Kea Administrator Reference Manual

Documentation
Release 1.9.10

Internet Systems Consortium

Jul 30, 2021

1 Introduction

4 Kea Database Administration
Databases and Database Version Numbers

4.1
4.2
4.3

1.1 Supported platforms
1.1.1 Regularly tested platforms
1.1.2 Besteffort
1.1.3 Community maintained
1.1.4 Unsupported platforms
1.2 Required Software at Run-Time
1.3 KeaSoftware
2 Quick Start
2.1 Quick Start Guide using tarball
2.2 Quick Start Guide using Native Packages
2.3 Quick Start Guide for DHCPv4 and DHCPv6 Services
2.4 Running the Kea Servers Directly
3 Installation
3.1 Packages
3.2 Installation Hierarchy
3.3 Build Requirements
3.4 Installation From Source
3.4.1 Download Tar File
34.2 Retrieve From Git
3.4.3 Configure Before the Build
344 Build, 000 oL
345 Imstall oo
34.6 Cross-Building
3.5 DHCP Database Installation and Configuration
3.5.1 Building with MySQL Support
3.5.2 Building with PostgreSQL support
3.5.3 Building with CQL (Cassandra) Support
3.6 Hammer Building Tool
3.7 Running Kea From a Non-root Account on Linux
3.8 Deprecated Features

3.8.1 Cassandra (CQL) Support

3.8.2 Sysrepo 0.x

The kea-admin Tool
Supported Backends

CONTENTS

N AP wWWLWLWW

Nelie N N

4.3.1

432

433

4.3.4

4.3.5
4.3.6

Memfile e
4.3.1.1 Upgrading Memfile Lease Files from an Earlier Versionof Kea
MySQL . . e e e e e e
4.3.2.1 First-Time Creation of the MySQL Database
4.3.2.2 Upgrading a MySQL Database from an Earlier Versionof Kea
4.3.2.3 Simple MySQL tweak to gain performance
PostgreSQL e e e e e
4.3.3.1 First-Time Creation of the PostgreSQL Database
4.3.3.2 Initialize the PostgreSQL Database Using kea-admin
4.3.3.3 Upgrading a PostgreSQL Database from an Earlier Versionof Kea
Cassandra L e e e e e e
4.3.4.1 First-Time Creation of the Cassandra Database
4.3.4.2 Upgrading a Cassandra Database from an Earlier Versionof Kea
Using Read-Only Databases with Host Reservations
Limitations Related to the Use of SQL Databases
43.6.1 Year2038Issue e e e e

Kea Configuration

5.1 JSON Configuration o i i it e e e e e e e e e e e e e
S5.1.1 0 JSONSyntax oo e e e e e e e e e e
5.1.2 Comments and User Context v vt v it i i it e e et
5.1.3 Simplified Notation 0 0 . 0 e e e e e e e e e e
5.2 KeaConfiguration Backend
52.1 Applicabilityo e
5.2.2 CB Capabilities and Limitations o
523 CBCOMPONENLS . . .« v v v v v v et e e e e e e e e e e e e e e e e e e e
5.2.4 Configuration Sharing and Server Tags
Managing Kea with keactrl
6.1 OVEIVIEW o ottt e e e e e e e e
6.2 Command Line Options o i v i it e e e e e e e e e e e e e e
6.3 The keactrl Configuration File e
6.4 Commands e e e e e e e e
6.5 Overriding the Server Selection e
6.6 Native packages and systemd e e
The Kea Control Agent
7.1 Overview of the Kea Control Agent it
7.2 Configuration oL e e e e e e e
7.3 Secure Connections (version before 1.9.6) e
7.4 Secure Connections (since version 1.9.6) e
7.5 Starting the Control Agent L
7.6 Connecting to the Control Agent o e
The DHCPv4 Server
8.1 Starting and Stopping the DHCPv4 Server
8.2 DHCPv4 Server Configuration ot i v e e e e e
82.1 Introduction e e e e
8.2.2 Lease StOTage v v v v e
8.2.2.1 Memlfile - Basic Storage forLeases
8.2.2.2 Lease Database Configuration
8.2.2.3 Cassandra-Specific Parameters
8.2.3 Hosts Storage e e e e e e e e e
8.2.3.1 DHCPv4 Hosts Database Configuration
8.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv4

33
33
33
34
35
36
36
36
37
38

41
41
41
41
43
45
45

47
47
47
49
51
52
52

8.3

8.4

8.5
8.6

8.2.4 Imterface Configuration e 63

8.2.5 Issues with Unicast Responses to DHCPINFORM 66
8.2.6 IPv4Subnetldentifier. e 66
827 IPv4SubnetPrefix e 67
8.2.8 Configuration of IPv4 AddressPools o .. 67
8.2.9 Sending T1 (Option 58) and T2 (Option 59) 68
8.2.10 Standard DHCPV4 Optons v v v i i e e e e e e e e e e e e e e 69
8.2.11 Custom DHCPv4 Options i i e e e e e e e e e e e e e 77
8.2.12 DHCPv4 Private Options ittt it e e 80
8.2.13 DHCPv4 Vendor-Specific Optionso i i 82
8.2.14 Nested DHCPv4 Options (Custom Option Spaces) 85
8.2.15 Unspecified Parameters for DHCPv4 Option Configuration 86
8.2.16 Stateless Configuration of DHCPv4 Clients, 87
8.2.17 Client Classificationin DHCPv4 88

8.2.17.1 Setting Fixed Fields in Classification 88

8.2.17.2 Using Vendor Class Information in Classification 89

8.2.17.3 Defining and Using Custom Classes 90

8.2.17.4 Required Classification v ittt e 90
8.2.18 DDNS for DHCPv4 e 91

8.2.18.1 DHCP-DDNS Server Connectivity 94

8.2.18.2 When Does the kea-dhcp4 Server Generate a DDNS Request? 94

8.2.18.3 kea-dhcp4 Name Generation for DDNS Update Requests 96

8.2.18.4 Sanitizing Client Host Name and FQDN Names 97
8.2.19 NextServer (siaddr) e e e e e e 98
8.2.20 Echoing Client-ID (RFC 6842) ettt 99
8.2.21 Using Client Identifier and Hardware Address 99
8.2.22 Authoritative DHCPv4 Server Behavior 101
8.2.23 DHCPv4-over-DHCPv6: DHCPv4 Side 101
8.2.24 Sanity Checks in DHCPv4 e e 102
8.2.25 Storing Extended Lease Information o Lo 103
8.2.26 Multi-Threading Settings e 103
8.2.27 Multi-Threading Settings in Different Backends, 104
8.2.28 IPv6-only Preferred Networks 104
8.2.20 LeaseCaching i i i i e e e e 105
Host Reservationin DHCPv4 e 106
8.3.1 AddressReservation Types e 107
8.3.2 Conflicts in DHCPv4 Reservations oo i vttt 108
833 ReservingaHostname 108
8.3.4 Including Specific DHCPv4 Options in Reservations 109
8.3.5 Reserving Next Server, Server Hostname, and Boot File Name 110
8.3.6 Reserving Client Classes in DHCPv4, 111
8.3.7 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra 112
8.3.8 Fine-Tuning DHCPv4 Host Reservation 112
8.3.9 Global Reservationsin DHCPv4 117
8.3.10 Pool Selection with Client Class Reservations 119
8.3.11 Subnet Selection with Client Class Reservations 119
8.3.12 Multiple Reservations for the Same IP o oL 121
Shared Networks in DHCPv4 e 122
8.4.1 Local and Relayed Traffic in Shared Networks 125
8.4.2 Client Classification in Shared Networks 127
8.4.3 Host Reservations in Shared Networks L .. 128
Server Identifier in DHCPv40 e 129
How the DHCPv4 Server Selects a Subnet for the Client 130
8.6.1 Using a Specific Relay AgentforaSubnet 130

8.6.2 Segregating IPv4 Clients in a Cable Network 131

8.7 Duplicate Addresses (DHCPDECLINE Support) o0 v it it i e e 132
8.8 Statistics in the DHCPv4 Server e 132
8.9 Management API for the DHCPv4 Server 135
8.10 User Contexts in IPv4 o e 137
8.11 Supported DHCP Standards e 137
8.11.1 KnownRFC Violations e 138

8.12 DHCPv4 Server Limitations o 0 e e e e e 138
8.13 Kea DHCPv4 Server Examples e 139
8.14 Configuration Backend in DHCPv4 139
8.14.1 Supported Parameters e 139
8.14.2 Enabling Configuration Backend 140

8.15 Kea DHCPv4 Compatibility Configuration Parameters 142
8.15.1 LenientOption Parsing e 142

The DHCPv6 Server 143
9.1 Starting and Stopping the DHCPvV6 Server i e 143
9.2 DHCPv6 Server Configuration o vttt e e e e e e e e e e e 144
9.2.1 Introduction o . . e e e e e e e e e 144

9.2.2 Lease StOrage i it e e e e e e e e e 146
9.2.2.1 Memfile - Basic Storage forLeases 146

9.2.2.2 Lease Database Configuration i 147

9.2.2.3 Cassandra-Specific Parameters 0. 149

9.23 HostsStorage e e 149
9.2.3.1 DHCPv6 Hosts Database Configuration 150

9.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv6 151

9.2.4 Interface Configuration L e e e e e e e e e e 152

9.2.5 IPv6SubnetlIdentifier. e 153

9.2.6 IPv6SubnetPrefix 153

9.2.7 Unicast Traffic Support 154

9.2.8 Configuration of IPv6 Address Pools o 155

9.2.9 Subnet and Prefix Delegation Pools 156
9.2.10 Prefix Exclude Option e e e e 157
9.2.11 Standard DHCPv6 Options i it 157
9.2.12 Common Softwire46 Options L e 163
9.2.12.1 Softwire46 Container Options o o v v v v v 164

9.2.122 S46Rule Option L 164

9.2.123 S46BROpPtion L e 165

902,124 S46DMR Option oot e e e e e e 165

9.2.12.5 S46 IPv4/IPv6 Address Binding Option 165

9.2.12.6 S46 Port Parameters e e 165

9.2.13 Custom DHCPvO Options o ittt et e et i 166
9.2.14 DHCPv6 Vendor-Specific Options v v v v it e i e 168
9.2.15 Nested DHCPv6 Options (Custom Option Spaces)« . v v v v v v v v v v v 169
9.2.16 Unspecified Parameters for DHCPv6 Option Configuration 171
9.2.17 Controlling the Values Sent for T1 and T2 Times 171
9.2.18 IPv6 Subnet Selection. e e e e 172
9.2.19 Rapid Commit o v v it e e e e e e e e e e e e e e 173
9.220 DHCPvORelays. o o i e e e e e e e 173
9.2.21 Relay-Supplied Options e e e 174
9.2.22 Client Classificationin DHCPv6 174
9.2.22.1 Defining and Using Custom Classes 175

9.2.22.2 Required Classification e 176

9.223 DDNSforDHCPvVO e e e 177

9.3

9.4

9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19

9.20

9.2.23.1 DHCP-DDNS Server Connectivity oo v v v v v v v ..

9.2.23.2 When Does the kea-dhcp6 Server Generate a DDNS Request?

9.2.23.3 kea-dhcp6 Name Generation for DDNS Update Requests

9.2.23.4 Sanitizing Client FQDN Names
9.2.24 DHCPv4-over-DHCPv6: DHCPv6 Side
9.2.25 Sanity Checks in DHCPvO e
9.2.26 Storing Extended Lease Information e
9.2.27 Multi-Threading Settings o v i i i e e e e e e e
9.2.28 Multi-Threading Settings in Different Backends
9.229 LeaseCaching e
Host Reservationin DHCPvO e
9.3.1 Address/Prefix Reservation Types e
9.3.2 Conflicts in DHCPv6 Reservations
9.3.3 ReservingaHostname e
9.3.4 Including Specific DHCPv6 Options in Reservations
9.3.5 Reserving Client Classesin DHCPv6
9.3.6 Storing Host Reservations in MySQL, PostgreSQL, or Cassandra
9.3.7 Fine-Tuning DHCPv6 Host Reservation
9.3.8 Global Reservationsin DHCPv6
9.3.9 Pool Selection with Client Class Reservations
9.3.10 Subnet Selection with Client Class Reservations
9.3.11 Multiple Reservations for the same IP,
Shared Networks in DHCPvO s e
9.4.1 Local and Relayed Traffic in Shared Networks
9.4.2 Client Classification in Shared Networks
9.4.3 Host Reservations in Shared Networks
Server Identifier in DHCPvO o e
DHCPvO Data Directory o v v it it e e e e e e e e e e e e e
Stateless DHCPv6 (Information-Request Message) o o v i vt v v i i oo u o
Support for REC 7550 (now part of REC 8415) i
Using a Specific Relay Agent fora Subnet Lo oL,
Segregating IPv6 Clients in a Cable Network
MAC/Hardware Addresses in DHCPvO i
Duplicate Addresses (DECLINE Support) 0 vt e e e e e e e e e
Statistics in the DHCPV6O Server e
Management API for the DHCPv6 Server
User Contexts in IPvO L . e
Supported DHCPv6 Standards e
DHCPvO Server LImitations o o i i v e e e e e e e e e
Kea DHCPv6 Server Examples 0 0 0 0 e e e e e e
Configuration Backend in DHCPv6 o
9.19.1 Supported Parameters o
9.19.2 Enabling Configuration Backend o oo
Kea DHCPv6 Compatibility Configuration Parameters
9.20.1 Lenient Option Parsing i e e e e

10 Database Connectivity

11 Lease Expiration

11.1
11.2
11.3
11.4
11.5

Lease Reclamation e
Lease Reclamation Configuration Parameters
Configuring Lease Reclamation e
Configuring Lease Affinity e e e e e
Reclaiming Expired Leases viaCommand L ...

231

233
233
234
234
236
237

12 Congestion Handling 239

12.1 Whatis Congestion? o i i e e e e e e e e e e e e e e e e 239
12.2 Configuring Congestion Handling 239
13 The DHCP-DDNS Server 241
I3.1 OVEIVIEW . . . ottt e e e e e e e e e e e e e 241
13.1.1 DNS Server Selection i i e e e e e e e e 241
13.1.2 Conflict Resolution o e e e 241
13.1.3 Dual-Stack Environmentso e e 242

13.2 Starting and Stopping the DHCP-DDNS Server vt 242
13.3 Configuring the DHCP-DDNS Server ettt e e e e e 243
13.3.1 Global Server Parameters e 243
13.3.2 Management APl forthe D2 Server 244
1333 TSIGKey List o .. 245
13.3.4 Forward DDNS e 246
13.3.4.1 Adding Forward DDNS Domains 246

13.3.4.1.1 Adding Forward DNS Servers 247

13.3.5 Reverse DDNS o . . e 248
13.3.5.1 Adding Reverse DDNS Domains 248

13.3.5.1.1 Adding Reverse DNS Servers 249

13.3.6 User Contexts in DDNS e 250
13.3.7 Example DHCP-DDNS Server Configuration 250

13.4 DHCP-DDNS Server Limitations 0 i ettt e e e e 252
13.5 Supported Standards L. 252
14 The LFC Process 253
T4 1 OVEIVIEW o it o i e s e e e e e e e e e 253
142 Command-Line Options e 253
15 Client Classification 255
15.1 Client Classification OVErview o ot v it e et e e e e e e e e e e e 255
15.2 Built-in Client Classes o o i i e e e e e e e e e e e e e 256
15.3 Using Expressions in Classification oo 257
15.3.1 Logical Operators v v v v v i e 260
15.3.2 Substring e e e e e e e e e 260
1533 Concat. o e e e 260
1534 Tfelse o o e 261
1535 Hexstring o e e 261

154 Configuring Classes o v v i i e 261
15.5 Using Static Host Reservations In Classification 263
15.6 Configuring Subnets With Class Information 263
15.7 Configuring Pools With Class Information 264
158 USing CLasses v v v v o i e it e e e e e e e e e e e 265
159 Classesand Hooks L . o e 266
15.10 Debugging EXpressions o v v v v i e e e e e e e e e e e e e e e e e e 266
16 Hooks Libraries 269
16.1 Introduction o L e e e e e 269
16.2 Installing Hook Packages e e e 269
16.3 Configuring Hooks Libraries e e e 271
16.4 Available Hooks Libraries e e e e e e 272
16.5 wuser_chk: Checking User ACCess o v v v i i i i e et e e e e e e e e e 275
16.6 legal_log: Forensic Logging Hooks 276
16.6.1 LogFile Naming i i v i it e e e e e e e e 276
16.6.2 Configuring the Forensic Log Hooks 277

vi

16.6.3 DHCPv4 Log Entries o o o i e e e e 279

16.6.4 DHCPv6 Log Entries o e e e e e e e e e e 282
16.6.5 Database Backend 286
16.7 flex_id: Flexible Identifiers for Host Reservations 286
16.8 flex_option Flexible Option for Option value settings 289
16.9 host_cmds: Host Commands 0 i e e e e e e 290
16.9.1 The subnet-id Parameter e e e e e 291
16.9.2 Thereservation-add Command 291
16.9.3 Thereservation-get Command Lo oL 293
16.9.4 The reservation-get-all Command oL 0oL, 294
16.9.5 The reservation-get-page commando oo e 295
16.9.6 The reservation-get-by-hostname Command 297
16.9.7 Thereservation-get-by-id Command e 298
16.9.8 The reservation-del Command 299
16.10 lease_cmds: Lease Commands e e e e e e e 300
16.10.1 The lease4-add, lease6-add Commands v v v v v i 301
16.10.2 The lease6-bulk-apply Command 303
16.10.3 The lease4-get, lease6-get Commands o o vt i i 305
16.10.4 The lease4-get-all, lease6-get-all Commands 307
16.10.5 The lease4-get-page, lease6-get-page Commands 308
16.10.6 The lease4-get-by-*, lease6-get-by-* Commands 310
16.10.7 The lease4-del, lease6-del Commands o o v v i e 310
16.10.8 The lease4-update, lease6-update Commands v 311
16.10.9 The lease4-wipe, lease6-wipe Commands o 312
16.10.10The lease4-resend-ddns, lease6-resend-ddns Commands 312
16.11 subnet_cmds: Subnet Commands e e e e e e e 313
16.11.1 The subnet4-list Command e e 314
16.11.2 The subnet6-list Command e e e e 314
16.11.3 The subnetd-get Command ittt e e e 315
16.11.4 The subnet6-get Command o0ttt e e e e e 316
16.11.5 The subnet4-add Command e 316
16.11.6 The subnet6-add Command e 317
16.11.7 The subnetd-update Command 318
16.11.8 The subnet6-update Command e e 319
16.11.9 The subnetd-del Command e e e e 319
16.11.10The subnet6-del Command ittt 320
16.11.11The network4-list, network6-list Commands v v .. 321
16.11.12The network4-get, network6-get Commands 321
16.11.13The network4-add, network6-add Commands 322
16.11.14The network4-del, network6-del Commands 323
16.11.15The network4-subnet-add, network6-subnet-add Commands 324
16.11.16The network4-subnet-del, network6-subnet-del Commands 325
16.12 BOOTP Support o o o e e e e e e e e e e 326
16.12.1 BOOTP Hooks Limitation o i ittt i e e e e e e e 327
16.13 class_cmds: Class Commands v v i e e e e e e e e e e e 327
16.13.1 The class-add Command e e 327
16.13.2 The class-update Command Lo 328
16.13.3 The class-del Command e 328
16.13.4 The class-list Command e e e e e 329
16.13.5 The class-get Command 0 it e e e e 329
16.14 cb_cmds: Configuration Backend Commands 330
16.14.1 Commands Structure o i e 330
16.14.2 Control Commands for DHCP Servers 331
16.14.3 Metadata e e e e e e e e e e e 331

vii

16.14.4 remote-serverd-del, remote-server6-del commands 332

16.14.5 remote-serverd-get, remote-server6-get commands L. 333
16.14.6 remote-server4-get-all, remote-server6-get-all commands 334
16.14.7 remote-server4-set, remote-serverb-setcommandso 334
16.14.8 The remote-global-parameter4-del, remote-global-parameter6-del Commands 335
16.14.9 The remote-global-parameter4-get, remote-global-parameter6-get Commands 335
16.14.10The remote-global-parameter4-get-all, remote-global-parameter6-get-all Commands 337
16.14.11The remote-global-parameter4-set, remote-global-parameter6-set Commands 338
16.14.12The remote-network4-del, remote-network6-del Commands 339
16.14.13The remote-network4-get, remote-network6-get Commands 339
16.14.14The remote-network4-list, remote-network6-list Commands 340
16.14.15The remote-network4-set, remote-network6-set Commands 341
16.14.16The remote-option-def4-del, remote-option-def6-del Commands 342
16.14.17The remote-option-def4-get, remote-option-def6-get Commands 343
16.14.18The remote-option-def4-get-all, remote-option-def6-get-all Commands 343
16.14.19The remote-option-def4-set, remote-option-def6-set Commands 344
16.14.20The remote-option4-global-del, remote-option6-global-del Commands 344
16.14.21The remote-option4-global-get, remote-option6-global-get Commands 345
16.14.22The remote-option4-global-get-all, remote-option6-global-get-all Commands 345
16.14.23The remote-option4-global-set, remote-option6-global-set Commands 346
16.14.24The remote-option4-network-del, remote-option6-network-del Commands 347
16.14.25The remote-option4-network-set, remote-option6-network-set Commands 348
16.14.26The remote-option6-pd-pool-del Command 348
16.14.27The remote-option6-pd-pool-set Command 349
16.14.28The remote-option4-pool-del, remote-option6-pool-del Commands 349
16.14.29The remote-option4-pool-set, remote-option6-pool-set Commands 350
16.14.30The remote-option4-subnet-del, remote-option6-subnet-del Commands 351
16.14.31The remote-option4-subnet-set, remote-option6-subnet-set Commands 351
16.14.32The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands 352
16.14.33The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands 352
16.14.34The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands 353
16.14.35The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands 353
16.14.36The remote-subnet4-list, remote-subnet6-list Commands 354
16.14.37The remote-subnet4-set, remote-subnet6-set Commands 355
16.14.38The remote-class4-del, remote-class6-del Commands 356
16.14.39The remote-class4-get, remote-class6-get Commands 357
16.14.40The remote-class4-get-all, remote-class6-get-all Commands 358
16.14.41The remote-class4-set, remote-class6-set Commands 358
16.15 ha: High Availability o e e 360
16.15.1 Supported Configurations o v i i e e e e e e e e e e 360
16.15.2 Clocks on Active SEIVersottt it e e e e e 362
16.153 HTTPS Support o o e e e e e e e e e 362
16.15.4 Server States oL e e e e e e e e e e 363
16.15.5 Scope Transition in a Partner-Down Case 365
16.15.6 Load-Balancing Configuration o v i i i vt i e 366
16.15.7 Load Balancing with Advanced Classification 370
16.15.8 Hot-Standby Configuration 371
16.15.9 Passive-Backup Configuration 372
16.15.10Lease Information Sharing oL e 374
16.15.11Controlling Lease-Page Size Limit 375
16.15.12TIME0ULS o v o e e e e e e e e e e e e e e e 375
16.15.13Pausing the HA State Machine 376
16.15.14Control Agent Configurationottt i e 379
16.15.15Multi-threaded Configuration (HA+MT) o oo oo 379

viii

16.15.16Controlled Shutdown and Maintenance of DHCP servers
16.15.17Upgrading from Older HA Versions it
16.15.18Control Commands for High Availability
16.15.18.1The ha-sync Command
16.15.18.2The ha-scopes Command o
16.15.18.3The ha-continue Command
16.15.18.4The ha-heartbeat Command,
16.15.18.5The status-get Command oo L e e e
16.15.18.6The ha-maintenance-start Command
16.15.18.7The ha-maintenance-cancel Command
16.15.18.8The ha-maintenance-notify Command
16.15.18.9The ha-reset Command e

16.16 stat_cmds: Supplemental Statistics Commands e
16.16.1 The stat-lease4-get, stat-lease6-get Commands

16.17 radius: RADIUS Server Support e
16.17.1 Compilation and Installation of the RADIUSHook
16.17.2 RADIUS Hook Configuration ittt ..

16.18 host_cache: Caching Host Reservations o v i i i ittt e e
16.18.1 The cache-flush Command
16.18.2 The cache-clear Command e
16.18.3 The cache-size Command i i i i e e e e e
16.18.4 The cache-write Command e
16.18.5 The cache-load Command e
16.18.6 The cache-get Command i e e e
16.18.7 The cache-get-by-id Command
16.18.8 The cache-insert Command e
16.18.9 The cache-remove Command o o v i it e

16.19 lease_query: Leasequery i ittt e e e e e e e
16.19.1 DHCPVA LeasequUery v v v v v v et e e e e e e e e e e e e e e e e e e e
16.19.2 DHCPv4 Leasequery Configuration o v i,
16.19.3 DHCPv6 Leasequery ittt i it
16.19.4 DHCPvV6 Leasequery Configuration v i it ii oo

16.20 Run Script SUPpOrt o o o e e e e e
16.21 User Contexts in Hooks o o e

17 Statistics
17.1 Statistics OVEIVIEW o v v vt s e e i e et e e e e e e e e e e
17.2 Statistics Lifecycle o o e e e e e
17.3 Commands for Manipulating Statistics Lo e
17.3.1 The statistic-get Command L
17.3.2 The statistic-reset Command L. e e e e e
17.3.3 The statistic-remove Command oL e
17.3.4 The statistic-get-all Command e e e
17.3.5 The statistic-reset-all Command L o
17.3.6 The statistic-remove-all Command L
17.3.7 The statistic-sample-age-set Command oL
17.3.8 The statistic-sample-age-set-all Command oL,
17.3.9 The statistic-sample-count-set Command e
17.3.10 The statistic-sample-count-set-all Command
174 TIMe SEries« v v v o e et e e e e e e e e e e e e e e e e e

18 Management API
I18.1 DataSyntaX v i i e e e e e e e e e e e e
18.2 Using the Control Channel

419
419
419
420
420
421
421
421
422
422
422
423
423
423
424

425
425
427

19

20

21

18.3 Commands Supported by Both the DHCPv4 and DHCPv6 Servers
18.3.1 Thebuild-report Command e e e e
18.3.2 Theconfig-get Command i e e e e
18.3.3 The config-reload Commando Lo
18.3.4 The config-test Command L. e
18.3.5 The config-write Command
18.3.6 The leases-reclaim Command
18.3.7 Thelibreload Command e
18.3.8 The list-commands Command oo
18.3.9 Theconfig-setCommand
18.3.10 The shutdown Command e
18.3.11 The dhcp-disable Command L
18.3.12 The dhcp-enable Command o . o e e e e e
18.3.13 The status-get Command L e
18.3.14 The server-tag-get Command: Lo e e
18.3.15 The config-backend-pull Command:
18.3.16 The version-get Command e

18.4 Commands Supported by the D2 Server e

18.5 Commands Supported by the Control Agent. e

Logging
19.1 Logging Configuration o v v i i et e e e e e e e e e e e e e
19.1.1 LOZEEIS . . o v o o e e e e e e e e e e e e e e e e e e
19.1.1.1 The name (string) Logger
19.1.1.2 The severity (string) Logger o o
19.1.1.3 The debuglevel (integer) Logger
19.1.1.4 The output_options (list) Logger
19.1.1.4.1 The output (string) Option o vt it
19.1.1.4.2 The flush (true or false) Option
19.1.1.4.3 The maxsize (integer) Option
19.1.1.4.4 The maxver (integer) Option
19.1.1.4.5 The pattern (string) Option o v i vt
19.1.2 Logging Message Format e e e e
19.1.2.1 Example Logger Configurations
19.1.3 Logging During Kea Startup oo
19.2 Logginglevels e e e

The Kea Shell

20.1 Overview of the Kea Shell e
20.2 ShellUsage o o e e
20.3 TLS SUPPOIT .« o o v v v e e e e e e e e e e e e e e

YANG/NETCONF Support
211 OVEIVIEW . . o o ottt e e e e e e e
21.2 Installing NETCONF e e e e e e e e e e e e e e
21.2.1 Installing NETCONFonUbuntu
21.2.2 Installing NETCONFon CentOS i
21.3 Quick Sysrepo OVEIVIEW L v i i e e e e e e e e e e e e e
21.4 Supported YANG Models e
21.5 Usingthe NETCONF Agent 0 i ittt e e e e e e e e e e
21.6 Configuration vt e e e e e e e e e e e e e e e e e
21.7 A kea-netconf Configuration Example Lo o
21.8 Starting and Stopping the NETCONF Agent
21.9 A Step-by-Step NETCONF Agent Operation Example

21.9.1 Setup of NETCONF Agent Operation Example 460
21.9.2 Error Handling in NETCONF Operation Example 462
21.9.3 NETCONF Operation Example with TwoPools 463
21.9.4 NETCONF Operation Example with Two Subnets 464
21.9.5 NETCONF Operation Example with Logging 464
21.9.6 Migrating YANG data from sysrepo VO.Xto VI.X oL 466

22 Monitoring Kea With Stork 467
22.1 Kea Statisticsin Grafana 467
23 Kea Security 469
23.1 TLS/HTTPS support o . oo e e e e e e e e 469
23.1.1 Building Kea with TLS/HTTPS support oo 469
23.1.2 TLS/HTTPS configuration 0 i v v i it et e e e e e e e e e e e 470

23.2 Securing Keadeployment e e e e e e e e e 471
23.2.1 Component-based design e 471
23.2.2 Limiting application permiSsionso it e e e e e e e e e e e e e 471
23.2.3 Securing Kea administrative accesso i it e e e 471
23.2.4 Securing database CONNECHIONS v v v v v v vt bttt e e e e e 472
23.2.5 Information leakage through logging 472
23.2.6 Cryptography COMPONENtS v v v v v vt e e e e e e e e e e e e e e e 472
2327 TSIGSIGNAUIES« c v vttt e e e e e e e e e e e e e e e 472
23.2.8 Rawsocketsupport 473
23.2.9 Remote AdmIinistrative ACCESS . . .« « v« v v v v v e e e e e e e e e e e 473
23.2.10 Authentication for Kea’s RESTAPI 473

23.3 Kea SECUTILY PIOCESSES . + v v v v v v v e 474
23.3.1 Vulnerability Handling e 474
23.3.2 Code quality and testingo e e e e e e e e e e e 474
2333 Fuzztesting o e e e e e e e e e 474
23.3.4 Release integrity v v v v v e 475
23.3.5 BusFactor. e e e e e e 475

24 API Reference 477
24.1 build-report e e e e e e e e e e e e e 478
242 cache-clear e e 479
243 cache-flush L L e 479
244 cache-get 480
24.5 cache-get-by-id e 481
24.6 cache-inSert e e e e 481
247 cache-load e e 482
24.8 cache-remove e e e e 483
249 cache-size e 484
2410 cache-Write e e e e e e 484
24 11 class-add oL e 485
2412 class-del e e 486
2413 ClasS-eL . . v o i e e e e e e e e e e e e e 486
2414 class-list L e e 487
2415 class-update L e 488
24.16 config-backend-pull 489
24,17 config-get o i e e e e e e e e e e e e e e e e 489
24.18 config-reload e e e e e e e e e 490
2419 config-Set L . i e e e e e e e e e e e e e e e 490
2420 config-test L e e e 491
2421 config-WIite L L e e e e e e e e e e e e 492

xi

24.22 dhep-disable L L e e e e e e e e e e 492

2423 dhep-enableo L L e e e e e e e e e e e e 493
2424 ha-CONtINUE v v v v ot e e it e 494
24.25 ha-heartbeat L L e e e e e e e e 494
24.26 ha-maintenance-cancel L e e e e e e e e e e e 495
24.27 ha-maintenance-notify e 495
24.28 ha-maintenance-start e 496
2420 ha-eSet i e e e e e e 497
2430 ha-SCOPLS .« .« v v v v o e 497
2431 ha-Sync L e e 498
24.32 leased-addo L e e 499
2433 leased-del Ll e e 499
2434 18aSC4-CL . .+ . i e 500
2435 leased-get-all L. e e e e e 501
24.36 leased-get-by-client-ido e 502
24.37 leased-get-by-hostname e 503
24.38 leased-get-by-hw-address 504
24.39 1eased-Zet-PAZE . .« .« v v i e 505
24.40 leased-resend-ddns e e e e e e e e e 506
2441 leased-update e e e 506
2442 1eased-WiIPE . .« v v it e e e e e e e e e e e 507
24.43 lease6-add L e e e e e e e e e 508
24.44 lease6-bulk-apply e e e e e e e e e e e 508
2445 lease6-del e e e 510
2446 1€aSE0-CL i e e e e e e e e e e e e e e e e e e e 510
24.47 lease6-get-all L. e 511
24.48 lease6-get-by-duid L e 513
24.49 lease6-get-by-hosStname i e e e e e e e e e e e e e e e e 513
24.50 1€aSe0-ZCL-PAZE . . « v v v e 514
24.51 lease6-resend-ddns oL L L L e e e e e e e 516
24.52 lease6-updateo e e 516
2453 1easeO-WIPE v v i i e e e e e e e 517
24.54 leases-reclaim L. e e e e e e e e e e 518
24.55 libreload L. e e e 518
24.56 list-commands e e e e e e e 519
24.57 networkd-addo L e e e e e 519
24.58 networkd-del L L e e 521
24.59 network4-get L. e e e e e e e 521
24.60 network4-1ist L L L e e e e 522
24.61 network4-subnet-add L e e 523
24.62 network4-subnet-del e e e e e 524
24.63 network6-add L. e e 524
24.64 networkO-del e e e e e e e e 526
24.65 netWOrkO-et e e e e e e e e e e e e e e e e 526
24.66 networkO-1ist L e e e e e 527
24.67 network6-subnet-addl e e e e e 528
24.68 network6-subnet-delo L L e e 529
24.69 remote-classd-del L e e e e e e e 530
2470 remote-classd-get e e e e e e 530
24.71 remote-classd-get-all L e e e e e e e e e 531
2472 remote-class4-Set L e e e e e e e e 532
2473 remote-class6-del L L e e e e 533
24774 remote-class6-get e e 534
2475 remote-class6-get-all 535

xii

2476 remote-classO-Set e e e e e e e e e e 536

24.77 remote-global-parameterd-del L e e 537
24.78 remote-global-parameterd-geto e e e 538
2479 remote-global-parameterd-get-all oL 539
24.80 remote-global-parameterd-set L e e e e e e e e e e e 540
24.81 remote-global-parameter6-del 541
24.82 remote-global-parametero-get e e e e e e e e e e e e 542
24.83 remote-global-parameter6-get-all L. e e 543
24.84 remote-global-parameter6-seto L o e 544
24.85 remote-network4-del Lo e e e 545
24.86 remote-network4-get oL L e e e e 546
24.87 remote-network4-list L. L e 547
24.88 remote-network4-set L. e e 548
24.89 remote-network6-del oL 548
24.90 remote-networkO-geto Lo L e e 549
2491 remote-networkO-list L. L e 550
24.92 remote-networkO-Set L. Lo e e e e e e 551
24.93 remote-option-defd-del L e e e e e e e 552
24.94 remote-option-defd-get L L. L e e e e e e e 553
24.95 remote-option-defd-get-all oL 554
24.96 remote-option-defd-set L. e e e e e 555
24.97 remote-option-def6-del 556
24.98 remote-option-defO-get L. L e e e e e e e e 557
24.99 remote-option-def6-get-all L e e e 558
24.100remote-option-def6-set L L. L e e 559
24.10Iremote-option4-global-del L oo 560
24.10Zremote-optiond-global-get 561
24.103remote-optiond-global-get-all e e e e e e 562
24.10dremote-optiond-global-set e e e e e e e 563
24.105emote-optiond-network-del oL e 564
24.10@emote-optiond-network-set oL e 565
24.107emote-optiond-pool-del L. 566
24.108&emote-optiond-pool-Set L e e e e e e e e e e e e e 567
24.10%emote-optiond-subnet-del e e e e 568
24.110remote-optiond-subnet-Set o o e e e e e e e e e e e e e e e e e e e 569
24 11lremote-option6-global-del 570
24 11Zremote-option6-global-get oL 570
24.113remote-option6-global-get-all 571
24.114remote-option6-global-set e e e e e e e e e e e 572
24.115emote-option6-network-delo e e e 573
24.11@emote-option6-network-set oL e 574
24 11'remote-option6-pd-pool-del L 575
24 118&emote-option6-pd-pool-set e e e e 576
24.11%emote-option6-pool-del L e e e e e 577
24.120remote-optionO-pool-SEt L L . e e e e e e e e e e e e e 578
24.121Iremote-option6-subnet-delo e 579
24.12Zremote-option0-subnet-set oL e e e e 580
24.123remote-serverd-del L e 581
24.124remote-SeIVerd-get i i e e e e e e e e e e e e e e e 582
24.125remote-serverd-get-all L L e e e e e e e e e 583
24.1260emote-SerVerd-Set Lo e e e e 584
24 127remote-servero-del oL e e 585
24.128emote-Servert-geto Lo e e e e e 586
24.12%emote-servero-get-all oL L e 587

25

24.130remote-SEIVErO-SEt v i e e e e e e e e e e e e e e e 588

24.13Iremote-subnetd-del-by-id L Lo e e e e 589
24.13Zremote-subnetd-del-by-prefix L e 589
24.133remote-subnetd-get-by-id L. Lo e 590
24.134remote-subnetd-get-by-prefixo e 591
24 135emote-subnetd-list Lo e 592
24.13@emote-subnetd-seto e e e e e e e 593
24.137remote-subneto-del-by-id oL e e 594
24.13&emote-subnet6o-del-by-prefix oL e 595
24.13%emote-subneto-get-by-id L. Lo 596
24.140remote-subnet6-get-by-prefixo o e 597
24.14Tremote-subneto-list oL e e e e e 598
24.142remote-subneto-set oL e e e e e e e e 599
24.143reservation-add oL e e e 600
24 144reservation-del L L e e e e e e e 601
24 145eservation-get oo e e e e e e e e e e e e 602
24 14@eservation-get-all L e e 603
24.14Treservation-get-by-hostname L e e e e e e e e e e e 603
24 148eservation-get-by-id L L. e 604
24.14%eservation-get-Page e et e e e e e e e e e e e e e e e e 605
24 150server-tag-get e e e e 605
24 151shutdown L L L e e e e e 606
24, 15tat-1€ased-Zet e e e e e e e e e e e e e e e e e e e 607
24.1536tat-1easeO-Zet e e e e e e e e e e e e e e e e e e e 607
24 1548tatiSLC-ZEL .+ . v v v i e 608
24 155statistic-get-all L. 609
24 156BtatiSHC-TEMOVE « « . o v v v v e e v e 610
24 15ktatistic-remove-all Lo e e e 611
24 15&BtAtISHC-TESCE « « v v v v v e 611
24 15%tatistic-reset-all L L e e e e e e e e 612
24.160statistic-sample-age-set Lo e e e e e e 613
24.161statistic-sample-age-set-all 613
24.162statistic-sample-COUNT-SEL v v v e 614
24.163statistic-sample-count-set-all oL L e e e e 615
24 10645tatUS-ZOL L e 616
24.165ubnetd-add L. e e e e e 617
24.166subnetd-del e 617
24.1675UbNCt4-ZCt L. L e e e e e e 618
24.16&ubnetd-list e e 619
24.16%ubnetd-update L e e e e e e e e e e e e e e e 620
24.170subnet6-add L e e 621
24 171subneto-del L L L e 621
24.1728UbNCO-ZEL L e e e e e e e e e e 622
24.173ubnetO-list L e e e 623
24.1745ubneto-update e 624
24 1T5VerSION-ZEL . o v v v v e 625
Manual Pages 627
25.1 kea-dhcp4 - DHCPv4 serverinKea e 627

2511 Synopsis. e e e e e 627

25.1.2 DesCription o v v v v it e 627

25.1.3 ArgUMENtS e e e e e e e e e 627

25.1.4 Documentation i e e e e e e e e e e e e e e 627

25.1.5 Mailing Lists and Support L. e e e e e e 628

xiv

25.2

253

254

25.5

25.6

25.7

25.8

25.1.6 HIiStOTY . . . v o o e e e e e e e e e e e e e e e e e 628

2517 See AlsOoo 628
kea-dhcp6 - DHCPvOserverinKea L 628
2521 SYNOPSIS « ¢ v v e e e e e e e e e e e e 628
2522 DesCription e e e e e e e e e e e 628
2523 ArgUMENES e e e e e e e e e e e e 628
2524 Documentationo e e e e 629
25.2.5 Mailing Lists and Support L e e e e e e 629
25.2.6 HIiStOTY o i e e e e e e e e 629
25277 See AlSO o e e e e 629
kea-ctrl-agent - Control AgentprocessinKea 629
25.3.1 SYNOPSIS .« v v e 629
25.3.2 DeSCrIPtON . . v v v v v i e 630
2533 ATgUMENLSt e 630
25.3.4 Documentation it e e e e e e e e e e e e e e e e 630
25.3.5 Mailing Lists and Supporto e 630
25.3.6 HiStOTY o o e e e e e e e e e e e e e e e e e 630
2537 See AlsOo. . . . 631
keactr] - Shell script for managing Kea o o . 631
2541 SynopsisS.o e e e 631
2542 DesCription ol 631
2543 Configuration File e 631
2544 OPLONS . v v v v v e 631
2545 Documentation Lo e e 632
25.4.6 Mailing Lists and Support e 632
2547 See AlSO o e e e e 632
kea-admin - Shell script for managing Kea databases 632
25.5.1 SYnopSiS . . v v e e e e e e e e e e e e e e e e e 632
25.5.2 DeSCrIPtON . . v v v v v i e 632
25.5.3 ArgUMENLS L. e 632
25.54 Documentation i e e e e e e e e e e e e e e e e e 633
25.5.5 Mailing Lists and Support 633
25.5.6 Sec AlSO oL e 634
kea-dhcp-ddns - DHCP-DDNS processinKea 634
25.6.1 SYnopSiS e e e e e e e e e e e e e e e e e 634
25.6.2 DesCriptiOn i e e e e e e e e e e 634
25.63 Arguments e e e 634
25.6.4 Documentation L. e e e e e e e e e e e e 634
25.6.5 Mailing Lists and Support L e e e e e e e 635
25.6.6 HIiStOry o o i e e e e e e 635
25.6.7 See AlSO e e e e 635
kea-1fc - Lease File Cleanup processinKea 635
2571 SYNOPSiS . . o oo i e e e e 635
25.7.2 DeSCrIPtiON . . . v v v v e 635
2573 ATZUMENLS . . . o v e 635
25.7.4 Documentation e e e e e e e e e e e 636
25.7.5 Mailing Lists and Support e 636
25.7.6 HIiStOry o o i e e e 636
2577 See AlSO . . . o v i e e e e 636
kea-shell - Text client for Control AZent proCess v v v v v v v v v b e e e e e e 637
25.8.1 SynopsSiSo e e e e e e e e e e e e 637
25.8.2 DesCription i e e e e e e e e e 637
25.83 Arguments e 637
25.8.4 Documentation L. e e e e e e e e e e e 637

XV

26

25.8.5 Mailing Lists and Support e e e e e e 638

25.8.6 HIiStOry o 638
25877 See Also. 638
25.9 kea-netconf - NETCONF agent for configuring Kea 638
25.9.1 Synopsis. e 638
25.9.2 DeSCription v v ittt e e e e e e e e e e e e e 638
25.9.3 ArgUMENLS . . . vt e 638
25.9.4 Documentation 639
25.9.5 Mailing Lists and Support 639
25.9.6 History e 639
2597 See AlSO oL e 639
25.10 perfdhcp - DHCP benchmarking tool o e 639
25.10.1 Synopsis . . v v v o e 639
25.10.2 Description v v i e e e e e e e e e e e e e e e 640
25.10.3 Templates e e 640
25.10.4 Options v v vt e e e e e 641
25.10.5 DHCPv4-Only Options v v v v v o i e e e e e e e e e e e e e e e e e e e 643
25.10.6 DHCPvO-Only Options oo v vttt it et e e e 643
25.10.7 Template-Related Options o i i 643
25.10.8 Options Controlling aTest e 644
25.10.9 Arguments e e 644
25.010.10ETOrS « o o v v v v e e e e e e e e e e 644
25.00.11EXIt Status e e e 644
25.10.12Usage Examples o e e e e e e e e e e 645
25.10.13Mailing Lists and Support e 645
25.10.14HIStOTY .« . o o o e e e e e e e e e e e e e e e e e 645
25.10.158ee AISO L L e e e e e 645
Kea Messages Manual 647
26.1 ALLOC e 647
26.2 ASIODNS . . . 657
263 BOOTP o 660
264 COMMAND 661
26,5 CTRL 664
26.6 DATABASE 665
26.7 DCTL e e 667
26.8 DHCP4 670
26.9 DHCPO 688
26.10 DHCPSRV 706
26.11 DHCP e e 734
26.12 EVAL . . . e e 745
26.13 FLEX e 749
26.14 HA . . o 750
26.15 HOOKS . . . 762
26.16 HOSTS . .« . o 766
26.17 HTTPS . . . e e 772
26.18 HTTP 773
26.19 LEASE 776
2020 LEC 777
2621 LOGIMPL 778
2022 LOG . . o e e e e 779
26.23 MYSQL . . . e 781
26.24 NETCONF o e 797
26.25 STAT . . . 801

XVi

2626 USER e 802

27 Kea Flow Diagrams 803
27.1 MainLoop 803
27.2 DHCPv4 Packet Processing i i v i i e e e e e e e e e e 803
27.3 DHCP Request Processing o i v it e e e e e e e e e 803
27.4 DHCPv4 Subnet Selection 0o o e e e e e e e e e 807
27.5 DHCPv4 Special Case of Double-booting 807
27.6 DHCPv4 Allocate Lease o vt it e e e e e e e e e e e e e e e e e 807
2777 Lease States v vt i e e e e e e e e e e e e e 807
27.8 Checking for Host Reservations o 0 0 v i i i e e e e e e e 807
27.9 Building the Options List o o e e e e e e e e 807

28 Kea Configuration File Syntax (BNF) 819
28.1 BNF Grammar for DHCPv4 o e e e e e e e 819
28.2 BNF Grammar for DHCPVO o e e e 836
28.3 BNF Grammar for Control Agent e 853
28.4 BNF Grammar for DHCP-DDNS e e e e e e e e 857
28.5 BNF Grammar for Kea-netconf e 862

29 Acknowledgments 867

30 Indices and Tables 869

xvii

Xviii

Kea Administrator Reference Manual Documentation, Release 1.9.10

Kea is an open source implementation of the Dynamic Host Con-
figuration Protocol (DHCP) servers, developed and maintained
by Internet Systems Consortium (ISC).

This is the reference guide for Kea version 1.9.10. Links to the
most up-to-date version of this document (in PDF, HTML, and
plain text formats), along with other documents for Kea, can be
found in ISC’s Knowledgebase.

kea

CONTENTS

https://kea.readthedocs.io

Kea Administrator Reference Manual Documentation, Release 1.9.10

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Kea is the next generation of DHCP software developed by ISC. It supports both DHCPv4 and DHCPv6 protocols
along with their extensions, e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 1.9.10.

For information about supported platforms see Supported platforms.

1.1 Supported platforms

In general, this version of Kea will build and run on any POSIX-compliant system with a C++ compiler (with C++11
support), the Botan cryptographic library, the logdcplus logging library and the Boost system library.

The Kea build has been checked with GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later
versions.

ISC regularly tests Kea on many operating systems and architectures, but lacks the resources to test all of them.
Consequently, ISC is only able to offer support on a “best effort” basis for some.

1.1.1 Regularly tested platforms
Kea is officially supported on Alpine, CentOS, Fedora, Ubuntu, Debian, and FreeBSD systems. Kea-1.9.10 builds
have been tested on:

e Alpine - 3.12, 3.13

e CentOS — 7,8

¢ Debian — 9, 10

e Fedora— 33, 34

e FreeBSD — 12.1, 13.0

» Ubuntu — 18.04, 20.04, 20.10, 21.04

There are currently no plans to port Kea to Windows systems.

1.1.2 Best effort

The following are platforms on which Kea is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints.

* Alpine — 3.11

Kea Administrator Reference Manual Documentation, Release 1.9.10

e FreeBSD - 114
¢ macOS — 10.13, 10.14

1.1.3 Community maintained

These systems may not all have the required dependencies for building Kea easily available, although it will be possible
in many cases to compile those directly from source. The community and interested parties may wish to help with
maintenance, and we welcome patch contributions, although we cannot guarantee that we will accept them. All
contributions will be assessed against the risk of adverse effect on officially supported platforms.

Platforms past their respective EOL dates, such as:
e Alpine — 3.10 (1 May 2021)
¢ CentOS — 6 (30 November 2020)
e Fedora— 31, 32
e Ubuntu — 14.04, 18.10, 19.04, 19.10
¢ Debian — 8 (30 June 2020)
* FreeBSD — 10 (31 October 2018)

1.1.4 Unsupported platforms

These are platforms on which Kea 1.7+ is known not to build or run:
¢ Windows (all versions)
¢ Windows Server (all versions)
* Any platform with OpenSSL 1.0.1 or earlier, which does not also have Botan as an alternative

¢ Any platform with log4cplus version 1.0.2 or earlier.

1.2 Required Software at Run-Time

Running Kea uses various extra software packages which may not be provided in the default installation of some
operating systems, nor in the standard package collections. You may need to install this required software separately.
(For the build requirements, also see Build Requirements.)

» Kea supports two cryptographic libraries: Botan and OpenSSL. Only one of them is required to be installed
during compilation. Kea uses the Botan library for C++ (https://botan.randombit.net/), version 2.0 or later. Note
that support for Botan versions earlier than 2.0 was removed in Kea 1.7.0 and later. As an alternative to Botan,
Kea can use the OpenSSL cryptographic library (https://www.openssl.org/), version 1.0.2 or later.

* Kea uses the logdcplus C++ logging library (https://sourceforge.net/p/logdcplus/wiki/Home/). It requires
log4cplus version 1.0.3 or later.

* Kea requires the Boost system library (https://www.boost.org/). Building with the header-only version of Boost
is no longer recommended.

Some optional features of Kea have additional dependencies.

* To store lease information in a MySQL database, Kea requires MySQL headers and libraries. This is an optional
dependency; Kea can be built without MySQL support.

4 Chapter 1. Introduction

https://botan.randombit.net/
https://www.openssl.org/
https://sourceforge.net/p/log4cplus/wiki/Home/
https://www.boost.org/

Kea Administrator Reference Manual Documentation, Release 1.9.10

1.3

To store lease information in a PostgreSQL database, Kea requires PostgreSQL headers and libraries. This is an
optional dependency; Kea can be built without PostgreSQL support.

To store lease information in a Cassandra database (CQL), Kea requires Cassandra headers and libraries. This
is an optional dependency; Kea can be built without Cassandra support.

Integration with RADIUS is provided in Kea via the hooks library available to our paid support customers. Use
of this library requires the FreeRadius-client library to be present on the system where Kea is running. This is
an optional dependency; Kea can be built without RADIUS support.

Kea provides a NETCONF interface with the kea-netconf agent. This Kea module is built optionally and requires
Sysrepo software when used. Building Kea with NETCONF support requires many dependencies to be installed,
which are described in more detail in /nstalling NETCONF.

Kea Software

Kea is modular. Part of this modularity is accomplished using multiple cooperating processes which, together, provide
the server functionality. The following software is included with Kea:

keactrl — This tool starts, stops, reconfigures, and reports status for the Kea servers.
kea-dhcp4 — The DHCPv4 server process. This process responds to DHCPv4 queries from clients.
kea—-dhcp6 — The DHCPv6 server process. This process responds to DHCPv6 queries from clients.

kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts as an intermediary between the
DHCP servers and DNS servers. It receives name update requests from the DHCP servers and sends DNS
update messages to the DNS servers.

kea—-admin — A useful tool for database backend maintenance (creating a new database, checking versions,
upgrading, etc.).

kea-1fc — This process removes redundant information from the files used to provide persistent storage for
the memfile database backend. While it can be run standalone, it is normally run as and when required by the
Kea DHCP servers.

kea-ctrl-agent — Kea Control Agent (CA) is a daemon that exposes a RESTful control interface for
managing Kea servers.

kea-netconf - kea-netconf is an agent that provides a YANG/NETCONF interface for configuring Kea.
kea-shell — This simple text client uses the REST interface to connect to the Kea Control Agent.

perfdhcp — A DHCP benchmarking tool which simulates multiple clients to test both DHCPv4 and DHCPv6
server performance.

The tools and modules are covered in full detail in this guide. In addition, manual pages are also provided in the
default installation.

Kea also provides C++ libraries and programmer interfaces for DHCP. These include detailed developer documentation
and code examples.

1.3. Kea Software 5

Kea Administrator Reference Manual Documentation, Release 1.9.10

6 Chapter 1. Introduction

CHAPTER
TWO

QUICK START

This section describes the basic steps needed to get Kea up and running. For further details, full customizations, and
troubleshooting, see the respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1 Quick Start Guide using tarball

1. Install required run-time and build dependencies. See Build Requirements for details.
2. Download the Kea source tarball from the ISC.org downloads page or the ISC downloads.isc.org.
3. Extract the tarball. For example:
$ tar —-xvzf kea-1.9.10.tar.gz
4. Go into the source directory and run the configure script:

$ cd kea-1.9.10
$./configure [your extra parameters]

5. Build it:

’S make

6. Install it (by default it will be placed in /usr/local/, so it is likely that you will need root privileges for this
step):

’$ make install

2.2 Quick Start Guide using Native Packages

Starting with Kea 1.6.0, ISC now provides native RPM, deb and APK packages, which make Kea installation much
easier. Unless you want to tweak specific compilation options, it is usually easier to install Kea using native packages.

1. Go to Kea on cloudsmith.io and choose Kea version and enter the repository.
2. Use Set Me Up and follow instructions to add the repository to your system.

3. Update system repositories. For example:

$ apt-get update

4. Kea is split into various packages. You may check the entire list on cloudsmith.io or using apt/yum/dnf. For
example:

https://www.isc.org/download/
https://downloads.isc.org/isc/kea/
https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos/

Kea Administrator Reference Manual Documentation, Release 1.9.10

’$ apt-cache search isc-kea ‘

5. Install specified packages:

’$ sudo apt-get install isc-kea-dhcp6-server ‘

or all packages:

’$ sudo apt-get install isc-keax ‘

or all packages with specifying version number:

’$ sudo apt-get install isc-kea*x=1.8.1-1s5c0000920201106154401 ‘

6. All installed packages should be now available directly, for example:

’# kea-dhcp6 -c /path/to/your/kea6/config/file. json ‘

or using systemd:

’# systemctl restart isc-kea-dhcp6-server ‘

keactrl is not available in packages as similar functionality is provided by the native systemctl scripts.

2.3 Quick Start Guide for DHCPv4 and DHCPv6 Services

1. Edit the Kea configuration files which by default are installed in the [kea-install-dir]/etc/
kea/ directory. These are: kea-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and
kea-ctrl-agent.conf, keactrl.conf for DHCPv4 server, DHCPv6 server, D2, Control Agent and
keactrl script respectively.

2. In order to start the DHCPv4 server in the background, run the following command (as root):

’# keactrl start -s dhcp4

Or run the following command to start the DHCPv6 server instead:

’# keactrl start -s dhcp6

Note that it is also possible to start all servers simultaneously:

’# keactrl start

3. Verify that the Kea server(s) is/are running:

’# keactrl status

A server status of “inactive” may indicate a configuration error. Please check the log file (by de-
fault named [kea-install-dir]/var/log/kea-dhcp4d.log, [kea—-install-dir]/var/log/
kea-dhcp6.log, [kea-install-dir]/var/log/kea-ddns.log or [kea—-install-dir]/
var/log/kea-ctrl-agent . loq) for the details of the error.

4. If the server has been started successfully, test that it is responding to DHCP queries and that the client receives
a configuration from the server; for example, use the ISC DHCP client.

5. Stop running the server(s):

8 Chapter 2. Quick Start

https://www.isc.org/download/

Kea Administrator Reference Manual Documentation, Release 1.9.10

keactrl stop

For instructions specific to your system, please read the system-specific notes, available in the Kea section of ISC’s
Knowledgebase.

The details of keactrl script usage can be found in Managing Kea with keactrl.

Once you have Kea services up and running, you may consider deploying a dashboard solution that would monitor
running services. For more details, see Monitoring Kea With Stork.

2.4 Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use keactrl or systemctl. To start the DHCPv4
server run the following command:

’# kea-dhcp4 -c /path/to/your/kead/config/file. json

Similarly, to start the DHCPv6 server run the following command:

’# kea-dhcp6 -c /path/to/your/kea6/config/file. json

2.4. Running the Kea Servers Directly 9

https://kb.isc.org/docs/installing-kea
https://kb.isc.org/docs
https://kb.isc.org/docs

Kea Administrator Reference Manual Documentation, Release 1.9.10

10 Chapter 2. Quick Start

CHAPTER
THREE

3.1

INSTALLATION

Packages

ISC publishes native RPM, deb, and APK packages, along with the tarballs with the source code. The packages are
available on Cloudsmith at https://cloudsmith.io/~isc/repos. The native packages can be downloaded and installed
using the system available in a specific distribution (such as dpkg or rpm). The Kea repository can also be added to
the system, making it easier to install updates. For details, please go to https://cloudsmith.io/~isc/repos, choose the
repository of interest and then click the Set Me Up button for detailed instructions.

3.2

Installation Hierarchy

The following is the directory layout of the complete Kea installation. (All directory paths are relative to the installation
directory):

3.3

etc/kea/ — configuration files.

include/ — C++ development header files.
lib/ — libraries.

lib/kea/hooks — additional hooks libraries.

sbin/ — server software and commands used by the system administrator.

share/doc/kea/ — this guide, other supplementary documentation and examples.

share/kea/ — API command examples and database schema scripts.
share/man/ — manual pages (online documentation).
var/lib/kea/ — server identification and lease database files.
var/log/ - log files.

var/run/kea - PID file and logger lock file.

Build Requirements

In addition to the run-time requirements (listed in Required Software at Run-Time), building Kea from source code
requires various development include headers and program development tools.

11

https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos
https://cloudsmith.io/~isc/repos

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note:

Some operating systems have split their distribution packages into a run-time and a development package. The

development package versions, which include header files and libraries, must be installed to build Kea from the source

code.

Building from source code requires the following software installed on the system:

Boost C++ libraries (https://www.boost.org/). The oldest Boost version used for testing is 1.57 (although it may
also work with older versions). The Boost system library must also be installed. Installing a header-only version
of Boost is no longer recommended.

OpenSSL (at least version 1.0.2) or Botan (at least version 2). Note that OpenSSL version 1.1.1 or later is
strongly recommended.

log4cplus (at least version 1.0.3) development include headers.

A C++ compiler (with C++11 support) and standard development headers. The Kea build has been checked
with GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later versions.

The development tools automake, libtool, and pkg-config.

The MySQL client and the client development libraries, when using the —with-mysql configuration flag to build
the Kea MySQL database backend. In this case, an instance of the MySQL server running locally or on a
machine reachable over a network is required. Note that running the unit tests requires a local MySQL server.

The PostgreSQL client and the client development libraries, when using the —with-pgsql configuration flag to
build the Kea PostgreSQL database backend. In this case an instance of the PostgreSQL server running locally
or on some other machine, reachable over the network from the machine running Kea, is required. Note that
running the unit tests requires a local PostgreSQL server.

The cpp-driver from DataStax is needed when using the —with-cql configuration flag to build Kea with the
Cassandra database backend. In this case, an instance of the Cassandra server running locally or on some other
machine, reachable over the network from the machine running Kea, is required. Note that running the unit tests
requires a local Cassandra server.

The FreeRADIUS client library is required to connect to a RADIUS server. This is specified using the —with-
freeradius configuration switch.

Sysrepo v1.4.140 and libyang v1.0.240 are needed to connect to a Sysrepo datastore. This is specified using the
—with-sysrepo option when running “configure”. Earlier versions are no longer supported.

googletest (version 1.8 or later) is required when using the —with-gtest configuration option to build the unit
tests.

The documentation generation tools Sphinx, texlive with its extensions and Doxygen, if using the —enable-
generate-docs configuration option to create the documentation. Particularly, in case of Fedora: python3-sphinx,
texlive and texlive-collection-latexextra; in case of Ubuntu: python3-sphinx, python3-sphinx-rtd-theme and
texlive-binaries. If LaTeX packages are missing, Kea will skip PDF generation and will produce only HTML
documents.

The Kerberos 5 libraries, when using the —with-gssapi configuration flag.

Visit ISC’s Knowledgebase at https://kb.isc.org/docs/installing-kea for system-specific installation tips.

3.4

Installation From Source

Although Kea may be available in pre-compiled, ready-to-use packages from operating system vendors, it is open
source software written in C++. As such, it is freely available in source code form from ISC as a downloadable tar file.

12

Chapter 3. Installation

https://www.boost.org/
https://www.sphinx-doc.org/
https://kb.isc.org/docs/installing-kea

Kea Administrator Reference Manual Documentation, Release 1.9.10

The source code can also be obtained from the Kea GitLab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1 Download Tar File

The Kea release tarballs may be downloaded from: https://downloads.isc.org/isc/kea/.

3.4.2 Retrieve From Git

Downloading this “bleeding edge” code is recommended only for developers or advanced users. Using development
code in a production environment is not recommended.

Note: When building from source code retrieved via git, additional software will be required: automake (v1.11 or
later), libtoolize, and autoconf (v2.69 or later). These may need to be installed.

The latest development code is available on GitLab (see https://gitlab.isc.org/isc-projects/kea). The Kea source is
public and development is done in the “master” branch.

The code can be checked out from https://gitlab.isc.org/isc-projects/kea.git:

$ git clone https://gitlab.isc.org/isc-projects/kea.git

The code checked out from the git repository does not include the generated configure script, the Makefile.in files, nor
their related build files. They can be created by running autoreconf with the ——install switch. This will run
autoconf, aclocal, libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. Developers planning to contribute to Kea should check
our Contributor’s Guide. The Kea Developer’s Guide contains more information about the process, and describes the
requirements for contributed code to be accepted by ISC.

3.4.3 Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To generate the makefiles using the defaults,
simply run:

$./configure

Run . /configure with the ——help switch to view the different options. Some commonly used options are:
¢ ——prefix Define the installation location (the defaultis /usr/local).
* ——with-mysqgl Build Kea with code to allow it to store leases and host reservations in a MySQL database.
e ——with-pgsqgl Build Kea with code to allow it to store leases and host reservations in a PostgreSQL database.

e ——with-cqgl Build Kea with code to allow it to store leases and host reservations in a Cassandra (CQL)
database. Support for Cassandra is now deprecated.

e ——with-log4cplus Define the path to find the Log4cplus headers and libraries. Normally this is not neces-
sary.

e ——with-boost-include Define the path to find the Boost headers. Normally this is not necessary.

e ——with-botan-config Specify the path to the botan-config script to build with Botan for cryptographic
functions. It is preferable to use OpenSSL (see below).

3.4. Installation From Source 13

https://gitlab.isc.org/isc-projects/kea
https://downloads.isc.org/isc/kea/
https://gitlab.isc.org/isc-projects/kea
https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md
https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.9.10

--with-openssl Replace Botan by the OpenSSL cryptographic library. By default configure searches
for a valid Botan installation. If one is not found, it searches for OpenSSL. Normally this is not necessary.

—-—enable-shell Build the optional kea-shell tool (more in The Kea Shell). The default is to not build
it.

-—with-site-packages Only useful when kea-shell is enabled. It causes the kea-shell python pack-
ages to be installed in the specified directory. This is mostly useful for Debian related distros. While most sys-
tems store python packages in ${prefix}/usr/lib/pythonX/site-packages, Debian introduced
a separate directory for packages installed from DEB. Such python packages are expected to be installed in
/usr/lib/python3/dist-packages.

——enable-perfdhcp Build the optional perfdhcp DHCP benchmarking tool. The default is to not build
it.

—-—with-freeradius Build the optional RADIUS hook. This option specifies the path to the patched ver-
sion of FreeRADIUS client. Available in subscriber only version. This option requires the subscription-only
RADIUS hook.

--with-freeradius-dictionary Specify a non-standard location for a FreeRADIUS dictionary file.
That file contains a list of supported RADIUS attributes. Available in subscriber only version. This option
requires the subscription-only RADIUS hook.

If the RADIUS options are not available, ensure that the RADIUS hook sources are in the premium directory and
rerun autoreconf -1i.

Note:

The ——runstatedir in the installation directories is particular. There are three cases:

The system uses autoconf 2.70 or greater which supports this, but this autoconf version has not been released
yet.

The system uses autoconf 2.69 patched to add this support. In this case and the previous, simply use the
—-—runstatedir configure parameter when needed.

There is no support (the configure parameter is not recognized and configure directly raises an error). For
autoconf 2.69 the runstatedir environment variable is supported, so simply remove the —- before
runstatedir in the configure script call, e.g.: . /configure runstatedir=/opt/run

Note:

For instructions concerning the installation and configuration of database backends for Kea, see DHCP

Database Installation and Configuration.

There are also many additional options that are typically not necessary for regular users. However, they may be useful
for package maintainers, developers, or people who want to extend Kea code or send patches:

——-with-gtest, ——with-gtest-source Enable the building of the C++ Unit Tests using the Google
Test framework. This option specifies the path to the gtest source. (If the framework is not installed on the
system, it can be downloaded from https://github.com/google/googletest.)

—-—enable-generate-docs Enable the rebuilding Kea documentation. ISC publishes Kea documentation
for each release; however, in some cases it may be desirable to rebuild it: for example, to change something in
the docs, or to generate new ones from git sources that are not released yet.

-—enable-generate-parser Many Kea components have parsers implemented using flex (.11 files) and
bison (.yy files). Kea sources have C++/h files generated out from them. By default Kea does not use flex or
bison to avoid requiring installation of unnecessary dependencies for users. However, if anything in the parses
is changed (such as adding a new parameter), flex and bison are required to regenerate parsers. This option
permits that.

14

Chapter 3. Installation

https://github.com/google/googletest

Kea Administrator Reference Manual Documentation, Release 1.9.10

e ——enable—generate-messages Enable the regeneration of messages files from their messages source
files, e.g. regenerate xxx_messages.h and xxx_messages.cc from xxx_messages.mes using the Kea message
compiler. By default Kea is built using these .h and .cc files from the distribution. However, if anything in a
.mes file is changed (such as adding a new message), the Kea message compiler needs to be built and used. This
option permits that.

e ——with-benchmark, ——with-benchmark—-source Enable the building of the database backend bench-
marks using the Google Benchmark framework. This option specifies the path to the gtest source. (If the frame-
work is not installed on the system, it can be downloaded from https://github.com/google/benchmark.) This
support is experimental.

For example, the following command configures Kea to find the Boost headers in /usr/pkg/include, specifies that
PostgreSQL support should be enabled, and sets the installation location to /opt/kea:

$./configure \
—-—with-boost-include=/usr/pkg/include \
—-—with-pgsgl=/usr/local/bin/pg_config \
—--prefix=/opt/kea

Users who have any problems with building Kea using the header-only Boost code, or who would like to use the Boost
system library (assumed for the sake of this example to be located in /usr/pkg/lib), should issue these commands:

$./configure \
——with-boost-libs=-1boost_system \
—-—with-boost-1lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

If configure succeeds, it displays a report with the parameters used to build the code. This report is saved into the
file config. report and is also embedded into the executable binaries, e.g., kea-dhcp4.

3.4.4 Build

After the configure step is complete, build the executables from the C++ code and prepare the Python scripts by
running the command:

$ make

3.4.5 Install

To install the Kea executables, support files, and documentation, issue the command:

$ make install

Do not use any form of parallel or job server options (such as GNU make’s -7 option) when performing this step;
doing so may cause errors.

Note: The install step may require superuser privileges.

If required, run 1dconfig asroot with /usr/local/1lib (or with prefix/lib if configured with —prefix) in /etc/
1d.so.conf (or the relevant linker cache configuration file for the OS):

$ ldconfig

3.4. Installation From Source 15

https://github.com/google/benchmark

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note: If 1dconfig is not run where required, users may see errors like the following:

program: error while loading shared libraries: libkea-something.so.l:
cannot open shared object file: No such file or directory

3.4.6 Cross-Building

It is possible to cross-build Kea, i.e. to create binaries in a separate system (the build system) from the one where
Kea runs (the host system).

It is outside of the scope of common administrator operations and requires some developer skills, but the Developer
Guide explains how to do that using an x86_64 Linux system to build Kea for a Raspberry Pi box running Raspbian:
Kea Cross-Compiling Example.

3.5 DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written in a way that makes it possible to choose
which database product should be used to store the lease information. Kea supports four database backends: MySQL,
PostgreSQL, Cassandra*, and memfile. To limit external dependencies, MySQL, PostgreSQL, and Cassandra support
are disabled by default and only memfile is available. Support for the optional external database backend must be
explicitly included when Kea is built. This section covers the building of Kea with one of the optional backends and
the creation of the lease database. (* Note that as of Kea 1.9.9 support for Cassandra is deprecated and will be removed
in a future version.)

Note: When unit tests are built with Kea (i.e. the —with-gtest configuration option is specified), the databases must be
manually pre-configured for the unit tests to run. The details of this configuration can be found in the Kea Developer’s
Guide.

3.5.1 Building with MySQL Support

Install MySQL according to the instructions for the system. The client development libraries must be installed.

Build and install Kea as described in Installation, with the following modification. To enable the MySQL database
code, at the “configure” step (see Configure Before the Build), the —with-mysql switch should be specified:

’$./configure [other-options] --with-mysql

If MySQL was not installed in the default location, the location of the MySQL configuration program “mysql_config”
should be included with the switch, i.e.

’$./configure [other-options] —--with-mysgl=path-to-mysqgl_config

See First-Time Creation of the MySQL Database for details regarding MySQL database configuration.

3.5.2 Building with PostgreSQL support

Install PostgreSQL according to the instructions for the system. The client development libraries must be installed.
Client development libraries are often packaged as “libpq”.

16 Chapter 3. Installation

https://jenkins.isc.org/job/Kea_doc/doxygen/de/d9a/crossCompile.html
https://jenkins.isc.org/job/Kea_doc/doxygen/
https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.9.10

Build and install Kea as described in /nstallation, with the following modification. To enable the PostgreSQL database
code, at the “configure” step (see Configure Before the Build), the —with-pgsql switch should be specified:

’$./configure [other-options] --with-pgsql

If PostgreSQL was not installed in the default location, the location of the PostgreSQL configuration program
“pg_config” should be included with the switch, i.e.

’$./configure [other-options] --with-pgsgl=path-to-pg_config

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL database configuration.

3.5.3 Building with CQL (Cassandra) Support

Note that as of Kea 1.9.9, support for Cassandra is deprecated. At this time it still works, but the support will be
removed in a future version, so new users are encouraged to choose an alternative.

Install Cassandra according to the instructions for the system. The Cassandra project website contains useful pointers:
https://cassandra.apache.org.

If a cpp-driver package is available as binary or as source, simply install or build and install the package. Then build
and install Kea as described in Installation. To enable the Cassandra (CQL) database code, at the “configure” step (see
Configure Before the Build), enter:

$./configure [other-options] --with-cgl=path-to-pkg-config

Note that if pkg—config is at its standard location (and thus in the shell path), the path does not need to be spec-
ified. If it does not work (e.g. no pkg-config, package not available in pkg-config with the cassandra name), the
cql_config scriptin tools/ can still be used as described below.

Download and compile cpp-driver from DataStax. For details regarding dependencies for building cpp-driver, see the
project homepage https://github.com/datastax/cpp-driver. In June 2016, the following commands were used:

git clone https://github.com/datastax/cpp-driver.git
cd cpp-driver

mkdir build

cd build

cmake ..

make

«wv v v n

Kea’s cpp-driver does not include the cql_config script. A cql_config script is present in the tools/ directory of the Kea
sources. Before using it, please create a cql_config_defines.sh file in the same directory (there is an example available
in cql_config_define.sh.sample; copy it over to cql_config_defines.sh and edit the path specified in it) and change the
environment variable CPP_DRIVER_PATH to point to the directory where the cpp-driver sources are located. Make
sure that appropriate access rights are set on this file. It should be executable by the system user building Kea.

Build and install Kea as described in Installation, with the following modification. To enable the Cassandra (CQL)
database code, at the “configure” step (see Configure Before the Build), enter:

’$./configure [other-options] —--with-cgl=path-to-cgl_config

3.6 Hammer Building Tool

An optional building tool called Hammer was introduced with Kea 1.6.0. It is a Python 3 script that lets users automate
tasks related to building Kea, such as setting up virtual machines, installing Kea dependencies, compiling Kea with

3.6. Hammer Building Tool 17

https://cassandra.apache.org
https://github.com/datastax/cpp-driver

Kea Administrator Reference Manual Documentation, Release 1.9.10

various options, running unit-tests and more. This tool was created primarily for internal QA purposes at ISC and it
is not included in the Kea distribution. However, it is available in the Kea git repository. This tool was developed
primarily for internal purposes and ISC cannot guarantee its proper operation. If you decide to use it, please do so
with care.

Note: Use of this tool is completely optional. Everything it does can be done manually.

The first-time user is strongly encouraged to look at Hammer’s built-in help:

$./hammer.py --help

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC or in VirtualBox. For a list of supported
systems, use the supported-systems command:

$./hammer.py supported-systems
fedora:

- 27: 1lxc, virtualbox

- 28: 1lxc, virtualbox

- 29: 1lxc, virtualbox
centos:

- 7: 1lxc, virtualbox

- 8: virtualbox

- 16.04: 1lxc, virtualbox
- 18.04: 1lxc, virtualbox
- 18.10: 1lxc, virtualbox

- 8: lxc, virtualbox

- 9: 1lxc, virtualbox
freebsd:

- 11.2: virtualbox

- 12.0: virtualbox

It is also possible to run the build locally, in the current system (if the OS is supported).

First, you must install the Hammer dependencies: Vagrant and either VirtualBox or LXC. To make life easier, Hammer
can install Vagrant and the required Vagrant plugins using the command:

$./hammer.py ensure—hammer—-deps

VirtualBox and LXC need to be installed manually.

The basic functions provided by Hammer are to prepare the build environment and perform the actual build, and to
run the unit tests locally in the current system. This can be achieved by running the command:

$./hammer.py build -p local

The scope of the process can be defined using —with (-w) and —without (-x) options. By default the build command
will build Kea with documentation, install it locally, and run unit tests.

To exclude the installation and generation of docs, type:

$./hammer.py build -p local -x install docs

The basic scope can be extended by: mysql, pgsql, cql, native-pkg, radius, shell, and forge.

18 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note: To build Kea locally, Hammer dependencies like Vagrant are not needed.

Hammer can be told to set up a new virtual machine with a specified operating system, without the build:

’$./hammer.py prepare-system —-p virtualbox -s freebsd -r 12.0

This way we can prepare a system for our own use. To get to such a system using SSH, invoke:

’s ./hammer.py ssh -p virtualbox -s freebsd -r 12.0

It is possible to speed up subsequent Hammer builds. To achieve this Hammer employs ccache. During compilation,
ccache stores objects in a shared folder. In subsequent runs, instead of doing an actual compilation, ccache returns the
stored earlier objects. The cache with these objects for reuse needs to be stored outside of VM or LXC. To indicate
the folder, you must indicate the —ccache-dir parameter for Hammer. In the indicated folder, there are separate stored
objects for each target operating system.

$./hammer.py build -p lxc —-s ubuntu -r 18.04 —--ccache-dir ~/kea-ccache

Note: ccache is currently only supported for LXC in Hammer; support for VirtualBox may be added
later.

For more information check:

’$./hammer.py —--help

3.7 Running Kea From a Non-root Account on Linux

Both Kea DHCPv4 and DHCPV6 servers perform operations that in general require root access privileges. In particular,
DHCPv4 opens raw sockets and both DHCPv4 and DHCPv6 open UDP sockets on privileged ports. However, with
some extra system configuration, it is possible to run Kea from non-root accounts.

First, a regular user account must be created:

useradd admin

Then, change the binaries’ ownership and group to the new user. Note that the specific path may be different. Please
refer to the ——prefix parameter passed to the configure script.:

chown -R admin /opt/kea
chgrp —-R admin /opt/kea
chown -R admin /var/log/kea—-dhcp4.log
chgrp -R admin /var/log/kea-dhcp4d.log
chown —-R admin /var/log/kea-dhcp6.log
chgrp -R admin /var/log/kea-dhcp6.log

If using systemd, modify its service file (e.g. /etc/systemd/system/kea-dhcp6.service):

User=admin
Group=admin

The most important step is to set the capabilities of the binaries. Refer to man capabilities to get more information.

3.7. Running Kea From a Non-root Account on Linux 19

https://ccache.samba.org/

Kea Administrator Reference Manual Documentation, Release 1.9.10

setcap 'cap_net_bind_service,cap_net_raw=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

If using systemd, also add this to service file (e.g. /etc/systemd/system/kea-dhcp6.service):

ExecStartPre=setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcpb6

After this step is complete, the admin user should be able to run Kea. Note that DHCPv4 server by default opens
raw sockets. If the network is only using relayed traffic, Kea can be instructed to use regular UDP sockets (refer to
dhcp-socket—type parameter in the /nterface Configuration section) and the cap_net_ raw capability can be
skipped.

Note: An alternative approach to avoiding running Kea with root privileges assumes instructing Kea to use non-
privileged (greater than 1024) posts and redirecting traffic. This, however, will work only for relayed traffic. This
approach in general is considered experimental and not tested enough for deployment in production environments.
Use with caution!

To use this approach, configure the server to listen on other non-privileged ports (e.g. 1547 and 1548) by running the
process with —p option in /etc/systemd/system/kea-dhcp4.service:

’ExecStart=/opt/kea/sbin/keafdhcp4 -d -c /etc/kea/kea-dhcpd.conf -p 2067

and /etc/systemd/system/kea-dhcp4d.service:

’ExecStart=/opt/kea/sbin/keafdhcp6 -d -c /etc/kea/kea-dhcp6.conf -p 1547

and then configure port redirection with iptables and ip6tables for new ports (e.g. 1547 and 1548). Be sure to replace
ens4 with the specific interface name.

iptables -t nat —-A PREROUTING -i ens4 -p udp ——-dport 67 —j REDIRECT —-—-to-port 2067
iptables -t nat —-A PREROUTING -i ens4 -p udp —--dport 2068 —-j REDIRECT --to-port 68
ip6tables -t nat —-A PREROUTING -i ens4 -p udp —--dport 547 -j REDIRECT —--to-port 1547
ip6tables -t nat —-A PREROUTING -i ens4 -p udp ——-dport 1548 —-j REDIRECT —--to-port 548

3.8 Deprecated Features

This section lists significant features that were supported in the past that have been, or will be removed. We will try to
deprecate features before removing them to signal to current users to plan a migration. New users should not rely on
deprecated features.

3.8.1 Cassandra (CQL) Support

Cassandra is a non-relational NoSQL database. Kea added support for the CQL lease backend in Kea 1.1.0-betal and
the CQL host backend in 1.4.0-betal. This feature never gained much traction with users, particularly compared to the
level of interest in and deployments of the alternatives, MySQL and PostgreSQL.

The non-relational nature of Cassandra makes it exceedingly difficult to implement more complex DHCP features,
such as the configuration backend. The configuration backend requires over 20 tables of tightly coupled data that
change over time and need to be kept in sync. With the Cassandra philosophy of data duplication, this would require
creating and maintaining a massive number of tables. To be specific, there are 36 different types of get queries in the
DHCPv4 code for the MySQL Configuration Backend. In the worst case, where each query required its own table, this

20 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 1.9.10

implies a duplication factor of over 70. This would clearly be a very bad design. When we created the initial MySQL
and PostgreSQL designs for the Configuration Backend, we also attempted to come up with a design for Cassandra.
That attempt was a complete failure. We assessed that Cassandra is simply not the right technology for this task.

Another problem with Cassandra is performance. In our performance tests MySQL and PostgreSQL were roughly 5-10
times faster than Cassandra, even though we did not do any special tuning for MySQL or PostgreSQL performance.

Another concern with Cassandra is its complicated setup. As of June 2021, Cassandra is not available in many
major distributions. It requires custom installation, with native packages now limited to Debian only. The quick
introduction seems to favor Docker containers as a replacement. The Debian packages available require Python 2
(which reached end of life at 1 Jan 2020) and will uninstall some python 3 packages. This is very risky step in a
production environment, because it removes the current 3.8 or 3.9 python and installs an old, unsupported version.
Support for python 3 is only available in alpha release of upcoming Cassandra 4.0, which is not released yet as of June
2021. The user has a tough choice between running antiquated version past its end of life or running unreleased alpha
software. Neither option is reasonable in production environment.

Cassandra is also very picky about the Java version. For example, on modern systems such as Ubuntu 21.04, it simply
doesn’t start and produces no logs. After running the Cassandra manually, it produces a cryptic Improperly specified
VM option ‘ThreadPriorityPolicy=42’ error message. This is an obscure information that the Java version is too new
(11.x) and needs to be downgraded (to 8.x).

To use C++ bindings (Kea is written in C++), a data driver is required. For a while, around 2020 there was a message
about it being in maintenance mode, but as of now (June 2021) this message disappeared. For a long time the data
driver didn’t not use the standard pkg-config approach and required custom hacking with regards to the software detec-
tion. Compared to MySQL and PostgreSQL, which are widely available in all popular Linux and BSD distributions,
setting up Cassandra is complex and the complexity is not decreasing over time.

Cassandra is also an ongoing maintenance burden. As we introduce new features to Kea, such as the ability to get
database statistics that are synced between multiple Kea instances sharing the same database, we need to extend our
API. We want to maintain parity between backends. Porting solutions between MySQL and PostgreSQL is frequently
very easy but is almost always a problem with Cassandra. That is not a Cassandra flaw on its own, the core problem
here is that it is different than the other solutions Kea supports.

For these reasons, we are deprecating Cassandra support as of Kea 1.9.9. The feature will function as before in the
Kea 2.0.x and 2.1.x series, but will print a warning. We plan to remove the feature entirely in a future release, possibly
as soon as Kea 2.2.0.

3.8.2 Sysrepo 0.x

Kea versions 1.9.9 and earlier required Sysrepo 0.7.x to run, when optional support for NETCONF was enabled. Kea
versions 1.9.10 and later now require Sysrepo 1.4.x and related libyang 1.x library to run. The earlier Sysrepo versions
are no longer supported. The latest Sysrepo 2.x version does not provide C++ bindings yet, and as such, is not usable
for Kea yet.

3.8. Deprecated Features 21

Kea Administrator Reference Manual Documentation, Release 1.9.10

22

Chapter 3. Installation

CHAPTER
FOUR

KEA DATABASE ADMINISTRATION

4.1 Databases and Database Version Numbers

Kea may be configured to use a database as storage for leases or as a source of servers’ configurations and host reser-
vations (i.e. static assignments of addresses, prefixes, options, etc.). Kea updates introduce changes to the database
schemas to facilitate new features and correct discovered issues with the existing schemas.

A given version of Kea expects a particular structure in the backend and checks for this by examining the version of the
database it is using. Separate version numbers are maintained for backends, independent of the version of Kea itself.
It is possible that the backend version will stay the same through several Kea revisions; similarly, it is possible that the
version of the backend may go up several revisions during a Kea upgrade. Versions for each backend are independent,
so an increment in the MySQL backend version does not imply an increment in that of PostgreSQL.

Backend versions are specified in a major.minor format. The minor number is increased when there are backwards-
compatible changes introduced; for example, the addition of a new index. It is desirable but not mandatory to apply
such a change; running an older backend version is possible. (Although, in the example given, running without the new
index may introduce a performance penalty.) On the other hand, the major number is increased when an incompatible
change is introduced; for example, an extra column is added to a table. If Kea is run on a backend that is too old
(as signified by a mismatched backend major version number), Kea will refuse to run; administrative action will be
required to upgrade the backend.

4.2 The kea-admin Tool

To manage the databases, Kea provides the kea—admin tool. It is able to initialize a new backend, check its version
number, perform a backend upgrade, and dump lease data to a text file.

kea—-admin takes two mandatory parameters: command and backend. Additional, non-mandatory options may
be specified. The currently supported commands are:

e db-init — Initializes a new database schema. This is useful during a new Kea installation. The database is
initialized to the latest version supported by the version of the software being installed.

* db-version— Reports the database backend version number. This is not necessarily equal to the Kea version
number as each backend has its own versioning scheme.

¢ db-upgrade — Conducts a database schema upgrade. This is useful when upgrading Kea.

* lease-dump — Dumps the contents of the lease database (for MySQL, PostgreSQL, or CQL backends) to a
CSV (comma-separated values) text file. The first line of the file contains the column names. This is meant to
be used as a diagnostic tool, so it provides a portable, human-readable form of the lease data.

23

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note: In previous versions of Kea earlier than 1.6.0 db-init, db-version and db-upgrade commands were named
lease-init, lease-version and lease-upgrade.

backend specifies the type of backend database. The currently supported types are:
* memfile — Lease information is stored on disk in a text file.
* mysqgl — Information is stored in a MySQL relational database.
* pgsgl — Information is stored in a PostgreSQL relational database.
* cgl — Information is stored in an Apache Cassandra database. This backend is deprecated.

Additional parameters may be needed, depending on the setup and specific operation: username, password, and
database name or the directory where specific files are located. See the appropriate manual page for details (man
8 kea—admin).

4.3 Supported Backends

The following table presents the capabilities of available backends. Please refer to the specific sections dedicated to
each backend to better understand their capabilities and limitations. Choosing the right backend may be essential for
the success of the deployment.

Table 1: List of available backends

Feature Memfile | MySQL PostgreSQL | CQL (Cassandra)

Status Stable Stable Stable Deprecated

Data format CSV file | SQLRMDB | SQL RMDB | NoSQL database (Cassandra)
Leases yes yes yes yes

Host Reservations no yes yes yes

Options defined on per host basis | no yes yes yes

Configuration Backend no yes no no

4.3.1 Memfile

The memfile backend is able to store lease information, but cannot store host reservation details; these must be stored
in the configuration file. (There are no plans to add a host reservations storage capability to this backend.)

No special initialization steps are necessary for the memfile backend. During the first run, both kea-dhcp4 and
kea-dhcp6 will create an empty lease file if one is not present. Necessary disk-write permission is required.

4.3.1.1 Upgrading Memfile Lease Files from an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files from an earlier version of Kea to a new version
of Kea. During startup the servers will check the schema version of the lease files against their own. If there is a
mismatch, the servers will automatically launch the LFC process to convert the files to the server’s schema version.
While this mechanism is primarily meant to ease the process of upgrading to newer versions of Kea, it can also be
used for downgrading should the need arise. When upgrading, any values not present in the original lease files will be
assigned appropriate default values. When downgrading, any data present in the files but not in the server’s schema
will be dropped. To convert the files manually prior to starting the servers, run the LFC process. See The LFC Process
for more information.

24 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.9.10

4.3.2 MySQL

MySQL is able to store leases, host reservations, options defined on a per-host basis, and a subset of the server
configuration parameters (serving as a configuration backend). This section can be safely ignored if the data will be
stored in other backends.

4.3.2.1 First-Time Creation of the MySQL Database

When setting up the MySQL database for the first time, the database area must be created within MySQL, and the
MySQL user ID under which Kea will access the database must be set up. This needs to be done manually, rather than
via kea-admin.

To create the database:

1. Log into MySQL as “root”:

$ mysgl -u root -p
Enter password:
mysqgl>

2. Create the MySQL database:

mysgl> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database tables:

mysgl> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysgl> GRANT ALL ON database-name.x TO 'user-name'(@'localhost';

(user-name and password are the user ID and password being used to allow Kea access to the MySQL instance.
All apostrophes in the command lines above are required.)

4. Create the database.
Exit the MySQL client

mysqgl> quit
Bye

and then use the kea—admin tool to create the database.

$ kea—admin db-init mysgl -u database-user -p database-password -n_,
—database—-name

While it is possible to create the database from within the MySQL client, we recommend using the
kea-admin tool as it performs some necessary validations to ensure Kea can access the database at
runtime. Among those checks is that the schema does not contain any pre-existing tables. If there
are any pre-existing tables they must be removed manually. An additional check examines the user’s
ability to create functions and triggers. The following error indicates that the user does not have the
necessary permissions to create functions or triggers:

ERROR 1419 (HY000) at line 1: You do not have the SUPER privilege and_
—binary logging is
enabled (you xmight* want to use the less safe log_bin_trust_function_
—creators variable)

(continues on next page)

4.3. Supported Backends 25

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

—mysqgl status = 1

mysgl: [Warning] Using a password on the command line interface can be
—insecure.

ERROR/kea-admin: Create failed, the user, keatest, has insufficient,
—privileges.

ERROR/kea-admin: mysqgl_can_create cannot trigger, check user permissions,

The simplest way around this is to set the global MySQL variable,
log_bin_trust_function_creators, to 1 via the MySQL client. Note this must be

done as a user with SUPER privileges:

mysql> set (@@global.log _bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

To create the database with MySQL directly, use these steps:

mysgl> CONNECT database-—name;
mysgl> SOURCE path-to-kea/share/kea/scripts/mysqgl/dhcpdb_create.mysqgl

(where “path-to-kea” is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysgl> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysqgl/dhcpdb_drop.mysqgl

(where “path-to-kea” is the location where Kea is installed.)

Warning: Dropping the database results in the unrecoverable loss of any data it contains.

5. Exit MySQL.:

mysqgl> quit
Bye

If the tables were not created in Step 4, run the kea—admin tool to create them now:

$ kea—-admin db-init mysgl -u database-user -p database-password -n database-name

Do not do this if the tables were created in Step 4. kea—admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This

process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea—admin.)

4.3.2.2 Upgrading a MySQL Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the existing database will need to be upgraded.

This can be done using the kea—-admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea-admin db-version mysgl -u database-user -p database-password -n database-name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

26 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.9.10

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data,
but depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version. To
perform an upgrade, issue the following command:

$ kea—admin db-upgrade mysgl -u database-user -p database-password -n database-name

Note: To search host reservations by hostname, it is critical that the collation of the hostname column in the host
table be case-insensitive. Fortunately, that is the default in MySQL, but it can be verified via this command:

mysgl> SELECT COLLATION('');
o +
| COLLATION('") \
fom +
| utf8_general_ci |
fom +

According to mysql’s naming convention, when the name ends in _c1i, the collation is case-insensitive.

4.3.2.3 Simple MySQL tweak to gain performance

Changing the MySQL internal value innodb_flush_ log_at_trx commit from the default value of 1 to
2 can result in a huge gain in Kea performance. It can be set per-session for testing:

mysgl> SET GLOBAL innodb_flush_log_at_trx_commit=2;
mysqgl> SHOW SESSION VARIABLES LIKE 'innodb_flush_log%';

or permanently in /etc/mysgl/my.cnf:

[mysqgld]
innodb_flush_log_at_trx_commit=2

Be aware that changing this value can cause problems during data recovery after a crash, so we strongly recommend
checking the MySQL documentation.

4.3.3 PostgreSQL

PostgreSQL is able to store leases, host reservations, and options defined on a per-host basis. This step can be safely
ignored if other database backends will be used.

4.3.3.1 First-Time Creation of the PostgreSQL Database

The first task is to create both the database and the user under which the servers will access it. A number of steps are
required:

1. Log into PostgreSQL as “root™:

$ sudo -u postgres psql postgres
Enter password:
postgres=#

2. Create the database:

4.3. Supported Backends 27

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Kea Administrator Reference Manual Documentation, Release 1.9.10

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

. Create the user under which Kea will access the database (and give it a password), then grant it access to the

database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT

postgres=#

. Exit PostgreSQL.:

postgres=# \q
Bye
$

. At this point, create the database tables either using the kea-admin tool, as explained in the next section (rec-

ommended), or manually. To create the tables manually, enter the following command. Note that PostgreSQL
will prompt the administrator to enter the new user’s password that was specified in Step 3. When the command
completes, Kea will return to the shell prompt. The output should be similar to the following:

$ psgl -d database-name -U user-name -f path-to-kea/share/kea/scripts/pgsql/
—dhcpdb_create.pgsgl
Password for user user—name:
CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE TABLE

CREATE INDEX

CREATE TABLE

START TRANSACTION

INSERT 0 1

INSERT 0 1

INSERT 0 1

COMMIT

CREATE TABLE

START TRANSACTION

INSERT 0 1

COMMIT

$

(path-to-kea is the location where Kea is installed.)

If instead an error is encountered, such as:

psgl: FATAL: no pg_hba.conf entry for host "[local]", user "user-name", database
—"database-name", SSL off

. the PostgreSQL configuration will need to be altered. Kea uses password authentication when connecting
to the database and must have the appropriate entries added to PostgreSQL’s pg_hba.conf file. This file is
normally located in the primary data directory for the PostgreSQL server. The precise path may vary depending
on the operating system and version, but the default location for PostgreSQL 9.3 on Centos 6.5 is: /var/1lib/
pgsgl/9.3/data/pg_hba.conf.

28

Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.9.10

Assuming Kea is running on the same host as PostgreSQL, adding lines similar to the following should be
sufficient to provide password-authenticated access to Kea’s database:

local database—name user—name password
host database—name user-—name 127.0.0.1/32 password
host database—name user—-name ::1/128 password

These edits are primarily intended as a starting point, and are not a definitive reference on PostgreSQL admin-
istration or database security. Please consult the PostgreSQL user manual before making these changes, as they
may expose other databases that are running. It may be necessary to restart PostgreSQL in order for the changes
to take effect.

4.3.3.2 Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by running the kea—admin tool:

$ kea-admin db-init pgsgl -u database-user -p database-password -n database-name

Do not do this if the tables were already created manually. kea—admin implements rudimentary checks; it will refuse
to initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea-admin.)

4.3.3.3 Upgrading a PostgreSQL Database from an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and commands as described in Upgrading a
MySQL Database from an Earlier Version of Kea, with the exception that the “pgsql” database backend type must be
used in the commands.

Use the following command to check the current schema version:

’$ kea—-admin db-version pgsgl -u database-user -p database-password -n database-name

Use the following command to perform an upgrade:

’$ kea—-admin db-upgrade pgsgl -u database-user -p database-password -n database-name

4.3.4 Cassandra

Cassandra (sometimes for historical reasons referred to in documentation and commands as CQL) is the newest back-
end added to Kea; initial development was contributed by Deutsche Telekom. The Cassandra backend is able to store
leases, host reservations, and options defined on a per-host basis.

Cassandra must be properly set up if Kea is to store information in it. This section can be safely ignored if the data
will be stored in other backends.

Note: Cassandra backend was deprecated in Kea 1.9.9. New users are discouraged from using Cassandra and existing
users should consider a migration strategy. See Deprecated Features for details.

4.3. Supported Backends 29

Kea Administrator Reference Manual Documentation, Release 1.9.10

4.3.4.1 First-Time Creation of the Cassandra Database

When setting up the Cassandra database for the first time, the keyspace area within it must be created. This needs to
be done manually; it cannot be performed by kea-admin.

To create the database:

1. Export COLSH_HOST environment variable:

$ export COLSH_HOST=localhost

2. Log into CQL:

$ cqglsh
cgl>

3. Create the CQL keyspace:

cgl> CREATE KEYSPACE keyspace-name WITH replication = {'class' : 'SimpleStrategy',
—'replication_factor' : 1};

(keyspace-name is the name chosen for the keyspace.)

4. At this point, the database tables can be created. (It is also possible to exit Cassandra and create the tables using
the kea—admin tool, as explained below.) To do this:

’cqlsh -k keyspace-name —-f path-to-kea/share/kea/scripts/cgl/dhcpdb_create.cql

(path-to-kea is the location where Kea is installed.)

If the tables were not created in Step 4, do so now by running the kea—-admin tool:

’s kea-admin db-init cgl -n database-name

Do not do this if the tables were created in Step 4. kea—admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid possibly irretrievable mistakes by kea—admin.)

4.3.4.2 Upgrading a Cassandra Database from an Earlier Version of Kea

Sometimes a new Kea version may use a newer database schema, so the existing database will need to be upgraded.
This can be done using the kea—admin db-upgrade command.

To check the current version of the database, use the following command:

$ kea—-admin db-version cqgl -n database-name

(See Databases and Database Version Numbers for a discussion about versioning.) If the version does not match the
minimum required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data,
but depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version. To
perform an upgrade, issue the following command:

$ kea-admin db-upgrade cgl -n database-name

30 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 1.9.10

4.3.5 Using Read-Only Databases with Host Reservations

If a read-only database is used for storing host reservations, Kea must be explicitly configured to operate on the
database in read-only mode. Sections Using Read-Only Databases for Host Reservations with DHCPv4 and Using
Read-Only Databases for Host Reservations with DHCPv6 describe when such a configuration may be required, and
how to configure Kea to operate in this way for both DHCPv4 and DHCPv6.

4.3.6 Limitations Related to the Use of SQL Databases

4.3.6.1 Year 2038 Issue

The lease expiration time is stored in the SQL database for each lease as a timestamp value. Kea developers observed
that the MySQL database doesn’t accept timestamps beyond 2147483647 seconds (the maximum signed 32-bit num-
ber) from the beginning of the UNIX epoch (00:00:00 on 1 January 1970). Some versions of PostgreSQL do accept
greater values, but the value is altered when it is read back. For this reason, the lease database backends put a restric-
tion on the maximum timestamp to be stored in the database, which is equal to the maximum signed 32-bit number.
This effectively means that the current Kea version cannot store leases whose expiration time is later than 2147483647
seconds since the beginning of the epoch (around the year 2038). This will be fixed when the database support for
longer timestamps is available.

4.3. Supported Backends 31

Kea Administrator Reference Manual Documentation, Release 1.9.10

32 Chapter 4. Kea Database Administration

CHAPTER
FIVE

KEA CONFIGURATION

Kea uses JSON structures to represent server configurations. The following sections describe how the configuration
structures are organized.

5.1 JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious usage is for the configuration file, but JSON
is also used for sending commands over the Management API (see Management API) and for communicating between
DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command line, either directly or using a script, e.g.
keactrl. The configuration file is specified upon startup using the -c parameter.

5.1.1 JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and NETCONF modules are defined in an
extended JSON format. Basic JSON is defined in RFC 7159 and ECMA 404. In particular, the only boolean values
allowed are true or false (all lowercase). The capitalized versions (True or False) are not accepted.

Even if the JSON standard (ECMA 404) does not require JSON objects (i.e. name/value maps) to have unique entries
Kea implements them using a C++ STL map with unique entries so:

* if there are multiple values for the same name in an object/map the last value overwrites previous values
* configuration file parsers since Kea 1.9.0 version raise a syntax error in such cases
Kea components use an extended JSON with additional features allowed:
* shell comments: any text after the hash (#) character is ignored.
* C comments: any text after the double slashes (//) character is ignored.
* Multiline comments: any text between /* and */ is ignored. This comment can span multiple lines.
* File inclusion: JSON files can include other JSON files by using a statement of the form <?include “file.json”?>.

The configuration file consists of a single object (often colloquially called a map) started with a curly bracket. It
comprises only one of the “Dhcp4”, “Dhcp6”, “DhcpDdns”, “Control-agent”, or “Netconf” objects. It is possible to
define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

33

https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Kea Administrator Reference Manual Documentation, Release 1.9.10

The whole configuration starts here.

{

DHCPv4 specific configuration starts here.

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethO" 1,
"dhcp-socket-type": "raw"

br
"valid-lifetime": 4000,

"renew-timer": 1000,

"rebind-timer": 2000,

"subnet4": [{
"pools": [{ "pool": "192.0.2.1-192.0.2.200" } 1,
"subnet": "192.0.2.0/24"

I

Now loggers are inside the DHCPv4 object.

"loggers": [{
"name" H "*",
"severity": "DEBUG"

H
}

The whole configuration structure ends here.

}

More examples are available in the installed share/doc/kea/examples directory.

Note: The “Logging” element is removed in Kea 1.6.0 and its contents (the “loggers” object) moved
inside the configuration objects (maps) for the respective Kea modules. For example: the “Dhcp4” map
contains the “loggers” object specifying logging configuration for the DHCPv4 server. Backward com-
patibility is maintained until Kea 1.7.10 release; it will be possible to specify the “Logging” object at the
top configuration level and “loggers” objects at the module configuration level. Finally, support for the
top-level “Logging” object was removed in Kea 1.7.10.

The specification for supporting several elements (e.g. “Dhcp4”, “Dhcp6”) in one file has been removed
in Kea 1.7.10, so that each component requires one separate configuration file.

To avoid repetition of mostly similar structures, examples in the rest of this guide will showcase only the subset of
parameters appropriate for a given context. For example, when discussing the IPv6 subnets configuration in DHCPv6,
only subnet6 parameters will be mentioned. It is implied that the remaining elements (the global map that holds
Dhcp6) are present, but they are omitted for clarity. Usually, locations where extra parameters may appear are denoted
by an ellipsis (.. .).

5.1.2 Comments and User Context

Shell, C, or C++ style comments are all permitted in the JSON configuration file if the file is used locally. This is
convenient and works in simple cases where the configuration is kept statically using a local file. However, since
comments are not part of JSON syntax, most JSON tools detect them as errors. Another problem with them is that
once Kea loads its configuration, the shell, C, and C++ style comments are ignored. If commands such as config-get
or config-write are used, those comments are lost. An example of such comments has been presented in the previous
section.

Historically, to address the problem, Kea code allowed the use of comment strings as valid JSON entities. This had
the benefit of being retained through various operations (such as config-get), or allowing processing by JSON tools.

34 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 1.9.10

An example JSON comment looks like this:

"Dhcpd": {
"subnet4": [{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" 1}1,
"comment": "second floor"

H

However, the fact that the comment could only be a single line, and that it was not possible to add any other information
in a more structured form, were frustrating. One specific example was a request to add floor levels and building
numbers to subnets. This was one of the reasons why the concept of user context has been introduced. It allows
adding arbitrary JSON structure to most Kea configuration structures. It has a number of benefits compared to earlier
approaches. First, it is fully compatible with JSON tools and Kea commands. Second, it allows storing simple
comment strings, but it can also store much more complex data, such as multiple lines (as a string array), extra typed
data (such as floor numbers being actual numbers), and more. Third, the data is exposed to hooks, so it is possible to
develop third-party hooks that take advantage of that extra information. An example user context looks like this:

"Dhcpéd": {
"subnet4": [{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }1,
"user-context": {
"comment": "second floor",
"floor": 2

User contexts can store an arbitrary data file as long as it has valid JSON syntax and its top-level element is a map (i.e.
the data must be enclosed in curly brackets). However, some hook libraries may expect specific formatting; please
consult the specific hook library documentation for details.

In a sense the user context mechanism has superseded the JSON comment capabilities. ISC would like to encourage
people to use user-context in favor of the older mechanisms and we hope to deprecate JSON comments one day in
the future. To promote this way of storing comments, Kea code is able to understand JSON comments, but converts
them to user context on the fly. The comments entries in user-context were converted back to JSON comments to keep
backward compatibility, but that conversion went away in version 1.7.9.

There is one side effect, however. If the configuration uses the old JSON comment, the config-get command returns
a slightly modified configuration. It is not uncommon for a call for config-set followed by a config-get to receive a
slightly different structure. The best way to avoid this problem is simply to abandon JSON comments and use user
context.

For a discussion about user context used in hooks, see User Contexts in Hooks.

5.1.3 Simplified Notation

It is sometimes convenient to refer to a specific element in the configuration hierarchy. Each hierarchy level is separated
by a slash. If there is an array, a specific instance within that array is referenced by a number in square brackets (with
numbering starting at zero). For example, in the above configuration the valid-lifetime in the Dhcp4 component
can be referred to as Dhcp4/valid-lifetime and the pool in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.1. JSON Configuration 35

Kea Administrator Reference Manual Documentation, Release 1.9.10

5.2 Kea Configuration Backend

5.2.1 Applicability

Kea Configuration Backend (abbreviated as CB) is a feature first introduced in the 1.6.0 release, which provides Kea
servers with the ability to manage and fetch their configuration from one or more databases. In the documentation, the
term “Configuration Backend” may also refer to the particular Kea module providing support to manage and fetch the
configuration information from the particular database type. For example: MySQL Configuration Backend is the logic
implemented within the “mysql_cb” hooks library which provides a complete set of functions to manage and fetch the
configuration information from the MySQL database.

In small deployments, e.g. those comprising a single DHCP server instance with limited and infrequently changing
number of subnets, it may be impractical to use the CB as a configuration repository because it requires additional
third-party software to be installed and configured - in particular the MySQL server and MySQL client. Once the
number of DHCP servers and/or the number of managed subnets in the network grows, the usefulness of the CB
becomes obvious.

A good example of a use case for the CB is a pair of Kea DHCP servers which can be configured to support High
Auvailability as described in ha: High Availability. The configurations of both servers (including the value of the
server—tag parameter) are almost exactly the same. They may differ by the server identifier and designation of the
server as a primary or standby (or secondary). They may also differ by their interfaces’ configuration. Typically, the
subnets, shared networks, option definitions, global parameters are the same for both servers and can be sourced from
a single database instance to both Kea servers.

Using the database as a single source of configuration for subnets and/or other configuration information supported by
the CB has the advantage that any modifications to the configuration in the database are automatically applied to both
Servers.

Another case when the centralized configuration repository is desired is in deployments including a large number of
DHCEP servers, possibly using a common lease database to provide redundancy. New servers can be added to the
pool frequently to fulfill growing scalability requirements. Adding a new server does not require replicating the entire
configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also brings other benefits, such as:
« the ability to use database specific tools to access the configuration information,
* the ability to create customized statistics based on the information stored in the database, and

* the ability to backup the configuration information using the database’s built-in replication mechanisms.

5.2.2 CB Capabilities and Limitations
Kea CB has some limitations as a result of its complexity and development time constraints: - supported for the
MySQL database only,

* supported for DHCPv4 and DHCPv6 daemon; the Control Agent, D2 daemon and the NETCONF daemon
cannot be configured from the database,

* only a subset of the DHCP configuration parameters can be set in the database: global parameters, option
definitions, global options, client classes, shared networks, and subnets; other configuration parameters must be
sourced from a JSON configuration file.

The current CB limitations will be gradually removed in subsequent Kea releases.

Note: Kea CB stores data in a MySQL schema that is public. It’s possible to insert configuration data into the MySQL
tables manually or automatically using SQL scripts, but this requires reasonably good SQL and schema knowledge.

36 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 1.9.10

The supported method for managing the data is through our cb-cmds hook library, which provides management com-
mands for config backends. It simplifies many typical operations, such as listing, adding, retrieving, and deleting
global parameters, shared networks, subnets, pools, options, option definitions, and client classes. In addition, it pro-
vides essential business logic that ensures the logical integrity of the data. See commands starting with “remote-" in
Appendix A of the Kea Administrator Reference Manual for a complete list. The cb_cmds hooks library is available
to subscribers only. If you are not a subscriber and would like to subscribe, please contact info@isc.org, and our sales
team will assist you.

The schema creation script can be found here dhcpdb_create.mysql and we have some related design documents in
gitlab: CB Design and Client Classes in CB Design.

Note: We strongly recommend against duplication of the configuration information in the file and the database. For
example, when specifying subnets for the DHCP server, please store them in either the configuration backend or in the
configuration file, not both. Storing some subnets in the database and others in the file may put you at risk of potential
configuration conflicts. Note that the configuration instructions from the database take precedence over instructions
from the file, so parts of the configuration specified in the file may be overridden if contradicted by information in the
database.

Note: Although it is not recommended, it is possible to specify certain parameter types both in a configuration file
and the database. For example, a subnet can be specified in the configuration file and another subnet in the database.
As a result, the server will use both subnets. DHCP client classes, however, must not be specified in the configuration
file and the database, even if they do not overlap. If any client classes are specified in the database for a particular
DHCEP server, this server will use these classes and ignore all classes present in its configuration file. This behavior
was introduced to ensure that the server receives a consistent set of client classes specified in an expected order with
all inter-class dependencies fulfilled. It is impossible to guarantee consistency when client classes are specified in two
independent configuration sources.

Note: It is recommended that the subnet_cmds hooks library not be used to manage the subnets when the config-
uration backend is used as a source of information about the subnets. The subnet_cmds hooks library modifies the
local subnets configuration in the server’s memory, not in the database. Use the cb_cmds hooks library to manage
the subnets information in the database instead.

5.2.3 CB Components

Kea 1.6.0 version or later is required to use the Configuration Backend. The mysqgl_cb open source hooks library
implementing the Configuration Backend for MySQL must be compiled and loaded by the DHCP servers. This hooks
library is compiled when the ——with-mysqgl configuration switch is used during the Kea build. The MySQL C
client libraries must be installed, as explained in DHCP Database Installation and Configuration.

Note: Any existing MySQL schema must be upgraded to the latest schema required by the particular Kea version
using the kea—admin tool, as described in The kea-admin Tool.

The cb_cmds premium hooks library, which is available to ISC’s paid support customers, provides a complete set
of commands to manage the servers’ configuration information within the database. This library can be attached to
both DHCPv4 and DHCPV6 server instances. It is still possible to manage the configuration information without the
cb_cmds hooks library with commonly available tools, such as MySQL Workbench or the command-line MySQL
client, by directly working with the database.

5.2. Kea Configuration Backend 37

mailto:info@isc.org
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/mysql/dhcpdb_create.mysql
https://gitlab.isc.org/isc-projects/kea/wikis/designs/configuration-in-db-design
https://gitlab.isc.org/isc-projects/kea/wikis/designs/client-classes-in-cb

Kea Administrator Reference Manual Documentation, Release 1.9.10

Refer to cb_cmads: Configuration Backend Commands for the details regarding the cb_cmds hooks library.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as the list of supported configuration
parameters, can be found in Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6 respectively.

5.2.4 Configuration Sharing and Server Tags

The configuration database is designed to store the configuration information for multiple Kea servers. Depending on
the use case, the entire configuration may be shared by all servers, parts of the configuration may be shared by multiple
servers and the rest of the configuration may be different for these servers or, finally, each server may have its own
non-shared configuration.

The configuration elements in the database are associated with the servers by “server tags”. The server tag is an
arbitrary string holding the name of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are inde-
pendent in the database, i.e. the same server tag can be created for the DHCPv4 and the DHCPv6 server respectively.
The value is configured using the server-tag parameter in the Dhcp4 or Dhep6 scope. The current server-tag can
be checked with the server—-tag—-get command.

The server definition, which consists of the server tag and the server description, must be stored in the configuration
database prior to creating the dedicated configuration for that server. In cases when all servers use the same configura-
tion, e.g. a pair of servers running as the High Availability peers, there is no need to configure the server tags for these
servers in the database. The database by default includes the logical server all, which is used as a keyword to indicate
that the particular piece of configuration must be shared between all servers connecting to the database. The all server
can’t be deleted or modified. It is not even returned among other servers as a result of the remote-server[46]-get-all
commands. Also, slightly different rules may apply to “all” keyword than to any user defined server when running the
commands provided by the cb_cmds hooks library cb_cmds: Configuration Backend Commands.

In the simplest case there are no server tags defined in the configuration database and all connecting servers will get the
same configuration regardless of the server tag they are using. The server tag that the particular Kea instance presents
to the database to fetch its configuration is specified in the Kea configuration file, using the config-control map (please
refer to the Enabling Configuration Backend and Enabling Configuration Backend for details).

All Kea instances presenting the same server tag to the configuration database are given the same configuration. It
is the administrator’s choice whether multiple Kea instances use the same server tag or each Kea instance is using a
different server tag. Also, there is no requirement that the instances running on the same physical or virtual machine
use the same server tag. It is even possible to configure the Kea server without assigning it a server tag. In such a case
the server will be given the configuration specified for “all” servers.

In order to differentiate the configurations between the Kea servers, a collection of the server tags used by the servers
must be stored in the database. For the DHCPv4 and DHCPv6 servers, it can be done using the commands described
in remote-serverd-set, remote-server6-set commands and remote-serverd-set, remote-server6-set commands. Next,
the server tags can be used to associate the configuration information with the servers. However, it is important
to note that some DHCP configuration elements may be associated with multiple server tags and other configuration
elements may be associated with exactly one server tag. The former configuration elements are referred to as shareable
configuration elements and the latter are referred to as non-shareable configuration elements. The Configuration
Backend in DHCPv4 and Configuration Backend in DHCPv6 list the DHCP specific shareable and non-shareable
configuration elements. However, in this section we want to briefly explain the difference between them.

A shareable configuration element is the one having some unique property identifying it and which instance may
appear only once in the database. An example of the shareable DHCP element is a subnet instance. The subnet is
a part of the network topology and we assume that the particular subnet may have only one definition within this
network. The subnet has two unique identifiers: subnet id and the subnet prefix. The subnet identifier is used in Kea to
uniquely identify the subnet and to connect it with other configuration elements, e.g. in host reservations. The subnet
identifier uniquely identifies the subnet within the network. Some commands provided by the cb_cmds hooks library
allow for accessing the subnet information by subnet identifier (or prefix) and explicitly prohibit using the server tag
to access the subnet. This is because, in a general case, the subnet definition is associated with multiple servers rather

38 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 1.9.10

than a single server. In fact, it may even be associated with no servers (unassigned). Still, the unassigned subnet has
an identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple servers, one server or no servers. Deletion of the
server which is associated with the shareable element does not cause the deletion of the shareable element. It merely
deletes the association of the deleted server with the element.

Unlike the shareable element, the non-shareable element must not be explicitly associated with more than one server
and must not exist after the server is deleted (must not remain unassigned). The non-shareable element only exists
within the context of the server. An example of the non-shareable element in DHCP is a global parameter, e.g.
renew-timer. The renew timer is the value to be used by the particular server and only this server. Other servers may
have their respective renew timers set to the same or different value. The renew timer is the parameter which has no
unique identifier by which it could be accessed, modified or otherwise used. The global parameters like the renew
timer can be accessed by the parameter name and the tag of the server for which they are configured. For example:
the commands described in The remote-global-parameterd-get, remote-global-parameter6-get Commands allow for
fetching the value of the global parameter by the parameter name and the server name. Getting the global parameter
only by its name (without specifying the server tag) is not possible because there may be many global parameters with
the given name in the database.

When the server associated with a non-shareable configuration element is deleted, the configuration element is auto-
matically deleted from the database along with the server because the non-shareable element must be always assigned
to some server (or the logical server “all”).

The terms “shareable” and “non-shareable” only apply to the associations with user defined servers. All configuration
elements associated with the logical server “all” are by definition shareable. For example: the renew-timer associated
with “all” servers is used by all servers connecting to the database which don’t have their specific renew timers
defined. In the special case, when none of the configuration elements are associated with user defined servers, the
entire configuration in the database is shareable because all its pieces belong to “all” servers.

Note: Be very careful when associating the configuration elements with different server tags. The configuration
backend doesn’t protect you against some possible misconfigurations that may arise from the wrong server tags’
assignments. For example: if you assign a shared network to one server and the subnets belonging to this shared
network to another server, the servers will fail upon trying to fetch and use this configuration. The server fetching the
subnets will be aware that the subnets are associated with the shared network but the shared network will not be found
by this server as it doesn’t belong to it. In such a case, both the shared network and the subnets should be assigned to
the same set of servers.

5.2. Kea Configuration Backend 39

Kea Administrator Reference Manual Documentation, Release 1.9.10

40

Chapter 5. Kea Configuration

CHAPTER
SIX

MANAGING KEA WITH KEACTRL

6.1 Overview

keactrl is a shell script which controls the startup, shutdown, and reconfiguration of the Kea servers (kea-dhcp4,
kea-dhcp6, kea-dhcp—-ddns, kea-ctrl-agent, and kea—-netconf). It also provides the means for check-
ing the current status of the servers and determining the configuration files in use.

keactrl is available only when Kea is built from sources. When installing Kea using native packages, the native systemd
scripts are provided. See Native packages and systemd Section for details.

6.2 Command Line Options

keactrl is run as follows:

’# keactrl <command> [-c keactrl-config-file] [-s server|[,server,...]]

<command> is one of the commands described in Commands.

The optional —c keactrl-config-file switch allows specification of an alternate keactrl configuration
file. (-—ctrl-configisasynonym for —c.) In the absence of —c, keactrl will use the default configuration file
[kea-install-dir]/etc/kea/keactrl.conf.

The optional -s server [, server, .. .] switch selects the servers to which the command is issued. (——server
is a synonym for —s.) If absent, the command is sent to all servers enabled in the keactr] configuration file. If multiple
servers are specified, they should be separated by commas with no intervening spaces.

6.3 The keactrl Configuration File

Depending on requirements, not all of the available servers need to be run. The keactrl configuration file sets which
servers are enabled and which are disabled. The default configuration file is [kea-install-dir]/etc/kea/
keactrl.cont, but this can be overridden on a per-command basis using the —c switch.

The contents of keactrl.conf are:

This is a configuration file for keactrl script which controls
the startup, shutdown, reconfiguration and gathering the status
of the Kea processes.

prefix holds the location where the Kea is installed.
prefix=Q@prefix@

(continues on next page)

41

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

Location of Kea configuration file.
kea_dhcp4 iom(‘q file=Q@sysconfdir@/@PACKAGER/kea-dhcp4.conf
kea dhcpb config file=@sysconfdir@/@PACKAGER/kea-dhcp6.conf

kea_dhcp_ddns fig_file=Q@sysconfdir@/Q@PACKAGE@/kea-dhcp—-ddns.conf
_C _ag 1g_file=@sysconfdir@/@PACKAGEQ/kea-ctrl-agent.conf
~a_netconf config file=@sysconfdir@/@PACKAGE@/kea-netconf.conf

Location of Kea binaries.
exec_prefix=@exec_prefix@

I =@sbindir@/kea-dhcp4
v=@sbindir@/kea-dhcpb

dhcp_ddns =@sbindir@/kea-dhcp-ddns
ctrl_agent_srv=Q@sbindir@/kea-ctrl-agent
netconf srv=@sbindir@/kea—-netconf

Start DHCPv4 server?
dhcpé=yes

Start DHCPvé6 server?

Start DHCP DDNS server?

dhcp_ddns=no

Start Control Agent?
ctrl_agent=yes

Start Netconf?
netconf=no

Be verbose?

Note: In the example above, strings of the form @something@ are replaced by the appropriate values
when Kea is installed.

The dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf parameters set to “yes” will configure keactrl
to manage (start, reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent,
and kea-netconf. When any of these parameters is set to “no”, the keact r1 will ignore the corresponding server
when starting or reconfiguring Kea. Some daemons (ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in [kea-install-dir]/sbin. This should work for
most installations. If the default location needs to be altered for any reason, the paths specified with the dhcp4_srv,
dhcp6_srv, dhcp_ddns_srv, ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers being started. When kea_verbose is set to
“yes” the logging level of the server is set to DEBUG. Modification of the logging severity in a configuration file, as
described in Logging, will have no effect as long as the kea_verbose is set to “yes.” Setting it to “no” will cause
the server to use the logging levels specified in the Kea configuration file. If no logging configuration is specified, the
default settings will be used.

Note: The verbosity for the server is set when it is started. Once started, the verbosity can only be

42 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 1.9.10

changed by stopping the server and starting it again with the new value of the kea_verbose parameter.

6.4 Commands

The following commands are supported by keactrl:
* start - starts selected servers.
* stop - stops all running servers.
* reload - triggers reconfiguration of the selected servers by sending the SIGHUP signal to them.
* status - returns the status of the servers (active or inactive) and the names of the configuration files in use.
* version - prints out the version of the keactr] tool itself, together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar to the following:

$ keactrl start

INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcpd.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf -d
INFO/keactrl: Starting kea-dhcp-ddns —-c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea’s servers create PID files upon startup. These files are used by keactrl to determine whether a given server is
running. If one or more servers are running when the start command is issued, the output will look similar to the
following:

$ keactrl start

INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp4d.pid.

INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp6.pid.

INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/
—local/var/run/kea/kea.kea-dhcp-ddns.pid.

INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/
—local/var/run/kea/kea.kea-ctrl-agent.pid.

INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/
—var/run/kea/kea.kea-netconf.pid.

During normal shutdowns these PID files are deleted. They may, however, be left over as remnants following a system
crash. It is possible, though highly unlikely, that upon system restart the PIDs they contain may actually refer to
processes unrelated to Kea. This condition will cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactr]l output must be manually deleted.

The following command stops all servers:

$ keactrl stop

INFO/keactrl: Stopping kea-dhcp4...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...
INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

6.4. Commands 43

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note that the st op command will attempt to stop all servers regardless of whether they are “enabled” in keactrl.
conf. If any of the servers are not running, an informational message is displayed as in the st op command output
below.

$ keactrl stop

INFO/keactrl: kea-dhcpd4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is triggered by the SIGHUP signal. The reload com-
mand sends the SIGHUP signal to any servers that are enabled in the keact r1 configuration file and that are currently
running. When a server receives the SIGHUP signal it re-reads its configuration file and, if the new configuration is
valid, uses the new configuration. A reload is executed as follows:

$ keactrl reload

INFO/keactrl: Reloading kea-dhcp4...
INFO/keactrl: Reloading kea-dhcp6...
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is displayed as in the reload command output below.
Note that as of version 1.5.0, kea-netconf does not support the SIGHUP signal. If its configuration has changed, please
stop and restart it for the change to take effect. This limitation will be removed in a future release.

$ keactrl stop

INFO/keactrl: kea-dhcpd4 isn't running.

INFO/keactrl: kea-dhcp6 isn't running.

INFO/keactrl: kea-dhcp-ddns isn't running.

INFO/keactrl: kea-ctrl-agent isn't running.

INFO/keactrl: kea-netconf isn't running.

Note: NETCONEF is an optional feature that is disabled by default and can be enabled during compilation. If Kea

was compiled without NETCONF support, keactrl will do its best to not bother the user with information about it.
The NETCONF entries will still be present in the keactrl.conf file, but NETCONF status will not be shown and other
commands will ignore it.

Note: Currently keactrl does not report configuration failures when the server is started or reconfigured. To check
if the server’s configuration succeeded, the Kea log must be examined for errors. By default, this is written to the
syslog file.

Sometimes it is useful to check which servers are running. The status command reports this, with typical output
that looks like:

$ keactrl status

DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active
Control Agent: active
Netconf agent: inactive

/usr/local/etc/kea/kea.conf
/usr/local/etc/kea/kea-dhcp4.conf

Kea configuration file:
Kea DHCPv4 configuration file:

(continues on next page)

44 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

Kea DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf

Kea DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf

Kea Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Kea Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf

keactrl configuration file: /usr/local/etc/kea/keactrl.conf

keactrl status reporting capabilities are rather basic. If you need more extensive insight into the Kea health and
status, you may consider deploying Stork. For details, see Monitoring Kea With Stork.

6.5 Overriding the Server Selection

The optional —s switch allows the selection of the server(s) to which the keact r1 command is issued. For example,
the following instructs keactrl to stop the kea—-dhcp4 and kea-dhcp6 servers and leave the kea-dhcp—-ddns
and kea-ctrl-agent running:

’$ keactrl stop -s dhcp4,dhcp6

Similarly, the following will start only the kea-dhcp4 and kea-dhcp-ddns servers, but not kea-dhcp6 or
kea-ctrl-agent.

’$ keactrl start -s dhcp4,dhcp_ddns

Note that the behavior of the —s switch with the start and reload commands is different from its behavior with
the stop command. On start and reload, keactrl will check if the servers given as parameters to the —s
switch are enabled in the keactrl configuration file; if not, the server will be ignored. For stop, however, this
check is not made; the command is applied to all listed servers, regardless of whether they have been enabled in the
file.

The following keywords can be used with the —s command line option:
¢ dhcp4 for kea—-dhcp4.
¢ dhcpb6 for kea—dhcpé6.
* dhcp_ddns for kea-dhcp-ddns.
e ctrl_agent for kea-ctrl-agent.
* netconf for kea-netconf.

e all for all servers (default).

6.6 Native packages and systemd

keactrl is a script that was developed to assist in managing Kea processes. However, all modern operating systems
have their own process management scripts, such as systemd. In general, the native scripts, such as systemd,
should be used if possible as they have several advantages. systemd scripts provide a uniform way of handling
processes, so Kea is handled in a similar fashion to HTTP or mail server. Secondly, a more important reason is that
systemd allows defining dependencies between services. For example, it’s easy to specify that the Kea server should
not start until the network interfaces are operational. There are other benefits too, such as an ability to enable or disable
services using commands, temporarily starting disabled service etc.

As such, it is recommended to use systemct 1 commands if they are available. Native Kea packages do not provide
keactr] and instead systemct1 service definitions are provided instead. Consult documentation of your system for
details. Briefly, here are example commands to check status, start, stop and restart various Kea daemons:

6.5. Overriding the Server Selection 45

Kea Administrator Reference Manual Documentation, Release 1.9.10

systemctl status isc-kea-ctrl-agent
systemctl start isc-kea-dhcp4-server
systemctl stop isc-kea-dhcpé6-server
systemctl restart isc-kea-dhcp-ddns-server

3= 3 = W

Note the service names may be slightly different between Linux distributions. ISC tried to follow whatever naming
convention was available in third party packages. In particular, some systems may not have the isc- prefix.

46 Chapter 6. Managing Kea with keactrl

CHAPTER
SEVEN

THE KEA CONTROL AGENT

7.1 Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control interface for managing Kea servers. The
daemon can receive control commands over HTTP and either forward these commands to the respective Kea servers
or handle these commands on its own. The determination whether the command should be handled by the CA or
forwarded is made by checking the value of the “service” parameter, which may be included in the command from
the controlling client. The details of the supported commands, as well as their structures, are provided in Management
API.

The CA can use hook libraries to provide support for additional commands or custom behavior of existing commands.
Such hook libraries must implement callouts for the “control_command_receive” hook point. Details about creating
new hook libraries and supported hook points can be found in the Kea Developer’s Guide.

The CA processes received commands according to the following algorithm:

» Pass command into any installed hooks (regardless of service value(s)). If the command is handled by a hook,
return the response.

* If the service specifies one or more services, forward the command to the specified services and return the
accumulated responses.

« If the service is not specified or is an empty list, handle the command if the CA supports it.

7.2 Configuration

The following example demonstrates the basic CA configuration.

{
"Control—-agent": {
"http-host": "10.20.30.40",
"http-port": 8000,
"trust—anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pen",
"cert-required": true,
"authentication": {
"type": "basic",
"realm": "kea-control-agent",
"clients": [
{
"user": "admin",
"password": "1234"

(continues on next page)

47

https://jenkins.isc.org/job/Kea_doc/doxygen/

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

by

"control-sockets": {
"dhcpd": {
"comment": "main server",
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v4"
}I
"dhcpo": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-vé",
"user—-context": { "version": 3 }
}I
"da". |
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-d2"

}y
by

"hooks—-libraries": [

{

"library": "/opt/local/control-agent-commands.so",
"parameters": {
"paraml": "foo"
}
bl
"loggers": [{
"name": "kea-ctrl-agent",
"severity": "INFO"

The http-host and http-port parameters specify an IP address and port to which HTTP service will be bound.
In the example configuration provided above, the RESTful service will be available under the URL of https://
10.20.30.40:8000/. If these parameters are not specified, the default URL is http://127.0.0.1:8000/.

The trust-anchor, cert-file, "key-file and cert-required parameters specify the TLS setup for
HTTP i.e. HTTPS. If these parameters are not specified HTTP is used. The TLS/HTTPS support in Kea is described
in TLS/HTTPS support.

As mentioned in Overview of the Kea Control Agent, the CA can forward received commands to the Kea servers for
processing. For example, config—get is sent to retrieve the configuration of one of the Kea services. When the CA
receives this command, including a service parameter indicating that the client wishes to retrieve the configuration
of the DHCPv4 server, the CA forwards the command to that server and passes the received response back to the
client. More about the service parameter and the general structure of commands can be found in Management API.

The CA uses UNIX domain sockets to forward control commands and receive responses from other Kea services. The
dhcp4, dhcp6, and d2 maps specify the files to which UNIX domain sockets are bound. In the configuration above,
the CA will connect to the DHCPv4 server via /path/to/the/unix/socket-v4 to forward the commands to
it. Obviously, the DHCPv4 server must be configured to listen to connections via this same socket. In other words, the
command socket configuration for the DHCPv4 server and the CA (for this server) must match. Consult Management
API for the DHCPv4 Server, Management API for the DHCPv6 Server and Management API for the D2 Server to
learn how the socket configuration is specified for the DHCPv4, DHCPv6, and D2 services.

48 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 1.9.10

Warning: “dhcp4-server”, “dhcp6-server”, and “d2-server” were renamed to “dhcp4”, “dhcp6”, and “d2” respec-
tively in Kea 1.2. If you are migrating from Kea 1.2, you must modify your CA configuration to use this new
naming convention.

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map
(i.e. the data must be enclosed in curly brackets). Some hook libraries may expect specific formatting; please consult
the relevant hook library documentation for details.

User contexts can be specified on either global scope, control socket, basic authentication, or loggers. One other useful
feature is the ability to store comments or descriptions; the parser translates a “comment” entry into a user context
with the entry, which allows a comment to be attached within the configuration itself.

The basic HTTP authentication was added by Kea 1.9.0. It protects against not authorized uses of the control agent
by local users. For the protection against remote attackers HTTPS and reverse proxy of Secure Connections (version
before 1.9.6) provide a stronger security.

The authentication is described in the authentication block with the mandatory type parameter which selects
the authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter is used for error messages when the basic HTTP authentication is required but
the client is not authorized.

When the clients authentication list is configured and not empty the basic HTTP authentication is required. Each
element of the list specifies a user id and a password. The user id is mandatory, must be not empty and must not
contain the colon (:) character. The password is optional: when it is not specified an empty password is used.

Note: The basic HTTP authentication user id and password are encoded in UTF-8 but the current Kea JSON syntax
only supports the latin-1 (i.e. 0x00..0xff) unicode subset.

Hooks libraries can be loaded by the Control Agent in the same way as they are loaded by the DHCPv4 and DHCPv6
servers. The CA currently supports one hook point - “control_command_receive” - which makes it possible to delegate
processing of some commands to the hooks library. The hooks-1ibraries list contains the list of hooks libraries
that should be loaded by the CA, along with their configuration information specified with parameters.

Please consult Logging for the details on how to configure logging. The CA’s root logger’s name is
kea-ctrl-agent, as given in the example above.

7.3 Secure Connections (version before 1.9.6)

The Control Agent does not natively support secure HTTP connections like SSL or TLS before version 1.9.6.

In order to set up a secure connection, please use one of the available third-party HTTP servers and configure it to run
as a reverse proxy to the Control Agent. Kea has been tested with two major HTTP server implementations working
as a reverse proxy: Apache2 and nginx. Example configurations, including extensive comments, are provided in the
doc/examples/https/ directory.

The reverse proxy forwards HTTP requests received over a secure connection to the Control Agent using unsecured
HTTP. Typically, the reverse proxy and the Control Agent are running on the same machine, but it is possible to config-
ure them to run on separate machines as well. In this case, security depends on the protection of the communications
between the reverse proxy and the Control Agent.

Apart from providing the encryption layer for the control channel, a reverse proxy server is also often used for au-
thentication of the controlling clients. In this case, the client must present a valid certificate when it connects via

7.3. Secure Connections (version before 1.9.6) 49

Kea Administrator Reference Manual Documentation, Release 1.9.10

reverse proxy. The proxy server authenticates the client by checking whether the presented certificate is signed by the
certificate authority used by the server.

To illustrate this, the following is a sample configuration for the nginx server running as a reverse proxy to the Kea
Control Agent. The server enables authentication of the clients using certificates.

The server certificate and key can be generated as follows:

openssl genrsa —-des3 —-out kea-proxy.key 4096
openssl req —new -x509 -days 365 —-key kea-proxy.key —-out kea-proxy.crt

The CA certificate and key can be generated as follows:

openssl genrsa —-des3 —out ca.key 4096
openssl req —-new -x509 -days 365 —-key ca.key -out ca.crt

The client certificate needs to be generated and signed:

openssl genrsa —des3 —out kea-client.key 4096

openssl req —new —-key kea-client.key —-out kea-client.csr

openssl x509 -req -days 365 —-in kea-client.csr —-CA ca.crt \
—-CAkey ca.key -set_serial 01 -out kea-client.crt

Note that the "common name" value used when generating the client
and the server certificates must differ from the value used
for the CA certificate.

The client certificate must be deployed on the client system.
In order to test the proxy configuration with "curl", run a
command similar to the following:

curl -k ——-key kea-client.key —-cert kea-client.crt —-X POST \
-H Content-Type:application/json —-d '{ "command": "list-commands" }' \

https://kea.example.org/kea

curl syntax for basic authentication 1is -u user:password

S o R S Y TR R R R S R ¥ R R ¥ S R ¥ T R ¥ T R R e R R R R R R R R

nginx configuration starts here.

events {

}

http {
HTTPS server
server {
Use default HTTPS port.
listen 443 ssl;
Set server name.

server_name kea.example.org;

Server certificate and key.
ssl_certificate /path/to/kea-proxy.crt;
ssl_certificate_key /path/to/kea-proxy.key;

Certificate Authority. Client certificates must be signed by the CA.
ssl_client_certificate /path/to/ca.crt;

(continues on next page)

50 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

Enable verification of the client certificate.
ssl_verify_client on;

For URLs such as https://kea.example.org/kea, forward the
requests to http://127.0.0.1:8000.
location /kea {
proxy_pass http://127.0.0.1:8000;
}

Note: Note that the configuration snippet provided above is for testing purposes only. It should be modified according
to the security policies and best practices of your organization.

When you use an HTTP client without TLS support as kea—shell, you can use an HTTP/HTTPS translator such as
stunnel in client mode. A sample configuration is provided in the doc/examples/https/shell/ directory.

7.4 Secure Connections (since version 1.9.6)

Since the Kea version 1.9.6 the Control Agent natively supports secure HTTP connections using TLS. This allows a
protection against users from the node where the agent runs, something that a reverse proxy cannot provide. More
about TLS/HTTPS support in Kea can be found in TLS/HTTPS support.

TLS is configured using three string parameters giving file names and a boolean parameter:
* The trust—anchor specifies the Certification Authority file name or directory path.
* The cert—file specifies the server certificate file name.
* The key—file specifies the private key file name. The file must not be encrypted.

e The cert-required specifies whether client certificates are required or optional. The default is to require
them and to perform mutual authentication.

The file format is PEM. Either all the string parameters are specified and HTTP over TLS aka HTTPS is used, or none
is specified and plain HTTP is used. Configuring only one or two string parameters raises an error.

Note: When client certificates are not required only the server side is authenticated i.e. the communication is
encrypted with an unknown client. This protects only against passive attacks, i.e. active attacks as Man in the Middle
is still possible.

Note: No standard HTTP authentication scheme cryptographically binds its end entity with TLS. This means that
the TLS client and server can be mutually authenticated but there is no proof they are the same as for the HTTP
authentication.

Since the Kea version 1.9.6 the kea-shell tool supports TLS.

7.4. Secure Connections (since version 1.9.6) 51

Kea Administrator Reference Manual Documentation, Release 1.9.10

7.5 Starting the Control Agent

The CA is started by running its binary and specifying the configuration file it should use. For example:

’$./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.6 Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see The Kea Shell.

52 Chapter 7. The Kea Control Agent

CHAPTER
EIGHT

8.1

THE DHCPV4 SERVER

Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly. It accepts the following command-line switches:

—-c file - specifies the configuration file. This is the only mandatory switch.

—d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; “debug” severity and the maxi-
mum debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum
verbosity, e.g. when debugging.

-p server-port - specifies the local UDP port on which the server will listen. This is only useful during
testing, as a DHCPv4 server listening on ports other than the standard ones will not be able to handle regular
DHCPv4 queries.

-P client-port - specifies the remote UDP port to which the server will send all responses. This is only
useful during testing, as a DHCPv4 server sending responses to ports other than the standard ones will not be
able to handle regular DHCPv4 queries.

-t file - specifies a configuration file to be tested. Kea-dhcp4 will load it, check it, and exit. During
the test, log messages are printed to standard output and error messages to standard error. The result of the
test is reported through the exit code (0 = configuration looks ok, 1 = error encountered). The check is not
comprehensive; certain checks are possible only when running the server.

—v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions
of the libraries dynamically linked to Kea.

—W - displays the Kea configuration report and exits. The report is a copy of the config. report file produced
by . /configure;itis embedded in the executable binary.

On startup, the server will detect available network interfaces and will attempt to open UDP sockets on all interfaces
mentioned in the configuration file. Since the DHCPv4 server opens privileged ports, it requires root access. This
daemon must be run as root.

During startup, the server will attempt to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp4.pid
where:

runstatedir: The value as passed into the build configure script; it defaults to “/usr/local/var/run”. Note that
this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although this
is intended primarily for testing purposes.

conf name: The configuration file name used to start the server, minus all preceding paths and the file exten-
sion. For example, given a pathname of “/usr/local/etc/kea/myconf.txt”, the portion used would be “myconf”.

53

Kea Administrator Reference Manual Documentation, Release 1.9.10

If the file already exists and contains the PID of a live process, the server will issue a DHCP4_ALREADY_RUNNING
log message and exit. It is possible, though unlikely, that the file is a remnant of a system crash and the process to
which the PID belongs is unrelated to Kea. In such a case it would be necessary to manually delete the PID file.

The server can be stopped using the k111 command. When running in a console, the server can also be shut down by
pressing ctrl-c. It detects the key combination and shuts down gracefully.

8.2 DHCPv4 Server Configuration

8.2.1 Introduction

This section explains how to configure the DHCPv4 server using a configuration file. Before DHCPv4 is started, its
configuration file must be created. The basic configuration is as follows:

{

DHCPv4 configuration starts on the next line
"Dhcpd": {

First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

Next we set up the interfaces to be used by the server.
"interfaces-config": {
"interfaces": ["ethO"]
}y

And we specify the type of lease database
"lease—database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp4.leases"

}y

Finally, we list the subnets from which we will be leasing addresses.
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200"

]
DHCPv4 configuration ends with the next line

}

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

54 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above this object is called
Dhcp4.

Note: In the current Kea release it is possible to specify configurations of multiple modules within a single config-
uration file, but this is not recommended and support for it was removed in 1.7.10 release, including the Logging
object: its previous content, the list of loggers, must now be inside the Dhcp4 object.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp4 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is
to remember that the configuration file must be well-formed JSON. That means that the parameters for any given
scope must be separated by a comma, and there must not be a comma after the last parameter. When reordering a
configuration file, keep in mind that moving a parameter to or from the last position in a given scope may also require
moving the comma. The second caveat is that it is uncommon — although legal JSON — to repeat the same parameter
multiple times. If that happens, the last occurrence of a given parameter in a given scope is used, while all previous
instances are ignored. This is unlikely to cause any confusion as there are no real-life reasons to keep multiple copies
of the same parameter in the configuration file.

The first few DHCPv4 configuration elements define some global parameters. valid-11ifetime defines how long
the addresses (leases) given out by the server are valid. If nothing changes, a client that got an address is allowed to use
it for 4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) renew—timer
and rebind-timer are values (also in seconds) that define T1 and T2 timers that govern when the client will begin
the renewal and rebind procedures.

Note: Beginning with Kea 1.6.0 the lease valid lifetime is extended from a single value to a triplet with minimum,
default and maximum values using min-valid-lifetime, valid-1lifetime and max-valid-1lifetime.
As of Kea 1.9.5, these values may be specified in client classes. The recipe the server uses to select which lifetime
value to use is as follows:

If the client query is a BOOTP query, the server will always use the infinite lease time (e.g. Oxffffffff). Otherwise the
server must next determine which configured triplet to use by first searching all classes assigned to the query, and then
the subnet selected for the query.

Classes are searched in the order they were assigned to the query. The server will use the triplet from the first class
that specifies it. If no classes specify the triplet then the server will use the triplet specified by the subnet selected for
the client. If the subnet does not explicitly specify it the server will look next at the subnet’s shared-network (if one),
then for a global specification, and finally the global default.

If the client requested a lifetime value via DHCP option 51, then the lifetime value used will be the requested value
bounded by the configured triplet. In other words, if the requested lifetime is less than the configured minimum the
configured minimum will be used; if it is more than the configured maximum the configured maximum will be used.
If the client did not provide a requested value, the lifetime value used will be the triplet default value.

Note: Both renew-timer and rebind-timer are optional. The server will only send rebind-timer to the
client, via DHCPv4 option code 59, if it is less than valid-1ifetime; and it will only send renew-timer, via
DHCPv4 option code 58, if it is less than rebind-timer (or valid-lifetime if rebind-timer was not
specified). In their absence, the client should select values for T1 and T2 timers according to RFC 2131. See section
Sending T1 (Option 58) and T2 (Option 59) for more details on generating T1 and T2.

The interfaces—-config map specifies the server configuration concerning the network interfaces on which the

8.2. DHCPv4 Server Configuration 55

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.9.10

server should listen to the DHCP messages. The interfaces parameter specifies a list of network interfaces on
which the server should listen. Lists are opened and closed with square brackets, with elements separated by commas.
To listen on two interfaces, the interfaces—config command should look like this:

"interfaces-config": {
"interfaces": ["eth0", "ethl"]

by

The next couple of lines define the lease database, the place where the server stores its lease information. This
particular example tells the server to use memfile, which is the simplest (and fastest) database backend. It uses
an in-memory database and stores leases on disk in a CSV (comma-separated values) file. This is a very simple
configuration; usually the lease database configuration is more extensive and contains additional parameters. Note that
lease-database is an object and opens up a new scope, using an opening brace. Its parameters (just one in this
example: type) follow. If there were more than one, they would be separated by commas. This scope is closed with
a closing brace. As more parameters for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most important DHCPv4 configuration structure, as the
server uses that information to process clients’ requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet4 parameter. It is a list, so it starts and ends
with square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and
is opened and closed with braces. At a minimum, a subnet definition has to have at least two parameters: subnet
(which defines the whole subnet) and pools (which is a list of dynamically allocated pools that are governed by the
DHCEP server).

The example contains a single subnet. If more than one were defined, additional elements in the subnet 4 parameter
would be specified and separated by commas. For example, to define three subnets, the following syntax would be
used:

"subnet4": [

{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24"

}I

{
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
"subnet": "192.0.3.0/24"

by

{
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1],
"subnet": "192.0.4.0/24"

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use
more compact notation.

After all the parameters have been specified, we have two contexts open: global and Dhcp4; thus, we need two closing
curly brackets to close them.

8.2.2 Lease Storage

All leases issued by the server are stored in the lease database. Currently there are four database backends available:
memfile (which is the default backend), MySQL, PostgreSQL, and Cassandra.

56 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a
database. Lease Database Configuration describes this option. In typical smaller deployments, though, the server will
store lease information in a CSV file rather than a database. As well as requiring less administration, an advantage of
using a file for storage is that it eliminates a dependency on third-party database software.

The configuration of the file backend (memlfile) is controlled through the Dhcp4/lease-database parameters. The t ype
parameter is mandatory and it specifies which storage for leases the server should use. The value of "memfile"
indicates that the file should be used as the storage. The following list gives additional optional parameters that can be
used to configure the memfile backend.

* persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to t rue at all times during the server’s normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

* name: specifies an absolute location of the lease file in which new leases and lease updates will be recorded.
The default value for this parameter is " [kea—-install-dir]/var/lib/kea/kea-leasesd.csv".

e 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval
is 3600. A value of 0 disables the LFC.

* max-row-errors: when the server loads a lease file, it is processed row by row, each row containing a single
lease. If a row is flawed and cannot be processed correctly the server will log it, discard the row, and go on
to the next row. This parameter can be used to set a limit on the number of such discards that may occur after
which the server will abandon the effort and exit. The default value of O disables the limit and allows the server
to process the entire file, regardless of how many rows are discarded.

"Dhcpéd": {
"lease—database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases4d.csv",
"lfc-interval": 1800,
"max-row—errors": 100

This configuration selects the /tmp/kea—-leases4.csv as the storage for lease information and enables persis-
tence (writing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file
every 30 minutes and sets the maximum number of row errors to 100.

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for the client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client’s lease in the file,
as this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the
end of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease
file, e.g. at the server startup, it assumes that the latest lease entry for the client is the valid one. The previous entries
are discarded, meaning that the server can re-construct the accurate information about the leases even though there
may be many lease entries for each client. However, storing many entries for each client results in a bloated lease file
and impairs the performance of the server’s startup and reconfiguration, as it needs to process a larger number of lease
entries.

8.2. DHCPv4 Server Configuration 57

Kea Administrator Reference Manual Documentation, Release 1.9.10

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc—interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1 fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping the
new cleanup when it detected that the previous cleanup was still in progress. But it implies that the actual cleanups will
be triggered more rarely than configured. Moreover, triggering a new cleanup adds overhead to the server, which will
not be able to respond to new requests for a short period of time when the new cleanup process is spawned. Therefore,
it is recommended that the 1 fc—interval value be selected in a way that allows the LFC to complete the cleanup
before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes both using the same lease files, the LFC process starts with Kea
opening a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There
are also other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is
located later in this Kea Administrator’s Reference Manual: The LFC Process.

8.2.2.2 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv4 server, even if it has already been
configured for the DHCPv6 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Lease database configuration is controlled through the Dhcp4/lease-database parameters. The database type must be

LLIY3

set to “memlfile”, “mysql”, “postgresql”, or “cql”, e.g.:

’"Dhcp4": { "lease—-database": { "type": "mysqgl", ... }, ... }

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database, First-Time Creation of the PostgreSQL Database, or First-Time Creation
of the Cassandra Database).

’"Dhcp4": { "lease-database": { "name": "database-name" , ... }, ... } ‘

For Cassandra:

’"Dhcp4": { "lease—-database": { "keyspace": "database-name" , ... }, ... } ‘

If the database is located on a different system from the DHCPv4 server, the database host name must also be specified:

"Dhcpd": { "lease-database": { "host": "remote-host-name", ... }, ... } ‘

(It should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server. In this case, set the value to the empty
string:

’"Dhcp4": { "lease-database": { "host" : "", ... }, ...}

Should the database use a port other than the default, it may be specified as well:

’"Dhcp4": { "lease-database": { "port"™ : 12345, ... }, ... }

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

58 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpd": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server will automatically attempt to reconnect to the lease database after connec-
tivity has been lost may be specified:

"Dhcpd": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss
of connectivity (MySQL and PostgreSQL only). For Cassandra, Kea uses an interface that connects to all nodes in a
cluster at the same time. Any connectivity issues should be handled by internal Cassandra mechanisms.

The number of milliseconds the server will wait between attempts to reconnect to the lease database after connectivity
has been lost may also be specified:

"Dhcpd": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... 1},

.o}

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcpd": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

* stop-retry—exit disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max—-reconnect—-tries. This is the default value for MySQL
and PostgreSQL.

* serve-retry-exit DHCP service continues while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue DHCP service continues and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We do suggest that users enable it either for all backends or none,
so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result (if configured)
in the server shutting itself down. This includes cases when the lease database backend and the hosts database backend
are connected to the same database instance. It is highly recommended to not change the st op—retry-exit default
setting for the lease manager as it is critical for the connection to be active while processing DHCP traffic. Change
this only if the server is used exclusively as a configuration tool.

Note: Note that the host parameter is used by the MySQL and PostgreSQL backends. Cassandra has a concept of
contact points that can be used to contact the cluster, instead of a single IP or hostname. It takes a list of comma-
separated IP addresses, which may be specified as:

"Dhcp4d": { "lease-database": { "contact-points" : "192.0.2.1,192.0.2.2", ... }, ...}

Finally, the credentials of the account under which the server will access the database should be set:

8.2. DHCPv4 Server Configuration 59

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpd": { "lease-database": { "user": "user-name",
"password": "password",

}I

If there is no password to the account, set the password to the empty string “”’. (This is also the default.)

8.2.2.3 Cassandra-Specific Parameters

The Cassandra backend is configured slightly differently. Cassandra has a concept of contact points that can be used
to contact the cluster, instead of a single IP or hostname. It takes a list of comma-separated IP addresses, which may
be specified as:

"Dhcpéd": {
"lease—database": {
"type": "cqgl",
"contact-points": "ip-addressl, ip-address2 [,...]",

by

Cassandra also supports a number of optional parameters:

* reconnect-wait—time - governs how long Kea waits before attempting to reconnect. Expressed in mil-
liseconds. The default is 2000 [ms].

* connect-timeout - sets the timeout for connecting to a node. Expressed in milliseconds. The default is
5000 [ms].

* request-timeout - sets the timeout for waiting for a response from a node. Expressed in milliseconds. The
default is 12000 [ms].

* tcp-keepalive - governs the TCP keep-alive mechanism. Expressed in seconds of delay. If the parameter
is not present, the mechanism is disabled.

* tcp-nodelay - enables/disables Nagle’s algorithm on connections. The default is true.

e consistency - configures consistency level. The default is “quorum”. Supported values: any, one, two,
three, quorum, all, local-quorum, each-quorum, serial, local-serial, local-one. See Cassandra consistency for
more details.

* serial-consistency - configures serial consistency level which manages lightweight transaction isola-
tion. The default is “serial”. Supported values: any, one, two, three, quorum, all, local-quorum, each-quorum,
serial, local-serial, local-one. See Cassandra serial consistency for more details.

For example, a complex Cassandra configuration with most parameters specified could look as follows:

"Dhcpd": {
"lease—-database": {

"type": "cqgl",
"keyspace": "keatest",
"contact-points": "192.0.2.1, 192.0.2.2, 192.0.2.3",
"port": 9042,
"reconnect-wait-time": 2000,
"connect-timeout": 5000,

"request—timeout": 12000,
"tcp-keepalive": 1,

(continues on next page)

60 Chapter 8. The DHCPv4 Server

https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigSerialConsistency.html

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

"tcp-nodelay": true
}y

Similar parameters can be specified for the hosts database.

8.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, a Kea server opens independent connections for each purpose, be it lease or
hosts information. This arrangement gives the most flexibility. Kea can keep leases and host reservations separately,
but can also point to the same database. Currently the supported hosts database types are MySQL, PostgreSQL, and
Cassandra.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (configuration file and one of the
supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

In fact, host information can be placed in multiple stores. Operations are performed on the stores in the order they
are defined in the configuration file, although this leads to a restriction in ordering in the case of a host reservation
addition; read-only stores must be configured after a (required) read-write store, or the addition will fail.

8.2.3.1 DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp4/hosts-database parameters. If enabled, the type of
database must be set to “mysql” or “postgresql”.

’"Dhcpll": { "hosts—-database": { "type": "mysqgl", ... }, ... } ‘

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

"Dhcp4d": { "hosts-database": { "name": "database-name" , ... }, ... } ‘

If the database is located on a different system than the DHCPv4 server, the database host name must also be specified:

"Dhcpd": { "hosts-database": { "host": remote-host-name, ... }, ... } ‘

(Again, it should be noted that this configuration may have a severe impact on server performance.)

Normally, the database will be on the same machine as the DHCPv4 server. In this case, set the value to the empty
string:

"Dhcp4": { "hosts-database": { "host" : "", ... }, ... } ‘

Should the database use a port different than the default, it may be specified as well:

"’Dhcpll": { "hosts—-database": { "port" : 12345, ... }, ... } ‘

The maximum number of times the server will automatically attempt to reconnect to the host database after connec-
tivity has been lost may be specified:

8.2. DHCPv4 Server Configuration 61

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpd": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of zero (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server will wait between attempts to reconnect to the host database after connectivity
has been lost may also be specified:

"Dhcp4d": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

e }

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity. The default value for Cassandra is 2000 ms.

"Dhcp4d": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

* stop-retry—exit disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max—reconnect-tries. This is the default value for MySQL
and PostgreSQL.

* serve-retry-exit DHCP service continues while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

e serve-retry-continue DHCP service continues and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to
tailor the recovery parameters to each backend they use. We do suggest that users enable it either for all backends
or none, so behavior is consistent. Losing connectivity to a backend for which reconnect is disabled will result (if
configured) in the server shutting itself down. This includes cases when the lease database backend and the hosts
database backend are connected to the same database instance.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4d": { "hosts-database": { "user": "user—-name",
"password": "password",

by

If there is no password to the account, set the password to the empty string . (This is also the default.)

The multiple storage extension uses a similar syntax; a configuration is placed into a “hosts-databases” list instead of
into a “hosts-database” entry, as in:

"Dhcp4d4": { "hosts-databases": [{ "type": "mysqgl", ... }, ... 1, ... }

For additional Cassandra-specific parameters, see Cassandra-Specific Parameters.

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

62 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv4

In some deployments the database user whose name is specified in the database backend configuration may not have
write privileges to the database. This is often required by the policy within a given network to secure the data from
being unintentionally modified. In many cases administrators have deployed inventory databases, which contain sub-
stantially more information about the hosts than just the static reservations assigned to them. The inventory database
can be used to create a view of a Kea hosts database and such a view is often read-only.

Kea host database backends operate with an implicit configuration to both read from and write to the database. If the
database user does not have write access to the host database, the backend will fail to start and the server will refuse to
start (or reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients
and/or assigning specific addresses and options, it is possible to explicitly configure Kea to start in “read-only” mode.
This is controlled by the readonly boolean parameter as follows:

"Dhcp4d": { "hosts-database": { "readonly": true, ... }, ... }

Setting this parameter to false configures the database backend to operate in “read-write” mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is currently only supported for MySQL and PostgreSQL databases.

8.2.4 Interface Configuration

The DHCPv4 server must be configured to listen on specific network interfaces. The simplest network interface
configuration tells the server to listen on all available interfaces:

"Dhcpd": {
"interfaces—-config": {
"interfaces": ["x"]

}

by

The asterisk plays the role of a wildcard and means “listen on all interfaces.” However, it is usually a good idea to
explicitly specify interface names:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"]

by

It is possible to use a wildcard interface name (asterisk) concurrently with explicit interface names:

"Dhcpéd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3", "x"]

by

It is anticipated that this form of usage will only be used when it is desired to temporarily override a list of interface
names and listen on all interfaces.

8.2. DHCPv4 Server Configuration 63

Kea Administrator Reference Manual Documentation, Release 1.9.10

Some deployments of DHCP servers require that the servers listen on interfaces with multiple IPv4 addresses config-
ured. In these situations, the address to use can be selected by appending an IPv4 address to the interface name in the
following manner:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl1/10.0.0.1", "eth3/192.0.2.3"]

by

Should the server be required to listen on multiple IPv4 addresses assigned to the same interface, multiple addresses
can be specified for an interface as in the example below:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl/10.0.0.1", "ethl1/10.0.0.2"]

by

Alternatively, if the server should listen on all addresses for the particular interface, an interface name without any
address should be specified.

Kea supports responding to directly connected clients which don’t have an address configured. This requires the
server to inject the hardware address of the destination into the data link layer of the packet being sent to the client.
The DHCPv4 server uses raw sockets to achieve this, and builds the entire IP/UDP stack for the outgoing packets. The
downside of raw socket use, however, is that incoming and outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple IPv4 addresses assigned to the same interface can be a challenge, as raw sockets are bound
to the interface. When the DHCP server is configured to use the raw socket on an interface to receive DHCP traffic,
advanced packet filtering techniques (e.g. the BPF) must be used to receive unicast traffic on the desired addresses
assigned to the interface. Whether clients use the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision the directly connected clients and only receives
the unicast packets from the relay agents, the DHCP server should be configured to use UDP sockets instead of raw
sockets. The following configuration demonstrates how this can be achieved:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket-type": "udp"

by

The dhcp-socket-type specifies that the IP/UDP sockets will be opened on all interfaces on which the server
listens, i.e. “eth1” and “eth3” in our case. If dhcp-socket-type is set to raw, it configures the server to use raw
sockets instead. If the dhcp-socket—type value is not specified, the default value raw is used.

Using UDP sockets automatically disables the reception of broadcast packets from directly connected clients. This
effectively means that UDP sockets can be used for relayed traffic only. When using raw sockets, both the traffic from
the directly connected clients and the relayed traffic are handled. Caution should be taken when configuring the server
to open multiple raw sockets on the interface with several IPv4 addresses assigned. If the directly connected client
sends the message to the broadcast address, all sockets on this link will receive this message and multiple responses
will be sent to the client. Therefore, the configuration with multiple [Pv4 addresses assigned to the interface should

64 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

not be used when the directly connected clients are operating on that link. To use a single address on such an interface,
the “interface-name/address” notation should be used.

Note: Specifying the value raw as the socket type doesn’t guarantee that the raw sockets will be used! The use of
raw sockets to handle the traffic from the directly connected clients is currently supported on Linux and BSD systems
only. If the raw sockets are not supported on the particular OS in use, the server will issue a warning and fall back to
using IP/UDP sockets.

In a typical environment, the DHCP server is expected to send back a response on the same network interface on which
the query was received. This is the default behavior. However, in some deployments it is desired that the outbound
(response) packets will be sent as regular traffic and the outbound interface will be determined by the routing tables.
This kind of asymmetric traffic is uncommon, but valid. Kea supports a parameter called outbound-interface
that controls this behavior. It supports two values; the first one, same—as—inbound, tells Kea to send back the
response on the same interface where the query packet was received. This is the default behavior. The second one,
use-routing, tells Kea to send regular UDP packets and let the kernel’s routing table determine the most appro-
priate interface. This only works when dhcp-socket—type is set to udp. An example configuration looks as
follows:

"Dhcpéd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket—-type": "udp",
"outbound-interface": "use-routing"

}I

Interfaces are re-detected at each reconfiguration. This behavior can be disabled by setting the re—detect value to
false, for instance:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"re—-detect": false

by

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the “lo” or “lo0” interface) may not be configured, but if a loopback interface is
explicitly configured and IP/UDP sockets are specified, the loopback interface is accepted.

For example, it can be used to run Kea in a FreeBSD jail having only a loopback interface, to service a relayed DHCP
request:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["1loO" 1,
"dhcp-socket-type": "udp"

by

8.2. DHCPv4 Server Configuration 65

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.5 Issues with Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the server receives only relayed traffic; these bene-
fits are mentioned in Interface Configuration. From the administrator’s perspective it is often desirable to configure the
system’s firewall to filter out unwanted traffic, and the use of UDP sockets facilitates this. However, the administrator
must also be aware of the implications related to filtering certain types of traffic, as it may impair the DHCP server’s
operation.

In this section we are focusing on the case when the server receives the DHCPINFORM message from the client via a
relay. According to RFC 2131, the server should unicast the DHCPACK response to the address carried in the “ciaddr”
field. When the UDP socket is in use, the DHCP server relies on the low-level functions of an operating system to build
the data link, IP, and UDP layers of the outgoing message. Typically, the OS will first use ARP to obtain the client’s
link-layer address to be inserted into the frame’s header, if the address is not cached from a previous transaction that
the client had with the server. When the ARP exchange is successful, the DHCP message can be unicast to the client,
using the obtained address.

Some system administrators block ARP messages in their network, which causes issues for the server when it responds
to the DHCPINFORM messages because the server is unable to send the DHCPACK if the preceding ARP communi-
cation fails. Since the OS is entirely responsible for the ARP communication and then sending the DHCP packet over
the wire, the DHCP server has no means to determine that the ARP exchange failed and the DHCP response message
was dropped. Thus, the server does not log any error messages when the outgoing DHCP response is dropped. At the
same time, all hooks pertaining to the packet-sending operation will be called, even though the message never reaches
its destination.

Note that the issue described in this section is not observed when the raw sockets are in use, because, in this case, the
DHCEP server builds all the layers of the outgoing message on its own and does not use ARP. Instead, it inserts the
value carried in the “chaddr” field of the DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays should not block ARP traffic in their
networks or should use raw sockets instead of UDP sockets.

8.2.6 IPv4 Subnet Identifier

The subnet identifier is a unique number associated with a particular subnet. In principle, it is used to associate clients’
leases with their respective subnets. When a subnet identifier is not specified for a subnet being configured, it will be
automatically assigned by the configuration mechanism. The identifiers are assigned from 1 and are monotonically
increased for each subsequent subnet: 1,2,3

If there are multiple subnets configured with auto-generated identifiers and one of them is removed, the subnet iden-
tifiers may be renumbered. For example: if there are four subnets and the third is removed, the last subnet will be
assigned the identifier that the third subnet had before removal. As a result, the leases stored in the lease database for
subnet 3 are now associated with subnet 4, something that may have unexpected consequences. The only remedy for
this issue at present is to manually specify a unique identifier for each subnet.

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration will assign the specified subnet identifier to a newly configured subnet:

"Dhcpéd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"id": 1024,

(continues on next page)

66 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

This identifier will not change for this subnet unless the “id” parameter is removed or set to 0. The value of 0 forces
auto-generation of the subnet identifier.

8.2.7 IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. It does not need to have the address part to match the prefix
length, for instance this configuration is accepted:

"Dhcpd": {
"subnet4": [

{
"subnet": "192.0.2.1/24",

Even there is another subnet with the “192.0.2.0/24” prefix: only the textual form of subnets are compared to avoid
duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see How the DHCPv4 Server Selects a Subnet for
the Client).

8.2.8 Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 192.0.2.0/24 prefix. The administrator of that network decides that addresses from
range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4 server. Such a configuration can be achieved in
the following way:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10 - 192.0.2.20" }

1,

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason,
the pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

8.2. DHCPv4 Server Configuration 67

Kea Administrator Reference Manual Documentation, Release 1.9.10

It is possible to define more than one pool in a subnet; continuing the previous example, further assume that
192.0.2.64/26 should also be managed by the server. It could be written as 192.0.2.64 to 192.0.2.127. Alternatively, it
can be expressed more simply as 192.0.2.64/26. Both formats are supported by Dhcp4 and can be mixed in the pool
list. For example, one could define the following pools:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10-192.0.2.20" 1},
{ "pool": "192.0.2.64/26" }

]I

}

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
}I
{
"subnet": "192.0.3.0/24",
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
}I
{
"subnet": "192.0.4.0/24",
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,

}

When configuring a DHCPv4 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it will also be able to allocate the first (typically a network address) and
the last (typically a broadcast address) address from that pool. In the aforementioned example of pool 192.0.3.0/24,
both the 192.0.3.0 and 192.0.3.255 addresses may be assigned as well. This may be invalid in some network configu-
rations. To avoid this, use the “min-max” notation.

8.2.9 Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131, servers should send values for T1 and T2 that are 50% and 87.5% of the lease lifetime,
respectively. By default, kea-dhcp4 does not send either value. It can be configured to send values that are specified
explicitly or that are calculated as percentages of the lease time. The server’s behavior is governed by a combination of

68 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 1.9.10

configuration parameters, two of which have already been mentioned. To send specific, fixed values use the following
two parameters:

* renew-timer - specifies the value of T1 in seconds.
e rebind-timer - specifies the value of T2 in seconds.

The server will only send T2 if it is less than the valid lease time. T1 will only be sent if: T2 is being sent and T1 is
less than T2; or T2 is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

* calculate-tee-times - when true, T1 and T2 will be calculated as percentages of the valid lease time. It
defaults to false.

* t1-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between
0.0 and 1.0 and must be less than t2-percent. The default value is 0.50 per RFC 2131.

* t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between
0.0 and 1.0 and must be greater than t1-percent. The default value is .875 per RFC 2131.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the explicit
values. Administrators with a setup where some subnets or share-networks will use explicit values and some will use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them
from too high a scope, such as global, will cause them to have values at every level underneath (shared-networks and
subnets), effectively disabling calculated values.

8.2.10 Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide configuration options to clients. Most of
the options are sent by the server only if the client explicitly requests them using the Parameter Request List option.
Those that do not require inclusion in the Parameter Request List option are commonly used options, e.g. “Domain
Server”, and options which require special behavior, e.g. “Client FQDN”, which is returned to the client if the client
has included this option in its message to the server.

List of standard DHCPv4 options configurable by an administrator comprises the list of the standard DHCPv4 options
whose values can be configured using the configuration structures described in this section. This table excludes the
options which require special processing and thus cannot be configured with fixed values. The last column of the table
indicates which options can be sent by the server even when they are not requested in the Parameter Request List
option, and those which are sent only when explicitly requested.

The following example shows how to configure the addresses of DNS servers, which is one of the most frequently
used options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcpd": {
"option-data": [

{

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4d",
"csv-format": true,

"data": "192.0.2.1, 192.0.2.2"

8.2. DHCPv4 Server Configuration 69

Kea Administrator Reference Manual Documentation, Release 1.9.10

Note that either name or code is required; there is no need to specify both. Space has a default value of “dhcp4”, so this
can be skipped as well if a regular (not encapsulated) DHCPv4 option is defined. Finally, csv-format defaults to true,
so it too can be skipped, unless the option value is specified as a hexadecimal string. Therefore, the above example
can be simplified to:

"Dhcpd": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"

b

Defined options are added to the response when the client requests them with a few exceptions, which are always
added. To enforce the addition of a particular option, set the always-send flag to true as in:

"Dhcpd": {
"option-data": [

{

"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always—send": true

by

The effect is the same as if the client added the option code in the Parameter Request List option (or its equivalent for
vendor options):

"Dhcpd": {
"option-data": [

{

"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always—-send": true
}!
]I
"subnetd4": [
{
"subnet": "192.0.3.0/24",

"option-data": [
{

"name": "domain-name-servers",
"data": "192.0.3.1, 192.0.3.2"

by

1,

70 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

The Domain Name Servers option is always added to responses (the always-send is “sticky”), but the value is the
subnet one when the client is localized in the subnet.

The name parameter specifies the option name. For a list of currently supported names, see List of standard DHCPv4
options configurable by an administrator below. The code parameter specifies the option code, which must match
one of the values from that list. The next line specifies the option space, which must always be set to “dhcp4” as these
are standard DHCPv4 options. For other option spaces, including custom option spaces, see Nested DHCPv4 Options
(Custom Option Spaces). The next line specifies the format in which the data will be entered; use of CSV (comma-
separated values) is recommended. The sixth line gives the actual value to be sent to clients. The data parameter is
specified as normal text, with values separated by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format is set to false, option data must be specified
as a hexadecimal string. The following commands configure the domain-name-servers option for all subnets with the
following addresses: 192.0.3.1 and 192.0.3.2. Note that csv—-format is set to false.

"Dhcpd": {
"option-data": [

{

"name": "domain-name-servers",
"code": o6,

"space": "dhcp4d",

"csv-format": false,

"data": "CO 00 03 01 CcO 00 03 02"

Kea supports the following formats when specifying hexadecimal data:

* Delimited octets - one or more octets separated by either colons or spaces (‘:> or ‘ ‘). While each octet
may contain one or two digits, we strongly recommend always using two digits. Valid examples are “ab:cd:ef”
and “ab cd ef”.

* String of digits - a continuous string of hexadecimal digits with or without a “Ox” prefix. Valid exam-
ples are “Oxabcdef” and “abcdef™.

Care should be taken to use proper encoding when using hexadecimal format; Kea’s ability to validate data correctness
in hexadecimal is limited.

As of Kea 1.6.0, it is also possible to specify data for binary options as a single-quoted text string within double quotes
as shown (note that csv—format must be set to false):

"Dhcpd": {
"option-data": [

{

"name": "user-class",

"code": 77,

"space": "dhcp4",

"csv-format": false,

"data": "'convert this text to binary'"

1r

Most of the parameters in the “option-data” structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv4 Option Configuration.

8.2. DHCPv4 Server Configuration 71

Kea Administrator Reference Manual Documentation, Release 1.9.10

It is possible to specify or override options on a per-subnet basis. If clients connected to most subnets are expected
to get the same values of a given option, administrators should use global options; it is possible to override specific
values for a small number of subnets. On the other hand, if different values are used in each subnet, it does not make
sense to specify global option values; rather, only subnet-specific ones should be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 192.0.2.3:

"Dhcpd": {
"subnet4": [
{
"option—-data": [

{

"name": "domain-name-servers",
"code": 6,

"space": "dhcp4d",
"csv-format": true,

"data": "192.0.2.3"

1,

In some cases it is useful to associate some options with an address pool from which a client is assigned a lease.
Pool-specific option values override subnet-specific and global option values. The server’s administrator must not try
to prioritize assignment of pool-specific options by trying to order pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which will be assigned to a
client only if the client obtains an address from the given pool:

"Dhcpd": {
"subnetd4": [
{
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.3"

I

72 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

Options can also be specified in class or host reservation scope. The current Kea options precedence order is (from
most important): host reservation, pool, subnet, shared network, class, global.

The currently supported standard DHCPv4 options are listed in List of standard DHCPv4 options configurable by an
administrator. “Name” and “Code” are the values that should be used as a name/code in the option-data structures.
“Type” designates the format of the data; the meanings of the various types are given in List of Standard DHCP Option
Types.

When a data field is a string and that string contains the comma (,; U+002C) character, the comma must be escaped
with two backslashes (; U+005C). This double escape is required because both the routine splitting CSV data into
fields and JSON use the same escape character; a single escape (,) would make the JSON invalid. For example, the
string “foo,bar” must be represented as:

"Dhcpd": {
"subnet4": [
{
"pools": [
{
"option-data": [
{
"name": "boot-file-name",
"data": "foo\\,bar"

1r

Some options are designated as arrays, which means that more than one value is allowed in such an option. For
example, the option time-servers allows the specification of more than one IPv4 address, enabling clients to obtain the
addresses of multiple NTP servers.

Custom DHCPv4 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches
the actual option format defined in the RFCs. There is an exception to this rule for standard options for which Kea
currently does not provide a definition. In order to use such options, a server administrator must create a definition as
described in Custom DHCPv4 Options in the “dhcp4” option space. This definition should match the option format
described in the relevant RFC, but the configuration mechanism will allow any option format as it currently has no
means to validate it.

Table 1: List of standard DHCPv4 options configurable by an

administrator

Name Code | Type Array? | Returned if not reque
time-offset 2 int32 false false

routers 3 ipv4-address true true

time-servers 4 ipv4-address true false

name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true

log-servers 7 ipv4-address true false

cookie-servers 8 ipv4-address true false

Continued on nex

8.2. DHCPv4 Server Configuration 73

Kea Administrator Reference Manual Documentation, Release 1.9.10

Table 1 — continued from previous page

Name Code | Type Array? | Returned if not reque
Ipr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-server-identifier 54 ipv4-address false true
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 string false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
nisplus-domain-name 64 string false false
nisplus-servers 65 ipv4-address true false

Continued on nex

74

Chapter 8

. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

Table 1 — continued from previous page

Name Code | Type Array? | Returned if not reque
tftp-server-name 66 string false false
boot-file-name 67 string false false
mobile-ip-home-agent 68 ipv4-address true false
smtp-server 69 ipv4-address true false
pop-server 70 ipv4-address true false
nntp-server 71 ipv4-address true false
WWW-server 72 ipv4-address true false
finger-server 73 ipv4-address true false
irc-server 74 ipv4-address true false
streettalk-server 75 ipv4-address true false
streettalk-directory-assistance-server | 76 ipv4-address true false
user-class 77 binary false false
slp-directory-agent 78 record (boolean, ipv4-address) true false
slp-service-scope 79 record (boolean, string) false false
nds-server 85 ipv4-address true false
nds-tree-name 86 string false false
nds-context 87 string false false
bcems-controller-names 88 fqdn true false
bcems-controller-address 89 ipv4-address true false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
uap-servers 98 string false false
geoconf-civic 99 binary false false
pcode 100 string false false
tcode 101 string false false
v6-only-preferred 108 uint32 false false
netinfo-server-address 112 ipv4-address true false
netinfo-server-tag 113 string false false
default-url 114 string false false
auto-config 116 uint8 false false
name-service-search 117 uint16 true false
domain-search 119 fqdn true false
vivco-suboptions 124 record (uint32, binary) false false
vivso-suboptions 125 uint32 false false
pana-agent 136 ipv4-address true false
v4-lost 137 fqdn false false
capwap-ac-v4 138 ipv4-address true false
sip-ua-cs-domains 141 fqdn true false
rdnss-selection 146 record (uint8, ipv4-address, ipv4-address, fqdn) | true false
v4-portparams 159 record (uint8, psid) false false
v4-captive-portal 160 string false false
option-6rd 212 record (uint8, uint8, ipv6-address, ipv4-address) | true false
v4-access-domain 213 fqdn false false

Kea supports more options than the listed above. The following list is mostly useful for readers who want to understand
whether Kea is able to support certain options. The following options are returned by the Kea engine itself and in
general should not be configured manually.

8.2. DHCPv4 Server Configuration

75

Kea Administrator Reference Manual Documentation, Release 1.9.10

Table 2: List of standard DHCPv4 options managed by Kea on its own
and not directly configurable by an administrator

Name Code Type Description
subnet-mask 1 ipv4-address calculated automatically, based on subnet definition.
host-name 12 string sent by client, generally governed by the DNS configuration.
dhcp- 50 | ipv6-address may be sent by the client and the server should not set it.
requested-
address
dhcp-lease- 51 uint32 set automatically based on the valid-11ifet ime parameter.
time
dhcp-message- | 53 string sent by clients and servers. Set by the Kea engine depending on the
type situation and should never be configured explicitly.
dhcp- 55 uint§ array sent by clients and should never be sent by the server.
parameter-
request-list
dhcp-renewal- 58 uint32 governed by renew—t imer parameter.
time
dhcp- 59 | uint32 governed by rebind-t imer parameter.
rebinding-time
dhcp-client- 61 binary sent by client, echoed back with the value sent by the client.
identifier
fqdn 81 record (uint8, | it’s part of the DDNS and D2 configuration.

uint8§, uint8, fqdn)
dhcp-agent- 82 | empty sent by the relay agent. It’s an empty container option, see RAI
options option detail in later part of this section.
authenticate 90 | binary sent by client, kea does not validate it yet.
client-last- 91 uint32 sent by client, server does not set it
transaction-
time
associated-ip 92 | ipv4-address sent by client, server responds with list of addresses

array
subnet- 118 | ipv4-address if present in client’s messages, will be used in the subnet selection
selection process.

The following table lists all option types used in the previous two tables with a description of what values are accepted

for them.

76

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

Table 3: List of Standard DHCP Option Types

NameMeaning

bi- | An arbitrary string of bytes, specified as a set of hexadecimal digits.
nary
boolgars boolean value with allowed values true or false.

empty No value; data is carried in sub-options.

fqdn| Fully qualified domain name (e.g. www.example.com).

ipv4-| IPv4 address in the usual dotted-decimal notation (e.g. 192.0.2.1).

addrgss

ipv6- IPv6 address in the usual colon notation (e.g. 2001:db8::1).

addrgss

ipv6- IPv6 prefix and prefix length specified using CIDR notation, e.g. 2001:db8:1::/64. This data type is used to
prefix represent an 8-bit field conveying a prefix length and the variable length prefix value.

psid | PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire
format it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the 16-bits-long
PSID value field (in this case equal to “0011000000000000b” using binary notation). Allowed values for a
PSID length are O to 16. See RFC 7597 for details about the PSID wire representation.

record Structured data that may be comprised of any types (except “record” and “empty”’). The array flag applies
to the last field only.

string Any text. Please note that Kea will silently discard any terminating/trailing nulls from the end of ‘string’
options when unpacking received packets. This is in keeping with RFC 2132, Section 2.

tu- | A length encoded as an 8- (16- for DHCPvO6) bit unsigned integer followed by a string of this length.

ple
uint8| 8-bit unsigned integer with allowed values 0 to 255.

uint1p6 16-bit unsigned integer with allowed values O to 65535.

uint3P 32-bit unsigned integer with allowed values 0 to 4294967295.

int8 | 8-bit signed integer with allowed values -128 to 127.

int16| 16-bit signed integer with allowed values -32768 to 32767.

int32| 32-bit signed integer with allowed values -2147483648 to 2147483647.

>

Kea also supports Relay Agent Information (RAI) option, sometimes referred to as relay option, agent option or simply
option 82. The option itself is just a container and doesn’t convey any information on its own. The following table
contains a list of RAI sub-options that Kea can understand. The RAI and its sub-options are inserted by the relay agent
and received by Kea. There is no need for Kea to be configured with those options as Kea only receives them.

Table 4: List of RAI sub-options that Kea can understand.

Name Code | Comment

circuit-id 1 Used when host-reservation-identifiers is set to circuit-id.
remote-id 2 Can be used with flex-id to identify hosts.

link selection 5 If present, is used to select the appropriate subnet.

subscriber-id 6 Can be used with flex-id to identify hosts.

relay-source-port | 19 If sent by the relay, Kea will send back its responses to this port.

All other RAI sub-options can be used in client classification to classify incoming packets to specific classes and/or
by flex-id to construct a unique device identifier.

8.2.11 Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Assume that we want to define a new DHCPv4 option called
“fo0” which will have code 222 and will convey a single, unsigned, 32-bit integer value. We can define such an option
by putting the following entry in the configuration file:

8.2. DHCPv4 Server Configuration 77

https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc2132#section-2

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpd": {
"option-def": [
{

"name": "foo",
"code": 222,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": ""

The false value of the array parameter determines that the option does NOT comprise an array of “uint32” values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate.
The former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to “record”; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the opt ion—def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array default value is false.
The record-types and encapsulate default values are blank (i.e. *”’). The default space is “dhcp4”.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

"Dhcpd": {
"option-data": [

{

"name": "foo",
"code": 222,
"space": "dhcp4d",
"csv-format": true,
"data": "12345"

Is

New options can take more complex forms than simple use of primitives (uint8, string, ipv4-address, etc.); it is possible
to define an option comprising a number of existing primitives.

For example, assume we want to define a new option that will consist of an IPv4 address, followed by an unsigned
16-bit integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following
way:

"Dhcpd": {
"option-def": [
{

"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": false,

(continues on next page)

78 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

"record-types": "ipv4d-address, uintl6, boolean, string",
"encapsulate": ""

by
1,

The type is set to “record” to indicate that the option contains multiple values of different types. These types are
given as a comma-separated list in the record-types field and should be ones from those listed in List of Standard

DHCP Option Types.

The values of the option are set in an opt ion-data statement as follows:

"Dhcpd": {
"option—-data": [

{

"name": "bar",

"space": "dhcp4",

"code": 223,

"csv-format": true,

"data": "192.0.2.100, 123, true, Hello World"

csv-format is set to t rue to indicate that the dat a field comprises a comma-separated list of values. The values
in data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to “record”, the last field is an array, i.e. it can contain more than one
value, as in:

"Dhcpéd": {
"option-def": [
{

"name": "bar",

"code": 223,

"space": "dhcp4",

"type": "record",

"array": true,

"record-types": "ipv4-address, uintlée",
"encapsulate": ""

The new option content is one IPv4 address followed by one or more 16- bit unsigned integers.

Note: In general, boolean values are specified as t rue or false, without quotes. Some specific boolean parameters
may also accept "true", "false",0,1,"0",and "1".

Note: Numbers can be specified in decimal or hexadecimal format. The hexadecimal format can be either plain (e.g.
abcd) or prefixed with Ox (e.g. Oxabcd).

8.2. DHCPv4 Server Configuration 79

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.12 DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use. They can be defined at the global scope or at
the client-class local scope; this allows option definitions to be used depending on context and option data to be set
accordingly. For instance, to configure an old PXEClient vendor:

"Dhcpéd": {
"client—-classes": [

{

"name" :
"test":

{

"pxeclient",

"option[vendor-class—-identifier].text == 'PXECli
"option—-def": [

"name": "configfile",
"code": 209,
"type": "string"

ent'",

As the Vendor-Specific Information option (code 43) has vendor-specific format, i.e. can carry either raw binary value
or sub-options, this mechanism is available for this option too.

In the following example taken from a real configuration, two vendor classes use the option 43 for different and
incompatible purposes:

"Dhcpd": {
"option-def": [

{

}I
{

1y

"name":
"code":
thpeﬂ .

"space":

"name":
"code":
thpeﬂ .

"space":

"client-classes": [

{

"name" :
"test":

"cookie",
1!
"string",
"APC"
"mtftp-ip",
1!
"ipv4-address",
"PXE n
"APC" ,

"option[vendor-class—identifier].text

"option-def": [

{

I

"name": "vendor-encapsulated-options",
lltypell H n empty",
"encapsulate": "APC"

"option-data": [

—— IAPCIHI

(continues on next page)

80

Chapter 8

. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

"name": "cookie",
"Space" . "APC"’
"data": "1APC"
},
{
"name": "vendor-encapsulated-options"
},
I
by
{
"name": "PXE",
"test": "option[vendor-class—-identifier].text

"option-def": [
{

"name": "vendor—-encapsulated-options",
"type": "empty",
"encapsulate": "PXE"
}
]I
"option-data": [
{
"name": "mtftp-ip",
"space": "PXE",
"data": "0.0.0.0"
}I
{
"name": "vendor-encapsulated-options"

1,

’PXE'",

The definition used to decode a VSI option is:

1. The local definition of a client class the incoming packet belongs to;
2.
3.

If none, the global definition;

compatible with previous Kea versions).

If none, the last-resort definition described in the next section, DHCPv4 Vendor-Specific Options (backward-

Note: This last-resort definition for the Vendor-Specific Information option (code 43) is not compatible with a raw
binary value. When there are known cases where a raw binary value will be used, a client class must be defined with
both a classification expression matching these cases and an option definition for the VSI option with a binary type

and no encapsulation.

Note:

By default, in the Vendor-Specific Information option (code 43) sub-option code 0 and 255 mean PAD and

8.2. DHCPv4 Server Configuration

81

Kea Administrator Reference Manual Documentation, Release 1.9.10

END respectively according to RFC 2132. In other words, the sub-option code values of 0 and 255 are reserved.
Kea does, however, allow users to define sub-option codes from 0 to 255. If sub-options with codes 0 and/or 255 are
defined, bytes with that value are no longer treated as a PAD or an END, but as the sub-option code when parsing a
VSI option in an incoming query.

Option 43 input processing (also called unpacking) is deferred so that it happens after classification. This means clients
cannot be classified using option 43 suboptions. The definition used to unpack option 43 is determined as follows:

* If defined at the global scope this definition is used
« If defined at client class scope and the packet belongs to this class the client class definition is used

* If not defined at global scope nor in a client class to which the packet belongs, the built-in last resort definition
is used. This definition only says the sub-option space is “vendor-encapsulated-options-space”

The output definition selection is a bit simpler:
« If the packet belongs to a client class which defines the option 43 use this definition
* If defined at the global scope use this definition
* Otherwise use the built-in last-resort definition.

Note as they use a specific/per vendor option space the sub-options are defined at the global scope.

Note: Option definitions in client classes are allowed only for this limited option set (codes 43 and from 224 to 254),
and only for DHCPv4.

8.2.13 DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for the DHCPv4 daemon: “dhcp4” (for the top-level DHCPv4 options)
and “vendor-encapsulated-options-space”, which is empty by default but in which options can be defined. Those
options are carried in the Vendor-Specific Information option (code 43). The following examples show how to define
an option “foo” with code 1 that comprises an IPv4 address, an unsigned 16-bit integer, and a string. The “foo” option
is conveyed in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcpd": {
"option-def": [
{

"nameﬂ: llfooll’

"code": 1,

"space": "vendor-encapsulated-options-space",
"type": "record",

"array": false,

"record-types": "ipv4-address, uintlé6, string",
"encapsulate": ""

1y

}

(Note that the option space is set to vendor-encapsulated-options—space.) Once the option format is
defined, the next step is to define actual values for that option:

82 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2132

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpd": {
"option-data": [

{

Hnameﬂ: HfOOH,

"space": "vendor-encapsulated-options-space",
"code": 1,

"csv-format": true,

"data": "192.0.2.3, 123, Hello World"

1,

We also include the Vendor-Specific Information option, the option that conveys our suboption “foo”. This is required;
otherwise, the option will not be included in messages sent to the client.

"Dhcpéd": {
"option-data": [
{

"name": "vendor-encapsulated-options"

Alternatively, the option can be specified using its code.

"Dhcpd": {
"option-data": [
{
"code": 43

1,

Another popular option that is often somewhat imprecisely called “vendor option” is option 125. Its proper name is
vendor-independent vendor-specific information option or vivso. The idea behind those options is that each vendor
has its own unique set of options with their own custom formats. The vendor is identified by a 32-bit unsigned integer
called enterprise-id or vendor-id. For example, vivso with vendor-id 4491 represents DOCSIS options, and they are
often seen when dealing with cable modems.

In Kea each vendor is represented by its own vendor space. Since there are hundreds of vendors and sometimes
they use different option definitions for different hardware, it’s impossible for Kea to support them all out of the box.
Fortunately, it’s easy to define support for new vendor options. Let’s take an example of the Genexis home gateway.
This device requires sending the vivso 125 option with a suboption 2 that contains a string with the TFTP server URL.
To support such a device, three steps are needed: first, we need to define option definitions that will explain how the
option is supposed to be formed. Second, we will need to define option values. Third, we will need to tell Kea when
to send those specific options. This last step will be accomplished with client classification.

An example snippet of a configuration could look similar to the following:

{
// First, we need to define that the suboption 2 in vivso option for
// vendor-id 25167 has a specific format (it's a plain string in this example) .
// After this definition, we can specify values for option tftp.
"option-def": [

(continues on next page)

8.2. DHCPv4 Server Configuration 83

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

// We define a short name, so the option can be referenced by name.
// The option has code 2 and resides within vendor space 25167.
// Its data is a plain string.

"name": "tftp",

"code": 2,

"space": "vendor-25167",
"type": "string"

bl

"client-classes": [

{
// We now need to tell Kea how to recognize when to use vendor space 25167.
// Usually we can use a simple expression, such as checking if the device
// sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
// Unfortunately, Genexis is a bit unusual in this aspect, because it
// doesn't send vivso. In this case we need to look into the vendor class
// (option code 60) and see if there's a specific string that identifies
// the device.
"name": "cpe_genexis",
"test": "substring(option[60].hex,0,7) == 'HMC1l000'",

// Once the device is recognized, we want to send two options:
// the vivso option with vendor-id set to 25167, and a suboption 2.
"option-data": [
{
"name": "vivso-suboptions",
"data": "25167"
}I

// The suboption 2 value is defined as any other option. However,
// we want to send this suboption 2, even when the client didn't
// explicitly request it (often there is no way to do that for

// vendor options). Therefore we use always-send to force Kea

// to always send this option when 25167 vendor space is involved.

{

"name" . "tftp",
"space": "vendor-25167",
"data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.img",

"always—send": true

By default Kea sends back only those options that are requested by a client, unless there are protocol rules that tell
the DHCP server to always send an option. This approach works nicely for most cases and avoids problems with
clients refusing responses with options they don’t understand. Unfortunately, this is more complex when we consider
vendor options. Some vendors (such as docsis, identified by vendor option 4491) have a mechanism to request specific
vendor options and Kea is able to honor those. Unfortunately, for many other vendors, such as Genexis (25167) as
discussed above, Kea does not have such a mechanism, so it can’t send any sub-options on its own. To solve this issue,
we came up with the concept of persistent options. Kea can be told to always send options, even if the client did not
request them. This can be achieved by adding "always-send": true to the option definition. Note that in this
particular case an option is defined in vendor space 25167. With the “always-send” enabled, the option will be sent
every time there is a need to deal with vendor space 25167.

Another possibility is to redefine the option; see DHCPv4 Private Options.

84 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

Also, Kea comes with several example configuration files. Some of them showcase how to configure the option 60
and 43. See doc/examples/kead/vendor—-specific. json and doc/examples/kea6/vivso. json
in the Kea sources.

Note: Currently only one vendor is supported for vivco-suboptions (code 124) and vivso-suboptions (code 125)
options. It is not supported to specify multiple enterprise numbers within a single option instance or multiple options
with different enterprise numbers.

8.2.14 Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as when a user creates a new option in the standard
option space (“dhcp4”) and wants this option to convey sub-options. Since they are in a separate space, sub-option
codes will have a separate numbering scheme and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because
one is created by default if the standard option is meant to convey any sub-options (see DHCPv4 Vendor-Specific
Options).

Assume that we want to have a DHCPv4 option called “container” with code 222 that conveys two sub-options with
codes 1 and 2. First we need to define the new sub-options:

"Dhcpd": {
"option-def": [
{

"name": "suboptl",
"code": 1,
"space": "isc",
"type": "ipv4-address",
"record-types": "",
"array": false,
"encapsulate": ""
}V
{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""

Note that we have defined the options to belong to a new option space (in this case, “isc”).

The next step is to define a regular DHCPv4 option with the desired code and specify that it should include options
from the new option space:

"Dhcpd": {
"option-def": [
{

"name": "container",

(continues on next page)

8.2. DHCPv4 Server Configuration 85

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

"code": 222,
"space": "dhcp4d",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"

1s

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field
is set to empty, to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

"Dhcpd": {
"option-data": [

{

"name": "suboptl",
"code": 1,
"space": "isc",
"data": "192.0.2.3"
}I
}
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"
}I
{
"name": "container",
"code": 222,
"space": "dhcp4d"

1,

Note that it is possible to create an option which carries some data in addition to the sub-options defined in the
encapsulated option space. For example, if the “container” option from the previous example were required to carry
a uint16 value as well as the sub-options, the t ype value would have to be set to “uint16” in the option definition.
(Such an option would then have the following data structure: DHCP header, uintl6 value, sub-options.) The value
specified with the data parameter — which should be a valid integer enclosed in quotes, e.g. “123” — would then
be assigned to the uint16 field in the “container” option.

8.2.15 Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be
used. However, it is important to understand the implications of not specifying some of them, as it may result in
configuration errors. The list below explains the behavior of the server when a particular parameter is not explicitly
specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

86 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

* code - the server requires either an option name or an option code to identify an option. This parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option has a
definition (either as a standard option or an administrator-created definition for the option using an ‘option-def’
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it will default to ‘dhcp4’, which is an option space holding standard
DHCPv4 options.

* data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for
the options which have no payload (boolean options), but it is legal to specify empty values for some options
which carry variable-length data and for which the specification allows a length of 0. For such options, the data
parameter may be omitted in the configuration.

* csv-format - if this value is not specified, the server will assume that the option data is specified as a list of
comma-separated values to be assigned to individual fields of the DHCP option.

8.2.16 Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports the stateless client configuration whereby the client has an IP address configured (e.g.
using manual configuration) and only contacts the server to obtain other configuration parameters, such as addresses
of DNS servers. In order to obtain the stateless configuration parameters, the client sends the DHCPINFORM message
to the server with the “ciaddr” set to the address that the client is currently using. The server unicasts the DHCPACK
message to the client that includes the stateless configuration (“yiaddr” not set).

The server will respond to the DHCPINFORM when the client is associated with a subnet defined in the server’s
configuration. An example subnet configuration will look like this:

"Dhcpéd": {
"subnet4": [
{

"subnet": "192.0.2.0/24"

"option-data": [{
"name": "domain-name-servers",
"code": 6,
"data": "192.0.2.200,192.0.2.201",
"csv-format": true,
"space": "dhcp4d"

This subnet specifies the single option which will be included in the DHCPACK message to the client in response to
DHCPINFORM. Note that the subnet definition does not require the address pool configuration if it will be used solely
for the stateless configuration.

This server will associate the subnet with the client if one of the following conditions is met:
¢ The DHCPINFORM is relayed and the giaddr matches the configured subnet.
e The DHCPINFORM is unicast from the client and the ciaddr matches the configured subnet.

* The DHCPINFORM is unicast from the client and the ciaddr is not set, but the source address of the IP packet
matches the configured subnet.

¢ The DHCPINFORM is not relayed and the IP address on the interface on which the message is received matches
the configured subnet.

8.2. DHCPv4 Server Configuration 87

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.17 Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a deeper discussion of the classification process see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of the DHCP message processing.
Kea currently offers client classification via private options and option 43 deferred unpacking; subnet selection; pool
selection; assignment of different options; and, for cable modems, specific options for use with the TFTP server
address and the boot file field.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get a lease from subnet
B. That segregation is essential to prevent overly curious users from playing with their cable modems. For details on
how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. So the limit on access based on class information is also available at the pool level; see
Configuring Pools With Class Information, within a subnet. This is useful when segregating clients belonging to the
same subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using
the built-in “KNOWN” or “UNKNOWN” classes. Addresses can be assigned to registered clients without giving
a different address per reservation, for instance when there are not enough available addresses. The determina-
tion whether there is a reservation for a given client is made after a subnet is selected, so it is not possible to use
“KNOWN”/"UNKNOWN?” classes to select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it
to zero or more classes. The second step is to choose a subnet, possibly based on the class information. When the
incoming packet is in the special class, “DROP”, it is dropped and a debug message logged. The next step is to
evaluate class expressions depending on the built-in “KNOWN”/”"UNKNOWN?” classes after host reservation lookup,
using them for pool selection and assigning classes from host reservations. The list of required classes is then built
and each class of the list has its expression evaluated; when it returns “true” the packet is added as a member of the
class. The last step is to assign options, again possibly based on the class information. More complete and detailed
information is available in Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second specifies an expression that is evaluated for
each packet. If the result is “true”, the packet is a member of the class.

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be
denied all service.

8.2.17.1 Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class should receive packets with specific values in certain
fixed fields. In particular, three fixed fields are supported: next—-server (conveys an IPv4 address, which is set
in the siaddr field), server—hostname (conveys a server hostname, can be up to 64 bytes long, and is sent in the
sname field) and boot-file-name (conveys the configuration file, can be up to 128 bytes long, and is sent using
the file field).

88 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

Obviously, there are many ways to assign clients to specific classes, but for PXE clients the client architecture type
option (code 93) seems to be particularly suited to make the distinction. The following example checks whether the
client identifies itself as a PXE device with architecture EFI x86-64, and sets several fields if it does. See Section 2.1
of RFC 4578) or the client documentation for specific values.

"Dhcpd": {
"client-classes": [
{

"name": "ipxe_efi_x64",

"test": "option[93].hex == 0x0009",
"next-server": "192.0.2.254",
"server—-hostname": "hal9000",
"boot-file—-name": "/dev/null"

If an incoming packet is matched to multiple classes, then the value used for each field will come from the first class
that specifies the field, in the order the classes are assigned to the packet.

Note: The classes are ordered as specified in the configuration.

8.2.17.2 Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class identifier option (60). If it does, the con-
tent of that option is prepended with “VENDOR_CLASS_”, and it is interpreted as a class. For example, modern
cable modems will send this option with value “docsis3.0” and as a result the packet will belong to class “VEN-
DOR_CLASS_docsis3.0”.

Note: Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be achieved by defining VEN-
DOR_CLASS_docsis3.0 and setting its next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated “VENDOR_CLASS_" class. The administrator
of the network has decided that addresses from range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4
server and only clients belonging to the docsis3.0 client class are allowed to use that pool.

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"client-class": "VENDOR_CLASS_docsis3.0"

1r

8.2. DHCPv4 Server Configuration 89

https://tools.ietf.org/html/rfc4578#section-2.1
https://tools.ietf.org/html/rfc4578#section-2.1

Kea Administrator Reference Manual Documentation, Release 1.9.10

8.2.17.3 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This
configuration defines the class named “Client_foo”. It is comprised of all clients whose client ids (option 61) start
with the string “foo”. Members of this class will be given addresses from 192.0.2.10 to 192.0.2.20 and the addresses
of their DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcpéd": {
"client—-classes": [

{

"name": "Client_foo",
"test": "substring(option[61].hex,0,3) == 'foo'",
"option—-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
}
1
}I
]I
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"client-class": "Client_foo"

}l

1,

8.2.17.4 Required Classification

In some cases it is useful to limit the scope of a class to a shared network, subnet, or pool. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The first one is the per-class only-if-required flag, which is false by default. When it is set to t rue, the test
expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class evaluation
is required.

The second is require—-client—-classes, which takes a list of class names and is valid in shared-network,
subnet, and pool scope. Classes in these lists are marked as required and evaluated after selection of this specific
shared network/subnet/pool and before output option processing.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcpd": {
"client-classes": [

{

"name": "Client_foo",
"test": "member ('ALL')",
"only-if-required": true

s

(continues on next page)

90 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

I

"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,
"require-client-classes": ["Client_foo" 1,

Is

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to
reverse the precedence; if an option-data is set in a subnet, it takes precedence over an option-data in a class. If the
option-data is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Required evaluation is also available at the shared-network and pool levels. The order in which required classes are
considered is: shared-network, subnet, and pool, i.e. in the opposite order in which option-data is processed.

8.2.18 DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests to the DHCP-DDNS server, kea-dhcp-ddns,
(referred to herein as “D2”) to update DNS entries. These requests are known as Name Change Requests or NCRs.
Each NCR contains the following information:

1. Whether it is a request to add (update) or remove DNS entries
2. Whether the change requests forward DNS updates (A records), reverse DNS updates (PTR records), or both

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client
associated with the FQDN)

Prior to Kea 1.7.1, all parameters for controlling DDNS were within the global dhcp—-ddns section of the kea-dhcp4.
Beginning with Kea 1.7.1 DDNS related parameters were split into two groups:

1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp4 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp—-ddns section in the kea-
dhcp4 configuration. The connectivity parameters are listed below:

* enable-updates
* server-ip

* server—-port

* sender-ip

* sender-port

* max—queue-size
* ncr-protocol

* ncr—format"

2. Behavioral Parameters

8.2. DHCPv4 Server Configuration 91

Kea Administrator Reference Manual Documentation, Release 1.9.10

These parameters influence behavior such as how client host names and FQDN options are handled.
They have been moved out of the dhcp—ddns section so that they may be specified at the global,
shared-network, and/or subnet levels. Furthermore, they are inherited downward from global to
shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameter as follows:

* ddns—-send-updates

* ddns-override—-no-update

* ddns-override-client-update
¢ ddns-replace-client—-name"

* ddns—-generated-prefix

* ddns—qualifying-suffix

* ddns—update-on-renew

* ddns—-use-conflict-resolution
* hostname—-char-set

* hostname—-char—-replacement

Note: For backward compatibility, configuration parsing will still recognize the original behavioral parameters spec-
ified in dhcp—ddns. It will do so by translating the parameter into its global equivalent. If a parameter is specified
both globally and in dhcp-ddns, the latter value will be ignored. In either case, a log will be emitted explaining
what has occurred. Specifying these values within dhcp-ddns is deprecated and support for it will be removed at

some future date.

The default configuration would appear as follows:

"Dhcpd": {
"dhcp-ddns": {
// Connectivity parameters

"enable-updates": false,
"server—-ip": "127.0.0.1",
"server-port":53001,
"sender—-ip":"",

"sender-port":0,
"max—-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

}I

// Behavioral parameters (global)

"ddns—-send-updates": true,
"ddns-override—-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client—name": "never",
"ddns—-generated-prefix": "myhost",
"ddns-qualifying-suffix": "",
"ddns-update-on-renew": false,
"ddns-use-conflict-resolution": true,
"hostname-char-set": "",

"hostname—-char—-replacement": ""

92 Chapter 8

. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

As of Kea 1.7.1, there are two parameters which determine whether kea-dhcp4 can generate DDNS requests to D2: the
existing dhcp-ddns: enable—updates parameter, which now only controls whether kea-dhcp4 connects to D2;
and the new behavioral parameter, ddns—send-updates, which determines whether DDNS updates are enabled
at a given level (i.e. global, shared-network, or subnet). The following table shows how the two parameters function
together:

Table 5: Enabling and Disabling DDNS Updates

dhcp-ddns: enable- | Global ddns-send- | Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for ddns-
enable-updates

true true updates at all scopes except those with a local value of false for
ddns-enable-updates

Kea 1.9.1 adds two new parameters. The first new parameter is ddns-update-on-renew. Normally, when
leases are renewed the server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update
direction flags) has changed. Setting ddns—update—-on-renew to true instructs the server to always update the
DNS information when a lease is renewed even if its DNS information has not changed. This allows Kea to “self-heal”
if it was previously unable to add DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update—-on-renew to true may impact performance, especially for servers with numerous
clients who renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. The value of this parameter is
passed by kea-dhcp4 to D2 with each DNS update request. When true, (the default value), D2 will employ conflict
resolution, as described in RFC 4703, when attempting to fulfill the update request. When false, D2 will simply
attempt to update the DNS entries per the request, regardless of whether or not they conflict with existing entries
owned by other DHCP4 clients.

Note: Setting ddns—-use—-conflict-resolution to false disables the overwrite safeguards that the rules of
conflict resolution (RFC 4703) are intended to prevent. This means that existing entries for a FQDN or an IP address
made for Client-A can be deleted or replaced by entries for Client-B. Furthermore, there are two scenarios by which
entries for multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case the forward DNS entries (A and
DHCID RRs) for Client-A will be deleted as they match the FQDN and new entries for Client-B will be added. The
reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different IP
address while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address and new entries for Client-B will be added.
The forward DNS entries (A and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different
FQDN while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure lease changes are processed through Kea, whether they are released, expire,
or are deleted via the lease-del4 command, prior to reassigning either FQDNs or IP addresses. Doing so will cause
kea-dhcp4 to generate DNS removal requests to D2.

Note: The DNS entries Kea creates contain a value for TTL (time to live). As of Kea 1.9.3, kea-dhcp4 calculates that

8.2. DHCPv4 Server Configuration 93

https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4703

Kea Administrator Reference Manual Documentation, Release 1.9.10

value based on RFC 4702, Section 5 which suggests that the TTL value be 1/3 of the lease’s lifetime with a minimum
value of 10 minutes. Prior to this the server set the TTL value equal to the lease’s valid lifetime. Future releases may
add one or more parameters to customize this value.

8.2.18.1 DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp4 must be able to communicate with it. kea-dhcp4 uses the following
configuration parameters to control this communication:

* enable-updates - As of Kea 1.7.1, this parameter only enables connectivity to kea-dhcp-ddns such that
DDNS updates can be constructed and sent. It must be true for NCRs to be generated and sent to D2. It defaults
to false.

* server—ip - the IP address on which D2 listens for requests. The default is the local loopback interface at
address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

* server-port - the port on which D2 listens for requests. The default value is 53001.

* sender—ip - the IP address which kea-dhcp4 uses to send requests to D2. The default value is blank, which
instructs kea-dhcp4 to select a suitable address.

* sender-port - the port which kea-dhcp4 uses to send requests to D2. The default value of 0 instructs kea-
dhcp4 to select a suitable port.

* max—-queue-size - the maximum number of requests allowed to queue waiting to be sent to D2. This value
guards against requests accumulating uncontrollably if they are being generated faster than they can be delivered.
If the number of requests queued for transmission reaches this value, DDNS updating will be turned off until
the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue lease
operations without running the risk that its memory usage grows without limit. The default value is 1024.

* ncr-protocol - the socket protocol to use when sending requests to D2. Currently only UDP is supported.

* ncr-format - the packet format to use when sending requests to D2. Currently only JSON format is sup-
ported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp4, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port,
these values must be altered accordingly. For example, if D2 has been configured to listen on 192.168.1.10 port 900,
the following configuration is required:

"Dhcpéd": {
"dhcp-ddns": {
"server—ip": "192.168.1.10",
"server-port": 900,

by

8.2.18.2 When Does the kea-dhcp4 Server Generate a DDNS Request?

kea-dhcp4 follows the behavior prescribed for DHCP servers in RFC 4702. It is important to keep in mind that kea-
dhcp4 makes the initial decision of when and what to update and forwards that information to D2 in the form of
NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the purview
of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp4 will generate NCRs and the

94 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4702#section-5
https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 1.9.10

configuration parameters that can be used to influence this decision. It assumes that both the connectivity parameter,
enable-updates and the behavioral parameter ddns—send-updates, are true.

In general, kea-dhcp4 will generate DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST,;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests will be issued: one request to remove entries for the previous
FQDN, and a second request to add entries for the new FQDN. In the last case, a lease release, a single DDNS request
to remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp4 will generate a DDNS update request if the DHCPREQUEST contains either the FQDN option (code 81)
or the Host Name option (code 12). If both are present, the server will use the FQDN option. By default, kea-dhcp4
will respect the FQDN N and S flags specified by the client as shown in the following table:

Table 6: Default FQDN Flag Behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server | Server generates reverse-only re- | 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- | Server generates request to up- | 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate a re- | 1-0-0

quest

The first row in the table above represents “client delegation.” Here the DHCP client states that it intends to do
the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp4 will honor the
client’s wishes and generate a DDNS request to the D2 server to update only reverse DNS data. The parameter
ddns-override—-client-update can be used to instruct the server to override client delegation requests. When
this parameter is “true”, kea-dhcp4 will disregard requests for client delegation and generate a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server’s response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp4.)

To override client delegation, set the following values in the configuration file:

"Dhcpd": {
"ddns—-override-client-update": true,

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter, ddns—override-no—update, can be used to instruct the server to disregard the client’s wishes. When
this parameter is true, kea-dhcp4 will generate DDNS update requests to kea-dhcp-ddns even if the client requests that
no updates be done. The N-S-O flags in the server’s response to the client will be 0-1-1.

To override client delegation, issue the following commands:

"Dhcpd": {

(continues on next page)

8.2. DHCPv4 Server Configuration 95

https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

"ddns-override-no-update": true,

kea-dhcp4 will always generate DDNS update requests if the client request only contains the Host Name option.
In addition, it will include an FQDN option in the response to the client with the FQDN N-S-O flags set to 0-1-0
respectively. The domain name portion of the FQDN option will be the name submitted to D2 in the DDNS update
request.

8.2.18.3 kea-dhcp4 Name Generation for DDNS Update Requests

Each Name Change Request must of course include the fully qualified domain name whose DNS entries are to be
affected. kea-dhcp4 can be configured to supply a portion or all of that name, based upon what it receives from the
client in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:

1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there; otherwise, take
it from the Host Name option.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.
4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client—-name parameter, which provides the follow-
ing modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: Note that in early versions of Kea, this parameter was a boolean and permitted only values of t rue and
false. Boolean values have been deprecated and are no longer accepted. Administrators currently using booleans
must replace them with the desired mode name. A value of t rue maps to "when-present", while false maps
to "never".

For example, to instruct kea-dhcp4 to always generate the FQDN for a client, set the parameter
ddns-replace-client—-name to always as follows:

"Dhcpd": {

"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the generated-prefix parameter. The default value
is “myhost”. To alter its value, simply set it to the desired string:

96 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

"Dhcpéd": {
"ddns—generated-prefix": "another.host",

}

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. It is strongly recommended that the user supply a value for the quali-
fying prefix when DDNS updates are enabled. For obvious reasons, we cannot supply a meaningful default.

"Dhcpd": {
"ddns-qualifying-suffix": "foo.example.org",

}

When generating a name, kea-dhcp4 constructs the name in the format:
[ddns-generated-prefix]-[address-text].[ddns-qualifying-suffix].

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 172.16.1.10, the qualifying suffix “example.com”, and the default value is used for ddns—-generated-prefix,
the generated FQDN is:

myhost-172-16-1-10.example.com.

8.2.18.4 Sanitizing Client Host Name and FQDN Names

Some DHCP clients may provide values in the Host Name option (option code 12) or FQDN option (option code 81)
that contain undesirable characters. It is possible to configure kea-dhcp4 to sanitize these values. The most typical use
case is ensuring that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and ‘-*. This may be
accomplished with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid,
regular expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an
invalid character to be replaced (or omitted).

* hostname—-char-replacement - a string of zero or more characters with which to replace each invalid
character in the host name. An empty string causes invalid characters to be OMITTED rather than replaced.

Note: Starting with Kea 1.7.5, the default values are as follows:
¢ “hostname-char-set”: “[*"A-Za-z0-9.-]”,

* “hostname-char-replacement”:

This enables sanitizing and omits any character that is not a letter, digit, hyphen, dot, or null.

The following configuration replaces anything other than a letter, digit, hyphen, or dot with the letter ‘x’:

"Dhcpd": {
"hostname-char-set": "["A-Za-z0-9.-]",
"hostname-char-replacement": "x",

8.2. DHCPv4 Server Configuration 97

Kea Administrator Reference Manual Documentation, Release 1.9.10

Thus, a client-supplied value of “myhost-$[123.0org” would become “myhost-xx123.org”. Sanitizing is performed
only on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one
is defined and needed).

Note: The following are some considerations to keep in mind: Name sanitizing is meant to catch the more common
cases of invalid characters through a relatively simple character-replacement scheme. It is difficult to devise a scheme
that works well in all cases, for both Host Name and FQDN options. Administrators who find they have clients
with odd corner cases of character combinations that cannot be readily handled with this mechanism should consider
writing a hook that can carry out sufficiently complex logic to address their needs.

If clients include domain names in the Host Name option and the administrator wants these preserved, they will need
to make sure that the dot, ‘.’, is considered a valid character by the hostname-char-set expression, such as this: “[*A-
Za-70-9.-]”. This will not affect dots in FQDN Option values. When scrubbing FQDNSs, dots are treated as delimiters
and used to separate the option value into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware
that scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to
register the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value
for hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: Since the 1.6.0 Kea release, it is possible to specify hostname-char-set and/or hostname-char-replacement at
the global scope. This allows sanitizing host names without requiring a dhcp-ddns entry. When a hostname-char
parameter is defined at the global scope and in a dhcp-ddns entry, the second (local) value is used.

8.2.19 Next Server (siaddr)

In some cases, clients want to obtain configuration from a TFTP server. Although there is a dedicated option for it,
some devices may use the siaddr field in the DHCPv4 packet for that purpose. That specific field can be configured
using the next—-server directive. It is possible to define it in the global scope or for a given subnet only. If both are
defined, the subnet value takes precedence. The value in subnet can be set to 0.0.0.0, which means that next-server
should not be sent. It may also be set to an empty string, which means the same as if it were not defined at all; that is,
use the global value.

The server-hostname (which conveys a server hostname, can be up to 64 bytes long, and will be sent in the
sname field) and boot-file-name (which conveys the configuration file, can be up to 128 bytes long, and will be
sent using the file field) directives are handled the same way as next-server.

"Dhcpéd": {
"next-server": "192.0.2.123",
"boot-file-name": "/dev/null",
.
"subnet4": [
{

"next-server": "192.0.2.234",
"server—-hostname": "some-name.example.org",
"boot-file-name": "bootfile.efi",

(continues on next page)

98 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

8.2.20 Echoing Client-ID (RFC 6842)

The original DHCPv4 specification (RFC 2131) states that the DHCPv4 server must not send back client-id options
when responding to clients. However, in some cases that result confused clients that did not have a MAC address or
client-id; see RFC 6842 for details. That behavior changed with the publication of RFC 6842, which updated RFC
2131. That update states that the server must send the client-id if the client sent it. That is Kea’s default behavior.
However, in some cases older devices that do not support RFC 6842 may refuse to accept responses that include
the client-id option. To enable backward compatibility, an optional configuration parameter has been introduced. To
configure it, use the following configuration statement:

"Dhcpd": {
"echo-client-1d": false,

8.2.21 Using Client Identifier and Hardware Address

The DHCP server must be able to identify the client from which it receives the message and distinguish it from other
clients. There are many reasons why this identification is required; the most important ones are:

¢ When the client contacts the server to allocate a new lease, the server must store the client identification infor-
mation in the lease database as a search key.

* When the client is trying to renew or release the existing lease, the server must be able to find the existing lease
entry in the database for this client, using the client identification information as a search key.

* Some configurations use static reservations for the IP addresses and other configuration information. The
server’s administrator uses client identification information to create these static assignments.

¢ In dual-stack networks there is often a need to correlate the lease information stored in DHCPv4 and DHCPv6
servers for a particular host. Using common identification information by the DHCPv4 and DHCPv6 clients
allows the network administrator to achieve this correlation and better administer the network.

DHCPv4 uses two distinct identifiers which are placed by the client in the queries sent to the server and copied by
the server to its responses to the client: “chaddr” and “client identifier”. The former was introduced as a part of the
BOOTP specification and it is also used by DHCP to carry the hardware address of the interface used to send the query
to the server (MAC address for the Ethernet). The latter is carried in the Client-identifier option, introduced in RFC
2132.

RFC 2131 indicates that the server may use both of these identifiers to identify the client but the “client identifier”, if
present, takes precedence over “‘chaddr”. One of the reasons for this is that “client identifier” is independent from the
hardware used by the client to communicate with the server. For example, if the client obtained the lease using one
network card and then the network card is moved to another host, the server will wrongly identify this host as the one
which obtained the lease. Moreover, RFC 4361 gives the recommendation to use a DUID (see RFC 8415, the DHCPv6
specification) carried as a “client identifier” when dual-stack networks are in use to provide consistent identification
information for the client, regardless of the type of protocol it is using. Kea adheres to these specifications, and the
“client identifier” by default takes precedence over the value carried in the “chaddr” field when the server searches,
creates, updates, or removes the client’s lease.

When the server receives a DHCPDISCOVER or DHCPREQUEST message from the client, it will try to find out if
the client already has a lease in the database; if it does, the server will hand out that lease rather than allocate a new

8.2. DHCPv4 Server Configuration 99

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 1.9.10

one. Each lease in the lease database is associated with the “client identifier” and/or “chaddr”. The server will first
use the “client identifier” (if present) to search for the lease. If the lease is found, the server will treat this lease as
belonging to the client even if the current “chaddr” and the “chaddr” associated with the lease do not match. This
facilitates the scenario when the network card on the client system has been replaced and thus the new MAC address
appears in the messages sent by the DHCP client. If the server fails to find the lease using the “client identifier”, it
will perform another lookup using the “chaddr”. If this lookup returns no result, the client is considered as not having
a lease and a new lease will be created.

A common problem reported by network operators is that poor client implementations do not use stable client iden-
tifiers, instead generating a new “client identifier” each time the client connects to the network. Another well-known
case is when the client changes its “client identifier” during the multi-stage boot process (PXE). In such cases, the
MAC address of the client’s interface remains stable, and using the “chaddr” field to identify the client guarantees that
the particular system is considered to be the same client, even though its “client identifier” changes.

To address this problem, Kea includes a configuration option which enables client identification using “chaddr” only.
This instructs the server to “ignore” the “client identifier” during lease lookups and allocations for a particular subnet.
Consider the following simplified server configuration:

"Dhcpd": {
"match-client-id": true,
"subnetd4": [
{
"subnet": "192.0.10.0/24",
"pools": [{ "pool": "192.0.2.23-192.0.2.87" } 1,

"match-client—-id": false

"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.23-10.0.2.99" } 1,

The match-client—id is a boolean value which controls this behavior. The default value of t rue indicates that
the server will use the “client identifier” for lease lookups and “chaddr” if the first lookup returns no results. The
false means that the server will only use the “chaddr” to search for the client’s lease. Whether the DHCID for DNS
updates is generated from the “client identifier” or “chaddr” is controlled through the same parameter.

The match-client—-id parameter may appear both in the global configuration scope and/or under any subnet
declaration. In the example shown above, the effective value of the match-client-id will be false for the
subnet 192.0.10.0/24, because the subnet-specific setting of the parameter overrides the global value of the parameter.
The effective value of the match—client-id for the subnet 10.0.0.0/8 will be set to true because the subnet
declaration lacks this parameter and the global setting is by default used for this subnet. In fact, the global entry for
this parameter could be omitted in this case, because t rue is the default value.

It is important to understand what happens when the client obtains its lease for one setting of the match-client-id
and then renews it when the setting has been changed. First, consider the case when the client obtains the lease and
the match-client-idis set to true. The server will store the lease information, including “client identifier” (if
supplied) and “chaddr”, in the lease database. When the setting is changed and the client renews the lease, the server
will determine that it should use the “chaddr” to search for the existing lease. If the client hasn’t changed its MAC
address, the server should successfully find the existing lease. The “client identifier” associated with the returned lease
will be ignored and the client will be allowed to use this lease. When the lease is renewed only the “chaddr” will be
recorded for this lease, according to the new server setting.

In the second case the client has the lease with only a “chaddr” value recorded. When the mat ch-client-id setting
is changed to t rue, the server will first try to use the “client identifier” to find the existing client’s lease. This will

100 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

return no results because the “client identifier” was not recorded for this lease. The server will then use the “chaddr”
and the lease will be found. If the lease appears to have no “client identifier” recorded, the server will assume that this
lease belongs to the client and that it was created with the previous setting of the match-client-id. However, if
the lease contains a “client identifier” which is different from the “client identifier” used by the client, the lease will
be assumed to belong to another client and the new lease will be allocated.

8.2.22 Authoritative DHCPv4 Server Behavior

The original DHCPv4 specification (RFC 2131) states that if a client requests an address in the INIT-REBOQOT state,
of which the server has no knowledge, the server must remain silent, except if the server knows that the client has
requested an IP address from the wrong network. By default, Kea follows the behavior of the ISC dhcpd daemon
instead of the specification and also remains silent if the client requests an IP address from the wrong network, because
configuration information about a given network segment is not known to be correct. Kea only rejects a client’s
DHCPREQUEST with a DHCPNAK message if it already has a lease for the client with a different IP address.
Administrators can override this behavior through the boolean authoritative (false by default) setting.

In authoritative mode, authoritative set to true, Kea always rejects INIT-REBOOT requests from unknown
clients with DHCPNAK messages. The authoritative setting can be specified in global, shared-network, and
subnet configuration scope and is automatically inherited from the parent scope, if not specified. All subnets in a
shared-network must have the same authoritative setting.

8.2.23 DHCPv4-over-DHCPv6: DHCPv4 Side

The support of DHCPv4-over-DHCPv6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPv6 servers. This section is about the configuration of the DHCPv4 side (the DHCPv6 side is
described in DHCPv4-over-DHCPv6: DHCPv6 Side).

Note: DHCPv4-over-DHCPv6 support is experimental and the details of the inter-process communication may
change; both the DHCPv4 and DHCPv6 sides should be running the same version of Kea. For instance, the support of
port relay (RFC 8357) introduced an incompatible change.

The dhcp4o6-port global parameter specifies the first of the two consecutive ports of the UDP sockets used for
the communication between the DHCPv6 and DHCPv4 servers. The DHCPv4 server is bound to ::1 on port + 1 and
connected to ::1 on port.

With DHCPv4-over-DHCPv6, the DHCPv4 server does not have access to several of the identifiers it would normally
use to select a subnet. To address this issue, three new configuration entries have been added; the presence of any of
these allows the subnet to be used with DHCPv4-over-DHCPv6. These entries are:

* 406-subnet: takes a prefix (i.e., an IPv6 address followed by a slash and a prefix length) which is matched
against the source address.

* 4do6-interface-id: takes a relay interface ID option value.
* 4o06-interface: takes an interface name which is matched against the incoming interface name.

The following configuration was used during some tests:

{

DHCPv4 conf

"Dhcpd": {
"interfaces-config": {
"interfaces": ["eno33554984"]

(continues on next page)

8.2. DHCPv4 Server Configuration 101

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 1.9.10

(continued from previous page)

}y

"lease—-database": {
"type": "memfile",
"name": "leases4"

b
"valid-lifetime": 4000,

"subnet4": [{

"subnet": "10.10.10.0/24",

"Jo6-interface”": "eno33554984",

"4o6-subnet": "2001:db8:1:1::/64",

"pools": [{ "pool": "10.10.10.100 - 10.10.10.199" } 1
}]I

"dhcp4o6-port": 6767,

"loggers": [{
"name": "kea-dhcp4",
"output_options": [{
"output": "/tmp/kea-dhcp4d.log"
b}l
"severity": "DEBUG",
"debuglevel": 0
bl

8.2.24 Sanity Checks in DHCPv4

An important aspect of a well-running DHCP system is an assurance that the data remain consistent. However, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator that temporarily
removed a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to control sanity checks such as this.

Kea supports a configuration scope called sanity—-checks. It currently allows only a single parameter, called
lease-checks, which governs the verification carried out when a new lease is loaded from a lease file. This
mechanism permits Kea to attempt to correct inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id parameter
as well, which identifies which subnet it belongs to. However, if the configuration has changed, it is possible that a
lease could exist with a subnet-id, but without any subnet that matches it. Also, it may be possible that the subnet’s
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease. Kea’s corrective
algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there is, it verifies whether
the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is discarded, a warning is
displayed, or a new subnet is selected for the lease that matches it topologically.

There are five levels which are supported:
* none - do no special checks; accept the lease as is.

* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.
If not explicitly configured to some other value, this level will be used.

102 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 1.9.10

» fix -if a data inconsistency is discovered, try to correct it. If the correction is not successful, the incorrect data
will be inserted anyway.

» fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data’s correctness, but some incorrect data may be lost. Use with care.

* del - this is the strictest mode. If any inconsistency is detected, reject the lease. Use with care.

This feature is currently implemented for the memfile backend. Note the sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases will stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcpd": {
"sanity-checks": {
"lease-checks": "fix-del"

by

8.2.25 Storing Extended Lease Information

In order to support such features as DHCP LeaseQuery (RFC 4388) it is necessary to store additional information with
each lease. Because the amount of information stored for each lease has ramifications in terms of performance and
system resource consumption, storing this additional information is configurable through the “store-extended-info”
parameter. It defaults to false and may be set at the global, shared-network, and subnet levels.

"Dhcpéd": {
"store—-extended-info": true,

When enabled, information relevant to the DHCPREQUEST asking for the lease is added into the lease’s user-context
as a map element labeled “ISC”. Currently, the map will contain a single value, the relay-agent-info option (DHCP
Option 82), when the DHCPREQUEST received contains it. Other values may be added at a future date. Since
DHCPREQUESTS sent as renewals will likely not contain this information, the values taken from the last DHCPRE-
QUEST that did contain it will be retained on the lease. The lease’s user-context will look something like this:

{ "ISC": { "relay-agent-info": "0x52050104AABBCCDD" } }

Note: This feature is intended to be used in conjunction with an upcoming LeaseQuery hook library and at this time
there is other use for this information within Kea.

Note: It is possible that other hook libraries are already using user-context. Enabling store-extended-info should not
interfere with any other user-context content, as long as it does not also use an element labeled “ISC”. In other words,
user-context is intended to be a flexible container serving multiple purposes. As long as no other purpose also writes
an “ISC” element to user-context there should not be a conflict.

8.2.26 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under multi-threading structure and are represented by:

8.2. DHCPv4 Server Configuration 103

https://tools.ietf.org/html/rfc4388

Kea Administrator Reference Manual Documentation, Release 1.9.10

* enable-multi-threading - use multiple threads to process packets in parallel (default false).

* thread-pool-size - specify the number of threads to process packets in parallel. Supported values are: 0
(auto detect), any positive number sets thread count explicitly (default 0).

* packet—queue-size - specify the size of the queue used by the thread pool to process packets. Supported
values are: 0 (unlimited), any positive number sets queue size explicitly (default 64).

An example configuration that sets these parameter looks as follows:

"Dhcpd": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

8.2.27 Multi-Threading Settings in Different Backends

Both kea-dhcp4 and kea-dhcp6 are tested internally to determine which settings gave the best performance. Although
this section describes our results, those are just recommendations and are very dependent on the particular hardware
that was used for testing. We strongly advise that administrators run their own performance tests.

A full report of performance results for the latest stable Kea can be found here. This includes hardware and test
scenario descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by thread-pool-size parameter, and results from
our tests show that best configurations for kea-dhcp4 are:

* thread-pool-size: 4 when using memfile for storing leases.
* thread-pool-size: 12 or more when using mysql for storing leases.
* thread-pool-size: 8 when using postgresql.

Another very important parameter is packet—queue-size and in our tests we used it as a multiplier of
thread-pool-size. So the actual setting strongly depends on thread-pool-size.

Our tests reported best results when:

* packet—queue-size: 7 * thread-pool-size when using memfile for storing leases. In our case it’s
7 * 4 = 28. This means that at any given time, up to 28 packets could be queued.

* packet—-queue-size: 66 ¥ thread-pool-size when using mysql for storing leases. In our case it’s
66 * 12 =792. This means that up to 792 packets could be queued.

* packet—queue-size: 11 ¥ thread-pool-size when using postgresqgl for storing leases. In our
caseit’s 11 * 8 = 88.

8.2.28 IPv6-only Preferred Networks

A RFC8925 recently published by IETF specifies a DHCPv4 option to indicate that a host supports an IPv6-only mode
and is willing to forgo obtaining an IPv4 address if the network provides IPv6 connectivity. The general idea is that
a network administrator can enable this option to signal to compatible dual-stack devices that the IPv6 connectivity
is available and they can shut down their IPv4 stack. The new option v6-only-preferred content is a 32 bit unsigned
integer and specifies for how long the device should disable its stack for. The value is expressed in seconds.

104 Chapter 8. The DHCPv4 Server

https://jenkins.isc.org/job/kea-dev/job/performance/KeaPerformanceReport/
https://tools.ietf.org/html/rfc8925

Kea Administrator Reference Manual Documentation, Release 1.9.10

The RFC mentions VOONLY_WAIT timer. This is implemented in Kea by setting the value of v6-only-preferred
option. This follows the usual practice of setting options. The option value can be specified on pool, subnet, shared
network, or global levels, or even via host reservations.

Note there is no special processing involved. This follows the standard Kea option processing regime. The option will
not be sent back, unless the client explicitly requests it. For example, to enable the option for the whole subnet, the
following configuration can be used:

"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"option-data": [
{
// This will make the v6-only capable devices to disable their
// v4 stack for half an hour and then try again
"name": "v6-only-preferred",
"data": "1800"

8.2.29 Lease Caching

Clients that attempt renewal frequently can cause the server to update and write to the database frequently resulting
in a performance impact on the server. The cache parameters instruct the DHCP server to avoid updating leases too
frequently thus avoiding this behavior. Instead the server assigns the same lease (i.e. reuses it) with no modifications
except for CLTT (Client Last Transmission Time) which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer and have no default, i.e.
the lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared network
and subnet levels. The subnet level has the precedence on the shared network level, the global level is used as last
resort. For example:

"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"cache-threshold": .25,
"cache-max—-age": 600,
"valid-lifetime": 2000,

1,

When an already assigned lease can fulfill a client query:

* any important change e.g. for DDNS parameter, hostname or valid lifetime reduction makes the lease not
reusable

* lease age i.e. the difference between the creation or last modification time and the current time is computed
(elapsed duration)

* if cache-max—age is explicitly configured, it is compared with the age and leases that are too old are not
reusable (this means that the value O for cache-max—-age disables the lease cache feature)

8.2. DHCPv4 Server Configuration 105

Kea Administrator Reference Manual Documentation, Release 1.9.10

¢ if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the
lease valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than
1.0 disable the lease cache feature.

In the example a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds the maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPACK messages) the dhcp—lease—time option is set to the reusable
valid lifetime i.e. the expiration date does not change. Other options based on the valid lifetime e.g.
dhcp-renewal-time and dhcp-rebinding—time also use the reusable lifetime.

8.3 Host Reservation in DHCPv4

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is to
reserve a specific, static address for exclusive use by a given client (host); the returning client will receive the same
address from the server every time, and other clients will generally not receive that address. Another situation when
host reservations are applicable is when a host has specific requirements, e.g. a printer that needs additional DHCP
options. Yet another possible use case is to define unique names for hosts.

Note that there may be cases when a new reservation has been made for a client for an address currently in use by
another client. We call this situation a “conflict.” These conflicts get resolved automatically over time as described in
subsequent sections. Once the conflict is resolved, the correct client will receive the reserved configuration when it
renews.

Host reservations are defined as parameters for each subnet. Each host must have its own unique identifier, such as the
hardware/MAC address. There is an optional reservations array in the subnet4 structure; each element in that
array is a structure that holds information about reservations for a single host. In particular, the structure must have a
unique host identifier. In the DHCPv4 context, the identifier is usually a hardware or MAC address. In most cases an
IP address will be specified. It is also possible to specify a hostname, host