined in the configuration registers. These are the only accesses that uses the page mode operation of the DRAMs. The 82C302 maintains four page registers storing the page addresses of the most recently accessed DRAM pages of the two-way page-interleaved banks. These four registers are called active pages are called "hits" and are faster because the DRAM is operated in the page mode with the RAS staying asserted.

The 82C302 supports memory configurations with either one, two, or four banks. Since one active register is provided for each bank, the number of active pages varies with the amount of memory installed. In a non-interleaved minimum memory configuration only one active page register is in use. For each active page register in use, the corresponding RAS stays asserted after the previous access. If an access does not hit any active pages, a "miss" cycle, normal DRAM access cycle is entered by first de-asserting the RAS associated with the bank accessed. Refer to the timing diagram for the timing sequence for each of these cases.

RAS and CAS Generation

The 82C302 is based on 2K byte pageinterleaved organization. To maintain this organization, the following table shows the address lines used for the different organizations:

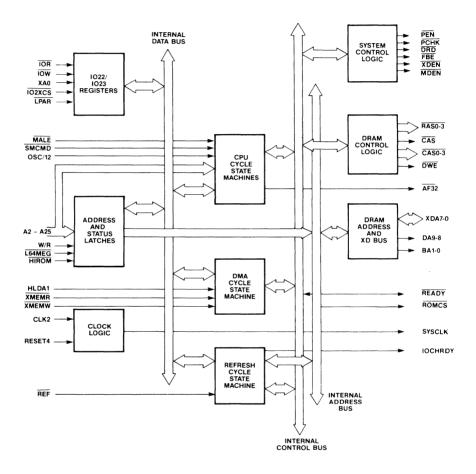


Figure 2-1. 82C302 Functional Block Diagram

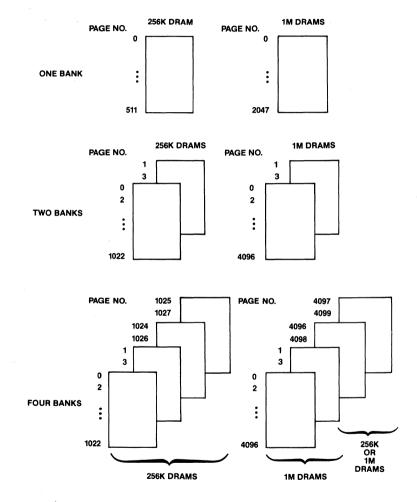


Figure 2-2. Memory Addressing

For non-interleaved operation (one bank only):

	Row	Column
256K DRAM's	A<19:11>	A<10:2>
1M DRAM's	A<21:12>	A<11:2>

For interleaved memory(two or four banks):

	Row	Column
256K DRAM's		A<10:2>
1M DRAM's	A<21:12>	A<22>, A<10:2>

Table 2-1. Row and Column Address Definition

In interleaved memory cases bit A<11> determines which one of the even page banks or odd page banks is accessed in the two-way interleaved organization. For configurations using only 256K DRAM's, A<11> and A<21> are used to control $\overline{RAS < 3:0>}$: and for 1M DRAM only configurations A<11> and A<23> are used. When 256K and 1M DRAMs are used, it is required that the 1M DRAMs occupy the first two-banks and the 256K DRAMs occupy the second two-banks. This constrain is there to ensure that the there will not be a hole in the address space without actual DRAM's. Figure 2-2 shows the memory addressing scheme for the allowable memory configurations.

RAS Timeout

When using DRAM page mode, the maximum RAS pulse width must be observed. For most DRAMs this is 10 microseconds (although some have 30 or 100 microsecond limits). Timers are maintained for each bank to assure data integrity using the OSC/12 (1.19MHz = 840nS) clock available on the system board. RAS is de-asserted for each bank when its counter times out at about 10 microseconds intervals. The configuration register bit REG13H<7> can be programmed to set desired RAS time out intervals.

CPU Access Cycles Sequences

There are many basic CPU memory access patterns: memory read-hit access, memory write-hit access, memory read-miss access, and memory write-miss access, and CPU IO access to 82C301 configuration registers. These basic access sequences and timing for the critical signals are shown in the timing charts. In addition to these basic patterns, the configuration register REG13H<6> may be programmed to have one wait state inserted for supporting slow DRAM's. Note that the default setting after the system reset is for one wait state insertion.

DMA Access State Machine

DMA accesses are initiated by asserting HLDA1. The XMEMR an XMEMW determines if it is a read or a write memory access. The bytes accessed are controlled externally with the BE<3:0> signals generated by the 82C301 Bus Controller. The DMA state machine makes one memory access per DMA bus cycle and does not attempt to pack or unpack data transfers to make full 32-bit transfers. Refer to the timing charts for a DMA access cycle sequence and timing.

Dynamic RAM Access Logic

The DRAM control logic generates the necessary RAS, CAS and DWE signals for all DRAM accesses. CPU, DMA, and refresh access cycles use DA \leq 9:8 \geq and XDA<7:0 \geq and bank select signals BA<1:0 \geq (Note that in the current version of 82C302, the signals BA<1:0 \geq default to zero.) The system control logic provides MDEN to control the buffer chips. MDEN enables data buffers for MD bus in 82A305's for non-refresh DRAM access cycles.

Refresh Cycles

To reduce power supply noise generation due to the surges caused during RAS transitions, RAS pulses to each bank are staggered by one CLK2 cycle, as shown in Figure 2-3. Because all RAS's could be active for page mode operation, a refresh cycle requires that all RAS's be first de-asserted then asserted with the correct refresh address.

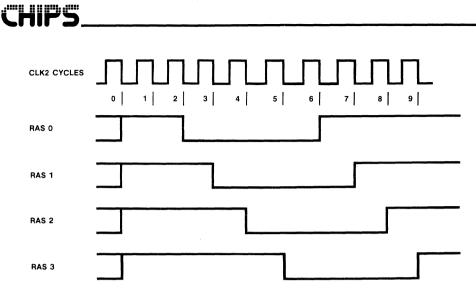


Figure 2-3. Staggered RAS pulses during refresh

Memory Mapping Logic

The configuration registers REG08H to REG13H define what is a valid local memory access, and what is a ROM memory access according to the local bus addresses. REG08H and REG09H determines how ROM areas (as defined by an IBM PC AT) between 768K to 1M address range are accessed.

For valid local memory accesses it asserts the AF32 to indicate that it has <u>control</u> of the local bus and also asserts the READY signal at the end of the access cycle. If an access is a ROM access, it asserts ROMCS to provide controls for the ROM's or PROM's; in this case, the READY signal must be provided to the CPU and 82C302 by another source (82C301 will provide this signal in a chip set solution).

Clock, Reset and Other Miscellaneous Logic

The RESET4 input causes all internal registers to be reset to their default values. Configuration registers not specified with a default value is not reinitialized and may not retain its old value. The system control logic generates the PCHK and PEN signals to be used for enabling parity error checking.

Configuration/Diagnostic Registers

There are 14 bytes of configuration and diagnostic registers in the 82C302. These are accessed through IO ports 22H and 23H normally found in the interrupt controller. Accesses to these configuration and diagnostic registers are done first by writing the index of the desired register into port 22H and then followed by an access (either read or write) to 23H for the data. XDEN is asserted for these accesses to control the buffer connecting the XD and XDA buses.

Memory Configuration Registers

The configuration registers REG08H to REG0FH are used to control how the CPU memory accesses are defined. They define all address as ROM accesses, system memory accesses (or DRAM accesses for short), other local CPU bus accesses, or as IO channel accesses. These provisions are made because the low one megabyte is both occupied by DRAM's, ROM's and also devices on the AT bus. For ROM accesses it generates the ROMCS to control the PROM access;for system memory accesses it generates the necessary DRAM controls to the system memory

CHIPS.

under its control; it generates AF32 for all other local CPU bus accesses; and it does not control the IO channel accesses.

The 82C301 provides three 256KB areas where the ROM's can be located. The low ROM space is located just below the 1MB address, the middle ROM space is located below 16MB address, and the high ROM space is below 4GB address. The low ROM is used for 8086 compatible operation, the middle ROM is for 80286, and the high ROM is for 80386. Upon system reset, the default configuration register setting causes accesses to these three ROM areas to generate ROMCS. With the exception of the high ROM area which is always recognized as ROM accesses, the other two ROM areas can be mapped to be either ROM or RAM accesses.

After reset, REG08<4:3> may be programmed to make the entire middle ROM area mapped to DRAM and with write protection if desired. REG08H<2> determines if the 82C301 recognizes the addresses generated beyond 16 MB as local CPU bus cycles. REG08H<1> is used to enable REG0AH to REG0FH which controls the "Low Meg DRAM" (40000H to FFFFFH) address mapping for 256KB to 1MB addresses in 16 KB blocks. This bit defaults upon reset so that only the 0 to 256KB areas are acces-

sible. Accesses to the low megabyte DRAM can be made by enabling the mapping after the necessary configuration registers are correctly programmed. REG08H<0> defaults to single bank memory configuration upon reset and must be programmed to enable page/ interleaved operation.

The REG09H control the address mapping and write protection for the low ROM area (from C0000H to FFFFFH) in 64KB blocks. REG0AH to REG0FH define for each 16 KB address range if it is a DRAM block in the system memory or on the IO channel.

INDEX	7	6	5	4	3	2	1	0
in the Law		•		-		-		•

08H	0	VE	RS	мw	MR	нм	SM	NI	IDENTIFICATION
09H	R3	R2	R1	RO	D3	D2	D1	D0	ROM CONFIGURATION
0AH	36	вк					25	6K	MEMORY ENABLE (16KB RESOLUTION)
OBH	49	6K					38	4K	•
0CH	624K				512K			•	
ODH	75	2K					64	ок	•
0EH	88	ж					76	8K	•
0FH	100	8K					89	6K	MEMORY ENABLE
									(16KB RESOLUTION)

Figure	2-5.	Control	and	Address	Space	Мар
Registe	er Su	immary				

Index	Bits	Function				
08H		Identification				
	7	Controller Type Part type				
		0 Interleaved Memory Controller (82C302)				
	6:5	Version				
		0 Initial				
	4	MW - Middle Boot Space Write Protect. This bit is used in conjunc- tion with bit 3 allowing the BIOS code to be copied into RAM and write protected at this location as well as below 1MB. It should only be used if there is RAM present at this address (16MB installed). Executing out of RAM will result in better performance than out of narrower (usually 8 or 16 bits) EPROMs.				
		 Read/Write of 256KB RAM at 16128K 00FC0000H. Default. Read-Only of 256KB RAM at 16128K 00FC0000H 				
	3	MR - Middle Boot ROM disable				
		 The boot/BIOS ROM located just below 16MB is enabled. This is necessary for 286 compatibility. Default. The boot/BIOS ROM located just below 16MB is disabled. 				
	2	HM - 16MB IO Channel Memory Limit				
		 0 AF32 will not be asserted for addresses ≥ 16MB. This should only be used if external logic can recognize addresses above 16MB. Default. 1 AF32 is asserted for addresses ≥ 16MB (01000000H). Since IO channel memory cannot normally be configured above 16MB, accessing above 16MB will cause a READY timeout if that feature is enabled. This is necessary during setup because memory address above 16MB that are not enabled for local memory could wrap into a valid IO channel memory location. 				
	1	SM - Minimum memory configuration after reset. Used during initialization.				
		 256K only enabled. Default. Ignore memory address configuration registers 0AH to 0FH. Normal configuration controlled by registers 0AH to 0FH. 				
	0	 NI - Single bank/interleave select 0 Disable interleave (single bank). Default. 1 Enable interleave 				

Table 2-2. Memory Configuration Register Definition

CHIP5_____

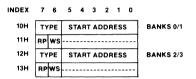

Index	Bits	Function
09H		RAM/ROM Configuration in boot area.
	7 6 5 4	RAM at 768K C0000-CFFFFH (EGA) RAM at 832K D0000-DFFFFH RAM at 896K E0000-EFFFFH RAM at 960K F0000-FFFFFH (BIOS)
		Bits 7:4 disable writing to RAM located in the BIOS area in 64KB blocks. BIOS data.
		0 Read/Write. Default. 1 Read-Only
	3 2 1 0	ROM at 768K C0000-CFFFFH (EGA) ROM at 832K D0000-DFFFFH ROM at 896K E0000-EFFFFH ROM at 960K F0000-FFFFFH (BIOS)
		Bits 3:0 enable substitution of the BIOS ROM located below 1MB with RAM at the same location in 64KB blocks. This should be done after the BIOS code is copied from the ROM and the RAM locations have been write protected using bits 7:4.
		0 Disabled 1 Enabled. Default.
0AH 0BH 0CH 0DH 0EH 0FH		Address Map 256K 040000-05FFFFH (16K Resolution) Address Map 384K 060000-07FFFFH Address Map 512K 080000-09FFFFH Address Map 640K 0A0000-0BFFFFH Address Map 768K 0C0000-0DFFFFH Address Map 896K 0E0000-0FFFFFH
		Address is on or controlled by the system boardAddress is on the IO Channel.
		This permits 16K blocks of memory to be disabled allowing ROMs, memory expansion mechanisms (EMS or XMA) or memory mapped IO devices to reside within the lower 1MB address space.

Table 2-2. Memory Configuration Register Definition (Continued)

DRAM Array Configuration and Timing

The configuration registers REG10H to REG13H provides the DRAM type definition and starting address for each pair of banks. banks 0 and 1, and banks 2 and 3. The BEG10H<7:6> and BEG12H<7:6> defines if the DRAM's are enabled, uses 256K DRAM's. or uses 1M DRAM's. These bits defaults to 256K DRAM's upon reset. The REG10H<6:0> and REG12H<6:0> defines the address bits <25:20> of the starting address of the pairs of banks. Some of these bits may not be valid because the memory banks must start at some predefined boundaries. For 256K DRAM's, all bits <25:20> are valid if only single bank is enabled-it can be on any 1MB boundary: otherwise only bits <25:21> are valid starting address bits on 2MB boundaries. For 1M DRAM's, only bits <25:23> are valid forcing it on 8 MB boundaries. The REG11H<7> and REG13H<7> define the RAS precharge time required when a page miss occurs so that DRAM's of different speeds can be supported for each pair of banks. The REG11H<6> and REG13H<6> define the wait state to be inserted to meet the DRAM speed. These parameters default to the slower timing upon reset so that the system can be powered up with minimal assumptions on the DRAM speed and the memory configuration. Refer to Table 2-3 for details of the bit definitions.

Figure 2.6. DRAM Configuration/Timing Register Summary

Index	Bits	Function
10H 12H		bank 0/1 Type/Start Address bank 2/3 Type/Start Address
	7:6	DRAM Type
		 none (bank disabled) 256K words, default value for REG10H and REG12H 1M words Reserved
	5:0	Starting Address 25:20 The DRAM type determines which address bits are valid in the address recognition process. This field of REG10H defaults to zero after reset.
		25:20 256K DRAM's. 1MB boundary 1MB per bank, single bank only. Valid for the first register only.
		25:21 256K DRAM's. 2MB boundary 1MB per bank, two banks required for interleaved operation.
		25:23 1M DRAM's. 8MB boundary 4MB per bank, two banks required for interleaved operation.

Table 2-3. DRAM Configuration and Timing Register Definition

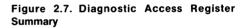

Index	Bits	Function
11H 13H	7	banks 0/1 Timing banks 2/3 Timing DRAM RAS precharge. Specifies the amount of time for RAS precharge when a page miss occurs.
		 3 CLK2 times (93 nS at 16MHz) 5 CLK2 times (155nS at 16MHz). Default.
	6	Access wait states Specifies the number of wait states in SCLK units to allow the use of slower DRAMs.
		0 0 wait-states 1 1 wait-states. Default.
	5:0	Reserved

Table 2-3. DRAM Configuration and Timing Register Definition (Continued)

Diagnostic Access Register

REG28H<7> controls the parity check enable and defaults to "disable" after reset. This bit generates the PEN signal for enabling the parity check by 82A306. When parity errors occur REG28H<1:0> and REG29H<7:0> will latch the error address <25:16>.

INDEX	7	6	5	4	3	2	1	0
28H	EP						н	PEA
29H	P	ARII	TY E	RR	OR /	ADD	RE	SS

Index	Bits	Function
28H	7	Error Source/Address (MSBs) Parity check disable
		0 Enabled 1 Disabled
	6:2 1:0	Not used, returns unpredictable value. High Parity Error Address bits <25:24>
29H	7:0	Parity Error Address (LSBs) Error address bits <23:16>

Table 2-4. Diagnostic Access Registers Definition

82C302 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{cc}		7.0	V
Input Voltage	V _I	-0.5	5.5	v
Output Voltage	Vo	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{stg}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82C302 Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{cc}	4.75	5.25	V
Ambient Temperature	Τ _Α	0	70	С

82C302 DC Characterisitcs

Parameter	Symbol	Min.	Max.	Units
Input Low Voltage	VIL		0.8	٧
Input High Voltage	VIH	2.0		v
Output Low Voltage I _{OL} =8mA (Note 1)	V _{OL}		0.45	v
Output High Voltage I _{OH} =-200 μA	V _{он}	2.4		v
Input Current 0 < V _{IN} < V _{CC}	I _{IL}		±10	μA
Output Short Circuit Current V _O =0V	I _{OS}	TBD	TBD	mA
Input Clamp Voltage	VIC		TBD	V
Power Supply Current @ 8 MHz Clock	I _{CC}		20	mA
Output HI-Z Leak Current 0.45 < V _{OUT} < V _{CC}	I _{OZ1}		±10	μA

NOTE:

1. SYSCLK, $\overline{\text{DWE}}$, $\overline{\text{RAS}}<3:0>$, $\overline{\text{CAS}}$, $\overline{\text{CAS}}<3:0>$ have $I_{OL} = 8$ mA. All other outputs and I/O pins have $I_{OL} = 4$ mA. In all cases all $I_{OL} = I_{OH}$ for the pin.

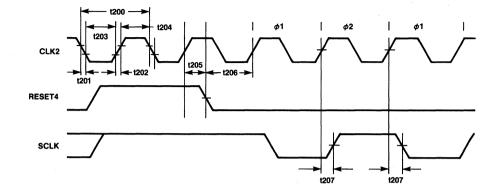
82C302 AC Characteristics

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{CC} = 5V \pm 5\%)$

Sym	Description	Min.	Тур.	Max.	Units
t200	CLK2 input cycle time (t0 used as reference)	31		42	ns
t201	CLK2 fall time	2		5	ns
t202	CLK2 rise time	2		5	ns
t203	CLK2 low time	10			ns
t204	CLK2 high time	10			
t205	RESET hold time	6			ns
t206	RESET set-up time	5			ns
t207	SCLK delay time	6	12	22	ns
DMA S	Sequence				
t210	RASi de-assertion time from HLDA1		13		ns
t211	RASi active delay from commands active		16		ns
t212	Address set-up time to commands active	35	*****		ns
t213	Address hold time from commands inactive	0			ns
t214	AF32 active time from commands active		26		ns
t215	DRD active time from commands active	10			ns
t216	Row address set-up time to RAS active	10			ns
t217	Row address hold time from RAS active	0.5t0			ns
t218	CASi active delay from RAS active for DMA memory read cycle	1.0t0			ns
t219	CASi active delay from RAS active for DMA memory write cycle	1.5t0		,	ns
t220	DWE active delay from RAS active	0.5t0			ns
t221	READY active delay from RAS active	1.5t0			ns
t222	RASi de-assertion time from commands inactive		13		ns
t223	Column address hold time from commands active		29		ns
t224	CASi de-assertion from commands inactive		22		ns
t225	AF32 tri-state delay from commands inactive		21		ns
t226	DWE de-assertion time from commands inactive		11		ns
t227	READY de-assertion time from commands inactive		16		ns
t228	DRD de-assertion time from commands inactive		12		ns

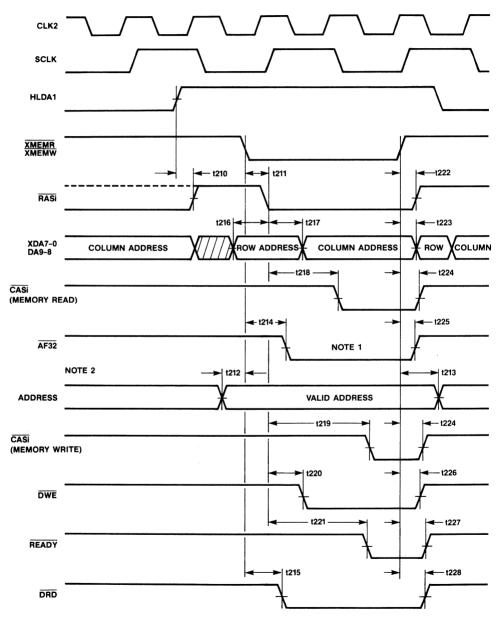
82C302 AC Characteristics (Continued) (T_A = 0°C to 70°C, V_{CC} = 5V \pm 5%)

Sym	Description	Min.	Тур.	Max.	Units
ROMC	S Sequence				
t235	ROMCS active delay from CLK21		27		ns
t236	ROMCS inactive delay from CLK21		22		ns
t237	READY input set-up time to CLK2	8			ns
t238	READY input hold time from CLK21	0			ns
Refres	h Sequence				
t240	IOCHRDY going low from REF active		14		ns
t241	IOCHRDY floating from CLK21		18		ns
t242	RAS0 precharge time		3t0		ns
t243	RASi (i = 0 to 3) pulse width		4t0		ns
t244	RAS(i+1) active delay from RASi active		1t0		ns
t245	Refresh address set-up time to RASi		3t0		ns
t246	Refresh address hold time from RASi		2t0		ns
t247	RASi inactive delay from CLK21		14		ns
t248	RASi active delay from CLK21		15		ns
IO Rea	nd/Write Sequence				
t250	IO2XCS set-up time to XIORI or XIOWI	10			ns
t251	XA0 set-up time to XIOR↓ or XIOW↓	10			ns
t252	IO2XCS hold time from XIORt or XIOWt	15			ns
t253	XA0 hold time from XIORt or XIOWt	15			ns
t254	XDEN active delay from XIOR or XIOW		15		ns
t255	XDEN inactive delay from XIORt or XIOWt		12		ns
t256	XDA<7:0> input set-up time to XIOW1	10			ns
t257	XDA<7:0> input hold time to \overline{XIOW} t	8			ns
t258	XDA<7:0> output valid delay from XIOR		37		ns
t259	XDA<7:0> hold time from XIOR1		14		ns
CPU te	o Memory Sequence		,		
t260	MALE active set-up time to CLK21		TBD		
t261	MALE inactive delay from CLK21		TBD		
t262	Address/Status set-up time to CLK21		TBD		


;

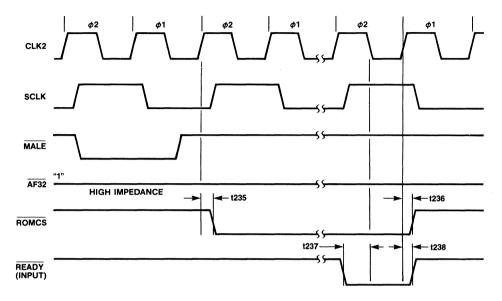
82C302 AC Characteristics (Continued) (T_A = 0°C to 70°C, V_{CC} = 5V \pm 5%)

Sym	Description	Min.	Тур.	Max.	Units
t263	Address/Status hold time from MALE1		TBD		
t264	L64MEG, HIROM set-up time to CLK21		TBD		
t265	L64MEG, HIROM hold time to MALE!		TBD		
t266	SMCMD active delay from MALE		TBD		
CPU C	Cycle Timing				
t270	AF32 active delay from CLK21		26		ns
t271	AF32 inactive delay from CLK24	namendi al 1997 generala della menerala della	17		ns
t272	CASi active delay from MALEt for read-hit cycle	nan an tar na an tar na an tar	19		ns
t273	CASi inactive delay from CLK21		16		ns
t274	CAS active delay from MALE1 for read-hit cycle		20		ns
t275	CAS inactive delay from CLK21		18		ns
t276	Column Address stable from MALE		25		ns
t277	DRD active delay from CLK21		21		ns
t278	DRD inactive delay from CLK21		17		ns
t279	FBE active delay from CLK21		23		ns
t280	FBE inactive delay from CLK21	4.2000 - 100 Martin 100 - 72 yr - 1	19		ns
t281	READY active delay from CLK21	and the second	20		ns
t282	READY inactive delay from CLK21		18		ns
t283	RASi active delay from CLK21		18		ns
t284	Row address set-up time to RASil	10			ns
t285	Row address hold time from CLK21		12		ns
t286	CASi active delay from CLK21		17		ns
t287	CAS active delay from CLK21		18		ns
t288	RASi inactive delay from CLK21		17		ns
t289	RASi precharge time	3t0			ns
t290	CASi precharge time		1.5t0		ns
t291	DWE active delay from CLK21		16		ns
t292	DWE inactive delay from CLK21		17		ns



82C302 TIMING DIAGRAM (RESET SEQUENCE)

82C302 TIMING DIAGRAM (DMA CYCLES)


NOTE

1. During DMA cycles, only RASi will become active if AF32 = 1 (not local memory)

2. The address includes $\overline{\text{L64MEG}}$ and $\overline{\text{HIROM}}$ input signals.

82C302 TIMING DIAGRAM (ROM READ CYCLE)

SCLK

HLDA1

REF

XMEMR

RAS0

RAS1

RAS2

RAS3

XDA7-0 DA9-8

IOCHRDY

t240 -

HIGH

82C302 REFRESH CYCLE WAVEFORM

t247 ----

t248

*NOTE

t242

* NOTE: Add 2 more clock cycles if either Bit 7 of register 11 is 1 or Bit 7 of register 13 is 1.

t243

t244

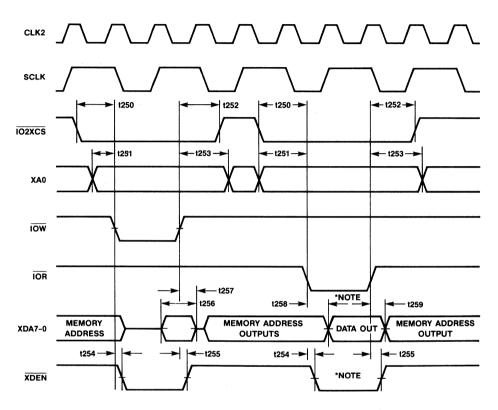
t245

- t247

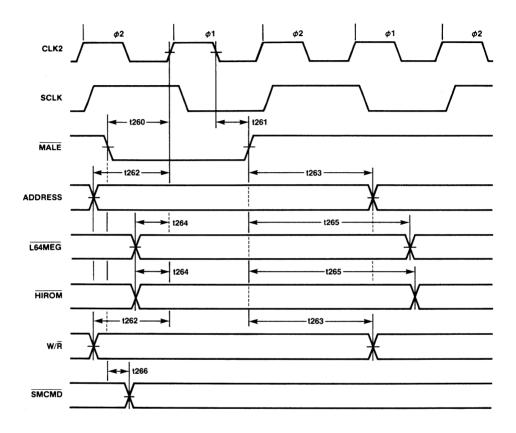
t243

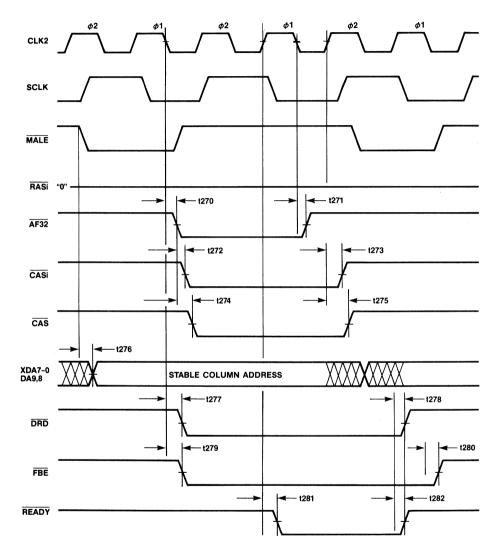
VALID REFRESH ROW ADDRESS

1243

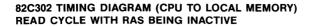

t246

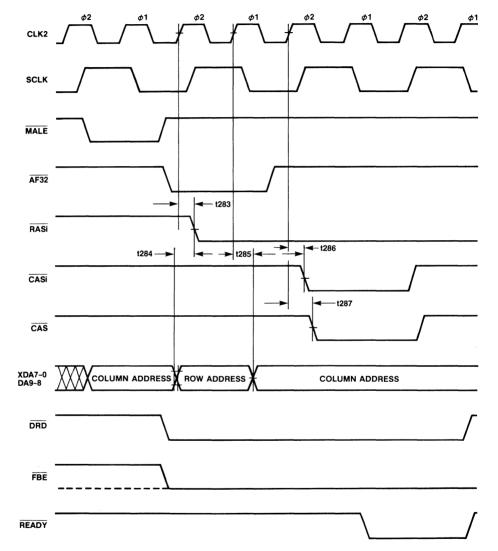
t241


HIGH IMPEDANCE

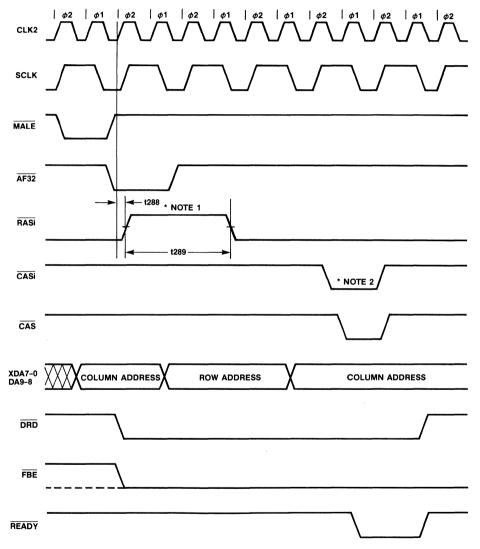

82C302 TIMING DIAGRAM (IO READ/WRITE)

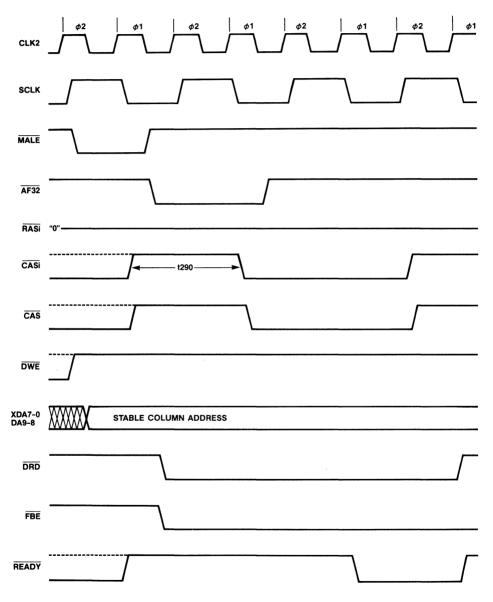
*NOTE: No data output and XDEN is inactive if the index set up by the previous IO22 Write doesn't point to a valid IO23 register of 82C302. Valid registers of IO23: 08H-0FH, 10H-13H, 28H-29H. 82C302 TIMING DIAGRAM (INPUT SETUP/HOLD TIME FOR CPU CYCLES)




82C302 TIMING DIAGRAM (CPU TO LOCAL MEMORY CYCLE) READ HIT, ϕ WAIT STATE

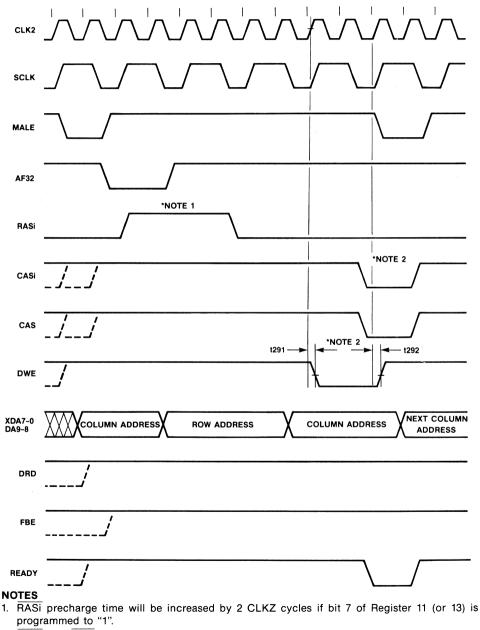
NOTE: Assume bit 6 of Register 11 (or 13) is programmed to "0".




82C302 TIMING DIAGRAM (CPU TO LOCAL MEMORY) READ MISS CYCLE

NOTES

- 1. RASi precharge time will be increased by 2 CLK2 cycles if bit 7 of Register 11 (or 13) is programmed to "1".
- 2. CASi (and CAS) pulse width will be increased by 2 CLK2 cycles if bit 6 of registers 11, (or 13) is programmed to "1".


82C302 TIMING DIAGRAM (CPU TO LOCAL MEMORY CYCLE) READ HIT FOLLOWING A WRITE OR 1 WAIT STATE READ-HIT CYCLE

NOTE: The read cycle will be identical to this waveform (regardless whether the previous cycle is a Write or not) if bit 6 of Register 11 (or 13) is programmed to "1".

82C302 TIMING DIAGRAM (CPU TO LOCAL MEMORY) WRITE MISS CYCLE

2. CASi (and CAS) pulse widths will be increased by 2 CLK2 cycles if bit 6 of register 11, (or 13) is programmed to "1".

82A303 HIGH ADDRESS BUFFERS

- Buffer for bits 31:12 of the Local, X and System address buses.
- X and S address bus can be extended to 27 bits (128MB).
- Direct interface to AT Bus
- Advanced Schottky TTL technology

FUNCTIONAL DESCRIPTIONS

The 82A303 as shown in figure 3-1 provides two functions:

- Generation of address decoding signals required by other chips.
- Interface between the local, X and System address bus.

Address Decode

The address decoding circuit provides as outputs LIOCS, LMEGCS, L64MEG, and HIROM. These signals are active if the address accesses satisfy the conditions defined in table 3-1. The signal decodes for LIOCS and LMEGCS are controlled by HLDA1 and latched on the trailing edge of MALE. The L64MEG and HIROM are simply decoded from the address signals.

Signal	Decode Condition
LIOCS	A<15:12> = 00H
LMEGCS	A<31:20> = 00H
L64MEG	A<31:26> = 00H
HIROM	A<31:26> = 3FH

Address Bus Interfaces

The 82A303 interconnects the local, X and system address buses with bidirectional drivers connecting each bus and the internal buses. Theses drivers have 24mA current drives for direct connection to the system address bus. The table 3-2 shows how the drivers are configured between the buses for each type of active bus requests. Note that the default configuration is set up so that the CPU address bus drives the memory address bus for local memory CPU access cycles.

For all CPU sourced accesses, the addresses are latched on the trailing edge of MALE.

Active	Source	Target
HLDA1	ХА	SA, A, MA
MASTER	SA	XA, A, MA
REF	-	SA driven LO
ATEN	А	XA, SA, MA
default	А	MA

Table 3-2. High Address Bus Control

27 bit Address Extensions

The standard AT implementation supports only 24-bit addresses. The CS 8230 allows for address extension on the SA and XA buses to 27 bits (128MB). This is done by grounding the enable pin XBHE for XA bus and SBHE for SA bus. Internal pullups are provided so that if the enable pins are left unconnected bits 24 to 27 of the respective bus are forced LO.

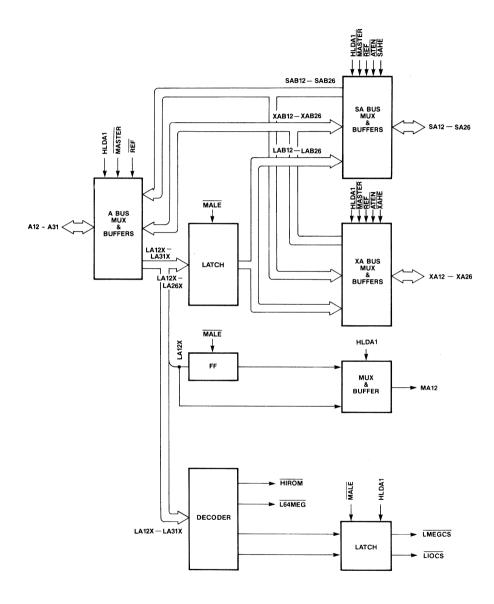


Figure 3-1. 82A303 Functional Block Diagram

82A303 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}		7.0	V
Input Voltage	VI	-0.5	5.5	V
Output Voltage	Vo	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{stg}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82A303 Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	T _A	0	70	С

82A303 DC Characterisitcs

Parameter	Symbol	Min.	Max.	Units
Input Low Voltage	V _{IL}		0.8	V
Input High Voltage	V _{IH}	2.0		V
Output Low Voltage I _{OL} =10mA (Note 1)	V _{OL1}		0.5	V
Output Low Voltage I _{OL} =24mA (Note 2)	V _{OL2}		0.5	V
Output High Voltage I _{OH} -3.3mA (Note 3)	V _{OH}	2.4		V
Input Low Current V _I = 0.5V, V _{CC} = 5.25V	I _{IL}		-200	μA
Input High Current V _I = 2.4V, V _{CC} = 5.25V	I _{IH}		20	μA
Input High Current V _I = 5.5V, V _{CC} = 5.25V	l _t		200	μA
Output Short Circuit Current V _O =0V	I _{OS}	-15	-100	mA
Input Clamp Voltage I _I = -18mA, V _{CC} = 4.75V	V _{IC}		-1.5	V
Power Supply Current	I _{CC}	140	230	mA
Output HI-Z Leak Current 3-State Output Pins	I _{OZ1}	-100	100	μA
Output HI-Z Leak Current Bidirectional Pins	I _{OZ2}	-300	120	μA
Output HI-Z Leak Current Bidirectional Pins	I _{OZ2}	-300	120	μΑ

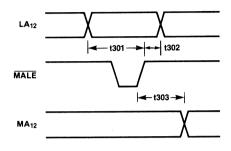
NOTES

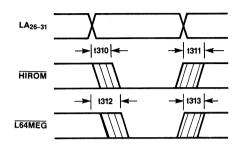
1. All bus outputs other than SA<20:12> and XA<26:21>.

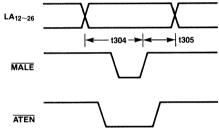
2. All SA<20:12> and XA<26:21> have I_{OL} = 24mA.

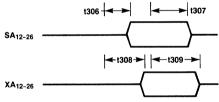
3. All outputs and bidirectional pins.

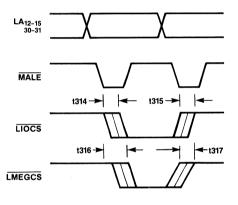
82A303 AC Characteristics

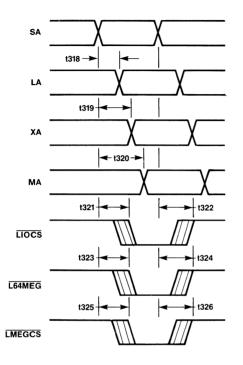

 $(T_A = 0^{\circ}C \text{ to } 60^{\circ}C, V_{CC} = 5V \pm 5\%)$

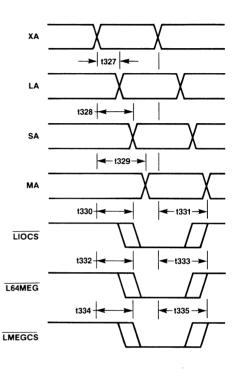

Sym	Description	Min.	Тур.	Max.	Units
t301	A to MA input set-up time to MALEt		TBD		
t302	A to MA input hold time from MALE		TBD		
t303	MA output valid delay from MALE1	5		33	ns
t304	A to SA,XA input set-up time to MALEt		TBD		
t305	A to SA,XA input hold time from MALE		TBD		
t306	SA output valid delay from ATEN active	8		33	ns
t307	SA tri-state delay from ATEN inactive	6		28	ns
t308	XA output valid delay from ATEN active	11		42	ns
t309	XA tri-state delay from ATEN inactive	9		38	ns
t310	HIROM decode active from A<32:26> valid	4		19	ns
t311	HIROM decode inactive from A<32:26> invalid	2		16	ns
t312	L64MEG decode active from A<32:26> valid	4		19	ns
t313	L64MEG decode inactive from A<32:26> invalid	2		17	ns
t314	LIOCS decode active from MALE active	6		26	ns
t315	LIOCS decode inactive from MALE active	4		23	ns
t316	LMEGCS decode active from MALE active	6	8-18-18-1	26	ns
t317	LMEGCS decode inactive from MALE active	4		23	ns
t318	A data valid delay from SA data valid	4		27	ns
t319	XA data valid delay from SA data valid	7		35	ns
t320	MA data valid delay from SA data valid	9		49	ns
t321	LIOCS decode active from SA data valid	13		50	ns
t322	LIOCS decode inactive from SA data invalid	10		39	ns
t323	L64MEG decode active from SA data valid	12		47	ns
t324	L64MEG decode inactive from SA data invalid	9		35	ns
t325	LMEGCS decode active from SA data valid	14		53	ns
t326	LMEGCS decode inactive from SA data invalid	10		40	ns
t327	A data valid delay from XA data valid	4		27	ns
t328	SA data valid delay from XA data valid	6		34	ns
t329	MA data valid delay from XA data valid	9		49	ns
t330	LIOCS decode active from XA data valid	13		50	ns

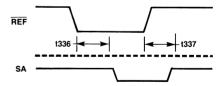

82A303 AC Characteristics (Continued) (T_A = 0°C to 60°C, V_{CC} = 5V \pm 5%)


Sym	Description	Min.	Тур.	Max.	Units
t331	LIOCS decode inactive from XA data invalid	9		38	ns
t332	L64MEG decode active from XA data valid	12		47	ns
t333	L64MEG decode inactive from XA data invalid	9		35	ns
t334	LMEGCS decode active from XA data valid	14		53	ns
t335	LMEGCS decode inactive from XA data invalid	10		40	ns
t336	SA valid delay from REF active	18		64	ns
t337	SA tri-state delay from REF inactive	8		33	ns









. .

82A304 LOW ADDRESS BUFFERS

- Buffer for bits 11:00 of the Local, X and System address buses.
- Peripheral device decode
- Direct interface to AT Bus
- Refresh Address Generation
- Advanced Schottky TTL technology

FUNCTIONAL DESCRIPTIONS

Address Decode

The signals IO2XCS, 8042CS, PORTBCS, NMICS, 287CS, and AS provide the lower address decodes for the corresponding devices after being qualified by the LIOCS generated by the high address buffer decoder. The resulting decode is as defined by the IBM PC AT IO addresses and is as shown in table 4-1. For applications where these devices are required to be relocated, the EXDEC can be tied LOW to ignore the LIOCS qualification and the MA<11:10> address bits.

Signal	Addresses Decoded
IO2XCS	022H, 023H
8042CS	060H, 064H
PORTBCS	061H
NMICS	070H
287CS	0E0H to 0FFH

Table 4-1. Low Address Decode Definition

Address Bus Interfaces

The 82A304 interfaces between the bits 00 to 11 of A, SA, XA, and MA address buses. The buffers and multiplexers are controlled by the HLDA1, MASTER, REF, and ATEN to drive the signals from the source to the target buses as defined by table 4-2 for each signal when active. When REF is asserted, the refresh counter is gated to the SA bus as refresh row address and is incremented. When none of the listed signals are active, the default buffers configuration is that the A bus drives the MA bus for memory accesses by CPU.

The SA<11:00> are 24mA address buffers for direct interface to the AT bus.

Active	Source	Target
HLDA1	ХА	SA, MA, A
MASTER	SA	XA, MA, A
REF	Counter	SA
ATEN	A<11:2>	SA<11:2>, XA<11:2>,
		MA<11:4>
	XA<1:0>	SA<1:0>
default	А	MA

Table	4-2.	Bus	Control	Definition
-------	------	-----	---------	------------

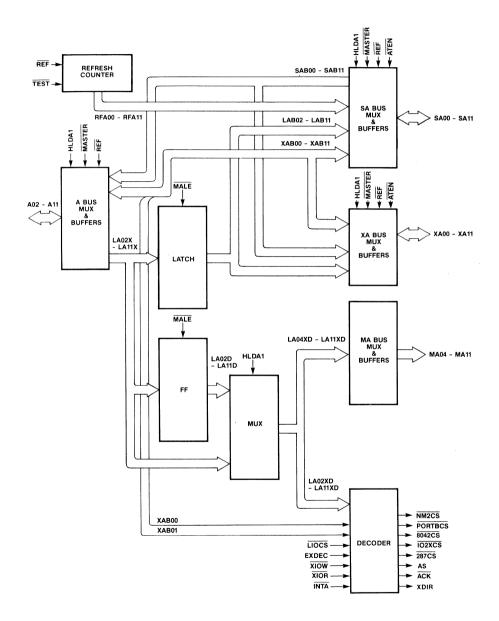


Figure 4-1. 82A304 Functional Block Diagram

82A304 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}		7.0	V
Input Voltage	VI	-0.5	5.5	V
Output Voltage	Vo	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{sto}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82A304 Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	Τ _Α	0	70	С

82A304 DC Characteristics

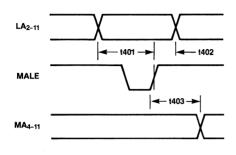
Parameter	Symbol	Min.	Max.	Units
Input Low Voltage	V _{IL}		0.8	V
Input High Voltage	V _{IH}	2.0		V
Output Low Voltage I _{OL} =10mA (Note 1)	V _{OL1}		0.5	V
Output Low Voltage I _{OL} =24mA (Note 2)	V _{OL2}		0.5	V
Output High Voltage I _{OH} -3.3mA (Note 3)	V _{OH}	2.4		V
Input Low Current V _I = 0.5V, V _{CC} = 5.25V	I _{IL}		-200	μΑ
Input High Current V _I = 2.4V, V _{CC} = 5.25V	I _{IH}		20	μA
Input High Current V _I = 5.5V, V _{CC} = 5.25V	I _I		200	μA
Output Short Circuit Current V _O =0V	I _{OS}	-15	-100	mA
Input Clamp Voltage I _I = -18mA, V _{CC} = 4.75V	V _{IC}		-1.5	V
Power Supply Current	Icc	140	230	mA
Output HI-Z Leak Current 3-State Output Pins	I _{OZ1}	-100	100	μA
Output HI-Z Leak Current Bidirectional Pins	I _{OZ2}	-300	120	μA

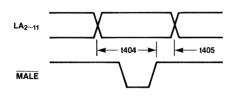
NOTES

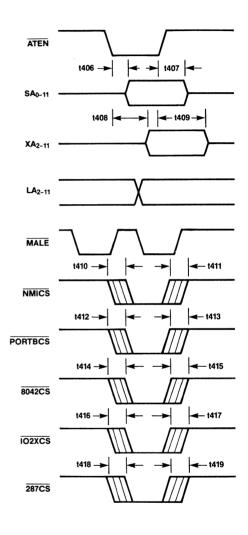
All bus outputs other than SA<11:00>.
 All SA<11:00> have I_{OL} = 24mA.
 All outputs and bidirectional pins.

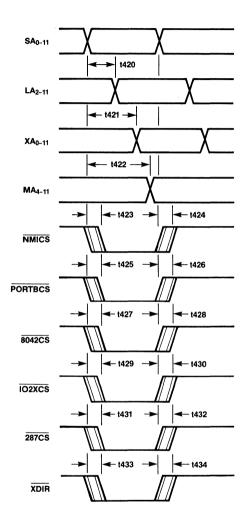
82A304 AC Characteristics (T_A = 0°C to 60°C, V_{CC} = 5V \pm 5%)

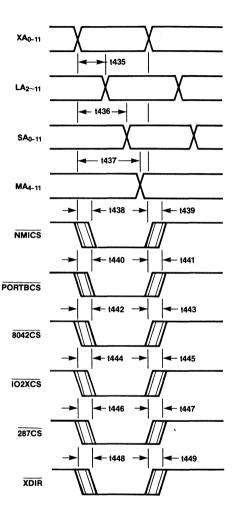
	Description	Min.	Тур.	Max.	Units
t401	A to MA input set-up time to MALEt		TBD		
t402	A to MA input hold time from MALEt		TBD		
t403	MA output valid delay from MALE1	5		34	ns
t404	A to SA, XA input set-up time to MALEt		TBD		
t405	A to SA, XA input hold time from MALE1		TBD		
t406	SA output valid delay from ATEN active	8		33	ns
t407	SA tri-state delay from ATEN inactive	6		28	ns
t408	XA output valid delay from ATEN active	10		41	ns
t409	XA tri-state delay from ATEN inactive	. 9		37	ns
t410	NMICS decode active from MALE1	11		44	ns
t411	NMICS decode inactive from MALE	10		40	ns
t412	PORTBCS decode active from MALE	11		44	ns
t413	PORTBCS decode inactive from MALE1	10	· · · · ·	40	ns
t414	8042CS decode active from MALEt	11		44	ns
t415	8042CS decode inactive from MALEt	10		40	ns
t416	IO2XCS decode active from MALEt	11		44	ns
t417	IO2XCS decode inactive from MALE	10		40	ns
t418	287CS decode active from MALE1	11	· · · · · · · · · · · · · · · · · · ·	44	ns
t419	287CS decode inactive from MALE1	10		40	ns
t420	A data valid delay from SA data valid	4		26	ns
t421	XA data valid delay from SA data valid	3		35	ns
t422	MA data valid delay from SA data valid	9	10000 - 2000 - 2000 - 2000 - 2000	49	ns
t423	NMICS decode active from SA data valid	14		58	ns
t424	NMICS decode inactive from SA data invalid	11		46	ns
t425	PORTBCS decode active from SA data valid	15		59	ns
t426	PORTBCS decode inactive from SA data invalid	11		46	ns
t427	8042CS decode active from SA data valid	15		59	ns
t428	8042CS decode inactive from SA data invalid	11		46	ns
t429	IO2XCS decode active from SA data valid	12		59	ns
t430	IO2XCS decode inactive from SA data invalid	12	á <u>, , , , , , , , , , , , , , , , , , , </u>	46	ns

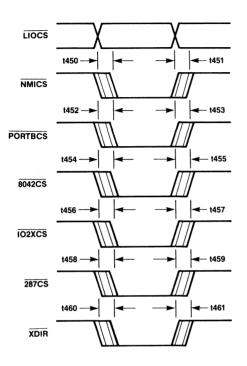

82A304 AC Characteristics (Continued) (T_A = 0°C to 60°C, V_{CC} = 5V \pm 5%)

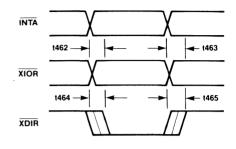

Sym	Description	Min.	Тур.	Max.	Units
t431	287CS decode active from SA data valid	16		59	ns
t432	287CS decode inactive from SA data invalid	13		46	ns
t433	XDIR decode active from SA data valid	15		59	ns
t434	XDIR decode inactive from SA data invalid	15		60	ns
t435	A data valid delay from XA data valid	4		26	ns
t436	SA data valid delay from XA data valid	7		34	ns
t437	MA data valid delay from XA data valid	9		49	ns
t438	NMICS decode active from XA data valid	14		58	ns
t439	NMICS decode inactive from XA data invalid	11		46	ns
t440	PORTBCS decode active from XA data valid	15		59	ns
t441	PORTBCS decode inactive from XA data invalid	11		46	ns
t442	8042CS decode active from XA data valid	15		59	ns
t443	8042CS decode inactive from XA data invalid	11		46	ns
t444	IO2XCS decode active from XA data valid	12		59	ns
t445	IO2XCS decode inactive from XA data invalid	12		46	ns
t446	287CS decode active from XA data valid	16		59	ns
t447	287CS decode inactive from XA data invalid	13		46	ns
t448	XDIR decode active from XA data valid	15		55	ns
t449	XDIR decode inactive from XA data invalid	15		55	ns
t450	NMICS decode active from LIOCS active	7		31	ns
t451	NMICS decode inactive from LIOCS inactive	5		24	ns
t452	PORTBCS decode active from LIOCS active	7		31	ns
t453	PORTBCS decode inactive from LIOCS inactive	5		24	ns
t454	8042CS decode active from LIOCS active	7		30	ns
t455	8042CS decode inactive from LIOCS inactive	5		24	ns
t456	IO2XCS decode active from LIOCS active	7		30	ns
t457	IO2XCS decode inactive from LIOCS inactive	5		24	ns
t458	287CS decode active from LIOCS active	7		30	ns
t459	287CS decode inactive from LIOCS inactive	5		24	ns
t460	XDIR decode active from LIOCS active	8		32	ns

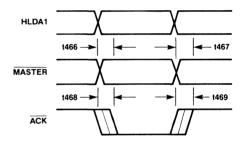

82A304 AC Characteristics (Continued) (T_A = 0°C to 60°C, V_{CC} = 5V \pm 5%)


Description	Min.	Typ.	Max.	Units
XDIR decode inactive from LIOCS inactive	5		26	ns
XDIR decode active from INTA active	4		23	ns
XDIR decode inactive from INTA inactive	2		17	ns
XDIR decode active from XIOR active	6		27	ns
XDIR decode inactive from XIOR inactive	4		20	ns
ACK decode active from HLDA1 active	9		37	ns
ACK decode inactive from HLDA1 inactive	7		32	ns
ACK decode active from MASTER active	8		33	ns
ACK decode inactive from MASTER inactive	6		26	ns
SA data valid delay from REF active	18		64	ns
SA tri-state delay from REF inactive	8		33	ns
	XDIR decode inactive from LIOCS inactive XDIR decode active from INTA active XDIR decode inactive from INTA inactive XDIR decode active from XIOR active XDIR decode active from XIOR active XDIR decode inactive from XIOR inactive ACK decode active from HLDA1 active ACK decode active from MASTER active ACK decode inactive from MASTER inactive ACK decode inactive from MASTER inactive ACK decode inactive from MASTER inactive	XDIRdecode inactive from LIOCS inactive5XDIRdecode active from INTA active4XDIRdecode active from INTA inactive2XDIRdecode inactive from XIOR active6XDIRdecode inactive from XIOR inactive4ACKdecode active from HLDA1 active9ACKdecode inactive from HLDA1 inactive7ACKdecode active from MASTER active8ACKdecode inactive from MASTER inactive6SA data valid delay from REF active18	XDIRdecode inactive from LIOCS inactive5XDIRdecode active from INTA active4XDIRdecode inactive from INTA inactive2XDIRdecode inactive from XIOR active6XDIRdecode inactive from XIOR inactive4ACKdecode active from HLDA1 active9ACKdecode inactive from HLDA1 inactive7ACKdecode active from MASTER active8ACKdecode inactive from MASTER inactive6SA data valid delay from REF active18	XDIRdecode inactive from LIOCS inactive526XDIRdecode active from INTA active423XDIRdecode inactive from INTA inactive217XDIRdecode active from XIOR active627XDIRdecode inactive from XIOR inactive420ACKdecode active from HLDA1 active937ACKdecode inactive from HLDA1 inactive732ACKdecode active from MASTER active833ACKdecode inactive from MASTER inactive626SA data valid delay from REF active1864


CHIPS.









82A305 DATA BUFFER

- Nibble Slice of Memory and AT Data Bus Interface
- Data Size Conversion
- Advanced Schottky technology

FUNCTIONAL DESCRIPTION

The 82A305 interfaces between the Local, Memory and System (AT IO channel) data busses and provides data alignment and size conversion for AT IO channel operations. It is designed as a nibble slice to reduce pin count and simplify system design and two parts are used to interface all data buses.

Bus Controls

The 82A305 controls the bus buffers according to the signals HLDA1, $\overline{\text{ATEN}}$, $\overline{\text{MDEN}}$, $\overline{\text{LDEN}}$, SDIR, $\overline{\text{MRD}}$, and $AC{\!\!<\!3}:\!0{\!\!>}$. The first group of signals HLDA1, $\overline{\text{ATEN}}$, $\overline{\text{MDEN}}$, and $\overline{\text{LDEN}}$ determines which buses are connected, and the second group of signals SDIR, $\overline{\text{MRD}}$, and $AC{\!\!<\!\!3}:\!0{\!\!>}$ determines the direction of the buffers drivers. Table 5-1 shows the bus connections for different bus cycles.

All drivers are active for the active buses, and external bus controls are required if selective data bits need be controlled. For the DRAM interface, the LBE<3:0> must be used to ensure that only the valid data bytes are written into the DRAM's during a write cycle.

Bus Cycles	From	To	Direction
	Bus	Bus	Control
HLDA1=0,	D	MD	MRD=1
ATEN=1	MD	D	MRD=0
HLDA1=0,	D	SD	SDIR=1
ATEN=0	SD	D	SDIR=0
HLDA1=1	SD	MD,D	SDIR=0, MRD=1
	MD	SD	SDIR=1, MRD=0
	D	SD	SDIR=1, MRD=1, LDEN=0

Table 5-1. Bus Control Definitions

Data Conversion

The 82A305 provides the data bus connections so that data conversions are done correctly for CPU accesses to the AT bus. The action codes $AC{<}3:0>$ are used to control how bus bits are connected between the IO channel SD bus and the CPU local bus D or the system memory MD bus. The action codes are provided by the 82C301 bus controller for CPU to AT bus access cycles and is qualified by the ACEN. The meaning of the action codes are:

AC<3:0>	FROM	то
0	MD,D<15:0>	SD<15:0>
1	MD,D<15:8>	SD<15:8>,
		SD<7:0>
2	MD,D<31:16>	SD<15:0>
3	MD,D<31:24>	SD<15:8>,
		SD<7:0>
4	MD,D<31:0>	SD<31:0>
5	SD<7:0>	MD,D<7:0>
6	SD<7:0>	MD,D<15:8>
7	SD<7:0>	MD,D<23:16>
8	SD<7:0>	MD,D<31:24>
9	SD<15:0>	MD,D<15:0>
А	SD<15:0>	MD,D<31:16>
В	reserved	
С	SD<31:0>	MD,D<31:0>
D	reserved	
E	reserved	
F	reserved	

Table 5-2. Action Code Definition

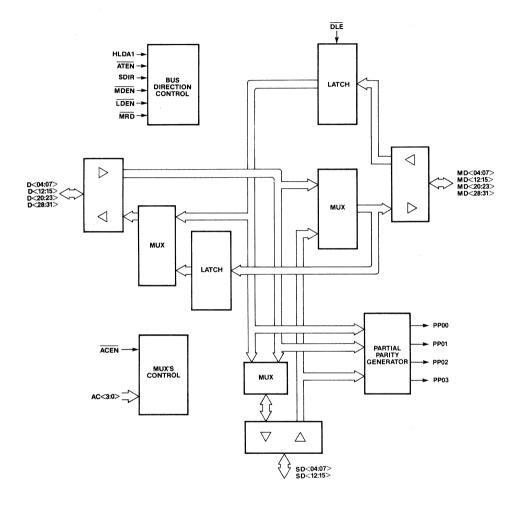


Figure 5-1. 82A305 Functional Block Diagram

82A305 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}		7.0	V
Input Voltage	VI	-0.5	5.5	V
Output Voltage	Vo	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{sta}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

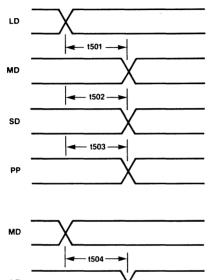
82A305 Operating Conditions

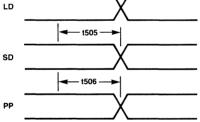
Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	T _A	0	70	С

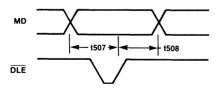
82A305 DC Characteristics

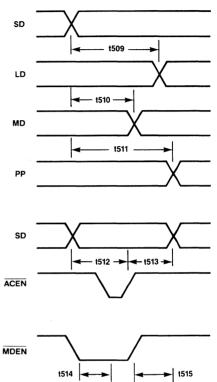
V _{IL} V _{IH} V _{OL1} V _{OL2} V _{OH}	2.0	0.8 0.5 0.5	V V V V
V _{OL1} V _{OL2}			V
V _{OL2}	2.4		
	2.4	0.5	V
V _{OH}	2.4		
			V
I _{IL}		-200	μA
I _{IH}		20	μΑ
I _I		200	μA
I _{OS}	-15	-100	mA
V _{IC}		-1.5	V
I _{CC}	140	230	mA
I _{OZ1}	-100	100	μA
I _{OZ2}	-300	120	μA
	I _{IH} I _I I _{OS} V _{IC} I _{CC} I _{CC}	I _{IL} I _{IH} I _I I _{OS} -15 V _{IC} I _{CC} I _{OZ1} -100	I_{IL} -200 I_{IH} 20 I_{I} 200 I_{OS} -15 I_{OS} -15 I_{CC} 140 I_{OZ1} -100

NOTES


All bus outputs and PP<3:0> have I_{OL} = 10mA.
 All outputs and bidirectional pins.


82A305 AC Characteristics


(T_A = 0° C to 60° C, V_{CC} = 5V \pm 5%)


Sym	Description	Min.	Тур.	Max.	Units
t501	MD data valid delay from LD data valid	4		27	ns
t502	SD data valid delay from LD data valid	4		27	ns
t503	PP data valid delay from LD data valid	5		29	ns
t504	LD data valid delay from MD data valid	4		28	ns
t505	SD data valid delay from MD data valid	4		28	ns
t506	PP data valid delay from MD data valid	5		30	ns
t507	MD data set-up time to DLE1		TBD		
t508	MD data hold time from DLEt		TBD		
t509	LD data valid delay from SD data valid	8		38	ns
t510	MD data valid delay from SD data valid	4		27	ns
t511	PP data valid delay from SD data valid	5		33	ns
t512	SD data set-up time to ACENt	TBD			
t513	SD data hold time from ACENt		TBD		
t514	MD data valid delay from MDEN	7		29	ns
t515	MD tri-state delay from MDENt	5		23	ns
t516	LD data valid delay from MDEN	7		30	ns
t517	LD tri-state delay from MDENt	5		23	ns

82A306 CONTROL BUFFER

- 14.318MHz oscillator and divide by 12 counter
- Byte enable latch
- Parity Checking
- Direct interface to AT Bus
- Advanced Schottky TTL technology

FUNCTIONAL DESCRIPTION

14MHz Oscillator and Divider

The color reference oscillator is provided eliminating the 8224 normally used in AT compatible systems. A divide by 12 counter is also included to generate the OSC/12 (1.19MHz) signal used on the system board.

AF32 Generation

The $\overline{\text{AF32}}$ is used in the CS 8230 system to indicate that the current bus cycle is a CPU local bus cycle.

Byte Enable Latch

The register that holds the byte enables valid during a memory cycle is located on the 82A306. An additional input FBE is provided to force all byte enables active during certain memory operations. A pullup resistor is provided on the FBE input for implementations not requiring this feature.

Parity Checking and Generation

The 82A306 provides the necessary exclusive OR'ing to generate full (byte) write and read parity from the partial parity bits PPH<3:0> and PPL<3:0> generated on the two (nibble wide) data buffers 82A305.

For a memory read access, read parity PPH<3:0> and PPL<3:0> are checked against the parity bits MP<3:0> read from memory. These parity bits are latched by CAS and PCHK so that they are kept valid during parity checking. The results of the byte-wise comparison are further gated by byte enables to ignore errors for bytes which are not valid. The OR'ed byte-wise parity error is then latched as the output LPAR if PEN input is asserted.

During a memory write access, write parity for each byte is generated from PPH $\langle 3:0 \rangle$ and PPL $\langle 3:0 \rangle$ and can be gated onto the memory parity bus MP $\langle 3:0 \rangle$ if enabled by WPE controlling the tri-state drivers. If an external parity generation circuit is used, an internal pullup resistor is provided for WPE to disable the write parity output buffers if left unconnected.

Bus Drivers

24mA drivers are provided for some of the control signals on the IO channel. These include SYSCLK, OSC, OSC/12, RDRV, SBHE, BALE, IOR, IOW, MEMR, MEMW, SMEMR, SMEMW and OUT1.

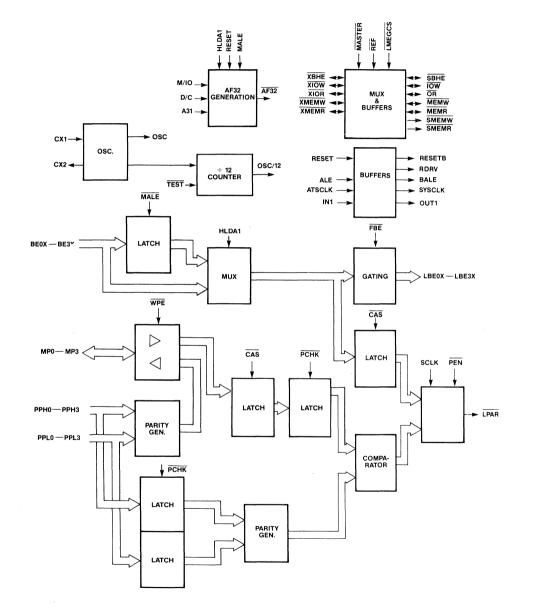


Figure 6-1. 82A306 Functional Block Diagram

82A306 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{cc}		7.0	V
Input Voltage	Vi	-0.5	5.5	V
Output Voltage	V _O	-0.5	5.5	V
Operating Temperature	T _{op}	-25	85	С
Storage Temperature	T _{stg}	-40	125	С

NOTE: Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions described under Operating Conditions.

82A306 Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V _{CC}	4.75	5.25	V
Ambient Temperature	T _A	0	70	С

82A306 DC Characteristics

Symbol	Min.	Max.	Units
VIL		0.8	V
V _{IH}	2.0		V
V _{OL1}		0.5	V
V _{OL2}		0.5	V
V _{OH}	2.4		V
I _{IL}		-200	μA
I _{IH}		20	μA
I ₁		200	μA
I _{OS}	-15	-100	mA
V _{IC}		-1.5	V
I _{CC}	140	230	mA
I _{OZ1}	-100	100	μA
I _{OZ2}	-300	120	μA
	V _{IL} V _{IH} V _{OL1} V _{OL2} V _{OH} I _{IL} I _{IH} I _I I _I I _{OS} V _{IC} I _{CC} I _{OZ1}	V_{IL} V_{IH} 2.0 V_{OL1} 2.0 V_{OL2} 2.4 I_{IL} 1.1 I_{OS} -15 V_{IC} 1.40 I_{OZ1} -100	V_{IL} 0.8 V_{IH} 2.0 V_{OL1} 0.5 V_{OL2} 0.5 V_{OH} 2.4 I_{IL} -200 I_{IH} 20 I_{I} 200 I_{OS} -15 -100 V_{IC} -1.5 -1.5 I_{OZ1} -100 100

NOTES

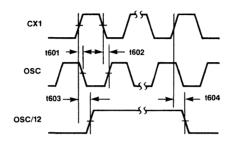
 MP<3:0>, XIOW, XIOR, XBHE, XMEMW, XMEMR, RESTEB, LBE<3:0> all have I_{OL} = 10mA.
 SBHE, IOW, IOR, MEMW, MEMR, SMEMW, SMEMR, OSC, OSC/12, OUT1, SYSCLK, BALE, RDRV all have I_{OL} = 24mA.
All outputs and bidirectional pins.

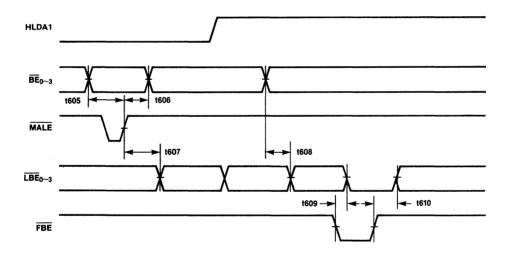
82A306 AC Characteristics

 $(T_A = 0^{\circ}C \text{ to } 60^{\circ}C, V_{CC} = 5V \pm 5\%)$

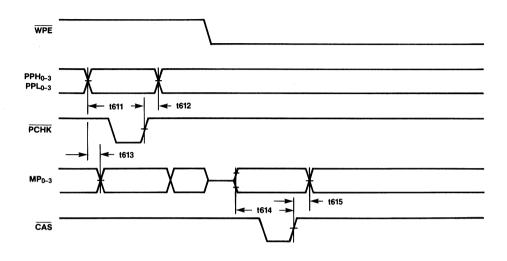
Sym	Description	Min.	Тур.	Max.	Units	
t601	OSC↓ delay from CX11	4		22	ns	
t602	OSCt delay from CX11	5		26	ns	
t603	OSC/121 delay from CX11	9		35	ns	
t604	OSC/121 delay from CX11	9		37	ns	
t605	BE<3:0> set-up time to MALE		TBD			
t606	BE<3:0> hold time to MALE		TBD			
t607	LBE<3:0> valid delay from MALE	7		35	ns	
t608	LBE<3:0> valid delay from BE<3:0> valid	3		25	ns	
t609	LBE<3:0> LO delay from FBE	5		25	ns	
t610	LBE<3:0> de-asserted from FBE1	3		19	ns	
t611	PPH<3:0>, PPL<3:0> set-up time to PCHK1		TBD			
t612	PPH<3:0>, PPL<3:0> hold time to PCHK		TBD			
t613	MP<3:0> valid delay from corresponding PPH<3:0> and PPL<3:0>	2		21	ns	
t614	MP<3:0> set-up time from CASt		TBD			
t615	MP<3:0> hold time from \overline{CAS}		TBD			
t616	LPARt delay from SCLKt	4		23	ns	
t617	LPAE↓ delay from SCLK1	6		24	ns	
t618	LPARt delay from PENt	1		13	ns	
t619	LPARI delay from PENI	3		19	ns	
t620	MEMW↓ (or MEMR↓) delay from XMEMW↓ (or XMEMR↓)	3		19	ns	
t621	MEMWt (or MEMRt) delay from XMEMWt (or XMEMRt)	1		14	ns	
t622	XMEMW↓ (or XMEMR↓) delay from MEMW↓ (or MEMR↓)	4		21	ns	
t623	XMEMWt (or XMEMRt) delay from MEMWt (or MEMRt)	1		14	ns	
t624	SMEMW↓ (or SMEMR↓) delay from XMEMW↓ (or XMEMR↓)	5		23	ns	
t625	SMEMW (or SMEMR) LO to HI-Z transition delay from LMEGCSI	4		23	ns	

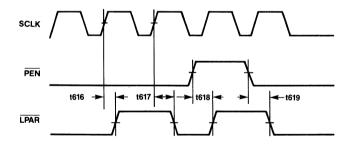
82A306 AC Characteristics (Continued) (T_A = 0°C to 60°C, V_{CC} = 5V \pm 5%)

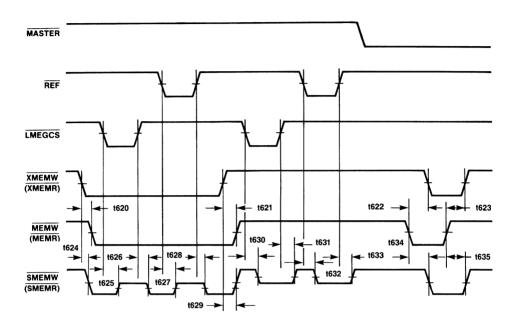

Sym	Description	Min.	Тур.	Max.	Units
t626	SMEMW (or SMEMR) HI-Z to LO transition delay from LMEGCSt	6		28	ns
t627	SMEMW (or SMEMR) LO to HI-Z transition delay from REFI	6		28	ns
t628	SMEMW (or SMEMR) HI-Z to LO transition delay from REF1	8		32	ns
t629	SMEMWt (or SMEMRt) delay from XMEMWt (or XMEMRt)	3		19	ns
t630	SMEMW (or SMEMR) HI to HI-Z transition delay from LMEGCS	4		23	ns
t631	SMEMW (or SMEMR) HI-Z to HI transition delay from LMEGCS1	6		28	ns
t632	SMEMW (or SMEMR) HI to HI-Z transition delay from REF	6		28	ns
t633	SMEMW (or SMEMR) HI-Z to HI transition delay from REF1	8		32	ns
t634	SMEMWi (or SMEMRi) delay from MEMWi (or MEMRi)	5		23	ns
t635	SMEMWt (or SMEMRt) delay from MEMWt (or MEMRt)	3		19	ns
t636	IOWI (or IORI) delay from XIOWI (or XIORI)	3		18	ns
t637	IOWt (or IORt) delay from XIOWt (or XIORt)	1	<u></u>	14	ns
t638	XIOW↓ (or XIOR↓) delay from IOW↓ (or IOR↓)	4		21	ns
t639	XIOWt (or XIORt) delay from IOWt (or IORt)	1		14	ns
t640	SBHEI delay from XBHEI	3		18	ns
t641	SBHEt delay from XBHEt	1		14	ns
t642	XBHEi delay from SBHEi	4		21	ns
t643	XBHEt delay from SBHEt	1		14	ns
t644	RESETBI delay from RESETI	3		20	ns
t645	RESETB1 delay from RESET1	1		14	ns
t646	RDRVI delay from RESETI	3		18	ns

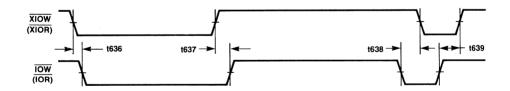

82A306 AC Characteristics (Continued)

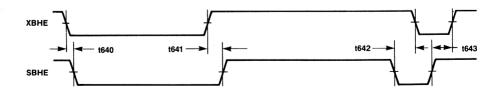
 $(T_A = 0^{\circ}C \text{ to } 60^{\circ}C, V_{CC} = 5V \pm 5\%)$

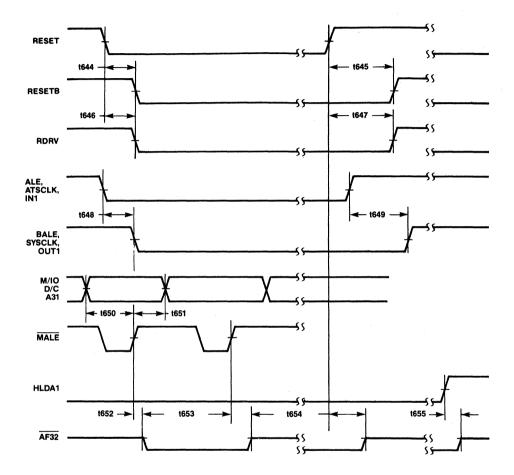

Description	Min.	Typ.	Max.	Units
RDRVt delay from RESETt	1		14	ns
BALE↓ delay from ALT↓ SYSCLK↓ delay from ATSCLK↓ OUT1↓ delay from IN1↓	2		17	ns
BALE1 delay from ALT1 SYSCLK1 delay from ATSCLK1 OUT11 delay from IN11	1		13	ns
M/IO, D/C, A31 set-up time to MALE		TBD		
M/IO, D/C, A31 hold time to MALEt	TBD			
AF32 HI-Z to LO transition delay from MALE1	7		32	ns
AF32 LO to HI-Z transition delay from MALE	6		29	ns
AF32 LO to HI-Z transition delay from RESET1	6		28	ns
AF32 LO to HI-Z transition delay from HLDA11	6		29	ns
	RDRV1 delay from RESET1 BALEI delay from ALTI SYSCLKI delay from ATSCLKI OUT11 delay from IN11 BALE1 delay from ALT1 SYSCLK1 delay from ATSCLK1 OUT11 delay from IN11 M/IO, D/C, A31 set-up time to MALE1 M/IO, D/C, A31 hold time to MALE1 AF32 HI-Z to LO transition delay from MALE1 AF32 LO to HI-Z transition delay from RESET1	RDRV1 delay from RESET1 1 BALEI delay from ALT1 2 SYSCLKI delay from ATSCLKI 2 OUT11 delay from IN11 1 BALE1 delay from ALT1 1 SYSCLK1 delay from ALT1 1 SYSCLK1 delay from ATSCLK1 1 OUT11 delay from IN11 1 M/IO, D/C, A31 set-up time to MALE1 1 M/IO, D/C, A31 hold time to MALE1 7 AF32 HI-Z to LO transition delay from MALE1 7 AF32 LO to HI-Z transition delay from RESET1 6	RDRV1 delay from RESET1 1 BALEI delay from ALTI 2 SYSCLKI delay from ATSCLKI 2 OUT11 delay from IN11 1 BALE1 delay from ALT1 1 SYSCLK1 delay from ATSCLK1 1 OUT11 delay from IN11 1 M/IO, D/C, A31 set-up time to MALE1 TBD M/IO, D/C, A31 hold time to MALE1 TBD AF32 HI-Z to LO transition delay from MALE1 7 AF32 LO to HI-Z transition delay from RESET1 6	RDRV1 delay from RESET1 1 14 BALEI delay from ALT1 2 17 SYSCLKI delay from ATSCLKI 2 17 OUT11 delay from IN11 1 13 BALE1 delay from ALT1 1 13 SYSCLK1 delay from ATSCLK1 1 13 OUT11 delay from IN11 1 13 M/IO, D/C, A31 set-up time to MALE1 TBD M/IO, D/C, A31 hold time to MALE1 TBD AF32 HI-Z to LO transition delay from MALE1 7 32 AF32 LO to HI-Z transition delay from RESET1 6 29

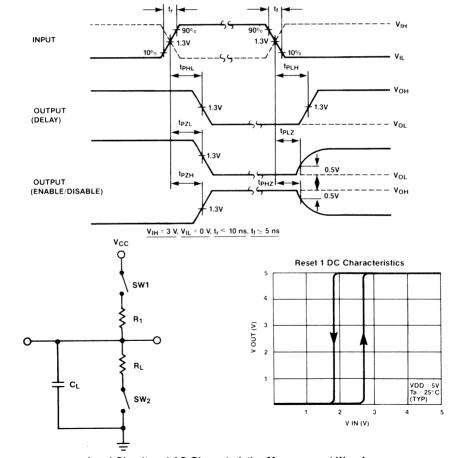


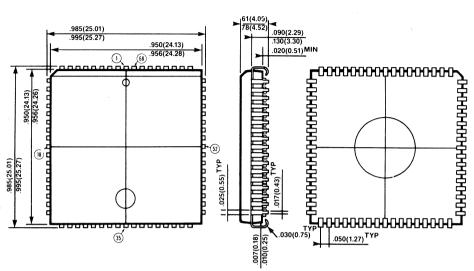




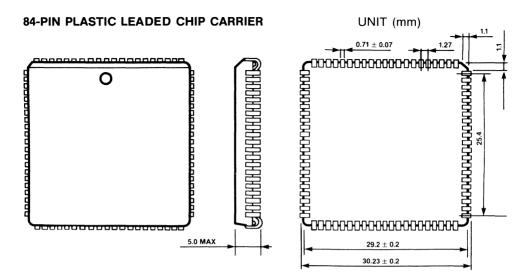







Load Circuit Measurement Conditions

Output Type	Symbol	C _L (pF)	R ₁ (Ω)	R_L (Ω)	SW1	SW2
Totem pole 3-state	t _{PLH}	50		1.0K	OFF	ON
Bidirectional	PHL	00			011	0.1
Open drain or Open Collector	t _{PLH} t _{PHL}	50	0.5K		ON	OFF
3-state Bidirectional	t _{PLZ} t _{PHZ}	5	0.5K	1.0K	ON OFF	ON
3-state Bidirectional	t _{PZL} t _{PZH}	50	0.5K	1.0K	ON OFF	ON ON
	Totem pole 3-state Bidirectional Open drain or Open Collector 3-state Bidirectional 3-state	Totem pole 3-statet t PLH t PHLBidirectional0Open drain or Open Collectort PLH PHL3-statet PLZ Bidirectional3-statet PLZ t PHZ3-statet PLZ PLZ	Totem pole 3-statet t PHL50Bidirectional0Open drain or Open Collectort PHL3-statet PHZBidirectionalt 	Totem pole 3-state t_{PLH} t_{PHL} 50Bidirectional0pen drain or t_{PHL} t_{PLH} 500.5KOpen Collector t_{PLH} t_{PHL} 500.5K3-state t_{PLZ} t_{PHZ} 50.5K3-state t_{PHZ} t_{PHZ} 500.5K	Totem pole 3-state t_{PLH} t_{PHL} 501.0KBidirectional0pen drain or Open Collector t_{PLH} t_{PHL} 500.5K3-state t_{PLZ} Bidirectional50.5K1.0K3-state t_{PHZ} 50.5K1.0K3-state t_{PHZ} 500.5K1.0K	Totem pole 3-state t_{PLH} t_{PHL} 501.0KOFFBidirectionalOpen drain or $Open Collector$ t_{PLH} 500.5KON3-state t_{PLZ} 50.5K1.0KOFF3-state t_{PHZ} 500.5K1.0KOFF3-state t_{PHZ} 500.5K1.0KOFF3-state t_{PHZ} 500.5K1.0KOFF


Load Circuit and AC Characteristics Measurement Waveform

68-LEAD PLASTIC CHIP CARRIER

DIMENSIONS IN INCHES (MILLIMETERS) S = 3.6/1

82A303 Absolute Maximum Ratings

· ·	Package Type	
Order Number	Note 1	Remarks
P82C301	PLCC-84	C (Note 2)
P82C302	PLCC-84	С
P82A303	PLCC-68	С
P82A304	PLCC-68	С
P82A305	PLCC-68	С
P82A306	PLCC-68	С
CS8230		Standard CHIPSet (Note 3)

NOTES

1. PLCC = Plastic Leaded Chip Carrier 84 Pins

C = Commercial Range, 0° to 70° C, V_{DD} = 4.75 to 5.25 V
 CS8230 consists of P82C301, P82C302, P82A303, P82A304, 2 of P82A305, P82A306.

CHIP5.

NORTH AMERICA DISTRIBUTORS

SOUTHERN CALIFORNIA REGION

Anthem

20640 Bahama Street Chatsworth, CA 91311 Phone: 818-700-1000

Anthem

9369 Carroll Park Drive San Diego, CA 92121 Phone: 619-453-9005

Anthem

One Oldfield Drive Irvine, CA 92718-2809 Phone: 714-768-4444

Hall-Mark

3878 Ruffin Rd., Suite 10A San Diego, CA 92123 Phone: 619-268-1201

Hall-Mark

14831 Franklin Avenue Tustin, CA 92680 Phone: 714-669-4700

Hall-Mark

8130 Remmet Avenue Canoga Park, CA 91304 Phone: 818-716-7300

Hall-Mark

19220 S. Normandie Avenue Torrance, CA 90502 Phone: 213-217-8400

Hall-Mark

6341 Auburn Blvd., Suite D Citrus Heights, CA 95610 Phone: 916-722-8600

NORTHERN CALIFORNIA REGION

Anthem

10400 East Brokaw San Jose, CA 95131 Phone: 408-295-4200

Anthem

4700 Northgate Boulevard Sacramento, CA 95834 Phone: 916-922-6800

Hall-Mark

6341 Auburn Rd., Suite D Citrus Heights, CA 95610 Phone: 916-722-8600

Hall-Mark

1110 Ringwood Ct. San Jose, CA 95131 Phone: 408-946-0900

NORTHWEST REGION

Anthem

15812 S.W. Uppert Boones Ferry Road Lake Oswego, OR 97034 Phone: 503-684-2661

Anthem

5020 148th Avenue N.E. Redmond, WA 98052 Phone: 206-881-0850

ROCKY MOUNTAIN REGION

Anthem

8200 South Akron Street Englewood, CO 80112 Phone: 303-790-4444

Anthem

1615 West 2200 South Salt Lake City, UT 84119 Phone: 801-973-8555

Hall-Mark

6950 S. Tucson Way Englewood, CO 80112 Phone: 303-790-1662

Hall-Mark

302 W. 5400 South Murray, UT 84107 Phone: 801-268-3779

PLAINS REGION

Hall-Mark/St. Louis 13750 Shoreline Drive Earth City, MO 63045 Phone: 314-291-5350

Hall-Mark/Kansas City

10809 Lakeview Drive Lenexa, KS 66215 Phone: 913-888-4747

SOUTHWEST REGION

Anthem 1727 East Webber Drive Tempe, AZ 85281 Phone: 602-966-6600

Hall-Mark 4040 E. Raymond Phoenix, AZ 85040 Phone: 602-437-1200

SOUTH CENTRAL REGION

Quality Components 9934 E. 21st Street South Tulsa, OK 74129 Phone: 918-664-8812

Quality Components

1005 Industrial Boulevard Sugar Land, TX 77478 Phone: 713-240-2255

Quality Components 4257 Kellway Circle Addison, TX 75001 Phone: 214-733-4300

Quality Components 2120-M Braker Lane Austin, TX 78758 Phone: 512-835-0220

Hall-Mark

12211 Technology Blvd. Austin, TX 78727 Phone: 512-258-8848

Hall-Mark 10375 Brockwood Rd. Dallas, TX 75238 Phone: 214-553-4300

Hall-Mark 8000 Westglen Houston, TX 77063 Phone: 713-781-6100

MIDWEST REGION

Hall-Mark 7838 12th Avenue, South Bloomington, MN 55420 Phone: 512-854-3223

Hall-Mark

16255 W. Lincoln Avenue New Berlin, WI 53151 Phone: 414-797-7844

OHIO VALLEY

Hall-Mark 400 E. Wilson Bridge Road Suite 5 Worthington, OH 43085 Phone: 614-888-3313

Hall-Mark 5821 Harper Road Solon, OH 44139 Phone: 216-349-4632

CHIP5

Hall-Mark

4275 W. 96th Street Indianapolis, IN 46268 Phone: 317-872-8875 800-423-6638 (INDIANA) 800-772-0112 (KENTUCKY)

FLORIDA REGION

Quality Components Florida Phone: 800-241-0037

Hall-Mark 3161 S.W. 15th Street Pompano Beach, FL 33069-4806 Phone: 305-971-9280

Hall-Mark 15301 Roosevelt Blvd. Suite 303 Clearwater, FL 33520 Phone: 813-530-4543

Hall-Mark 7648 Southland Blvd. Suite 100 Orlando, FL 32809 Phone: 305-855-4020

SOUTH ATLANTIC REGION

Quality Components 6350-F McDonough Drive Norcross, GA 30093 Phone: 404-449-9508

Quality Components 4900 University Square Suite 20 Huntsville, AL 35816 Phone: 205-830-1881

Quality Components 2940-15 Trawick Road Ralleigh, NC 27604 Phone: 919-876-7767

Hall-Mark 4900 Bradford Drive Huntsville, AL 25708 Phone: 205-837-8700

Hall-Mark

5237 N. Blvd. Raleigh, NC 27604 Phone: 919-872-0712

Hall-Mark

6410 Atlantic Blvd. Suite 115 Norcross, GA 30071 Phone: 404-447-8000

MID ATLANTIC REGION

Lionex 311 Route 46 West Fairfield, NJ 07006 Phone: 201-227-7960

Hall-Mark 1000 Midlantic Drive Mt. Laurel, NJ 08054 Phone: 609-235-1900

ATLANTIC REGION

Lionex 400 Oser Avenue Hauppauge, NY 11787 Phone: 516-273-1660

Lionex

311 Route 46 West Fairfield, NJ 07006 Phone: 201-227-7960

Hall-Mark

101 Comac Loop RonKonKoma, NY 11779 Phone: 516-737-0600

Hall-Mark

10 Old Bloomfield Ave. Pinebrook, NJ 07058 Phone: 201-882-9773

Hall-Mark

107 Fairfield Road Fairfield, NJ 07006 Phone: 201-575-4415

EASTERN REGION

Lionex 9020A Mendenhall Court Columbia, MD 21045 Phone: 301-964-0040

Hall-Mark/Baltimore 10240 Old Columbia Road Columbia, MD 21046 Phone: 301-988-9800

NORTHEAST REGION

Lionex 36 Jonspin Road Wilmington, MA 01887 Phone: 617-657-5170

Lionex

101 Rock Road Horsham, PA 19044 Phone: 215-443-5150

Lionex

170 Research Parkway Meriden, CT 06450 Phone: 203-237-2282

Hall-Mark

33 Village Lane Wallingford, CT 06492 Phone: 203-269-0100

Hall-Mark 6 Cook Street Bilerica, MA 01821 Boston 617-935-9777

Phone: 617-667-0902

NORTH CENTRAL REGION

Hall-Mark/N.C. Regional Systems Warehouse 210 Mittel Drive WoodDale, IL 60191 Phone: 312-680-3800

CANADA

Electro Source Inc. 215 Carlingview Drive Suite 303 Rexdale, Ontario Canada M9W 5X8 Phone: 416-675-4490 Telex: 6-989271

FAR EAST

HONG KONG

Wong's Kong King Ltd. 8/F Sime Darby Ind. Bldg. 420 Kwun Tong Road Kwun Tong, Hong Kong Phone: 3-450121 Telex: 36810 WKKL HX Fax: 852 3-7551128

JAPAN

ASCII Corporation

Sumitomo Minami Aoyama Bldg. 5-11-5 Minami Aoyama Minato-ku Tokyo 107 Japan Phone: 03(486)7111 Telex: J28764ASCII Fax: GII, GIII 011 81 03(486)7933

CHIP5

KOREA

Kortronics Enterprises

Rm. 307 9-Dong B-Block #604-1 Guro-Dong, Guro-Gu Seoul, Korea Phone: 82 2 635-1043 Fax: 011 82 2 675-0514

SINGAPORE

Computer Engineering Systems PTE, Ltd.

73 Ayer Rajah Crescent #02-14/21 Ayer Rajah Industrial Estate Singapore 0513 Phone: 7797377 Telex: RS25223 CESPL Fax: 657787142

TAIWAN, R.O.C.

Mitac, Inc. (Head Office) 9th Fl., 585 Ming Sheng E. Rd. Taipei, Taiwan R.O.C. Phone: 886(02)5018231 Telex: 11942 TAIAUTO Fax: 011 886-2-5014265

American MITAC

Corporation 3385 Viso Court Santa Clara, CA 95054 U.S.A. Phone: 408-988-0258 Telex: 9103382201 MECTEL Fax: 408-980-9742

AUSTRALIA

R&D Electronics

4 Florence Street Burwood, Victoria Australia 3125 Postal Address: P.O. Box 206 Burwood, Victoria Australia 3125 Phone: 61-3-288 8911 Fax: 011 61-3-2889168

EUROPE

FINLAND

OY Fintronic AB

Melkonkatu 24A SF-00210 Helsinki, Finland Phone: Telex: 857124224 FTRON SF Fax: 358 0 674886

ISRAEL

Hitek Ltd. 45, Basel St. TEL-AVIV, ISRAEL Phone: 03/457917 Telex: 922361701HTK1

FRANCE

A2M

6. Av. du General de Gaulle 78150 Le Chesnay France Phone: 33 39.54.91.13 Telex: 842698376 F Fax: 331 39.54.30.61

GERMANY

Rein Elektronik GmbH

Postfach 5160 D-4054 Nettetal 1 West Germany Phone: 49 (02153) 733-0 Telex: 840854203B REIN D (or 854251B REIN D) Fax: 49 02153-733110

ITALY

Eledra S.p.A. Via G. Watt 37 20143 Milano Viale Elvezia 18 Italy

Phone: 39 (02) 81.82.1 (28 linee) Telex: 843332332 Fax: 39 (02) 81.82.211

NETHERLANDS

Auriema Nederland B.V.

Doornakkersweg 26 5642 MP Eindhoven Netherlands Phone: 31 (0) 40-816565 Telex: 84451992 Fax: 31 (0) 40-811815

SPAIN

Compania Electronica de Tecnicas Aplicadas, S.A. (Comelta) (Main Branch) Emilio Munoz, num. 41

nave 1-1-2 28037 Madrid, Spain Phone: 34 754 30 01 Telex: 83142007 CETA E

Compania Electronica de Tecnicas Aplicadas, S.A. (Comelta) Pedro IV, num. 84-5 planta 08005 Barcelona, Spain Phone: 300 77 12 (8 lineas) Telex: 83151934 CETA E

SWEDEN (Nordic Countries)

Nordisk Elektronik A.B. (Main Branch) Box 1409 S-171 27 Solna Sweden Phone: 46 08-734 97 70 Fax: 46 08-27 22 04 Telex: 85410547 NORTRON S

Nordisk Elektronik A/S

P.O. Box 122 Smedsvingen 4 1364 Hvalstad Norway

Nordisk Elektronik A/S

Transformervej 17 DK-2730 Herlev Denmark Telex: 85514932 NORTEC S

SWITZERLAND

DataComp Silbernstrasse 10 CH-9853 Dietikon Switzerland Phone: 41 01 740 51 40 Telex: 827750 DACO Fax: 1-7413423

UNITED KINGDOM

Manhattan Skyline Limited/ Katakana Limited Manhattan House, Bridge Road Maidenhead, Berkshire SL6 8DB United Kingdom Phone: Maidenhead 44 (0628) 75641 Telex: 846775 KATKAN Fax: 44 (0628) 782812

U.S./CANADA SALES REPRESENTATIVES

NORTHEAST REGION

Mill-Bern Associates, Inc. 126 Cambridge Street, Ste. 8 Burlington, MA 01803 Phone: 671-273-1313

NORTHWEST REGION

L-Squared Limited 4540 SW Hall Boulevard Beaverton, OR 97005 Phone: 503-644-8555

L-Squared Limited 10502 Riviera Place N.E. Seattle, WA 98125 Phone: 206-526-0641

SOUTH ATLANTIC REGION

The Novus Group, Inc. 14005 Coy's Drive Huntsville, AL 35803 Phone: 205-881-2207

The Novus Group, Inc. 4556 Canda Drive Lilburn, GA 30247 Phone: 404-381-1015

MID ATLANTIC REGION

T.A.I. 12 South Blackhorse Pike Bellmawr, New Jersey 08031 Phone: NJ: 609-933-2600 PA: 215-627-6615

ATLANTIC REGION

ERA, Incorporated 351 Veterans Memorial Highway Commack, NY 11725 Phone: 516-543-0510

OHIO VALLEY

Giesting & Associates 2854 Blue Rock Road P.O. Box 39398 Cincinnati, OH 45239 Phone: 413-385-1105

Giesting & Associates 21999 Farmington Road Suite 400 Farmington Hills, MI 48024 Phone: 313-478-8106

Giesting & Associates 5654 Wendzell Drive Coloma, MI 49038 Phone: 616-468-4200

Giesting & Associates

101 East Carmel Drive Suite 210 Carmel, IN 46032 Phone: 317-844-5222

Giesting & Associates 4407 DeRome Drive Fort Wayne, IN 46815 Phone: 219-486-1912

Giesting & Associates 26250 Euclid Avenue Suite 525 Cleveland, OH 44132 Phone: 216-261-9705

Giesting & Associates 471 Walnut Street Pittsburgh, PA 15238 Phone: 412-963-5832

Giesting & Associates 8843 Washington Colony Drive Dayton, OH 45459 Phone: 513-433-5832

SOUTHEAST REGION

Dyne-A-Mark Corporation 1001 Northwest 62nd Street Suite 108 Ft. Lauderdale, FL 33309 Phone: 305-771-6501

Dyne-A-Mark Corporation

573 South Duncan Avenue Clearwater, FL 33516 Phone: 813-441-4702 Tampa: 813-223-7969

Dyne-A-Mark Corporation P.O. Box 33 235 South Maitland Avenue Suite 204 Maitland, FL 32751 Phone: 305-629-5557

Dyne-A-Mark Corporation

P.O. Box 339 1520 Bottlebrush Drive Suite 5 Palm Bay, FL 32905 Phone: 305-727-0192

SOUTH CENTRAL REGION

OM Sales 1701 Gateway Place Suite 401 Richardson, TX 76080 Phone: 214-690-6746 OM Sales 8401 Westheimer Suite 110 Houston, TX 77063 Phone: 713-789-4426

OM Sales 300 East Huntland Drive Suite 230 Austin, TX 78752 Phone: 512-452-1838

NORTHWEST REGION

Magna Sales 3333 Bowers Avenue Suite 251 Santa Clara, CA 95054 Phone: 408-727-8753

SOUTHWEST REGION

S.C. Cubed 14101 Yorba Street Suite 104 Tustin, CA 92680 Phone: 714-731-9206

S.C. Cubed 468 Rensfield Place Suite 101A Thousand Oaks, CA 91360 Phone: 805-496-7307

MIDWEST REGION

High Technology Sales Assoc. 11415 Valley View Road Eden Prairie, MN 55344 Phone: 612-944-7274

ROCKY MOUNTAIN

Wescom Marketing, Inc. 4891 Independence Street Suite 201 Wheat Ridge, CO 80033 Phone: 303-422-8957

Wescom Marketing, Inc. 2330 S. Main Suite 5 Salt Lake City, UT 84115 Phone: 801-466-9594

CANADA

Electro Source 215 Carlingview Drive Suite 303 Rexdale, Ontario, Canada M9W 5X8 Phone: 416-675-4490

Chips and Technologies, Incorporated 521 Cottonwood Drive, Milpitas, CA 95035 408-434-0600 Telex 272929 CHIPS UR

IBM and AT are registered trademarks of International Business Machines. iAPX 386 is a registered trademark of Intel Corporation. CHIPSet is a trademark of Chips and Technologies.

CHIPS makes no warranty for the use of its products and bears no responsibility for any errors which may appear in this document.