MPC

The Multiple Precision Complex Library
Edition 0.9

February 2011

INRIA

Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 INRIA

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.

MPC Copying Conditions 1

MPC Copying Conditions

The MPC Library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version, see the file COPYING.LIB.

The MPC Library is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

5 MPC 0.9

1 Introduction to MPC

MPC is a portable library written in C for arbitrary precision arithmetic on complex numbers
providing correct rounding. Ultimately, it should implement a multiprecision equivalent of the
C99 standard. It builds upon the GNU MP and the GNU MPFR libraries.

1.1 How to use this Manual

Everyone should read Chapter 4 [MPC Basics|, page 6. If you need to install the library yourself,
you need to read Chapter 2 [Installing MPC], page 3, too.

The remainder of the manual can be used for later reference, although it is probably a good idea
to skim through it.

Chapter 2: Installing MPC 3

2 Installing MPC

To build MPC, you first have to install GNU MP (version 4.3.2 or higher) and GNU MPFR
(version 2.4.2 or higher) on your computer. You need a C compiler, preferably GCC, but any
reasonable compiler should work. And you need a standard Unix ‘make’ program, plus some
other standard Unix utility programs.

Here are the steps needed to install the library on Unix systems:

‘tar xzf mpc-0.9.tar.gz’
‘cd mpc-0.9’
‘./configure’

if GMP and MPFR are installed into standard directories, that is, directories that are
searched by default by the compiler and the linking tools.

‘./configure —-with-gmp=<gmp_install_dir>’

is used to indicate a different location where GMP is installed. Alternatively, you
can specify directly GMP include and GMP lib directories with ‘./configure
—--with-gmp-lib=<gmp_lib_dir> --with-gmp-include=<gmp_include_dir>’.
‘./configure —-with-mpfr=<mpfr_install_dir>’

is used to indicate a different location where MPFR is installed. Alternatively, you
can specify directly MPFR include and MPFR lib directories with ‘./configure
—-—with-mpf-lib=<mpfr_lib_dir> --with-mpfr-include=<mpfr_include_dir>’.
Another useful parameter is ‘~-prefix’, which can be used to specify an alternative instal-
lation location instead of ‘/usr/local’; see ‘make install’ below.

If for debugging purposes you wish to log calls to MPC functions from within your code,
add the parameter ‘--enable-logging’. In your code, replace the inclusion of ‘mpc.h’ by
‘mpc-log.h’ and link the executable dynamically. Then all calls to functions with only
complex arguments are printed to ‘stderr’ in the following form: First, the function name
is given, followed by its type such as ‘c_cc’, meaning that the function has one complex
result (one ‘c’ in front of the ‘_’), computed from two complex arguments (two ‘c’ after
the ‘_’). Then, the precisions of the real and the imaginary part of the first result is given,
followed by the second one and so on. Finally, for each argument, the precisions of its real
and imaginary part are specified and the argument itself is printed in hexadecimal via the
function mpc_out_str (see [String and Stream Input and Output], page 10).

Use ‘./configure --help’ for an exhaustive list of parameters.
4. ‘make’

This compiles MPC in the working directory.
5. ‘make check’

This will make sure MPC was built correctly.

If you get error messages, please report them to ‘mpc-discuss@lists.gforge.inria.fr’
(See Chapter 3 [Reporting Bugs|, page 5, for information on what to include in useful bug
reports).

6. ‘make install’

This will copy the file ‘mpc.h’ to the directory ‘/usr/local/include’, the file
‘libmpc.a’ to the directory ‘/usr/local/lib’, and the file ‘mpc.info’ to the directory
‘/usr/local/share/info’ (or if you passed the ‘--prefix’ option to ‘configure’, using
the prefix directory given as argument to ‘--prefix’ instead of ‘/usr/local’). Note: you
need write permissions on these directories.

MPC 0.9

2.1 Other ‘make’ Targets

There are some other useful make targets:

‘info’

Create an info version of the manual, in ‘mpc.info’.
‘pdf’

Create a PDF version of the manual, in ‘doc/mpc.pdf’.
‘dvi’

Create a DVI version of the manual, in ‘doc/mpc.dvi’.

3)

ps
Create a Postscript version of the manual, in ‘doc/mpc.ps’.
‘html’

Create an HTML version of the manual, in several pages in the directory ‘doc/mpc.html’; if
you want only one output HTML file, then type ‘makeinfo --html --no-split mpc.texi’
instead.

‘clean’

Delete all object files and archive files, but not the configuration files.
‘distclean’

Delete all files not included in the distribution.

‘uninstall’

Delete all files copied by ‘make install’.

2.2 Known Build Problems

On AIX, if GMP was built with the 64-bit ABI, before building and testing MPC, it might be
necessary to set the ‘OBJECT_MODE’ environment variable to 64 by, e.g.,

‘export OBJECT_MODE=64’

This has been tested with the C compiler IBM XL C/C++ Enterprise Edition V8.0 for AIX,
version: 08.00.0000.0021, GMP 4.2.4 and MPFR 2.4.1.

Please report any other problems you encounter to ‘mpc-discuss@lists.gforge.inria.fr’.
See Chapter 3 [Reporting Bugs|, page 5.

Chapter 3: Reporting Bugs 5

3 Reporting Bugs

If you think you have found a bug in the MPC library, please investigate and report it. We have
made this library available to you, and it is not to ask too much from you, to ask you to report
the bugs that you find.

There are a few things you should think about when you put your bug report together.

You have to send us a test case that makes it possible for us to reproduce the bug. Include
instructions on how to run the test case.

You also have to explain what is wrong; if you get a crash, or if the results printed are incorrect
and in that case, in what way.

Please include compiler version information in your bug report. This can be extracted using
‘gcc -v’, or ‘cc -V’ on some machines. Also, include the output from ‘uname -a’.

If your bug report is good, we will do our best to help you to get a corrected version of the
library; if the bug report is poor, we will not do anything about it (aside of chiding you to send
better bug reports).

Send your bug report to: ‘mpc-discuss@lists.gforge.inria.fr’.

If you think something in this manual is unclear, or downright incorrect, or if the language needs
to be improved, please send a note to the same address.

6 MPC 0.9

4 MPC Basics

All declarations needed to use MPC are collected in the include file ‘mpc.h’. It is designed to
work with both C and C++ compilers. You should include that file in any program using the
MPC library by adding the line

#include "mpc.h"

4.1 Nomenclature and Types

Complex number or Complex for short, is a pair of two arbitrary precision floating-point numbers
(for the real and imaginary parts). The C data type for such objects is mpc_t.

The Precision is the number of bits used to represent the mantissa of the real and imaginary
parts; the corresponding C data type is mpfr_prec_t. For more details on the allowed precision
range, see Section “Nomenclature and Types” in MPFR.

The rounding mode specifies the way to round the result of a complex operation, in case the
exact result can not be represented exactly in the destination mantissa; the corresponding C
data type is mpc_rnd_t. A complex rounding mode is a pair of two rounding modes: one for
the real part, one for the imaginary part.

4.2 Function Classes

There is only one class of functions in the MPC library, namely functions for complex arithmetic.
The function names begin with mpc_. The associated type is mpc_t.

4.3 MPC Variable Conventions

As a general rule, all MPC functions expect output arguments before input arguments. This
notation is based on an analogy with the assignment operator.

MPC allows you to use the same variable for both input and output in the same expression.
For example, the main function for floating-point multiplication, mpc_mul, can be used like this:
mpc_mul (x, x, x, rnd_mode). This computes the square of x with rounding mode rnd_mode
and puts the result back in x.

Before you can assign to an MPC variable, you need to initialize it by calling one of the special
initialization functions. When you are done with a variable, you need to clear it out, using one
of the functions for that purpose.

A variable should only be initialized once, or at least cleared out between each initialization.
After a variable has been initialized, it may be assigned to any number of times.

For efficiency reasons, avoid to initialize and clear out a variable in loops. Instead, initialize it
before entering the loop, and clear it out after the loop has exited.

You do not need to be concerned about allocating additional space for MPC variables, since each
of its real and imaginary part has a mantissa of fixed size. Hence unless you change its precision,
or clear and reinitialize it, a complex variable will have the same allocated space during all its
life.

4.4 Rounding Modes

A complex rounding mode is of the form MPC_RNDxy where x and y are one of N (to nearest),
Z (towards zero), U (towards plus infinity), D (towards minus infinity). The first letter refers to
the rounding mode for the real part, and the second one for the imaginary part. For example

Chapter 4: MPC Basics 7

MPC_RNDZU indicates to round the real part towards zero, and the imaginary part towards plus
infinity.

The ‘round to nearest’ mode works as in the IEEE P754 standard: in case the number to be
rounded lies exactly in the middle of two representable numbers, it is rounded to the one with
the least significant bit set to zero. For example, the number 5, which is represented by (101)
in binary, is rounded to (100)=4 with a precision of two bits, and not to (110)=6.

4.5 Return Value

Most MPC functions have a return value of type int, which is used to indicate the position of
the rounded real and imaginary parts with respect to the exact (infinite precision) values. If
this integer is i, the macros MPC_INEX_RE(i) and MPC_INEX_IM(i) give O if the corresponding
rounded value is exact, a negative value if the rounded value is less than the exact one, and a
positive value if it is greater than the exact one. Similarly, functions computing a result of type
mpfr_t return an integer that is 0, positive or negative depending on whether the rounded value
is the same, larger or smaller then the exact result.

Some functions, such as mpc_sin_cos, compute two complex results; the macros MPC_INEX1(i)
and MPC_INEX2(i), applied to the return value i of such a function, yield the exactness value
corresponding to the first or the second computed value, respectively.

4.6 Branch Cuts And Special Values

Some complex functions have branch cuts, across which the function is discontinous. In MPC,
the branch cuts chosen are the same as those specified for the corresponding functions in the
ISO C99 standard.

Likewise, when evaluated at a point whose real or imaginary part is either infinite or a NaN or a
signed zero, a function returns the same value as those specified for the corresponding function
in the ISO C99 standard.

8 MPC 0.9

5 Complex Functions

The complex functions expect arguments of type mpc_t.

The MPC floating-point functions have an interface that is similar to the GNU MP integer
functions. The function prefix for operations on complex numbers is mpc_.

The precision of a computation is defined as follows: Compute the requested operation exactly
(with “infinite precision”), and round the result to the destination variable precision with the
given rounding mode.

The MPC complex functions are intended to be a smooth extension of the IEEE P754 arithmetic.
The results obtained on one computer should not differ from the results obtained on a computer
with a different word size.

5.1 Initialization Functions

An mpc_t object must be initialized before storing the first value in it. The functions mpc_init2
and mpc_init3 are used for that purpose.

void mpc_init2 (mpc_t z, mpfr_prec_t prec) [Function]
Initialize z to precision prec bits and set its real and imaginary parts to NaN. Normally,
a variable should be initialized once only or at least be cleared, using mpc_clear, between
initializations.

void mpc_init3 (mpc_t z, mpfr_prec_t prec_r, mpfr_prec_t prec_i) [Function]
Initialize z with the precision of its real part being prec_r bits and the precision of its imag-
inary part being prec_i bits, and set the real and imaginary parts to NaN.

void mpc_clear (mpc_t z) [Function]
Free the space occupied by z. Make sure to call this function for all mpc_t variables when
you are done with them.

Here is an example on how to initialize complex variables:

{
mpc_t X, y;
mpc_init2 (x, 256); /* precision exactly 256 bits */
mpc_init3 (y, 100, 50); /* 100/50 bits for the real/imaginary part */
mpc_clear (x);
mpc_clear (y);
}

The following function is useful for changing the precision during a calculation. A typical use
would be for adjusting the precision gradually in iterative algorithms like Newton-Raphson,
making the computation precision closely match the actual accurate part of the numbers.

void mpc_set_prec (mpc-t x, mpfr_prec_t prec) [Function]
Reset the precision of x to be exactly prec bits, and set its real/imaginary parts to NaN. The
previous value stored in x is lost. It is equivalent to a call to mpc_clear(x) followed by a
call to mpc_init2(x, prec), but more efficient as no allocation is done in case the current
allocated space for the mantissa of x is sufficient.

Chapter 5: Complex Functions 9

mpfr_prec_t mpc_get_prec (mpc-t x) [Function]
If the real and imaginary part of x have the same precision, it is returned, otherwise, 0 is
returned.

void mpc_get_prec2 (mpfr_prec_t* pr, mpfr_prec_t* pi, mpc_t x) [Function]
Returns the precision of the real part of x via pr and of its imaginary part via pi.

5.2 Assignment Functions

These functions assign new values to already initialized complex numbers (see Section 5.1 [Ini-
tializing Complex Numbers|, page 8). When using any functions with intmax_t or uintmax_t
parameters, you must include <stdint.h> or <inttypes.h> before ‘mpc.h’; to allow ‘mpc.h’ to
define prototypes for these functions. Similarly, functions with parameters of type complex or
long complex are defined only if <complex.h> is included before ‘mpc.h’. If you need assign-
ment functions that are not in the current API, you can define them using the MPC_SET_X_Y
macro (see Section 5.11 [Advanced Functions], page 16).

int mpc_set (mpc-t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set the value of rop from op, rounded to the precision of rop with the given rounding mode
rnd.

int mpc_set_ui (mpc-t rop, unsigned long int op, mpc_rnd_t rnd) Function
int mpc_set_si (mpc-t rop, long int op, mpc_rnd_t rnd) Function
int mpc_set_uj (mpc-t rop, uintmax_t op, mpc_rnd_t rnd) Function
int mpc_set_sj (mpc-t rop, intmax_t op, mpc_rnd_t rnd) Function
int mpc_set_d (mpc-t rop, double op, mpc_rnd_t rnd) Function

int mpc_set_dc (mpc-t rop, double _Complex op, mpc_rnd_t rnd) Function
int mpc_set_ldc (mpc_t rop, long double _.Complex op, mpc_rnd_t rnd) Function
int mpc_set_z (mpc_-t rop, mpz_t op mpc_rnd_t rnd) Function
int mpc_set_q (mpc-t rop, mpq_t op mpc_rnd_t rnd) Function
int mpc_set_f (mpc_-t rop, mpf-t op mpc_rnd_t rnd) Function

[}
[}
[]
=
int mpc_set_1d (mpc-t rop, long double op, mpc_rnd_t rnd) [Function]
[Function]
[]
[|
[|
[]
]

int mpc_set_fr (mpc-t rop, mpfr_t op, mpc_rnd_t rnd) [Function
Set the value of rop from op, rounded to the precision of rop with the given rounding mode
rnd. The argument op is interpreted as real, so the imaginary part of rop is set to zero with
a positive sign. Please note that even a long int may have to be rounded, if the destination
precision is less than the machine word width. For mpc_set_d, be careful that the input
number op may not be exactly representable as a double-precision number (this happens for
0.1 for instance), in which case it is first rounded by the C compiler to a double-precision
number, and then only to a complex number.

int mpc_set_ui_ui (mpc_t rop, unsigned long int opl, unsigned long int [Function]
op2, mpc_rnd-t rad)
int mpc_set_si_si (mpc_t rop, long int op1, long int op2, mpc_rnd_t rnd) [Function]

int mpc_set_uj_uj (mpc_t rop, uintmax_t opl, uintmax_t op2, mpc_rnd_t [Function]
rnd)

int mpc_set_sj_sj (mpc_t rop, intmax_t opl, intmax_t op2, mpc_rnd_t [Function]
rnd)

int mpc_set_d_d (mpc_t rop, double opl, double op2, mpc_rnd_t rnd) [Function]

int mpc_set_1d_1d (mpc_t rop, long double op1, long double op2, [Function]
mpc_rnd_t rnd)

int mpc_set_z_z (mpc_t rop, mpz_t opl, mpz_t op2, mpc_rnd_t rnd) [Function]

int mpc_set_q_q (mpc_t rop, mpq-t opl, mpq-t op2, mpc_rnd_t rnd) [Function]

10 MPC 0.9

int mpc_set_f_f (mpc_t rop, mpf_-t opl, mpf.-t op2, mpc_rnd_t rnd) [Function]

int mpc_set_fr_fr (mpc_t rop, mpfr_t opl, mpfr_t op2, mpc_rnd-t rnd) [Function]
Set the real part of rop from op1, and its imaginary part from op2, according to the rounding
mode rnd.

Beware that the behaviour of mpc_set_fr_£r is undefined if op1 or op2 is a pointer to the real
or imaginary part of rop. To exchange the real and the imaginary part of a complex number,
either use mpfr_swap (mpc_realref (rop), mpc_imagref (rop)), which also exchanges the
precisions of the two parts; or use a temporary variable.

For functions assigning complex variables from strings or input streams, see [String and Stream
Input and Output], page 10.

void mpc_set_nan (mpc_-t rop) [Function]
Set rop to Nan+i*NaN.

void mpc_swap (mpc-t opl, mpc_t op2) [Function]
Swap the values of opl and op2 efficiently. Warning: The precisions are exchanged, too; in
case these are different, mpc_swap is thus not equivalent to three mpc_set calls using a third
auxiliary variable.

5.3 Conversion Functions

The following functions are available only if <complex.h> is included before ‘mpc.h’.

double _Complex mpc_get_dc (mpc-t op, mpc_rnd-t rad) [Function]
long double _Complex mpc_get_ldc (mpc-t op, mpc_rnd-t rnd) [Function]
Convert op to a C complex number, using the rounding mode rnd.

For functions converting complex variables to strings or stream output, see [String and Stream
Input and Output], page 10.

5.4 String and Stream Input and Output

int mpc_strtoc (mpc-t rop, const char *nptr, char **endptr, int base, [Function]
mpc-rnd_t rad)

Read a complex number from a string nptr in base base, rounded to the precision of rop
with the given rounding mode rnd. The base must be either 0 or a number from 2 to 36
(otherwise the behaviour is undefined). If nptr starts with valid data, the result is stored in
rop, the usual inexact value is returned (see [Return Value|, page 7) and, if endptr is not the
null pointer, *endptr points to the character just after the valid data. Otherwise, rop is set
to NaN + i * NaN, -1 is returned and, if endptr is not the null pointer, the value of nptr is
stored in the location referenced by endptr.

The expected form of a complex number string is either a real number (an optional leading
whitespace, an optional sign followed by a floating-point number), or a pair of real numbers
in parentheses separated by whitespace. If a real number is read, the missing imaginary
part is set to +0. The form of a floating-point number depends on the base and is described
in the documentation of mpfr_strtofr in the MPFR manual. For instance, "3.1415926",
"(1.25e+7 +.17)", "(@nan@ 2)" and " (-0 -7)" are valid strings for base = 10. If base = 0,
then a prefix may be used to indicate the base in which the floating-point number is written.
Use prefix ’0b’ for binary numbers, prefix ’0x’ for hexadecimal numbers, and no prefix for
decimal numbers. The real and imaginary part may then be written in different bases. For

Chapter 5: Complex Functions 11

instance, " (1.024e+3 +2.05e+3) " and " (Ob1p+10 +0x802) " are valid strings for base=0 and
represent the same value.

int mpc_set_str (mpc-t rop, const char *s, int base, mpc_rnd_t rnd) [Function]
Set rop to the value of the string s in base base, rounded to the precision of rop with the
given rounding mode rnd. See the documentation of mpc_strtoc for a detailed description of
the valid string formats. Contrarily to mpc_strtoc, mpc_set_str requires the whole string
to represent a valid complex number (potentially followed by additional white space). This
function returns the usual inexact value (see [Return Value|, page 7) if the entire string up
to the final null character is a valid number in base base; otherwise it returns —1, and rop is
set to NaN+i*NaN.

char * mpc_get_str (int b, size_t n, mpc_t op, mpc-rnd-t rnd) [Function]
Convert op to a string containing its real and imaginary parts, separated by a space and
enclosed in a pair of parentheses. The numbers are written in base b (which may vary from 2
to 36) and rounded according to rnd. The number of significant digits, at least 2, is given by
n. It is also possible to let n be zero, in which case the number of digits is chosen large enough
so that re-reading the printed value with the same precision, assuming both output and input
use rounding to nearest, will recover the original value of op. Note that mpc_get_str uses
the decimal point of the current locale if available, and ‘.’ otherwise.

The string is generated using the current memory allocation function (malloc by default,
unless it has been modified using the custom memory allocation interface of gmp); once it is
not needed any more, it should be freed by calling mpc_free_str.

void mpc_free_str (char *str) [Function]
Free the string str, which needs to have been allocated by a call to mpc_get_str.

The following two functions read numbers from input streams and write them to output streams.
When using any of these functions, you need to include ‘stdio.h’ before ‘mpc.h’.

int mpc_inp_str (mpc_t rop, FILE *stream, size_t *read, int base, [Function]
mpc_rnd_t rnd)
Input a string in base base in the same format as for mpc_strtoc from stdio stream stream,
rounded according to rnd, and put the read complex number into rop. If stream is the null
pointer, rop is read from stdin. Return the usual inexact value; if an error occurs, set rop
to NaN + i * NaN and return -1. If read is not the null pointer, it is set to the number of read
characters.

Unlike mpc_strtoc, the function mpc_inp_str does not possess perfect knowledge of the
string to transform and has to read it character by character, so it behaves slightly differ-
ently: It tries to read a string describing a complex number and processes this string through
a call to mpc_set_str. Precisely, after skipping optional whitespace, a minimal string is
read according to the regular expression mpfr | ’(? \s* mpfr \s+ mpfr \s* ’)’, where \s
denotes a whitespace, and mpfr is either a string containing neither whitespaces nor paren-
theses, or nan (n-char-sequence) or @nan@(n-char-sequence) (regardless of capitalisation)
with n-char-sequence a string of ascii letters, digits or >_’.

For instance, upon input of "nan(13 1)", the function mpc_inp_str starts to recognise a
value of NaN followed by an n-char-sequence indicated by the opening parenthesis; as soon
as the space is reached, it becocmes clear that the expression in parentheses is not an n-
char-sequence, and the error flag -1 is returned after 6 characters have been consumed from
the stream (the whitespace itself remaining in the stream). The function mpc_strtoc, on
the other hand, may track back when reaching the whitespace; it treats the string as the

12 MPC 0.9

two successive complex numbers NaN + i * O and 13 + i. It is thus recommended to have a
whitespace follow each floating point number to avoid this problem.

size_t mpc_out_str (FILE *stream, int base, size_-t n_digits, mpc_t [Function]
op, mpc_rnd_t rnd)
Output op on stdio stream stream in base base, rounded according to rnd, in the same format
as for mpc_strtoc If stream is the null pointer, rop is written to stdout.

Return the number of characters written.

5.5 Comparison Functions

int mpc_cmp (mpc-t opl, mpc_t op2) [Function]
int mpc_cmp_si_si (mpc_t opl, long int op2r, long int op21) [Function]
int mpc_cmp_si (mpc-t opl, long int op2) [Macro]

Compare opl and op2, where in the case of mpc_cmp_si_si, op2 is taken to be op2r + i op2i.
The return value ¢ can be decomposed into x = MPC_INEX_RE(c) and y = MPC_INEX_IM(c),
such that x is positive if the real part of opl is greater than that of op2, zero if both real
parts are equal, and negative if the real part of op1 is less than that of op2, and likewise for
y. Both opl and op2 are considered to their full own precision, which may differ. It is not
allowed that one of the operands has a NaN (Not-a-Number) part.

The storage of the return value is such that equality can be simply checked with mpc_cmp
(opl, op2) == 0.

5.6 Projection and Decomposing Functions

int mpc_real (mpfr_t rop, mpc_t op, mpfr_rnd_t rnd) [Function]
Set rop to the value of the real part of op rounded in the direction rnd.

int mpc_imag (mpfr_-t rop, mpc-t op, mpfr_rnd_t rnd) [Function]
Set rop to the value of the imaginary part of op rounded in the direction rnd.

mpfr_t mpc_realref (mpc_t op) [Macro]

mpfr_t mpc_imagref (mpc_t op) [Macro]
Return a reference to the real part and imaginary part of op, respectively. The mpfr functions
can be used on the result of these macros (note that the mpfr_t type is itself a pointer).

int mpc_arg (mpfr_-t rop, mpc-t op, mpfr_rnd_t rnd) [Function]
Set rop to the argument of op, with a branch cut along the negative real axis.

int mpc_proj (mpc_t rop, mpc_t op, mpc_rnd-t rand) [Function]
Compute a projection of op onto the Riemann sphere. Set rop to op rounded in the direction
rnd, except when at least one part of op is infinite (even if the other part is a NaN) in which
case the real part of rop is set to plus infinity and its imaginary part to a signed zero with
the same sign as the imaginary part of op.

5.7 Basic Arithmetic Functions

All the following functions are designed in such a way that, when working with real numbers
instead of complex numbers, their complexity should essentially be the same as with the MPFR
library, with only a marginal overhead due to the MPC layer.

Chapter 5: Complex Functions 13

int mpc_add (mpc_t rop, mpc-t opl, mpc_t op2, mpc_rnd_t rnd) [Function]

int mpc_add_ui (mpc-t rop, mpc-t opl, unsigned long int op2, mpc_rnd_t [Function]
rnd)

int mpc_add_fr (mpc-t rop, mpc_t opl, mpfr_t op2, mpc_rnd-t rand) [Function]

Set rop to opl + op2 rounded according to rnd.

int mpc_sub (mpc_t rop, mpc_t opl, mpc_t op2, mpc_rnd_t rnd) [Function
int mpc_sub_fr (mpc-t rop, mpc_t opl, mpfr_-t op2, mpc_rnd-t rnd) [Function
[
[

|
]
]
]

int mpc_fr_sub (mpc-t rop, mpfr_t opl, mpc_t op2, mpc_rnd-t rnd) Function

int mpc_sub_ui (mpc-t rop, mpc_t opl, unsigned long int op2, mpc_rnd_t Function
rnd)

int mpc_ui_sub (mpc-t rop, unsigned long int opl, mpc_t op2, mpc_rnd_t [Macro]
rnd)

int mpc_ui_ui_sub (mpc_t rop, unsigned long int rel, unsigned long int [Function]

iml, mpc_t op2, mpc_rnd_t rand)
Set rop to opl — op2 rounded according to rnd. For mpc_ui_ui_sub, opl is rel + iml.

int mpc_mul (mpc_t rop, mpc_t opl, mpc_t op2, mpc_rnd_t rnd) [Function]

int mpc_mul_ui (mpc-t rop, mpc_t opl, unsigned long int op2, mpc_rnd_t [Function]
rnd)

int mpc_mul_si (mpc-t rop, mpc_t opl, long int op2, mpc_rnd_t rnd) [Function]

int mpc_mul_fr (mpc.t rop, mpc_t opl, mpfr_t op2, mpc_rnd-t rnd) [Function]

Set rop to opl times op2 rounded according to rnd.

int mpc_mul_i (mpc-t rop, mpc_t op, int sgn, mpc_rnd-t rnd) [Function]
Set rop to op times the imaginary unit i if sgn is non-negative, set rop to op times -i otherwise,
in both cases rounded according to rnd.

int mpc_sqr (mpc-t rop, mpc_t op, mpc-rnd-t rnd) [Function]
Set rop to the square of op rounded according to rnd.

int mpc_div (mpc_t rop, mpc_t opl, mpc_t op2, mpc_rnd_t rnd) [Function]

int mpc_div_ui (mpc-t rop, mpc_t opl, unsigned long int op2, mpc_rnd_t [Function]
rnd)

int mpc_ui_div (mpc-t rop, unsigned long int opl, mpc_t op2, mpc_rnd_t [Function]
rnd)

int mpc_div_fr (mpc_t rop, mpc_t opl, mpfr_t op2, mpc_rnd-t rand) [Function]

int mpc_fr_div (mpc-t rop, mpfr_t opl, mpc_t op2, mpc_rnd-t rnd) [Function]

Set rop to opl/op2 rounded according to rnd. For mpc_div and mpc_ui_div, the return
value may fail to recognize some exact results. The sign of returned value is significant only
for mpc_div_ui.

int mpc_neg (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to —op rounded according to rnd. Just changes the sign if rop and op are the same
variable.

int mpc_conj (mpc-t rop, mpc_t op, mpc-rnd_t rnd) [Function]
Set rop to the conjugate of op rounded according to rnd. Just changes the sign of the
imaginary part if rop and op are the same variable.

int mpc_abs (mpfr_t rop, mpc_t op, mpfr_rnd_t rnd) [Function]
Set the floating-point number rop to the absolute value of op, rounded in the direction rnd.
The returned value is zero iff the result is exact.

14 MPC 0.9

int mpc_norm (mpfr_-t rop, mpc_t op, mpfr_rnd_t rnd) [Function]
Set the floating-point number rop to the norm of op (i.e., the square of its absolute value),
rounded in the direction rnd. The returned value is zero iff the result is exact. Note that the
destination is of type mpfr_t, not mpc_t.

int mpc_mul_2exp (mpc_t rop, mpc-t opl, unsigned long int op2, [Function]
mpc-rnd_t rnd)
Set rop to opl times 2 raised to op2 rounded according to rnd. Just increases the exponents
of the real and imaginary parts by op2 when rop and opl are identical.

int mpc_div_2exp (mpc_t rop, mpc_t opl, unsigned long int op2, [Function]
mpc_rnd_t rnd)
Set rop to opl divided by 2 raised to op2 rounded according to rnd. Just decreases the
exponents of the real and imaginary parts by op2 when rop and opl are identical.

int mpc_fma (mpc_t rop, mpc_t opl, mpc_t op2, mpc-t op3, mpc_rnd_t [Function]
rnd)
Set rop to opl times op2 plus op3, rounded according to rnd, with only one final rounding.

5.8 Power Functions and Logarithm

int mpc_sqrt (mpc_t rop, mpc_t op, mpc_rnd-t rand) [Function]
Set rop to the square root of op rounded according to rnd.

int mpc_pow (mpc_t rop, mpc-t opl, mpc_t op2, mpc_rnd_t rnd) [Function]
int mpc_pow_d (mpc-t rop, mpc_t opl, double op2, mpc_rnd-t rnd) [Function]
int mpc_pow_1d (mpc-t rop, mpc_t opl, long double op2, mpc_rnd_t rnd) [Function]
[}
[]

int mpc_pow_si (mpc-t rop, mpc_t opl, long op2, mpc_rnd_t rnd) Function

int mpc_pow_ui (mpc-t rop, mpc_t opl, unsigned long op2, mpc_rnd_t Function
rnd)

int mpc_pow_z (mpc-t rop, mpc_t opl, mpz_t op2, mpc_rnd_t rnd) [Function]

int mpc_pow_fr (mpc-t rop, mpc_t opl, mpfr_t op2, mpc_rnd-t rand) [Function]

Set rop to opl raised to the power op2, rounded according to rnd. For mpc_pow_d, mpc_
pow_1d, mpc_pow_si, mpc_pow_ui, mpc_pow_z and mpc_pow_£fr, the imaginary part of op2
is considered as +0.

int mpc_exp (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to the exponential of op, rounded according to rnd with the precision of rop.

int mpc_log (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to the logarithm of op, rounded according to rnd with the precision of rop. The
principal branch is chosen, with the branch cut on the negative real axis, so that the imaginary
part of the result lies in | — 7, 7].

5.9 Trigonometric Functions

int mpc_sin (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to the sine of op, rounded according to rnd with the precision of rop.

int mpc_cos (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to the cosine of op, rounded according to rnd with the precision of rop.

Chapter 5: Complex Functions 15

int mpc_sin_cos (mpc_t rop_sin, mpc_t rop_cos, mpc-t op, mpc_rnd_t [Function]
rnd_sin, mpc_rnd-t rnd_cos)
Set rop_sin to the sine of op, rounded according to rnd_sin with the precision of rop_sin, and
rop_cos to the cosine of op, rounded according to rnd_cos with the precision of rop_cos.

int mpc_tan (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
Set rop to the tangent of op, rounded according to rnd with the precision of rop.

int mpc_sinh (mpc_t rop, mpc_t op, mpc_rnd-t rand) [Function]
Set rop to the hyperbolic sine of op, rounded according to rnd with the precision of rop.

int mpc_cosh (mpc_t rop, mpc_t op, mpc_rnd_t rand) [Function]
Set rop to the hyperbolic cosine of op, rounded according to rnd with the precision of rop.

int mpc_tanh (mpc_t rop, mpc_t op, mpc_rnd-t rad) [Function]
Set rop to the hyperbolic tangent of op, rounded according to rnd with the precision of rop.

int mpc_asin (mpc_t rop, mpc_t op, mpc_rnd_t rand) [Function]
int mpc_acos (mpc_t rop, mpc_t op, mpc_rnd-t rand) [Function]
int mpc_atan (mpc_t rop, mpc_t op, mpc_rnd_t rand) [Function]

Set rop to the inverse sine, inverse cosine, inverse tangent of op, rounded according to rnd
with the precision of rop.

int mpc_asinh (mpc_t rop, mpc_t op, mpc_rnd_t rnd) [Function]
int mpc_acosh (mpc-t rop, mpc_t op, mpc_rnd_t rnd) [Function]
int mpc_atanh (mpc-t rop, mpc_t op, mpc_rnd_t rnd) [Function]

Set rop to the inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent
of op, rounded according to rnd with the precision of rop. The branch cut of mpc_acosh is
(—o0,1).

5.10 Miscellaneous Functions

int mpc_urandom (mpc-t rop, gmp_randstate_t state) [Function]
Generate a uniformly distributed random complex in the unit square [0, 1] x [0, 1]. Return
0, unless an exponent in the real or imaginary part is not in the current exponent range, in
which case that part is set to NaN and a zero value is returned. The second argument is
a gmp_randstate_t structure which should be created using the GMP rand_init function,
see the GMP manual.

const char * mpc_get_version (void) [Function]
Return the MPC version, as a null-terminated string.

MPC_VERSION [Macro]
MPC_VERSION_MAJOR [Macro]
MPC_VERSION_MINOR [Macro]
MPC_VERSION_PATCHLEVEL [Macro]
MPC_VERSION_STRING [Macro]

MPC_VERSION is the version of MPC as a preprocessing constant. MPC_VERSION_MAJOR, MPC_
VERSION_MINOR and MPC_VERSION_PATCHLEVEL are respectively the major, minor and patch
level of MPC version, as preprocessing constants. MPC_VERSION_STRING is the version as a
string constant, which can be compared to the result of mpc_get_version to check at run
time the header file and library used match:

16 MPC 0.9

if (strcmp (mpc_get_version (), MPC_VERSION_STRING))
fprintf (stderr, "Warning: header and library do not match\n");

Note: Obtaining different strings is not necessarily an error, as in general, a program compiled
with some old MPC version can be dynamically linked with a newer MPC library version (if
allowed by the library versioning system).

long MPC_VERSION_NUM (major, minor, patchlevel) [Macro]
Create an integer in the same format as used by MPC_VERSION from the given major, minor
and patchlevel. Here is an example of how to check the MPC version at compile time:

#if (!'defined (MPC_VERSION) || (MPC_VERSION<MPC_VERSION_NUM(2,1,0)))
error "Wrong MPC version."
#endif

5.11 Advanced Functions

MPC_SET_X_Y (real_suffix, imag_suffix, rop, real, imag, rnd) [Macro]
The macro MPC_SET_X_Y is designed to serve as the body of an assignment function and
cannot be used by itself. The real_suffix and imag_suffix parameters are the types of the real
and imaginary part, that is, the x in the mpfr_set_x function one would use to set the part;
for the mpfr type, use fr. real (respectively imag) is the value you want to assign to the real
(resp. imaginary) part, its type must conform to real_suffix (resp. imag_suffix). rnd is the
mpc_rnd_t rounding mode. The return value is the usual inexact value (see [Return Value,

page 7).
For instance, you can define mpc_set_ui_fr as follows:
int mpc_set_ui_fr (mpc_t rop, long int re, double im, mpc_rnd_t rnd)
MPC_SET_X_Y (ui, fr, rop, re, im, rnd);
5.12 Internals

These macros and functions are mainly designed for the implementation of MPC, but may be
useful for users too. However, no upward compatibility is guaranteed. You need to include
mpc-impl.h to use them.

The macro MPC_MAX_PREC(z) gives the maximum of the precisions of the real and imaginary
parts of a complex number.

Contributors 17

Contributors

The main developers of the MPC library are Andreas Enge, Philippe Théveny and Paul Zim-
mermann. Patrick Pélissier has helped cleaning up the code. Marc Helbling contributed the
mpc_ui_sub and mpc_ui_ui_sub functions.

18 MPC 0.9

References

e Torbjorn Granlund et al. gnp — GNU multiprecision library. Version 4.2.4,
http://gmplib.org/.

e Guillaume Hanrot, Vincent Lefevre, Patrick Pélissier, Paul Zimmermann et al. mpfr —
A library for multiple-precision floating-point computations with exact rounding. Version
2.4.1, http://www.mpfr.org.

e [EEE standard for binary floating-point arithmetic, Technical Report ANSI-IEEE Standard
754-1985, New York, 1985. Approved March 21, 1985: IEEE Standards Board; approved
July 26, 1985: American National Standards Institute, 18 pages.

e Donald E. Knuth, "The Art of Computer Programming", vol 2, "Seminumerical Algo-
rithms", 2nd edition, Addison-Wesley, 1981.

e ISO/IEC 9899:1999, Programming languages C.

http://gmplib.org/
http://www.mpfr.org

Concept Index

Concept Index

A

Arithmetic functions 12

C

Comparison functions, 12
Complex arithmetic functions 12
Complex assignment functions..................... 9
Complex comparisons functions 12
Complex functions ..., 8
Complex number. ..., 6
Conditions for copying MPC 1
Conversion functions......... 10
Copying conditions............ L. 1

I

Installation 3

L

Logarithm 14

M

Miscellaneous complex functions.................. 15

19
MPC. R 6
Power functions.......... ool 14
Precision........ ..o 6
Projection and Decomposing Functions........... 12
Reporting bugs......... 5
Rounding Mode........ ...t 6
String and stream input and output.............. 10
T
Trigonometric functions............... 14
User-defined precisioncooviviniinn... 8

20

Function and Type Index

MPC_@DS . ottt 13
1] o Yo - o] o< J 15
mpc_acosh...... 15
mpc_add............. 13
mpc_add_fr......... ... 13
mpc_add_ui.........ooiiiiiii 13
1] o Yo o - 12
mpc_asin........... i 15
mpc_asinh..........l 15
MPC_atan ...t 15
mpc_atanh 15
MPC_CLEAT ..\ttt 8
1] ool el 1« 12
MPC_CMP_S1 ..ottt 12
mpc_cmp_Si_si............ . i 12
1] o Yo o] « Ty 13
1] o Yo o] o =20 14
MPC_COSh ...t 15
mpce_div...........o 13
mpc_div_2exXp.......... ool 14
mpe_div_fr.... ... 13
mpce_div_ui..... .. 13
1] o oBE =D « T 14
mpce_fma... ... 14
mpe_fr_div......... 13
mpc_fr_sub........ ... i 13
mpc_free_str......... o ool 11
mpc_get_ldc.............. i 10
MPC_ZET _PLeC ...ttt 9
mpc_get_prec2...................... ... 9
MpC_get _Strot 11
mpc_get_versionl 15
MPC_IMAg ...ttt 12
mpc_imagref 12
mpc_init2 8
mpc_init3 8
mpc_inp_str...... i 11
MPC_LOG. ottt 14
mpe_mul. 13
MPC_MUL_2€XP...ovtiiiiiiiiiiiiiii i 14
mpc_mul_fr.... o o 13
mpe_mul_i........... . 13
mpe_mul_Si.............iiiiiiii 13
mpe_mul_Ul........oiiiii 13
1 oo < L - 13
1] Yo +To | R 14
mpc_out_str.......... 12
1] o Yo o Yo - 14
MPC_POW_d ...t 14
mpc_pow_fr. ... 14
MPC_POW_L1d ...t 14

MPC_POW_S1 ..ottt 14

MPC 0.9

MPC_POW_UL ...ttt 14
1] o Yo o Yo 14
10 o T2 o o o 3y 12
mpce_real 12
mpc_realrefl 12
mpe_rnd_t 6
MPC_SeT ...t 9
mpc_set_d.......... 9
mpc_set_d_d.......... ... 9
mpc_set_dc....... ... 9
mpc_set_f 9
mpce_set_f_f... ... i 9
mpc_set_fr. ... 9
mpc_set_fr_fr.. 10
mpc_set_1d............. 9
mpc_set_1d_1d........... o ool 9
mpc_set_ldc..........o il 9
1] Yo =1=0 7 4 -« K 10
MPC_SEL_PreC ...\ttt 8
MPC_SET _Q .« vttt 9
MPC_ ST _g g e vt vvetttttiii e 9
mpc_set_Si.........o 9
mpc_set_si_si......... ... il 9
1] Yo =1=0 - [N 9
mpC_Set_Sj_SJ......oooiiiii i 9
MPC_Set_Str.....ooiiiiiii 11
mpc_set_ui.............. 9
mpc_set_ui_ui.......... ...l 9
MPC_Set_UJ ...t 9
mpe_set_Uj_Uj.....ooviiiininiiiiiiiiiiii. 9
MPC _SET _ X Y ot 16
MPC_SEL_Z .. i 9
MPC_SEL_Z_Z ...\ttt 9
mpC_Sin..... ... i 14
MPC_SIN_COS....iiittii it 15
mpe_sinh 15
11 oY o T ol 13
1) o Yo =T st A 14
MPC_StILOC . ..ottt 10
MPC_SUb. ... 13
mpc_sub_fr...... 13
mpC_sub_Ui........couuiiiiiiiii i 13
11 oToJE =1 - o 10
MPC 6
MPC_taml. ..ttt 15
mpc_tanh 15
mpce_ui_div...... ..o 13
mpc_ui_sub..... ... 13
mpc_ui_ui_sub........... 13
MPC_Urandom.ttt 15
MPC_VERSIONottt 15
MPC_VERSION_MAJORttt 15
MPC_VERSION_MINOR.......ciiniiiiiiiinnnnnn 15
MPC_VERSION_NUMcoiiitii ittt 16
MPC_VERSION_PATCHLEVELccvuvn.n. 15
MPC_VERSION_STRING........coiiiiiiiniiannnnn. 15
mpfr_prec_t....... 6

Table of Contents

MPC Copying Conditions, 1
1 Introduction to MPC 2
1.1 How to use this Manual 2
2 Installing MPC 3
2.1 Other ‘make’ Targetst e 4
2.2 Known Build Problems 4
3 Reporting Bugs.............. 5
4 MPC BasSiCS.o 6
4.1 Nomenclature and TypPesttt 6
4.2 Function Classes.t 6
4.3 MPC Variable Conventionsuiuii i e 6
4.4 Rounding Modest 6
4.5 Return Value.o 7
4.6 Branch Cuts And Special Values........ ... i i 7
5 Complex Functions............. 8
5.1 Initialization FUnctionst e e 8
5.2 Assignment Functions i 9
5.3 Conversion FUNCHIONSottt 10
5.4 String and Stream Input and OQutput i 10
5.5 Comparison Functions. ... i 12
5.6 Projection and Decomposing Functions o i i 12
5.7 Basic Arithmetic FUNCLIONS . . . o oottt e i 12
5.8 Power Functions and Logarithm 14
5.9 Trigonometric FUnctions. e 14
5.10 Miscellaneous Functionst e 15
5.11 Advanced FUNCHIONSottt e 16
D512 Internals . ..o 16
Contributors. 17
References 18
Concept Index........ 19

Function and Type Index.............. 20

	MPC Copying Conditions
	Introduction to MPC
	How to use this Manual

	Installing MPC
	Other `make' Targets
	Known Build Problems

	Reporting Bugs
	MPC Basics
	Nomenclature and Types
	Function Classes
	MPC Variable Conventions
	Rounding Modes
	Return Value
	Branch Cuts And Special Values

	Complex Functions
	Initialization Functions
	Assignment Functions
	Conversion Functions
	String and Stream Input and Output
	Comparison Functions
	Projection and Decomposing Functions
	Basic Arithmetic Functions
	Power Functions and Logarithm
	Trigonometric Functions
	Miscellaneous Functions
	Advanced Functions
	Internals

	Contributors
	References
	Concept Index
	Function and Type Index

