

Conversion/Control/Computation/Confidence

Abstract

This catalog contains information on a selected group of Burr-Brown products - those that are usually the best choices for new designs. The product information is divided into seven sections: Data Acquisition and Computer I/O Systems, Data Conversion Products, Operational Amplifiers, Instrumentation Amplifiers, Analog Circuit Functions, Active Filters and Power Supplies. Within the space available, each product has been described in as much detail as possible. When you need more detailed information on a specific product, just ask for a Product Data Sheet. See page 110 for details. Following the product information you will find a section giving package and pinfunction information. In addition to the recommended models that are described in this catalog, we continue to offer a large number of other standard products which are designed into literally thousands of applications throughout the world. A list of the most popular of these older models is given on the inside back cover along with a list of newer models that are similar in performance, but more cost effective. To find a particular type of product, or other information about Burr-Brown, refer to the Table of Contents below. If you already have a particular model number in mind and wish to refer to the specifications, use the Model Number Index on the opposite page.

Thank you for considering Burr-Brown. We hope we can be of service to you.

TABLE OF CONTENTS

DATA ACQUISITION \& COMPUTER I/O SYSTEMS
 2

Modular Data Acquisition Systems 3
Multiplexer Expanders 5
Microcomputer Analog I/O Systems 6
Micromux - Remote Data Acquisition . . . 8
Digitally Programmed Voltage Sources . . . 10
DATA CONVERSION PRODUCTS 12
Analog-to-Digital Converters 14
Voltage-to-Frequency Converters 18
Digital-to-Analog Converters 20
Sample/Holds 24
Peak Detector 26
Multiplexers 27
OPERATIONAL AMPLIFIERS 28
Op-Amp Highlights 29
Comparison Guide 32
General Purpose Amplifiers 34
Low Drift Amplifiers 36
Low Bias Current Amplifiers 38
Wideband \& Fast Settling Amplifiers 40
High Voltage \& High Current Amplifiers . . . 42
ISOLATION AMPLIFIERS 44
Optically Coupled Amplifiers 46
Transformer Coupled Amplifiers 48
INSTRUMENTATION \& DATA AMPLIFIERS . 49
Instrumentation Amplifiers 50
Low Drift Instrumentation Amplifiers . . . 52

High Input Impedance, Low Bias Current Instrumentation Amplifiers54
Programmable Gain Amplifiers 56
Variable Gain Differential Amplifiers 58
Enclosures For Rack Mounting Amplifiers 59
ANALOG CIRCUIT FUNCTIONS 60
Multiplier/Dividers 61
IC Multiplier/Dividers 62
Two-Quadrant Analog Divider 65
Multifunction Converters 66
Computing True RMS-to-DC Converters 68
Thermal True RMS-to-DC Converters 69
Log Amplifier 70
Comparators 71
Oscillator 72
ACTIVE FILTERS 73
Universal Active Filters 74
Fixed Frequency Active Filters 76
MODULAR POWER SUPPLIES 78
MATING CONNECTORS 80
PACKAGE INFORMATION 82
BURR-BROWN ORIENTATION 104
HIGH RELIABILITY PROGRAMS 106
INTERFACING WITH BURR-BROWN 108
BURR-BROWN REPRESENTATIVES 109
LITERATURE 110
STILL AVAILABLE LIST 112
MODEL NO. INDEX

DATA ACQUISITION AND COMPUTER I/O SYSTEMS

Modular Data Acquisisition Systems Mícrocomputer I/O Systems Remote Multíplexing

Data Acquisition Systems
Dígitally Programmed
Voltage Sources

MODULAR DATA ACQUISITION SYSTEMS

MODELS SDM850,SDM85I, MXP320 AND MXP32I

The standard "off the shelf" data acquisition system is here today in the Burr-Brown SDM850 and SDM851 modular data acquisition systems. With this set of compatible system building blocks, it is possible to configure complete data acquisition systems in one-fourth the space for one-tenth the cost previously possible.

These systems contain all of the components necessary to multiplex and convert analog data into equivalent digital outputs at throughput sampling rates up to 50 kHz for 12 bit and 100 kHz for 8 bit resolutions. The Model SDM850 contains a 16 channel single-ended analog multiplexer, differential amplifier, sample/hold, 12 bit successive approximation A / D converter and programming logic. The Model SDM851 is the same as the SDM850 except that the analog multiplexer is an 8 channel differential configuration. These systems can be expanded to accept up to 256 single-ended or 128 differential analog channels with the MXP320 and MXP321 multiplexer expanders. The system may be mounted on a printed circuit card or vertically stacked in a card frame on one-half inch centers. The only requirements for system operation are input signals power and the interconnection of the system components into the desired operating configuration.

FEATURES

- SAVES SPACE

Requires 75% less space than modules.

- SAVES DESIGN TIME

System components are engineered to work together eliminating expensive design and interfacing costs.

- LOW COST \$495 in unit quantities.
- RELIABLE Every system module is tested and burned in for $\mathbf{1 6 8}$ hours.

Detailed Brochure and Users Manual available on request!

- EXPANDABLE

A complete set of compatible multiplexer expanders and DC/DC converter power supply lets you expand the system up to $\mathbf{1 2 8}$ differential or $\mathbf{2 5 6}$ single-ended channels.

-FLEXIBLE

Use it in up to four operating modes as either a self-contained data acquisition system or control it externally with a digital computer, remote programmer, or panel controls.

SPECIFICATIONS

Typical@25 ${ }^{\circ} \mathrm{C}$ and rated power supplies unless otherwise noted.

MULITIPLEXER EXPANDERS

MODELS MXP320 AND MXP32I

Channel expansion is accomplished in groups of 32 single-ended or 16 differential input channels.
Unless external logic is used, one MXP321 Multiplexer Expander must be added to expand the number of analog input channels before any MXP320 Multiplexer Expander units can be used. The MXP321 contains a 32 channel multiplexer, the address expander and logic whereas the MXP320 has 32 analog multiplexer channels, but not logic. With no external logic, expansion up to 256 singleended channels for the SDM850 and 128 for the SDM851 is possible with these expanders. These units are housed in the same size shielded case as the systems and have 72 pin mating connectors.

DCC20 DC/DC CONVERTER

The DCC20 DC/DC converter is a +5 V to $\pm 15 \mathrm{VDC} / \mathrm{DC}$ converter that provides +120 mA current drive and $10^{9} \mathrm{ohms}, 80 \mathrm{pF}$ isolation. Common-mode withstanding voltage is 500 V . This unit is housed in a $2^{\prime \prime} \times 2^{\prime \prime} \times 0.375^{\prime \prime}$ package. See Package 44 on page 101 .

ORDERING INFORMATION

Model	Description	Unit Price*
SDM850	16 channel single-ended input, 50 kHz, 12 bit Modular Data Acquisition System	$\$ 495.00$
SDM851	8 channel differential input, 50 kHz, 12 bit Modular Data Acquisition System	$\$ 495.00$
MXP320	32 channel single-ended or 16 channel differential input analog multiplexer expander.	$\$ 220.00$

Model	Description	Unit Price *
MXP321	32 channel single-ended or 16 channel differential input analog multiplexer expander plus logic expansion for 17 to 256 single-ended or 9 to 128 differential channels.	$\$ 250.00$
DCC20	+5 V to ± 15 VDC/DC Converter	$\$ 82.00+$

[^0]
coming soon!* SDM853

 LOW COST

 LOW COST DATA ACQUISITION DATA ACQUISITION SYSTEM

 SYSTEM}- 25 kHz THROUGHPUT SPEED
- 16 CHANNELS
- 12 BITS
- PRICED UNDER $\$ 200.00$

EB MICROCOMPUTER ANALOG IO SYSTEMS

MP8104

ANALOG OUTPUT SYSTEM
MP8208 AND MP8216 DATA ACQUISITION SYSTEM

- REDUCES SYSTEM DEVELOPMENT TIME

System engineered and specified plugs directly into Intellec ${ }^{\circledR} 8$ Microcomputer
Operates from Intellec's +5VDC power supply

- EASY TO PROGRAM

Systems are treated as memory

- EASY TO USE

All cabling and connectors are included

Coming soon! More Analog I/O Systems for: Motorola EXORciser (M6800) Intel MDS (8080 and
 series 3000)

These microcomputer peripherals provide two much needed functions that interface directly to Intel's Intellec ${ }^{\circledR} 8$ microcomputer. The functions are: 1) Analog Data Acquisition and 2) Analog Output. The devices are electrically and mechanically compatible with any Intellec 8. Each analog system is contained on a single printed circuit board that is treated as memory input or output by the CPU. The cards will mate with any memory or I/O slot. The analog interface for each system is at a flat cable connector located at the edge of the board opposite the bus connector.

The Data Acquisition Systems consist of the MP8208, an 8 channel differential input system; and the MP8216, a 16 channel single-ended input system. Burr-Brown's SDM850
and SDM851 modular data acquisition systems are used to implement these systems. The data acquisition systems include an input multiplexer, instrumentation amplifier, sample/hold and 12 bit A/D converter along with all the necessary timing, decoding and control logic. The model $546 \mathrm{DC} / \mathrm{DC}$ converter (+5 V to $\pm 15 \mathrm{~V}$) is also used so that only the Intellec's +5 VDC power supply is required.
The MP8104, an analog output system, provides four analog output channels (using four of Burr-Brown's hybrid 12 bit DAC80 D/A converters). This board also contains the 546 $\mathrm{DC} / \mathrm{DC}$ converter to assure operation on +5 VDC power. The input of the D / A converters are double buffered so that a complete 12 bit word can be strobed into a D/A converter's input register to minimize output glitches.

THEORY OF OPERATION

When programming with these peripherals, the user treats them as memory locations. Both the A/D converter output and the D / A converter input are 12 bit words, so two 8 bit memory locations are needed for each channel. But, because the address block occupied by each peripheral is strap selectable, it can be placed anywhere in memory. Since these units are treated as memory, a single instruction is all that's needed (with the Intellec $8, \bmod 80$) to read an input channel or to set the input of a D/A converter. For instance, the LHLD (load) instruction followed by the proper address is used to read data from the MP8208 or MP8216. It will automatically
select the desired channel, initiate conversion and when conversion is complete, transfer the A/D converter output for that channel to the Intellec's H and L registers. The eight least significant bits are read first followed by the four most significant bits. In earlier Intellec's (using the 8008 chip), two MOV instructions are needed.
All of these systems are jumpered at the factory with the first channel at address FFO_{16} (1111111100000000 in binary). Each subsequent channel is two memory locations past the start of the last channel so that the second channel is at location $\mathrm{FF} 02_{16}(1111111100000010)$.

SPECIFICATIONS
All specifications typical at $25^{\circ} \mathrm{C}$ unless otherwise noted.

MP8208/8216 DATA ACQUISITION SYSTEM	
ANALOG INPUT Number of analog inputs	
MP8208	8 differential
MP82 16	16 single-ended
Input voltage range(1)	$\pm 10 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 0-5 \mathrm{~V}$
Input overvoltage protection	(strap selectable) $\pm 15 \mathrm{~V}$
Input Impedance	100 megohms
TRANSFER CHARACTERISTICS	
Resolution	12 bits binary
Throughput accuracy (max)	$\pm 0.025 \%$ FSR (2)
Temperature coefficient of accuracy	$\pm 0.002 \%$ FSR $/{ }^{\circ} \mathrm{C}$
Conversion time(3)	20 microseconds
CMRR (for MP8208)	70 dB (DC to 1000 Hz)
DIGITAL INPUT/OUTPUT	
All signals compatible with	1) MAD 5 through MAD 15
Intellec Bus. Conversion starts when:	equals the hardwired address.
	2) DBIN and MEMR signals
	are present and
	3) MAD $0=0$ (even address)
The output data bits are read into:	MDI 0 through MDI 7
	(The 8 LSB's when conver-
	sion is complete, followed by the 4 MSB's when
	MAD $0=1$)
TEMPERATURE RANGE	0 to $70^{\circ} \mathrm{C}$

1) Connected at the factory for $\pm 10 \mathrm{~V}$ range.
2) FSR is Full Scale Range (i.e., 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for 0 to +10 V range).
3) The internal sample/hold amplifier is in "hold" 7.5 microseconds after start of conversion.

Prices and specifications subject to change without notice.

MP8104 DAC OUTPUT SYSTEM	
ANALOG OUTPUT	
Number of analog outputs	4
Output voltage range(1)	$\begin{gathered} \pm 10 \mathrm{~V}, 0-10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-5 \mathrm{~V}, \pm 2.5 \mathrm{~V} \\ \text { @ } 5 \mathrm{~mA} \end{gathered}$ (strap selectable)
Output Impedance	1Ω
Output settling time	<10 microseconds
TRANSFER CHARACTERISTICS	
Resolution	12 bits binary
Throughput accuracy (max)	$\pm 0.0125 \%$ FSR
Temperature coefficient of accuracy	
Unipolar	$\pm 0.003 \% \mathrm{FSR} /{ }^{\circ} \mathrm{C}$
Bipolar	$\pm 0.0045 \% \mathrm{FSR} /{ }^{\circ} \mathrm{C}$
DIGITAL INPUT/OUTPUT	
	1) MAD 3 through MAD 15
Intellec Bus. A new data word is strobed to a DAC's input register when:	equals the hardwired address.
	2) A write signal is present and
	3) $\mathrm{MAD} 0=1$
An analog output channel is selected by: The input data bits are read by:	MAD 1 and MAD 2 DBO through DB7
TEMPERATURE RANGE	0 to $70^{\circ} \mathrm{C}$

PRICES

Model Number	Description *	$\mathbf{1 - 4}$	$\mathbf{5 - 9}$
MP8104	4 channel DAC output system	$\$ 695.00$	$\$ 635.00$
MP8208	8 channel differential data acquisition system	795.00	725.00
MP8216	16 channel single-ended data acquisition system	795.00	725.00

[^1]
EB

мicromux

REMOTE DATA ACQUISITION

- REDUCES SIGNAL WIRING BY 94\%
- RUGGED \& RELIABLE

Industrial Construction $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Range One Week Burn-in

- SECURE DATA TRANSMISSION

Integrating Techniques Used Throughout
Current Transmission
Channel \& Line Synchronization
Open Line Detection

- EASILY EXPANDABLE

16 To 512 Channels Per Computer Interface

- EASY TO SERVICE

Modular Construction

- EASY TO USE

Built-in Serial Computer Interface
Interfaces With All Popular Mini-Computers

Micromux is a low cost industrial remote data acquisition system designed to reduce wiring costs and improve data integrity. Micromux is ideally suited to monitoring thermocouples, environmental variables, equipment maintenance functions, levels, pressures and other process signals. It is a rugged system that comes complete and ready to use in standard industrial packaging with a built-in computer interface. Micromux consists of from one to four electrically isolated remote units connected to a receiver. Each remote unit multiplexes 16 analog or digital inputs and converts them to frequency-coded time-multiplexed digital signals. These signals are then transmitted on a wire pair as far as 1500M (5000 ft .) to the receiver. The receiver converts the frequency signal to a three digit BCD format and stores the latest data from all channels in its internal memory. Upon command, the receiver transmits the continuously updated channel information to a computer over a standard ASCII serial interface.
The environmentally rugged remote units are intended to be used near the sensors and transmitters that generate the remote signal inputs. AC power is not required at the remote units because power is supplied by the receiver on the same twisted wire pair used for signal transmission. The receiver is intended for use near a computer.

Detailed Product Data Sheet and User's Manual available on request!

Micromux is a money saving alternative to direct wiring of all signals to the computer room. Micromux reduces the process signal wiring required by a factor of 94%. This savings, especially with the cost of wire and labor steadily rising, can easily amount to several times the cost of Micromux. In addition, significant advantages can accrue because of reduced documentation requirements and simplified cable routing.

Since Micromux is a computer interfaced data acquisition system, a local multiplexer at the computer is not needed. Micromux is price competitive on this basis alone.
Micromux can be configured as a basic 16 channel system with one remote unit and one receiver. Up to four remote units can be connected to each receiver to achieve a capacity of 64 channels. And, as many as eight fully expanded receivers (512 data channels) can be connected to each communications interface of the computer.

PRICING

16 Channel Micromux System \$2790.00 (Includes receiver and one remote unit) Additional remote units: $\$ 1640.00$ Contact Burr-Brown for pricing of the exact system that you require.

TYPICAL MICROMUX SYSTEM

ENVIRONMENT

MICROMUX REMOTE UNIT

EB DIGITALLY PROGRAMMED VOLTAGE SOURCES

MODELS 4800 AND 480I

- 0.01\% ACCURACY
- $\pm 60 \mathrm{~V}, 200 \mathrm{~mA}$ OUTPUT
- FULL DIGITAL PROGRAMMING OF

Voltage Magnitude
Voltage Range
Voltage Polarity
Current Limit

- INPUT STORAGE REGISTERS
- VOLTAGE OR CURRENT PROGRAMMING

The 4800 and 4801 are the first digitally programmed voltage sources (DPVS) developed specifically for designin applications in automated and computer-controlled test equipment. They are packaged in a compact module suitable for mounting on a printed circuit board, and are essentially self-contained digitally programmable power supplies (DPPS). By eliminating the size and weight of the $\mathrm{AC} / \mathrm{DC}$ power supply and the expensive hardware of an instrument-type DPPS, and through extensive use of our own low cost, high precision components, we have provided maximum performance and applications versatility at minimum cost. Because the required DC power is normally available in the user's system (or can be provided at small cost) and because instrument hardware is usually unnecessary, the tradeoffs are extremely favorable.
Both binary (4800) and BCD (4801) programming are provided, thus minimizing the need for expensive codeconversion circuitry. The 4800 and 4801 contain a high-
stability D/A converter, power output circuitry, sensing amplifier, and all the digital controls and interfaces necessary to allow easy computer control. Each unit has selectable $\pm 10 \mathrm{~V}$ and $\pm 60 \mathrm{~V}$ output ranges. Alternatively, they may be used as digitally programmed current sources.
When operated in the voltage programming mode, a current sense output is available. Also, the internal current limiting level is digitally programmable.
Settling time of the 4800 or 4801 , after a programmed change in the digital input word, is $100 \mu \mathrm{sec}$ (worst case). The maximum trimmed output error is $\pm 0.012 \%$. Package size is $4.4^{\prime \prime} \times 3.4^{\prime \prime} \times 0.8^{\prime \prime}$. See (35) on page 98 .

PRICE in 1-9 quantities:

$$
\begin{array}{ll}
\text { Model } 4800 \text { (Binary Coding) } & \$ 650.00 \\
\text { Model } 4801 \text { (BCD Coding) } & \$ 650.00
\end{array}
$$

For additional details request data sheet PDS-306.

MODEL 4804 -Low Cost POWER DAC

\author{

- $\pm 30 \mathrm{~V}, \pm 1$ AMP OUTPUT
 - $\pm 1 / 2$ LSB MAXIMUM NON-LINEARITY
 - InPut Storage register
 - RESISTOR-PROGRAMMED VOLTAGE RANGE AND CURRENT LIMIT
 - LOW COST: \$209.00
}

The 4804 is the first commercially available power DAC that delivers $\pm 1 \mathrm{amp}$ continuously with an output of $\pm 30 \mathrm{~V}$. Semi-conductor test equipment and servo control systems designers can save both time and money by using this digital-ly-programmed voltage source. You can select an output voltage range up to $\pm 30 \mathrm{~V}$ with the addition of one external resistor while maintaining 12-bit resolution. Accuracy of the programmed voltage is $\pm 0.05 \%$ of full scale with no external trimming. Offset and gain adjusting points are accessible if more accuracy is required, or if you wish to optimize performance at a particular value of output voltage.

The output current is limited to 1.25 amps to protect the load. By changing the values of two easily accessible resistors, you can vary the positive and negative current limits independently to suit your particular application. The 4804 power amplifier is capable of delivering two amps into a load continuously if the current limit resistors are changed and care is taken to keep the internal power dissipation below the absolute maximum rating.

The package can dissipate up to 20 watts internally in free air at $25^{\circ} \mathrm{C}$ with no external heat sinking required. With a maximum package height of 0.875 inches, the 4804 will mount on a PC card in a card file close to the load. To further minimize voltage drops, the line resistance between the POWER DAC and the load can be placed inside the feedback loop of the output amplifier by using the $\mathrm{V}_{\text {out }}$ range adjust pin and an external feedback resistor. Remote sensing and grounding techniques to improve accuracy are described in the six-page product data sheet.

Over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, gain and offset are guaranteed to drift less than $\pm 50 \mathrm{ppm}$ per ${ }^{\circ} \mathrm{C}$ and $\pm 70 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$, respectively. Settling time to within 0.01% of final reading is less than 100μ s for any change in programmed output voltage.

For a more detailed description of the POWER DAC, including complete specifications, request PDS-335.
See package (47) on page 103 .

PRICES	
$(1-24) \$ 209.00$	$(25-99) \$ 188.00$

DATA CONVERSION PRODUCTS

Analog-to-Dígital Converters Voltage-to-Frequency Converters Dígital-to-Analog Converters Sample/Holds Peak Detectors Multiplexers

HOW CONVERSION PRODUCTS ARE CLASSIFIED

In general, products in this category are electronic devices which manipulate or operate on information which is in either digital or analog form. The output of these devices contains time-correlated information which may be in either analog or digital form.
Each product type performs a specific basic function. They are classified by key performance categories as follows:

A/D CONVERTERS provide coded digital output signals that represent the amplitude of analog input signals. Two conversion techniques are utilized by the A / D converters included in this catalog: successive approximation A/D conversion is used where moderate to high speed conversion rates are required; delta sigma modulation integration technique is used for high resolution and high accuracy where fast conversion speed is not required.
A/D converters are organized by the following categories:
(1) High performance, general purpose, covering the span of low drift ($\left.\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ to fast conversion speed (800 nanoseconds per bit) for 8, 10, and 12 bit resolutions.
(2) High resolution, high accuracy A/D converters offer resolutions up to 16 bits with initial accuracies of 0.005%.
(3) High speed A / D converters in modular packages offer 8,10 , and 12 bit resolutions and conversion speeds up to 110 nanoseconds per bit.

V/F CONVERTERS provide a digital pulse train as an output whose repetition rate (frequency) is directly proportional to the amplitude of the analog input signal.
These devices offer a low cost method of A/D conversion and/ or serial transmission of analog signals over long distances while preserving signal accuracy as well as many other applications.
The units in this catalog are designed for general purpose use in industrial, laboratory and similar applications.

D/A CONVERTERS accept weighted digital signals and convert them into an equivalent analog current or voltage as an output.
The switched current ladder network method of D / A conversion is used to provide the widest range of speed and accuracy requirements.
D/A converters are organized by the following categories:
(1) High performance, general purpose, 8, 10, and 12 bit resolutions.
(2) High speed (fast settling) generally for use in CRT displays and construction of high speed A/D converters.
(3) High resolution, covering the span of 14 or 16 bit resolutions.
(4) Economy, general purpose.
(5) High reliability, specifically designed for operation in rugged or exposed environments.

SAMPLE/HOLD amplifiers provide a simple method of storing an analog signal for a finite time period.
All Burr-Brown sample/hold amplifiers are designed to operate from standard ± 15 volt power supplies, and are complete (except the Hybrid IC Model SHC23, which requires an external capacitor).
These devices offer a wide spectrum of performance ranging from 1 microsecond acquisition speed for 0.01% accuracy to very low droop rates of 250 microvolts per second. Accuracies of $\pm 0.01 \%$ will satisfy a majority of data acquisition and control applications.

PEAK DETECTORS are very similar to sample/holds. These devices are capable of detecting and holding the peak amplitude of a varying analog signal. The operating mode (PEAK DETECT, HOLD, RESET) is externally controlled, and may be adapted to many test, measurement, and control applications that require low droop in HOLD and fast response to changes in input signals while in the PEAK DETECT mode.

ANALOG MULTIPLEXERS accept continuous analog data from multiple data sources, select these sources one at a time, and present the selected data as time-multiplexed analog data to an accepting device such as a sample/hold or A/D converter. Burr-Brown's analog multiplexers accept a digitally coded (binary) channel address and provide the decoding for selecting the correct channel. All Burr-Brown analog multiplexers are constructed with CMOS-FET switches that are protected against electrostatic discharge (overvoltage protection).

Transfer accuracies up to $\pm 0.01 \%$ for either 4 or 8 channel differential or 8 or 16 channel single-ended sources with signal ranges up to ± 10 volts are provided. All Burr-Brown CMOS analog multiplexers are latch-up proof, and are available in 16 or 28 pin DIP compatible packages.

Be
 Analog-to-Digítal CONVERTER HIGHLIGHTS

Burr-Brown's A / D converter line offers a wide spectrum of performance with resolutions up to 16 binary bits, 8 bit conversion speeds as fast as 880 nsec, and guaranteed gain drifts as low as $\pm 7 \mathrm{ppm} /{ }^{\circ} C$. Designed to maximize cost/ performance parameters, these A / D converters can provide solutions to some of your toughest data conversion problems.
All A / D converters are complete with internal references and some have a user connectable input buffer amplifier. All digital inputs and outputs are TTL compatible, and all units operate from $\pm 15 V D C$ and +5 VDC power.
Our new hybrid IC Models, ADC80, ADC82, and ADC85 offer superior performance at attractive prices, and are packaged in tiny 24 and 32 pin DIP compatible metal and ceramic packages.

HIGH PERFORMANCE IC

 ADC80 LOW COST 10 AND 12 BIT IC NEW!Designed to save cost, space and weight with no sacrifice in performance, the $\mathrm{ADC80}$ is a successive approximation A / D converter that provides 10 and 12 bit resolutions at conversion speeds up to 2 microseconds per bit. Complete with internal clock and reference, these A/D converters offer $\pm 1 / 2$ LSB maximum linearity error and $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum gain drift over $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Input signal ranges of ± 2.5, $\pm 5, \pm 10,+5$ and +10 volts are user programmable. Parallel and serial digital data is available in unipolar or bipolar TTL compatible binary codes. These low cost units are offered in 32 pin DIP compatible epoxy sealed ceramic packages.

ADC82 LOW COST 8 BIT IC NEW!

The ADC82 is a high performance A / D converter in hybrid IC form. Conversion time of the ADC 82 is 2.8 microseconds. This unit is pre-trimmed to provide $\pm 1 / 2$ LSB absolute accuracy at $25^{\circ} \mathrm{C}$ and is complete with clock and internal reference. It is also flexible in application, providing user selectable input ranges of $\pm 2.5, \pm 5, \pm 10,+5,+10$, and +20 volts, plus a choice of parallel or serial output.

The ADC82 is hermetically sealed in a metal, 24 pin dual-inline package and is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range (ADC 82 AM). The ADC 82 is also available in a 24 pin ceramic (ADC82AG, -25° to $+85^{\circ} \mathrm{C}$).

FAST 10 AND 12 BIT IC ADC85-250 to $+85^{\circ} \mathrm{C}, \mathrm{ADC85C} 0^{\circ}$ to $+70^{\circ} \mathrm{C}$

Designed to save space, weight and money, these A/D converters offer premium performance in a 32 pin hermetically sealed DIP compatible metal package. Conversion speeds up to 6 microseconds for 10 bit resolution and 10 microseconds for 12 bit resolution make the ADC85 ideal for applications that require system throughput sampling rates up to 150 kHz .

The ADC85 is complete with internal reference and user connectable buffer amplifier and may be user programmed to accept bipolar analog input signals of $\pm 2.5, \pm 5$, or ± 10 volts or unipolar signals of 0 to +5 or 0 to +10 volts. In addition, these units can be "short-cycled" to achieve faster conversion speeds for resolutions less than 10 bits. Data is available in parallel and serial form with corresponding clock and status signals.

LOW DRIFT

ADC40 - LOW DRIFT $\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

The ADC40 family of 8,10 , and 12 bit A/D converters offer low drift performance and the optimum in modular packaging. Requiring only input signal and power, these self-contained units are designed for applications that require conversion speeds up to 2.5 microseconds per bit. Throughput rates of 50 kHz for 8 bit resolutions and 33 kHz for 10 and 12 bit resolutions are easily achieved with the ADC 40 series A / D converters.
These converters are available with binary or BCD output codes and user programmable (unipolar and bipolar) input voltage ranges. These units are encapsulated in $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$ modular packages.

HIGH SPEED

ADC60-UP TO 1 MHz SAMPLING RATE

The ADC60 is a very high speed successive approximation A/D converter that is designed for applications requiring systems throughput rates from 300 kHz to 1 MHz . The fast conversion speed is accomplished with proprietary fast settling circuits which preserve linearity and drift while permitting conversion speeds up to 110 nanoseconds per bit.
Available in 8,10 and 12 bit resolutions the ADC60 contains internal components that are provided for pin programmable analog input signal ranges of $\pm 2.5, \pm 5, \pm 10,0$ to +5 and 0 to +10 volts.
Data is available in both serial and parallel binary digital form with corresponding timing signals. The ADC60 is housed in a $2^{\prime \prime} \times 4^{\prime \prime} \times 0.75^{\prime \prime}$ module.

HIGH RESOLUTION, INTEGRATING ADC100-16 BIT RESOLUTION

The ADC100 is excellent for applications which require good accuracy and high resolution, but where speed is not too important. The ADC100 utilizes the delta sigma modulation principle whereby the digital equivalent of analog signals is developed by counting a number of pulses whose average repetition rate is proportional to the amplitude of the input signal over a fixed integration period. The closed conversion loop assures linear performance of $\pm 0.005 \% \pm 1$ count that is independent of clock frequency deviation over the specified temperature range of 0 to $+70^{\circ} \mathrm{C}$. Conversion speeds range from 12 milliseconds for 12 bit binary to 30 milliseconds for 4 digit plus sign BCD codes.
The ADC100 is housed in a $2^{\prime \prime} \times 4^{\prime \prime} \times 0.4^{\prime \prime}$ module and is available with unipolar or bipolor binary or BCD output codes.

是 ANALOG-to-DIGITAL CONVERTERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	UNITS	$\begin{gathered} \text { ADC60 } \\ \text { HIGH SPEED } \end{gathered}$			ADC85C		TIC ADC85	
RESOLUTION	Bits Digits	8	10	12	10	12	10	12
INPUT								
ANALOG INPUT Voltage Range - Binary Codes - Decimal Codes Impedance	Volts Volts Ω	$\quad \pm 2.5, \pm 5, \pm 10,0$$200 \Omega / \mathrm{V}$ of FSR			$5,0 \text { to }+10$$10^{\overline{8}}$			
DIGITAL INPUTS(1) Convert Command (positive pulse) Minimum Pulse Width Loading	$\begin{aligned} & \text { nsec } \\ & \text { TTL Loads }{ }^{(2)} \end{aligned}$	$\begin{aligned} & 30 \\ & 2 \end{aligned}$			$\begin{aligned} & 50 \\ & 1 \end{aligned}$			
TRANSFER CHARACTERISTICS								
ACCURACY Gain Error (Adjustable to zero) Offset Error (Adjustable to zero) Unipolar Bipolar Linearity Error, max Quantizing Error	$\begin{aligned} & \text { \% of FSR } \\ & \text { \% of FSR } \\ & \% \text { of FSR } \\ & \% \text { of FSR } \end{aligned}$	± 0.195	$\begin{gathered} \pm 0.1 \\ \\ 0.1 \\ 0.1 \\ \pm 0.048 \end{gathered}$	± 0.024	± 0.048 LSB	± 0.012	$\begin{aligned} & .1 \\ & .05 \\ & \dot{1}^{1} \quad 0.048 \end{aligned}$	± 0.012
ACCURACY DRIFT Specification Temperature Range Gain, max Offset (Unipolar) Linearity, max	$\begin{aligned} & { }^{\mathrm{o}} \mathrm{C} \\ & \mathrm{ppm} / /^{\mathrm{O}} \mathrm{C} \\ & \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\mathrm{O}} \mathrm{C} \\ & \mathrm{ppm} \text { of } \mathrm{FSR} /{ }^{\mathrm{O}} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 20^{(4)} \\ \pm 5 \end{gathered}$	$\begin{aligned} & 0 \text { to }+70 \\ & \pm 20^{(4)} \\ & \pm 5 \end{aligned}$	$\begin{gathered} \pm 15(4) \\ \pm 5 \end{gathered}$	$\begin{aligned} & 0 \mathrm{t} \\ & \pm 40 \\ & \pm 3 \end{aligned}$	$\left\lvert\, \begin{aligned} & \pm 70 \\ & \pm 25 \\ & \pm 3 \end{aligned}\right.$	$\begin{aligned} & \pm 20^{-25} \\ & \pm 3 \end{aligned}$	$\begin{gathered} +85 \\ \pm 15 \\ \\ \pm 2 \\ \hline \end{gathered}$
Monotonicity Temperature Range		Guaranteed (0 to $+70^{\circ} \mathrm{C}$ min)					$\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{Cmin}\right)$	
CONVERSION SPEED, max	$\mu \mathrm{sec}$ msec	0.88	1.88	3.50	6	10	6	10
OUTPUT								
DIGITAL OUTPUTS ${ }^{(5)}$ Data (Parallel and Serial Format) Codes		$\mathrm{BIN}^{(6)}$			$\mathrm{CBI}^{(7)}$			
Status ${ }^{(6)}$		Logic " 1 " during conversion.						
POWER REQUIREMENTS Rated Voltages Range, max Supply Drain +15 V $-15 \mathrm{~V}$ $+5 \mathrm{~V}$	Volts Volts mA mA mA		$\begin{aligned} & +110 \\ & -48 \\ & +270 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 15 \text { a } \\ \text { to } \pm 15.5 \text { a } \end{array}$	$\begin{aligned} & +5 \\ & +4.75 \text { to } \end{aligned}$	$+5.25$		
PACKAGE DRAWING (See pages 89-93)		(25)	2" $\times 4$ "	75"		(26) $\quad 1$.	$5^{\prime \prime} \times 1.75^{\prime \prime}$ Pin META	$\begin{aligned} & 0.2^{\prime \prime} \\ & \text { DIP } \end{aligned}$
PRICE (1-9)		\$195.00	\$195.00	\$235.00	\$160.00	\$195.00	\$ 185.00	\$225.00

Prices and specifications are subject to change without notice.

+ Operates over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range with derated performance.
(1) DTL/TTL compatible, " 0 " $=0.8 \mathrm{~V} \max , " 1 "=2.0 \mathrm{~V} \mathrm{~min}$.
(2) 1 TTL Load $=40 \mu \mathrm{~A} @ L$ Logic " 1 " and $-1.6 \mathrm{~mA} @$ Logic " 0 ".
(3) FSR means Full Scale Range.
(4) Total Accuracy Drift in ppm of FSR $/{ }^{\circ} \mathrm{C}$.
(5) DTL/TTL compatible Logic @ $\max =0.4 \mathrm{~V}$, Logic $1 \mathrm{~min}=2.4 \mathrm{~V}$.
(6) Status indicates that a conversion is in progress and the output data is not valid.

ORDERING INFORMATION

ADC85C

(6a) Unipolar or bipolar codes user selectable.
Unipolar and bipolar codes derived from BIN code are
BTC, BOB and USB.
BTC $=$ Binary Two's Complement
$\mathrm{BOB}=$ Bipolar Offset Binary
USB $=$ Unipolar Straight Binary
(6b) BCD - Unipolar Binary Coded Decimal
(7) $\mathrm{CBI}=$ Complementary Binary. Unipolar and bipolar codes derived from this code are CSB, COB and CTC - user selectable. $\mathrm{COB}=$ Complementary Offset Binary
CTC $=$ Complementary Two's Complement CSB $=$ Complementary Straight Binary
(8) 50 msec for 14 bits, 200 msec for 16 Bits.
(9) $\operatorname{SMD}=$ Sign Magnitude Decimal Code.

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

ADC80

ADC82

ADCIOO

VOLTAGE-to-FREQUENCY CONVERTERS

Voltage-to-frequency conversion is a simple and low cost method of converting analog signals into an equivalent digital form. The output is a TTL compatible digital pulse train whose repetition rate is proportional to the amplitude of the analog input signal; these pulses have constant width and constant amplitude.

VFC's can be used to increase noise immunity on long single-line signal transmission, for 12 bit accuracy A / D conversion, in digital panel meter front ends, and they are ideal for feed rate generator and control applications.

caming soon*...
 VFC32-100kHz IC

Low cost and compact in size, the VFC32 offers $\pm 0.02 \%$ linearity and $\pm 30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift for application where 5 digit resolution of faster update lower resolutions are required.
This V / F converter is packaged in a TO-99, and is specified for operation over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

The VFC32 requires only three external components and $\pm 15 \mathrm{VDC}$ power, and may be operated over the 1 Hz to 10 kHz range of $\pm 0.02 \%$ nonlinearity or 10 Hz to 100 kHz for $\pm 0.05 \%$ nonlinearity for a 1 mV to 10 V input signal range.

* (Available in mid - 76)

VFCI2 AND VFCI5 LOW COST IO/20 kHz Modular

Housed in a $1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4^{\prime \prime}$ module, these V/F converters offer $\pm 0.01 \%$ linearity and $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift for 12 bit accuracy.

The VFC12 accepts 0 to 10 volt analog signals while Model VFC15 accepts 0 to 20 volt analog signals. The VFC12 operates over a DC to 10 kHz frequency range and the VFC15 operates over a DC to 20 kHz frequency range.

The low 0.01% maximum nonlinearity error of these V / F converters makes them excellent for use in applications where digital resolutions of 12 or 13 bits are desired. These units are completely self-contained and require only ± 15 VDC power and input signal. The gain and offset are adjustable with external potentiometers. A number of optional configurations to scale the input or output for best compatibility with your system are easily realized with simple external circuitry.

SPECIFICATIONS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	VFC12	VFC15	VFC32*	UNITS
FREQUENCY RANGE	10	20	100	kHz
INPUT				
ANALOG INPUT Voltage Range Overrange, min Impedance Maximum Safe Input Voltage	$\begin{aligned} & 0 \text { to }+10 \\ & 100 \\ & 33 \\ & 22 \end{aligned}$	$\begin{aligned} & 0 \text { to }+20 \\ & 10 \\ & 33 \\ & 22 \end{aligned}$	$\begin{gathered} 1 \mathrm{mV} \text { to }+10 \\ 10 \\ 30 \\ 15 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \% \text { of } \mathrm{FSR}^{(1)} \\ & \mathrm{k} \Omega \\ & \mathrm{~V} \end{aligned}$
INPUT POWER Rated Voltages ${ }^{(2)}$ Supply Drain Typical Maximum			$\begin{aligned} & \pm 15(3) \\ & \pm 3.5 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \mathrm{VDC} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
TRANSFER CHARACTERIST TRANSFER EQUATION	$\mathrm{f}_{\text {out }}=10^{4} \frac{\mathrm{~V}_{\text {in }}}{10}$		$\mathrm{f}_{\text {out }}=10^{5} \frac{\mathrm{~V}_{\text {in }}}{10}$	Hz
```ACCURACY Full Scale Error Offset Error (5) Typical Maximum Linearity Error, max 10 kHz Range 20 kHz Range 100 kHz Range Power Supply Sensitivity```	$\begin{aligned} & \pm 0.002 \\ & \pm 0.01 \end{aligned}$   $\pm 0.01$	$\begin{aligned} & \mathrm{e}^{(4)} \\ & \pm 0.001 \\ & \pm 0.005 \\ & - \\ & \pm 0.01 \\ & - \end{aligned}$	Adjustable $\begin{aligned} & \pm 0.01 \\ & \\ & \pm 0.01 \\ & \quad- \\ & \pm 0.05 \\ & \pm 0.01 \end{aligned}$	\% of FSR $\%$ of FSR $/ \% \mathrm{~V}_{\mathrm{S}}$
```STABILITY ( }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +70}\mp@subsup{0}{}{\circ}\textrm{C} Full Scale Drift Voltage Input, max 10 kHz Range 20 kHz Range 100 kHz Range Current Input Offset-Drift```	$\begin{gathered} \pm 50 \\ - \\ - \\ \text { N/A } \end{gathered}$	$\begin{gathered} \pm 50 \\ \pm 50 \\ - \\ \pm 35 \end{gathered}$	$\begin{gathered} \pm 50 \\ - \\ - \\ \text { N/A } \\ * \end{gathered}$	ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$ ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ppm of FSR $/{ }^{\circ} \mathrm{C}$
RESPONSE Settling Time for 10 V Input Step, max Overload Recovery Time	2 output pulses of new frequency plus $20 \mu \mathrm{sec}$ 1 to 2 pulses of new frequency		*	
TEMPERATURE RANGE Specification Operating (derated specifications) Storage			$\begin{aligned} & 0 \text { to }+70 \\ & -25 \text { to }+85 \\ & -55 \text { to }+125 \end{aligned}$	$\begin{aligned} & { }^{\mathrm{o}} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{C} \end{aligned}$
OUTPUT				
Waveform Pulse Characteristics Logic 1 (High) Logic 0 (Low) Pulse Width Fan Out Impedance Capacitive Load ,max		n of TTL/DTL Loads	atible pulses $\begin{gathered} \mathrm{V}_{+} \pm 0.5 \\ 0.2 \pm 0.1 \\ 3 \end{gathered}$ 3 TTL Loads 3 300	V V $\mu \mathrm{sec}$ k Ω pF
PACKAGE DRAWING (see pages 82, 98)	(34) $\mathrm{A}_{1.5}$	0.4 "34) B	TO-99	
PRICE (1-24)	\$37.00	\$39.00	*	

(1) $\mathrm{FSR}=$ Full Scale Range and is 10 V for VFC12 and 20 V for VFC15.
(2) A regulated supply with 1% or less ripple is recommended.
(3) Range is $\pm 9 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
(4) Adjusted at factory for $9.900 \mathrm{~V}=10 \mathrm{kHz}$.
(5) May be externally adjusted to zero.

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

Be
 Dígital-to-Analog CONVERTER HIGHLIGHTS

Our D/A converters have established a reputation for high quality, low cost conscious approaches to digital-to-analog conversion. These units accept 8 to 16 bit binary or 4 digit $B C D$ codes. These D / A converters offer a wide range of accuracy ($\pm 0.2 \%$ to $\pm 0.003 \%$) drift $\left(\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\right.$ to $\pm 40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ gain drift), settling time (25 nanoseconds to 50 microseconds), and size, allowing you to choose the right product for your specific application. All are TTL compatible and operate from ± 15 volt and +5 volt DC power supplies. Our line of monolithic and hybrid converters (DAC70, DAC80, DAC85 and DAC90) is easily the industry's broadest.

HIGH PERFORMANCE IC NEW! DAC70-I6 Bít Resolution

The DAC70 is the first 16 IC D/A converter complete with internal reference in a 24 pin metal DIP compatible package. Designed to provide wide dynamic range and preserve accuracy in a compact package, this D / A converter is excellent for use as a calibration standard and in many other applications including ATE and biomedical instruments. Two performance models are offered; the DAC70 $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is specified for $\pm 7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max gain drift and $\pm 0.003 \%$ max linearity error, and the DAC70C $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ offers ± 14 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max gain drift and $\pm 0.005 \%$ max linearity error. These units accept TTL compatible complementary 16 bit binary or 4 digit BCD digital input codes, and provide current output ranges of $\pm 1 \mathrm{~mA}$ or 0 to -2 mA for driving an external op amp. The DAC70 settles to $\pm 0.003 \%$ in 100 microseconds when the BB3500C op amp is used.

NEW! DAC90-8 Bít Monolíthíc

Designed with internal reference, this monolithic 8 bit D / A converter is optimum for many applications in microcomputer systems and in process control. It offers true 8 bit accuracy and in addition has low temperature drift. It's fast settling time (200 nsec to $\pm 1 / 2 \mathrm{LSB}$) makes it a good choice for use in building low cost A/D converters. The DAC90 is packaged in a 16 pin dual-in-line package and is available for both military and industrial temperature ranges.
Feedback resistors are included on the monolithic chip allowing the user to scale an external output amplifier for ranges of ± 10 volts, ± 5 volts, ± 2.5 volts, 0 to +10 volts or 0 to +5 volts.

DAC80-12 Bít Low Cost

Designed for many general purpose applications where low cost, small size and 8 to 12 bit accuracy are requirements, the DAC80 offers maximum nonlinearity error of $\pm 0.012 \%$ over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range, and maximum initial nonlinearity error of less than $\pm 0.012 \%$ at $25^{\circ} \mathrm{C}$. It is guaranteed monotonic over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, and settles to $\pm 0.01 \%$ of full scale range in just 3 microseconds. The DAC80 is complete with internal reference and amplifier for bipolar voltage output ranges of ± 2.5 to ± 10 volts or 0 to +5 and 0 to +10 volts unipolar ranges-all selectable by you. Or, if you need a fast settling current output, the DAC80 is also available with 2 current ranges of $\pm 1 \mathrm{~mA}$ or 0 to -2 mA , and settles to $\pm 0.01 \%$ in only 300 nanoseconds.
The DAC is packaged in a $1.40^{\prime \prime} \times 0.80^{\prime \prime} \times 0.25^{\prime \prime} 24$ pin DIP compatible ceramic package.

DAC85-12 Bít Low Dríft

The DAC85 12 bit D/A converter offers quality performance in a 24 pin dual-in-line metal package, is complete with internal reference and output amplifier, and is engineered to preserve the performance while providing sealed protection from severe environments.
Highly stable laser trimmed thin-film resistors and quad current switches provide low nonlinearities of $\pm 0.012 \%$ over the 0 to $70^{\circ} \mathrm{C}$ temperature range (DAC85) or $\pm 0.012 \%$ over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range (DAC85 and DAC 85 LD). Current output models settle to $\pm 0.01 \%$ in 300 nanoseconds while voltage output models settle to $\pm 0.01 \%$ in 3 microseconds, permitting throughput rates as high as 3 MHz for full scale range changes. All models are guaranteed monotonic over the specified temperature ranges.

A full MIL temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ version, DAC85ET, is also available for wide temperature operation.

The small size of the DAC85 makes it an ideal choice as the heart of your A/D converter design or for applications where space or weight is at a premium, such as CRT displays, aircraft instrumentation, and portable instruments. The wide choice of performance models allows you to choose the right unit for your application and budget.

DACI2QZ-I2 Bít Low Cost Modular

If you need a widely second sourced 12 bit modular D / A converter, the BB Model DAC12QZ offers superior performance for lower cost. Utilizing laser trimmed thin-film resistor networks and Burr-Brown's quality construction, this 12 bit D / A converter is one of the best buys on the market today.

DAC60-Ultra High Speed

The DAC60 is a high speed D/A converter designed for high speed applications. It is available in 10 and 12 bit resolutions, provides $1 / 2$ LSB maximum differential nonlinearity error, and is guaranteed monotonic. Typical settling time to 0.05% for a one LSB step is 25 nanoseconds. The maximum settling time for the major carry or for a full scale transition is only 40 nanoseconds to 0.05%.
The DAC60 is pin programmable to obtain unipolar or bipolar output signals. The current output may be fed directly into the summing junction of an external high speed operational amplifier, or an external summing resistor.

EB

MODEL	UNITS	$\begin{aligned} & \text { DAC80 } \\ & \text { LOW COST IC } \end{aligned}$		$\begin{gathered} \text { DAC85C } \\ \text { ECONOMY IC } \end{gathered}$		DAC85GENERAL PURPOSE IC	
RESOLUTION Binary Decimal	Bits Digits	12	3	12	3	12	3
INPUT							
INPUT CODES ${ }^{(1)(2)}$ Binary Decimal		CBI	CCD	CBI	CCD	CBI	CCD
TRANSFER CHARACTERISTICS							
ACCURACY Linearity Error, max @ $25^{\circ} \mathrm{C}$ Binary Models Decimal Models Gain Error (Adj. to zero) Unipolar Offset Error (Adj. to zero)	\% of FSR \% of FSR \% of FSR \% of FSR	± 0.012	± 0.05	± 0.012	± 0.05	± 0.012	± 0.05
ACCURACY DRIFT Gain Drift, max Offset Drift, - Unipolar Combined Gain \& Offset Drift, max Linearity Error Over Temperature Specified Operating Temperature	$\begin{aligned} & \text { ppm } /{ }^{\circ} \mathrm{C} \\ & \text { ppm of FSR } /{ }^{\circ} \mathrm{C} \\ & \text { ppm of FSR } /{ }^{\circ} \mathrm{C} \\ & \% \text { of FSR } \\ & { }^{\circ} \mathrm{C} \end{aligned}$			$\pm 0.012 \dagger$	$\begin{aligned} & \pm 0.05^{\dagger} \\ & -70 \end{aligned}$	$\begin{array}{r} \pm 0.012^{\dagger} \\ -25 \end{array}$	$\pm 0.05^{\dagger}$ 85
CONVERSION SPEED Settling Time to $\pm 1 / 2$ LSB(Unipolar) Slew Rate	$\mu \mathrm{sec}$ $\mathrm{V} / \mu \mathrm{sec}$	$3\left(\mathrm{~V}_{\mathrm{o}}\right.$	($\mathrm{O}_{\text {out }}$)	$3\left(\mathrm{~V}_{\text {out }}\right.$	$.3\left(\mathrm{I}_{\text {out }}\right)$	$3\left(\mathrm{~V}_{\mathrm{ou}}\right.$	$\left(I_{\text {out }}\right)$
OUTPUT							
VOLTAGE RANGE Unipolar Bipolar Current, min Output Impedance	Volts Volts mA Ω			$\begin{array}{r} 0 \text { to }+5, \\ \pm 2.5, \\ 0.0 \end{array}$	$\begin{aligned} & \text { to }+10 \\ & 5, \pm 10 \end{aligned}$		
CURRENT RANGE Unipolar Bipolar Compliance (Unipolar/Bipolar) Impedance (Unipolar/Bipolar)	mA mA Volts Ω			$\begin{array}{r} 0 \\ 15 \mathrm{k} / \\ \hline \end{array}$			
POWER SUPPLY Voltages (rated) Volts Current Drain $\pm 15 \mathrm{~V}$ Supply, +5 V Supply mA Sensitivity $\%$ of FSR $/ \%$							
PACKAGE DRAWING (See pages 92-101)		(28) $\mathrm{A}^{0.8^{\prime \prime} \times 1.4^{\prime \prime} \times 0.25^{\prime \prime}}$CERAMIC		(27) $\mathrm{A}^{0.8^{\prime \prime} \times 1.4^{\prime \prime} \times 0.22^{\prime \prime}} \underset{\text { METAL }}{ }$			
PRICE (1-9)		\$26.50	\$26.50	\$69.00	\$69.00	\$89.00	\$89.00

(1) All input codes are TTL compatible.
Prices and specifications are subject to change without notice.
(2) Input codes are designated:

CBI - Complementary Binary BIN - Straight Binary BOB - Bipolar Offset Binary
+Maximum; monotonicity guaranteed over operating temperature range.

BTC - Bipolar Two's Complement
CCD - Complementary BCD
BCD - Binary Coded Decimal

ORDERING INFORMATION

DAC70

DAC90

NEW!

$\begin{gathered} \text { DAC85LD } \\ \text { LOW DRIFT IC } \end{gathered}$	DAC85ET WIDE TEMP IC	DAC70 DAC70C				$\begin{aligned} & \text { DAC90* } \\ & 8 \text { BIT MONO } \end{aligned}$		$\begin{gathered} \text { DAC120Z } \\ \text { LOW COST MODULAR } \end{gathered}$	$\begin{gathered} \text { DAC60 } \\ \text { ULTRA HIGH SPEED } \end{gathered}$	
12	12	16	4	16	4	8		12	10	12
CBI	CBI	(7)	CCD	(7)	CCD	CSB,	COB	BIN		
$\begin{aligned} & \pm 0.012 \\ & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	$\begin{gathered} \pm 0.012 \\ \pm 0.1 \\ \pm 0.05 \end{gathered}$	$\begin{array}{r} \pm 0.003 \\ \pm 0 . \\ \pm 0 . \end{array}$	$\begin{aligned} & \pm 0.003 \\ & 5 \\ & 5 \end{aligned}$	± 0.005	± 0.005	± 0.2 ± 5 -		$\begin{aligned} & \pm 0.012 \\ & \pm 0.1 \\ & \pm 0.05 \end{aligned}$	± 0.048	± 0.012
$\begin{aligned} & \pm 10 \\ & \pm 1 \\ & - \\ & \pm 0.012 \dagger \\ & -25 \text { to }+85 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 2 \\ & - \\ & \pm 0.024 \\ & -55 \text { to }+125 \end{aligned}$	\pm \pm -25		($\begin{array}{r} \pm \\ \pm \\ \\ \\ \text { to }\end{array}$		$\begin{gathered} \pm 80 \\ - \\ - \\ \pm 0.2 \\ -55 \text { to } \\ +125 \end{gathered}$	± 40 - - ± 0.2 0 to +70	$\begin{gathered} \pm 30 \\ \pm 1 \\ - \\ \pm 0.012 \\ 0 \text { to }+70 \end{gathered}$	$\begin{gathered} \text { - } \\ \pm 30 \\ \pm 0.05 \dagger \\ \\ 0 \end{gathered}$	$\begin{aligned} & \quad- \\ & \quad \text { - } \\ & \pm 30 \\ & \pm 0.024 \dagger \\ & +70 \end{aligned}$
$3\left(\mathrm{~V}_{\text {out }}\right), 0.3\left(\mathrm{I}_{\text {out }}\right)$		$100\left(\mathrm{~V}_{\text {out }}\right)^{(6)}, 50\left(\mathrm{I}_{\text {out }}\right)$				0.20 ($\mathrm{I}_{\text {out }}$)		$\begin{array}{r} 3 \\ 20 \end{array}$	1000	
$\begin{aligned} & 0 \text { to }+5,0 \text { to }+10 \\ & \pm 2.5, \pm 5, \pm 10 \\ & \pm 5 \\ & 0.05 \end{aligned}$		$\begin{gathered} 0 \text { to }+10^{(6)} \\ \pm 10(6) \\ \pm 5(6) \\ 0.05(6) \end{gathered}$				N/A		$\begin{aligned} & 0 \text { to }+5,0 \text { to }+10 \\ & \pm 2.5, \pm 5, \pm 10 \\ & \pm 10 @ 5 \mathrm{~V} \text { Range } \\ & 0.05 \end{aligned}$	N/A	
$\begin{aligned} & 0 \text { to }-2 \\ & \pm 1 \\ & \pm 2.5 \\ & 15 \mathrm{k} / 4.4 \mathrm{k} \end{aligned}$		$\begin{aligned} & 0 \text { to }-2 \\ & \pm 1 \\ & \pm 2.5 \\ & 15 \mathrm{k} / 4.4 \mathrm{k} \end{aligned}$				$\begin{aligned} & 0 \text { to }-2 \\ & \pm 1 \\ & -4 \text { to }+15 \\ & 2 \mathrm{k} / 1.6 \mathrm{k} \end{aligned}$		N/A	$\begin{aligned} & 0 \text { to }-5 \\ & \pm 2.5 \\ & 3.2 / 0.0 \\ & 650 / 516 \end{aligned}$	
$\begin{gathered} \pm 15,+5^{(5)} \\ \pm 25,+20 \\ \pm 0.002(3), \pm 0.02(4) \end{gathered}$		$\begin{aligned} & \pm 15,+5 \\ & \pm 30,+25 \\ & \pm 0.001 \end{aligned}$				$\begin{gathered} \pm 15 \\ \pm 8 \\ \pm 0.02 \end{gathered}$		$\begin{aligned} & \pm 15,+5 \\ & \pm 25,+20 \\ & \pm 0.002 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & +45,-35 \\ & \pm 0.002 \end{aligned}$	
(27) $\mathrm{A} \begin{gathered}0.8^{\prime \prime} \times 1.4 \\ \text { METAL } \times 0.20^{\prime \prime}\end{gathered}$		(27) $\mathrm{B} 0.8^{\prime \prime} \times 1.4^{\prime \prime} \times 0.20^{\prime \prime}$				(45) 16 Pin DIP		(30) $\mathrm{A} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$	(30) $\mathrm{B} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$	
\$150.00	\$175.00	\$149.00		\$119.00		*		\$49.00	\$110.00	\$118.00

(3) For -15 V and +5 V supplies.
(4) For +15 V supply.
(5) The +5 V supply can be eliminated by connecting the +5 V pin to the $\pm 15 \mathrm{~V}$ supply.
(6) With external BB3500C op amp.
(7) Available with unipolar (CSB) or bipolar (COB) input codes.

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

DAC80, DAC85

DAC60
 application. Whether your design requires high speed, high accuracy, or 8 to 13 bit system compatibility, we have it. The performances are excellent, the prices reasonable, and they have that little extra called "Burr-Brown Quality."

NEW! SHC8OLOW COST IC

Designed to work with our IC A/D converters when low system cost is primary consideration, the SHC80 offers $10 \mu \mathrm{sec}$ acquisition time and 12 bit system compatibility. This sample/hold is complete with internal holding capacitor and has TTL/CMOS compatible mode control input levels. Input range of the SHC 80 is ± 10 volts and the throughput accuracy of $\pm 0.01 \%$ is maintained for signals in this range.
The SHC80 is packaged in a 14 pin dual-in-line form and is available in both plastic and metal versions.

SHC23-

HYBRID IC USER SELECTABLE ACQUISITION TIME AND DROOP

If you need a small package and a low cost method of storing an analog voltage, Burr-Brown's SHC23 sample/hold amplifier may be the solution to your problems. Upon command, this unit will acquire and hold an analog signal with very low droop errors. These TTL compatible units need only the addition of an external storage capacitor to provide a complete sample/hold unit. The selection of this capacitor allows you to tailor the specifications of the SHC23 to suit your requirements. For instance, a small storage capacitor will provide an acquisition time as low as 25μ seconds while a much larger storage capacitor will allow the output to be held longer than 15 minutes with less than 1% error.

It's hermetically sealed in a TO- 8 case, provides $\pm 0.01 \%$ accuracy, and for those extreme environmental conditions, the SHC23ET operates over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Burr-Brown guarantees the total unadjustable error (dynamic nonlinearity) of these sample/hold amplifiers to be less than $\pm 0.01 \%$. This makes the SHC23 the best price/performance bargain in its class.

SHC85- FAST 0.0I\% HYBRID IC

The SHC 85 acquires up to ± 10 volt signals in $5.5 \mu \mathrm{sec}$ and is accurate to $\pm 0.01 \%$ of full scale. The SHC 85 is complete with holding capacitor and is packaged in a compact 14 pin DIP package, and has compensating circuitry to minimize charge offset and dielectric absorption. External capacitance may be added to extend the SHC85 performance for lower droop with correspondingly longer acquisition time.
Two models are available - the Model SHC85 is specified for $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operating temperature range and the SHC85ET is specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	UNITS
INPUT	
ANALOG INPUT Voltage Range Impedance Bias Current	Volts Ω nA
DIGITAL INPUT (Mode Control) ${ }^{(1)}$ Sample Mode (Logic 1) Current Hold Mode (Logic 0) Current	$\mu \mathrm{A}$ $\mu \mathrm{A}$
INPUT POWER Voltages Current	Volts mA
TRANSFER CHARACTERISTICS	
ACCURACY Dynamic Nonlinearity ${ }^{(2)}$, max for Sample Period Hold Period Gain Range Gain Error, max Voltage Offset, (Adj. to zero) Droop Rate, max	$\begin{aligned} & \% \text { of } 20 \mathrm{~V} \\ & \mu \mathrm{sec} \\ & \mu \mathrm{sec} \\ & \mathrm{~V} / \mathrm{V} \\ & \% \text { of } 20 \mathrm{~V} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} / \mathrm{ms} \\ & \hline \end{aligned}$
ACCURACY DRIFT Gain Drift Droop over specification temp. Specification Temperature Range	ppm of $20 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ $\mathrm{mV} / \mathrm{ms}$ ${ }^{\circ} \mathrm{C}$
DYNAMIC CHARACTERISTICS Bandwidth (Full Power) Output Slew Rate Acquisition Time (to $\pm 0.01 \%$) 10 Volt Step, max 20 Volt Step, max Aperture Time Feedthrough in HOLD Mode	kHz $\mathrm{V} / \mu \mathrm{sec}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$ ns $\%$ of Step change on input
OUTPUT Voltage Range Current Range Impedance	Volts mA Ω
PACKAGE DRAWING (See pages $82-95$)	
PRICE (1-9)	

(1) Mode Control Command is DTL/TTL Compatible.
(2) Includes all unadjustable errors for specified sample and hold period.

Prices and specifications are subject to change without notice.

SHM60-HIGH SPEED AND SELECTABLE I to lOOO GAINS

Designed for use with fast A / D and D / A converters and analog multiplexers, the SHM60 high speed sample/hold acquires analog signals of up to ± 10 volt amplitude and settles to 0.01% in less than 1.5 microseconds for 20 volt input step. Both analog input terminals are available for user selection of gains from unity to 1000 . Aperture time is a mere 12 nanoseconds, and feedthrough is just 0.005%.

Internal compensation of charge storage effects and dielectric absorption are provided to assure accurate and fast operation. The SHM60 dynamic nonlinearity of 0.01% is specified for hold periods of up to 15 microseconds to simplify the user's task of computing system throughput error for specific operating conditions.

MIL-STD-883 SCREENING
 See pages 106-107

NEW!
NEW!

SHC85 FAST	SHC85ET WIDE TEMP IC	SHC80KP * SHC80BM * LOW COST IC	SHC23(3) LOW COST	$\begin{gathered} \text { SHC23ET }{ }^{(3)} \\ \text { WIDE TEMPERATURE } \end{gathered}$	SHM60(4) HIGH SPEED
$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 30 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 50 \end{aligned}$	$\text { 小ाয়u } \pm 10$	$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{8} \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & 10^{11} \\ & 0.05 \end{aligned}$
$\begin{aligned} & 0.05 \\ & -50 \end{aligned}$	$\begin{gathered} 0.05 \\ -50 \\ \hline \end{gathered}$	$\begin{array}{r} 0.05 \\ -50 \end{array}$	$\begin{gathered} 5 \\ -100 \end{gathered}$	$\begin{gathered} 5 \\ -100 \end{gathered}$	$\begin{aligned} & 100 \\ & -0.05 \\ & \hline \end{aligned}$
$\begin{aligned} & \pm 15 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 13 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{gathered} \pm 15 \\ +25 /-15 \end{gathered}$
$\begin{gathered} \pm 0.01 \\ \quad 5 \\ 1000 \\ +1.0 \\ \pm 0.01 \\ \pm 2 \\ 500 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.01 \\ 5 \\ 1000 \\ +1.0 \\ \pm 0.01 \\ \pm 2 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & \pm 0.01 \\ & 10 \\ & 1000 \\ & \pm 1.0(7) \\ & \pm 0.02 \\ & \pm 2 \\ & 500 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.01 \\ 70 \\ 1000 \\ +1.0 \\ \pm 0.01 \\ \pm 2 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.01 \\ 70 \\ 1000 \\ +1.0 \\ \pm 0.01 \\ \pm 2 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.01 \\ 1 \\ 15 \\ \pm 1 \text { to } \pm 1000 \\ \pm 0.01 \\ \pm 3 \\ 5000 \end{gathered}$
$\begin{gathered} \pm 2 \\ 10 \\ 0 \text { to }+70(6) \end{gathered}$	$\begin{gathered} \pm 2 \\ 200^{(6)} \\ -55 \text { to }+125 \\ \hline \end{gathered}$	± 3 10 0 30 to +70 -25 to +85	$\begin{gathered} \pm 3 \\ 0.1 \\ 0 \text { to }+70 \end{gathered}$	$\begin{gathered} \pm 3 \\ 2 \\ -55 \text { to }+125 \\ \hline \end{gathered}$	$\begin{gathered} \pm 2 \\ 100 \\ 0 \text { to }+70 \end{gathered}$
$\begin{gathered} 200 \\ 20 \end{gathered}$	$\begin{gathered} 200 \\ 20 \end{gathered}$	$\begin{aligned} & 75 \\ & 5 \end{aligned}$	$\begin{gathered} 20 \\ 1 \end{gathered}$	$\begin{aligned} & 20 \\ & 1 \end{aligned}$	$\begin{array}{r} 400 \\ 25 \end{array}$
$\begin{gathered} 4.5 \\ 5.0 \\ 30 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} 4.5 \\ 5.0 \\ 30 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} 10 \\ 12 \\ 30 \\ \pm 0.005 \end{gathered}$	$\begin{array}{r} 60 \\ 70 \\ 50 \\ \text { note } 5 \end{array}$	$\begin{gathered} 60 \\ 70 \\ 50 \\ \text { note } 5 \end{gathered}$	$\begin{gathered} 1.0 \\ 1.5 \\ 12 \\ \pm 0.005 \mathrm{max} \end{gathered}$
$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & 0.1 \end{aligned}$	$\begin{gathered} \pm 10 \\ \pm 5 \\ 0.5 \end{gathered}$	$\begin{gathered} \pm 10 \\ \pm 5 \\ 1.0 \end{gathered}$	$\begin{aligned} & \pm 10 \\ & \pm 5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 20 \\ & 1.0 \end{aligned}$
(29) A 14 Pin DIP	(29) A 14 Pin DIP	(2) G (29) B	(31) TO-8	(31) $\mathrm{TO}-8$	(30) $\mathrm{C} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$
\$6500	\$89.00	* *	\$49.00	\$80.00	\$99.00

(3) Specification shown for $0.01 \mu \mathrm{~F}$ holding capacitor.
(4) Specification shown for unity gain.
(5) Not specified. This parameter is a function of the holding capacitor and the circuit layout.
(6) Max droop at $+125^{\circ} \mathrm{C}$.
(7) May be increased by use of an external resistor

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

4084/25

- HIGH GAIN ACCURACY - $\pm 0.01 \%$
- LOW DROOP RATE $- \pm 5 \mathrm{mV} / \mathrm{sec}$
- STATUS OUTPUT - DTL/TTL Compatible

The $4084 / 25$ peak detector is a special type of sample/ hold. The input signal is acquired and tracked (PEAK DETECT mode) until it reaches a maximum value then the unit automatically holds this value while signaling that a peak has been reached (STATUS output). The $4084 / 25$ can then be placed in the HOLD mode to ignore further peaks or RESET to a reference level ready to detect the next peak. The extremely low output droop (voltage decay with time) of this unit allows it to be used with a variety of instruments to record or display its output (A/D converters, digital voltmeters, analog meters, etc.).

The $4084 / 25$ will detect peaks in the range of -10 volts to +10 volts. The RESET mode charges the internal holding capacitor to any reference level between +10 volts and -10 volts. The peak detector will then detect any peak more positive than the reference level. For instance, with a voltage reference input of 0 volts, the unit will detect peak voltages between 0 and +10 V and, with a -10 V voltage reference input, the $4084 / 25$ will detect peaks between -10 V and +10 V .

BLOCK DIAGRAM

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	4084/25	
ANALOG INPUTS		
Input Signal Level		
Operating (absolute max)	$\pm 10 \mathrm{~V}(\pm 15 \mathrm{~V})$	
Input Bias Current	600 nA	
Input Impedance	$50 \mathrm{M} \Omega$	
Reset Input Voltage (Current)	$\pm 10 \mathrm{~V}(3 \mathrm{~mA})$	
DIGITAL INPUTS		
Logic Level " 1 ", Voltage	$+2.4 \mathrm{~V}<\mathrm{V}_{\mathrm{H}}<+15 \mathrm{~V}$	
Logic Level "0" Voltage	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{L}}<+0.8 \mathrm{~V}$	
Rise Time	$1 \mu \mathrm{sec}$	
Input Impedance, Each Logic Input	$10 \mathrm{k} \Omega \\| 50 \mathrm{pF}$	
	LOGIC LOGIC	
	INPUT A INPUT B	
PEAK DETECT Mode	"0" "0"	
RESET Mode	"1" "1"	
HOLD Mode	"1" "0"	
OFFSET Adjust Mode	"0" "1"	
ACCURACY		
Voltage Gain	$1.0 \mathrm{~V} / \mathrm{V}$	
Gain Accuracy at DC (Over Temp. Range)	$\pm 0.01 \%$ Full Scale	
Dynamic Accuracy DC to 100 Hz	$\pm 0.02 \%$ Full Scale	
Input Voltage Offset, max vs. Temperature, max	$\begin{aligned} & \pm 1 \mathrm{mV} \\ & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Input-to-Output Feedthrough	$\pm 0.5 \mathrm{mV}$	
STABILITY		
Droop (in the Hold Mode)		
From $0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$, max	$\pm 5 \mathrm{mV} / \mathrm{sec}$	
At $+60^{\circ} \mathrm{C}$, max	$\pm 60 \mathrm{mV} / \mathrm{sec}$	
Power Supply Sensitivity	$\pm 1 \mathrm{mV} / \%$	
SWITCHING PERFORMANCE		
Acquisition Time in PEAK DETECT MODE (for +10 V Input Step and Output		
Settling to within 1 mV of Input)	$200 \mu \mathrm{sec}$	
Output Slew Rate in PEAK DETECT	$1 \mathrm{~V} / \mu \mathrm{sec}$	
Reset Time in RESET to within $\pm 0.01 \%$	$100 \mu \mathrm{sec}$	
PEAK DETECT to HOLD mode offset	-5 mV	
ANALOG OUTPUT		
Rated Output		
Voltage	$\pm 10 \mathrm{~V}$	
Current	$\pm 5 \mathrm{~mA}$	
Output Impedance	0.05Ω	
Capacitive Load	1000 pF	
Noise DC to 10 kHz	0.1 mV RMS	
DIGITAL OUTPUT STATUS (DTL/TTL Compatible)		
$\mathrm{E}_{\text {in }}<\mathrm{E}_{\mathrm{o}}$	0 V	
$\mathrm{E}_{\text {in }} \geqslant \mathrm{E}_{\mathrm{o}}$	$+5 \mathrm{~V}$	
Delay Time Plus Rise Time	(1)	
TEMPERATURE RANGE		
Specification	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
Operating	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
POWER REQUIREMENTS		
Rates Supply Voltage	$\pm 15 \mathrm{~V}$	
Voltage Range	± 14 to $\pm 16 \mathrm{VDC}$	
Supply Drain Quiescent (Rated Output)	$\pm 25 \mathrm{~mA}(\pm 40 \mathrm{~mA})$	
PACKAGE DRAWING (See page 99)	(38) $2.4 \prime \times 1.8 " \times 0.6$ "	
PRICE (1-9)	\$145.00	

(1) Depending upon the rate-of-change of the input signal, the delay plus rise time of the STATUS output can vary from as small as $5 \mu \mathrm{sec}$ to over 100 msec .

TYPICAL OPERATION OF PEAK DETECTOR

MULTIPLEXERS

MPC-4D,MPC-8S, MPC-8D,MPC-16S, 8-CHANNEL DUAL AND IG-CHANNEL SINGLE-ENDED CMOS-FET

This family of CMOS FET analog multiplexers is offered in 4 and 8 channel differential or 8 and 16 channel single-ended configurations. The MPC-8S and MPC-16S are single-ended monolithic 8 and 16 channel analog multiplexers and the MPC-4D and MPC-8D are monolithic dual 4 and 8 channel analog multiplexers constructed with protected CMOS devices. Transfer accuracies of better than 0.01% can be achieved at sampling rates up to 200 kHz from signal sources of up to ± 10 volts amplitude.

These TTL/CMOS compatible devices feature self-contained binary channel address coding. An ENABLE line is also made available which allows the user to individually enable an 8 or 16 channel group (MPC-8S or MPC-16S) or 4 or 8 channel group (MPC-4D or MPC-8D) facilitating channel expansion in either single-node or multi-tiered matrix configurations.

Digital and analog inputs are failure protected from either overvoltages that exceed the power supplies or from the loss of power. The break-before-make switches also serve to protect the signal sources from shorting during switching.

High quality processing is employed to produce CMOS FET analog channel switches which have low leakage current, high OFF resistance, low feedthrough capacitance, and fast settling time. The MPC-8D and MPC-16S devices are housed in compact 28 pin dual-in-line packages. The MPC-4D and MPC-8S are in 16 pin DIL packages that measure just $0.6^{\prime \prime}$ wide. All units are specified for operation over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. Power consumption is only 15 mW when operating at 100 kHz and just 7.5 mW on standby.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	MPC-4D* 4-CHANNEL DIFFERENTIAL	MPC-8D 8-CHANNEL DIFFERENTIAL	$\begin{gathered} \text { MPC-8S * } \\ \text { 8-CHANNEL } \\ \text { SINGLE-ENDED } \end{gathered}$	MPC-16S 16-CHANNEL SINGLE-ENDED	UNITS
INPUT					
Analog Inputs Number of Input Channels Single-ended Differential Voltage Range Maximum Safe Overvoltage Reference Voltage Range	प्म Prow N/A 4 ± 15 \pm V Supply ± 20	III $\begin{gathered} \text { N/A } \\ 8 \\ \pm 15 \end{gathered}$ \pm V Supply ± 20 $+4 \text { to }+20$	 8 N/A ± 15 \pm V Supply ± 20	$\begin{aligned} & 16 \\ & \mathrm{~N} / \mathrm{A} \\ & \pm 15 \\ & \pm \mathrm{V} \text { Supply } \pm 20 \\ & +4 \text { to }+20 \end{aligned}$	Channels Channels Volts Volts Volts
ON Characteristics ON Resistance (R_{On}) $\mathrm{R}_{\text {on }}$ Drift vs Temperature $\mathrm{R}_{\text {on }}$ Mismatch Channel-to-Channel Differential Input Leakage Current	$\begin{array}{r} 1.3 \\ 0.25 \\ \\ 50 \\ 50 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} 1.3 \\ 0.25 \\ \\ 50 \\ 50 \\ 1 \end{array}$	$\begin{gathered} 1.3 \\ 0.25 \\ \\ 50 \\ \mathrm{~N} / \mathrm{A} \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1.3 \\ 0.25 \\ \\ 50 \\ \mathrm{~N} / \mathrm{A} \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{k} \Omega \\ \% 1^{\circ} \mathrm{C} \\ \\ \Omega \\ \Omega \\ \mathrm{nA} \end{gathered}$
OFF Characteristics OFF Resistance-to-Ground Leakage Current	$\begin{aligned} & 10^{11} \\ & 0.2 \end{aligned}$	$\begin{gathered} \Omega \\ \mathrm{nA} \end{gathered}$			
Digital Inputs Channel Select No. of Bits Code Group Enable Bit	$2(1)$ one of 4	```3(1) one of 8 Logic " 0 " disables ogic " 1 " enables ch```	$\)\begin{tabular}{l} \(3(1)\) \\ \text { one of } 8 \\ \text { hannels } \\ \text { nnel select } \end{tabular}$	$\begin{gathered} 4(1) \\ \text { one of } 16 \end{gathered}$	
Power Supply Requirements Supply Voltages (rated) Supply Range +15 V $-15 \mathrm{~V}$ Power Consumption	$\begin{aligned} & \quad \pm 15 \\ & +7 \text { to }+20 \\ & -5 \text { to }-20 \\ & 7.5 \end{aligned}$	$\begin{gathered} \pm 15 \\ +7 \text { to }+20 \\ -5 \text { to }-20 \\ 7.5 \end{gathered}$	$\begin{gathered} \pm 15 \\ +7 \text { to }+20 \\ -5 \text { to }-20 \\ 7.5 \end{gathered}$	$\begin{gathered} \pm 15 \\ +7 \text { to }+20 \\ -5 \text { to }-20 \\ 7.5 \end{gathered}$	Volts Volts Volts mW
DYNAMIC CHARACTERISTICS					
Gain Error ($20 \mathrm{M} \Omega$ load), max Crosstalk Settling Time to $\mathbf{0 . 0 1 \%}$ Common-Mode Rejection, min Switching Time Turn ON Turn OFF	0.01 0.005 7 120 dB 0.5 0.3	0.01 0.005 7 120 dB 0.5 0.3	$\begin{gathered} 0.01 \\ 0.005 \\ \\ 7 \\ \text { N/A } \\ \\ 0.5 \\ 0.3 \end{gathered}$	$\begin{gathered} 0.01 \\ 0.005 \\ 7 \\ \text { N/A } \\ \\ 0.5 \\ 0.3 \end{gathered}$	\% of FSR \% of OFF Channel Sig. $\mu \mathrm{sec}$ $\mu \mathrm{sec}$ $\mu \mathrm{sec}$
OUTPUT 0.3 e.3					
Voltage Range, min Capacitance-to-Ground Operating Temperature Range	$\begin{gathered} \pm 15 \\ 50 \\ 0 \text { to }+75 \end{gathered}$	$\begin{gathered} \pm 15 \\ 50 \\ 0 \text { to }+75 \end{gathered}$	$\begin{gathered} \pm 15 \\ 50 \\ 0 \text { to }+75 \end{gathered}$	$\begin{gathered} \pm 15 \\ 50 \\ 0 \text { to }+75 \end{gathered}$	$\begin{gathered} \text { Volts } \\ \mathrm{pF} \\ { }^{\mathrm{o}} \mathrm{C} \\ \hline \end{gathered}$
PACKAGE DRAWING (See pages 96, 97)	(32) 16 pin	(33) $\mathrm{B} \begin{aligned} & 28 \mathrm{pin} \\ & \text { DIP }\end{aligned}$	(32) 16 pin DIP	(33) A ${\underset{\text { DIP }}{28} \mathrm{pin}}_{\text {de }}$	
PRICES ($1-9$)	*	\$45.00	*	\$42.00	

(1) TTL/CMOS compatible: $-\mathrm{V}_{\text {supply }} \leqslant \mathrm{V}_{\mathrm{L}}<0.8 \mathrm{~V} @ 1 \mathrm{nA},+4.0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{H}} \leqslant+\mathrm{V}_{\text {supply }} @ 1 \mathrm{nA}$.

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

$=$

OPERATIONAL AMPLIFIERS

General Purpose Low Dríft
Low Bías Current
Wideband and Fast Settling High Voltage and High Current

All Burr-Brown op amps are listed in six application groups which correspond to the user's general design requirements. These groups include General Purpose, Low Drift, Low Bias Current, Wideband and Fast Settling, High Voltage and High Current, and Isolation Amplifiers. Features of some of the key products in each group are described on these pages.

GENERAL PURPOSE

LOW DRIFT, LOW NOISE IC; 3500 SERIES (pg. 34)

The 3500 series is designed for low input currents while maintaining slew rates and bandwidths adequate for most applications. The low input bias current is achieved by a unique current canceling circuit which insures low bias currents over the full temperature and common-mode voltage ranges, and gives the amplifier both high differential and common-mode input impedance. The 3500 family also has exceptionally good noise characteristics. These internally compensated amplifiers have many guaranteed specifications and offer a wide range of offset voltage and bias current performance from which to choose.

LOW COST, 20 mA; 3268/3269 SERIES (pg. 35)

The $3268 / 3269$ series is a modular, bipolar input device featuring low cost and moderately high output current. This series is particularly useful in applications requiring somewhat faster slew rate than is available in IC or low cost modular devices. The open loop gain is high, and the amplifier has very stable frequency response and transient response, even for large values of feedback resistance and capacitive loaḑing.

LOW DRIFT

$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ DRIFT IC; 3500E (pg. 36)

The 3500 E , based on the proven Burr-Brown 3500 series design, is a low drift unit $\left(1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ with excellent open loop gain, bias current, and common-mode rejection specifications. The initial offset voltage is $500 \mu \mathrm{~V}$ max and it has the same excellent noise performance of the 3500 family.

MATCHED OFFSET VOLTAGE AND DRIFT IC; 3500MP (pg. 36)

Close process control and careful grading by Burr-Brown make possible a new concept in IC op amps - drift matched pairs. Offset voltage and drift are matched to within $200 \mu \mathrm{~V}$ \max and $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max respectively. This performance allows you to build multi-stage op amp circuits with excellent accuracy. They are especially suited for high input impedance instrumentation amplifier type circuits.

LOW DRIFT FET IC; 3521 SERIES (pg. 36)

This series provides the hard to find combination of FET input bias currents and low offset voltage drift versus temperature. The five models in this family provide performance which ranges from the 3521 H with maximum guaranteed specifications of $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and 20 pA all the way to the 3521 L with $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and 10 pA . The low voltage drifts are obtained by using our own thin-film components and state-of-the-art laser trimming techniques. In addition to having low bias current and voltage drift the initial offset voltage is reduced by laser trimming to $250 \mu \mathrm{~V}$ max for most models. This is low enough so that for most applications further external trimming is not required and the cost of the trim pot and the adjustment labor may be eliminated. Low offset voltage, low drift, and low bias current-all in the same family of amplifiers makes the 3521 series truly unique.

BEST ACCURACY; 3291 CHOPPER SERIES (pg. 37)

When it comes to overall accuracy and stability versus temperature and time, chopper stabilized amplifiers just can't be beat. Guaranteed maximum offset voltage and bias current are as low as $20 \mu \mathrm{~V}$ and 50 pA . Drifts versus temperature are $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max and $0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ max. Add to this a minimum open loop gain of 140 dB and the result is a closed loop accuracy which cannot be matched with any nonchopper op amp. A low profile package ($0.4^{\prime \prime}$ high), low price, and frequency response more than adequate for most applications make the 3291 series a "best buy" for high accuracy applications.

DIFFERENTIAL INPUT CHOPPER; 3354/25 (pg. 37)

Until the introduction of the model 3354 , high performance chopper stabilized operational amplifiers were always singleended. Now, the same ultra low drift $\left(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and other truly premium performance specifications can be obtained for noninverting, differential input, and other applications in which the amplifier must function with both differential and common-mode signals.

WIDEBAND and FAST SETTLING

NEW! 150nsec SETTLING TIME (0.01\%) IC; 3554 (pg. 41)

This FET input op amp is designed specifically for amplification and conditioning of wideband data signals and fast pulses. It combines in a single IC specifications previously found only in separate specialized designs. Performance features include $150 \mathrm{nsec} \max 0.01 \%$ settling time, $1000 \mathrm{~V} / \mu \mathrm{s}$ min slew rate, 800 MHz gain bandwidth product $(\mathrm{G}=100)$ and 50 mA output current. Outstanding DC performance is still preserved; $0.5 \mu \mathrm{~V}$ max offset voltage and $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max drift (3554B).

While its performance is at the leading edge of the state-of-the-art, the 3554 does not sacrifice full flexibility, package desirability, or cost. It has a fully differential, low drift FET input stage, hermetically sealed TO-3 type package, and a low cost hybrid design offering excellent reliability. Because of its excellent overall performance, the 3554 can address almost any application where speed and bandwidth are important considerations. It is a particularly good choice for use in fast D / A converters, fast sampling circuits, multiplexer buffers, comparators, waveform generators, integrators, and fast current amplifiers.

NEW! 200 mA AT $2000 \mathrm{~V} / \mu \mathrm{s}$; 3553 (pg. 43)

The 3553 is a unity gain amplifier designed to be used as a separate output stage for an operational amplifier or as a stand alone buffer.

When used inside the feedback loop of an op amp to form a composite amplifier, the physical separation of the input amplifier and output power stage helps improve the accuracy of the total circuit by minimizing temperature effects caused by power dissipation.
The 3553 can also be used without an operational amplifier as a stand alone high input impedance, low output impedance buffer capable of driving $\pm 200 \mathrm{~mA}$ into a 50Ω load at 2000 $\mathrm{V} / \mu \mathrm{s}$. While the gain is not precisely unity and the offset voltage and drift are translated directly to the output, the accuracy is still sufficient for many line driving applications where fast pulses or wideband signals are involved.

600 ns (0.01\%) SETTLING TIME IC; 3550 (pg. 41)

The 3550 provides 0.6μ s max (0.01%) settling time, 20 MHz unity gain frequency, and $1.5 \mathrm{MHz} \min$ full power frequency. Its 6 dB /octave rolloff without external components gives excellent frequency stability (even with heavy capacitive loads). The 3550 is specifically designed for requirements where fast settling, high accuracy, and high input impedance are important. It is ideal for such applications such as D / A and A/D conversion, sample/hold, and multiplexer buffering.

$250 \mathrm{~V} / \mu \mathrm{s}$ SLEW RATE IC; 3551 (pg. 41)

The 3551 is the externally compensated version of the popular 3550. It has all the desirable features of the 3550 plus the capability for the user to choose the frequency compensation best suited to his particular application. The unit is stable at closed loop gains above 10 volts per volt with no compensation and may be made unity gain stable with a single external 10 pF capacitor.

FAST SLEWING IC; 3505J and 3507J (pg. 40)

Burr-Brown models 3505J and 3507J differential input op amps are intended for use in circuits requiring fast transient response - pulse amplifiers, D/A converters, comparators, fast followers, etc. The 3505 J offers a settling time of 300 nanoseconds to 0.1% of final value, a typical slew rate of $30 \mathrm{~V} / \mu \mathrm{s}$, and a unity gain bandwidth of 6 MHz . It has a very stable 6 dB /octave gain rolloff without external compensation. The 3507 J has a typical slew rate of $120 \mathrm{~V} / \mu \mathrm{s}$, and a gain bandwidth product of 20 MHz at a gain of 10 . External compensation allows the designer to select the frequency response appropriate to his own circuit for optimum performance.

WIDEBAND IC; 3506J AND 3508J (pg. 40)

The 3506 J is internally compensated for stability at all gains, and presents a small signal unity gain bandwidth of 12 MHz , and a typical slew rate of $7 \mathrm{~V} / \mu \mathrm{s}$. The 3508 J has an exceptionally high gain bandwidth product of 100 MHz at a gain of 100 , and a typical slew rate of $35 \mathrm{~V} / \mu \mathrm{s}$. The 3508 J is also externally compensated to allow the designer to select frequency response parameters to fit his individual circuit requirements.

LOW BIAS CURRENT

1 pA BIAS CURRENT IC; 3522 (pg. 38)

The 3522 family offers excellent input characteristics at moderate cost through the use of monolithic chips, thinfilm technology, and laser trimming. Unlike other FET op amps of comparable cost, the 3522 series has low bias current (1 pA max, 3522 L), low input current noise ($0.3 \mathrm{pA} \mathrm{p}-\mathrm{p}$), and moderate voltage drift. In addition, the 3522 family is internally compensated and provides excellent frequency stability at all gains.

0.1 pA BIAS CURRENT IC; 3523 (pg. 38)

Guaranteed specifications of $0.1 \mathrm{pA} \max$, bias current, $\pm 0.5 \mathrm{mV}$ max offset voltage, and $\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max voltage drift makes the 3523L the best performing ultra low bias current IC FET you can find. It can solve your toughest problems in current-to-voltage converters and high input impedance buffers.

0.01 pA BIAS CURRENT VARACTOR; 3430 (pg. 38)

The 3430 inverting amplifier minimizes input bias current ($0.01 \mathrm{pA}, \max$) and input noise current through use of a varactor diode bridge technique. This model is designed for use with current signal sources where the signal is applied directly to the inverting input terminal and a single feedback resistor determines the input-current to output-voltage gain factor.

HIGH VOLTAGE \& HIGH CURRENT

NEW! IC'S WITH UP TO 290V p-p OUT, 3580 SERIES (pg. 42)

This is the first family of IC op amps to provide output voltage swings as high as 290 V p-p. Also, they have selfcontained thermal sensing and shutoff which automatically prevents damage to the amplifier from overheating. The FET input stage minimizes the offset voltages caused by bias currents flowing in the large feedback resistances normally used with high voltage circuits.
The newest addition to the series, the 3583 , will operate with supply voltages from $\pm 35 \mathrm{~V}$ to $\pm 150 \mathrm{~V}$ and will deliver a minimum of $\pm 75 \mathrm{~mA}$ to its load. Thus, it will deliver over 10 watts to the load and will dissipate up to 15 watts of internal power.
All models are short circuit protected to ground and the 3581,82 and 83 have special circuitry for input overvoltage protection. The amplifiers are packaged in an environmentally rugged, hermetically sealed, 8 pin TO-3 type package. The case is electrically isolated from the amplifier circuitry which makes heat sinking more efficient, easier and less expensive.

NEW!
60 WATTS TO LOAD; 3571, 3572 IC'S (pg. 43)
These new hybrid power amplifiers combine the versatility of FET operational amplifiers with the power capabilities of servo amplifiers. A unique combination of hybrid processing, laser trimming, and thermally efficient packaging provides output power capability and excellent input characteristics so the use of a separate preamplifier, sometimes required with other servo-type amplifiers, will not be required with the 3571 and 3572.

The minimum continuous output ratings are $\pm 1 \mathrm{~A}$ at $\pm 30 \mathrm{~V}$ and $\pm 2 \mathrm{~A}$ at $\pm 30 \mathrm{~V}$ for the 3571 and 3572 respectively. The peak current ratings are 2 A and 5 A and the internal power dissipation ratings are 33 and 50 watts. The amplifiers will operate over a supply range of ± 15 to ± 40 volts.
The class $A B$ output stage gives low distortion and low quiescent current and is designed so that the load current limit may be adjusted with external resistors. This is particularly useful in driving permanent magnet motors where the high current seen during direction reversal (plugging) can demagnetize the motor.
The 3571 and 3572 have several other features which improve their usefulness. The output circuit has a unique protection feature which is only practical in integrated circuit amplifiers; self-contained automatic thermal sensing and shutoff. The hermetically sealed TO-3 type package improves reliability and withstands severe environments better than discrete component amplifiers. Also, the metal case is electrically isolated which simplifies mounting and reduces cost since the need for insulating spacers and bushings is eliminated.

POWER BOOSTER; 3329/03 (pg. 43)

The $3329 / 03$ provides a $\pm 100 \mathrm{~mA}$ output current in a compact, dual-in-line type package without the need for an external heat sink. The unit is short circuit protected over the full temperature range, and output current is limited to $\pm 150 \mathrm{~mA}$ by internal circuitry.

ISOLATION AMPLIFIERS (pg. 44)

This relatively new product group contains some of our most innovative new products. These amplifiers provide essentially total electrical isolation between input and output, and yet pass DC (and higher frequency) signals. This feature is useful in improving system signal quality by breaking troublesome ground loops. It allows the accurate measurement of small signals in the presence of large common-mode voltages and protects delicate instrumentation from damage due to large voltages. The low leakage currents associated with the isolation barrier can also provide protection of personnel against damage from electrical shock.

OPERATIONAL AMPLIFIER COMPARISON GUIDE

MODEL NUMBER	PAGE	DESCRIPTION	$\frac{\text { OPEN LOOP GAIN }}{\mathrm{dB}}$	RATED OUTPUT		FREQUENCY RESPONSE		
						UNITY GAIN	FULL POWER	SLEW RATE
				V	mA	MHz	kHz	$\mathrm{V} / \mu \mathrm{s}$
3051	35	External Frequency Compensated IC, Mil Temp	93	± 10	± 5	1.0	20	1.2
3052	35	*	*	*	*	1.0	20	1.2
3053	35	*	*	*	*	0.9	15	0.9
3055	35	External Frequency Compensated IC	*	*	± 10	1.0	20	1.2
3056	35	*	*	*	*	0.9	15	0.9
3057	35	*	90	*	*	0.7	10	0.6
3268/14	35	20 mA Output	114	± 10	± 20	1	100	6
3269/14	35	* ${ }^{*}$ V ${ }^{\text {d }}$	*	*	*	*	*	6
3271/25	37	$\pm 60 \mathrm{~V}$ to $\pm 120 \mathrm{~V}$ Chopper Stabilized	140	± 50 to ± 110	± 20	1	30	20
3291/14	37	Low Cost Chopper Stabilized	*	± 10	± 5	4	100	6
3292/14	37	*	*	*	*	*	*	6
3293/14	37	*	*	*	*	*	*	6
3329/03	43	100 mA Power Booster	Approx. 0	± 10	± 100	-	1000	-
$3341 / 15 \mathrm{C}$	41	100 mA Output, $1000 \mathrm{~V} / \mu \mathrm{s}$	100	± 10	± 100	50	10 MHz	1000
3342/15C	41	*	*	*	*	*	*	*
3354/25	37	Differential Input Chopper Stabilized	140	± 10	± 5	6	100	6
3355/25	37	*	*	*	*	*	*	*
3356/25	37	*	*	*	*	*	*	*
3400A	41	100 MHz , Differential Input	90	± 10	± 20	100	10 MHz	1000
B	41	*	-	*	*	*	*	*
3430 J	38	Ultra Low Bias Current Varactor, Inverting	100	± 10	± 5	0.002	0.007	$0.4 \mathrm{~V} / \mathrm{ms}$
K	38	*	*	*	*	*	*	
3440J	37	Ultra Low Drift	110	± 10	± 10	1	10	0.6
K	37	*	*	*	*	*	*	*
L	37	*	*	*	*	*	*	*
3450	46	Transformer Coupled Amplifiers	94	± 10	± 5	-	1 (3)	-
3451	46	*	88	*	*	-	1 (3)	-
3452	46	*	94	*	*	-	1 (3)	-
3480 J	37	Low Drift Chopper Amp.	140	± 10	± 10	100 Hz (3)	$2-50 \mathrm{~Hz}$ (3)	$100 \mathrm{~V} / \mathrm{sec}$
K	37		*	*	*	*	*	*
3500A	34	Low Drift Bipolar IC	93	± 10	± 10	1.5	10	0.6
B	34	Low	*	*	*	*	15	1
c	34	*	*	*	*	*	15	1
R	34	Low Drift Bipolar IC, Mil Temp	*	*	*	*	10	0.6
S	34	*	*	*	*	*	15	1
T	34	*	*	*	*	*	15	1
3500 E	36	$1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ IC	100	± 10	± 10	1.5	12	0.8
3500 MP	36	Matched Pair, IC	100	± 10	± 10	1.5	12	0.8
3501A	34	Low Bias Current, Bipolar IC	93	± 10	± 5	0.5	1.6	0.1
B	34	*	*	*	*	*	*	*
C	34	*	*	*	*	*	*	*
R	34	Low Bias Current, Bipolar IC, Mil Temp	*	*	*	*	*	*
S	34		*	*	*	*	*	*
3503 A	39	$2.5 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate FET IC	86	± 10	± 5	1.0	40	2.5
B	39		90	*	*	*	*	*
R	39	$2.5 \mathrm{~V} / \mu$ Slew Rate FET IC, Mil Temp	86	*	*	*	*	*
S		*	90	*	*	*	*	*
3505J	40	Fast Slew IC, Internal Compensation	94	± 10	± 10	6	300	20
3506 J	40	Wideband IC, *	106	± 10	± 10	12	50	4
3507 J	40	Fast Slew IC, External Compensation	90	± 10	± 10	20	1200	80
3508J	40	Wideband IC, *	106	± 10	± 10	$100{ }^{(5)}$	320	20
3521 H	39	Low Drift FET IC	94	± 10	± 10	1.0	10	0.6
J	39	*	*	*	*	*	*	*
K	39	*	*	*	*	*	*	*
L	39	${ }^{*}$	*	*	*	*	*	*
R	39	Low Drift FET IC, Mil Temp	*	*	*	*	*	*
3522 J	38	Low Bias FET IC	94	± 10	± 10	1	10	0.6
K	38	*	*	*	*	*	*	*
L	38	*	*	*	*	*	*	*
S	38	Low Bias FET IC, Mil Temp	*	*	*	*	*	*
3523J	38	Ultra Low Bias FET IC	94	± 10	± 10	1	10	0.6
K	38	*	*	*	*	*	*	*
L	38	*	*	*	*	*	*	*
3540J	38	Lowest Cost FET IC	86	± 10	± 5	1	100	6
3542 J	39	Low Cost FET IC	88	± 10	± 10	1	8	0.5
S	39	*	*	*	*	*	*	*
3550 J	41	Fast Settling IC	100	± 10	± 10	10	1000	65
K	41	*	*	*	*	20	1500	100
S	41	Fast Settling IC, Mil Temp	*	*	*	10	1000	65
3551 J	41	Wide Gain-Bandwidth IC	100	± 10	± 10	$50^{(5)}$	3800	250
S	41	Wide Gain-Bandwidth IC, Mil Temp	*	*	*	*	*	*
3553AM	43	$200 \mathrm{~mA}, 2000 \mathrm{~V} / \mu \mathrm{s}$ Buffer/Power Booster IC	$0.95 \mathrm{~V} / \mathrm{V}$	± 10	± 200	300(3)	32 MHz	2000
3554 AM (8)	41	Fast Settling IC	106	± 10	± 50	800(5)	16 MHz	1000
BM	41	*	*	*	*	*	*	*
SM	41	Fast Settling IC, Mil Temp	*	*	*	*	*	*
3571 AM	43	High Power IC	94	± 30	$\pm 1 \mathrm{~A}$	0.5	16 kHz	3
3572 AM	43	*	*	*	$\pm 2 \mathrm{~A}$	*		*
3580J	42	High Voltage IC	106	± 13 to $\pm 30(6)$	± 60	5	100	15
3581 J	42	*	112	± 27 to ± 70 (6)	± 20		60	20
3582 J	42	*	118	± 65 to ± 145 (6)	± 15	*	30	20
3583J (8)	42	*	118	± 45 to ± 145 (6)	± 75	*	*	30
3650 HG (8)	47	Optically Coupled Isolation Amplifier	-	± 10	± 5	$10 \mathrm{kHz}(3)$	-	0.8
JG (8)	47	*	*	*	*	*	-	*
[$\begin{array}{r}\text { 3652HG (8) } \\ \text { JG (8) }\end{array}$	47 47	*	*	*	*	*	-	*

*Specification same as above model. (1) Adjusts to zero. (2) Available in either package (3) -3 dB Points (4) Specifications for match.
Prices and specifications are subject to change without notice.

OFFSET VOLTAGE		BIAS CURRENT		INPUT IMPEDANCE		COMMON-MODE REJECTION	PACKAGE	PRICES (Small qty.)			
@ $5^{\circ} \mathrm{C}$	TEMP DRIFT	@ $5^{\circ} \mathrm{C}$	TEMP DRIFT	DIFFERENTIAL	COMMON-MODE						
mV	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	nA	$n A /{ }^{\circ} \mathrm{C}$	Ω	Ω	dB					
± 3	± 5	400	± 0.6	0.3 M	200 M	90	TO-99	\$ 24.00			
± 4	± 10	500	± 0.8	*	*	*	*	19.00			
± 6	± 30	600	± 1.0	*	*	80	*	11.00			
± 3	± 5	400	± 0.6	*	*	90	*	19.00			
± 4	± 10	500	± 0.8	*	*	*	*	13.00			
± 6	± 30	600	± 1.0	*	*	*	*	7.50			
(1)	± 5	50	± 0.6	1 M	500 M	86	$1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4^{\prime \prime}$	39.00			
,	± 20	*	*	*	*	*		28.00			
$\pm 50 \mu \mathrm{~V}$	± 1	± 0.08	± 0.002	500 k	-	Inverting	$1.8^{\prime \prime} \times 2.4 \prime \mathrm{x} \times 0.6^{\prime \prime}$	175.00			
$\pm 20 \mu \mathrm{~V}$	± 0.1	± 0.05	± 0.0005	500 k	-	Inverting	$1.5^{\prime \prime} \times 1.5^{\prime \prime} \times 0.4{ }^{\prime \prime}$	77.00			
$\pm 50 \mu \mathrm{~V}$	± 0.3	± 0.05	± 0.001	*	-	*	*	56.00			
$\pm 100 \mu \mathrm{~V}$	± 1	± 0.1	± 0.002	*	-	*	*	49.00			
\pm	+25	-0.1	- $-1+10^{\circ} \mathrm{C}$		10 k	- ${ }^{\text {- }}$	DIL Type $1.2^{\prime \prime} \times 1.88^{\prime \prime} \times 0.6{ }^{\prime \prime}$				
± 1 $*$	± 25 ± 50	-0.1 $*$	$\underset{*}{\text { doubles/ }+10^{\circ} \mathrm{C}}$	${ }_{10^{11} \\| 3 \mathrm{pF}}^{*}$	-	Inverting $*$	$\underset{*}{1.2^{\prime \prime} \times 1.8{ }^{\prime \prime} \times 0.6 "}$	$\begin{aligned} & 79.00 \\ & 68.00 \end{aligned}$			
$\pm 30 \mu \mathrm{~V}$	± 0.1	± 0.02	doubles $/+10^{\circ} \mathrm{C}$	1 M	1013	140@DC	$1.8^{\prime \prime} \times 2.4^{\prime \prime} \times 0.6^{\prime \prime}$	145.00			
$\pm 50 \mu \mathrm{~V}$	± 0.25	± 0.05	*	*	*	*	*	110.00			
$\pm 100 \mu \mathrm{~V}$	± 1	± 0.05	*	*	*	*	*	100.00			
footnote (1)	± 100	$\stackrel{-0.1}{*}$	doubles/ $/+10^{\circ} \mathrm{C}$	${ }_{1011}{ }_{*} 6 \mathrm{pF}$	$1011{ }_{*}^{* 12 \mathrm{pF}}$	$60(+8,-10 \mathrm{~V})$	$1.1^{\prime \prime} \times 1.1^{\prime \prime} \times 0.4$ "	65.00			
*	± 50	*	*	*	*	*	*	79.00			
$\underset{*}{\text { footnote (1) }}$	± 30	$\pm 0.01 \mathrm{pA}$	$\begin{gathered} \text { doubles } /+10^{\circ} \mathrm{C} \\ * \end{gathered}$	3×1011 ${ }_{*}^{*} 30 \mathrm{pF}$	*	*	${ }_{1.7} 7^{\prime \prime} \times 3.1{ }^{\prime \prime} \times 0.7$ "	$\begin{aligned} & 59.00 \\ & 85.00 \end{aligned}$			
$\pm 250 \mu \mathrm{~V}$	± 1.5	25	± 0.25	0.4 M	500 M	100	$1.1{ }^{\prime \prime} \times 1.1^{\prime \prime} \times 0.5$ "	43.00			
$\pm 100 \mu \mathrm{~V}$	± 0.5	*	± 0.15	*	*	*	*	58.00			
$\pm 100 \mu \mathrm{~V}$	± 0.25	*	± 0.15	,	*	*	*	74.00			
± 0.55	.	± 50	± 0.5	$10^{7} \\| 6 \mathrm{pF}$	$5 \times 10^{9} \\| 6 \mathrm{dF}$	$160(\pm 2000 \mathrm{~V})(7)$	$2.3^{\prime \prime} \times 3.5{ }^{\prime \prime} \times 0.7{ }^{\prime \prime}$	180.00			
± 20	50	$-25 \mathrm{pA}$	doubles/ $/ 10^{\circ} \mathrm{C}$	1011 \|	10 pF	1011 \\| 10 pF	*	*	105.00		
± 0.3	5	$-20 \mathrm{pA}$	*	1011 \\| 10 pF	$1011 \\| 10 \mathrm{pF}$	*	*	135.00			
$\pm 25 \mu \mathrm{~V}$	± 0.3	± 0.3	± 0.01	$80 \mathrm{k} \\| 0.1 \mu \mathrm{~F}$	$10^{9} \\|^{1} 0.2 \mu \mathrm{~F}$	110	1.5 " $\times 1.5^{\prime \prime} \times 0.4 \prime$	49.00			
*	± 0.1	*	*	*	*	*	*	64.00			
± 5	± 20	± 30	± 1	$10 \mathrm{M} \mathrm{\|\mid} 3 \mathrm{pF}$	$5 \times 10^{9} \\| 3 \mathrm{pF}$	100	TO-99/Mini Dip(2)	7.50			
± 2	± 5	± 20	± 0.5	,	*	*	*	12.00			
± 1	± 3	± 15	± 0.3	*	*	*	*	15.00			
± 5	± 20	± 30	± 1.5	*	*	*	TO-99	15.00			
± 2	± 10	± 20	± 1	*	*	*	*	24.00			
± 1	± 5	± 15	± 0.5	*	*	*	*	36.00			
± 0.5	± 1	± 50	± 0.5	$10 \mathrm{M} \mathrm{\|\mid} 3 \mathrm{pF}$	$5 \times 10^{9} \\| 3 \mathrm{pF}$	100	T0-99	25.00			
$\pm 0.2(4)$	± 1 (4)	± 50	± 0.5	$10 \mathrm{M} \\| 3 \mathrm{pF}$	$5 \times 10^{9} \\|^{(1)} \mathbf{p F}$	100	TO-99	25.00			
± 5	± 20	± 15	± 0.2	$50 \mathrm{M} \\| 3 \mathrm{pF}$	$10^{10}{ }^{\| \|} 3 \mathrm{pF}$	100	TO-99	4.50			
± 2	± 10	± 7	± 0.15	*	*	*	*	8.85			
± 2	± 5	± 3	± 0.1	*	*	*	*	12.00			
± 5	± 20	± 15	± 0.2	*	*	*	*	15.00			
± 2	± 10	± 7	± 0.15	*	*	*	*	20.00			
± 50	± 75	$-25 \mathrm{pA}$	doubles/ $+10^{\circ} \mathrm{C}$	1011	1013	86	TO-99	6.70			
± 20	± 25	$-10 \mathrm{pA}$	*	*	*	*	*	18.00			
± 50	± 75	$-25 \mathrm{pA}$	*	*	*	*	*	18.00			
± 20	± 25	$-10 \mathrm{pA}$	*	*	*	*	*	25.00			
± 8	± 20	250	± 0.5	$50 \mathrm{M} \\| 3 \mathrm{pF}$	$500 \mathrm{M} \\| 5 \mathrm{pF}$	90	TO-99	11.00			
± 5	*	± 25	*	$300 \mathrm{M} \\| \frac{1}{} 3 \mathrm{pF}$	$10^{9}{ }^{\\|} 3 \mathrm{pFF}$	100	TO-99	9.00			
± 10	± 30	250	*	$100 \mathrm{M} \\| 3 \mathrm{pF}$	$10^{9}{ }^{\text {\|\| }} 5$ p pF	90	TO-99	11.00			
± 5	*	± 25	*	$300 \mathrm{M} \\| 3 \mathrm{pF}$	$10^{9} \\|_{\\|} 3 \mathrm{pF}$	100	TO-99	9.00			
± 0.5	± 10	$-20 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	1011	10^{12}	90	TO-99	17.80			
± 0.25	± 5		*	*	*	*	*	22.00			
*	± 2	$-15 \mathrm{pA}$	*	*	*	*	*	34.00			
*	± 1	$-10 \mathrm{pA}$	*	*	*	*	*	44.00			
*	± 5	$-20 \mathrm{pA}$	*	*	*	*	*	50.00			
± 1	± 50	$-10 \mathrm{pA}$	doubles/ $+10^{\circ} \mathrm{C}$	1011	10^{12}	90	TO-99	12.50			
± 0.5	± 10	$-5 \mathrm{pA}$,	*	*	*	*	15.00			
*	*	$-1 \mathrm{pA}$	*	*	*	*	*	22.00			
*	± 25	$-5 \mathrm{pA}$	*	*	*	*	*	26.00			
± 1	± 50	$-0.5 \mathrm{pA}$	doubles/ $/ 10^{\circ} \mathrm{C}$	1012	1013	80	TO-99	25.00			
± 0.5	± 25	-0.25pA		*	*	*	*	28.00			
± 0.5	± 25	-0.1 pA	*	*	*	*	*	32.00			
± 5	± 20	± 15	± 0.2	*	*	*	*	16.45			
± 20	± 50	-25 pA	doubles $/+10^{\circ} \mathrm{C}$	1011	1011	80	TO-99	7.00			
*	*	*	*	*	*	*	*	11.50			
± 1	± 50	$-100 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	$10^{11} \\| 3 \mathrm{pF}$	$10^{11}{ }^{1 / 3} \mathrm{pF}$	70	TO-99	22.50			
*	*	*		*	*	*	*	27.00			
*	*	*	*	*	*	-	*	39.00			
± 1	± 50	$-100 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	$1011{ }^{1 / 3} \mathrm{pF}$	$1011{ }^{\text {d }} 3 \mathrm{pF}$	70	TO-99	22.50			
*	*	*	*	*	*	*	*	39.00			
± 50	± 300	-200 pA	doubles $/+10^{\circ} \mathrm{C}$	-	1011	-	TO-3	25.00			
± 1	± 25	$-100 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	$1010 \\|_{*} 3 \mathrm{pF}$	1011 \\| 3 pF	60	TO-3	(8)			
± 0.5	± 5	$-100 \mathrm{pA}$	${ }^{*}$	* ${ }^{*}$		*	*	(8)			
± 1	± 25	$-50 \mathrm{pA}$	*	*	*	*	*	(8)			
± 2	± 40	$-100 \mathrm{pA}$	doubles $/+10^{\circ} \mathrm{C}$	$1011 \\|^{*} 10 \mathrm{pF}$	1011	90 dB	TO-3	60.00			
*	*	*	*	*	*	*	*	65.00			
± 10	± 30	$-50 \mathrm{pA}$	doubles/ $/ 10^{\circ} \mathrm{C}$	1011 \|	10 pF	1011	86	TO-3	40.00		
± 3	± 25	$-20 \mathrm{pA}$	*	*	*	110	*	65.00			
*	*	*	*	*	*	*	*	79.00 (8)			
*	*	*	+	*	*	*	-	(8)			
± 5	± 25	40	0.3nA/ ${ }^{\circ} \mathrm{C}$	25	10^{9}	$120(\pm 1500 \mathrm{~V})(7)$	Triple wide DIP	(8)			
± 1	± 15	*	*	*	*	*	*	(8)			
± 5	± 50	50 pA	doubles $/+10^{\circ} \mathrm{C}$	10^{11}	10^{11}	*	*	(8)			
± 1	± 30	*		*	*	*	*	(8)			

(5) Gain-bandwidth product (6) Depends on power supply voltage $V_{o u t}= \pm\left(\left|V_{c c}\right|-5\right) V D C$. (7) Isolation Mode Rejection.
(8) Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

GENERAL PURPOSE AMPLIFIERS

General Purpose op amps give moderately good performance over a wide range of parameters at moderate cost. If more performance in a particular area is required, consult the appropriate special application group listing on the following pages.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	LOW DRIFT, LOW NOISE			LOW BIAS CURRENT				
	3500			3501				
Industrial Temperature Range Military Temperature Range	[1ply $\begin{array}{r}\text { A } \\ \text { R }\end{array}$	$\begin{aligned} & \text { B } \\ & \text { S } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~T} \end{aligned}$	\|r月 ${ }^{\text {A }}$	$\begin{aligned} & \text { B } \\ & \text { S } \end{aligned}$	C		
OPEN LOOP GAIN DC, no load, min	93 dB			93 dB				
RATED OUTPUT, min	$\pm 10 \mathrm{~V} @ 10 \mathrm{~mA}$			$\pm 10 \mathrm{~V} @ 5 \mathrm{~mA}$				
OUTPUT IMPEDANCE, DC	$2 \mathrm{k} \Omega$			$2 \mathrm{k} \Omega$				
FREQUENCY RESPONSE								
Small Signal Bandwidth (unity gain)	1.5 MHz			0.5 MHz				
Full Power Bandwidth, min	10 kHz	15 kHz	15 kHz	1.6 kHz				
Slew Rate, min	$0.6 \mathrm{~V} / \mu \mathrm{s}$	$1 \mathrm{~V} / \mu \mathrm{s}$	$1 \mathrm{~V} / \mu \mathrm{s}$		$0.1 \mathrm{~V} / \mu \mathrm{s}$			
INPUT OFFSET VOLTAGE								
Initial @ $25^{\circ} \mathrm{C}$, max	$\pm 5 \mathrm{mV}$	$\pm 2 \mathrm{mV}$		$\begin{gathered} \pm 5 \mathrm{mV} \\ \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { (A) } \\ \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { (R) } \end{gathered}$	$\begin{aligned} & \pm 2 \mathrm{mV} \\ \pm & 10 \mu \mathrm{~V} /{ }^{\mathrm{o}} \mathrm{C} \text { (B) } \\ \pm & 10 \mu \mathrm{~V} /{ }^{\mathrm{o}} \mathrm{C} \text { (S) } \end{aligned}$	$\begin{gathered} \pm 2 \mathrm{mV} \\ \pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{C}) \end{gathered}$		
Drift vs. Temp. , max	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (A)	$\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{B})$	$\pm 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (C$)$					
Drift vs. Supply Voltage	$\pm 40 \mu \mathrm{~V} / \mathrm{V}$				$\pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { (S) }$			
Drift vs. Time	$\pm 2 \mu \mathrm{~V} /$ day			$\pm 2 \mu \mathrm{~V} /$ day				
INPUT BIAS CURRENT								
Initial @ $25^{\circ} \mathrm{C}$, max	$\pm 30 \mathrm{nA}$	$\pm 20 \mathrm{nA}$	$\pm 15 \mathrm{nA}$	$\pm 15 \mathrm{nA}$	$\pm 7 \mathrm{nA}$	$\pm 3 \mathrm{nA}$		
Drift vs. Temp., max	$\pm 1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (A) $\pm 1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (R)	$\pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}(\mathrm{B})$ $\pm 1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (S)	$\pm 0.3 \mathrm{nA} /{ }^{\circ} \mathrm{C}(\mathrm{C})$ $\pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (T)	$\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}(\mathrm{A})$ $\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (R)	$\pm 0.15 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (B) $\pm 0.15 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (S)	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}(\mathrm{C})$		
Drift vs. Supply Voltage		$\pm 0.2 \mathrm{nA} / \mathrm{V}$			$\pm 30 \mathrm{pA} / \mathrm{V}$			
INPUT OFFSET CURRENT								
Initial@ $25^{\circ} \mathrm{C}$	$\pm 15 \mathrm{nA}$	$\pm 10 \mathrm{nA}$	$\pm 7 \mathrm{nA}$	$\pm 5 \mathrm{nA}$	$\pm 3 \mathrm{nA}$	$\pm 2 \mathrm{nA}$		
Drift vs. Temp.	$\pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (A)	$\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (B)	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (C)	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (A)	$\pm 0.05 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (B)	$\pm 0.03 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (C)		
	$\pm 0.7 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (R)	$\pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (S)	$\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}(\mathrm{T})$	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (R)	$\pm 0.05 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ (S)			
Drift vs. Supply Voltage		$\pm 0.1 \mathrm{nA} / \mathrm{V}$	\bigcirc		$\pm 10 \mathrm{pA} / \mathrm{V}$			
INPUT IMPEDANCE								
Differential		$10 \mathrm{M} \Omega \\| 3 \mathrm{pF}$		$50 \mathrm{M} \Omega \\| 3 \mathrm{pF}$				
Common-Mode	$5 \times 10^{9} \Omega \\| 3 \mathrm{pF}$			$10^{10} \Omega \\| 3 \mathrm{pF}$				
INPUT NOISE								
Voltage, 0.01 Hz to 10 Hz , p-p	$0.8 \mu \mathrm{~V}$$1.2 \mu \mathrm{~V}$			$\begin{aligned} & 0.8 \mu \mathrm{~V} \\ & 1.2 \mu \mathrm{~V} \end{aligned}$				
10 Hz to 10 kHz , rms								
Current, 0.01 Hz to 10 Hz , p-p	30 pA			30 pA				
10 Hz to 10 kHz , rms	50 pA			50 pA				
INPUT SIGNAL RANGE	\pm (\mid Supply \| -4) V			\pm (\mid Supply $\mid-4$) V				
Common-Mode Voltage Range								
Common-Mode Rejection	100 dB			100 dB				
Maximum Safe Input Voltage	\pm Supply			\pm Supply				
POWER SUPPLY								
Rated Voltage, Quiescent Current, max				$\pm 15 \mathrm{~V} @ \pm 1.5 \mathrm{~mA}$				
Voltage Range, Derated Performance				$\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$				
TEMPERATURE RANGE								
Industrial Spec. (A, B, C)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Military Spec, (R, S, T)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				
PACKAGE DRAWING (See page 82)	(1) A or (3) TO-99 or Mini-DIP(1)			(1) A TO-99				
PRICE (1-24)								
Industrial	\$7.50	\$12.00	\$15.00	\$4.50	\$8.85	\$12.00		
Military	\$15.00	\$24.00	\$36.00	\$15.00	\$20.00	-		

[^2]If this option is desired, suffix the letter N to the model number (e.g., 3500 CN).

MIL-STD-883 SCREENING

See pages 106-107
Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(2) All 3050 Series Models available with these noise specifications as guaranteed max.

Contact factory for details.

Low Drift designs are optimized to reduce variations of input offset voltage as a function

LOW DRIFT AMPLIFIERS

 of temperature and to minimize the initial input offset voltage at room temperature. This group is subdivided into Integrated Circuits, Chopper Stabilized Amplifiers, and other modular units. The IC's now contain FET and bipolar inputs both with maximum voltage drifts as low as $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The chopper stabilized amplifiers provide drift as low as $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and are now available in inverting, noninverting, and fully differential designs. They represent the best available in overall accuracy and long-term stability.Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

(1) The 3500 MP is a matched pair of operational amplifiers. Specifications marked "(1)" apply to the match between the two units. Other specifications apply to individual units in the pair.

CHOPPER STABILIZED

[^3]
EB LOW BIAS CURRENT AMPLIFIERS

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

[^4]These amplifiers are designed to have high input impedance (approximately $10^{11} \Omega$) and very low bias currents (0.01 to 25 pA). They are especially useful for impedance buffering of high impedance current sources. This group includes varactor, IC, and modular devices. The varactors feature ultra low bias currents and low input noise, but are limited in frequency response. The IC devices have good all-around performance and are low cost.

MIL-STD-883 SCREENING

See pages 106-107

(5) 10 Hz to 1 kHz .

The op amps in this group have their designs optimized for wideband, fast slewing, and fast settling applications. Wideband and fast slewing op amps are ideally suited for video and pulse applications where high frequency response is necessary to follow the input waveform exactly. The fast settling op amps meet the requirements of A / D and D / A converters, and multiplexers; all of which require that the amplifier output settle rapidly and precisely to a final value in response to a step input.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.			WIDEBAND					
MODEL	INTERNALLY COMPENSATED	EXTERNALLY COMPENSATED	INTERNALLY COMPENSATED	EXTERNALLY COMPENSATED				
	3505J	3507J	3506J	3508J				
OPEN LOOP GAIN, DC no load	94 dB	90 dB	106 dB	106 dB				
RATED OUTPUT, min	$\pm 10 \mathrm{~V} @ 10 \mathrm{~mA}$							
FREQUENCY RESPONSE								
Small Signal Bandwidth (unity gain)	6 MHz	-	12 MHz	-				
Gain - Bandwidth Product	$12 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{CL}}=10\right)$	$20 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{CL}}=10\right)$	-	$100 \mathrm{MHz}\left(\mathrm{A}_{\mathrm{CL}}=100\right)$				
Full Power Bandwidth, min	0.3 MHz	1.2 MHz	0.05 MHz	0.32 MHz				
Slew Rate, min	$20 \mathrm{~V} / \mu \mathrm{s}$	$80 \mathrm{~V} / \mu \mathrm{s}$	$4 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$				
Settling Time (0.1\%)	300 ns	200 ns	$1.5 \mu \mathrm{~s}$	/				
INPUT OFFSET VOLTAGE								
Initial@ $25^{\circ} \mathrm{C}$, max	$\pm 8 \mathrm{mV}$	$\pm 10 \mathrm{mV}$	$\pm 5 \mathrm{mV}$	$\pm 5 \mathrm{mV}$				
Drift vs. Temp.	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$				
Drift vs. Supply Voltage	$\pm 30 \mu \mathrm{~V} / \mathrm{V}$							
INPUT BIAS CURRENT								
Initial @ $25^{\circ} \mathrm{C}, \max$	$+250 \mathrm{nA}$	$+250 \mathrm{nA}$						
Drift vs. Temp., max	$\pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$							
INPUT OFFSET CURRENT								
Initial @ $25^{\circ} \mathrm{C}$, max	$\pm 50 \mathrm{nA}$	$\pm 50 \mathrm{nA}$	$\pm 25 \mathrm{nA}$	$\pm 25 \mathrm{nA}$				
Drift vs. Temp.	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$	$\pm 0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$	$\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$	$\pm 0.2 \mathrm{nA} /{ }^{\circ} \mathrm{C}$				
INPUT IMPEDANCE								
Differential	$50 \mathrm{M} \Omega \\| 3 \mathrm{pF}$	$100 \mathrm{M} \Omega \\| 3 \mathrm{pF}$	$300 \mathrm{M} \Omega \\| 3 \mathrm{pF}$	$300 \mathrm{M} \Omega \\| 3 \mathrm{pF}$				
Common-Mode	$500 \mathrm{M} \Omega \\| 5 \mathrm{pF}$	$1000 \mathrm{M} \Omega \\| 5 \mathrm{pF}$	$1000 \mathrm{M} \Omega \\| 3 \mathrm{pF}$	$1000 \mathrm{M} \Omega \\| 3 \mathrm{pF}$				
INPUT SIGNAL RANGE								
Common-Mode Voltage Range	$\pm(\mid$ Supply $\mid-3) V$	\pm (\mid Supply \|-3) V	\pm (\mid Supply \| -2) V	\pm (\mid Supply \|-2) V				
Common-Mode Rejection	$90 \mathrm{~dB}$	$90 \mathrm{~dB}$	$100 \mathrm{~dB}$	100 dB				
Maximum Safe Input Voltage	\pm Supply	\pm Supply	\pm Supply	\pm Supply				
POWER SUPPLY								
Rated Voltage, Quiescent Current	$\pm 15 \mathrm{~V} @ \pm 4 \mathrm{~mA}$	$\pm 15 \mathrm{~V} @ \pm 4 \mathrm{~mA}$	$\pm 15 \mathrm{~V} @ \pm 3 \mathrm{~mA}$	$\pm 15 \mathrm{~V} @ \pm 3 \mathrm{~mA}$				
Voltage Range, Derated Performance	$\pm 8 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	$\pm 8 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	$\pm 8 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$	$\pm 8 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$				
TEMPERATURE RANGE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$							
PACKAGE DRAWING (See page 82)	(1) В TO-99	(1) В TO-99	(1) $\mathrm{B} \quad$ TO-99	(1) В TO-99				
PRICE (1-24)	\$11.00	\$11.00	\$9.00	\$9.00				

dan't veiss...
士200 mA, $2000 \mathrm{~V} / \mu \mathrm{s}$
BUFFER AMPLIFIER/
POWER BOOSTER
SEE $3553 A M . .$. page 43

(1) Gain-Bandwidth product for Gain $=10 \mathrm{~V} / \mathrm{V}$ to $1000 \mathrm{~V} / \mathrm{V}$.
(2) Gain-Bandwidth product for Gain $=100 \mathrm{~V} / \mathrm{V}$.

* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

HIGH VOLTAGE AND HIGH CURRENT AMPLIFIERS

MIL-STD-883 SCREENING

See pages 106-107

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.
NEW!

MODEL	HIGH VOLTAGE				CHOPPER STABILIZED	
	3580J	3581J	3582J	3583AM* 3583JM*	3271/25	
OPEN LOOP GAIN DC, no load	106 dB	112 dB	118 dB	118 dB	140 dB min	
RATED OUTPUT, min						
@ Minimum Supply Voltage	$\pm 13 \mathrm{~V} @ 60 \mathrm{~mA}$	$\pm 27 \mathrm{~V}$ @ 30mA	$\pm 65 \mathrm{~V} @ 15 \mathrm{~mA}$	$\pm 45 \mathrm{~V} @ 75 \mathrm{~mA}$	$\pm 50 \mathrm{~V} @ 20 \mathrm{~mA}$	
@ Maximum Supply Voltage	$\pm 30 \mathrm{~V} @ 60 \mathrm{~mA}$	$\pm 70 \mathrm{~V} @ 30 \mathrm{~mA}$	$\pm 145 \mathrm{~V} @ 15 \mathrm{~mA}$	$\pm 145 \mathrm{~V} @ 75 \mathrm{~mA}$	$\pm 110 \mathrm{~V} @ 20 \mathrm{~mA}$	
OUTPUT IMPEDANCE	500Ω	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$	$25 \mathrm{k} \Omega$ @ DC	
FREQUENCY RESPONSE						
Small Signal Bandwidth (unity gain)					1 MHz	
Full Power Bandwidth	100 kHz	60 kHz	30 kHz	30 kHz	30 kHz , min	
Slew Rate	$15 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}$	$30 \mathrm{~V} / \mu \mathrm{s}$	$20 \mathrm{~V} / \mu \mathrm{s}, \mathrm{min}$	
Settling Time (0.1%)						
INPUT OFFSET VOLTAGE						
Inital @ $25^{\circ} \mathrm{C}$, max						
Drift vs Temp., max	$30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
INPUT BIAS CURRENT						
Initial @ $25^{\circ} \mathrm{C}$, max Drift vs Temp.	-50 pA	$-20 \mathrm{pA}$ double	$0^{-20} \mathrm{C}$	$-20 \mathrm{pA}$	$\begin{gathered} \pm 80 \mathrm{pA} \\ \pm 2 \mathrm{pA} /{ }^{\circ} \mathrm{C}, \max \end{gathered}$	
INPUT IMPEDANCE						
Differential		$10^{11} \Omega \\|$	10 pF		$500 \mathrm{k} \Omega$	
Common-Mode					N/A	
INPUT NOISE						
Voltage, 0.01 Hz to 10 Hz , p-p 10 Hz to 10 kHz , RMS	$1 \mu \mathrm{~V}$	$1.7 \mu \mathrm{~V} \quad 5 \mu \mathrm{~V}$	$1.7 \mu \mathrm{~V}$	$1.7 \mu \mathrm{~V}$	$\begin{aligned} & 20 \mu \mathrm{~V} \\ & 5 \mu \mathrm{~V} \end{aligned}$	
Curient, $\begin{aligned} & \text {, } .01 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \text { p-p } \\ & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{RMS}\end{aligned}$	1 pA	0.3 pA	0.3 pA	0.3 pA	$200 \mathrm{pA}$	
INPUT SIGNAL RANGE						
Common-Mode Voltage Range	$\pm(\mid$ Supply $\mid-5) \mathrm{V}$	\pm (\| Sup	ly $\mid-10) \mathrm{V}$	$\pm(\mid$ Supply $\mid-10) \mathrm{V}$	Inverting Only	
Common-Mode Rejection	$86 \mathrm{~dB}$	110 dB	110 dB	110 dB		
Maximum Safe Input Voltage					\pm Supply	
POWER SUPPLY						
Rated Voltage, Quiescent Current, max Voltage Range, Derated Performance	$\begin{gathered} \pm 10 \mathrm{~mA} \\ \pm 18 \text { to } \pm 35 \end{gathered}$	$\pm 8 \mathrm{~mA}$ ± 32 to ± 75	$\begin{gathered} \pm 6.5 \mathrm{~mA} \\ \pm 70 \text { to } \pm 150 \end{gathered}$	$\begin{gathered} \pm 8.5 \mathrm{~mA} \\ \pm 50 \text { to } \pm 150 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 120 \mathrm{~V} @ \pm 20 \mathrm{~mA} \\ & \pm 60 \mathrm{~V} \text { to } \pm 120 \mathrm{~V} \end{aligned}$	
TEMPERATURE RANGE		0° to $70^{\circ} \mathrm{C}$		$\begin{array}{c\|l} -25^{\circ} \text { to } & 0^{\circ} \text { to } \\ +85^{\circ} \mathrm{C} & +70^{\circ} \mathrm{C} \end{array}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
PACKAGE DRAWING (See page 83)		(6) $\mathrm{A} \mathrm{TO-3}$		(6) A TO-3	(7) $\mathrm{B} 2.4 \prime \prime \times 1.8^{\prime \prime} \times 0.6^{\prime \prime}$	
PRICE						
$(1-9)$					\$175.00	
$(1-24)$	$\$ 40.00$	$\$ 65.00$	$\$ 79.00$	* *	-	
(100's)	27.00	43.00	53.00			

[^5]High voltage and high current amplifiers were developed by Burr-Brown to meet the special needs of the designer that are not met by the usual op amp design. The high voltage devices operate on wide ranges of supply voltage, either balanced or unbalanced, while providing good performance in the other parameters. The wideband amplifiers provide up to 100 mA into 50Ω loads and also give all-around good performance; notably in frequency response. The 3570 and 3580 families have self-contained thermal sensing and shutoff which automatically prevents damage to the amplifier from overheating. The TO-3 packages are electrically isolated.

HIGH CURRENT AND VOLTAGE		
3571AM	3572AM	
94, min $\mathrm{dB} @ \mathrm{RL}=5 \Omega$		
$\begin{aligned} & \pm 30 \mathrm{~V} @ \pm 1 \mathrm{~A} \\ & \pm 30 \mathrm{~V} @ \pm 2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \pm 30 \mathrm{~V} @ \pm 2 \mathrm{~A} \\ & \pm 30 \mathrm{~V} @ \pm 5 \mathrm{~A} \end{aligned}$	
2.5Ω		
$\begin{aligned} & 500 \mathrm{kHz} \\ & 16 \mathrm{kHz}, \text { typ } \\ & 3 \mathrm{~V} / \mu \mathrm{s}, \mathrm{typ} \end{aligned}$		
$\begin{gathered} \pm 2 \mathrm{mV} \\ \pm 40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$		
$\begin{gathered} -100 \mathrm{pA} \\ \text { doubles } /+10^{\circ} \mathrm{C} \end{gathered}$		
$\begin{gathered} 10^{11} \Omega \\| 10 \mathrm{pF} \\ 10^{11} \Omega \end{gathered}$		
$\begin{gathered} 4 \mu \mathrm{~V} \\ 3 \mu \mathrm{~V} \\ 1 \mathrm{pA} \\ 0.1 \mathrm{pA} \end{gathered}$		
$\pm($ Supply $\mid-10) \mathrm{V}$		
$\begin{aligned} & \pm 35 \mathrm{~V} @ \pm 25 \mathrm{~mA} \\ & \pm 15 \mathrm{~V} \text { to } \pm 40 \mathrm{~V} \end{aligned}$		
(6) $\mathrm{C} \mathrm{TO}-3$		
$\begin{array}{r} \$ 60.00 \\ 38.50 \end{array}$	$\begin{array}{r} \$ 65.00 \\ 42.00 \end{array}$	

BUFFER AMP/POWER BOOSTERS		
MODEL		
OPEN LOOP GAIN DC, no load	0.99 V	0 dB approx.
RATED OUTPUT	$\pm 10 \mathrm{~V} @ 200 \mathrm{~mA}$	$\pm 10 \mathrm{~V} @ 100 \mathrm{~mA}$
OUTPUT IMPEDANCE	1Ω	10ת@ DC
FREQUENCY RESPONSE Full Power Bandwidth, min	$32 \mathrm{MHz}$	$1 \mathrm{MHz}$
INPUT IMPEDANCE	$10^{11} \Omega$	$10 \mathrm{k} \Omega$
INPUT SIGNAL RANGE Maximum Safe Input Voltage	$\pm \text { Supply }$	\pm Supply
POWER SUPPLY		
Rated Voltage, Quiescent Current, max Voltage Range, Derated Performance	$\begin{aligned} & \pm 15 \mathrm{~V} @ \pm 80 \mathrm{~mA} \\ & \pm 5 \mathrm{~V} \text { to } \pm 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} @ \pm 15 \mathrm{~mA} \\ & \pm 12 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{aligned}$
TEMPERATURE RANGE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
PACKAGE DRAWING (see pgs. 82, 83)	(6) $\mathrm{B} \mathrm{TO}^{\text {T }}$	(2) F DIL Type
PRICE		
$(1-24)$	\$25.00	\$25.00

Power boosters are designed to provide increased output current when used in a composite amplifier configuration as shown below. The 3553 is designed to also be used as a stand alone buffer amplifier capable of driving 50 ohm loads with $\pm 200 \mathrm{~mA}$ at $2000 \mathrm{~V} / \mathrm{\mu s}$.

ISOLATION AMPLIFIERS

Tranformer Coupled Optically Coupled

GENERAL INFORMATION

Abstract

Isolation amplifiers are useful in providing three major benefits: 1) improving system performance by breaking troublesome ground loops; 2) protecting system components from damage due to large voltages; 3) protecting personnel against the danger of electrical shock.

Figure 1 shows a typical application of isolation amplifiers and will be used to define some of the terms. The isolation mode voltage, $\mathrm{V}_{\text {iso }}$, is the voltage which exists across the isolation barrier, i.e., between the input common and the output common. The contribution of output referred error caused by the isolation mode voltage is $\mathrm{V}_{\text {iso }} /$ IMRR, where IMRR is the Isolation Mode Rejection Ratio.
Since these isolation amplifiers have differential inputs, a differential input signal $\left(\mathrm{V}_{\mathrm{d}}\right)$ and a common-mode voltage $\left(\mathrm{V}_{\mathrm{cm}}\right)$ can both be applicable. Both of these voltages are associated with only the input circuitry ("+", "-", and "input common") just as in any other differential input operational amplifier. For the differential configuration shown in Figure $1, \mathrm{~V}_{\mathrm{cm}}$ causes an output referred error of $\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)$ $\left(\mathrm{V}_{\mathrm{cm}} / \mathrm{CMRR}\right)$. In many applications V_{cm} is negligible and a system voltage called "the common-mode voltage" is applied as $\mathrm{V}_{\text {iso }}$ in Figure 1.
The isolation voltage and isolation-mode rejection are defined by Figure 1. The leakage resistance and capacitance are also shown in that figure. These parasitic impedance are the reason the isolation-mode rejection is not infinite. They also explain its behavior with frequency. In some types of applications the "leakage current" is an important specification. It is the current which flows across the isolation barrier with some specified isolation voltage applied between the input and the output.

FIGURE 1. Typical Isolation Amplifier Application.

Two isolation voltages are given in the electrical specification; "rated continuous" and "test voltage." Since it is impractical on a production basis to test a "continuous" voltage (infinite test time is implied), it is generally accepted practice to test at a significantly higher voltage for some reasonable length of time. For Burr-Brown's isolation amplifiers the "test voltage" is equal to 1000 volts plus two times the "rated continuous" voltage.

CHOICE OF AMPLIFIERS

Isolation amplifier performance requirements vary significantly, depending on the type of requirement. In some applications, bandwidth and speed of response are more important than gain accuracy and linearity. In these instances the best choice will be an optically coupled amplifier (see page 46). Optically coupled amplifiers from Burr-Brown are hybrid integrated circuits offering the additional advantages of small size, ruggedness, and superior reliability.
For applications where gain accuracy and linearity are of major importance, our family of transformer coupled amplifiers will usually offer the best choice (see page 48). They offer the versatility of an operational amplifier front-end and some units also provide isolated DC power for use in input signal conditioning. A block diagram of a typical transformer coupled isolation amplifier is shown in Figure 2.

FIGURE 2. Simplified Block Diagram of Transformer Coupled Isolation Amplifiers.

EBE OPTICALLY COUPLED AMPLIFIERS

The 3650 and 3652 are the industry's first optically coupled isolation amplifiers. Compared to transformer coupled units they have the advantages of smaller size, lower cost, wider bandwidth and integrated circuit reliability.

FIGURE 3. Improved Linear Isolator.

The basic principals of operation are shown in Figure 3. The heart of the design is the LED, CR1, and the two matched photo diodes, CR2 and CR3. The input voltage V_{in} is applied through a gain setting resistor, R_{G}, which determines the magnitude of input current. This current, I_{in}, and the amplifier A_{1} cause the current I_{3} to flow through the light emitting diode CR1. CR1 transmitts equal amounts of light to the matched photo diodes, CR2 and CR3. The negative feedback configuration of $A_{1}, C R 1$ and CR3 and the large open loop gain of A_{1} cause an equilibrium condition to exist such that $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{in}}$.
But I_{2} also equals $I_{i n}$ because of the matching of the components and optics. Amplifier A_{2} is connected as a current-to-voltage converter such that $\mathrm{V}_{\text {out }}=\mathrm{I}_{2} \mathrm{R}_{\mathrm{K}}$. The overall isolator transfer function is then $V_{\text {out }}=V_{\text {in }}\left(R_{K} / R_{G}\right)$ where R_{K} is an internal one megohm scaling resistor and R_{G} is the user supplied gain setting resistor. Thus, the final transfer function is $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {in }} \frac{106}{\mathrm{R}_{\mathrm{G}}}$.

The use of matched feedforward and feedback circuits in the isolator yields several benefits. The accuracy of the transfer function is dependent on matching (CR2 to CR3 and λ_{1} to λ_{2}) rather than on the magnitude of the output of the LED. Thus, the gain accuracy does not degrade with use. The linearity of the circuit is also greatly increased. This is a result of the negative feedback used and the matching of the optics.

LOWEST COST; 3650 (Pg. 47)

A simple application of the 3650 is shown in Figure 4. The output is a current dependent voltage source, V_{S}, whose value depends on the input current I_{in}. The 3650 has a voltage-out current-in transfer function of one volt per microamp. Inputs which are current sources may be connected directly to the 3650 . When voltage sources are used, the input current is derived by using gain setting resistors in series with the inputs.

FIGURE 4. Application of 3650.
The 3652 is similar to the 3650 except that unity gain buffer amplifiers have been added to the input (see Figure 5). This gives the 3652 a voltage-in voltage-out transfer function and provides very high differential and common-mode input impedances (1010 ohms) and low bias currents (50 pA). Internal input protection resistors are also included.
Isolated power for the 3650 and 3652 may be obtained from separate input and output power supplies or from a DC-to-DC converter such as the model 700 described on page 79.

FIGURE 5. Simple Model of 3652.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated voltage unless otherwise specified.

(1) Gain error terms specified for inputs applied through buffer amplifiers (i.e., $\pm \mathrm{I}$ or $\pm \mathrm{IR}$ pins)
(2) Trimmable to zero.
(3) Input stage specifications at +I and -I inputs for 3652 unless otherwise noted.
(4) Continuous rating is $1 / 3$ pulse rating.
(5) Load current is drawn from only one supply lead at a time, other supply current at quiescent level.

* Specifications are tentative.

Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

This family of isolation amplifiers has a true uncommitted differential input operational amplifier and offers input/output isolation. The various models are rated at ± 500 to $\pm 2000 \mathrm{~V}$ of continuous isolation voltage (factory tested at ± 2000 to ± 5000 volts). They all have self-contained DC-to-DC converters and two modules provide isolated $\pm 15 \mathrm{VDC}$ at the input for powering circuitry such as bridges and other active devices. Low voltage drift bipolar or low bias current FET input stages are available.
These transformer coupled models use a pulse width modulation technique to provide excellent accuracy ($\pm 0.01 \%$ linearity). The use of PW modulation also minimizes the problems of electro-magnetic interference that some amplitude modulated designs have exhibited.

LOW DRIFT; 3450

The 3450 has a low drift bipolar input stage which is optimized for use with low-level signals from low impedance signal sources such as strain gages and thermocouples. Input voltage drift is less than $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and gain linearity is $\pm 0.01 \%$. Isolation mode rejection is 160 dB at $\pm 500 \mathrm{VDC}$.

LOW BIAS CURRENT; 3451

The 3451 has a low bias current (-25 pA , max) FET input stage which is suitable for use with low-level current sources or high impedance voltage sources. Input impedance is $10^{11} \Omega$ and isolation is 160 dB at $\pm 500 \mathrm{VDC}$.

2000 VOLTS ISOLATION; 3452

The 3452 provides input/output isolation for continuous service of ± 2000 VDC minimum (tested at ± 5000 volts). Isolation mode rejection is 160 dB at $\pm 2000 \mathrm{VDC}$. And the 3452 has isolated $\pm 15 \mathrm{VDC}$ available at the input.

MINIMUM LEAKAGE CURRENT; 3455

The 3455 is identical to the 3452 except that it has additional specifications for isolation test voltage and leakage. Each unit is tested at an isolation voltage $2500 \mathrm{~V} / 60 \mathrm{~Hz}$ for 1 minute and is guaranteed for leakage current of less than $2 \mu \mathrm{~A}$ with $240 \mathrm{~V} / 60$ Hz of isolation voltage.

[^6]
INSTRUMENTATION AND DATA AMPLIFIERS

Low Drift Low Bías Current

Programmable Gaín
Varíable Gaín
Rack Mountíng

WHAT ARE THEY?

An Instrumentation Amplifier is a closed loop differential input gain block. It is a committed circuit whose primary function is to accurately amplify the voltage applied to its inputs.
Ideally, the instrumentation amplifier responds only to the difference between the two input signals $\left(\mathrm{e}_{2}-\mathrm{e}_{1}\right)$ and exhibits extremely high impedance between the two input terminals (differential input impedance) and from each input to ground (common-mode input impedance). The transfer function of the gain block is $e_{0}=G\left(e_{2}-e_{1}\right)$ where G is the amplifier gain which is normally set by the user with a single external resistor.

NOT AN OP AMP

An instrumentation amplifier differs fundamentally from an op amp. An op amp is an open loop uncommitted device whose closed loop performance depends on the external networks used to close the loop. While an op amp can be used to get the same basic transfer function as an instrumentation amplifier, it is generally difficult (often impossible) to achieve the same level of performance. The use of an op amp usually leads to design tradeoffs when it is necessary to amplify low level signals in the presence of common-mode voltages while maintaining high input impedances.

FIGURE 1. Single Op Amp, Differential Input Configuration.

When a single op amp is used (see Figure 1), there are opposing constraints if there is a need for both high gain $\left(\mathrm{R}_{2} \div \mathrm{R}_{1} \gg 0\right.$, i.e. R_{1} small) and high input impedances (R_{1} large). Also, the common-mode rejection ratio of the total circuit, $\mathrm{CMRR}_{\mathrm{T}}$, is a function of the op amp's rejection, $\mathrm{CMRR}_{\mathrm{OA}}$, and the effective rejection caused by resistor mismatches, $\mathrm{CMRR}_{\mathrm{R}}$. [For example, $\pm 0.1 \%$ resistors in a gain of 10 circuit can have a CMR of only $69 \mathrm{~dB}\left(\mathrm{CMR}(\mathrm{dB})=20 \log _{10}\right.$ CMRR (V/V))].

Figure 2 shows the simple model of an instrumentation amplifier which eliminates most of the problems of using op amps.

FIGURE 2. Model Of An Instrumentation Amplifier.

WHAT ARE THE ALTERNATIVES?

There are three basic alternatives available when you have a need to accurately amplify signals in the presence of commonmode voltages and noise and maintain high input impedances.

1. Build a single op amp circuit in a differential input configuration.
2. Build a circuit of multiple op amps interconnected to form an instrumentation amplifier.
3. Buy a committed instrumentation amplifier.

Some of the shortcomings of the first alternative were just discussed. One additional problem is that gain changes are difficult. Two resistors need to be changed and match and tracking must be maintained.
The second and third alternatives are usually the most realistic. There are a number of multiple op amp circuits, each with its own set of advantages and disadvantages ${ }^{(1)}$, which might be suitable in a particular application. There are also available low drift op amps and matched pairs of amplifiers (see 3500 E and 3500 MP page 36) for use in such circuits.

The build or buy alternatives are swinging heavily towards buy. The appearance of relatively low cost monolithic instrumentation amplifiers (see the 3660 , page 51) is a step towards making the building of one's own instrumentation amplifiers as obsolete as building one's own op amps.

PUT IT ALL TOGETHER

The instrumentation amplifiers in this section do put it all together to solve your instrumentation amplifier problems.

High Common-Mode Rejection - to preserve system accuracy in the presence of common-mode voltage.
High Input Impedance - to prevent errors due to source loading and source impedance unbalance.
Small, Hermetically Sealed Packages - to take up less board space and to improve reliability.
Low Cost - to make it easy on the budget.
(1) J. Graeme "Applications of Operational Amplifiers - Third Generation Techniques", McGraw-Hill, 1973.

TYPICAL APPLICATION

A typical application of instrumentation amplifiers is amplification of a remote low level signal source (see Figure 3). This section will develop equations to quantify the effect of some of the error sources in such applications.

FIGURE 3. Typical Application of Instrumentation Amplifier.

COMMON-MODE REJECTION

The common-mode voltage which appears at the amplifier's input terminals is defined as $\mathrm{E}_{\mathrm{cm}}=\left(\mathrm{e}_{2}+\mathrm{e}_{1}\right) / 2$. This may consist of some common-mode voltage in the source itself, e_{cm}, (such as bridge excitation) plus any noise voltage, e_{n}, between the source common and the amplifier common.
This will cause an error voltage of $\mathrm{E}_{\mathrm{cm}} \times \mathrm{G}$ to appear at
CMRR
the output. Referred to the input (RTI), the error voltage is $\mathrm{E}_{\mathrm{cm}} \div$ CMRR. If $\mathrm{E}_{\mathrm{cm}}=5 \mathrm{~V}$ and the $\mathrm{CMR}=100 \mathrm{~dB}$ the error voltage (RTI) is $5 \div 10^{5}=0.05 \mathrm{mV}$. If the full scale value of e_{d} is 10 mV , this is a 0.5% error (as percent of full scale).

INPUT IMPEDANCE

The instrumentation amplifier provides a load on the source of $\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{d}} \|\left(\mathrm{Z}_{\mathrm{cm}} / 2\right)$ (see Figure 2, page 50). If the source impedance is $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{S} 1}+\mathrm{R}_{\mathrm{S} 2}$ the gain error caused by this loading is:

$$
\text { Gain Error }=1-\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{R_{S}}{Z_{i}+R_{s}} \cong \frac{R_{s}}{Z_{i}} \text { if } Z_{i}>R_{s}
$$

If R_{S} is $10 \mathrm{k} \Omega$ and Z_{i} is. $10 \mathrm{M} \Omega$

$$
\text { Gain Error } \cong \frac{10 \times 10^{3}}{10 \times 10^{6}}=10^{-3}=0.1 \%
$$

SOURCE IMPEDANCE UNBALANCE

If the source impedances are unbalanced then the source voltages $\left(\mathrm{e}_{\mathrm{cm}}+\mathrm{e}_{\mathrm{n}}\right)$ are divided unequally upon the commonmode impedances and a differential signal is developed at the amplifiers input. This error signal cannot be separated from the desired signal. In the circuit in Figure 3, if $\mathrm{R}_{\mathrm{s} 2}=0, \mathrm{R}_{\mathrm{s} 1}=$ $1 \mathrm{k} \Omega, \mathrm{e}_{\mathrm{cm}}+\mathrm{e}_{\mathrm{n}}=10 \mathrm{~V}$, and $\mathrm{Z}_{\mathrm{cm}}=100 \mathrm{M} \Omega$, then the effect of unbalance is to generate a voltage.
$e_{2}-e_{1}=10 \mathrm{~V}-10 \mathrm{~V} \frac{10^{8}}{10^{8}+10^{3}}=10 \mathrm{~V} \frac{10^{3}}{10^{8}+10^{3}} \cong \frac{10 \mathrm{~V}}{10^{5}}=0.1 \mathrm{mV}$
if e_{d} full scale is 10 mV then this error is:

$$
\text { Error }=\frac{0.1 \mathrm{mV}}{10 \mathrm{mV}}=1 \% \text { of full scale }
$$

OFFSET VOLTAGE AND DRIFT

Most instrumentation amplifiers are two stage devices they have a variable gain input stage and a fixed gain output stage. Because of this, the amplifiers offset voltage and offset voltage drift vs. temperature are both composed of two components, one of which is a function of gain. If V_{i} and V_{O} are the offset voltages of the input and output stages respectively then the amplifiers total offset voltage referred to the input (RTI) is $\mathrm{E}_{\mathrm{OS}}(\mathrm{RTI})=\mathrm{V}_{\mathrm{i}}+\mathrm{V}_{\mathrm{O}} / \mathrm{G}$ where G is the amplifier's gain. [Note that $\mathrm{E}_{\mathrm{OS}}(\mathrm{RTO})=$ E_{OS} (RTI) $\left.\times \mathrm{G}\right]$.
The initial offset voltage is usually adjustable to zero and therefore, the voltage drift is the more significant term since it cannot be nulled. If $\Delta \mathrm{V}_{\mathrm{i}} / \Delta \mathrm{T}=2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $\Delta \mathrm{V}_{\mathrm{o}} / \Delta \mathrm{T}=$ $500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and the amplifier in a gain of $1000 \mathrm{~V} / \mathrm{V}$ is nulled at $25^{\circ} \mathrm{C}$, then at $65^{\circ} \mathrm{C}$ the offset voltage will be:

$$
\begin{aligned}
\mathrm{E}_{\mathrm{OS}}(\mathrm{RTI})_{65^{\circ}} & =40^{\circ} \mathrm{C}\left[2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}+\left(500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / 1000 \mathrm{~V} / \mathrm{V}\right)\right] \\
& =40^{\circ} \mathrm{C}\left(2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)=100 \mu \mathrm{~V}=0.1 \mathrm{mV}
\end{aligned}
$$

If the full scale input is 10 mV then the error due to voltage drift is:

$$
\text { Error }=\frac{0.1 \mathrm{mV}}{10 \mathrm{mV}}=1 \% \text { of full scale }
$$

INPUT BIAS AND OFFSET CURRENTS

The input bias currents are the currents that flow out of (or into) either of the two inputs of the amplifier. They are the base currents for bipolar input stages and the JFET leakage currents for FET input stage. Offset currents are the difference of the two bias currents.
The bias currents flowing into the source resistances will generate offset voltages of $\mathrm{E}_{\mathrm{Os} 2}=\mathrm{I}_{\mathrm{B} 2} \times \mathrm{R}_{\mathrm{s} 2}$ and $\mathrm{E}_{\mathrm{Os} 1}=$ $\mathrm{I}_{\mathrm{B} 1} \times \mathrm{R}_{\mathrm{s} 1}$. If $\mathrm{R}_{\mathrm{s} 1}=\mathrm{R}_{\mathrm{s} 2}=\mathrm{R}_{\mathrm{s}} / 2$ the offset voltage at the input is $\mathrm{E}_{\mathrm{OS} 2}-\mathrm{E}_{\mathrm{OS} 1}=\mathrm{I}_{\mathrm{OS}} \times \mathrm{R}_{\mathrm{S}} / 2$. This input referred offset error may be compared directly with the input voltage to compute per cent error. (Note that the source must be returned to power supply common or R_{S} will be infinite and the amplifier will saturate.)

3660-LOW COST IC

The 3660 IC instrumentation amplifier offers one of the lowest cost solutions for data acquisition systems. It's easy to use, too. The gain may be varied from 1 to 1000 with a single resistor. Temperature errors are greatly reduced since voltage and bias current drifts are less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\mathrm{G}=1000)$ and $1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$, respectively. The high input impedance, the gain nonlinearity of better than 0.03% and the CMR of up to 110 dB go a long way to preserve signal integrity. Prices are especially attractive in 100's (3660J - \$8.20). In applications where many channels of data must be multiplexed, but where a preamplifier per channel is desired, the 3660 is the obvious choice.

3662-LOW OFFSET

The 3662 has all the desirable features of the 3660 and more. It contains laser trimmed thin-film and thick-film networks so that only a single outside gain settling resistor is required. The offset voltages are laser trimmed down for a level where further adjustment will normally not be required. It is packaged in a plastic DIP for ease of use.

3620-VERSATILE

The 3620 K represents the "top of the line" in our instrumentation amplifiers and is the best choice for signal source impedances up to $10 \mathrm{k} \Omega$. Key performance specifications are input voltage drift of $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max (\mathrm{G}=1000)$, equivalent input noise of $1 \mu \mathrm{~V}$ p-p, and linearity of 0.01%. Common-mode rejection is typically 100 dB at $\mathrm{G}=100$. Special features include an active guard-driver output, output sensing, output offsetting, provision for bandwidth reduction, and a secondstage amplifier which makes possible gains of up to 10,000 . Wirewound resistors are used throughout for gain stability.
The 3620 is packaged in a low-profile ($2^{\prime \prime} \times 2^{\prime \prime} \times 0.4^{\prime \prime}$) module suitable for PC board mounting. The rack mounting options, $3620 \mathrm{~J} / 16,3620 \mathrm{~K} / 16$ and $3620 \mathrm{~L} / 16$, offer excellent performance in a shielded, plug-in package.

$3625-0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Burr-Brown's 3625 family is optimum for applications where cost is a paramount factor, but where input signal quality cannot be sacrificed.
This amplifier offers voltage drift and input noise approaching that of the 3620 series. However, by eliminating some of the applications flexibility of the 3620 , the 3625 achieves surprisingly low cost, while maintaining high performance standards.

MODEL

GAIN

Gain Equation
Range of Gain
Gain Nonlinearity, $G=100$, ma)
Gain Temp. Coeff., G=100
OUTPUT
Rated Output, Voltage
Current
Output Impedance, $\mathrm{DC}, \mathrm{G}=10($ INPUT

Input Impedance, Differential
Common-Mo
Input Voltage Range
CMR, DC to 60 Hz
at $\mathrm{G}=10, \min , 1 \mathrm{k} \Omega$ Unbal. at $\mathrm{G}=1000,1 \mathrm{k} \Omega$ Unbal.
OFFSETS AND NOISE
Offset Voltage (RTI) ${ }^{(1)}$ $@ 25^{\circ} \mathrm{C}$, max ${ }^{(2)}$
vs. Temperature, $\max \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$
@ $\mathrm{G}=1, \max$
@ $\mathrm{G}=1000$, max
vs. Supply G = 1000
vs. Time $\mathrm{G}=1000$
Bias Current (each input) $@ 25^{\circ} \mathrm{C}$ max
vs. Temperature, max
Noise (RTI) ${ }^{(1)} \mathrm{G}=100$
Voltage, $\mathrm{p}-\mathrm{p}, \mathbf{0 . 0 1 \mathrm { Hz } \text { to } 1 0 \mathrm { Hz } \text { z } { } ^ { 2 } \text { . }}$ rms, 10 Hz to 10 kHz
Current, p-p, 0.01 Hz to 10 Hz
rms, 10 Hz to 10 kHz
DYNAMIC RESPONSE at $\mathrm{G}=1 \mathrm{l}$ Small Signal Frequency Respo For $\pm 1 \%$ flatness, min For $\pm 3 \mathrm{~dB}$ flatness, min
Settling Time to within $\pm 10 \mathrm{~m}$ of Output Final Value Slew Rate
Full Power, G = 10
POWER SUPPLY
Rated Voltage
Voltage Range
Quiescent Supply Current, ma
TEMPERATURE RANGE
Specification

Operating
PACKAGE DRAWING
(See pages $82-87$)
PRICE (1-24)
(100's)

MIL-STD-883 SCREENING

See pages 106-107

3662		LOWEST DRIFT			$\frac{\text { LOW DRIFT, LOW COST }}{3625}$			$\frac{\text { LOW COST IC }}{3660}$										
JP	KP	J	K	L	A	B	C	J	K	S								
$\begin{gathered} \mathrm{G}=\frac{100 \mathrm{k} \Omega}{\mathrm{R}} \\ \pm 0.1 \%{ }^{1 \text { to }\left.\right\|^{1000} \pm 0.05 \%} \pm 0.006 \% /{ }^{\mathrm{O}} \mathrm{C} \end{gathered}$		$\begin{aligned} \mathrm{G}= & 1+\frac{25 \mathrm{k} \Omega}{\mathrm{R}} \\ & \mathbf{1} \text { to } 10,000 \\ & \pm 0.01 \% \\ & \pm 0.001 \% /{ }^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} \mathrm{G}= & 10+\frac{20 \mathrm{k} \Omega}{\mathrm{R}} \\ & 10 \text { to } 1000 \\ & \pm 0.02 \%, \text { typ } \\ & \pm 0.001 \% /^{\circ} \mathrm{C} \end{aligned}$			$\left.\begin{array}{ll} & \mathrm{G}=\frac{100 \mathrm{k} \Omega}{\mathrm{R}} \\ & 1 \text { to } 1000 \\ \pm 0.1 \% \quad \mid & \pm 0.03 \% \\ & \pm 0.004 \% /{ }^{\circ} \mathrm{C} \end{array} \right\rvert\, \pm 0.03 \%$										
					$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 5 \mathrm{~mA} \\ & 2 \Omega \end{aligned}$			$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \\ & 0.15 \Omega \end{aligned}$										
$\begin{gathered} \frac{2 \times 10^{10}}{\mathrm{G}} \Omega \\| 9 \mathrm{pF} \\ 2 \times 10^{10} \Omega \\| 3 \mathrm{pF} \\ \pm 10 \mathrm{~V} \end{gathered}$		$\begin{gathered} 300 \mathrm{M} \Omega \\| 3 \mathrm{pF} \\ 1000 \mathrm{M} \Omega \\| 3 \mathrm{pF} \\ \pm 10 \mathrm{~V} \end{gathered}$			$\begin{array}{ccc} 5 \times 10^{9} \Omega \\| 3 \mathrm{pF} \\ 5 & \mathrm{x} & 10^{9} \Omega \\| 3 \mathrm{pF} \\ \pm 10 \mathrm{~V} \end{array}$			$\begin{gathered} \frac{2 \times 10^{10}}{\mathrm{G}} \Omega \\| 9 \mathrm{pF} \\ 2 \times 10^{10} \Omega \\| 3 \mathrm{pF} \\ \pm 10 \mathrm{~V} \end{gathered}$										
$\begin{gathered} 76 \mathrm{~dB} \\ 96 \mathrm{~dB}, \mathrm{~min} \end{gathered}$	84 dB $104 \mathrm{~dB}, \min$	$\begin{gathered} 74 \mathrm{~dB} \\ 100 \mathrm{~dB} \text { (Balanced Source) } \\ \hline \end{gathered}$			$\begin{gathered} 74 \mathrm{~dB} \\ 80 \mathrm{~dB} \text { (Balanced Source) } \end{gathered}$			$\begin{aligned} & 76 \mathrm{~dB} \\ & 96 \mathrm{~dB}, \mathrm{~min} \end{aligned}$	$\begin{gathered} 90 \mathrm{~dB} \\ 110 \mathrm{~dB}, \text { min } \\ \hline \end{gathered}$	$\begin{gathered} 90 \mathrm{~dB} \\ 110 \mathrm{~dB}, \mathrm{~min} \\ \hline \end{gathered}$								
$\begin{aligned} & \pm\left(0.4+\frac{100}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(5+\frac{1000}{\mathrm{G}}\right) \\ & \pm 1005 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 13 \mu \\ & \pm 3.5 \mu \\ & \\ & +300 \mathrm{n} \\ & -2.0 \mathrm{n} \\ & \\ & 12 \mu \\ & 2.3 \\ & 150 \\ & 50 \mathrm{p} \end{aligned}$	$\begin{aligned} & \pm\left(0.2+\frac{30}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(2+\frac{400}{\mathrm{G}}\right) \\ & \pm 402 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 2.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & / \mathrm{V} \\ & \hline \mathrm{mo} \end{aligned}$	$\begin{gathered} \pm\left(0.2+\frac{0.5}{\mathrm{G}}\right) \mathrm{mV} \\ \pm\left(2+\frac{10}{\mathrm{G}}\right)\left\| \pm\left(0.5+\frac{10}{\mathrm{G}}\right)\right\| \pm\left(0.25+\frac{10}{\mathrm{G}}\right) \\ \pm 12 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}\left\| \pm 10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right\| \pm 10.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \mathrm{C} \left\lvert\, \begin{gathered} \\ \pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\left\| \pm 0.51 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right\| \pm 0.26 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \pm 20 \mu \mathrm{~V} / \mathrm{V} \\ \pm 3 \mu \mathrm{~V} / \mathrm{mo} \\ \pm 25 \mathrm{nA} \\ \pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ 1 \mu \mathrm{~V} \\ 0.6 \mu \mathrm{~V}(10 \mathrm{~Hz} \text { to } 1 \mathrm{kHz}) \\ 200 \mathrm{pA} \\ 35 \mathrm{pA} \end{gathered}\right.$			$\begin{gathered} \pm\left(0.25+\frac{1.2}{\mathrm{G}}\right) \mathrm{mV} \\ \left. \pm\left(3+\frac{10}{\mathrm{G}}\right) \right\rvert\, \\ \pm\left(1+\frac{10}{\mathrm{G}}\right) \left\lvert\, \pm\left(0.5+\frac{10}{\mathrm{G}}\right)\right. \\ \pm 4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \mid \\ (\mathrm{G}=10) \\ \pm 3 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \mid \\ \pm 2 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \mid \pm 1.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ (\mathrm{G}=10) \\ \pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ (\mathrm{G}=10) \\ \pm 2 \mu \mathrm{~V} / \mathrm{V} \\ \pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mo} \\ \\ \pm 60 \mathrm{nA} \\ \pm 0.75 \mathrm{nA} /{ }^{\mathrm{O}} \mathrm{C} \\ 5 \mu \mathrm{~V} \\ 2 \mu \mathrm{~V} \\ 200 \mathrm{pA} \\ 30 \mathrm{pA} \end{gathered}$			$\begin{gathered} \pm\left(6+\frac{600}{\mathrm{G}}\right) \mathrm{mV} \\ \pm\left(10+\frac{1000}{\mathrm{G}}\right) \\ 1010 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ 11 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm\left(1+\frac{300}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(2+\frac{500}{\mathrm{G}}\right) \\ & \pm 502 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 13 \mu \mathrm{~V} / \mathrm{V} \\ & \pm 3.5 \mu \mathrm{~V} / \mathrm{mo} \\ & 200 \mathrm{nA} \\ & \mid-1.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & 12 \mu \mathrm{~V} \\ & 2.3 \mu \mathrm{~V} \\ & 150 \mathrm{pA} \\ & 50 \mathrm{pA} \end{aligned}$	$\pm\left(1+\frac{300}{\mathrm{G}}\right) \mathrm{mV}$ $\pm\left(2+\frac{500}{\mathrm{G}}\right)$ $502 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C}$ $2.5 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C}$								
$\begin{array}{r} 10 \mathrm{kH} \\ 74 \mathrm{kH} \\ 20 \\ 1.8 \mathrm{~V} / \mathrm{h} \\ 28 \end{array}$	typ typ ec ec Hz	$\begin{aligned} & 200 \mu \mathrm{sec} \\ & 0.3 \mathrm{~V} / \mu \mathrm{sec} \\ & 5 \mathrm{kHz} \end{aligned}$			$\begin{gathered} 400 \mu \mathrm{sec} \\ 0.8 \mathrm{~V} / \mu \mathrm{sec} \\ 10 \mathrm{kHz} \end{gathered}$			$\begin{gathered} 20 \mu \mathrm{sec} \\ 1.8 \mathrm{~V} / \mu \mathrm{sec} \\ 28 \mathrm{kHz} \end{gathered}$										
$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 7 \mathrm{VDC} \text { to } \pm 20 \mathrm{VDC} \\ & \pm 6 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \pm 15 \mathrm{VDC} \\ \pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\ \pm 14 \mathrm{~mA} \\ \hline \end{gathered}$			$\begin{gathered} \pm 15 \mathrm{VDC} \\ \pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\ \pm 8 \mathrm{~mA} \end{gathered}$			$\begin{aligned} & \pm 7 \pm 15 \mathrm{VDC} \\ & \pm \mathrm{VDC} \text { to } \pm 20 \mathrm{VDC} \\ & \pm 6 \mathrm{~mA} \end{aligned}$										
$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$								
(2) H DIP		(12) $\mathrm{A} 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4{ }^{\prime \prime}$			(13) $1.5^{\prime \prime} \times 1.5 " \times 0.4 \prime$			(16) TO-100										
$\$ 15.00$ 9.75	$\begin{array}{r} \$ 23.00 \\ 14.95 \end{array}$	\$90.00(3)	\$125.00(3)	\$155.00(3)	$\begin{array}{r} \$ 32.00 \\ 24.00 \end{array}$	$\begin{array}{r} \$ 49.00 \\ 38.00 \end{array}$	$\begin{array}{r} \$ 66.00 \\ 47.00 \end{array}$	$\begin{array}{r} \$ 12.30 \\ 8.20 \end{array}$	$\begin{array}{r} \$ 20.00 \\ 13.30 \end{array}$	$\begin{array}{r} \$ 32.00 \\ 21.30 \end{array}$								

Specifications at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted. Prices and specifications are subject to change without notice.
(1) $\mathrm{RTI}=$ referred to input, may be referred to output by multiplying by gain, G. (2) May be trimmed to zero. (3) 1 - 9 quantity

Be

HIGH INPUT IMPEDANCE,LOW BIAS CURRENT INSTRUMENTATION AMPLIFIERS

3670-LOW COST FET IC

This FET IC instrumentation series provides maximum bias current of 10 pA and a gain nonlinearity of 0.05%. Exceptional performance, especially when you consider the very low cost. Input impedance is $10^{13} \Omega$ and CMR ranges from 60 dB to 100 dB depending on gain and model.
The excellent performance, small size, low cost, and integrated circuit reliability of the 3670 series make it a natural choice for applications such as thermocouples, strain gages, bridges and other low-level, high-impedance transducers.

$3621-10^{11} \Omega Z_{\text {in }}$

The Model 3621 instrumentation amplifier gives the best performance where signals from high impedance sources must be amplified in the presence of common-mode voltages. It is ideal for use in industrial, biomedical, and geophysical applications with differential transducers such as strain gages and biological probes. And, it also performs well as a recorder preamplifier and in gain switching circuits.

This amplifier has an input stage which uses junction FET's and a "bootstrapped" design to give extremely high input impedance and very low input current. Input current at either input is less than 10 pA and the differential input current is typically less than 1 pA . Thus, the 3621 operates quite satisfactorily with source impedances up to $100 \mathrm{M} \Omega$. Through the use of a monolithic FET input pair and heavy negative feedback, the 3621 has a CMR of 100 dB and a gain nonlinearity of just $\pm 0.02 \%$.
Two package options are available. The standard package is a $1.13^{\prime \prime} \mathrm{x}$ $1.13^{\prime \prime} \times 0.5^{\prime \prime}$ epoxy module suitable for soldering directly on a PC board or for mounting in a type 1200 MC connector. For rack-mounting applications, a shielded, plug-in enclosure is available. The rack-mounting unit and powered rack adapter are described on page 59.

3622-WIDEBAND FET

The Model 3622 is designed specifically for use with wideband and pulse signals and in data acquisition systems with very high throughput rates. Unique properties include wide bandwidth (2 MHz min, at gain of 100) and extremely fast slewing rate ($150 \mathrm{~V} / \mu \mathrm{sec}$) plus fast settling characteristics. The FET input stage eliminates the large input currents normally associated with very fast amplifiers. High frequency CMR of the 3622 is also very good, providing effective rejection of broadband commonmode noise.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	High Impedance, FET Input			Wideband FET		Low Cost FET IC								
	3621			3622		3670								
	J	K	L	J	K	J	K	S						
GAIN Gain Equation Range of Gain Gain Nonlinearity, G=100,max Gain Temp. Coeff., G=100	$G=1$	$1+\frac{200 \mathrm{k} \Omega}{\mathrm{R}}$ 1.01 to 2000 $\pm 0.02 \%$ $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$		$\mathrm{G}=1+$ 1.01 t ± 0. ± 0.00	$\frac{10 \mathrm{k} \Omega}{\mathrm{R}}$ 01000 1% $2 \% /{ }^{\circ} \mathrm{C}$	$\pm 0.1 \% \%^{(1)}$ $\pm 0.0035 \% /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{G}=\frac{100 \mathrm{k} \Omega}{\mathrm{R}} \\ & 1 \text { to } 1000 \\ & \pm 0.05 \%(1) \\ & \pm 0.0035 \% d^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 0.05 \%(1) \\ \pm 0.007 \% /{ }^{\circ} \mathrm{C} \end{gathered}$						
OUTPUT Rated Output, Voltage Current Output Impedance, $\mathrm{DC}, \mathrm{G}=100$		$\pm 10 \mathrm{~V}$ $\pm 10 \mathrm{~mA}$ 0.3Ω		$\begin{array}{r} \pm 10 \\ \pm 2 \\ 0.2 \Omega \end{array}$	$\begin{aligned} & \text { 5V } \\ & \text { omA } \\ & \text { to } 50 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \\ & 0.15 \Omega \end{aligned}$							
INPUT Input Impedance, Differential Common-Mode Input Voltage Range CMR, DC to 60 Hz at $G=10, \min , 1 \mathrm{k} \Omega$ Unbal. at $G=1000,1 \mathrm{k} \Omega$ Unbal.	$\begin{aligned} & 16^{1} \\ & 10^{1} \end{aligned}$ 100	$\begin{gathered} 11 \Omega \\| 5 \mathrm{pF} \\ 13 \Omega \\| 3 \mathrm{pF} \\ \pm 8 \mathrm{~V} \\ 70 \mathrm{~dB} \\ \mathrm{~dB} \text { (Balanced } \end{gathered}$	Source)	$\begin{gathered} 10^{11} \Omega \\| 3 \mathrm{pF} \\ 10^{11} \Omega \\| 3 \mathrm{pF} \\ \pm 8 \mathrm{~V} \end{gathered}$		76 dB 90 dB	$\begin{gathered} 10^{11} \Omega \\| 9 \mathrm{pF} \\ 10^{13} \Omega \\| 7 \mathrm{pF} \\ \pm 8 \mathrm{~V} \\ \\ 84 \mathrm{~dB} \\ 100 \mathrm{~dB} \\ \hline \end{gathered}$	84 dB 100 dB						
OFFSETS AND NOISE Offset Voltage(RT1) ${ }^{(2)}$ @ $25^{\circ} \mathrm{C}$, max (3) vs. Temperature, $\max \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$ (@) $\mathrm{G}=1, \max$ @ $G=1000$, max vs. Supply G $=1000$ vs. Time G = 1000 Bias Current(each input)@25 ${ }^{\circ} \mathrm{C}$,max vs. Temperature, max Noise(RTI) ${ }^{(2)} \mathrm{G}=100$ Voltage, p-p, 0.01 Hz to 10 Hz rms, 10 Hz to 10 kHz Current, p-p, 0.01 Hz to 10 Hz rms, 10 Hz to 10 kHz	$\begin{aligned} & \pm\left(50+\frac{500}{\mathrm{G}}\right) \\ & \pm 550 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\ & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$ dou	$\begin{aligned} & \pm\left(2+\frac{100}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(15+\frac{150}{\mathrm{G}}\right) \\ & \pm 165 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & 20 \mu \mathrm{~V} / \mathrm{V} \\ & 50 \mu \mathrm{~V} / \mathrm{mo} \\ & 10 \mathrm{pA} \\ & 1 \mathrm{bles} /+10^{\circ} \mathrm{C} \\ & 2 \mu \mathrm{~V} \\ & 2 \mu \mathrm{~V} \\ & 0.5 \mathrm{pA} \\ & 1 \mathrm{pA} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(5+\frac{50}{\mathrm{G}}\right) \\ & 55 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\ & 5 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \end{aligned}$	$\begin{array}{r} \pm(2+2 \\ \pm\left(25+\frac{3000}{\mathrm{G}}\right) \\ \pm 3025 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \pm 28 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ 200 \mu \\ 50 \mu \mathrm{~V} \\ 20 \mathrm{p} \\ \text { doubles } \\ 5 \mu \mathrm{I} \\ 2 \mu \mathrm{I} \\ 0.5 \\ 1 \mathrm{p} \end{array}$	$\begin{aligned} & \left.\frac{200}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(10+\frac{3000}{\mathrm{G}}\right) \\ & \pm 3010 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 13 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~V} / \mathrm{V} \\ & / \mathrm{mo} \\ & \mathrm{oA} \\ & \mathrm{~s}+10^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm\left(10+\frac{600}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(50+\frac{1000}{\mathrm{G}}\right) \\ & \pm 1050 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\ & \pm 51 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm\left(5+\frac{300}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(25+\frac{500}{\mathrm{G}}\right) \\ & \pm 525 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 25.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 25 \mu \mathrm{~V} / \mathrm{V} \\ & \pm 11.5 \mu \mathrm{~V} / \mathrm{mo} \\ & -10 \mathrm{pA} \\ & \text { doubles } /+10^{\circ} \mathrm{C} \\ & 15 \mu \mathrm{~V} \\ & 3.3 \mu \mathrm{~V} \\ & 0.25 \mathrm{pA} \\ & 0.15 \mathrm{pA} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm\left(5+\frac{300}{\mathrm{G}}\right) \mathrm{mV} \\ & \pm\left(25+\frac{500}{\mathrm{G}}\right) \\ & \pm 525 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \\ & \pm 25.5 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C} \end{aligned}$						
DYNAMIC RESPONSE at $\mathrm{G}=100$ Small Signal Frequency Response For $\pm 1 \%$ flatness, min For $\pm 3 \mathrm{~dB}$ flatness, min Settling Time to within $\pm 10 \mathrm{mV}$ of Output Final Value Slew Rate Full Power, $\mathrm{G}=10$		$\begin{gathered} 2 \mathrm{kHz} \\ 10 \mathrm{kHz} \\ \\ 100 \mu \mathrm{sec} \\ 0.3 \mathrm{~V} / \mu \mathrm{sec} \\ 5 \mathrm{kHz} \end{gathered}$		$\begin{array}{r} 100 \\ 2 \mathrm{M} \\ 1 \mu \mathrm{~s} \\ 150 \mathrm{~V} \\ 3 \mathrm{~N} \end{array}$	kHz Hz ec / $\mu \mathrm{sec}$ Hz		5 kHz , typ 36 kHz , typ $31 \mu \mathrm{sec}$ $1.8 \mathrm{~V} / \mu \mathrm{sec}$ 28 kHz							
POWER SUPPLY Rated Voltage Voltage Range Quiescent Supply Current, max	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\ & \pm 5 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 12 \mathrm{VDC} \text { to } \pm 18 \mathrm{VDC} \\ & \pm 30 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 7 \mathrm{VDC} \text { to } \pm 20 \mathrm{VDC} \\ & \pm 6 \mathrm{~mA} \end{aligned}$								
TEMPERATURE RANGE Specification Operating	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ a						
PACKAGE DRAWING (see pgs.85-87)	(14) A $1.13^{\prime \prime} \times 1.13^{\prime \prime} \times 0.5 \prime \prime$			(12) $\mathrm{C} 2 " \mathrm{x} 2$ "x 0.4 "		(16) TO-100								
PRICE (small qty)	\$39.00	\$49.00	\$65.00	\$91.00	\$114.00	\$22.00	\$28.00	\$40.00						

(1) At frequencies below 10 Hz linearity is a function of load current and gain. Linearity given is for $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$. See Product Data Sheet for details.
(2) $\mathrm{RTI}=$ referred to input. May be referred to output by multiplying by gain G .
(3) May be trimmed to zero.

Prices and specifications are subject to change without notice.

- SIMPLE TO INTERFACE
 - LOW COST PER CHANNEL
 - IMPROVED DYNAMIC RANGE

These programmable gain amplifiers are precision components designed for use in fully automated data acquisition systems. They may be operated under direct control of a digital computer or they may be controlled by auto-ranging techniques. In either case, the wide range of programmable gains extends the dynamic range of the system without increasing the resolution and accuracy required of A / D converters in the system. The result is lower total cost.

Models 3600,3601 , and 3602 are the first programmable gain amplifiers to be packaged in modular form suitable for PC board mounting. The small size of the modules, and their low profile, permit their integration into densely packaged systems.
Digital control signals required for gain selection are compatible with TTL logic levels.

DIFFERENTIAL INPUT- 3600 and 3601
- DIFFERENTIAL INPUT - $\mathbf{1 0 0} \mathrm{dB}$ CMR
- BINARY OR BCD PROGRAMMING
- LOW DRIFT - $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW NOISE - $1 \mu \mathrm{~V}$, p-p

These differential input amplifiers are the best choice for conditioning of low-level signals. Common-mode noise is effectively rejected by the differential input and an active guard-driving feature. A low-noise monolithic input stage with excellent DC stability provides the ability to amplify millivolt level signals without introducing significant drift and noise errors. Precision resistor networks and heavy negative feedback yield gain accuracy of 0.1% and gain linearity of 0.01% without external adjustment.

SINGLE-ENDED INPUT-3602

- HIGH INPUT IMPEDANCE - $10^{11} \Omega$
- LOW DRIFT FET INPUT - $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- FAST SETTLING - 0.01\% in $50 \mu \mathrm{sec}$

Models 3600 and 3601 have two stages - a differential first stage followed by a single-ended second stage. Gain switching takes place in both stages. However, because both stages have low drift, the output voltage drift is very low for all gains. The input stage is switched in gain multiples of 1-16-256 for Model 3600, and 1-10-100 for Model 3601. The second stage is switched in gain multiples of 0 through 15 steps of 1 (4-bit straight binary). Thus there are 46 possible gains for each model, ranging from 0 to 3840 for Model 3600 and from 0 to 1500 for Model 3601. A functional diagram is shown on page 86 .

Model 3602 is a high input impedance, buffer amplifier whose gain is programmable by digital signals in gain steps of 1,10 , 100 , and 1000. It utilizes precision resistor networks; solidstate switches; and low-drift, high-gain FET operational amplifiers to achieve excellent gain accuracy, linearity, and low drift characteristics. The FET input stage has extremely high input impedance ($10^{11} \Omega \| 3 \mathrm{pF}$) and very low input leakage current (10 pA). Input offset may be externally trimmed to zero as desired. A functional diagram is shown on page 85 .

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	3602J	3602K
GAIN Gain Steps Gain Accuracy at $25^{\circ} \mathrm{C}$, max vs. Temperature Nonlinearity, max Up to $\pm 5 \mathrm{~V}$ Input Up to $\pm \mathbf{1 0 V}$ Input	$\begin{gathered} 1,10,100, \text { and } 1000 \\ \pm 0.1 \% \\ \pm 0.001 \% /{ }^{\circ} \mathrm{C} \\ \\ \pm 0.02 \% \\ \pm 0.05 \% \end{gathered}$	
OUTPUT Rated Output Output Impedance at Maximum Gain at Minimum Gain	$\begin{gathered} 2 \Omega \\ 0.05 \Omega \end{gathered}$	
INPUT Input Impedance Input Voltage Range	$\begin{gathered} 10^{11} \Omega \\ \pm 10 \mathrm{~V} \end{gathered}$	
OFFSETS AND NOISE Offset Voltage (referred to input) at $25^{\circ} \mathrm{C}, \max$ vs. Temperature, max vs. ± 15 V Power Supply Input Bias Current, max Input Noise (RTI) at max gain 0.01 Hz to 10 Hz 10 Hz to 1 kHz	$\begin{gathered} \pm 20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \mid \\ \pm 150 \mu \mathrm{~V} / \mathrm{V} \\ 10 \mathrm{pA} \\ 3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ 2 \mu \mathrm{p}-\mathrm{p} \\ 2 \mu \mathrm{Vms} \end{gathered}$	
DYNAMIC RESPONSE Small Signal Response ($\pm 3 \mathrm{~dB}$) at Maximum Gain at Minimum Gain Slew Rate Settling Time to Within $\pm 1 \mathrm{mV}$ of Output Final Value at Maximum Gain at Minimum Gain	$\begin{aligned} & 5 \mathrm{kHz} \\ & 2 \mathrm{MHz} \\ & 16 \mathrm{~V} / \mu \mathrm{sec} \end{aligned}$	
GAIN SWITCHING (TTL Logic Levels) Gain Control Logic Inputs Logical 1 Logical 0 Loading Settling Time to Within $\pm 1 \mathrm{mV}$ of Output Final Value	$\begin{aligned} & +2 \mathrm{~V} \text { min } \\ + & 0.8 \mathrm{~V} \text { max } \end{aligned}$ 1 TTL Load $50 \mu \mathrm{sec} @ \min$ gain $230 \mu \mathrm{sec}$ @ max gain	
POWER Analog Supply, Rated Value Supply Range Supply Drain at Quiescent at Rated Output Logic Supply, Rated Value Supply Range Supply Drain	$\begin{gathered} \pm 15 \mathrm{VDC} \\ \pm 14 \mathrm{VDC} \text { to } \pm 16 \mathrm{VDC} \\ \\ +16 \mathrm{~mA},-7 \mathrm{~mA} \\ +36 \mathrm{~mA},-27 \mathrm{~mA} \\ +5 \mathrm{VDC} \\ +4.8 \mathrm{VDC} \text { to }+5.2 \mathrm{VDC} \\ 24 \mathrm{~mA} \end{gathered}$	
TEMPERATURE RANGE Specification Storage	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{aligned}$	
PACKAGE DRAWING (See pages 85, 87)	(12) B, 17	x 2 "x 0.4 "
PRICE $(1-9)$	\$120.00	\$145.00

[^7]
宣 VARIABLE GAIN DIFFERENTIAL AMPLIFIERS

3640

LOW DRIFT,LOW NOISE

The 3640 offers excellent performance at a surprisingly low cost. The direct-coupled, differential input stage provides resolution of microvolt signals through the use of a low noise, monolithic amplifier. Low DC input drift is assured by proprietary input stage balancing techniques. Linearity of 0.01% and gain accuracy of 0.1% are achieved through the use of heavy negative feedback and precision, high stability resistors.

Front panel gain controls allow selection of calibrated first stage gains of $1,3,10,30,100,300$, and 1000 , and second stage gains of 1 to 4 . Thus the overall gain can be varied from 1 to 4000 . Common-mode rejection may be trimmed to correct for source impedance unbalance. Output voltage may be adjusted for up to $\pm 1 \mathrm{~V}$ output offset.

An active guard driver output is available for driving the multiplexer shield in two wire, multi-channel systems.

Provisions are incorporated for both bandwidth reduction and addition of a $\pm 100 \mathrm{~mA}$ power booster.

Specifications ty pical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	3640
GAIN Range of DC Gain Gain Steps Gain Vernier Gain Accuracy (switched steps) Nonlinearity, max Temp. Coefficient, Gain $=100$	$\begin{gathered} 1-4000 \\ 1,3,10,30,100,300,1000 \\ 1-4 \\ \pm 0.1 \% \\ \pm 0.01 \% \\ \pm \mathbf{0 . 0 0 1} \% /^{\circ} \mathrm{C} \end{gathered}$
OUTPUT Rated Output Voltage Output Current Output Impedance Output Current Limits Typical Maximum	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm 10 \mathrm{~mA} \\ & \pm 0.1 \Omega \\ & \pm 25 \mathrm{~mA} \\ & \pm 40 \mathrm{~mA} \end{aligned}$
INPUT RATINGS Input Impedance, Differential, min Common-Mode, min Input Voltage Range CMR, DC to 100 Hz , Gain $=100$, min	$300 \mathrm{M} \Omega$ $500 \mathrm{M} \Omega$ $\pm 10 \mathrm{~V}$ 100 dB
```OFFSETS AND NOISE Input Bias Current @ \(25^{\circ} \mathrm{C}\), max vs. Temperature Output Offset Voltage, Gain \(=1000\) vs. Temperature, max vs. Supply vs. Time Output Offset Voltage, Gain \(=1.0\) vs. Temperature vs. Supply vs. Time Output Voltage Noise ( 1 Hz to 1 kHz ) Gain \(=1000\) Gain \(=1.0\)```	$\begin{aligned} & \quad \pm 25 \mathrm{nA} \\ & \pm 0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C} \\ & \\ & \pm 1 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \pm 100 \mathrm{mV} / \mathrm{V} \\ & \pm 3 \mathrm{mV} / \mathrm{mo} \\ & \\ & \pm 150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \pm 300 \mu \mathrm{~V} / \mathrm{V} \\ & \pm 50 \mu \mathrm{~V} / \mathrm{mo} \\ & \\ & 1 \mathrm{mV}, \mathrm{rms} \\ & 10 \mu \mathrm{~V}, \mathrm{rms} \end{aligned}$
DYNAMIC RESPONSE   Small Signal Bandwidth, Gain $=100$   1\% Absolute Accuracy   $\pm 3 \mathrm{~dB}$ Accuracy   Output Slew Rate	$\begin{gathered} 1.5 \mathrm{kHz} \\ 15 \mathrm{kHz} \\ 0.3 \mathrm{~V} / \mu \mathrm{sec} \end{gathered}$
POWER SUPPLY REQUIREMENTS   Rated Supply Voltage Supply Current Drain Quiescent, max at Rated Output, max	$\begin{aligned} & \pm 15 \mathrm{VDC} \\ & \pm 25 \mathrm{~mA} \\ & \pm 35 \mathrm{~mA} \end{aligned}$
TEMPERATURE RANGE   Rated Specifications Operating	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$
PACKAGE DRAWING (See page 87)	(17) Rack Mounting Pkg.
PRICE (1-9)	\$325.00

Prices and specifications are subject to change without notice.

## ENCLOSURES FOR RACK MOUNTING AMPLIFIERS


#### Abstract

Burr-Brown Rack Adapters provide efficient mounting space and well-regulated DC power for up to 12 amplifiers. The low cost of these enclosures, combined with the uniquely low-priced, high performance instrumentation amplifiers described in this section of the catalog, result in optimum per channel cost. All of the enclosures will accept any of the rack-mounting amplifiers described, including the /16 and $/ 16$ A options of the modular amplifiers. The connector mounting plate at the rear of these enclosures will accept either the 10 pin connector of $/ 16$ modules or the 30 pin connector of / 16 A modules. Thus, both / 16 and /16A modules can be combined in a single enclosure. These enclosures provide extremely efficient use of rack space. Front panel dimensions are only 3.5 " $x 19.00$ " and only 9.0 " of rack depth is required.




## 506/I6A

The 506/16A provides mounting space for 12 plug-in modules of the / 16 or /16A type. The internal DC power supply of the 506/16A provides +15 VDC and -15 VDC rated at 1.0 ampere (each side). Regulation of this supply is $\pm 0.1 \%$, line and load. Input power for the 506/16A can be either 105 to 125 VAC or 210 to 250 VAC with a frequency range of $47-420 \mathrm{~Hz}$. PRICE $\$ 429.00$

## 547/16A

The $547 / 16 \mathrm{~A}$ is similar to the $506 / 16 \mathrm{~A}$, but has a +5 VDC, 2 ampere power supply, in addition to the $\pm 15 \mathrm{~V}$, $\pm 1.0$ ampere analog supply. The +5 V supply is desirable for systems using programmable gain amplifiers, A/D converters, D/A converters, and other circuitry involving digital logic. The 547/16A provides mounting space for 10 plug-in modules. PRICE $\$ 525.00$

## I600A/R

The $1600 \mathrm{~A} / \mathrm{R}$ is an unpowered Rack Adapter designed for use where DC power is already available, or where adequate power for additional modules is available from a $506 / 16$ A or $547 / 16$ A. Space is provided for 16 of the plug-in modules. PRICE $\$ 149.00$

## CONNECTORS...

## 30 PIN CONNECTOR - 1601 MC

Mates with all $/ 16 \mathrm{~A}$ modules. This mating connector is furnished with each/16A module, and mounts in models $506 / 16 \mathrm{~A}, 547 / 16 \mathrm{~A}$, and $1600 \mathrm{~A} / \mathrm{R}$. Price (additional connectors) $\$ 6.00$

## 10 PIN CONNECTOR - 1600 MC

Mates with all / 16 modules. This mating connector is furnished with each/ 16 module, and mounts in models $506 / 16 \mathrm{~A}, 547 / 16 \mathrm{~A}$, and $1600 \mathrm{~A} /$ R. Price (additional connectors) $\$ 6.00$

Blank front panels (one module width) for rack adapters to provide uniform appearance of the rack. Price $\$ 4.00$


## MULTIPLIER/DIVIDERS

The Burr-Brown family of four-quadrant multipliers is one of the broadest available anywhere. These low-priced, laser-trimmed, integrated circuits cover an accuracy range from $2 \%$ to $0.1 \%$. The product line spans temperature ranges from commercial to full military, allowing the user to select a particular performance range without paying for specifications he doesn't need. All models are self-contained except for external trimming, and in most cases such trimming is unnecessary. These devices can be used as modulators, voltage-controlled gain elements, dividers, square rooters, and to perform other analog computations. All give you the reliability you expect from Burr-Brown.

## HIGH ACCURACY DUAL-in-LINE 4204 AND NEW 4206

The laser-trimmed 4204 and 4206 four-quadrant analog IC multipliers are the first IC's to offer $0.25 \%$ accuracy without the use of external components. These devices use the $\log /$ antilog technique to yield high accuracy, plus low noise and moderate bandwidth. Accuracy specifications are guaranteed without external adjustments and are verified at Burr-Brown using an automatic tester which scans the X-Y plane. Maximum error at any point in the plane is required to be less than the specified values.

## DIFFERENTIAL-INPUT LASER-TRIMMED-4205

The first IC multiplier to eliminate the need for all external components-the 4205 takes advantage of Burr-Brown's expertise in monolithic circuitry, thin-film technology, and advanced laser-trimming techniques. The 4205 meets its guaranteed performance specifications with no external components to trimming. The result is greater system reliability, space savings, and lower installed cost-the three most significant factors in any design.

Hermetically sealed in a TO-100 package, this monolithic unit contains its own zener-regulated references, and as a result is much less sensitive to supply voltage variations than were earlier IC multipliers. The $25 \mathrm{~V} / \mu \mathrm{sec}$ slew rate and the 1 MHz bandwidth are key performance factors for applications where delay phase shift must be minimized. Harmonic distortion remains low for frequencies well above 100 kHz , an important asset in modulation applications.

## NEW! HIGH ACCURACY DEDICATED ANALOG DIVIDER 4291

The 4291 hybrid IC divider offers high accuracy over a 100 to 1 dynamic range with no external components required, and the specified accuracy can be achieved with denominator voltages as low as 100 mV .
The unique circuit approach produces a two-quadrant divider with performance that exceeds that of conventional multiplier/dividers. With the addition of several external resistors to null the offset and gain errors, an accuracy of $0.1 \%$ can be achieved with denominator voltages down to 10 mV .
The Burr-Brown 4291 is the lowest-priced dedicated analog divider available offering such high performance. Manufacturers of industrial control system and analytical instruments will find the 4291 to be a low-cost, accurate solution to many of their signal processing problems.

## LOW COST,IC TYPE 4201 J

The 4201 J is a low cost version of the 4203, and is intended for use in applications where accuracy is somewhat relaxed. Although the 4201 J is capable of $2 \%$ accuracy by externally trimming four potentiometers, it also can be operated with reduced accuracy with a single gain trim. Even this trim may be eliminated if a scaling adjustment is available elsewhere in the user's system.

## ANALOG MULTIPLIER SELECTION GUIDE

Accuracy at $25^{\circ} \mathrm{C}$	$0^{0} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
0.25\% max	4206K	4204K	4204S*
no trimming required 0.1\% typ.   ext. trimmed	$(1-24)$ $\$ 46.00$   $(25-99)$ 43.00   $(100-249)$ 34.00	$\begin{array}{r} \$ 64.00 \\ 61.00 \\ 47.00 \end{array}$	$\begin{array}{r} \$ 72.00 \\ 69.00 \\ 54.00 \end{array}$
$0.5 \%$ max no trimming required 0.2\% typ.   ext. trimmed	$\left(1 \frac{4206 J}{-24)}\right.$ $\$ 32.00$   $(25-99)$ 30.00   $(100-249)$ 24.00	4204 J $\$ 49.00$ 45.00 37.00	(see 4204S)
1\% max no trimming required	$(1-2205 K$    $(25-99)$ $\$ 36.00$   $(100-249)$ 24.00	(see 4205S)	$\begin{array}{r} \hline 4205 \mathrm{~S} \\ \hline \$ 48.00 \\ 39.00 \\ 31.50 \\ \hline \end{array}$
2\% max no trimming required	$(1-2205 \mathrm{~J}$    $(25-99)$ $\$ 26.00$   $(100-249)$ 16.00	(selected 4205J's available)	(selected 4205J's available)

## IC MULTIPLIER/DIVIDERS



Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.


[^8]

## IC MULTIPLIER/DIVIDERS

## MIL-STD-883 SCREENING <br> See Pages 106-107

MODEL	4204J	4204K	4204S	4206J	4206K
TOTAL ERROR ${ }^{(1)}$ @ $+25^{\circ} \mathrm{C}$   No. Ext. Trim   External Trim vs Temperature vs Supply	$\begin{aligned} & \pm 0.5 \% \text { max }(2) \\ & \pm 0.2 \% \\ & \pm 0.01 \% /{ }^{\circ} \mathrm{C} \\ & \pm 0.02 \% / \% \end{aligned}$	$\begin{aligned} & \pm 0.25 \%, \max (2) \\ & \pm 0.1 \% \\ & \pm 0.01 \% /{ }^{\circ} \mathrm{C} \\ & \pm 0.02 \% / \% \end{aligned}$	$\begin{aligned} & \pm 0.25 \%, \max (2) \\ & \pm 0.1 \% \\ & \pm 0.02 \% /^{\circ} \mathrm{C} \max \\ & \pm 0.02 \% / \% \end{aligned}$	$\begin{aligned} & \pm 0.5 \%, \max (2) \\ & \pm 0.2 \% \\ & \pm 0.01 \% \\ & \pm 0.02 \% \end{aligned}$	$\begin{aligned} & \pm 0.25 \%, \text { max } \\ & \quad \pm 0.1 \% \\ & /{ }^{\circ} \mathrm{C} \\ & 1 \% \end{aligned}$
OUTPUT OFFSET   @ $+25^{\circ} \mathrm{C}(\mathrm{X}=\mathrm{Y}=0)$	$\pm 15 \mathrm{mV}$	$\pm 5 \mathrm{mV}$	$\pm 5 \mathrm{mV}$	$\pm 15 \mathrm{mV}$	$\pm 15 \mathrm{mV}$
NONLINEARITY   $X(X=20 V \mathrm{p}-\mathrm{p}, \mathrm{Y}=+10 \mathrm{VDC})$   $\mathrm{Y}(\mathrm{Y}=20 \mathrm{~V}$ p-p, $\mathrm{X}=+10 \mathrm{VDC})$		$\pm \begin{aligned} & \pm 0.05 \% \\ & \pm 0.05 \%\end{aligned}$		0.05 0.05	
FEEDTHROUGH @ 50 Hz $\begin{aligned} & \mathrm{X}=0, \mathrm{Y}=20 \mathrm{~V} \text { p-p (no ext. trim) } \\ & \mathrm{Y}=0, \mathrm{X}=20 \mathrm{~V} \text { p-p (no ext. trim) } \end{aligned}$		10 mV p-p 10 mV p-p		10 m 10 m	V p-p V p-p
SLEW RATE	$1 \mathrm{~V} / \mu \mathrm{sec}$			$1 \mathrm{~V} / \mu \mathrm{sec}$	
BANDWIDTH   Small Signal, -3 dB 1\% Amplitude Error 1\% Vector Error	$\begin{gathered} 250 \mathrm{kHz} \\ 33 \mathrm{kHz} \\ 2.5 \mathrm{kHz} \end{gathered}$			$\begin{gathered} 250 \mathrm{kHz} \\ 33 \mathrm{kHz} \\ 2.5 \mathrm{kHz} \end{gathered}$	
OUTPUT NOISE, $10 \mathrm{~Hz}-10 \mathrm{kHz}$	$300 \mu \mathrm{~V}$ RMS			$300 \mu \mathrm{~V}$ RMS	
INPUT VOLTAGE, Rated Abs. max	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & \pm \text { Supply } \end{aligned}$			$\begin{gathered} \pm 10 \mathrm{~V} \\ \pm \text { Supply } \end{gathered}$	
OUTPUT RATING	$\pm 10 \mathrm{~V} @ \pm 5 \mathrm{~mA}$			$\pm 10 \mathrm{~V} @ \pm 5 \mathrm{~mA}$	
POWER REQUIREMENTS, Rated   Operating Range   Quiescent Current		$\begin{gathered} \pm 15 \mathrm{VDC} \\ \pm 14 \text { to } \pm 16 \mathrm{VDC} \\ +15 \mathrm{~mA},-8.5 \mathrm{~mA} \end{gathered}$		$\begin{array}{r} \quad \pm 15 \\ \pm 14 \text { to } \\ +15 \mathrm{~mA} \end{array}$	VDC   16 VDC $,-8.5 \mathrm{~mA}$
TEMPERATURE RANGE   Specification   Storage	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	
PACKAGE DRAWING (see pgs. 82, 87)	(19) C 0.86" x		$5^{\prime \prime} \times 0.22^{\prime \prime}$	(2) $\mathrm{C} 0.80^{\prime \prime} \times 0.5^{\prime \prime} \times 0.25^{\prime \prime}$	
$\begin{array}{r} \text { PRICE }(1-24) \\ (25-99) \\ (100-249) \end{array}$	$\$ 49.00$ 45.00 37.00	$\$ 64.00$ 61.00   47.00	$\$ 72.00$ 69.00 54.00	$\$ 32.00$ 30.00   24.00	$\$ 46.00$   43.00   34.00

(1) Total Error includes offset, nonlinearity, and feedthrough.
(2) With output loading of $10 \mathrm{k} \Omega$ or less.

Prices and specifications are subject to change without notice.

## TWO-QUADRANT ANALOG DIVIDER

- EASY TO USE -

Optimized for analog division No external components required

- HIGH ACCURACY
$0.25 \%$ max for $D \geqslant 100 \mathrm{mV}$
- WIDE DYNAMIC RANGE
$10 \mathrm{mV} \leqslant \mathrm{D} \leqslant 10 \mathrm{~V}$
- SMALL SIZE

14 - Pin dual-in-line package

The 4291 uses a unique Burr-Brown circuit which has been optimized for the demanding task of analog division. Although any of the analog multipliers from the preceeding pages can be used as dividers, the resulting output is accurate only over a limited range of denominator voltage. The same is true of competitive multipliers. For really accurate division over a wide dynamic range of the denominator, the 4291 provides far superior performance. For instance, the 4291 K is accurate to $\pm 0.25 \%$ without external trimming for a 100: 1 range of denominator voltage. If external trimming is employed, the denominator range can be extended to 1000 : $1(10 \mathrm{mV}$ to 10 V$)$ and the total accuracy improved to $\pm 0.1 \%$. Thermal drift is sufficiently low to maintain good accuracy over a wide temperature range.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

NEW!


[^9]
## MULTIFUNCTION CONVERTERS

## 4301 AND NEW. . . 4302

$$
E_{0}=v_{y}\left(\frac{v_{z}}{v_{x}}\right)^{m}
$$

## - REDUCES YOUR INVENTORY -

 Performs sine, cosine, $\tan ^{-1}$, as well as multiply, divide, exponentiation, etc.- IMPROVES SYSTEM ACCURACY $\pm 0.03 \%$ to $\pm 0.25 \%$ Accuracy
- ECONOMICAL

The Hybrid Multifunction Converters from Burr-Brown can make just about any analog computation you might need. Add a few external resistors and these tiny 14 pin dual-in-line units can multiply, divide, square, square root or square a ratio. Add a few inexpensive active and passive devices, and they can perform true rms, vector sums, sine, cosine, or arctangent conversion functions. Highly accurate in all configurations, they are low in cost, and particularly useful for rapid realtime computations or signal processing. And, if you want to linearize a function by raising a voltage or a voltage ratio to an arbitrary power, they will do that too!

The 4301 is hermetically sealed and shielded in a metal package, and the 4302 commercial version comes in our new hybripak plastic package. Both units are fully specified over a temperature range from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are pin-for-pin compatible.

FUNCTIONS	ACCURACY
MULTIPLY	$\pm 0.25 \%$
DIVIDE	$\pm 0.25 \%$
SQUARE	$\pm 0.03 \%$
SQUARE ROOT	$\pm 0.07 \%$
EXPONENTIATE	$\pm 0.15 \%(\mathrm{~m}=5)$
ROOTS	$\pm 0.2 \%(\mathrm{~m}=0.2)$
SINE $\theta$	$\pm 0.5 \%$
COSINE $\theta$	$\pm 0.8 \%$
ARCTAN $\left(\frac{\mathbf{Y}}{\mathbf{X}}\right)$	$\pm 0.6 \%$
$\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}$	$\pm 0.07 \%$

Typical accuracies expressed as a \% of output full scale (+10 VDC) at $25^{\circ} \mathrm{C}$.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	4301 mu	4302
TRANSFER FUNCTION	$\mathrm{E}_{\mathrm{o}}=\mathrm{V}_{\mathrm{Y}}\left(\frac{\mathrm{V}}{}\right.$	
RATED OUTPUT   Voltage   Current	$\begin{gathered} +10.0 \\ 5 \mathrm{~m} \end{gathered}$	
INPUT   Signal Range   Absolute Maximum   Impedance ( $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ )	$\begin{aligned} & 0 \leqslant\left(V_{X}, V_{Y}, V\right. \\ & \left(V_{X}, V_{Y}, V_{Z}\right) \\ & 100 \mathrm{k} \Omega / 90 \mathrm{k} \Omega / \end{aligned}$	$\begin{aligned} & Z) \leqslant+10 \mathrm{~V} \\ & \pm \text { Supply } \\ & 100 \mathrm{k} \Omega \end{aligned}$
EXPONENT RANGE   Roots $(0.2 \leqslant m<1)$   Powers $(1<\mathrm{m} \leqslant 5)$ $(\mathrm{m}=1)$	$\begin{aligned} & \mathrm{m}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\ & \mathrm{~m}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{2}} \\ & \mathrm{R}_{1}=0 \Omega, \mathrm{R}_{2} \end{aligned}$	Refer to Functional Diagram   t used
POWER REQUIREMENTS   Rated Supply   Range   Quiescent Current	$\begin{array}{r}  \pm 15 \mathrm{~V} \\ \pm 12 \text { to } \pm \\ \pm 10 \mathrm{~m} \end{array}$	DC   18 VDC   A
TEMPERATURE RANGE   Operating   Storage	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { tc } \\ & -25^{\circ} \mathrm{C} \text { tc } \end{aligned}$	$\begin{aligned} & +85^{\circ} \mathrm{C} \\ & +85^{\circ} \mathrm{C} \end{aligned}$
PACKAGE DRAWING (See pages 82, 87)	$\frac{19) \mathrm{A}}{0.86^{\prime \prime} \times 0.50^{\prime \prime} \times 0.22^{\prime \prime}}$	$0.8^{\prime \prime} \times 0.5^{\prime \prime} \times 0.25^{\prime \prime}$
PRICE $\begin{gathered} (1-24) \\ (25-99) \\ (100-249) \end{gathered}$	$\begin{array}{r} \$ 69.00 \\ 59.00 \\ 48.00 \end{array}$	$\begin{array}{r} \$ 34.00 \\ 28.00 \\ 23.50 \end{array}$



Shown below are several examples which illustrate the versatility of Burr-Brown's Multifunction Converters:


For more applications, including cosine and arctangent generation, vector sums, squaring, and square-rooting circuits, request PDS-307 (4301) or PDS-326 (4302) and application note AN-70.

## COMPUTING TRUE RMS-to-DC CONVERTERS

## 4340 AND 434I

- LOW COST
- HIGH ACCURACY: $\pm 0.2 \% \pm 2 \mathrm{mV}$
- HIGH RELIABILITY: HYBRID CONSTRUCTION
- SMALL SIZE: 14-PIN DUAL-INLINE PACKAGE

The Burr-Brown computing RMS-to-DC Converters feature low cost without sacrificing performance. They compute a DC voltage proportional to the true RMS value of input signals which may be complex wave forms, DC levels, or a combination of both.
The inputs and outputs are fully protected against overvoltages and short circuits. Provisions for the external adjustment of gain, offset voltage, DCreversal error, and frequency response make the 4340 and 4341 versatile enough to fill the majority of your applications.
The 4340 is factory laser-trimmed for maximum ease of use, and requires no external trimming. The 4341 utilizes external trimming for the lowest possible cost.

(1) Both accuracy specifications for 4341 require unit to be externally trimmed.


## THERMAL TRUE RMS-to-DC CONVERTERS

## - INCREASE SYSTEM ACCURACY $\pm 0.05 \%$ Accuracy to 100 kHz <br> - INCREASE SYSTEM BANDWIDTH $\pm 2 \%$ Accuracy at 10 MHz <br> - MEASURE HIGH CREST FACTOR SIGNALS 100:1 max crest factor

The 4130 is a modular True RMS-to-DC Converter utilizing thermal techniques to produce high conversion accuracies over a wide range of frequencies and for a variety of waveforms. The heart of the 4130 is a unique thermal converter unit and circuit design, patented and manufactured by Burr-Brown, using hybrid and monolithic technologies.
Thermal conversion techniques are used to produce highly accurate, wideband RMS voltmeters by several instrument manufacturers. Burr-Brown is the first manufacturer, however, to produce such True RMS conversion capabilities in a compact module suitable for incorporation into universal and dedicated measurement applications.
The 4130 allows for the amplification and scaling of the input signal by the addition of an external operational amplifier chosen by the user based upon his particular conversion need. Also, the 4130 may be trimmed in order to optimize accuracy, output voltage offset, and low frequency response.
Competitive modular RMS-to-DC converters generally utilize a computing technique to produce the DC equivalent of an RMS input signal. This technique does not provide the accuracy and bandwidth capabilities of the thermal conversion method.
Additionally, the 4130 has important advantages over other thermal RMS converters ultilized in instrumentation applications. One such advantage is the low DC-reversal error of the thermal sensor which allows for accurate DC coupled measurements.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted. Specifications assume an ideal operational amplifier is used unless otherwise noted. User must supply operational amplifier.

*Same as 4130 J
(1) With external adjustment over the specified input voltage range. Full Scale is 2.0 V RMS.
(2) Settling time is the total time from the application of the input step until the output is continuously within the specified accuracy error band.
(3) Model 4130 less operational amplifier.

## LOG AMPLIFIER

## NEW! 4127

## ACCEPTS INPUTS OF EITHER POLARITY

Packaged in a ceramic, dual-in-line package (double wide) the 4127 is the first hybrid logarithmic amplifier that accepts input signals of either polarity from current or voltage sources. A special purpose monolithic chip, developed specifically for logarithmic conversions, functions accurately for up to six decades of input current and four decades of input voltage. In addition, a newly-developed current inverter and a precise internal reference allow pinprogramming of the 4127 as a logarithmic, log ratio, or antilog amplifier. The table below shows the list of transfer functions that the 4127 can generate.
To further increase its versatility (and reduce your system cost) the 4127 has an uncommitted operational amplifier in its package that can be used as a buffer, inverter, filter or gain element.

The 4127 is available with initial accuracies (log conformity) of $0.5 \%$ and $1.0 \%$, and operates over an ambient temperature range of $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
With its versatility and high performance, the 4127 has many applications in signal compression, transducer linearization, and phototube buffering. Manufacturers of medical equipment, analytical instruments, and process control instrumentation will find the 4127 a low-cost solution to many signal processing problems.
Availability: February 1976
Price: Under \$30 (small quantities)
PIN-PROGRAMMABLE FUNCTIONS

$$
\begin{array}{ll}
E_{0}=A \log \mid \pm 11 & E_{0}=A \log \left|\frac{1}{ \pm E_{2}}\right| \\
E_{0}=A \log \left| \pm E_{1}\right| & E_{0}=A \log \left|\frac{ \pm 1}{ \pm E_{2}}\right| \\
E_{0}=A \log \left|\frac{ \pm 1}{ \pm 1}\right| & E_{0}=A \log \left|\frac{ \pm E_{1}}{ \pm 1_{2}}\right|
\end{array}
$$



## BLOCK DIAGRAM



Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.


* Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.


## COMPARATORS

In their simplest form, comparators are used to provide a two-state logic output that indicates whether an analog voltage is greater than or less than another analog voltage. Parameters that vary considerably with circuit complexity are sensitivity, hysteresis, stability of trip point with variations in temperature and power supply voltages, input voltage range, and switching speed. Burr-Brown comparators are fully specified and can be used in your circuit with a minimum of design time.


## 4082FAST SETTLING

The 4082/03 combines a low cost differential input comparator with an open collector transistor output stage capable of sinking 100 mA . With transient protection of 400 mA , this unit is an excellent choice to drive lamps, relays, and other devices with high transient requirements. In addition, the open collector output will accept up to +40 VDC making this device compatible with MOS circuitry and high noise immunity logic as well as DTL and TTL devices.

## 4II5- <br> WINDOW-DUAL LIMIT

Model $4115 / 04$ is a hybrid IC window comparator in a double width DIP. The unit has three inputs; one for a voltage that sets the upper limits, another for a voltage that sets the lower limits, and the third for a signal input. There are three mutually exclusive outputs; $\mathrm{HIGH}, \mathrm{GO}$, and LOW. When an output is ON it will sink up to 200 mA of current. This input diode protected device is designed to work with input voltages of up to $\pm 10 \mathrm{~V}$, and will not be harmed by voltages to $\pm 15 \mathrm{~V}$.

The unit's three open collector outputs indicate that the input signal voltage is above, below or in the window. They will drive a variety of loads including lamps, relays, MOS circuitry and high noise immunity logic as well as DTL and TTL devices.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	4082/03   FAST SETTLING	4115/04   WINDOW (DUAL LIMIT)	UNITS
INPUT   Voltage Range (All Inputs)   Maximum Safe Input   Impedance, min	$\begin{aligned} & \pm 10 \\ & \pm 15 \\ & 300 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 15 \\ & 6 \end{aligned}$	Volts   Volts   k $\Omega$
TRANSFER CHARACTERISTICS   Accuracy   Sensitivity, min   Voltage Offset, max (Referred to input)   vs Power Supply   vs Temperature, $\max \left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \pm 0.1 \\ & \pm 10 \\ & \pm 50 \\ & \pm 150 \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 2 \\ & \pm 50 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mu \mathrm{~V} / \mathrm{V} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
SWITCHING SPEED   20 mV Step Input For 30 mV Overdrive	$\begin{aligned} & 7 \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { N/A } \\ & 300 \end{aligned}$	$\mu$ sec   $\mu$ sec
OUTPUT   Load Voltage Supply   Load Current   Steady State   Transient (1 second max )   Impedance to common   (All outputs)   OFF State   ON State	$\begin{aligned} & 0 \text { to }+30 \\ & 100 \\ & 400 \\ & \\ & 1 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \text { to }+30 \\ & 200 \\ & 400 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Volts } \\ & \mathrm{mA} \\ & \mathrm{~mA} \\ & \\ & \mathrm{M} \Omega \\ & \Omega \end{aligned}$
POWER SUPPLY REQUIREMENTS   Rated Supply Voltages   Supply Range   Supply Drain, max	$\begin{aligned} & \pm 15 \\ & -14 \text { to }+16 \\ & \pm 12 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & -12 \text { to }+18 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \text { VDC } \\ & \text { VDC } \\ & \mathrm{mA} \end{aligned}$
TEMPERATURE RANGE   Rated Specifications Operating	$\begin{aligned} & -25 \text { to }+85 \\ & -40 \text { to }+85 \end{aligned}$	$\begin{aligned} & -25 \text { to }+85 \\ & -40 \text { to }+85 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
PACKAGE DRAWING   (See pages 98, 99)	(36) $\begin{aligned} & 0.76^{\prime \prime} \mathrm{x} \\ & 0.46^{\prime \prime} \mathrm{x} \\ & 0.25^{\prime \prime}\end{aligned}$	(37) $\begin{aligned} & 0.76^{\prime \prime} \mathrm{x} \\ & 0.76^{\prime \prime} \mathrm{x} \\ & 0.25^{\prime \prime}\end{aligned}$	
PRICE $(1-9)$	\$36.00	\$49.00	


MODEL	$4023 / 25$
FREQUENCY RESPONSE	Customer specified - may be any   value from 10 Hz to 20 kHz.   Rang
Accuracy	$\pm 1 \%$ (Adjustable to zero)
Stability vs. Temperature, max	$0.04 \% /^{\circ} \mathrm{C}$

Note: To order, specify Model 4023/25 and frequency.

The $4023 / 25$ is an all solid-state ultra-stable sinewave oscillator. Both output amplitude and frequency are constant, and the stability of both with time and temperature variations is excellent. Highperformance Burr-Brown IC operational amplifiers are used in the 4023/25 to form a Wien bridge oscillator circuit and to regulate the output amplitude. The frequency of oscillation is within $\pm 1 \%$ of the customer-specified value.
If desired, external components may be added to trim the frequency to an exact value. Adding two external capacitors will lower the output frequency. The range of frequency adjustment is approximately 2 decades (within 10 Hz and 20 kHz ).


Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

- INCREASE SYSTEM ACCURACY $\pm 1 \%$ Frequency accuracy $\pm 0.1 \%$ Sinewave distortion
- INCREASE SYSTEM STABILITY $\pm 0.04 \% /{ }^{\circ} \mathrm{C}$ Frequency Stability; $\pm 0.02 \% /{ }^{0} \mathrm{C}$ Amplitude Stability


## ACTIVE FILTERS

Uníversal Actíve Filters<br>Fixed Frequency Active Filters

## "

## UAF3I,UAF2I/25, AND UAF II/I5

LOW COST<br>USER TUNABLE FREQUENCY O-FACTOR, AND GAIN<br>O-FACTOR RANGE - 0.5 to 500

WIDE FREQUENCY RANGES<br>UAF31 - 0.001 Hz to 25 kHz<br>UAF21/25-0.001 Hz to 200 kHz<br>UAF11/15 - 0.001 Hz to 20 kHz<br>EPOXY OR HERMETIC<br>DUAL-IN-LINE PACKAGE

Universal Active Filters (UAF's) are complete 2-pole active filters with the addition of three or four external resistors that provide the user easy control of the Q -factor, resonant frequency, and gain. Any complex filter response can be obtained by cascading these units. Three separate outputs provide low pass, high pass, and band pass transfer functions. A band reject (notch) transfer function may be realized simply by summing the high pass and low pass outputs.
Burr-Brown's Universal Active Filters are low cost, versatile units that the user can easily tailor to any active filtering application. They are excellent choices for use in communications equipment, test equipment (engine analyzers, aircraft and automotive test, medical test, etc.), servo systems, process control equipment, sonar and many others.

Since UAF's are so versatile and flexible, they can be stocked by the user in quantity for use as building blocks whenever the requirement arises. This means instant availability and that purchases may be made in volume to take advantage of quantity price discounts.
We have an individual data sheet available for each Universal Active Filter that explains the simple design procedures necessary to build complete active filters. It also includes all the necessary information for you to construct Bessel, Butterworth and Chebyschev low pass and high pass as well as band pass and band reject filters using UAF's as building blocks. Computer programs are also included for the design of more complex Chebyschev low pass and multiple pole band pass filters. The data sheet is available from Burr-Brown or your local Representative.

The UAF as shown in the Figure below can be connected in a variety of configurations: One UAF is required for every two poles of low pass or high pass filters. One UAF is required for each pole-pair of band pass or band reject filters. The three basic second order transfer function forms are:
$T($ Low Pass $)=\frac{A L P \omega_{0}^{2}}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}} \quad T($ Band Pass $)=\frac{A B P\left(\omega_{0} / Q\right) s}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}} \quad T($ High Pass $)=\frac{A H P}{s^{2}+\left(\omega_{0} / Q\right) s+\omega_{0}^{2}}$
where $\omega_{\mathrm{O}}=2 \pi \mathrm{f}_{\mathrm{O}}$.



Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL	UAF31	UAF11/15	UAF21/25 ${ }^{(1)}$	UNITS
INPUT   Input Bias Current Input Voltage Range Input Resistance	$\begin{aligned} & \pm 40 \\ & \pm 10 \\ & 100 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 100 \\ & \pm 10 \\ & 100 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 10 \\ & 100 \mathrm{k} \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{~V} \\ & \Omega \end{aligned}$
TRANSFER CHARACTERISTICS   Frequency Range ( $\mathrm{f}_{\mathrm{o}}$ )   $\mathrm{f}_{\mathrm{o}}$ Accuracy ${ }^{(2)}$   $\mathrm{f}_{\mathrm{O}}$ Stability ${ }^{(3)}$ (over temp. range)   Q Range   Q Stability (5)   @ $f_{0} Q \leqslant 10^{4}$   @ $\mathrm{f}_{\mathrm{O}} \mathrm{Q} \leqslant 10^{5}$   Gain Range	$\begin{aligned} & 0.001 \text { to } 25 \mathrm{k} \\ & \pm 1, \max \\ & \pm 0.002 \\ & 0.5-500 \\ & \pm 0.01 \\ & \pm 0.025 \\ & 0.1 \text { to } 50 \end{aligned}$	$\begin{aligned} & 0.001 \text { to } 20 \mathrm{k} \\ & \pm 1 / \pm 5, \max \\ & \pm 0.005 \\ & 0.5-500 \\ & \pm 0.025 \\ & \pm 0.1 \\ & 0.1 \text { to } 50 \end{aligned}$	$\begin{aligned} & 0.001 \text { to } 200 \mathrm{k} \\ & \pm 1 / \pm 5, \max \\ & \pm 0.005 \\ & 0.5-500 \text { (4) } \\ & \pm 0.01 \\ & \pm 0.025 \\ & 0.1 \text { to } 50 \end{aligned}$	Hz   \%   $\% /{ }^{\circ} \mathrm{C}$   --   $\% /{ }^{\circ} \mathrm{C}$   $\% /{ }^{\circ} \mathrm{C}$   V/V
OUTPUT   Peak to Peak Output Swing (6) $\begin{aligned} & \mathrm{f}_{\mathrm{o}} \leqslant 10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{O}} \leqslant 20 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{O}} \leqslant 100 \mathrm{kHz} \end{aligned}$   Output Offset (at L.P. output with unity gain) Output Impedance Noise ${ }^{(7)}$   Output Current	$\begin{aligned} & 20 \\ & 14 \\ & 2 \\ & \\ & \pm 20 \\ & 1 \\ & 200 \\ & 5 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 20 \\ & 10 \\ & 2 \\ & \pm 10 \\ & 2 \\ & 200 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \pm 10 \\ & 10 \\ & 200 \\ & 10 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{mV} \\ \Omega \\ \mu \mathrm{~V}(\mathrm{rms}) \\ \mathrm{mA} \end{gathered}$
POWER SUPPLIES   Rated Power Supplies   Power Supply Range ${ }^{(8)}$   Supply Current @ $\pm 15 \mathrm{~V}$ (Quiescent)	$\begin{aligned} & \pm 15 \\ & \pm 5 \text { to } \pm 18 \\ & \pm 12, \max \end{aligned}$	$\begin{gathered} \pm 15 \\ \pm 5 \text { to } \pm 18 \\ \pm 9, \max \end{gathered}$	$\begin{aligned} & \pm 15 \\ & \pm 5 \text { to } \pm 18 \\ & \pm 9, \max \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \end{aligned}$
TEMPERATURE RANGE   Specification Temperature Range   Epoxy   Hermetic   Storage Temperature Range	$\begin{aligned} & -25 \text { to }+85 \\ & \text { N/A } \\ & -25 \text { to }+85 \end{aligned}$	$\begin{aligned} & -25 \text { to }+85 \\ & -55 \text { to }+125 \\ & -55 \text { to }+125 \end{aligned}$	$\begin{aligned} & -25 \text { to }+85 \\ & -55 \text { to }+125 \\ & -55 \text { to }+125 \end{aligned}$	$\begin{aligned} & { }^{\mathrm{o}} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{C} \\ & { }^{\mathrm{o}} \mathrm{C} \end{aligned}$
PACKAGE DRAWING (see pgs.82, 99)	(2) A Epoxy	(39) Epoxy or Hermetic	(39) $\begin{aligned} & \text { Epoxy or } \\ & \text { Hermetic }\end{aligned}$	
PRICE	(See below)			

MIL-STD-883 SCREENING
See pages 106-107

Prices and specifications are subject to change without notice.
NOTES:
(1) The UAF2 1/25 include two internal $0.002 \mu \mathrm{~F}$ power supply bypass capacitors.
(3) T.C.R. of external frequency determining resistors must be added to this figure.
(2) The accuracy of external frequency determining resistors must be added to this figure.
(4) Derated $50 \%$ from maximum.
(5) $Q$ stability varies with both the value of $Q$ and the resonant frequency $f_{o}$.
(6) Low pass output.
(7) Measured at the band pass output with $\mathrm{Q}=50$ over DC to 50 kHz .
(8) For supplies below $\pm 10 \mathrm{~V}, \mathrm{Q} \max$ will decrease slightly; filters will operate below $\pm 5 \mathrm{~V}$.

UAF31	0.001 to 25 kHz
UAF11	0.001 to 20 kHz
UAF15	0.001 to 20 kHz
UAF21	0.001 to 200 kHz
UAF25	0.001 to 200 kHz
UAF11H	0.001 to 20 kHz
UAF15H	0.001 to 20 kHz
UAF21H	0.001 to 200 kHz
UAF25H	0.001 to 200 kHz


$\mathbf{f}_{\mathbf{0}}$ Accuracy
$\frac{ \pm 1 \%}{ \pm 1 \%}$
$\pm 5 \%$
$\pm 1 \%$
$\pm 5 \%$
$\pm 1 \%$
$\pm 5 \%$
$\pm 1 \%$
$\pm 5 \%$


Package	$(1-9)$
epoxy	\$19.00
epoxy	30.00
epoxy	29.00
epoxy	47.00
epoxy	46.00
hermetic	35.00
hermetic	34.00
hermetic	52.00
hermetic	51.00

Price

Price

$\$ 13.00$
17.50
16.00
34.00
33.00
22.50
21.00
39.00
38.00

## FIXED FREQUENCY ACTIVE FILTERS

Burr-Brown's standard catalog active filters, the ATF76 series, are available with low pass, band pass, and band reject characteristics. The filters in this series are packaged in space-saving $0.4^{\prime \prime}$ high modules ranging in size from $1.5^{\prime \prime}$ x $1.5^{\prime \prime}$ for 2 pole low pass and notch models to only $2.1^{\prime \prime} \times 3.0^{\prime \prime}$ for 8 pole low pass models. All filters are complete units that are factory tuned with no external components required. All standard active filters operate from $\pm 15$ VDC power over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

	BAND PASS SINGLE TUNED				
MODEL ${ }^{(1)}$	$\begin{gathered} \text { ATF76- } \\ \text { B1*M } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { B1*N } \end{gathered}$	$\begin{aligned} & \text { ATF76- } \\ & \text { B1*P } \end{aligned}$	$\begin{gathered} \text { ATF76- } \\ \text { B1*Q } \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { B1*R } \\ \hline \end{gathered}$
FILTER ORDER No. of Poles	2				
INPUT	$\begin{aligned} & \pm 10 \mathrm{~V}, \min \\ & 100 \mathrm{k} \Omega, \mathrm{~min} \end{aligned}$				
Voltage Range					
Impedance					
FREQUENCY ( $\mathrm{f}_{\mathrm{c}}$ )	$\begin{aligned} & 1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \quad \pm 1 \% \\ & \pm 0.03 \% /{ }^{\circ} \mathrm{C} \\ & \quad \pm 3 \% \end{aligned}$				
Range					
Accuracy					
Temp. Coeff.					
Adj. Range					
GAIN	$0 \pm 0.5 \mathrm{~dB}$				
Pass Band					
SELECTIVITY (Q)					
Value	2	5	$\begin{gathered} 10 \\ \pm 10 \% \end{gathered}$	20	50
OUTPUT	$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \Omega \\ & \pm 5 \mathrm{~mA} \end{aligned}$				
Noise (2)					
Impedance					
Current					
POWER SUPPLY CURRENT   $\pm 15$ VDC @ Quiescent(6)	$\pm 10 \mathrm{~mA}$				
PACKAGE DWG.(See page 100)	(41) $\mathrm{B} \quad 2^{\prime \prime} \times 2^{\prime \prime} \times 0.4$ "				
PRICE					
Model L (1-9)					
Model L (10-24)	65.00				
Model M ( $1-9$ )	$\begin{aligned} & 70.00 \\ & 55.00 \end{aligned}$				
Model M (10-24)					

Specifications typical at $25^{\circ} \mathrm{C}$ and rated supply voltage unless otherwise noted.

MODEL ${ }^{(1)}$	LOW PASS BUTTERWORTH				LOW PASS BESSEL (Linear Phase)			
	$\begin{gathered} \text { ATF76- } \\ \text { L2 }{ }^{*} \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L4*B } \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L6*B } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L8*B } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L2*L } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L4*L } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L6*L } \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L8*L } \\ \hline \end{gathered}$
FILTER ORDER No. of Poles	2	4	6	8	2	4	6	8
INPUT Voltage Range Impedance(5)	$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \text { min } \end{aligned}$				$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \mathrm{~min} \end{aligned}$			
$\begin{aligned} & \text { FREQUENCY } \\ & \text { Range } \\ & \text { Accuracy } \\ & \text { Temp. Coeff. } \end{aligned}$	$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ \pm \mathbf{2} \% \\ \pm \mathbf{0 . 0 5} \% /{ }^{\circ} \mathrm{C} \end{gathered}$				$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ \pm 2 \% \\ \pm 0.05 \% /^{\circ} \mathrm{C} \end{gathered}$			
GAIN(9) Pass Band DC Accuracy	$\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & \pm 0.05 \mathrm{~dB}, \text { max } \end{aligned}$				$\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & \pm 0.05 \mathrm{~dB}, \mathrm{max} \end{aligned}$			
Q-FACTOR	N/A				N/A			
OUTPUT   Noise (2)   Output Impedance   Rated Current   Offset at $25^{\circ} \mathrm{C}(8)$   Offset Drift   $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					$\begin{array}{lll}  & 50 \mu \mathrm{~V}, \mathrm{rms} & \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} & \\ & \pm 2 \mathrm{mV} & \\ & & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{array}$			
POWER SUPPLY CURRENT   $\pm 15$ VDC @ Quiescent (7)	$\pm 6 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$	$\pm 14 \mathrm{~mA}$	$\pm 18 \mathrm{~mA}$	$\pm 6 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$	$\pm 14 \mathrm{~mA}$	$\pm 18 \mathrm{~mA}$
PACKAGE DWG.(See pg.100)	(40) $\begin{aligned} & \mathrm{A} 1.5^{\prime \prime} \mathrm{x} \\ & 1.5^{\prime \prime} \mathrm{x} 0.4^{\prime \prime}\end{aligned}$		(42) A $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4{ }^{\prime \prime}$		(40) ${ }_{1.5 \prime \prime} 1.5^{\prime \prime} \mathrm{x}$ $1.5^{\prime \prime}$ x $0.4^{\prime \prime}$	(41) $\mathrm{A}^{22^{\prime \prime} \times 2^{\prime \prime}} \mathrm{x} 0.4{ }^{\prime \prime}$	(42) $\mathrm{A} 3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4 \prime \prime$	
PRICE								
Model L (1-9) ${ }^{\text {Model }}$ (10-24) $(10 \mathrm{~Hz})$	\$75.00	89.00 77.00	$\$ 110.00$ 92.00	\$135.00	\$75.00	\$89.00	$\$ 110.00$ 92.00	$\$ 135.00$ 121.00
Model M (1-9) $(10-20 \mathrm{kHz})$	61.00 69.00	$\begin{aligned} & 77.00 \\ & 79.00 \end{aligned}$	92.00 100.00	$\begin{aligned} & 121.00 \\ & 125.00 \end{aligned}$	$\begin{aligned} & 61.00 \\ & 69.00 \end{aligned}$	$\begin{aligned} & 77.00 \\ & 79.00 \end{aligned}$	$\begin{array}{r} 92.00 \\ 100.00 \end{array}$	121.00 125.00 111.00
Model M(10-24) ${ }^{(10-20 \mathrm{kHz})}$	57.00	67.00	84.00	111.00	57.00	67.00		111.00

*Insert L or M, depending on frequency required. (2) 10 Hz to 50 kHz with input grounded. (1) See below for ordering information (3) -40 dB notch attenuation, minimum.

ORDERING INFORMATION

BAND PASS STAGGER TUNED				
ATF76- B2*K	$\begin{gathered} \text { ATF76- } \\ \text { B2*M } \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { B2*N } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { B2 } * \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { B2 } * \mathrm{Q} \\ \hline \end{gathered}$
4				
$\begin{aligned} & \pm 10 \mathrm{~V}, \min \\ & 100 \mathrm{k} \Omega, \text { min } \end{aligned}$				
$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ \pm \mathbf{1} \% \\ \pm \mathbf{0 . 0 3 \%} \%{ }^{\circ} \mathrm{C} \\ \end{gathered}$				
$0 \pm 0.5 \mathrm{~dB}$				
1	2	$\begin{array}{r} 5 \\ \pm 10 \% \\ \hline \end{array}$	10	20
$\begin{aligned} & 100 \mu \mathrm{~V} \\ & 10 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \hline \end{aligned}$				
$\pm 20 \mathrm{~mA}$				
(42) B $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4 \prime$				
$\begin{array}{r} \$ 89.00 \\ 77.00 \\ 79.00 \\ 67.00 \end{array}$				



Prices and specifications are subject to change without notice.

LOW PASS CHEBYSCHEV ( $\pm 0.4 \mathrm{~dB}$ Ripple)				LOW PASS CHEBYSCHEV ( $\pm 1.6 \mathrm{~dB}$ Ripple)				BAND-REJECT (NOTCH)		
$\begin{gathered} \text { ATF76- } \\ \text { L2 } 2 \mathrm{C} \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L4*C } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L6*C } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L8*C } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L2 } 2 \text { D } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L4*D } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L6*D } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { L8*D } \end{gathered}$	$\begin{gathered} \text { ATF76- } \\ \text { N1*M } \end{gathered}$	$\begin{aligned} & \text { ATF76- } \\ & \text { N1*N } \end{aligned}$	$\begin{gathered} \text { ATF76- } \\ \text { N1*P } \\ \hline \end{gathered}$
2	4	6	8	2	4	6	8	2	2	2
$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega, \text { min } \end{aligned}$				$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega \text {, min } \end{aligned}$				$\begin{aligned} & \pm 10 \mathrm{~V} \\ & 30 \mathrm{k} \Omega \text {, min } \end{aligned}$		
$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ \pm 2 \% \\ \pm 0.05 \% /{ }^{\circ} \mathrm{C} \end{gathered}$				$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ \pm 2 \% \\ \pm \mathbf{0 . 0 5} \% /{ }^{\circ} \mathrm{C} \end{gathered}$				$\begin{gathered} 1 \mathrm{~Hz} \text { to } 20 \mathrm{k} \mathrm{~Hz} \\ \pm 2 \%(4) \\ \pm 0.03 \% /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$		
$\begin{aligned} & 0 \mathrm{~dB} \text {, nom } \\ & -0.4 \mathrm{~dB}, \text { max } \end{aligned}$				$\begin{aligned} & 0 \mathrm{~dB}, \text { nom } \\ & -1.6 \mathrm{~dB}, \text { max } \end{aligned}$				$\begin{aligned} & 0 \mathrm{~dB}, \operatorname{nom}^{(3)} \\ & \pm 0.05 \mathrm{~dB}, \max \end{aligned}$		
N/A				N/A				$2 \pm 10 \%$	$5 \pm 10 \%$	10 $\pm 10 \%$
$\begin{aligned} & 50 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \pm 2 \mathrm{mV} \end{aligned}$				$\begin{array}{rlr}  & 50 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \pm 2 \mathrm{mV} \\ \pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \quad & \\ & & \pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \hline \end{array}$				$\begin{aligned} & 200 \mu \mathrm{~V}, \mathrm{rms} \\ & 1 \Omega \\ & \pm 5 \mathrm{~mA} \\ & \pm 2 \mathrm{mV} \\ & \pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$		
$\pm 25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$		$\pm 50 \mu \mathrm{~V} /{ }^{\mathrm{O}} \mathrm{C}$								
$\pm 6 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$	$\pm 14 \mathrm{~mA}$	$\pm 18 \mathrm{~mA}$	$\pm 6 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$	$\pm$$\pm 14 \mathrm{~mA}$ $\pm 18 \mathrm{~mA}$		$\pm 10 \mathrm{~mA}$		
(40) ${ }^{\text {A }} 1.5{ }^{\prime \prime}$ " x	(41) $\begin{array}{ll}\mathrm{A} \\ 2^{\prime \prime} \mathrm{x} & 2^{\prime \prime} \mathrm{x} \\ 0.4^{\prime \prime}\end{array}$	(42) A $3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4 \prime$		(40)		(42) $\mathrm{A} 3^{\prime \prime} \times 2.1^{\prime \prime} \times 0.4{ }^{\prime \prime}$		(40) B $1.5^{\prime \prime} \times 1.5 \prime \times 0.4{ }^{\prime \prime}$		
\$75.00	\$89.00	\$110.00	\$135.00	\$75.00	\$89.00	\$110.00	\$135.00		79.00	
61.00	77.00	92.00	121.00	61.00	77.00	92.00	121.00		67.00	
69.00	79.00	100.00	125.00	69.00	79.00	100.00	125.00		69.00	
57.00	67.00	84.00	111.00	57.00	67.00	84.00	111.00		55.00	

(5) For models with higher input impedance contact Burr-Brown or your local representative.
(6) $\pm 9$ to $\pm 18$ VDC power may be used.
(7) $\pm 12$ to $\pm 18$ VDC power may be used.
(8) The offset may be trimmed to zero, see pg. 79.
(9) All filters have noninverting outputs except the single tuned band pass and band reject filters which have inverting outputs.
TYPE OF FILTER RESPONSE

## Low Pass

B = Butterworth
C = Chebyschev
0.4 dB nom ripple
$D=$ Chebyschev -
1.6 dB nom ripple
$\mathrm{L}=$ Bessel

Band Pass
$K$ for $Q=1$ ( 2 pole pairs only)
$M$ for $Q=2$
$N$ for $Q=5$
$P$ for $Q=10$
$Q$ for $Q=20$
$R$ for $Q=50$ (1 pole pair only)
$\left|\begin{array}{l}S \text { - Special Order } * * \\ \text { indicate } Q \text { on order for } \\ 2 \text { pole pairs } 1 \leqslant Q \leqslant 20 \\ 1 \text { pole pair } 2 \leqslant Q \leqslant 50 \\ \text { ** Add } \$ 25 \text { to order for } \\ \text { each special } Q \text { value. }\end{array}\right|$

## Notch

$M$ for $Q=2$
$N$ for $Q=5$
$P$ for $Q=10$
$S$ for $Q=$ Special ** (indicate Q on order, $2 \leqslant Q \leqslant 10$ )

CUTOFF OR CENTER FREQUENCY For frequencies less than 100 Hz , use " $R$ " to indicate decimal point. For frequencies greater than 100 Hz , the last digit indicates number of zeros following first 3 digits of frequency. For example: $58 \mathrm{~Hz}=$ $58 \mathrm{RO}, 580 \mathrm{~Hz}=5800,5800 \mathrm{~Hz}=5801$

## STANDARD SERIES

```
- LOW COST
- OFF THE SHELF DELIVERY
- DIRECT PC CARD MOUNTING
- STANDARD PIN CONFIGURATION
- \(\pm 15 \mathrm{~V}\) AND +5 V DC
- 25 mA to 1000 mA CURRENT CAPABILITY
- INTERNATIONAL INPUT VOLTAGE RATINGS AVAILABLE
- CURRENT LIMITED OUTPUTS
```

Burr-Brown's standard series of power supplies offers a wide range of output voltage, output current, and AC input voltage combinations. All are available in a standard package at very attractive prices.
These supplies have current-limited outputs to protect the supplies in an overload condition or temporary output short to common. In addition, two of the +5 V supplies have overvoltage protection which limits the maximum output voltage to +7.0 volts in the event of a power supply failure or fault condition.

## DC/DC CONVERTERS

## - REGULATED $\pm 15 \mathrm{~V}$ DC FROM UNREGULATED DC INPUT <br> - FAST RESPONSE TIME <br> - HIGH OUTPUT CURRENT CAPABILITY WITH CURRENT LIMIT PROTECTION <br> - SMALL SIZE

The Modular DC to DC Converters from Burr-Brown provide maximum flexibility for systems design. The Model 546 is particularly useful for powering analog interface circuitry and digital systems and the package height is less than $0.4^{\prime \prime}$. It responds to full load transients in less than $10 \mu \mathrm{~s}$ which makes it excellent for driving $\mathrm{A} / \mathrm{D}$ and $\mathrm{D} / \mathrm{A}$ converters.

Model 510A/25 and 528 feature wide temperature operation and trimmable output voltages for optimum accuracy. These supplies tolerate a wide range of input voltages which make them ideally suited for local regulators. Stable $\pm 15$ VDC can be supplied at the point of use with no need for cumbersome or unstable remote voltage sensing circuitry.

## ISOLATED DC/DC CONVERTER

## - HIGH ISOLATION BREAKDOWN VOLTAGE <br> - LOW COUPLING CAPACITANCE: 8pF <br> - LOW EMI, FULLY SHIELDED

The Model 700 is intended for applications where isolation between input and output is a prime requirement. It converts a 10 to 18 volt input to a dual output of the same magnitude. Regulation, if required, can be added externally. A frequency-stable oscillator running at 130 kHz controls the converter avoiding spikes due to transformer saturation. All components except the transformer, rectifiers, and filter capacitors are contained in a thick-film hybrid IC to provide reliable operation.


## ACIDC CONVERTERS



Typical performance @ $25^{\circ} \mathrm{C}$ unless otherwise noted.

## DCIDC CONVERTERS $\pm 15 \mathrm{VDC}$ OUTPUT

MODEL	Low Profile	Wide Temperature		Isolated$700$
	546	510A/25	528	
RATED OUTPUT   Voltage (nom)   Current (max)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 120 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 100 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 200 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \pm 10 \text { to } \pm 18 \mathrm{~V} \\ \pm 30 \mathrm{~mA} \end{gathered}$
PERFORMANCE				
RATED INPUT VOLTAGE	4.5 to 5.5 VDC	22 to 34 VDC		$\pm 10$ to $\pm 18 \mathrm{~V}$
OUTPUT V ERROR	$\pm 0.5 \%$	$\pm 0.5 \%^{3}$		$\pm 1 \mathrm{~V}$
REGULATION   No Load to Full Load (max) Over Rated Line V (max)	$\begin{aligned} & \pm 0.1 \% \\ & \pm 0.1 \% \end{aligned}$	$\begin{aligned} & \pm 1.0 \% \\ & \pm 0.1 \% \end{aligned}$	$\begin{aligned} & \pm \mathbf{0 . 1 \%} \\ & \pm \mathbf{0 . 1 \%} \end{aligned}$	$\begin{gathered} 35 \mathrm{mV} / \mathrm{mA}, \text { typ } \\ 1 \mathrm{~V} / \mathrm{V} \end{gathered}$
OUTPUT VOLTAGE   TEMP. COEF. $\% /{ }^{\circ} \mathrm{C}$	$\pm 0.02$	$\pm 0.01$	$\pm 0.02$	$\pm 0.02$
OUTPUT RIPPLE and NOISE @ Full Load (max)	$\begin{aligned} & 0.8 \mathrm{mV} \text { RMS } \\ & 20 \mathrm{mV} \text { p-p } \end{aligned}$	$2.0 \mathrm{mV}, \mathrm{RMS}$		80 mVp
TEMPERATURE RANGE   Rated Operation Storage	$\begin{array}{r} -25^{\circ} \mathrm{C} \text { to }+71^{\circ} \mathrm{C} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
ISOLATION VOLTAGE, Continuous	500 VDC	500 VDC		$\begin{aligned} & 1000 \text { VRMS AC } \\ & 1500 \mathrm{VDC} \end{aligned}$
PACKAGE DWG. (see pgs. 86, 88, 101)	(44)	(22) B	(23) B	(14) B
PRICE (1-9)	\$79.00	\$179.00	\$179.00	\$33.00

NOTES:
(1) The output may be connected as +5 V or -5 V .
(2) These 5 V supplies have overvoltage protection which limits the output voltage to 7 V (max) in a fault condition.
(3) Derate the current output for operation above $50^{\circ} \mathrm{C}$ by these factors: $553:-5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}, 562:-25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
(4) Model 527 will accept either 115 VAC or 230 VAC inputs. See package drawing (23) A for connection information.
(5) For international voltage ratings specify:Option E: $205-240 \mathrm{VAC}, 50-400 \mathrm{~Hz}$ No extra charge. Option H: 220-260 VAC, $50-400 \mathrm{~Hz}$

Option F: $90-110$ VAC, $50-400 \mathrm{~Hz}$

## MATING CONNECTORS



## 1500MC



Material: Aluminum
Finish: Hard Black Anodize



(1) Pin 8 connected to case on 3542, 3521, 3522, 3523. Pin 4 connected to case on 3501, 3503, 3500.
(2) $50 \mathrm{k} \Omega: 3500,3501$
$10 \mathrm{k} \Omega$ : 3540, 3521, 3522, 3523, 3542.
(3) $20 \mathrm{k} \Omega$ : $3505 \mathrm{~J}, 3507 \mathrm{~J}, 3550,3551$ $100 \mathrm{k} \Omega$ : $3506 \mathrm{~J}, 3508 \mathrm{~J}$.
(4) $3550-\mathrm{Pin} 8$ is connected to case.
(5) Pin 8 is bandwidth control for $3507,3508,3551$
( $\mathrm{C}_{\mathrm{f}}$ from pin 8 to common, 3507 and 3508 )
( $C_{f}$ from pin 6 to pin 8, 3551)


NOTE: Pin 4 connected to case.


Pin spacing: $2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$
Row spacing: $7.6 \mathrm{~mm}\left(0.30^{\prime \prime}\right)$

## A

UAF31
1 Frequency Adjust 2 Band Pass Output 3 Common
4 Positive Supply
5 Auxiliary Amp Output 6 Auxiliary Amp + Input 7 Auxiliary Amp - Input
8 Frequency Adjust
9 Low Pass Output
10 Negative Supply 11 High Pass Output 12 Filter Input 2 13 Filter Input 1 14 Filter Input 3

PIN CONNECTIONS
1 Input
2 Input Offset Adjust
3 Negative Supply
4 Averaging Capacitor
Connector
5 Gain Setting
6 Output
7 No Connection
8 Low Level
Accuracy Adj.
9 No Connection
10 Common
11 No Connection
12 DC Reversal
Error Adj.
13 DC Reversal
Error Adj.
14 Positive Supply

14 Positive Supply


1	$E_{z}$ Input	1	$V_{x}$ Input
2	Output	2	Output
3	Negative Supply	3	Negative Supply
4	Feedthrough Adj.	4	No Connection
5	No connection	5	Input Offset Adj.
6	No connection	6	Exponent Setting
7	$E_{x}$ Input	7	$V_{z}$ Input
8	Internal Reference	8	Input Offet
9	No Connection	9	No Connection
10	Common	10	Common
11	Feedthrough Adj.	11	Exponent Setting
12	Offset Adj.	12	Exponent Setting
13	Ey Input	13	Vy Input
14	Positive Supply	14	Positive Supply

$V_{x}$ Input
Output
Negative Supply
No Connection
Input Offset Adj.
Exponent Setting
$V_{z}$ Input
Input Offset
No Connection

Exponent Setting
12 Exponent Setting
$13 \mathrm{~V}_{\mathrm{y}}$ Input
14 Positive Supply

$E$			
4291		3329/03	
1	Gain Error Adj.	1	No connection
2	Output	2	No connection
3	Negative Supply	3	No connection
4	D Input Offset Adj.	4	No connection
5	Internally connected to Pin 1	5	+ Input   No connection
6	Internally connected to Pin 14	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	Negative Supply No connection
7	Internally connected to $\operatorname{Pin} 8$	$\begin{array}{r} 9 \\ 10 \end{array}$	No connection Output
8	Reference Voltage	11	No connection
9	D Input	12	No connection
10	Common	13	No connection
11	N Input Offset Adj.	14	Positive Supply
12	Output Offset Adj.		
	N Input		
	Positive Supply		




A Height: Pkg. $4 \mathrm{~A}=10.2 \mathrm{~mm}$ ( $0.4^{\prime \prime}$ ) Pkg. 4B, $4 \mathrm{C}, 4 \mathrm{D}=12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$

(1) $R_{z}$ required for operation May be fixed resistor at $R_{z} / 2$.

## Connector: 1400MC

5


Grid: 2.54 mm (0.1")


6
TO-3 PACKAGE Connector: 803MC


$$
\begin{aligned}
& \text { dia. } \\
& 12.7 \mathrm{~mm}\left(0.500^{\prime \prime}\right) \text { dia } \\
& \text { pin circle }
\end{aligned}
$$

BOTTOM


Not required for gains above $10 \mathrm{~V} / \mathrm{V}$. A

PIN CONFIGURATIONS


TOP


$\begin{aligned} & \text { id: } 7.6 \mathrm{~mm} \\ &\left(0.3^{\prime \prime}\right)\end{aligned}$

- In (N.C. Power Booster)
+ In or Common
Trim
Out
5 Overload Signal
+ Positive Supply
- Negative Supply

BOTTOM VIEWS
A


8
Connector: 1500 MC

PIN CONNECTIONS

```
1 -IN
1-IN
+ Positive Supply
+ Negative Supply
```



Grid: $7.6 \mathrm{~mm}\left(0.3^{\prime \prime}\right)$

## PIN CONNECTIONS




12
(1) This terminal labeled "V/Bal" on Model 3452 and 3455.
(2) This terminal labeled " +V " on Model 3452 and 3455.


BOTTOM VIEW
 Grid: 2.5 mm (0.1")

## PIN CONNECTIONS

Pin designations appear on top of modules


No Connection
-15 VDC
+15 VDC
Gain Sense
Gain
Common
Output Offset
Inverting Input
Non-inverting Input
Gain
Gain Sense
Balance (end) 10 k Balance (end) Optional
Balance (arm))
No Connection
CMR 1
CMR 1
7 CMR 2
CMR 2
Guard
1 No Pin
No Pin
No Pin
\} Jumper
Output
Output Sense
Output Su
Junction
$\left.\begin{array}{rl}k & \text { No Connection } \\ 1 & -15 \text { VDC } \\ 2 & +15 \text { VDC } \\ 3 & \text { No Pin } \\ 4 & \text { No Pin } \\ 5 & \text { Analog Common } \\ 6 & \text { No Pin } \\ 7 & \text { No Pin } \\ 8 & \text { Non-Inverting Input } \\ 9 & \text { No Pin } \\ 10 & \text { No Pin } \\ 11 & \text { Offset (end) } \\ 12 & \text { Offset (end) } \\ 13 & \text { Offset (arm) }\end{array}\right\}$ Optional
-15VDC +15VDC In Bal Gain Sig Common No Pin Inverting Input Non-inverting Input Gain No Pin Out Offset Adj. Output Sense Out Offset Adj. No Pin No Pin No Pin No Pin No Pin No Pin Power Common No Pin

## No Pin

 No Pin No Pin No Pin Output No Pin No Pin

Grid: 2.5 mm ( $0.1^{\prime \prime}$ )
PIN CONNECTIONS

X	Offset Control
1	Inverting Input
2	Non-Inverting Input
Y	Gain Resistor
V+	+15VDC
COM	Common
V-	-15 VDC
OUT	Output
Z	Gain Resistor



## PIN CONNECTIONS

Non-Inverting: Input	15	$\times 8$ Logic Input
External Balance (end) 10 k	16	$\times 4$ Logic Input
External Balance (end) $\}$ Optional	17	$\times 2$ Logic Input
External Balance (arm) Optional	18	+5 VDC Power
Inverting Input	19	$\times 1$ Logic Input
+15 VDC	20	Digital Common
CMR Trim	21	$\times 16$ Logic Input (3600)
CMR Trim		$\times 10$ (3601)
-15 VDC Power	22	$\times 256$ Logic Input (3600)
Analog Common		$\times 100$ (3601)
Output Sense Point	23	Guard
Output	24	CMR Trim
Summing Point	25	CMR Trim
Test Point		



BOTTOM VIEW

16
T0-100 PACKAGE
Connector: 1000MC


17
/16 PACKAGE
Connector: Burndy 4206P5 furnished with each unit.

1.0 mm
$\left(0.04^{\prime \prime}\right)$

BOTTOM VIEW

$$
v_{\text {out }}=\frac{100 \mathrm{k}}{R}\left(\mathrm{e}_{2}-\mathrm{e}_{1}\right) \quad \begin{gathered}
-\mathrm{V}_{\mathrm{cc}} \\
0 \Omega 0 \mathrm{k} \Omega 3660 \mathrm{~K}, \mathrm{~S} \\
0 \Omega 3660 \mathrm{~J}, 3670 \mathrm{~J}, \mathrm{~K}, \mathrm{~S}
\end{gathered}
$$

18
T0-100 PACKAGE


Pin 5 connected to case.


BOTTOM VIEW


TOP VIEW

19


PIN CONNECTIONS

## A <br> ${ }^{430}$ <br> $1 \times$ Input <br> 2 Output <br> 3-15VDC <br> 4 No Connection <br> $5 \times$ Offset <br> $6 \mathrm{~m}_{\mathrm{A}}$ <br> 7 z Input <br> 8 z Offset <br> 9 No Connection <br> 10 Common <br> $11 \mathrm{~m}_{\mathrm{B}}$ <br> $12 \mathrm{~m}_{\mathrm{C}}$ <br> $13 Y$ Input <br> $14+15$ VDC <br> B <br> 4340 <br> 1 Input <br> 2 External $\mathrm{C}_{\mathrm{H}}$ <br> 3-15 VDC <br> 4 Offset, External $C_{L}$ <br> 5 Gain <br> 6 Output <br> 7 No Connection <br> 8 No Connection <br> 9 No Connection <br> 10 Common <br> 11 No Connection <br> 12 DC Reversal Adj. <br> 13 DC Reversal Adj. <br> $14+15 \mathrm{VDC}$

PACKAGE INFORMATION
20

## Connector: 1400 MC



PIN CONNECTIONS

k	Key	10	N Offset	20	N/A
1	$-15 V$	11	N/A	21	Common
2	$+15 V$	12	N/A	22	N/A
3	N/A	13	N/A	23	N/A
4	D Offset	14	N/A	24	N/A
5	Common	15	N/A	25	S.J.
6	N/A	16	N/A	26	Output
7	D	17	N/A	27	N/A
8	N	18	N/A	28	Gain Trim
9	N/A	19	N/A		



CONNECTION DIAGRAMS

A


PIN CONNECTIONS
32. Bit 7
31. Bit 8
30. Bit 9
29. Bit 10 (LSB-10 Bits)
28. Bit 11
27. Bit 12 (LSB-12 Bits)
26. Serial out
25. 15 V
24. Ref. out (+ 6.2 V )
23. Clock out
22. Status
21. Short Cycle
20. Clock Inhibit
19. External Clock
18. Convert Command
17. +15V

*Optional offset adjust

## EB

## PACKAGE INFORMATION



CONNECTION DIAGRAMS

## A



B

PIN CONNECTIONS

ADC40
Gain Adj
Analog In. An. In. Com $B_{1} u f f$
$R_{2}$
$R_{1}$ No Connection No Connection
No Connection No Connection No Connection No Connection
No Connection No Connection No Connection
No Connection No Connection
No Connection Bipolar Offset Comp. In. No Connection Ref. Out Analog Com.

[^10]
## ADC60

49	No Connection
50	Bit 11*
51	No Connection
52	Bit 10
53	No Connection
54	Bit 9
55	No Connection
56	Bit 8
57	No Connection
58	Bit 7
59	No Connection
60	No Connection
61	Bit 6
62	No Connection
63	Bit 5
64	No Connection
65	Bit 4
66	No Connection
67	Bit 3
68	No Connection
69	No Connection
70	Bit 1 (MSB)
71	Bit 2 M
72	Bit 1 (MSB)

- 15 V
No Connection
+15 V
No Connection
+5 V . Com.
Dig. Connection
No Connut
Serial Out
Status
Convert Command
Clock In
Clock Out
Clock Inhibit
No Connection
No Connection
No Connection
No Connection
No Connection
Status
No Connection
No Connection
No Connection
No Connection
Bit 12*72

25	-15 V
26	No Connection
27	+15 V
28	No Connection
29	+5V
30	Digital Common
31	No Connection
32	Serial Out
33	Status
34	Convert Command
35	No Connection
36	Clock Out
37	No Connection
38	No Connection
39	No Connection
40	No Connection
41	No Connection
42	No Connection
43	Status
44	No Connection
45	No Connection
46	Short Cycle
47	No Connection
48	Bit 12 (1)

[^11](1) LSB - 12 bit models
(2) LSB - 10 bit models
(3) LSB - 8 bit models

## CONNECTION DIAGRAMS



## PIN CONNECTIONS

ADC100 (BCD \& SMD)			
1	- Adjust	37	No Connection
2	Buffer In	38	No Connection
3	An Com.	39	End of Convert
4	Buffer Out	40	Dig. Common
5	- Adjust	41	Dig. Common
6	Unbuff. In	42	Term. In
7	No Connection	43	No Connection
8	No Connection	44	Bit 16
9	Sign. Out	45	Bit 15
10	Gain Adjust	46	Bit 14
11	No Connection	47	Bit 13
12	No Connection	48	Bit 12
13	No Connection	49	No Connection
14	No Connection	50	Bit 11
15	No Connection	51	No Connection
16	No Connection	52	Bit 10
17	Offset Adjust	53	No Connection
18	TP	54	Bit 9
19	No Connection	55	No Connection
20	Summing Junction	56	Bit 8
21	Clock Trim	57	No Connection
22	Inv. In	58	Bit 7
23	An Common	59	No Connection
24	Inv. Out	60	No Connection
25	-15 V	61	Bit 6
26	Clock Out	62	No Connection
27	+15 V	63	Bit 5
28	Clock In	64	No Connection
29	$+5 \mathrm{~V}$	65	Bit 4
30	Dig. Common	66	No Connection
31	No Connection	67	Bit 3
32	Current	68	No Connection
33	No Connection	69	Term. Out
34	Clock	70	No Connection
35	Conv. Command	71	Bit 2
36	Conv. Command	72	Bit 1 (MSB)

## ADC100 (USB \& BOB)

1	No Connection	37	No Connection
2	Buffer In	38	No Connection
3	An. Common	39	End of Convert
4	Buffer Out	40	Dig. Common
5	No Connection	41	Dig. Common
6	Unbuff. In	42	Term. In
7	No Connection	43	No Connection
8	No Connection	44	Bit 16 (LSB)
9	No Connection	45	Bit 15
10	Gain Adjust	46	Bit 14
11	No Connection	47	Bit 13
12	No Connection	48	Bit 12
13	No Connection	49	No Connection
14	No Connection	50	Bit 11
15	No Connection	51	No Connection
16	No Connection	52	Bit 10
17	Offset Adjust	53	No Connection
18	TP	54	Bit 9
19	Bipolar Offset	55	No Connection
20	Summing Junction	56	Bit 8
21	Clock Trim	57	No Connection
22	Inv. In	58	Bit 7
23	An. Common	59	No Connection
24	Inv. Out	60	12 Bit Term.
25	-15 V	61	Bit 6
26	Clock Out	62	No Connection
27	+15 V	63	Bit 5
28	Clock In	64	No Connection
29	$+5 \mathrm{~V}$	65	Bit 4
30	Dig Common	66	No Connection
31	No Connection	67	Bit 3
32	Current	68	No Connection
33	No Connection	69	16 Bit Term.
34	$\overline{\text { Clock }}$	70	14 Bit Term.
35	Conv. Command	71	Bit 2
36	Conv. Command	72	Bit 1 (MSB)

PACKAGE INFORMATION

26


BOTTOM VIEW


* Digital Common is internally
connected to case.

27 Connector: 0245MC


BOTTOM VIEW

$i$



Note 1: Amplifier not included in current output models.
Note 2: $3 k \Omega$ for $C C D$ models $5 k \Omega$ for CBI models
Note 3: +5 V supply input may be connected to +5 V supply if +5 V supply is not available
This will increase internal power dissipation by 200 mW .


29

## ${ }^{\text {compace asace }}$




BOTTOM VIEW
Pin Spacing: 2.5 mm ( $0.1^{\prime \prime}$ )
Row Spacing: $7.6 \mathrm{~mm}\left(0.3^{\prime \prime}\right)$


30

## Connector: 2302MC




TOP VIEW


C
SHM60


## PIN CONNECTIONS

## DAC60

k Key			
1	Bit 1 (MSB)	15	Output I
2	Bit 2	16	Sig. Com.
3	Bit 3	17	Bipolar Offset
4	Bit 4	18	Feedback
5	Bit 5	19	No Connection
6	Bit 6	20	No Connection
7	Bit 7	21	Ref. Out
8	Bit 8	22	Pwr. Com.
9	Bit 9	23	+15 V
10	Bit 10	24	-15 V
11	Bit 11	25	No Connection
12	Bit 12	26	No Connection
13	No Connection	27	Gain Adj.
14	No Connection	28	No Connection

## PIN CONNECTIONS

## SHM60

k Key
1 Offset Adj.
2 No Connection
3 Offset Adj.
4 No Connection
5 No Connection
6 No Connection
7 No Connection
8 Common
9 No Connection
10 + Input
11 No Connection
12 -Input
13 No Connection
14 No Connection
$15-15 \mathrm{~V}$
16 No Connection 17 Charge Offset Adj. 18 No Connection 19 Charge Offset Adj. 20 No Connection 21 Logic
22 No Connection 23 No Connection 24 Output
25 No Connection 26 No Connection 27 No Connection $28+15 V$

31
Connector: None


PIN CONFIGURATION
TOP VIEW


Note: Pins 2, 7, and 8 are not internally connected.


32
MPC4D AND MPC8S
16 Pin Ceramic Lead Frame


MPC4D


MPC8S


$A_{2}$	$A_{1}$	$A_{0}$	$E_{N}$	"On"   Channel
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8



MPC8D PIN CONFIGURATION


CONNECTION DIAGRAM



BOTTOM VIEW Typical Load


	$E_{\mathrm{u}}<\mathrm{E}_{1}$	$\mathrm{E}_{\mathrm{L}}<\mathrm{E}_{\mathrm{I}}<\mathrm{E}_{\mathrm{u}}$	$\mathrm{E}_{1}<\mathrm{E}_{\mathrm{L}}$
HIGH	ON	OFF	OFF
GO	OFF	ON	OFF
LOW	OFF	OFF	ON

TRANSFER CHARACTERISTICS-4115/04



BOTTOM VIEW


CONNECTION DIAGRAM - 4084/25

## PIN CONNECTIONS

Pin Spacing: $2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$, Row Spacing: 7.6 mm ( $0.30^{\prime \prime}$ )

3 Frequency Adj.
9 -Supply
10 Frequency Adj.
11 No Connection
12 Input 1
13 Input 2
14 Input 3


Connector: 2302MC

$43^{\text {mome }}$


Pin Dia.: 1.02 mm (.04")

* No connection for Models 550, 561, 562.
\(\left.$$
\begin{array}{|c|c|l|}\hline \begin{array}{l}\text { PKG. } \\
\text { NO. }\end{array} & \begin{array}{l}\text { MODEL } \\
\text { NUMBERS }\end{array}
$$ \& DIMENSION <br>

" A"'\end{array}\right]\)| 22.9 mm |
| :--- |
| A |
| B |



BOTTOM VIEW

45
DAC90



## PACKAGE INFORMATION



MATING CONNECTOR: 7200MC
CASE MATERIAL: INSULATED STEEL CONNECTOR PINS: GOLD FLASHED WEIGHT: 200 GRAMS ( 7 OZ .)

PACKAGE AND PIN CONFIGURATIONS

SDM850 CONNECTOR PIN DIAGRAM			
+15V	1 T	1B	-15V
ANA. GND.	2 T	2B	ANA. GND.
$\mathrm{CH} O$ IN	3 T	3B	CH 8 IN
CH 1 IN	4 T	4B	CH 9 IN
CH 2 IN	5 T	5 B	CH 10 IN
CH 31 N	6 T	6 B	CH 11 IN
CH 4 IN	7 T	7 B	CH 12 IN
CH 51 N	8 T	8B	CH 13 IN
CH 61 N	9 T	9B	CH 14 IN
CH 7 IN	10T	10B	CH 15 IN
MUX OUT	11T	11B	N/C
RANGESEL	12T	12B	AMP IN LO
S \& H OUT	13T	13B	AMP OUT
ADC IN 1	14 T	14B	ADC IN 2
+10V REF. OUT	15 T	15B	CLK OUT
EXT. OFFSET ADJ.	16 T	16B	GAIN ADJ.
* AMP IN HI	17 T	17B	MUX ENB.
SERIAL OUT	18 T	18B	COUNT ENB.
Mux $\quad 8$ OUT	19 T	19B	
MUX 4 OUT	20 T	20B	4 IN MUX
ADDRESS 2 OUT	21 T	21B	$2 I N\}$ ADDRESS
LINES 1 OUT	22 T	22B	1 IN LINES
DLY OUT	23 T	23B	DLY. ADJ.
STROBE 1	$24 T$	24B	LOAD ENB.
STROBE 2	25 T	25B	$\overline{C L R . ~ E N B . ~}$
A/D TRIG	$26 T$	26B	CLK. ADJ.
A/D TRIG	$27 T$	27 B	EOC
SHT. CYC.	28 T	28B	$\overline{\mathrm{B1}}$ OUT ( $\overline{\mathrm{MSB}}$ )
(MSB) B1 OUT	29 T	29B	B2 OUT
B3 OUT	30 T	30B	B4 OUT
B5 OUT	31 T	31B	B6 OUT
B7 OUT	32 T	32B	B8 OUT
B9 OUT	33 T	33B	B10 OUT
B11 OUT	34 T	34 B	B12 OUT (LSB)
DIG. GND.	35 T	35B	DIG. GND.
+5V	36T	36B	$+5 \mathrm{~V}$


SDM851 CONNECTOR PIN DIAG RAM				
		${ }^{17}$	18	-15v
	ANA. GND.	${ }_{3 T}^{2 T}$	${ }^{28}$	ANA. GND.
	CHoin	37 $3 T$	${ }^{38}$	CHo ${ }^{\text {CHTN }}$
	CHIN	4T	${ }^{48}$	
	CH2IN	5	${ }_{68}^{58}$	${ }_{\text {ch }}^{\text {ch }}$ - RTN
	CH 4 IN	${ }_{7 T}$	${ }_{7 B}$	CH 4 RTN
	CH5in	${ }^{8 T}$	88	CH 5 RTN
	CH6IN	$9{ }^{\text {9T }}$	98	CH 6 RTN
	CH7 CN	$10 T$	${ }^{\circ}$	Ch7 RTN
	mux Hiout	11T	118	mux lo out
	RANGE SEL	12 T	${ }^{128}$	Amp in lo
	S\&HOUT	${ }^{13 T}$	${ }^{138}$	OUT
	AdC in 1	147	148	IN2
	V REF. OUT	15T	${ }^{158}$	O
т. O.	OFFSET ADJ.	${ }^{16 T}$	168 178	GUAN AD
	$\frac{\text { AMPINHI }}{\text { SERILIOUT }}$	${ }_{18 T}$	188	COUNT ENB.
${ }_{\text {ADDESSS }}^{\text {MUX }}$	\{ 4 OUT	$20 T$	208	4 In mux
LINES	2 OUT	217		2 IN LINES
				DIV ADJ.
	$\frac{\text { DLY OUT }}{\text { STROBE }}$	${ }_{24 T}^{231}$	248	$\frac{\text { DLY ADJ }}{\text { LOAD ENE. }}$
	STROBE 2	${ }^{25 T}$	258	cle. EnE.
	A/D TRIG	${ }^{26 T}$	268	CLL.
	A/D TRIG			${ }_{\text {EOC }}^{\text {EIOUT (MSB) }}$
	SHT. Crc.	${ }^{285}$	${ }_{298}^{288}$	
	b3 оut	20T	${ }_{308}^{298}$	${ }_{\text {B4 OUT }}{ }^{\text {B2 }}$
	B5 OUT	${ }^{31 T}$	${ }^{318}$	B6 out
	${ }^{\text {B7 OUT }}$	${ }^{32 T}$	${ }^{328}$	B8 out
	в9 0ut	33T	${ }^{338}$	B10 OUT
	811 OUT	${ }^{34 T}$	348   358   58	B12 OUT (L)
		36T	- ${ }_{368}^{358}$	

[^12]| MXP321 CONNECTOR PIN DIAGRAM |  |  |  |
| :---: | :---: | :---: | :---: |
| +15V | $1{ }^{\text {T }}$ | 1B | -15V |
| ANA. GND. | 2 T | 2 B | ANA. GND. |
| ( CH 0 | 3 T | 3B | CH 16 |
| 1 | 4 T | 4 B | 17 |
| 2 | 5 T | 5B | 18 |
| ANALOG 3 | 6 T | 6B | 19 ANALOG |
| INPUTS 4 | 7 T | 7 B | 20 INPUTS |
| ( $\begin{aligned} & 5 \\ & 6\end{aligned}$ | 8T | 8B 98 | 21 |
| $\mathrm{CH}_{7}$ | 10T | 10B | CH 23 ) |
| MUX 0-15 OUT | 11T | 11B | MUX 16-31 OUT |
| ADDRESS ${ }^{\text {A }} 16$ | 12T | 12B | N/C |
| IN A A32 | 13 T | 13B | N/C |
| ( CH 8 | 14 T | 14B | CH 24 |
| 9 | 15T | 15B | 25 |
| 10 | 16 T | 16B | 26 |
| ANALOG 11 | 17 T | 17B | 27 ANALOG |
| INPUTS 12 | 18 T | 18B | 28 INPUTS |
| 13 | 19 T | 19B | 29 |
| 14 | 20 T | 20B | 30 |
| CH15 | 21 T | 21B | CH 31 |
| ADDR.DET. \{ | 22 T | 22B | ) ADDR.DET. |
| IN | 23 T | 23B | $\}$ IN |
| 0-15 ENABLE | $24 T$ | 24B | 16-31 ENABLE |
| ADDR.DET. \{ | 25 T | 25B | ) ADDR.DET. |
| 1 N | $26 T$ | 26B | $\bigcirc 1 \mathrm{~N}$ |
| 16- $\overline{32}$ | 27T | 27 B | $\overline{16}-32$ |
| 16-32 | 28 T | 28B | CARRY |
| ( ${ }^{\text {A1 }}$ | 29 T | 29B | A1 ) |
| ADDRESS ${ }^{\text {A2 }}$ | 30 T | 30 B | A2 ADDRESS |
| IN $\quad\left\{\begin{array}{l}\text { A4 } \\ A 8\end{array}\right.$ | 31 T | 31 B 32 B | A4 ${ }^{\text {a }}$ \} OUT |
|  | 32T | 32B | A8 |
| ADDR.DET. OUT | $33 T$ 34 | 33 B 34 B | $\frac{\text { CLOCK IN }}{\text { CLEAR ENB. }}$ |
| DIG. GND. | 35 T | 35B | DIG. GND. |
| $+5 \mathrm{~V}$ | $36 T$ | 36 B | +5V |


MXP320 CONNECTOR PIN DIAGRAM			
+15V	1 T	1B	-15V
GND.	2 T	2B	GND.
( CHO	$3 T$	33	CH 16
1	4 T	4B	17
2	5 T	5B	18
ANALOG 3	6 T	6B	19 ANALOG
INPUTS 4	7 T	7 B	20 INPUTS
5	8T	8B	21
6	9 T	9B	22
$\mathrm{CH}_{7}$	10T	10B	CH 23
MUX 0-15 OUT	11T	11B	MUX 16-31 OUT
N/C	12T	12B	N/C
N/C	13 T	13B	N/C
( CH 8	14 T	14 T	CH 241
9	15T	15B	25
10	$16 T$	16B	26
ANALOG 11	17 T	17B	27 ANALOG
INPUTS 12	18 T	18B	28 INPUTS
13	19 T	19B	29
14	20 T	20B	30
CH15	21 T	21B	CH31
N/C	22T	22B	N/C
N/C	23 T	23B	N/C
0-15 ENABLE	$24 T$	24B	16-31 ENABLE
N/C	25 T	25B	N/C
N/C	$26 T$	26B	N/C
N/C	27T	27 B	N/C
N/C	28 T	28B	N/C
N/C	29 T	29B	A1
N/C	30 T	30 B	A2 ADDRESS
N/C	31 T	31 B	A4 3 OUT
N/C	32 T	32B	A8
N/C	33 T	33B	N/C
N/C	34 T	34B	N/C
GND.	35T	35B	GND.
N/C	$36 T$	36B	N/C

## 47



Material: Extruded, black-anodized, aluminum heat sink and discrete components mounted on glass epoxy printed circuit board.

4804 Connector: 806MC
Recommended mating PC card: Amp 1-86063-5
Connectors: Flexible: Scotchflex 3417-0000
Diameter of mounting holes: 3.56 mm ( $0.14^{\prime \prime}$


PIN CONNECTIONS

BOTTOM	PIN	TOP
-35 V	1	-35 V
Output	2	Output
+35 V	3	+35 V
N/C	4	N/C
-15 V	5	-15 V
Ana. Com.	6	Ana. Com.
+15 V	7	+15 V
Ana. Com.	8	Ana. Com.
N/C	9	+30V Range
Offset Adj.	10	Range Adj.
Strobe	11	Gain Adj.
+5V CiV		
Dig. Com.	12	Dig. Com.
Bit 2	13	Bit 1
Bit 4	14	Bit 3
Bit 6	15	Bit 5
Bit 8	16	Bit 7
Bit 10	17	Bit 9
Bit 12	18	Bit 11

## CORPORATE ORIENTATION AND EXPERTISE...

Over the past few years, Burr-Brown has emerged as a leading supplier of data conversion and signal conditioning components. With the introduction of several products that are new to this catalog, we have now begun a major thrust into data acquisition and data output systems. Our primary expertise lies in the interfacing of physical process signals to the computing or recording equipment used for monitoring and control. Our basic purpose is to help our customers to improve their productivity and lower their costs.

We have a well-established reputation for quality products that perform reliably, and we've earned it, through attention to details in design and manufacture and through a comprehensive quality assurance program. Our testing and screening capabilities are second to none and allow us to offer complex products with verified performance and reliability.

## PRODUCT DEVELOPMENT...

Our production capabilities are also unique to our industry. They include thin-film, thick-film, and bipolar monolithic processing, automated and semiautomated laser trimming, and a comprehensive packaging capability. This ability to manufacture high performance components at low cost gives us an inherent advantage when we combine these components into more complex modules and systems.
We've introduced in excess of 30 new microcircuit products during the past 18 months, and already have combined many of these into higher level products addressing specific customer needs. The coming year will see the pace of innovation accelerating and will yield an even greater number of new and, we think, exciting products.


## INNOVATION • QUALITY • SERVICE

## SERVICE...

Because of our strong orientation to customer needs, we pride ourselves on the quality of our service. This manifests itself in several ways - competent and prompt applications assistance, rapid delivery of products, comprehensive product literature, and responsiveness to your request for special testing of products.
Our Tucson based applications engineering staff is as near to you as the telephone. Highly skilled in the use of our products, they will discuss with you the selection of a suitable unit for your application, discuss the parameter tradeoffs, and even suggest a block-diagram design approach to your system. They may be able to provide lower cost alternative methods of performing the same functions. Detailed applications assistance is also available from our field sales offices in the New York, Chicago, Los Angeles, and San Francisco areas, the United Kingdom, France, Japan, and West Germany.
In addition to our field sales offices, we have 22 United States sales representative offices, and over 30 exclusive engineering representatives in as many countries around the globe serving over 5,000 customers.
We look forward to the opportunity of serving you.


## HIGH RELIABILITY PROGRAMS

Burr-Brown's High Reliability Programs have been developed to meet the increasing need for extremely high product reliability - even beyond that offered by standard Burr-Brown integrated circuits. Such requirements are not limited to military and aerospace programs, but in fact are equally important in the control of industrial processes, medical patient monitoring, and in other applications where failure may be expensive or hazardous.


## THE Q PROGRAM...

The reliability requirements of most applications can be met by subjecting standard Burr-Brown microcircuits to a program of additional reliability screening. This additional screening - The Burr-Brown Q Program - consists of a sequence of thermal and mechanical stress procedures, plus a verification of package hermeticity. Q screening is available for most of our monolithic and hybrid products in hermetic packages. The diagram below illustrates the screening sequence. This screening is applied to $100 \%$ of Q product candidates. Those which pass the sequence satifactorily and meet all electrical specifications are then marked with a Q suffix (e.g. a 3521 J which passes the Q sequence satisfactorily becomes a 3521 JQ ).
SCREENING SEQUIENCE...

SCREEN		PROCEDURE
1	INTERNAL VISUAL INSPECTION (precap)	Burr-Brown QC4118 (copies available on request)
2	100\% ELECTRICAL TEST (postcap)	Per appropriate Burr-Brown product data sheet
3	STABILIZATION BAKE	Mil-Std-883, Method 1008
4	TEMPERATURE CYCLING	Mil-Std-883, Method 1010
5	CONSTANT ACCELERATION (centrifuge)	Mil-Std-883, Method 2001
6	HERMETICITY, GROSS LEAK	Mil-Std-883, Method 1014
7	HERMETICITY, FINE LEAK	Mil-Std-883, Method 1014
8	BURN-IN	Mil-Std-883, Method 1015
9	FINAL ELECTRICAL TEST	Per appropriate Burr-Brown product data sheet



## MIL-STD-883...

In addition to the Q program, Burr-Brown offers a smaller number of products built to the requirements of Mil-Std-883, for Class B devices. These products are assembled on a special production line devoted solely to high reliability products. Visual inspection procedures used are those specified in methods 2010.1 and 2017 of Mil-Std-883.

Minimum order sizes and lot set-up charges apply to products processed on this line. Contact your local Burr-Brown sales engineer for information on models available.


## INTERFACING WITH BURR-BROWN



## PLACING AN ORDER

Orders may be placed with any authorized Burr-Brown field sales representative, field sales office, or with our headquarters in Tucson via letter, telephone, TWX, or TELEX. When you place your order, please provide complete information on model number, option designations, product name, quantity desired, and ship-to and bill-to address.

## TECHNICAL ASSISTANCE

Burr-Brown has a large and highly competent field sales force, backed up by an experienced staff of applications specialists. They will be most happy to assist you in selecting the right product for your application. This service is available, without charge, from all sales offices and from our headquarters in Tucson.

## EVALUATION SAMPLES

When it is necessary to evaluate the performance of a product before purchasing, a 30 day no charge sample can be provided. Simply send in a regular purchase order stating "no charge 30 day evaluation unit." Units that have not been soldered, or otherwise altered, may be returned within the 30 day period for full credit. If the evaluation sample is retained for longer than 30 days, invoicing will be sent.

## DATA SHEETS

Detailed specifications and application instructions are contained on product data sheets for each model. Simply contact your local Burr-Brown sales representative, or use the reply card from this catalog.

## PRICES AND TERMS

Prices as listed in this catalog, unless otherwise noted, apply only to domestic USA customers; all other customers should contact their local Burr-Brown sales representative for price information.
All prices are FOB Tucson, Arizona, USA, in U.S. dollars. Applicable federal, state, and local taxes are extra. Terms are net 30 days. Prices and specifications are subject to change without notice.

## OEM DISCOUNTS

OEM discounts are available on an order or contract basis. Corporate discount plans are available for catalog items. Consult your Burr-Brown Sales Office or headquarters for details.

## QUOTATIONS

Price quotations made by Burr-Brown or its authorized field sales representatives are valid for 60 days. Delivery quotations are subject to reconfirmation at the time of order placement.

## RETURNS AND WARRANTY SERVICE

When returning products for any reason, contact our Tucson headquarters first for authorization and shipping instructions. Returned units should be shipped prepaid and must be accompanied by the original purchase order number and date and an explanation of the malfunction. Upon receipt of the unit, Burr-Brown will verify the malfunction and will inform the customer of the warranty status, cost of repair, credits, and replacement units where applicable.

# EB <br> BURR-BROWN <br> SALES OFFICES 



## UNITED STATES REPRESENTATIVES

## ALABAMA

BCS Associates Tel: (205) 881-6220

## ARIZONA

Burr-Brown Research Corp. Tel: (602) 294-1431

## ARKANSAS

(See Dallas, Texas)
CALIFORNIA (Northern) Burr-Brown Research Corp. Tel: (408) 984-7700

CALIFORNIA (Southern) Burr-Brown Research Corp. Tel: (714) 835-0712
(213) 941-7000

COLORADO
Burr-Brown Research Corp. Denver
Enterprise 6730 (toll free)
CONNECTICUT
MECO, Inc. Tel: (203) 745-9050

## DELAWARE

(See Pennsylvania, Eastern)
FLORIDA
BCS Associates
Tel: (305) 896-4881
GEORGIA
(See Alabama)

## ILLINOIS

Burr-Brown Research Corp.
Tel: (312) 832-6520
INDIANA
(See Illinois)
IOWA
(See Illinois)

KANSAS
Sheridan Associates Inc. Tel: (913) 383-1636 LOUISIANA
(See Alabama)
MAINE
(See Massachusetts)
MARYLAND
QED Electronics Inc. Tel: (301) 588-8134
MASSACHUSETTS
MECO, Inc.
Tel: (617) 245-4870

## MICHIGAN

Sheridan Associates Inc. Tel: (313) 477-3800
Farmington
Tel: (313) 477-3800
Grand Rapids
Tel: (616) 942-2504

## MINNESOTA

E.C. Electronics Sales, Inc. Tel: (612) 831-0229

## MISSISSIPPI

(See Alabama)
MISSOURI
Sheridan Associates Inc. Tel: (314) 837-5200

NEBRASKA
(See Kansas)
NEW HAMPSHIRE
(See Massachusetts)
NEW JERSEY (Northern)
Burr-Brown Research Corp.
Tel: (516) 466-2650

NEW JERSEY (Southern)
QED Electronics Inc.
Tel: (215) 925-8711

## NEW MEXICO

Burr-Brown Research Corp. Albuquerque
Enterprise 6730 (toll free)
NEW YORK CITY (Metropolitan) Burr-Brown Research Corp.
Great Neck
Tel: (516) 466-2650
NEW YORK
Advanced Components Corp.
N . Syracuse
Tel: (315) 699-2671
Endicott
Tel: (607) 785-3191
Scottsville
Tel: (716) 889-1429
Clinton
Tel: (315) 853-6438
N. CAROLINA

BCS Associates
Tel: (919) 273-1918
OHIO
Sheridan Associates Inc.
Cincinnati
Tel: (513) 761-5432
Beachwood
Tel: (216) 831-0130
Dayton
Tel: (513) 277-8911

## OKLAHOMA

Norvell Associates Inc.
Tel: (918) 663-1247

OREGON
Hayes Technical
Tel: (503) 238-0001
PENNSYLVANIA (Eastern)
QED Electronics Inc.
Tel: (215) 925-8711
PENNSYLVANIA (Western)
Sheridan Associates Inc.
Pittsburgh
Tel: (412) 244-1640
RHODE ISLAND
(See Massachusetts)
S. CAROLINA
(See N. Carolina)

## TEXAS

Norvell Associates Inc.
Dallas
Tel: (214) 350-6771
Houston
Tel: (713) 777-1666

## UTAH

Burr-Brown Research Corp.
Salt Lake City
Zenith 6730 (toll free)
VERMONT
(See Massachusetts)
VIRGINIA
(See Maryland)
WASHINGTON
Hayes Technical
Tel: (206) 763-2210
WASHINGTON D.C.
(See Maryland)
WISCONSIN
(See Illinois)

CANADA
ALLAN CRAWFORD ASSOC. LTD.

1299 Richmond Rd Ottawa, Ontario K2B 7 Y4
Tel: (613) 829-9651

Tel: (514) 670-1212

Suite 203
North Vancouver, BC V7L 1E6 Tel: (604) 980-4831

3829 12th St., N.E.
Calgary, Alberta
T2E 6M'5
Tel: (403) 276-9658

800 Windmill Road Burnside Industrial Park Dartmouth, Nova Scotia B3B 1L1 Tel: (902) 469-7865

## PRODUCT DATA SHEETS...

Within the confines of the space available, each product shown in this catalog has been described in as much detail as possible. If and when you need more detailed information on a specific product, just ask for a copy of its Product Data Sheet. All products have one and it contains detailed specifications, operating instructions, performance curves, and application hints. This literature is written to make your design task easier and is yours for the asking. If you need more information on any product, you can either use the reply card in the back of this catalog, write or call us in Tucson, or call any of our Burr-Brown Sales Offices or Representatives listed on page 109.


## APPLICATION NOTES...

Burr-Brown engineers have compiled a mini-library of Application Notes to assist you in your designs. These notes are yours for the asking and are listed below:

```
AN-51 "A Primer on Analog Multiplier Specs"
AN-54 "Programmable Data Amplifiers"
AN-55 "Analog Modules Multiply User's Options"
AN-56 "Sample & Hold or High Speed A/D Converters?"
AN-58 "D/A Converter Differential Linearity Error - It Really Shows Up!"
AN-59 "Don't Forget D/A Converter Tempco!"
AN-60 "Protect Op Amps from Overloads"
AN-61 "Active Filter Design Examples Using UAF's"
AN-62 "Varying Comparator Hysteresis w/o Shifting Initial Trip Point"
AN-63 "Electronic Controller With An Equilibrium Sustaining Mode"
AN-64 "Combine Two Op Amps to Avoid the Speed Accuracy Compromise"
AN-65 "Check Five Op Amp Specs in One Test"
AN-67 "A Noninverting Differentiator"
AN-68 "Don't Overlook the Noise of Op Amp Feedback Resistors"
AN-70 "Analog Shaping"
AN-73 "Using IC Multipliers"
AN-74 "Controlled Current Source is Versatile and Precise"
AN-75 "Instrumentation Amplifiers"
AN-76 "Monolithic Thermal Converter permits Wideband
 RMS AC-Measurement"
AN-78 "Simplified Precision Rectifier has Variable Gain"
AN-79 "Principles of Data Acquisition and Conversion."
```


## REFERENCE BOOKS

## from Burr-Brown and McGraw-Hill

## Applications of Operational Amplifiers-

## THIRD GENERATION TECHNIQUES



Over 230 Pages and 170 Illustrations presenting new, Third Generation Applications of Operational Amplifiers.

This volume presents and explains those operational amplifier applications which have evolved since publication of its companion volume, Operational Amplifiers - Design and Applications.
More than just a collection of circuits or theoretical analysis, the book presents numerous applications of operational amplifiers in a variety of electronic equipment: specialized amplifiers, signal controls, processors, waveform generators, and special purpose circuits. It is a storehouse of detailed practical information, featuring numerous circuit diagrams, circuit values, pertinent design equations, error sources, and test-based comments on the efficiency of the arrangements and devices.
Here is a highly useful, up-to-date reference source for all engineers, scientists and technicians involved with operational amplifier applications in electronics, instrumentation, process control, chemical and physical simulation, and other specialties.

## Operational Amplifiers-

## DESIGN AND APPLICATIONS



Over 475 Pages and 300 Illustrations covering Basic Theory, Circuit Design, Test Methods, and Applications of Operational Amplifiers.

Covering basic theory, test methods, amplifier design techniques, and applications, this pioneer work provides practical information which can be directly applied to instrumentation design.
The book is divided into two principal parts and two appendices. Part I considers the design of operational amplifiers, offers insight into the factors determining performance characteristics, and outlines the techniques available for their control. Part II presents a wide range of practical operational amplifier applications, and provides sufficient descriptions of operation to permit design adaption from the specific circuits described. In Appendix A the basic theory of operational amplifiers is reviewed to provide an accompanying reference. Appendix B gives concise definitions of the performance parameters used to characterize operational amplifiers, and provides associated test circuits. An indispensable book for the novice user and the expert alike.

PRICES, U.S. AND CANADA, (POSTPAID).
Applications of Operational Amplifiers - Third
Generation Techniques . . . . . . . . . . . . . . . . . . U.S. \$14.00
Operational Amplifiers-Design and Applications . . . U.S. \$15.00

> WESTERN EUROPE: Applications of Operational Amplifiers-Third Generation Techniques. U.S. $\$ 15.25$ or equivalent. Operational Amplifiers-Design and Applications . U.S. $\$ 17.00$ or equivalent. Book prices postpaid from our European literature distribution center. Mail all Western European orders, with payment (Postal Money Orders NOT accepted) to: Burr-Brown Research Corporation, B.P. 7656 , Schiphol Centrum, Holland.

## ELSEWHERE OUTSIDE THE U.S.A:

Price (Postpaid) is as follows:

South America	Applications of Operational   India
Amplifiers - Third Generation	
Israel	Techniques $\ldots \ldots . . \$ 18.00$
Africa	
Australia	Operational Amplifiers-   Japan
Design and Applications $\ldots \$ 22.80$	

New Zealand

Make payable to Burr-Brown Research Corporation in U.S. dollars (or equivalent in local currency). Postal Money Orders NOT accepted.

## STILL AVAILABLE...

The following list includes the more popular Burr-Brown models that are not listed elsewhere in this catalog. We realize that these models are "designed into" a great number of applications. We also realize that it is usually not economic for you to re-design in order to take advantage of newer products, even though they offer lower cost. Consequently, we want to assure you of the continuing availability of these older models.
On the other hand, we feel obligated to remind you that in many cases, these models may not be the best choices for your new designs. For your convenience, we have suggested newer models giving similar performance at lower cost.

MODEL SERIES	SUGGESTED NEWER MODEL	MODEL SERIES	SUGGESTED NEWER MODEL	MODEL SERIES	SUGGESTED NEWER MODEL
ADC30	ADC85	3008/15	3500B	3307/12C	3522K
ADC50	ADC80	3009/15	3500B	3308/12C	3522J
ADC55	ADC60	3010/25	3291/14	3312/12C	3522K
DAC20	DAC60	3011/25	3292/14	3313/12C	3522J
DAC40	DAC85	3016/25	3329/03	3348/03	3521J
DAC45	DAC70	3020/15	3500A	3349/03	3521H
DAC50	DAC80	3021/15	3500B	3350/03	3522J
MPM8S	MPC8S	3022/15	3500B	3352/03	3500B
SHM40	SHC85	3038/25	3581J, 3582J	3401A	3550K
SHM41	SHC85	3043/15		3401B	3550K
501	552	3044/15	3500A	3402A	3550K
541	552	3046/40	3571AM	3402B	3550K
	3500A	3061/25	3625A	3403A	3550J
$\begin{aligned} & 1503 \\ & 1506 / 15 \end{aligned}$	3500B	3064/12C	3402B	3403B	3550J
1507/15	3500B	3070/40	3571 AM	3420 J	3521J
1516/15	3500A	3077/12C	3500A	3420 K	3521 K
1517/15	3500A	3112/12C	3542J	3421 K	3523L
1520/15	3329/03	3114/12C	3521 J	3421 L	3523 K
1538A/25	3293/14	$\begin{aligned} & 3115 / 12 \mathrm{C} \\ & 3116 / 12 \mathrm{C} \end{aligned}$	$\begin{aligned} & 3521 \mathrm{H} \\ & 3522 \mathrm{~K} \end{aligned}$	3460	3580J, 3581J, 3582J
1540/15	3580J	3117/12C		4029/25	
1541/25	3581J	3118/12C	3500B	4030/25	4206K
1543/15	3580J	3119/12C	3500A	4031/25	4206J
1547/15	3580J	3129/15	3521 K	4034/25	SHC85
1552/15	3521H	3138/25	3581J, 3582J	4035/25	SHC85
1556/15	3521J	3161/25	3625A	4094/15C	4203J
1557/15	3522K	3226/03	3500A	4095/15	4205J
3003/15	3500C	3227/03	3500A	4096/15	4205K
3004/15	3500B	3241/12C	3521 K	4097/25	4205J
3005/15	3500B	3241/12C	3521 K	4098/25	4205K
3006/15	3500A	3263/14	3625A		
3007/15	3500A	3264/14	3660 J	4126/15C	$4302$
		3266/12C	3500 B		
		3267/12C	3500A	4290	4291
		$\begin{aligned} & 3278 / 14 \\ & 3279 / 14 \end{aligned}$	$\begin{aligned} & 3550 K \\ & 3550 \mathrm{~K} \end{aligned}$		

# ERRATA SHEET for 1976 Catalog 

CHANGES FOR 1976 CATALOG . . . . LI-229

PAGE 46:
Please note changes in FIGURE 4.
+In now goes to +15 V and -In goes to Ground (See new diagram).


FIGURE 4. Application of 3650.

## PAGE 48:

The Output Offset Voltage vs. Temperature is now $\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $\mathrm{NOT} \pm 500 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Output Offset Voltage @ $25^{\circ} \mathrm{C}(4)$   vs. Temp., $\max$   vs. Supply   vs. Time	$\pm 2 \mathrm{mV}$	$\pm 5 \mathrm{mV}$	$\pm 5 \mathrm{mV}$
		$\pm 100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
		$\pm 500 \mu \mathrm{~V} / \mathrm{V}$	

## MODEL INDEX




INTERNATIONAL AIRPORT INDUSTRIAL PARK • P.O. BOX 11400 • TUCSON, ARIZONA 85734
TEL: (602) 294-1431 • TWX: 910-952-1111 • TELEX: 66-6491 • CABLE:BBRCORP


[^0]:    * Prices of each module includes mating connector, Model 7200MC. Additional connectors $\$ 15.00$ each. Quantity discounts available.
    $\dagger$ DCC20 price does not include mating connector - Mating connector Model 1400MC - \$5.00 each.

[^1]:    * Systems include all required cables and connectors.

[^2]:    (1) The Mini-Dip Package is available for Model $3500 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.

[^3]:    (2) Chopper amplifier without high frequency channel.
    (3) Determined by external capacitor.

[^4]:    (1) Noninverting models also available: 3431 J and 3431 K
    (2) Input to common
    (3) 0.01 Hz to 1 Hz
    (4) 1 Hz to 100 Hz

[^5]:    * Specifications are tentative. Contact your nearest Burr-Brown sales office for confirmation, pricing and availability.

[^6]:    1) For 3450 and 3451 current drawn from FDBK pin must be $\leqslant 5 \mathrm{~mA}$. For 3452 the sum of the current drawn from FDBK pin and either " $-\mathrm{V} / \mathrm{Bal}$ " or " +V " pins (i.e., + or - isolated current) must be $\leqslant 11 \mathrm{~mA}$.
    2) Common-mode parameters are measured at the $+I N$ and $-I N$ pins with respect to the I/P COM pin.
    3) Isolation mode parameters are measured at the I/P COM pin with respect to the PWR COM pin and O/P COM pin.
    4) Errors may be trimmed to zero.
    5) All units $100 \%$ tested for $1 \mu \mathrm{~A}$ max leakage current at test voltage.
    6) The 3455 is identical to the 3452 except for two additional specifications. Each 3455 is tested with an isolation voltage of $2500 \mathrm{~V} / 60 \mathrm{~Hz}$ for one minute. Also, each unit is specified at $2 \mu \mathrm{~A}$ max leakage current with $240 / 60 \mathrm{~Hz}$ isolation voltage.
[^7]:    Prices and specifications are subject to change without notice.

[^8]:    (1) Total Error includes offset, nonlinearity, and feedthrough.

    Prices and specifications are subject to change without notice.

[^9]:    Specifications apply for $0.1 \mathrm{~V} \leqslant \mathrm{D} \leqslant 10 \mathrm{~V}$ and $-\mathrm{D} \leqslant \mathrm{N} \leqslant+\mathrm{D}$
    unless otherwise noted. All percentage specifications refer to $\%$ of full scale $=10 \mathrm{~V}$.

[^10]:    * Not connected for 10-bit models.

[^11]:    
    

[^12]:    * Internally jumpered to 17T (order SDM850A or SDM851A with jumper removed).

