GNU MPFR

The Multiple Precision Floating-Point Reliable Library
Edition 4.0.0
December 2017

The MPFR team

mpfr@inria.fr

mailto:mpfr@inria.fr

This manual documents how to install and use the Multiple Precision Floating-Point Reliable
Library, version 4.0.0.

Copyright 1991, 1993-2017 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-
Cover Texts. A copy of the license is included in Appendix A [GNU Free Documentation
License], page 56.

Table of Contents

MPFR Copying Conditions 1
1 Introduction to MPFR 2
1.1 How to Use This Manual. i 2

2 Installing MPFR 3
2.1 How to Install 3
2.2 Other ‘make’ Targetst 4
2.3 Build Problems 4
2.4 Getting the Latest Version of MPFR i 4

3 Reporting Bugs........ ... 5
4 MPFR Basics. 6
4.1 Headers and Libraries.t 6
4.2 Nomenclature and Types.o e 7
4.3 MPFR Variable Conventionsuuiiniiiii e 7
4.4 Rounding Modes. 8
4.5 Floating-Point Values on Special Numbers.......... i i, 9
4.6 EXCOPUIONS . .ttt 9
4.7 Memory Handling ... e 10
4.8 Getting the Best Efficiency Out of MPFR............... i i i 11

5 MPFR Interface....... 12
5.1 Initialization FUNCIONS oottt e 12
5.2 Assignment Functions.t 14
5.3 Combined Initialization and Assignment Functions 17
5.4 Conversion Functions i 17
5.5 Basic Arithmetic Functions i 20
5.6 Comparison Functions i e 23
5.7 Special FUnCtionSttt e e e 24
5.8 Input and Output Functions i e 29
5.9 Formatted Output Functions....... ... i 30
5.9.1 Requirementso e 30

5.9.2 Format Stringcoouuuiii e 30

5.9.3 FUNCHIONS . ..ot 33

5.10 Integer and Remainder Related Functions..........., 33
5.11 Rounding-Related Functions....... ... i 35
5.12 Miscellaneous FUNCEIONSottt e 37
5.13 Exception Related Functions. ... 40
5.14 Compatibility With MPF 44
5.15 Custom Interface 45
B.16 Internals 46

ii GNU MPFR 4.0.0

6 API Compatibilityo a7
6.1 Type and Macro Changescoouuittii i 47
6.2 Added FUNCHIONS. . ..ottt e e 48
6.3 Changed FUnctionso e 50
6.4 Removed FUNCEIONSo 51
6.5 Other Changes e e 52

7 MPFR and the IEEE 754 Standard 53

Contributors 54

References 55

Appendix A GNU Free Documentation License.............. 56
A.1 ADDENDUM: How to Use This License For Your Documents..................... 61

Concept Index i 62

Function and Type Index 63

MPFR Copying Conditions

The GNU MPFR library (or MPFR for short) is free; this means that everyone is free to use
it and free to redistribute it on a free basis. The library is not in the public domain; it is
copyrighted and there are restrictions on its distribution, but these restrictions are designed to
permit everything that a good cooperating citizen would want to do. What is not allowed is to
try to prevent others from further sharing any version of this library that they might get from
you.

Specifically, we want to make sure that you have the right to give away copies of the library,
that you receive source code or else can get it if you want it, that you can change this library
or use pieces of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the GNU MPFR library, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for the GNU MPFR library. If it is modified by someone else and passed on, we want
their recipients to know that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

The precise conditions of the license for the GNU MPFR library are found in the Lesser General
Public License that accompanies the source code. See the file COPYING.LESSER.

2 GNU MPFR 4.0.0

1 Introduction to MPFR

MPFR is a portable library written in C for arbitrary precision arithmetic on floating-point
numbers. It is based on the GNU MP library. It aims to provide a class of floating-point
numbers with precise semantics. The main characteristics of MPFR, which make it differ from
most arbitrary precision floating-point software tools, are:

e the MPFR code is portable, i.e., the result of any operation does not depend on the machine
word size mp_bits_per_limb (64 on most current processors), possibly except in faithful
rounding. It does not depend either on the machine rounding mode or rounding precision;

e the precision in bits can be set exactly to any valid value for each variable (including very
small precision);

e MPFR provides the four rounding modes from the IEEE 754-1985 standard, plus away-from-
zero, as well as for basic operations as for other mathematical functions. Faithful rounding
(partially supported) is provided too, but the results may no longer be reproducible.

In particular, with a precision of 53 bits and in any of the four standard rounding modes,
MPFR is able to exactly reproduce all computations with double-precision machine floating-
point numbers (e.g., double type in C, with a C implementation that rigorously follows Annex F
of the ISO C99 standard and FP_CONTRACT pragma set to OFF) on the four arithmetic operations
and the square root, except the default exponent range is much wider and subnormal numbers
are not implemented (but can be emulated).

This version of MPFR is released under the GNU Lesser General Public License, version 3 or
any later version. It is permitted to link MPFR to most non-free programs, as long as when
distributing them the MPFR source code and a means to re-link with a modified MPFR library
is provided.

1.1 How to Use This Manual

Everyone should read Chapter 4 [MPFR Basics], page 6. If you need to install the library
yourself, you need to read Chapter 2 [Installing MPFR], page 3, too. To use the library you will
need to refer to Chapter 5 [MPFR Interface], page 12.

The rest of the manual can be used for later reference, although it is probably a good idea to
glance through it.

2 Installing MPFR

The MPFR library is already installed on some GNU/Linux distributions, but the development
files necessary to the compilation such as mpfr.h are not always present. To check that MPFR is
fully installed on your computer, you can check the presence of the file mpfr.h in /usr/include,
or try to compile a small program having #include <mpfr.h> (since mpfr.h may be installed
somewhere else). For instance, you can try to compile:

#include <stdio.h>
#include <mpfr.h>
int main (void)

{
printf ("MPFR library: %-12s\nMPFR header: Y%s (based on %d.%d.%d)\n",
mpfr_get_version (), MPFR_VERSION_STRING, MPFR_VERSION_MAJOR,
MPFR_VERSION_MINOR, MPFR_VERSION_PATCHLEVEL) ;
return O;
}

with
cc —o version version.c —-lmpfr -lgmp
and if you get errors whose first line looks like
version.c:2:19: error: mpfr.h: No such file or directory
then MPFR is probably not installed. Running this program will give you the MPFR version.

If MPFR is not installed on your computer, or if you want to install a different version, please
follow the steps below.

2.1 How to Install

Here are the steps needed to install the library on Unix systems (more details are provided in
the INSTALL file):

1. To build MPFR, you first have to install GNU MP (version 4.1 or higher) on your computer.
You need a C compiler, preferably GCC, but any reasonable compiler should work. And you
need the standard Unix ‘make’ command, plus some other standard Unix utility commands.
Then, in the MPFR build directory, type the following commands.

2. ‘./configure’

This will prepare the build and setup the options according to your system. You can give
options to specify the install directories (instead of the default /usr/local), threading
support, and so on. See the INSTALL file and/or the output of ‘./configure --help’ for
more information, in particular if you get error messages.

3. ‘make’

This will compile MPFR, and create a library archive file libmpfr.a. On most platforms,
a dynamic library will be produced too.

4. ‘make check’

This will make sure that MPFR was built correctly. If any test fails, information about this
failure can be found in the tests/test-suite.log file. If you want the contents of this
file to be automatically output in case of failure, you can set the ‘VERBOSE’ environment
variable to 1 before running ‘make check’, for instance by typing:

‘VERBOSE=1 make check’

4 GNU MPFR 4.0.0

In case of failure, you may want to check whether the problem is already known. If no-
t, please report this failure to the MPFR mailing-list ‘mpfr@inria.fr’. For details, See
Chapter 3 [Reporting Bugs], page 5.

5. ‘make install’

This will copy the files mpfr.h and mpf2mpfr.h to the directory /usr/local/include,
the library files (1ibmpfr.a and possibly others) to the directory /usr/local/lib, the
file mpfr.info to the directory /usr/local/share/info, and some other documentation
files to the directory /usr/local/share/doc/mpfr (or if you passed the ‘--prefix’ o-
ption to configure, using the prefix directory given as argument to ‘~-prefix’ instead of
/usr/local).

2.2 Other ‘make’ Targets

There are some other useful make targets:

e ‘mpfr.info’ or ‘info’
Create or update an info version of the manual, in mpfr.info.
This file is already provided in the MPFR archives.
e ‘mpfr.pdf’ or ‘pdf’
Create a PDF version of the manual, in mpfr.pdf.
e ‘mpfr.dvi’ or ‘dvi’
Create a DVI version of the manual, in mpfr.dvi.
e ‘mpfr.ps’ or ‘ps’
Create a Postscript version of the manual, in mpfr.ps.
e ‘mpfr.html’ or ‘html’

Create a HTML version of the manual, in several pages in the directory doc/mpfr.html; if
you want only one output HTML file, then type ‘makeinfo --html --no-split mpfr.texi’
from the ‘doc’ directory instead.

e ‘clean’

Delete all object files and archive files, but not the configuration files.
e ‘distclean’

Delete all generated files not included in the distribution.
e ‘uninstall’

Delete all files copied by ‘make install’.

2.3 Build Problems

In case of problem, please read the INSTALL file carefully before reporting a bug, in particular
section “In case of problem”. Some problems are due to bad configuration on the user side (not
specific to MPFR). Problems are also mentioned in the FAQ http://www.mpfr.org/faq.html.

Please report problems to the MPFR mailing-list ‘mpfr@inria.fr’. See Chapter 3 [Reporting
Bugs|, page 5. Some bug fixes are available on the MPFR 4.0.0 web page http://www.mpfr.
org/mpfr-4.0.0/.

2.4 Getting the Latest Version of MPFR

The latest version of MPFR is available from https://ftp.gnu.org/gnu/mpfr/ or http://
www.mpfr.org/.

http://www.mpfr.org/faq.html
http://www.mpfr.org/mpfr-4.0.0/
http://www.mpfr.org/mpfr-4.0.0/
https://ftp.gnu.org/gnu/mpfr/
http://www.mpfr.org/
http://www.mpfr.org/

3 Reporting Bugs

If you think you have found a bug in the MPFR library, first have a look on the MPFR 4.0.0 web
page http://www.mpfr.org/mpfr-4.0.0/ and the FAQ http://www.mpfr.org/faq.html:
perhaps this bug is already known, in which case you may find there a workaround for it. You
might also look in the archives of the MPFR mailing-list: https://sympa.inria.fr/sympa/
arc/mpfr. Otherwise, please investigate and report it. We have made this library available to
you, and it is not to ask too much from you, to ask you to report the bugs that you find.

There are a few things you should think about when you put your bug report together.

You have to send us a test case that makes it possible for us to reproduce the bug, i.e., a small
self-content program, using no other library than MPFR. Include instructions on how to run
the test case.

You also have to explain what is wrong; if you get a crash, or if the results you get are incorrect
and in that case, in what way.

Please include compiler version information in your bug report. This can be extracted using ‘cc
-V’ on some machines, or, if you are using GCC, ‘gcc -v’. Also, include the output from ‘uname
-a’ and the MPFR version (the GMP version may be useful too). If you get a failure while
running ‘make’ or ‘make check’, please include the config.log file in your bug report, and in
case of test failure, the tests/test-suite.log file too.

If your bug report is good, we will do our best to help you to get a corrected version of the
library; if the bug report is poor, we will not do anything about it (aside of chiding you to send
better bug reports).

Send your bug report to the MPFR mailing-list ‘mpfr@inria.fr’.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

http://www.mpfr.org/mpfr-4.0.0/
http://www.mpfr.org/faq.html
https://sympa.inria.fr/sympa/arc/mpfr
https://sympa.inria.fr/sympa/arc/mpfr

6 GNU MPFR 4.0.0

4 MPFR Basics

4.1 Headers and Libraries

All declarations needed to use MPFR are collected in the include file mpfr.h. It is designed to
work with both C and C++ compilers. You should include that file in any program using the
MPFR library:

#include <mpfr.h>

Note however that prototypes for MPFR functions with FILE * parameters are provided only if
<stdio.h> is included too (before mpfr.h):

#include <stdio.h>
#include <mpfr.h>

Likewise <stdarg.h> (or <varargs.h>) is required for prototypes with va_list parameters,
such as mpfr_vprintf.

And for any functions using intmax_t, you must include <stdint.h> or <inttypes.h> before
mpfr.h, to allow mpfr.h to define prototypes for these functions. Moreover, under some pla-
tforms (in particular with C++ compilers), users may need to define MPFR_USE_INTMAX_T (and
should do it for portability) before mpfr.h has been included; of course, it is possible to do that
on the command line, e.g., with -DMPFR_USE_INTMAX_T.

Note: If mpfr.h and/or gmp.h (used by mpfr.h) are included several times (possibly from ano-
ther header file), <stdio.h> and/or <stdarg.h> (or <varargs.h>) should be included before
the first inclusion of mpfr.h or gmp.h. Alternatively, you can define MPFR_USE_FILE (for MPFR
I/O functions) and/or MPFR_USE_VA_LIST (for MPFR functions with va_list parameters) an-
ywhere before the last inclusion of mpfr.h. As a consequence, if your file is a public header that
includes mpfr.h, you need to use the latter method.

When calling a MPFR macro, it is not allowed to have previously defined a macro with the
same name as some keywords (currently do, while and sizeof).

You can avoid the use of MPFR macros encapsulating functions by defining the MPFR_USE_NO_
MACRO macro before mpfr.h is included. In general this should not be necessary, but this can be
useful when debugging user code: with some macros, the compiler may emit spurious warnings
with some warning options, and macros can prevent some prototype checking.

All programs using MPFR must link against both libmpfr and libgmp libraries. On a typical
Unix-like system this can be done with ‘~1mpfr -1gmp’ (in that order), for example:

gcc myprogram.c —-lmpfr -lgmp
MPFR is built using Libtool and an application can use that to link if desired, see GNU Libtool.

If MPFR has been installed to a non-standard location, then it may be necessary to set up envi-
ronment variables such as ‘C_INCLUDE_PATH’ and ‘LIBRARY_PATH’, or use ‘-I’ and ‘-L’ compiler
options, in order to point to the right directories. For a shared library, it may also be necessary
to set up some sort of run-time library path (e.g., ‘LD_LIBRARY_PATH’) on some systems. Please
read the INSTALL file for additional information.

Alternatively, it is possible to use ‘pkg-config’ (a file ‘mpfr.pc’ is provided as of MPFR 4.0):

cc myprogram.c $(pkg-config --cflags --libs mpfr)

Chapter 4: MPFR Basics 7

Note that the ‘MPFR_’ and ‘mpfr_’ prefixes are reserved for MPFR. As a general rule, in order to
avoid clashes, software using MPFR (directly or indirectly) and system headers/libraries should
not define macros and symbols using these prefixes.

4.2 Nomenclature and Types

A floating-point number, or float for short, is an arbitrary precision significand (also called
mantissa) with a limited precision exponent. The C data type for such objects is mpfr_t
(internally defined as a one-element array of a structure, and mpfr_ptr is the C data type
representing a pointer to this structure). A floating-point number can have three special values:
Not-a-Number (NaN) or plus or minus Infinity. NaN represents an uninitialized object, the
result of an invalid operation (like 0 divided by 0), or a value that cannot be determined (like
+Infinity minus +Infinity). Moreover, like in the IEEE 754 standard, zero is signed, i.e., there
are both +0 and —0; the behavior is the same as in the IEEE 754 standard and it is generalized
to the other functions supported by MPFR. Unless documented otherwise, the sign bit of a
NaN is unspecified.

The precision is the number of bits used to represent the significand of a floating-point number;
the corresponding C data type is mpfr_prec_t. The precision can be any integer between
MPFR_PREC_MIN and MPFR_PREC_MAX. In the current implementation, MPFR_PREC_MIN is equal
to 1.

Warning! MPFR needs to increase the precision internally, in order to provide accurate results
(and in particular, correct rounding). Do not attempt to set the precision to any value near
MPFR_PREC_MAX, otherwise MPFR will abort due to an assertion failure. Moreover, you may
reach some memory limit on your platform, in which case the program may abort, crash or have
undefined behavior (depending on your C implementation).

The rounding mode specifies the way to round the result of a floating-point operation, in case
the exact result can not be represented exactly in the destination significand; the corresponding
C data type is mpfr_rnd_t.

MPFR has a global (or per-thread) flag for each supported exception and provides operations
on flags (Section 4.6 [Exceptions], page 9). This C data type is used to represent a group of
flags (or a mask).

4.3 MPFR Variable Conventions

Before you can assign to a MPFR variable, you need to initialize it by calling one of the special
initialization functions. When you are done with a variable, you need to clear it out, using
one of the functions for that purpose. A variable should only be initialized once, or at least
cleared out between each initialization. After a variable has been initialized, it may be assigned
to any number of times. For efficiency reasons, avoid to initialize and clear out a variable in
loops. Instead, initialize it before entering the loop, and clear it out after the loop has exited.
You do not need to be concerned about allocating additional space for MPFR variables, since
any variable has a significand of fixed size. Hence unless you change its precision, or clear and
reinitialize it, a floating-point variable will have the same allocated space during all its life.

As a general rule, all MPFR functions expect output arguments before input arguments. This
notation is based on an analogy with the assignment operator. MPFR allows you to use the same
variable for both input and output in the same expression. For example, the main function for
floating-point multiplication, mpfr_mul, can be used like this: mpfr_mul (x, x, x, rnd). This
computes the square of x with rounding mode rnd and puts the result back in x.

8 GNU MPFR 4.0.0

4.4 Rounding Modes

The following rounding modes are supported:

e MPFR_RNDN: round to nearest (roundTiesToEven in IEEE 754-2008),

MPFR_RNDZ: round toward zero (roundTowardZero in IEEE 754-2008),

MPFR_RNDU: round toward plus infinity (roundTowardPositive in IEEE 754-2008),
MPFR_RNDD: round toward minus infinity (roundTowardNegative in IEEE 754-2008),
MPFR_RNDA: round away from zero.

MPFR_RNDF: faithful rounding. This feature is currently experimental. Specific support
for this rounding mode has been added to some functions, such as the basic operations
(addition, subtraction, multiplication, square, division, square root) or when explicitly do-
cumented. It might also work with other functions, as it is possible that they do not need
modification in their code; even though a correct behavior is not guaranteed yet (corrections
were done when failures occurred in the test suite, but almost nothing has been checked
manually), failures should be regarded as bugs and reported, so that they can be fixed.

The ‘round to nearest’ mode works as in the IEEE 754 standard: in case the number to be
rounded lies exactly in the middle of two representable numbers, it is rounded to the one with the
least significant bit set to zero. For example, the number 2.5, which is represented by (10.1) in
binary, is rounded to (10.0)=2 with a precision of two bits, and not to (11.0)=3. This rule avoids
the drift phenomenon mentioned by Knuth in volume 2 of The Art of Computer Programming
(Section 4.2.2).

The MPFR_RNDF mode works as follows: the computed value is either that corresponding to
MPFR_RNDD or that corresponding to MPFR_RNDU. In particular when those values are identical,
i.e., when the result of the corresponding operation is exactly representable, that exact result
is returned. Thus, the computed result can take at most two possible values, and in absence of
underflow/overflow, the corresponding error is strictly less than one ulp (unit in the last place)
of that result and of the exact result. For MPFR_RNDF, the ternary value (defined below) and the
inexact flag (defined later, as with the other flags) are unspecified, the divide-by-zero flag is as
with other roundings, and the underflow and overflow flags match what would be obtained in
the case the computed value is the same as with MPFR_RNDD or MPFR_RNDU. The results may not
be reproducible.

Most MPFR functions take as first argument the destination variable, as second and following
arguments the input variables, as last argument a rounding mode, and have a return value
of type int, called the ternary value. The value stored in the destination variable is correctly
rounded, i.e., MPFR behaves as if it computed the result with an infinite precision, then rounded
it to the precision of this variable. The input variables are regarded as exact (in particular, their
precision does not affect the result).

As a consequence, in case of a non-zero real rounded result, the error on the result is less or
equal to 1/2 ulp (unit in the last place) of that result in the rounding to nearest mode, and
less than 1 ulp of that result in the directed rounding modes (a ulp is the weight of the least
significant represented bit of the result after rounding).

Unless documented otherwise, functions returning an int return a ternary value. If the ternary
value is zero, it means that the value stored in the destination variable is the exact result
of the corresponding mathematical function. If the ternary value is positive (resp. negative),
it means the value stored in the destination variable is greater (resp. lower) than the exact
result. For example with the MPFR_RNDU rounding mode, the ternary value is usually positive,
except when the result is exact, in which case it is zero. In the case of an infinite result, it
is considered as inexact when it was obtained by overflow, and exact otherwise. A NaN result

Chapter 4: MPFR Basics 9

(Not-a-Number) always corresponds to an exact return value. The opposite of a returned ternary
value is guaranteed to be representable in an int.

Unless documented otherwise, functions returning as result the value 1 (or any other value
specified in this manual) for special cases (like acos(0)) yield an overflow or an underflow if
that value is not representable in the current exponent range.

4.5 Floating-Point Values on Special Numbers

This section specifies the floating-point values (of type mpfr_t) returned by MPFR functions
(where by “returned” we mean here the modified value of the destination object, which should
not be mixed with the ternary return value of type int of those functions). For functions
returning several values (like mpfr_sin_cos), the rules apply to each result separately.

Functions can have one or several input arguments. An input point is a mapping from these
input arguments to the set of the MPFR numbers. When none of its components are NaN, an
input point can also be seen as a tuple in the extended real numbers (the set of the real numbers
with both infinities).

When the input point is in the domain of the mathematical function, the result is rounded as
described in Section “Rounding Modes” (but see below for the specification of the sign of an
exact zero). Otherwise the general rules from this section apply unless stated otherwise in the
description of the MPFR function (Chapter 5 [MPFR Interface|, page 12).

When the input point is not in the domain of the mathematical function but is in its closure
in the extended real numbers and the function can be extended by continuity, the result is the
obtained limit. Examples: mpfr_hypot on (+Inf,0) gives +Inf. But mpfr_pow cannot be defined
on (1,+Inf) using this rule, as one can find sequences (z,,y,) such that z, goes to 1, y, goes to
+Inf and (z,)" goes to any positive value when n goes to the infinity.

When the input point is in the closure of the domain of the mathematical function and an input
argument is +0 (resp. —0), one considers the limit when the corresponding argument approaches
0 from above (resp. below), if possible. If the limit is not defined (e.g., mpfr_sqrt and mpfr_
log on —0), the behavior is specified in the description of the MPFR function, but must be
consistent with the rule from the above paragraph (e.g., mpfr_log on +0 gives —Inf).

When the result is equal to 0, its sign is determined by considering the limit as if the input
point were not in the domain: If one approaches 0 from above (resp. below), the result is +0
(resp. —0); for example, mpfr_sin on —0 gives —0 and mpfr_acos on 1 gives +0 (in all rounding
modes). In the other cases, the sign is specified in the description of the MPFR, function; for
example mpfr_max on —0 and +0 gives +0.

When the input point is not in the closure of the domain of the function, the result is NaN.
Example: mpfr_sqrt on —17 gives NaN.

When an input argument is NaN, the result is NaN, possibly except when a partial function
is constant on the finite floating-point numbers; such a case is always explicitly specified in
Chapter 5 [MPFR Interface|, page 12. Example: mpfr_hypot on (NaN,0) gives NaN, but mpfr_
hypot on (NaN,+Inf) gives +Inf (as specified in Section 5.7 [Special Functions|, page 24), since
for any finite or infinite input x, mpfr_hypot on (x,+Inf) gives +Inf.

4.6 Exceptions

MPFR defines a global (or per-thread) flag for each supported exception. A macro evaluating
to a power of two is associated with each flag and exception, in order to be able to specify a
group of flags (or a mask) by OR’ing such macros.

10 GNU MPFR 4.0.0

Flags can be cleared (lowered), set (raised), and tested by functions described in Section 5.13
[Exception Related Functions], page 40.

The supported exceptions are listed below. The macro associated with each exception is in
parentheses.

e Underflow (MPFR_FLAGS_UNDERFLOW): An underflow occurs when the exact result of a fun-
ction is a non-zero real number and the result obtained after the rounding, assuming an
unbounded exponent range (for the rounding), has an exponent smaller than the minimum
value of the current exponent range. (In the round-to-nearest mode, the halfway case is
rounded toward zero.)

Note: This is not the single possible definition of the underflow. MPFR chooses to consider
the underflow after rounding. The underflow before rounding can also be defined. For
instance, consider a function that has the exact result 7 x 2°7%, where e is the smallest
exponent (for a significand between 1/2 and 1), with a 2-bit target precision and rounding
toward plus infinity. The exact result has the exponent e—1. With the underflow before
rounding, such a function call would yield an underflow, as e—1 is outside the current
exponent range. However, MPFR first considers the rounded result assuming an unbounded
exponent range. The exact result cannot be represented exactly in precision 2, and here, it is
rounded to 0.5 x 2¢, which is representable in the current exponent range. As a consequence,
this will not yield an underflow in MPFR.

e Overflow (MPFR_FLAGS_OVERFLOW): An overflow occurs when the exact result of a function is
a non-zero real number and the result obtained after the rounding, assuming an unbounded
exponent range (for the rounding), has an exponent larger than the maximum value of the
current exponent range. In the round-to-nearest mode, the result is infinite. Note: unlike
the underflow case, there is only one possible definition of overflow here.

e Divide-by-zero (MPFR_FLAGS_DIVBYO): An exact infinite result is obtained from finite inputs.
e NaN (MPFR_FLAGS_NAN): A NaN exception occurs when the result of a function is NaN.

e Inexact (MPFR_FLAGS_INEXACT): An inexact exception occurs when the result of a function
cannot be represented exactly and must be rounded.

e Range error (MPFR_FLAGS_ERANGE): A range exception occurs when a function that does
not return a MPFR number (such as comparisons and conversions to an integer) has an
invalid result (e.g., an argument is NaN in mpfr_cmp, or a conversion to an integer cannot
be represented in the target type).

Moreover, the group consisting of all the flags is represented by the MPFR_FLAGS_ALL macro (if
new flags are added in future MPFR versions, they will be added to this macro too).

Differences with the ISO C99 standard:

e In C, only quiet NaNs are specified, and a NaN propagation does not raise an invalid
exception. Unless explicitly stated otherwise, MPFR sets the NaN flag whenever a NaN
is generated, even when a NaN is propagated (e.g., in NaN + NaN), as if all NaNs were
signaling.

e An invalid exception in C corresponds to either a NaN exception or a range error in MPFR.

4.7 Memory Handling

MPFR functions may create caches, e.g., when computing constants such as 7, either because
the user has called a function like mpfr_const_pi directly or because such a function was called
internally by the MPFR library itself to compute some other function. When more precision is
needed, the value is automatically recomputed; a minimum of 10% increase of the precision is
guaranteed to avoid too many recomputations.

Chapter 4: MPFR Basics 11

MPFR functions may also create thread-local pools for internal use to avoid the cost of memory
allocation. The pools can be freed with mpfr_free_pool (but with a default MPFR build, they
should not take much memory, as the allocation size is limited).

At any time, the user can free various caches and pools with mpfr_free_cache and mpfr_free_
cache2. It is strongly advised to free thread-local caches before terminating a thread, and all
caches before exiting when using tools like ‘valgrind’ (to avoid memory leaks being reported).

MPFR allocates its memory either on the stack (for temporary memory only) or with the same
allocator as the one configured for GMP: see Section “Custom Allocation” in GNU MP. This
means that the application must make sure that data allocated with the current allocator will
not be reallocated or freed with a new allocator. So, in practice, if an application needs to change
the allocator with mp_set_memory_functions, it should first free all data allocated with the
current allocator: for its own data, with mpfr_clear, etc.; for the caches and pools, with mpfr_
mp_memory_cleanup in all threads where MPFR is potentially used. This function is currently
equivalent to mpfr_free_cache, but mpfr_mp_memory_cleanup is the recommended way in
case the allocation method changes in the future (for instance, one may choose to allocate the
caches for floating-point constants with malloc to avoid freeing them if the allocator changes).
Developers should also be aware that MPFR may also be used indirectly by libraries, so that
libraries based on MPFR should provide a clean-up function calling mpfr_mp_memory_cleanup
and/or warn their users about this issue.

Note: For multithreaded applications, the allocator must be valid in all threads where MPFR
may be used; data allocated in one thread may be reallocated and/or freed in some other thread.

MPFR internal data such as flags, the exponent range, the default precision and rounding mode,
and caches (i.e., data that are not accessed via parameters) are either global (if MPFR has not
been compiled as thread safe) or per-thread (thread local storage, TLS). The initial values of
TLS data after a thread is created entirely depend on the compiler and thread implementation
(MPFR simply does a conventional variable initialization, the variables being declared with an
implementation-defined TLS specifier).

Writers of libraries using MPFR should be aware that the application and/or another library
used by the application may also use MPFR, so that changing the exponent range, the default
precision, or the default rounding mode may have an effect on this other use of MPFR since
these data are not duplicated (unless they are in a different thread). Therefore any such value
changed in a library function should be restored before the function returns (unless the purpose
of the function is to do such a change). Writers of software using MPFR should also be careful
when changing such a value if they use a library using MPFR (directly or indirectly), in order
to make sure that such a change is compatible with the library.

4.8 Getting the Best Efficiency Out of MPFR
Here are a few hints to get the best efficiency out of MPFR:

e you should avoid allocating and clearing variables. Reuse variables whenever possible, allo-
cate or clear outside of loops, pass temporary variables to subroutines instead of allocating
them inside the subroutines;

e use mpfr_swap instead of mpfr_set whenever possible. This will avoid copying the signifi-
cands;

e avoid using MPFR from C++, or make sure your C++ interface does not perform unnecessary
allocations or copies;

e MPFR functions work in-place: to compute a = a + b you don’t need an auxiliary variable,
you can directly write mpfr_add (a, a, b, ...).

12 GNU MPFR 4.0.0

5 MPFR Interface

The floating-point functions expect arguments of type mpfr_t.

The MPFR floating-point functions have an interface that is similar to the GNU MP functions.
The function prefix for floating-point operations is mpfr_.

The user has to specify the precision of each variable. A computation that assigns a variable
will take place with the precision of the assigned variable; the cost of that computation should
not depend on the precision of variables used as input (on average).

The semantics of a calculation in MPFR is specified as follows: Compute the requested operation
exactly (with “infinite accuracy”), and round the result to the precision of the destination
variable, with the given rounding mode. The MPFR floating-point functions are intended to be
a smooth extension of the IEEE 754 arithmetic. The results obtained on a given computer are
identical to those obtained on a computer with a different word size, or with a different compiler
or operating system.

MPFR does not keep track of the accuracy of a computation. This is left to the user or to a
higher layer (for example the MPFI library for interval arithmetic). As a consequence, if two
variables are used to store only a few significant bits, and their product is stored in a variable
with large precision, then MPFR will still compute the result with full precision.

The value of the standard C macro errno may be set to non-zero after calling any MPFR
function or macro, whether or not there is an error. Except when documented, MPFR will not
set errno, but functions called by the MPFR code (libc functions, memory allocator, etc.) may
do so.

5.1 Initialization Functions

An mpfr_t object must be initialized before storing the first value in it. The functions mpfr_init
and mpfr_init2 are used for that purpose.

void mpfr_init2 (mpfr_t x, mpfr_prec_t prec) [Function]
Initialize x, set its precision to be exactly prec bits and its value to NaN. (Warning: the
corresponding MPF function initializes to zero instead.)

Normally, a variable should be initialized once only or at least be cleared, using mpfr_clear,
between initializations. To change the precision of a variable which has already been initia-
lized, use mpfr_set_prec. The precision prec must be an integer between MPFR_PREC_MIN
and MPFR_PREC_MAX (otherwise the behavior is undefined).

void mpfr_inits2 (mpfr_prec_t prec, mpfr_t x, ...) [Function]
Initialize all the mpfr_t variables of the given variable argument va_list, set their precision
to be exactly prec bits and their value to NaN. See mpfr_init2 for more details. The va_
list is assumed to be composed only of type mpfr_t (or equivalently mpfr_ptr). It begins
from x, and ends when it encounters a null pointer (whose type must also be mpfr_ptr).

void mpfr_clear (mpfr_t x) [Function]
Free the space occupied by the significand of x. Make sure to call this function for all mpfr_t
variables when you are done with them.

void mpfr_clears (mpfr_t x, ...) [Function]
Free the space occupied by all the mpfr_t variables of the given va_list. See mpfr_clear for
more details. The va_list is assumed to be composed only of type mpfr_t (or equivalently

Chapter 5: MPFR, Interface 13

mpfr_ptr). It begins from x, and ends when it encounters a null pointer (whose type must
also be mpfr_ptr).

Here is an example of how to use multiple initialization functions (since NULL is not necessarily
defined in this context, we use (mpfr_ptr) 0 instead, but (mpfr_ptr) NULL is also correct).

{
mpfr_t x, y, z, t;
mpfr_inits2 (256, x, y, z, t, (mpfr_ptr) 0);
mpfr_clears (x, y, z, t, (mpfr_ptr) 0);
}
void mpfr_init (mpfr_t x) [Function]

Initialize x, set its precision to the default precision, and set its value to NaN. The default
precision can be changed by a call to mpfr_set_default_prec.

Warning! In a given program, some other libraries might change the default precision and
not restore it. Thus it is safer to use mpfr_init2.

void mpfr_inits (mpfr_t x, ...) [Function]

Initialize all the mpfr_t variables of the given va_list, set their precision to the default
precision and their value to NaN. See mpfr_init for more details. The va_list is assumed
to be composed only of type mpfr_t (or equivalently mpfr_ptr). It begins from x, and ends
when it encounters a null pointer (whose type must also be mpfr_ptr).

Warning! In a given program, some other libraries might change the default precision and
not restore it. Thus it is safer to use mpfr_inits2.

MPFR_DECL_INIT (name, prec) [Macro]

This macro declares name as an automatic variable of type mpfr_t, initializes it and sets
its precision to be exactly prec bits and its value to NaN. name must be a valid identifier.
You must use this macro in the declaration section. This macro is much faster than using
mpfr_init2 but has some drawbacks:

e You must not call mpfr_clear with variables created with this macro (the storage is
allocated at the point of declaration and deallocated when the brace-level is exited).

e You cannot change their precision.
e You should not create variables with huge precision with this macro.

e Your compiler must support ‘Non-Constant Initializers’ (standard in C++ and ISO
C99) and ‘Token Pasting’ (standard in ISO C89). If prec is not a constant expression,
your compiler must support ‘variable-length automatic arrays’ (standard in ISO
C99). GCC 2.95.3 and above supports all these features. If you compile your program
with GCC in C89 mode and with ‘-pedantic’, you may want to define the MPFR_USE_
EXTENSION macro to avoid warnings due to the MPFR_DECL_INIT implementation.

void mpfr_set_default_prec (mpfr_prec_t prec) [Function]

Set the default precision to be exactly prec bits, where prec can be any integer between
MPFR_PREC_MIN and MPFR_PREC_MAX. The precision of a variable means the number of bits
used to store its significand. All subsequent calls to mpfr_init or mpfr_inits will use this
precision, but previously initialized variables are unaffected. The default precision is set to
53 bits initially.

14 GNU MPFR 4.0.0

Note: when MPFR is built with the ‘--enable-thread-safe’ configure option, the default
precision is local to each thread. See Section 4.7 [Memory Handling], page 10, for more
information.

mpfr_prec_t mpfr_get_default_prec (void) [Function]
Return the current default MPFR precision in bits. See the documentation of mpfr_set_

default_prec.

Here is an example on how to initialize floating-point variables:

{
mpfr_t x, y;
mpfr_init (x); /* use default precision */
mpfr_init2 (y, 256); /* precision exactly 256 bits */
/* When the program is about to exit, do ... */

mpfr_clear (x);
mpfr_clear (y);
mpfr_free_cache (); /* free the cache for constants like pi */

¥

The following functions are useful for changing the precision during a calculation. A typical
use would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

void mpfr_set_prec (mpfr-t x, mpfr_prec_t prec) [Function]
Reset the precision of x to be exactly prec bits, and set its value to NaN. The previous value
stored in x is lost. It is equivalent to a call to mpfr_clear(x) followed by a call to mpfr_
init2(x, prec), but more efficient as no allocation is done in case the current allocated
space for the significand of x is enough. The precision prec can be any integer between
MPFR_PREC_MIN and MPFR_PREC_MAX. In case you want to keep the previous value stored in
x, use mpfr_prec_round instead.

Warning! You must not use this function if x was initialized with MPFR_DECL_INIT or with

mpfr_custom_init_set (see Section 5.15 [Custom Interface|, page 45).

mpfr_prec_t mpfr_get_prec (mpfr_-t x) [Function]
Return the precision of x, i.e., the number of bits used to store its significand.

5.2 Assignment Functions

These functions assign new values to already initialized floats (see Section 5.1 [Initialization
Functions], page 12).

int mpfr_set (mpfr_t rop, mpfr_t op, mpfr_rnd_t rnd) [Function]
int mpfr_set_ui (mpfr_t rop, unsigned long int op, mpfr_rnd_t rnd) [Function]
int mpfr_set_si (mpfr_t rop, long int op, mpfr_rnd_t rad) [Function]
int mpfr_set_uj (mpfr_t rop, uintmax_t op, mpfr_rnd_t rnd) [Function]
int mpfr_set_sj (mpfr_t rop, intmax_t op, mpfr_rnd_t rnd) [Function]
int mpfr_set_flt (mpfr_t rop, float op, mpfr_rnd_t rnd) [Function]
int mpfr_set_d (mpfr_t rop, double op, mpfr_rnd_t rnd) [Function]
int mpfr_set_1d (mpfr_t rop, long double op, mpfr_rnd_t rnd) [Function]
int mpfr_set_floatl128 (mpfr-t rop, -_float128 op, mpfr_rnd_t rnd) [Function]
int mpfr_set_decimal64 (mpfr_t rop, -Decimal64 op, mpfr_rnd_t rnd) [Function]

Chapter 5: MPFR, Interface 15

int mpfr_set_z (mpfr_t rop, mpz_t op, mpfr_rnd_t rnd) [Function]
int mpfr_set_q (mpfr_t rop, mpq-t op, mpfr_rnd_t rnd) [Function]
int mpfr_set_f (mpfr_t rop, mpf_t op, mpfr_rnd_t rnd) [Function]

Set the value of rop from op, rounded toward the given direction rnd. Note that the in-
put 0 is converted to +0 by mpfr_set_ui, mpfr_set_si, mpfr_set_uj, mpfr_set_sj, The
mpfr_set_float128 function is built only with the configure option ‘--enable-float128’,
which requires the compiler or system provides the ‘__float128’ data type (GCC 4.3 o-
r later supports this data type); to use mpfr_set_float128, one should define the macro
MPFR_WANT_FLOAT128 before including mpfr.h. mpfr_set_z, mpfr_set_q and mpfr_set_f,
regardless of the rounding mode. If the system does not support the IEEE 754 standar-
d, mpfr_set_flt, mpfr_set_d, mpfr_set_1d and mpfr_set_decimal64 might not preserve
the signed zeros. The mpfr_set_decimal64 function is built only with the configure option
‘-—enable-decimal-float’, and when the compiler or system provides the ‘_Decimal64’ da-
ta type (recent versions of GCC support this data type); to use mpfr_set_decimal64, one
should define the macro MPFR_WANT_DECIMAL_FLOATS before including mpfr.h. mpfr_set_q
might fail if the numerator (or the denominator) can not be represented as a mpfr_t.

For mpfr_set, the sign of a NaN is propagated in order to mimic the IEEE 754 copy operation.
But contrary to IEEE 754, the NaN flag is set as usual.

Note: If you want to store a floating-point constant to a mpfr_t, you should use mpfr_
set_str (or one of the MPFR constant functions, such as mpfr_const_pi for 7) instead of
mpfr_set_flt, mpfr_set_d, mpfr_set_1d or mpfr_set_decimal64. Otherwise the floating-
point constant will be first converted into a reduced-precision (e.g., 53-bit) binary (or decimal,
for mpfr_set_decimal64) number before MPFR can work with it.

int mpfr_set_ui_2exp (mpfr-t rop, unsigned long int op, mpfr_exp_-t e, [Function]
mpfr_rnd_t rnd)

int mpfr_set_si_2exp (mpfr-t rop, long int op, mpfr_exp_t e, [Function]
mpfr_rnd_t rnd)

int mpfr_set_uj_2exp (mpfr-t rop, uintmax_t op, intmax_t e, [Function]
mpfr_rnd_t rnd)

int mpfr_set_sj_2exp (mpfr_t rop, intmax_t op, intmax_t e, [Function]
mpfr_rnd_t rnd)

int mpfr_set_z_2exp (mpfr-t rop, mpz_t op, mpfr_exp_t e, mpfr_rnd_t [Function]
rnd)
Set the value of rop from op x 2¢, rounded toward the given direction rnd. Note that the
input 0 is converted to +0.

int mpfr_set_str (mpfr_t rop, const char *s, int base, mpfr_rnd_t rnd) [Function]
Set rop to the value of the string s in base base, rounded in the direction rnd. See the docu-
mentation of mpfr_strtofr for a detailed description of the valid string formats. Contrary
to mpfr_strtofr, mpfr_set_str requires the whole string to represent a valid floating-point
number.

The meaning of the return value differs from other MPFR functions: it is 0 if the entire string
up to the final null character is a valid number in base base; otherwise it is —1, and rop
may have changed (users interested in the [ternary value], page 8, should use mpfr_strtofr
instead).

Note: it is preferable to use mpfr_strtofr if one wants to distinguish between an infinite
rop value coming from an infinite s or from an overflow.

16 GNU MPFR 4.0.0

int mpfr_strtofr (mpfr_t rop, const char *nptr, char **endptr, int [Function]
base, mpfr_rnd_t rnd)

Read a floating-point number from a string nptr in base base, rounded in the direction rnd;
base must be either 0 (to detect the base, as described below) or a number from 2 to 62
(otherwise the behavior is undefined). If nptr starts with valid data, the result is stored in
rop and *endptr points to the character just after the valid data (if endptr is not a null
pointer); otherwise rop is set to zero (for consistency with strtod) and the value of nptr
is stored in the location referenced by endptr (if endptr is not a null pointer). The usual
ternary value is returned.

Parsing follows the standard C strtod function with some extensions. After optional lea-
ding whitespace, one has a subject sequence consisting of an optional sign (‘+’ or ‘=’), and
either numeric data or special data. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non-whitespace character, that is of
the expected form.

The form of numeric data is a non-empty sequence of significand digits with an optional
decimal point, and an optional exponent consisting of an exponent prefix followed by an
optional sign and a non-empty sequence of decimal digits. A significand digit is either a
decimal digit or a Latin letter (62 possible characters), with ‘A’ = 10, ‘B’ =11, ..., ‘2’ = 35;
case is ignored in bases less or equal to 36, in bases larger than 36, ‘a’ = 36, ‘b’ =37, ..., ‘2’
= 61. The value of a significand digit must be strictly less than the base. The decimal point
can be either the one defined by the current locale or the period (the first one is accepted
for consistency with the C standard and the practice, the second one is accepted to allow
the programmer to provide MPFR numbers from strings in a way that does not depend on
the current locale). The exponent prefix can be ‘e’ or ‘E’ for bases up to 10, or ‘@’ in any
base; it indicates a multiplication by a power of the base. In bases 2 and 16, the exponent
prefix can also be ‘p’ or ‘P’; in which case the exponent, called binary exponent, indicates a
multiplication by a power of 2 instead of the base (there is a difference only for base 16); in
base 16 for example ‘1p2’ represents 4 whereas ‘102’ represents 256. The value of an exponent
is always written in base 10.

If the argument base is 0, then the base is automatically detected as follows. If the significand
starts with ‘Ob’ or ‘OB’, base 2 is assumed. If the significand starts with ‘0x’ or ‘0X’; base 16
is assumed. Otherwise base 10 is assumed.

Note: The exponent (if present) must contain at least a digit. Otherwise the possible exponent
prefix and sign are not part of the number (which ends with the significand). Similarly, if
‘0b’, ‘OB’, ‘0x’ or ‘0X’ is not followed by a binary/hexadecimal digit, then the subject sequence
stops at the character ‘0’, thus 0 is read.

Special data (for infinities and NaN) can be ‘@inf@’ or ‘@nan®@(n-char-sequence-opt)’, and
if base < 16, it can also be ‘infinity’, ‘inf’, ‘nan’ or ‘nan(n-char-sequence-opt)’, all
case insensitive. A ‘n-char-sequence-opt’ is a possibly empty string containing only digits,
Latin letters and the underscore (0, 1,2, ..., 9,a, b, ..., 2, A, B, ..., Z, _). Note: one has
an optional sign for all data, even NaN. For example, ‘-@nAn@(This_Is_Not_17)’ is a valid
representation for NaN in base 17.

void mpfr_set_nan (mpfr_t x) [Function]
void mpfr_set_inf (mpfr_t x, int sign) [Function]
void mpfr_set_zero (mpfr_t x, int sign) [Function]

Set the variable x to NaN (Not-a-Number), infinity or zero respectively. In mpfr_set_inf or
mpfr_set_zero, x is set to plus infinity or plus zero iff sign is nonnegative; in mpfr_set_nan,
the sign bit of the result is unspecified.

Chapter 5: MPFR, Interface 17

void mpfr_swap (mpfr-t x, mpfr_t y) [Function]
Swap the structures pointed to by x and y. In particular, the values are exchanged without
rounding (this may be different from three mpfr_set calls using a third auxiliary variable).

Warning! Since the precisions are exchanged, this will affect future assignments. Moreover,
since the significand pointers are also exchanged, you must not use this function if the alloca-
tion method used for x and/or y does not permit it. This is the case when x and/or y were
declared and initialized with MPFR_DECL_INIT, and possibly with mpfr_custom_init_set
(see Section 5.15 [Custom Interface], page 45).

5.3 Combined Initialization and Assignment Functions

int mpfr_init_set (mpfr_t rop, mpfr_t op, mpfr_rnd_t rnd) Macro
int mpfr_init_set_ui (mpfr_t rop, unsigned long int op, mpfr_rnd_t rnd) [Macro
int mpfr_init_set_si (mpfr_t rop, long int op, mpfr_rnd_t rnd) Macro

[]
piaco
int mpfr_init_set_d (mpfr_t rop, double op, mpfr_rnd_t rnd) [Macro]
[]
[]
[]
[]

int mpfr_init_set_1d (mpfr_t rop, long double op, mpfr_rnd_t rad) Macro
int mpfr_init_set_z (mpfr_-t rop, mpz_t op, mpfr_rnd_t rnd) Macro
int mpfr_init_set_q (mpfr_-t rop, mpq-t op, mpfr_-rnd_t rnd) Macro
int mpfr_init_set_f (mpfr_t rop, mpf_-t op, mpfr_rnd_t rnd) Macro

Initialize rop and set its value from op, rounded in the direction rnd. The precision of rop
will be taken from the active default precision, as set by mpfr_set_default_prec.

int mpfr_init_set_str (mpfr_t x, const char *s, int base, mpfr_rnd_t [Function]
rnd)
Initialize x and set its value from the string s in base base, rounded in the direction rnd. See
mpfr_set_str.

5.4 Conversion Functions

float mpfr_get_flt (mpfr_t op, mpfr_rnd_t rnd) [Function]

double mpfr_get_d (mpfr_-t op, mpfr_rnd_t rnd) [Function]

long double mpfr_get_1d (mpfr-t op, mpfr_rnd_t rnd) [Function]

__float128 mpfr_get_float128 (mpfr_t op, mpfr_rnd_t rnd) [Function]

_Decimal64 mpfr_get_decimal64 (mpfr_t op, mpfr_rnd_t rnd) [Function]
Convert op to a float (respectively double, long double or _Decimal64), using the rounding
mode rnd. If op is NaN, some fixed NaN (either quiet or signaling) or the result of 0.0/0.0
is returned. If op is £+Inf, an infinity of the same sign or the result of +1.0/0.0 is returned.
If op is zero, these functions return a zero, trying to preserve its sign, if possible. The mpfr_
get_float128 and mpfr_get_decimal64 functions are built only under some conditions: see
the documentation of mpfr_set_float128 and mpfr_set_decimal64 respectively.

long mpfr_get_si (mpfr-t op, mpfr_rnd_t rnd) [Function]
unsigned long mpfr_get_ui (mpfr_-t op, mpfr_rnd_t rnd) [Function]
intmax_t mpfr_get_sj (mpfr_t op, mpfr_rnd_t rnd) [Function]
uintmax_t mpfr_get_uj (mpfr-t op, mpfr_rnd_t rad) [Function]

Convert op to a long, an unsigned long, an intmax_t or an uintmax_t (respectively) after
rounding it to an integer with respect to rnd. If op is NaN, 0 is returned and the erange flag
is set. If op is too big for the return type, the function returns the maximum or the minimum
of the corresponding C type, depending on the direction of the overflow; the erange flag is
set too. When there is no such range error, if the return value differs from op, i.e., if op is
not an integer, the inexact flag is set. See also mpfr_fits_slong_p, mpfr_fits_ulong_p,
mpfr_fits_intmax_p and mpfr_fits_uintmax_p.

GNU MPFR 4.0.0

double mpfr_get_d_2exp (long *exp, mpfr_t op, mpfr_rnd_t rnd) [Function]
long double mpfr_get_1d_2exp (long *exp, mpfr_t op, mpfr_rnd_t rnd) [Function]

Return d and set exp (formally, the value pointed to by exp) such that 0.5 < |d| < 1 and
d x 2P equals op rounded to double (resp. long double) precision, using the given rounding
mode. If op is zero, then a zero of the same sign (or an unsigned zero, if the implementation
does not have signed zeros) is returned, and exp is set to 0. If op is NaN or an infinity, then
the corresponding double precision (resp. long-double precision) value is returned, and exp
is undefined.

int mpfr_frexp (mpfr_exp_t *exp, mpfr_t y, mpfr_t x, mpfr_rnd_t rnd) [Function]

Set exp (formally, the value pointed to by exp) and y such that 0.5 < |y| < 1 and y x 2°7
equals x rounded to the precision of y, using the given rounding mode. If x is zero, then y
is set to a zero of the same sign and exp is set to 0. If x is NaN or an infinity, then y is set
to the same value and exp is undefined.

mpfr_exp_t mpfr_get_z_2exp (mpz_t rop, mpfr_t op) [Function]

Put the scaled significand of op (regarded as an integer, with the precision of op) into rop,
and return the exponent exp (which may be outside the current exponent range) such that
op exactly equals rop x 2°*P. If op is zero, the minimal exponent emin is returned. If op
is NaN or an infinity, the erange flag is set, rop is set to 0, and the the minimal exponent
emin is returned. The returned exponent may be less than the minimal exponent emin of
MPFR numbers in the current exponent range; in case the exponent is not representable in
the mpfr_exp_t type, the erange flag is set and the minimal value of the mpfr_exp_t type
is returned.

int mpfr_get_z (mpz-t rop, mpfr_t op, mpfr_rnd_t rnd) [Function]

Convert op to a mpz_t, after rounding it with respect to rnd. If op is NaN or an infinity,
the erange flag is set, rop is set to 0, and 0 is returned. Otherwise the return value is zero
when rop is equal to op (i.e., when op is an integer), positive when it is greater than op,
and negative when it is smaller than op; moreover, if rop differs from op, i.e., if op is not an
integer, the inexact flag is set.

void mpfr_get_q (mpq-t rop, mpfr_t op) [Function]

Convert op to a mpq_t. If op is NaN or an infinity, the erange flag is set and rop is set to 0.
Otherwise the conversion is always exact.

int mpfr