
Installing GCC

Copyright c© 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Chapter 1: Installing GCC 1

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/.
This document describes the generic installation procedure for GCC as well as detailing

some target specific installation instructions.
GCC includes several components that previously were separate distributions with their

own installation instructions. This document supersedes all package specific installation
instructions.

Before starting the build/install procedure please check the Chapter 9 [Specific], page 35.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at
http://gcc.gnu.org/buildstat.html. These lists are updated as new information
becomes available.

The installation procedure itself is broken into five steps.
Please note that GCC does not support ‘make uninstall’ and probably won’t do so in

the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

2 Installing GCC

Chapter 2: Prerequisites 3

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C90 compiler
Necessary to bootstrap the GCC package, although versions of GCC prior to
3.4 also allow bootstrapping with a traditional (K&R) C compiler.

To make all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 2.95 or later) because source code for language frontends other than C
might use GCC extensions.

GNAT

In order to build the Ada compiler (GNAT) you must already have GNAT in-
stalled because portions of the Ada frontend are written in Ada (with GNAT
extensions.) Refer to the Ada installation instructions for more specific infor-
mation.

A “working” POSIX compatible shell, or GNU bash
Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or even some ksh have disastrous corner-case performance problems. This can
cause target configure runs to literally take days to complete in some cases.

So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host/target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.

zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

GNU binutils
Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)

Necessary to uncompress GCC tar files when source code is obtained via FTP
mirror sites.

GNU make version 3.79.1 (or later)
You must have GNU make installed to build GCC.

GNU tar version 1.12 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

4 Installing GCC

Tools/packages necessary for modifying GCC

autoconf versions 2.13 and 2.57
GNU m4 version 1.4 (or later)

Necessary when modifying ‘configure.in’, ‘aclocal.m4’, etc. to regenerate
‘configure’ and ‘config.in’ files. Most directories require autoconf 2.13 (ex-
actly), but ‘libiberty’, ‘fastjar’, ‘libstdc++-v3’, ‘libjava/libltdl’, and
‘gcc’ require autoconf 2.57 (exactly).

automake versions 1.4-gcj and 1.7.9
Necessary when modifying a ‘Makefile.am’ file to regenerate its associated
‘Makefile.in’.
Much of GCC does not use automake, so directly edit the ‘Makefile.in’ file.
Specifically this applies to the ‘gcc’, ‘intl’, ‘libf2c’, ‘libiberty’, ‘libobjc’
directories as well as any of their subdirectories.
The ‘libstdc++-v3’, ‘libjava/libltdl’, and ‘fastjar’ direc-
tories require automake 1.7.9. However, the Java directories,
which include ‘boehm-gc’, ‘libffi’, ‘libjava’, and ‘zlib’, re-
quire a modified version of automake 1.4 downloadable from
ftp://gcc.gnu.org/pub/java/automake-gcj-1.4.tar.gz.

gettext version 0.12 (or later)
Needed to regenerate ‘gcc.pot’.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. ‘gcc/cp/cfns.gperf’ to re-
generate its associated header file, e.g. ‘gcc/cp/cfns.h’.

expect version ???
tcl version ???
dejagnu version ???

Necessary to run the GCC testsuite.

autogen version 5.5.4 (or later) and
guile version 1.4.1 (or later)

Necessary to regenerate ‘fixinc/fixincl.x’ from ‘fixinc/inclhack.def’ and
‘fixinc/*.tpl’.
Necessary to run the ‘fixinc’ make check.
Necessary to regenerate the top level ‘Makefile.in’ file from ‘Makefile.tpl’
and ‘Makefile.def’.

GNU Bison version 1.28 (or later)
Berkeley yacc (byacc) is also reported to work other than for java.
Necessary when modifying ‘*.y’ files.
Necessary to build GCC during development because the generated output files
are not included in the CVS repository. They are included in releases.

Flex version 2.5.4 (or later)
Necessary when modifying ‘*.l’ files.
Necessary to build GCC during development because the generated output files
are not included in the CVS repository. They are included in releases.

Chapter 2: Prerequisites 5

Texinfo version 4.2 (or later)
Necessary for running makeinfo when modifying ‘*.texi’ files to test your
changes.
Necessary to build GCC documentation during development because the gen-
erated output files are not included in the CVS repository. They are included
in releases.

TEX (any working version)
Necessary for running texi2dvi, used when running make dvi to create DVI
files.

cvs version 1.10 (or later)
ssh (any version)

Necessary to access the CVS repository. Public releases and weekly snapshots
of the development sources are also available via FTP.

perl version 5.6.1 (or later)
Necessary when regenerating ‘Makefile’ dependencies in libiberty. Necessary
when regenerating ‘libiberty/functions.texi’. Necessary when generating
manpages from Texinfo manuals. Used by various scripts to generate some files
included in CVS (mainly Unicode-related and rarely changing) from source
tables.

GNU diffutils version 2.7 (or later)
Necessary when creating changes to GCC source code to submit for review.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

6 Installing GCC

Chapter 3: Downloading GCC 7

3 Downloading GCC

GCC is distributed via CVS and FTP tarballs compressed with gzip or bzip2. It is possible
to download a full distribution or specific components.

Please refer to the releases web page for information on how to obtain GCC.
The full distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in case of

GCC 3.1 and later) compilers. The full distribution also includes runtime libraries for C++,
Objective-C, Fortran, and Java. In GCC 3.0 and later versions, GNU compiler testsuites
are also included in the full distribution.

If you choose to download specific components, you must download the core GCC dis-
tribution plus any language specific distributions you wish to use. The core distribution
includes the C language front end as well as the shared components. Each language has
a tarball which includes the language front end as well as the language runtime (when
appropriate).

Unpack the core distribution as well as any language specific distributions in the same
directory.

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (‘bfd’, ‘binutils’, ‘gas’, ‘gprof’,
‘ld’, ‘opcodes’, . . .) to the directory containing the GCC sources.

8 Installing GCC

Chapter 4: Installing GCC: Configuration 9

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources via CVS, srcdir must refer to the top ‘gcc’ directory, the one
where the ‘MAINTAINERS’ can be found, and not its ‘gcc’ subdirectory, otherwise the build
will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory than the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes
is ‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist or issues a
message like “don’t know how to make distclean” it probably means that the directory is
already suitably clean. However, with the recommended method of building in a separate
objdir, you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

Note that the bootstrap compiler and the resulting GCC must be link compatible, else
the bootstrap will fail with linker errors about incompatible object file formats. Several
multilibed targets are affected by this requirement, see Chapter 9 [Specific], page 35.

To configure GCC:
% mkdir objdir

% cd objdir

% srcdir/configure [options] [target]

Target specification
• GCC has code to correctly determine the correct value for target for nearly all native

systems. Therefore, we highly recommend you not provide a configure target when
configuring a native compiler.

• target must be specified as ‘--target=target ’ when configuring a cross compiler;
examples of valid targets would be i960-rtems, m68k-coff, sh-elf, etc.

• Specifying just target instead of ‘--target=target ’ implies that the host defaults to
target.

10 Installing GCC

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure --help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each ‘--enable’ option has a corresponding ‘--disable’ option and that each
‘--with’ option has a corresponding ‘--without’ option.

--prefix=dirname
Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to ‘/usr/local’.
We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the ‘~’
metacharacter; use $HOME instead.
The following standard autoconf options are supported. Normally you should
not need to use these options.

--exec-prefix=dirname
Specify the toplevel installation directory for architecture-
dependent files. The default is ‘prefix ’.

--bindir=dirname
Specify the installation directory for the executables called by users
(such as gcc and g++). The default is ‘exec-prefix/bin’.

--libdir=dirname
Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is ‘exec-prefix/lib’.

--libexecdir=dirname
Specify the installation directory for internal executables of GCC.
The default is ‘exec-prefix/libexec’.

--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The
default is ‘libdir ’.

--infodir=dirname
Specify the installation directory for documentation in info format.
The default is ‘prefix/info’.

--datadir=dirname
Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is ‘prefix/share’.

--mandir=dirname
Specify the installation directory for manual pages. The default
is ‘prefix/man’. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

Chapter 4: Installing GCC: Configuration 11

--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default
is ‘prefix/include/c++/version ’.

--program-prefix=prefix
GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install
in bindir (see above). For example, specifying ‘--program-prefix=foo-’ would
result in ‘gcc’ being installed as ‘/usr/local/bin/foo-gcc’.

--program-suffix=suffix
Appends suffix to the names of programs to install in bindir (see above). For
example, specifying ‘--program-suffix=-3.1’ would result in ‘gcc’ being in-
stalled as ‘/usr/local/bin/gcc-3.1’.

--program-transform-name=pattern
Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
‘/usr/local/bin/myowngcc’ and the ‘g++’ program name to be transformed
to ‘/usr/local/bin/gspecial++’ without changing other program names, you
could use the pattern ‘--program-transform-name=’s/^gcc$/myowngcc/;
s/^g++$/gspecial++/’’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

For native builds, some of the installed programs are also installed with
the target alias in front of their name, as in ‘i686-pc-linux-gnu-gcc’.
All of the above transformations happen before the target alias is
prepended to the name - so, specifying ‘--program-prefix=foo-’ and
‘program-suffix=-3.1’, the resulting binary would be installed as
‘/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1’.

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname
Specify the installation directory for local include files. The default is
‘/usr/local’. Specify this option if you want the compiler to search
directory ‘dirname/include’ for locally installed header files instead of
‘/usr/local/include’.

You should specify ‘--with-local-prefix’ only if your site has a different
convention (not ‘/usr/local’) for where to put site-specific files.

12 Installing GCC

The default value for ‘--with-local-prefix’ is ‘/usr/local’ regardless of the
value of ‘--prefix’. Specifying ‘--prefix’ has no effect on which directory
GCC searches for local header files. This may seem counterintuitive, but actu-
ally it is logical.
The purpose of ‘--prefix’ is to specify where to install GCC. The local header
files in ‘/usr/local/include’—if you put any in that directory—are not part
of GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the ‘--prefix’ value.)
Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s "system include" directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of
system include directories is that pedantic warnings are turned off for headers
in these directories.
Some autoconf macros add ‘-I directory ’ options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.
GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in ‘/usr’.
Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the ‘--program-prefix’,
‘--program-suffix’ and ‘--program-transform-name’ options to install mul-
tiple versions into a single directory, but it may be simpler to use different
prefixes and the ‘--with-local-prefix’ option to specify the location of the
site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).
The same value can be used for both ‘--with-local-prefix’ and ‘--prefix’
provided it is not ‘/usr’. This can be used to avoid the default search of
‘/usr/local/include’.
Do not specify ‘/usr’ as the ‘--with-local-prefix’! The directory you use for
‘--with-local-prefix’ must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.
Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.
Perhaps they make this assumption because installing GCC creates the direc-
tory.

Chapter 4: Installing GCC: Configuration 13

--enable-shared[=package[,...]]
Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries, except for ‘libobjc’ which is built
as a static library only by default.

If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Package
names currently recognized in the GCC tree are ‘libgcc’ (also known as ‘gcc’),
‘libstdc++’ (not ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’ and ‘libjava’.
Note that ‘libobjc’ does not recognize itself by any name, so, if you list package
names in ‘--enable-shared’, you will only get static Objective-C libraries.
‘libf2c’ and ‘libiberty’ do not support shared libraries at all.

Use ‘--disable-shared’ to build only static libraries. Note that
‘--disable-shared’ does not accept a list of package names as argument,
only ‘--enable-shared’ does.

--with-gnu-as
Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with ‘--with-gnu-as’.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
‘--with-as=pathname ’.

The following systems are the only ones where it makes a difference whether
you use the GNU assembler. On any other system, ‘--with-gnu-as’ has no
effect.

• ‘hppa1.0-any-any ’

• ‘hppa1.1-any-any ’

• ‘i386-any-sysv’

• ‘m68k-bull-sysv’

• ‘m68k-hp-hpux’

• ‘m68000-hp-hpux’

• ‘m68000-att-sysv’

• ‘any-lynx-lynxos’

• ‘mips-any ’

• ‘sparc-sun-solaris2.any ’

• ‘sparc64-any-solaris2.any ’

On the systems listed above (except for the HP-PA, the SPARC, for ISC on the
386, and for ‘mips-sgi-irix5.*’), if you use the GNU assembler, you should
also use the GNU linker (and specify ‘--with-gnu-ld’).

14 Installing GCC

--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname,
rather than the one found by the standard rules to find an assembler, which
are:

• Check the ‘libexec/gcc/target/version ’ directory, where libexec de-
faults to ‘exec-prefix/libexec’ and exec-prefix defaults to prefix which
defaults to ‘/usr/local’ unless overridden by the ‘--prefix=pathname ’
switch described above. target is the target system triple, such as
‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as
3.0.

• Check operating system specific directories (e.g. ‘/usr/ccs/bin’ on Sun
Solaris 2).

Note that these rules do not check for the value of PATH. You may want to use
‘--with-as’ if no assembler is installed in the directories listed above, or if you
have multiple assemblers installed and want to choose one that is not found by
the above rules.

--with-gnu-ld
Same as ‘--with-gnu-as’ but for the linker.

--with-ld=pathname
Same as ‘--with-as’ but for the linker.

--with-stabs
Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

On MIPS based systems and on Alphas, you must specify whether you want
GCC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GCC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify ‘--with-stabs’ when you configure GCC.

No matter which default you choose when you configure GCC, the user can use
the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for
a particular compilation.

‘--with-stabs’ is meaningful on the ISC system on the 386, also, if
‘--with-gas’ is used. It selects use of stabs debugging information embedded
in COFF output. This kind of debugging information supports C++ well;
ordinary COFF debugging information does not.

‘--with-stabs’ is also meaningful on 386 systems running SVR4. It selects use
of stabs debugging information embedded in ELF output. The C++ compiler
currently (2.6.0) does not support the DWARF debugging information normally
used on 386 SVR4 platforms; stabs provide a workable alternative. This requires
gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

Chapter 4: Installing GCC: Configuration 15

--disable-multilib
Specify that multiple target libraries to support different target variants, calling
conventions, etc should not be built. The default is to build a predefined set of
them.
Some targets provide finer-grained control over which multilibs are built (e.g.,
‘--disable-softfloat’):

arc-*-elf*
biendian.

arm-*-* fpu, 26bit, underscore, interwork, biendian, nofmult.

m68*-*-* softfloat, m68881, m68000, m68020.

mips*-*-*
single-float, biendian, softfloat.

powerpc*-*-*, rs6000*-*-*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

--enable-threads
Specify that the target supports threads. This affects the Objective-C compiler
and runtime library, and exception handling for other languages like C++ and
Java. On some systems, this is the default.
In general, the best (and, in many cases, the only known) threading model
available will be configured for use. Beware that on some systems, GCC has
not been taught what threading models are generally available for the system.
In this case, ‘--enable-threads’ is an alias for ‘--enable-threads=single’.

--disable-threads
Specify that threading support should be disabled for the system. This is an
alias for ‘--enable-threads=single’.

--enable-threads=lib
Specify that lib is the thread support library. This affects the Objective-C
compiler and runtime library, and exception handling for other languages like
C++ and Java. The possibilities for lib are:

aix AIX thread support.

dce DCE thread support.

gnat Ada tasking support. For non-Ada programs, this setting is equiv-
alent to ‘single’. When used in conjunction with the Ada run
time, it causes GCC to use the same thread primitives as Ada uses.
This option is necessary when using both Ada and the back end
exception handling, which is the default for most Ada targets.

mach Generic MACH thread support, known to work on NeXTSTEP.
(Please note that the file needed to support this configuration,
‘gthr-mach.h’, is missing and thus this setting will cause a known
bootstrap failure.)

16 Installing GCC

no This is an alias for ‘single’.

posix Generic POSIX thread support.

rtems RTEMS thread support.

single Disable thread support, should work for all platforms.

solaris Sun Solaris 2 thread support.

vxworks VxWorks thread support.

win32 Microsoft Win32 API thread support.

--with-cpu=cpu
Specify which cpu variant the compiler should generate code for by default. cpu
will be used as the default value of the ‘-mcpu=’ switch. This option is only
supported on some targets, including ARM, i386, PowerPC, and SPARC.

--with-schedule=cpu
--with-arch=cpu
--with-tune=cpu
--with-abi=abi
--with-float=type

These configure options provide default values for the ‘-mschedule=’, ‘-march=’,
‘-mtune=’, and ‘-mabi=’ options and for ‘-mhard-float’ or ‘-msoft-float’. As
with ‘--with-cpu’, which switches will be accepted and acceptable values of the
arguments depend on the target.

--enable-altivec
Specify that the target supports AltiVec vector enhancements. This option
will adjust the ABI for AltiVec enhancements, as well as generate AltiVec code
when appropriate. This option is only available for PowerPC systems.

--enable-__cxa_atexit
Define if you want to use cxa atexit, rather than atexit, to register C++ de-
structors for local statics and global objects. This is essential for fully standards-
compliant handling of destructors, but requires cxa atexit in libc. This option
is currently only available on systems with GNU libc. When enabled, this will
cause ‘-fuse-cxa-exit’ to be passed by default.

--enable-target-optspace
Specify that target libraries should be optimized for code space instead of code
speed. This is the default for the m32r platform.

--disable-cpp
Specify that a user visible cpp program should not be installed.

--with-cpp-install-dir=dirname
Specify that the user visible cpp program should be installed in
‘prefix/dirname/cpp’, in addition to bindir.

--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and
.fini) for constructors and destructors. Option ‘--disable-initfini-array’

Chapter 4: Installing GCC: Configuration 17

has the opposite effect. If neither option is specified, the configure script will
try to guess whether the .init_array and .fini_array sections are supported
and, if they are, use them.

--enable-maintainer-mode
The build rules that regenerate the GCC master message catalog ‘gcc.pot’ are
normally disabled. This is because it can only be rebuilt if the complete source
tree is present. If you have changed the sources and want to rebuild the catalog,
configuring with ‘--enable-maintainer-mode’ will enable this. Note that you
need a recent version of the gettext tools to do so.

--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from bison and flex nor the info
manuals and man pages that are built from the .texi files are present in the
CVS development tree. When building GCC from that development tree, or
from a snapshot which are created from CVS, then those generated files are
placed in your build directory, which allows for the source to be in a readonly
directory.

If you configure with ‘--enable-generated-files-in-srcdir’ then those gen-
erated files will go into the source directory. This is mainly intended for generat-
ing release or prerelease tarballs of the GCC sources, since it is not a requirement
that the users of source releases to have flex, bison, or makeinfo.

--enable-version-specific-runtime-libs
Specify that runtime libraries should be installed in the compiler specific subdi-
rectory (‘libdir/gcc’) rather than the usual places. In addition, ‘libstdc++’’s
include files will be installed into ‘libdir ’ unless you overruled it by using
‘--with-gxx-include-dir=dirname ’. Using this option is particularly useful
if you intend to use several versions of GCC in parallel. This is currently sup-
ported by ‘libf2c’ and ‘libstdc++’, and is the default for ‘libobjc’ which
cannot be changed in this case.

--enable-languages=lang1,lang2,...
Specify that only a particular subset of compilers and their runtime libraries
should be built. For a list of valid values for langN you can issue the following
command in the ‘gcc’ directory of your GCC source tree:

grep language= */config-lang.in

Currently, you can use any of the following: ada, c, c++, f77, java, objc.
Building the Ada compiler has special requirements, see below.
If you do not pass this flag, all languages available in the ‘gcc’ sub-tree will
be configured. Re-defining LANGUAGES when calling ‘make bootstrap’ does not
work anymore, as those language sub-directories might not have been config-
ured!

--with-dwarf2
Specify that the compiler should use DWARF 2 debugging information as the
default.

18 Installing GCC

--enable-win32-registry
--enable-win32-registry=key
--disable-win32-registry

The ‘--enable-win32-registry’ option enables Microsoft Windows-hosted
GCC to look up installations paths in the registry using the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

key defaults to GCC version number, and can be overridden by the
‘--enable-win32-registry=key ’ option. Vendors and distributors who
use custom installers are encouraged to provide a different key, perhaps one
comprised of vendor name and GCC version number, to avoid conflict with
existing installations. This feature is enabled by default, and can be disabled
by ‘--disable-win32-registry’ option. This option has no effect on the
other hosts.

--nfp Specify that the machine does not have a floating point unit. This option only
applies to ‘m68k-sun-sunosn ’. On any other system, ‘--nfp’ has no effect.

--enable-werror
--disable-werror
--enable-werror=yes
--enable-werror=no

When you specify this option, it controls whether certain files in the compiler
are built with ‘-Werror’ in bootstrap stage2 and later. If you don’t specify it,
‘-Werror’ is turned on for the main development trunk. However it defaults to
off for release branches and final releases. The specific files which get ‘-Werror’
are controlled by the Makefiles.

--enable-checking
--enable-checking=list

When you specify this option, the compiler is built to perform checking of
tree node types when referencing fields of that node, and some other inter-
nal consistency checks. This does not change the generated code, but adds
error checking within the compiler. This will slow down the compiler and
may only work properly if you are building the compiler with GCC. This
is on by default when building from CVS or snapshots, but off for releases.
More control over the checks may be had by specifying list; the categories of
checks available are ‘misc’, ‘tree’, ‘gc’, ‘rtl’, ‘rtlflag’, ‘fold’, ‘gcac’ and
‘valgrind’. The check ‘valgrind’ requires the external valgrind simulator,
available from http://valgrind.kde.org/. The default when list is not spec-
ified is ‘misc,tree,gc,rtlflag’; the checks ‘rtl’, ‘gcac’ and ‘valgrind’ are
very expensive.

--enable-coverage
--enable-coverage=level

With this option, the compiler is built to collect self coverage information, every
time it is run. This is for internal development purposes, and only works when
the compiler is being built with gcc. The level argument controls whether the
compiler is built optimized or not, values are ‘opt’ and ‘noopt’. For coverage
analysis you want to disable optimization, for performance analysis you want

Chapter 4: Installing GCC: Configuration 19

to enable optimization. When coverage is enabled, the default level is without
optimization.

--enable-gather-detailed-mem-stats
When this option is specified more detailed information on memory allocation
is gathered. This information is printed when using ‘-fmem-report’.

--enable-nls
--disable-nls

The ‘--enable-nls’ option enables Native Language Support (NLS), which
lets GCC output diagnostics in languages other than American English. Native
Language Support is enabled by default if not doing a canadian cross build.
The ‘--disable-nls’ option disables NLS.

--with-included-gettext
If NLS is enabled, the ‘--with-included-gettext’ option causes the build
procedure to prefer its copy of GNU gettext.

--with-catgets
If NLS is enabled, and if the host lacks gettext but has the inferior catgets
interface, the GCC build procedure normally ignores catgets and instead uses
GCC’s copy of the GNU gettext library. The ‘--with-catgets’ option causes
the build procedure to use the host’s catgets in this situation.

--with-libiconv-prefix=dir
Search for libiconv header files in ‘dir/include’ and libiconv library files in
‘dir/lib’.

--enable-obsolete
Enable configuration for an obsoleted system. If you attempt to configure GCC
for a system (build, host, or target) which has been obsoleted, and you do not
specify this flag, configure will halt with an error message.

All support for systems which have been obsoleted in one release of GCC is
removed entirely in the next major release, unless someone steps forward to
maintain the port.

Cross-Compiler-Specific Options

The following options only apply to building cross compilers.

--with-sysroot
--with-sysroot=dir

Tells GCC to consider dir as the root of a tree that contains a (subset of) the
root filesystem of the target operating system. Target system headers, libraries
and run-time object files will be searched in there. The specified directory
is not copied into the install tree, unlike the options ‘--with-headers’
and ‘--with-libs’ that this option obsoletes. The default value, in case
‘--with-sysroot’ is not given an argument, is ‘${gcc_tooldir}/sys-root’.
If the specified directory is a subdirectory of ‘${exec_prefix}’, then it will be
found relative to the GCC binaries if the installation tree is moved.

20 Installing GCC

--with-headers
--with-headers=dir

Deprecated in favor of ‘--with-sysroot’. Specifies that target headers are
available when building a cross compiler. The dir argument specifies a di-
rectory which has the target include files. These include files will be copied
into the ‘gcc’ install directory. This option with the dir argument is required
when building a cross compiler, if ‘prefix/target/sys-include’ doesn’t pre-
exist. If ‘prefix/target/sys-include’ does pre-exist, the dir argument may
be omitted. fixincludes will be run on these files to make them compatible
with GCC.

--without-headers
Tells GCC not use any target headers from a libc when building a cross compiler.
When crossing to GNU/Linux, you need the headers so GCC can build the
exception handling for libgcc. See CrossGCC for more information on this
option.

--with-libs
--with-libs=‘‘dir1 dir2 ... dirN’’

Deprecated in favor of ‘--with-sysroot’. Specifies a list of directories which
contain the target runtime libraries. These libraries will be copied into the ‘gcc’
install directory. If the directory list is omitted, this option has no effect.

--with-newlib
Specifies that ‘newlib’ is being used as the target C library. This causes _
_eprintf to be omitted from ‘libgcc.a’ on the assumption that it will be
provided by ‘newlib’.

Java-Specific Options

The following option applies to the build of the Java front end.

--disable-libgcj
Specify that the run-time libraries used by GCJ should not be built. This
is useful in case you intend to use GCJ with some other run-time, or you’re
going to install it separately, or it just happens not to build on your particular
machine. In general, if the Java front end is enabled, the GCJ libraries will be
enabled too, unless they’re known to not work on the target platform. If GCJ
is enabled but ‘libgcj’ isn’t built, you may need to port it; in this case, before
modifying the top-level ‘configure.in’ so that ‘libgcj’ is enabled by default
on this platform, you may use ‘--enable-libgcj’ to override the default.

The following options apply to building ‘libgcj’.

General Options

--disable-getenv-properties
Don’t set system properties from GCJ_PROPERTIES.

--enable-hash-synchronization
Use a global hash table for monitor locks. Ordinarily, ‘libgcj’’s ‘configure’
script automatically makes the correct choice for this option for your platform.
Only use this if you know you need the library to be configured differently.

Chapter 4: Installing GCC: Configuration 21

--enable-interpreter
Enable the Java interpreter. The interpreter is automatically enabled by default
on all platforms that support it. This option is really only useful if you want
to disable the interpreter (using ‘--disable-interpreter’).

--disable-java-net
Disable java.net. This disables the native part of java.net only, using non-
functional stubs for native method implementations.

--disable-jvmpi
Disable JVMPI support.

--with-ecos
Enable runtime eCos target support.

--without-libffi
Don’t use ‘libffi’. This will disable the interpreter and JNI support as well,
as these require ‘libffi’ to work.

--enable-libgcj-debug
Enable runtime debugging code.

--enable-libgcj-multifile
If specified, causes all ‘.java’ source files to be compiled into ‘.class’ files in
one invocation of ‘gcj’. This can speed up build time, but is more resource-
intensive. If this option is unspecified or disabled, ‘gcj’ is invoked once for each
‘.java’ file to compile into a ‘.class’ file.

--with-libiconv-prefix=DIR
Search for libiconv in ‘DIR/include’ and ‘DIR/lib’.

--enable-sjlj-exceptions
Force use of builtin_setjmp for exceptions. ‘configure’ ordinarily picks the
correct value based on the platform. Only use this option if you are sure you
need a different setting.

--with-system-zlib
Use installed ‘zlib’ rather than that included with GCC.

--with-win32-nlsapi=ansi, unicows or unicode
Indicates how MinGW ‘libgcj’ translates between UNICODE characters and
the Win32 API.

ansi Use the single-byte char and the Win32 A functions natively, trans-
lating to and from UNICODE when using these functions. If un-
specified, this is the default.

unicows Use the WCHAR and Win32 W functions natively. Adds -lunicows
to ‘libgcj.spec’ to link with ‘libunicows’. ‘unicows.dll’
needs to be deployed on Microsoft Windows 9X machines
running built executables. ‘libunicows.a’, an open-source
import library around Microsoft’s unicows.dll, is obtained from
http://libunicows.sourceforge.net/, which also gives details
on getting ‘unicows.dll’ from Microsoft.

22 Installing GCC

unicode Use the WCHAR and Win32 W functions natively. Does not add -
lunicows to ‘libgcj.spec’. The built executables will only run
on Microsoft Windows NT and above.

AWT-Specific Options

--with-x Use the X Window System.

--enable-java-awt=PEER(S)
Specifies the AWT peer library or libraries to build alongside ‘libgcj’. If this
option is unspecified or disabled, AWT will be non-functional. Current valid
values are ‘gtk’ and ‘xlib’. Multiple libraries should be separated by a comma
(i.e. ‘--enable-java-awt=gtk,xlib’).

--enable-gtk-cairo
Build the cairo Graphics2D implementation on GTK.

--enable-java-gc=TYPE
Choose garbage collector. Defaults to ‘boehm’ if unspecified.

--disable-gtktest
Do not try to compile and run a test GTK+ program.

--disable-glibtest
Do not try to compile and run a test GLIB program.

--with-libart-prefix=PFX
Prefix where libart is installed (optional).

--with-libart-exec-prefix=PFX
Exec prefix where libart is installed (optional).

--disable-libarttest
Do not try to compile and run a test libart program.

Chapter 5: Building 23

5 Building

Now that GCC is configured, you are ready to build the compiler and runtime libraries.
Some commands executed when making the compiler may fail (return a nonzero status)

and be ignored by make. These failures, which are often due to files that were not found,
are expected, and can safely be ignored.

It is normal to have compiler warnings when compiling certain files. Unless you
are a GCC developer, you can generally ignore these warnings unless they cause
compilation to fail. Developers should attempt to fix any warnings encountered, however
they can temporarily continue past warnings-as-errors by specifying the configure flag
‘--disable-werror’.

On certain old systems, defining certain environment variables such as CC can interfere
with the functioning of make.

If you encounter seemingly strange errors when trying to build the compiler in a directory
other than the source directory, it could be because you have previously configured the
compiler in the source directory. Make sure you have done all the necessary preparations.

If you build GCC on a BSD system using a directory stored in an old System V file
system, problems may occur in running fixincludes if the System V file system doesn’t
support symbolic links. These problems result in a failure to fix the declaration of size_t
in ‘sys/types.h’. If you find that size_t is a signed type and that type mismatches occur,
this could be the cause.

The solution is not to use such a directory for building GCC.
When building from CVS or snapshots, or if you modify parser sources, you need the

Bison parser generator installed. Any version 1.25 or later should work; older versions may
also work. If you do not modify parser sources, releases contain the Bison-generated files
and you do not need Bison installed to build them.

When building from CVS or snapshots, or if you modify Texinfo documentation, you need
version 4.2 or later of Texinfo installed if you want Info documentation to be regenerated.
Releases contain Info documentation pre-built for the unmodified documentation in the
release.

5.1 Building a native compiler

For a native build issue the command ‘make bootstrap’. This will build the entire GCC
system, which includes the following steps:
• Build host tools necessary to build the compiler such as texinfo, bison, gperf.
• Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld,

and opcodes) if they have been individually linked or moved into the top level GCC
source tree before configuring.

• Perform a 3-stage bootstrap of the compiler.
• Perform a comparison test of the stage2 and stage3 compilers.
• Build runtime libraries using the stage3 compiler from the previous step.

If you are short on disk space you might consider ‘make bootstrap-lean’ instead. This
is identical to ‘make bootstrap’ except that object files from the stage1 and stage2 of the
3-stage bootstrap of the compiler are deleted as soon as they are no longer needed.

24 Installing GCC

If you want to save additional space during the bootstrap and in the final installation as
well, you can build the compiler binaries without debugging information as in the following
example. This will save roughly 40% of disk space both for the bootstrap and the final
installation. (Libraries will still contain debugging information.)

make CFLAGS=’-O’ LIBCFLAGS=’-g -O2’ \

LIBCXXFLAGS=’-g -O2 -fno-implicit-templates’ bootstrap

If you wish to use non-default GCC flags when compiling the stage2 and stage3 com-
pilers, set BOOT_CFLAGS on the command line when doing ‘make bootstrap’. Non-default
optimization flags are less well tested here than the default of ‘-g -O2’, but should still work.
In a few cases, you may find that you need to specify special flags such as ‘-msoft-float’
here to complete the bootstrap; or, if the native compiler miscompiles the stage1 compiler,
you may need to work around this, by choosing BOOT_CFLAGS to avoid the parts of the stage1
compiler that were miscompiled, or by using ‘make bootstrap4’ to increase the number of
stages of bootstrap.

If you used the flag ‘--enable-languages=...’ to restrict the compilers to be built, only
those you’ve actually enabled will be built. This will of course only build those runtime
libraries, for which the particular compiler has been built. Please note, that re-defining
LANGUAGES when calling ‘make bootstrap’ does not work anymore!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2
compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which
you should investigate and report. (On a few systems, meaningful comparison of object
files is impossible; they always appear “different”. If you encounter this problem, you will
need to disable comparison in the ‘Makefile’.)

5.2 Building a cross compiler

We recommend reading the crossgcc FAQ for information about building cross compilers.
When building a cross compiler, it is not generally possible to do a 3-stage bootstrap

of the compiler. This makes for an interesting problem as parts of GCC can only be built
with GCC.

To build a cross compiler, we first recommend building and installing a native compiler.
You can then use the native GCC compiler to build the cross compiler. The installed native
compiler needs to be GCC version 2.95 or later.

Assuming you have already installed a native copy of GCC and configured your cross
compiler, issue the command make, which performs the following steps:
• Build host tools necessary to build the compiler such as texinfo, bison, gperf.
• Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld,

and opcodes) if they have been individually linked or moved into the top level GCC
source tree before configuring.

• Build the compiler (single stage only).
• Build runtime libraries using the compiler from the previous step.

Note that if an error occurs in any step the make process will exit.
If you are not building GNU binutils in the same source tree as GCC, you will need a

cross-assembler and cross-linker installed before configuring GCC. Put them in the directory
‘prefix/target/bin’. Here is a table of the tools you should put in this directory:

Chapter 5: Building 25

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can manipulate archive files
(linker libraries) in the target machine’s format.

‘ranlib’ This should be a program to construct a symbol table in an archive file.

The installation of GCC will find these programs in that directory, and copy or link
them to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package. Configure it with
the same ‘--host’ and ‘--target’ options that you use for configuring GCC, then build
and install them. They install their executables automatically into the proper directory.
Alas, they do not support all the targets that GCC supports.

If you are not building a C library in the same source tree as GCC, you should also
provide the target libraries and headers before configuring GCC, specifying the directories
with ‘--with-sysroot’ or ‘--with-headers’ and ‘--with-libs’. Many targets also require
“start files” such as ‘crt0.o’ and ‘crtn.o’ which are linked into each executable. There
may be several alternatives for ‘crt0.o’, for use with profiling or other compilation options.
Check your target’s definition of STARTFILE_SPEC to find out what start files it uses.

5.3 Building in parallel

You can use ‘make bootstrap MAKE="make -j 2" -j 2’, or just ‘make -j 2 bootstrap’ for
GNU Make 3.79 and above, instead of ‘make bootstrap’ to build GCC in parallel. You can
also specify a bigger number, and in most cases using a value greater than the number of
processors in your machine will result in fewer and shorter I/O latency hits, thus improving
overall throughput; this is especially true for slow drives and network filesystems.

5.4 Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GNAT ver-
sion 3.14 or later, or GCC version 3.1 or later), including GNAT tools such as gnatmake and
gnatlink, since the Ada front end is written in Ada (with some GNAT-specific extensions),
and GNU make.

configure does not test whether the GNAT installation works and has a sufficiently
recent version; if too old a GNAT version is installed, the build will fail unless
‘--enable-languages’ is used to disable building the Ada front end.

At the moment, the GNAT library and several tools for GNAT are not built by ‘make
bootstrap’. For a native build, you have to invoke ‘make gnatlib_and_tools’ in the
‘objdir/gcc’ subdirectory before proceeding with the next steps. For a cross build, you
need to invoke ‘make gnatlib cross-gnattools ada.all.cross’. For a canadian cross you
only need to invoke ‘make cross-gnattools’; the GNAT library would be the same as the
one built for the cross compiler.

For example, you can build a native Ada compiler by issuing the following commands
(assuming make is GNU make):

cd objdir

srcdir/configure --enable-languages=c,ada

26 Installing GCC

cd objdir

make bootstrap

cd gcc

make gnatlib_and_tools

cd ..

Currently, when compiling the Ada front end, you cannot use the parallel build feature
described in the previous section.

5.5 Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in
a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7
percent speedup on compiling C programs. To bootstrap compiler with profile feedback,
use make profiledbootstrap.

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This
compiler is used to build a stageprofile compiler instrumented to collect execution counts
of instruction and branch probabilities. Then runtime libraries are compiled with profile
collected. Finally a stagefeedback compiler is built using the information collected.

Unlike ‘make bootstrap’ several additional restrictions apply. The compiler used to
build stage1 needs to support a 64-bit integral type. It is recommended to only use GCC
for this. Also parallel make is currently not supported since collisions in profile collecting
may occur.

Chapter 6: Installing GCC: Testing 27

6 Installing GCC: Testing

Before you install GCC, we encourage you to run the testsuites and to compare your results
with results from a similar configuration that have been submitted to the gcc-testresults
mailing list. Some of these archived results are linked from the build status lists at
http://gcc.gnu.org/buildstat.html, although not everyone who reports a successful
build runs the testsuites and submits the results. This step is optional and may require
you to download additional software, but it can give you confidence in your new GCC
installation or point out problems before you install and start using your new GCC.

First, you must have downloaded the testsuites. These are part of the full distribution,
but if you downloaded the “core” compiler plus any front ends, you must download the
testsuites separately.

Second, you must have the testing tools installed. This includes DejaGnu 1.4.1 or 1.4.3
and later, Tcl, and Expect; the DejaGnu site has links to these.

If the directories where runtest and expect were installed are not in the PATH, you may
need to set the following environment variables appropriately, as in the following example
(which assumes that DejaGnu has been installed under ‘/usr/local’):

TCL_LIBRARY = /usr/local/share/tcl8.0

DEJAGNULIBS = /usr/local/share/dejagnu

(On systems such as Cygwin, these paths are required to be actual paths, not mounts
or links; presumably this is due to some lack of portability in the DejaGnu code.)

Finally, you can run the testsuite (which may take a long time):
cd objdir; make -k check

This will test various components of GCC, such as compiler front ends and runtime
libraries. While running the testsuite, DejaGnu might emit some harmless messages resem-
bling ‘WARNING: Couldn’t find the global config file.’ or ‘WARNING: Couldn’t find
tool init file’ that can be ignored.

6.1 How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ‘make check-gcc’ and ‘make
check-g++’ in the ‘gcc’ subdirectory of the object directory. You can also just run ‘make
check’ in a subdirectory of the object directory.

A more selective way to just run all gcc execute tests in the testsuite is to use
make check-gcc RUNTESTFLAGS="execute.exp other-options"

Likewise, in order to run only the g++ “old-deja” tests in the testsuite with filenames
matching ‘9805*’, you would use

make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"

The ‘*.exp’ files are located in the testsuite directories of the GCC source, the most
important ones being ‘compile.exp’, ‘execute.exp’, ‘dg.exp’ and ‘old-deja.exp’. To get
a list of the possible ‘*.exp’ files, pipe the output of ‘make check’ into a file and look at
the ‘Runningexp’ lines.

28 Installing GCC

6.2 Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ‘--target_board’ option of De-
jaGNU, either passed as part of ‘RUNTESTFLAGS’, or directly to runtest if you prefer to
work outside the makefiles. For example,

make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fno-strength-reduce"

will run the standard g++ testsuites (“unix” is the target name for a standard native
testsuite situation), passing ‘-O3 -fno-strength-reduce’ to the compiler on every test,
i.e., slashes separate options.

You can run the testsuites multiple times using combinations of options with a syntax
similar to the brace expansion of popular shells:

..."--target_board=arm-sim{-mhard-float,-msoft-float}{-O1,-O2,-O3,}"

(Note the empty option caused by the trailing comma in the final group.) The following
will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all
possible combinations yourself:

--target_board=arm-sim/-mhard-float/-O1

--target_board=arm-sim/-mhard-float/-O2

--target_board=arm-sim/-mhard-float/-O3

--target_board=arm-sim/-mhard-float

--target_board=arm-sim/-msoft-float/-O1

--target_board=arm-sim/-msoft-float/-O2

--target_board=arm-sim/-msoft-float/-O3

--target_board=arm-sim/-msoft-float

They can be combined as many times as you wish, in arbitrary ways. This list:
..."--target_board=unix/-Wextra{-O3,-fno-strength-reduce}{-fomit-frame-pointer,}"

will generate four combinations, all involving ‘-Wextra’.

The disadvantage to this method is that the testsuites are run in serial, which is a
waste on multiprocessor systems. For users with GNU Make and a shell which performs
brace expansion, you can run the testsuites in parallel by having the shell perform the
combinations and make do the parallel runs. Instead of using ‘--target_board’, use a
special makefile target:

make -jN check-testsuite//test-target/option1/option2/...

For example,
make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations
as described above. Note that this is currently only supported in the ‘gcc’ subdirectory.
(To see how this works, try typing echo before the example given here.)

6.3 Additional testing for Java Class Libraries

The Java runtime tests can be executed via ‘make check’ in the ‘tar-
get/libjava/testsuite’ directory in the build tree.

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite
can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite
at ‘libjava/testsuite/libjava.mauve/mauve’, or by specifying the location of that tree
when invoking ‘make’, as in ‘make MAUVEDIR=~/mauve check’.

Chapter 6: Installing GCC: Testing 29

Jacks is a free testsuite that tests Java compiler front ends. This suite can be
run as part of libgcj testing by placing the Jacks tree within the libjava testsuite at
‘libjava/testsuite/libjava.jacks/jacks’.

6.4 How to interpret test results

The result of running the testsuite are various ‘*.sum’ and ‘*.log’ files in the testsuite
subdirectories. The ‘*.log’ files contain a detailed log of the compiler invocations and the
corresponding results, the ‘*.sum’ files summarize the results. These summaries contain
status codes for all tests:
• PASS: the test passed as expected
• XPASS: the test unexpectedly passed
• FAIL: the test unexpectedly failed
• XFAIL: the test failed as expected
• UNSUPPORTED: the test is not supported on this platform
• ERROR: the testsuite detected an error
• WARNING: the testsuite detected a possible problem

It is normal for some tests to report unexpected failures. At the current time the testing
harness does not allow fine grained control over whether or not a test is expected to fail.
This problem should be fixed in future releases.

6.5 Submitting test results

If you want to report the results to the GCC project, use the ‘contrib/test_summary’ shell
script. Start it in the objdir with

srcdir/contrib/test_summary -p your_commentary.txt \

-m gcc-testresults@gcc.gnu.org |sh

This script uses the Mail program to send the results, so make sure it is in your PATH.
The file ‘your_commentary.txt’ is prepended to the testsuite summary and should contain
any special remarks you have on your results or your build environment. Please do not
edit the testsuite result block or the subject line, as these messages may be automatically
processed.

30 Installing GCC

Chapter 7: Installing GCC: Final installation 31

7 Installing GCC: Final installation

Now that GCC has been built (and optionally tested), you can install it with
cd objdir; make install

We strongly recommend to install into a target directory where there is no previous
version of GCC present.

That step completes the installation of GCC; user level binaries can be found in ‘pre-
fix/bin’ where prefix is the value you specified with the ‘--prefix’ to configure (or
‘/usr/local’ by default). (If you specified ‘--bindir’, that directory will be used instead;
otherwise, if you specified ‘--exec-prefix’, ‘exec-prefix/bin’ will be used.) Headers for
the C++ and Java libraries are installed in ‘prefix/include’; libraries in ‘libdir ’ (nor-
mally ‘prefix/lib’); internal parts of the compiler in ‘libdir/gcc’ and ‘libexecdir/gcc’;
documentation in info format in ‘infodir ’ (normally ‘prefix/info’).

When installing cross-compilers, GCC’s executables are not only installed into ‘bindir ’,
that is, ‘exec-prefix/bin’, but additionally into ‘exec-prefix/target-alias/bin’, if
that directory exists. Typically, such tooldirs hold target-specific binutils, including assem-
bler and linker.

Installation into a temporary staging area or into a chroot jail can be achieved with the
command

make DESTDIR=path-to-rootdir install

where path-to-rootdir is the absolute path of a directory relative to which all installation
paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet;
it will be created if necessary.

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler instal-
lation with e.g. ‘DESTDIR=rootdir ’, then the directory ‘rootdir/exec-prefix/target-
alias/bin’ will be filled with duplicated GCC executables only if it already exists, it will
not be created otherwise. This is regarded as a feature, not as a bug, because it gives
slightly more control to the packagers using the DESTDIR feature.

If you built a released version of GCC using ‘make bootstrap’ then
please quickly review the build status page for your release, available from
http://gcc.gnu.org/buildstat.html. If your system is not listed for the version of
GCC that you built, send a note to gcc@gcc.gnu.org indicating that you successfully
built and installed GCC. Include the following information:
• Output from running ‘srcdir/config.guess’. Do not send that file itself, just the

one-line output from running it.
• The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of

GCC you built and the options you passed to configure.
• Whether you enabled all languages or a subset of them. If you used a full distribution

then this information is part of the configure options in the output of ‘gcc -v’, but if
you downloaded the “core” compiler plus additional front ends then it isn’t apparent
which ones you built unless you tell us about it.

• If the build was for GNU/Linux, also include:
• The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); this infor-

mation should be available from ‘/etc/issue’.

32 Installing GCC

• The version of the Linux kernel, available from ‘uname --version’ or ‘uname -a’.
• The version of glibc you used; for RPM-based systems like Red Hat, Mandrake,

and SuSE type ‘rpm -q glibc’ to get the glibc version, and on systems like Debian
and Progeny use ‘dpkg -l libc6’.

For other systems, you can include similar information if you think it is relevant.
• Any other information that you think would be useful to people building GCC on the

same configuration. The new entry in the build status list will include a link to the
archived copy of your message.

We’d also like to know if the Chapter 9 [Specific], page 35 didn’t include your
host/target information or if that information is incomplete or out of date. Send a note to
gcc@gcc.gnu.org detailing how the information should be changed.

If you find a bug, please report it following the bug reporting guidelines.
If you want to print the GCC manuals, do ‘cd objdir; make dvi’. You will need to

have texi2dvi (version at least 4.2) and TEX installed. This creates a number of ‘.dvi’
files in subdirectories of ‘objdir ’; these may be converted for printing with programs such
as dvips. You can also buy printed manuals from the Free Software Foundation, though
such manuals may not be for the most recent version of GCC.

Chapter 8: Installing GCC: Binaries 33

8 Installing GCC: Binaries

We are often asked about pre-compiled versions of GCC. While we cannot provide these for
all platforms, below you’ll find links to binaries for various platforms where creating them
by yourself is not easy due to various reasons.

Please note that we did not create these binaries, nor do we support them. If you have
any problems installing them, please contact their makers.
• AIX:

• Bull’s Freeware and Shareware Archive for AIX;
• UCLA Software Library for AIX.

• DOS—DJGPP.
• Renesas H8/300[HS]—GNU Development Tools for the Renesas H8/300[HS] Series.
• HP-UX:

• HP-UX Porting Center;
• Binaries for HP-UX 11.00 at Aachen University of Technology.

• Motorola 68HC11/68HC12—GNU Development Tools for the Motorola
68HC11/68HC12.

• SCO OpenServer/Unixware.
• Sinix/Reliant Unix—Siemens.
• Solaris 2 (SPARC, Intel)—Sunfreeware.
• SGI—SGI Freeware.
• Microsoft Windows:

• The Cygwin project;
• The MinGW project.

• The Written Word offers binaries for AIX 4.3.2. IRIX 6.5, Digital UNIX 4.0D and 5.1,
GNU/Linux (i386), HP-UX 10.20, 11.00, and 11.11, and Solaris/SPARC 2.5.1, 2.6, 2.7,
8, and 9,

• OpenPKG offers binaries for quite a number of platforms.

In addition to those specific offerings, you can get a binary distribution CD-ROM from
the Free Software Foundation. It contains binaries for a number of platforms, and includes
not only GCC, but other stuff as well. The current CD does not contain the latest version
of GCC, but it should allow bootstrapping the compiler. An updated version of that disk
is in the works.

34 Installing GCC

Chapter 9: Host/target specific installation notes for GCC 35

9 Host/target specific installation notes for GCC

Please read this document carefully before installing the GNU Compiler Collection on your
machine.

alpha*-*-*

This section contains general configuration information for all alpha-based platforms using
ELF (in particular, ignore this section for DEC OSF/1, Digital UNIX and Tru64 UNIX).
In addition to reading this section, please read all other sections that match your target.

We require binutils 2.11.2 or newer. Previous binutils releases had a number of problems
with DWARF 2 debugging information, not the least of which is incorrect linking of shared
libraries.

alpha*-dec-osf*

Systems using processors that implement the DEC Alpha architecture and are running
the DEC/Compaq Unix (DEC OSF/1, Digital UNIX, or Compaq Tru64 UNIX) operating
system, for example the DEC Alpha AXP systems.

As of GCC 3.2, versions before alpha*-dec-osf4 are no longer supported. (These are
the versions which identify themselves as DEC OSF/1.)

In Digital Unix V4.0, virtual memory exhausted bootstrap failures may be fixed by
configuring with ‘--with-gc=simple’, reconfiguring Kernel Virtual Memory and Swap
parameters per the /usr/sbin/sys_check Tuning Suggestions, or applying the patch in
http://gcc.gnu.org/ml/gcc/2002-08/msg00822.html.

In Tru64 UNIX V5.1, Compaq introduced a new assembler that does not currently (2001-
06-13) work with mips-tfile. As a workaround, we need to use the old assembler, invoked
via the barely documented ‘-oldas’ option. To bootstrap GCC, you either need to use the
Compaq C Compiler:

% CC=cc srcdir/configure [options] [target]

or you can use a copy of GCC 2.95.3 or higher built on Tru64 UNIX V4.0:
% CC=gcc -Wa,-oldas srcdir/configure [options] [target]

As of GNU binutils 2.11.2, neither GNU as nor GNU ld are supported on Tru64 UNIX,
so you must not configure GCC with ‘--with-gnu-as’ or ‘--with-gnu-ld’.

GCC writes a ‘.verstamp’ directive to the assembler output file unless it is
built as a cross-compiler. It gets the version to use from the system header file
‘/usr/include/stamp.h’. If you install a new version of DEC Unix, you should rebuild
GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit machines
will not generate code as efficient as that generated when the compiler is running on a 64-bit
machine because many optimizations that depend on being able to represent a word on the
target in an integral value on the host cannot be performed. Building cross-compilers on the
Alpha for 32-bit machines has only been tested in a few cases and may not work properly.

‘make compare’ may fail on old versions of DEC Unix unless you add ‘-save-temps’ to
CFLAGS. On these systems, the name of the assembler input file is stored in the object file,

36 Installing GCC

and that makes comparison fail if it differs between the stage1 and stage2 compilations.
The option ‘-save-temps’ forces a fixed name to be used for the assembler input file, instead
of a randomly chosen name in ‘/tmp’. Do not add ‘-save-temps’ unless the comparisons
fail without that option. If you add ‘-save-temps’, you will have to manually delete the
‘.i’ and ‘.s’ files after each series of compilations.

GCC now supports both the native (ECOFF) debugging format used by DBX and GDB
and an encapsulated STABS format for use only with GDB. See the discussion of the
‘--with-stabs’ option of ‘configure’ above for more information on these formats and
how to select them.

There is a bug in DEC’s assembler that produces incorrect line numbers for ECOFF
format when the ‘.align’ directive is used. To work around this problem, GCC will not
emit such alignment directives while writing ECOFF format debugging information even
if optimization is being performed. Unfortunately, this has the very undesirable side-effect
that code addresses when ‘-O’ is specified are different depending on whether or not ‘-g’ is
also specified.

To avoid this behavior, specify ‘-gstabs+’ and use GDB instead of DBX. DEC is now
aware of this problem with the assembler and hopes to provide a fix shortly.

alphaev5-cray-unicosmk*

Cray T3E systems running Unicos/Mk.

This port is incomplete and has many known bugs. We hope to improve the support
for this target soon. Currently, only the C front end is supported, and it is not possible
to build parallel applications. Cray modules are not supported; in particular, Craylibs are
assumed to be in ‘/opt/ctl/craylibs/craylibs’.

You absolutely must use GNU make on this platform. Also, you need to tell GCC where
to find the assembler and the linker. The simplest way to do so is by providing ‘--with-as’
and ‘--with-ld’ to ‘configure’, e.g.

configure --with-as=/opt/ctl/bin/cam --with-ld=/opt/ctl/bin/cld \

--enable-languages=c

The comparison test during ‘make bootstrap’ fails on Unicos/Mk because the assembler
inserts timestamps into object files. You should be able to work around this by doing ‘make
all’ after getting this failure.

arc-*-elf

Argonaut ARC processor. This configuration is intended for embedded systems.

arm-*-elf

xscale-*-*

ARM-family processors. Subtargets that use the ELF object format require GNU binutils
2.13 or newer. Such subtargets include: arm-*-freebsd, arm-*-netbsdelf, arm-*-*linux,
arm-*-rtems and arm-*-kaos.

Chapter 9: Host/target specific installation notes for GCC 37

arm-*-coff

ARM-family processors. Note that there are two different varieties of PE format subtarget
supported: arm-wince-pe and arm-pe as well as a standard COFF target arm-*-coff.

arm-*-aout

ARM-family processors. These targets support the AOUT file format: arm-*-aout, arm-
*-netbsd.

avr

ATMEL AVR-family micro controllers. These are used in embedded applications. There
are no standard Unix configurations. See section “AVR Options” in Using and Porting the
GNU Compiler Collection (GCC), for the list of supported MCU types.

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC.

Further installation notes and other useful information about AVR tools can also be
obtained from:

• http://www.openavr.org
• http://home.overta.ru/users/denisc/
• http://www.amelek.gda.pl/avr/

We strongly recommend using binutils 2.13 or newer.
The following error:

Error: register required

indicates that you should upgrade to a newer version of the binutils.

c4x

Texas Instruments TMS320C3x and TMS320C4x Floating Point Digital Signal Processors.
These are used in embedded applications. There are no standard Unix configurations. See
section “TMS320C3x/C4x Options” in Using and Porting the GNU Compiler Collection
(GCC), for the list of supported MCU types.

GCC can be configured as a cross compiler for both the C3x and C4x architectures on the
same system. Use ‘configure --target=c4x --enable-languages="c,c++"’ to configure.

Further installation notes and other useful information about C4x tools can also be
obtained from:

• http://www.elec.canterbury.ac.nz/c4x/

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series.
These are used in embedded applications.

See section “CRIS Options” in Using and Porting the GNU Compiler Collection (GCC),
for a list of CRIS-specific options.

There are a few different CRIS targets:

38 Installing GCC

cris-axis-aout
Old target. Includes a multilib for the ‘elinux’ a.out-based target. No multilibs
for newer architecture variants.

cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the ‘v10’ core
used in ‘ETRAX 100 LX’.

cris-axis-linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting ‘ETRAX 100
LX’ by default.

For cris-axis-aout and cris-axis-elf you need binutils 2.11 or newer. For cris-
axis-linux-gnu you need binutils 2.12 or newer.

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/.
More information about this platform is available at http://developer.axis.com/.

DOS

Please have a look at the binaries page.
You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS

compiler except itself. You need to get the complete compilation package DJGPP, which
includes binaries as well as sources, and includes all the necessary compilation tools and
libraries.

dsp16xx

A port to the AT&T DSP1610 family of processors.

--freebsd*

The version of binutils installed in ‘/usr/bin’ probably works with this release of GCC.
However, on FreeBSD 4, bootstrapping against the latest FSF binutils is known to improve
overall testsuite results; and, on FreeBSD/alpha, using binutils 2.14 or later is required to
build libjava.

Support for FreeBSD 1 was discontinued in GCC 3.2.
Support for FreeBSD 2 will be discontinued after GCC 3.4. The following was true for

GCC 3.1 but the current status is unknown. For FreeBSD 2 or any mutant a.out versions
of FreeBSD 3: All configuration support and files as shipped with GCC 2.95 are still in
place. FreeBSD 2.2.7 has been known to bootstrap completely; however, it is unknown
which version of binutils was used (it is assumed that it was the system copy in ‘/usr/bin’)
and C++ EH failures were noted.

For FreeBSD using the ELF file format: DWARF 2 debugging is now the default for
all CPU architectures. It had been the default on FreeBSD/alpha since its inception. You
may use ‘-gstabs’ instead of ‘-g’, if you really want the old debugging format. There are
no known issues with mixing object files and libraries with different debugging formats.
Otherwise, this release of GCC should now match more of the configuration used in the
stock FreeBSD configuration of GCC. In particular, ‘--enable-threads’ is now configured
by default. However, as a general user, do not attempt to replace the system compiler with

Chapter 9: Host/target specific installation notes for GCC 39

this release. Known to bootstrap and check with good results on FreeBSD 4.9-STABLE and
5-CURRENT. In the past, known to bootstrap and check with good results on FreeBSD
3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8-STABLE.

In principle, ‘--enable-threads’ is now compatible with ‘--enable-libgcj’ on
FreeBSD. However, it has only been built and tested on ‘i386-*-freebsd[45]’ and
‘alpha-*-freebsd[45]’. The static library may be incorrectly built (symbols are missing
at link time). There is a rare timing-based startup hang (probably involves an assumption
about the thread library). Multi-threaded boehm-gc (required for libjava) exposes
severe threaded signal-handling bugs on FreeBSD before 4.5-RELEASE. Other CPU
architectures supported by FreeBSD will require additional configuration tuning in, at the
very least, both boehm-gc and libffi.

Shared ‘libgcc_s.so’ is now built and installed by default.

h8300-hms

Renesas H8/300 series of processors.

Please have a look at the binaries page.

The calling convention and structure layout has changed in release 2.6. All code must be
recompiled. The calling convention now passes the first three arguments in function calls
in registers. Structures are no longer a multiple of 2 bytes.

hppa*-hp-hpux*

Support for HP-UX version 9 and older was discontinued in GCC 3.4.

We highly recommend using gas/binutils 2.8 or newer on all hppa platforms; you may
encounter a variety of problems when using the HP assembler.

Specifically, ‘-g’ does not work on HP-UX (since that system uses a peculiar debugging
format which GCC does not know about), unless you use GAS and GDB and configure
GCC with the ‘--with-gnu-as’ and ‘--with-as=...’ options.

If you wish to use the pa-risc 2.0 architecture support with a 32-bit runtime, you must
use either the HP assembler, or gas/binutils 2.11 or newer.

There are two default scheduling models for instructions. These are PROCES-
SOR 7100LC and PROCESSOR 8000. They are selected from the pa-risc architecture
specified for the target machine when configuring. PROCESSOR 8000 is the default.
PROCESSOR 7100LC is selected when the target is a ‘hppa1*’ machine.

The PROCESSOR 8000 model is not well suited to older processors. Thus, it is impor-
tant to completely specify the machine architecture when configuring if you want a model
other than PROCESSOR 8000. The macro TARGET SCHED DEFAULT can be defined
in BOOT CFLAGS if a different default scheduling model is desired.

More specific information to ‘hppa*-hp-hpux*’ targets follows.

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from
HP. HP has two sites which provide patches free of charge:

40 Installing GCC

• http://us.itrc.hp.com/service/home/home.do US, Canada, Asia-Pacific, and
Latin-America.

• http://europe.itrc.hp.com/service/home/home.do Europe.

The HP assembler on these systems has some problems. Most notably the assembler
inserts timestamps into each object file it creates, causing the 3-stage comparison test to
fail during a ‘make bootstrap’. You should be able to continue by saying ‘make all’ after
getting the failure from ‘make bootstrap’.

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to
compile GCC 3.0 and up.

Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX.
Precompiled binaries must be obtained to build the Ada language as it can’t be bootstrapped
using C. Ada is only available for the 32-bit PA-RISC runtime. The libffi and libjava haven’t
been ported to HP-UX and don’t build.

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the pro-
cess requires several steps. GCC 3.3 can then be used to build later versions. The
fastjar program contains ISO C code and can’t be built with the HP bundled compiler.
This problem can be avoided by not building the Java language. For example, use the
‘--enable-languages="c,c++,f77,objc"’ option in your configure command.

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler
supports only traditional C; you will need either HP’s unbundled compiler, or a binary
distribution of GCC.

There are several possible approaches to building the distribution. Binutils can be built
first using the HP tools. Then, the GCC distribution can be built. The second approach is
to build GCC first using the HP tools, then build binutils, then rebuild GCC. There have
been problems with various binary distributions, so it is best not to start from a binary
distribution.

On 64-bit capable systems, there are two distinct targets. Different installation prefixes
must be used if both are to be installed on the same system. The ‘hppa[1-2]*-hp-hpux11*’
target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker.
The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture.
The HP and GNU linkers are both supported for this target.

The script config.guess now selects the target type based on the compiler detected during
configuration. You must define PATH or CC so that configure finds an appropriate compiler
for the initial bootstrap. When CC is used, the definition should contain the options that
are needed whenever CC is used.

Specifically, options that determine the runtime architecture must be in CC to correctly
select the target for the build. It is also convenient to place many other compiler op-
tions in CC. For example, CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_
SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit
K&R/bundled mode. The ‘+DA2.0W’ option will result in the automatic selection of the
‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a
successful build with the HP compiler. CLASSIC TYPES and HPUX SOURCE need to

Chapter 9: Host/target specific installation notes for GCC 41

be defined when building with the bundled compiler, or when using the ‘-Ac’ option. These
defines aren’t necessary with ‘-Ae’.

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target with the
‘--with-ld=...’ option. This overrides the standard search for ld. The two linkers
supported on this target require different commands. The default linker is determined
during configuration. As a result, it’s not possible to switch linkers in the middle of a
GCC build. This has been been reported to sometimes occur in unified builds of binutils
and GCC.

With GCC 3.0 through 3.2, you must use binutils 2.11 or above. As of GCC 3.3, binutils
2.14 or later is required.

Although the HP assembler can be used for an initial build, it shouldn’t be used with
any languages other than C and perhaps Fortran due to its many limitations. For example,
it does not support weak symbols or alias definitions. As a result, explicit template instanti-
ations are required when using C++. This makes it difficult if not impossible to build many
C++ applications. You can’t generate debugging information when using the HP assembler.
Finally, ‘make bootstrap’ fails in the final comparison of object modules due to the time
stamps that it inserts into the modules. The bootstrap can be continued from this point
with ‘make all’.

A recent linker patch must be installed for the correct operation of GCC 3.3 and later.
PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They
are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to PHSS_24304,
might be usable but it hasn’t been tested. These patches have been superseded. Consult
the HP patch database to obtain the currently recommended linker patch for your system.

The patches are necessary for the support of weak symbols on the 32-bit port, and for the
running of initializers and finalizers. Weak symbols are implemented using SOM secondary
definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary
symbols. The patches correct a problem of linker core dumps creating shared libraries
containing secondary symbols, as well as various other linking issues involving secondary
symbols.

GCC 3.3 uses the ELF DT INIT ARRAY and DT FINI ARRAY capabilities to run
initializers and finalizers on the 64-bit port. The 32-bit port uses the linker ‘+init’ and
‘+fini’ options for the same purpose. The patches correct various problems with the
+init/+fini options, including program core dumps. Binutils 2.14 corrects a problem on the
64-bit port resulting from HP’s non-standard use of the .init and .fini sections for array
initializers and finalizers.

There are a number of issues to consider in selecting which linker to use with the 64-bit
port. The GNU 64-bit linker can only create dynamic binaries. The ‘-static’ option causes
linking with archive libraries but doesn’t produce a truly static binary. Dynamic binaries
still require final binding by the dynamic loader to resolve a set of dynamic-loader-defined
symbols. The default behavior of the HP linker is the same as the GNU linker. However,
it can generate true 64-bit static binaries using the ‘+compat’ option.

The HP 64-bit linker doesn’t support linkonce semantics. As a result, C++ programs
have many more sections than they should.

The GNU 64-bit linker has some issues with shared library support and exceptions. As
a result, we only support libgcc in archive format. For similar reasons, dwarf2 unwind and

42 Installing GCC

exception support are disabled. The GNU linker also has problems creating binaries with
‘-static’. It doesn’t provide stubs for internal calls to global functions in shared libraries,
so these calls can’t be overloaded.

Thread support is not implemented in GCC 3.0 through 3.2, so the ‘--enable-threads’
configure option does not work. In 3.3 and later, POSIX threads are supported. The
optional DCE thread library is not supported.

This port still is undergoing significant development.

i370-*-*

This port is very preliminary and has many known bugs. We hope to have a higher-quality
port for this machine soon.

--linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bugfixes present in glibc 2.2.5 and later.
More information is available in the libstdc++-v3 documentation.

i?86-*-linux*aout

Use this configuration to generate ‘a.out’ binaries on Linux-based GNU systems. This
configuration is being superseded.

i?86-*-linux*

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more
information.

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have
a hardware problem. Further information on this can be found on www.bitwizard.nl.

Some recent versions of GNU/Linux, such as Fedora Core 1, support exec-shield-
randomize. Turning this on interferes with precompiled headers. If you need to use
precompiled headers, exec-shield-randomize can be turned off for the entire system by
editing ‘/etc/sysctl.conf’ and adding a line:

kernel.exec-shield-randomize = 0

You may then need to run ‘sysctl -p’.
This will be fixed in future releases of GCC.

i?86-*-sco3.2v5*

Use this for the SCO OpenServer Release 5 family of operating systems.
Unlike earlier versions of GCC, the ability to generate COFF with this target is no longer

provided.
Earlier versions of GCC emitted DWARF 1 when generating ELF to allow the system

debugger to be used. That support was too burdensome to maintain. GCC now emits only
DWARF 2 for this target. This means you may use either the UDK debugger or GDB to
debug programs built by this version of GCC.

GCC is now only supported on releases 5.0.4 and later, and requires that you install Sup-
port Level Supplement OSS646B or later, and Support Level Supplement OSS631C or later.

Chapter 9: Host/target specific installation notes for GCC 43

If you are using release 5.0.7 of OpenServer, you must have at least the first maintenance
pack installed (this includes the relevant portions of OSS646). OSS646, also known as the
"Execution Environment Update", provides updated link editors and assemblers, as well as
updated standard C and math libraries. The C startup modules are also updated to support
the System V gABI draft, and GCC relies on that behavior. OSS631 provides a collection of
commonly used open source libraries, some of which GCC depends on (such as GNU gettext
and zlib). SCO OpenServer Release 5.0.7 has all of this built in by default, but OSS631C
and later also apply to that release. Please visit ftp://ftp.sco.com/pub/openserver5 for the
latest versions of these (and other potentially useful) supplements.

Although there is support for using the native assembler, it is recommended that you
configure GCC to use the GNU assembler. You do this by using the flags ‘--with-gnu-as’.
You should use a modern version of GNU binutils. Version 2.13.2.1 was used for all test-
ing. In general, only the ‘--with-gnu-as’ option is tested. A modern bintuils (as well
as a plethora of other development related GNU utilities) can be found in Support Level
Supplement OSS658A, the "GNU Development Tools" package. See the SCO web and ftp
sites for details. That package also contains the currently "officially supported" version of
GCC, version 2.95.3. It is useful for bootstrapping this version.

i?86-*-udk

This target emulates the SCO Universal Development Kit and requires that package be
installed. (If it is installed, you will have a ‘/udk/usr/ccs/bin/cc’ file present.) It’s very
much like the ‘i?86-*-unixware7*’ target but is meant to be used when hosting on a
system where UDK isn’t the default compiler such as OpenServer 5 or Unixware 2. This
target will generate binaries that will run on OpenServer, Unixware 2, or Unixware 7, with
the same warnings and caveats as the SCO UDK.

This target is a little tricky to build because we have to distinguish it from the native
tools (so it gets headers, startups, and libraries from the right place) while making the tools
not think we’re actually building a cross compiler. The easiest way to do this is with a
configure command like this:

CC=/udk/usr/ccs/bin/cc /your/path/to/gcc/configure \

--host=i686-pc-udk --target=i686-pc-udk --program-prefix=udk-

You should substitute ‘i686’ in the above command with the appropriate processor for
your host.

After the usual ‘make bootstrap’ and ‘make install’, you can then access the UDK-
targeted GCC tools by adding udk- before the commonly known name. For example, to
invoke the C compiler, you would use udk-gcc. They will coexist peacefully with any
native-target GCC tools you may have installed.

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux.
If you are using the optional libunwind library, then you must use libunwind 0.96 or

later.
None of the following versions of GCC has an ABI that is compatible with any of the

other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are
compatible with each other: 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This

44 Installing GCC

primarily affects C++ programs and programs that create shared libraries. GCC 3.1 or later
is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be
fully ABI compliant, and hence no more major ABI changes are expected.

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will
not work. To prevent GCC from using the wrong assembler, the option ‘--with-gnu-as’
may be necessary.

The GCC libunwind library has not been ported to HPUX. This means that for GCC
versions 3.2.3 and earlier, ‘--enable-libunwind-exceptions’ is required to build GCC.
For GCC 3.3 and later, this is the default.

-ibm-aix

Support for AIX version 3 and older was discontinued in GCC 3.4.
AIX Make frequently has problems with GCC makefiles. GNU Make 3.79.1 or newer is

recommended to build on this platform.
To speed up the configuration phases of bootstrapping and installing GCC, one may use

GNU Bash instead of AIX /bin/sh, e.g.,
% CONFIG_SHELL=/opt/freeware/bin/bash

% export CONFIG_SHELL

and then proceed as described in the build instructions, where we strongly recommend
using GNU make and specifying an absolute path to invoke srcdir/configure.

Errors involving alloca when building GCC generally are due to an incorrect definition
of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During
the stage1 phase of the build, the native AIX compiler must be invoked as cc (not xlc).
Once configure has been informed of xlc, one needs to use ‘make distclean’ to remove the
configure cache files and ensure that CC environment variable does not provide a definition
that will confuse configure. If this error occurs during stage2 or later, then the problem
most likely is the version of Make (see above).

The native as and ld are recommended for bootstrapping on AIX 4 and required for
bootstrapping on AIX 5L. The GNU Assembler reports that it supports WEAK symbols
on AIX 4, which causes GCC to try to utilize weak symbol functionality although it is not
supported. The GNU Assembler and Linker do not support AIX 5L sufficiently to bootstrap
GCC. The native AIX tools do interoperate with GCC.

Building ‘libstdc++.a’ requires a fix for an AIX Assembler bug APAR IY26685 (AIX
4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug
and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or a APAR
IY54774 (AIX 5.1)

‘libstdc++’ in GCC 3.4 increments the major version number of the shared object and
GCC installation places the ‘libstdc++.a’ shared library in a common location which will
overwrite the and GCC 3.3 version of the shared library. Applications either need to be
re-linked against the new shared library or the GCC 3.1 and GCC 3.3 versions of the
‘libstdc++’ shared object needs to be available to the AIX runtime loader. The GCC
3.1 ‘libstdc++.so.4’, if present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be

Chapter 9: Host/target specific installation notes for GCC 45

installed for runtime dynamic loading using the following steps to set the ‘F_LOADONLY’ flag
in the shared object for each multilib ‘libstdc++.a’ installed:

Extract the shared objects from the currently installed ‘libstdc++.a’ archive:
% ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime
dynamic loading, but not linking:

% strip -e libstdc++.so.4 libstdc++.so.5

Archive the runtime-only shared object in the GCC 3.4 ‘libstdc++.a’ archive:
% ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5

Linking executables and shared libraries may produce warnings of duplicate symbols.
The assembly files generated by GCC for AIX always have included multiple symbol def-
initions for certain global variable and function declarations in the original program. The
warnings should not prevent the linker from producing a correct library or runnable exe-
cutable.

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object mod-
ules. The routines provided in AIX 4.3.0 and AIX 4.3.1 to parse archive libraries did not
handle the new format correctly. These routines are used by GCC and result in error mes-
sages during linking such as “not a COFF file”. The version of the routines shipped with
AIX 4.3.1 should work for a 32-bit environment. The ‘-g’ option of the archive command
may be used to create archives of 32-bit objects using the original “small format”. A correct
version of the routines is shipped with AIX 4.3.2 and above.

Some versions of the AIX binder (linker) can fail with a relocation overflow severe error
when the ‘-bbigtoc’ option is used to link GCC-produced object files into an executable
that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN
USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U455193.

The AIX 4.3.2.1 linker (bos.rte.bind cmds Level 4.3.2.1) will dump core with a segmen-
tation fault when invoked by any version of GCC. A fix for APAR IX87327 is available
from IBM Customer Support and from its techsupport.services.ibm.com website as PTF
U461879. This fix is incorporated in AIX 4.3.3 and above.

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A
fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER
FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its
techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX
4.3.1 and above.

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to
support locale-specific representations of various data formats including floating-point num-
bers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported
where GCC does not produce the same floating-point formats that the assembler expects.
If one encounters this problem, set the LANG environment variable to ‘C’ or ‘En_US’.

By default, GCC for AIX 4.1 and above produces code that can be used on both Power
or PowerPC processors.

A default can be specified with the ‘-mcpu=cpu_type ’ switch and using the configure
option ‘--with-cpu-cpu_type ’.

46 Installing GCC

ip2k-*-elf

Ubicom IP2022 micro controller. This configuration is intended for embedded systems.
There are no standard Unix configurations.

Use ‘configure --target=ip2k-elf --enable-languages=c’ to configure GCC.

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard
Unix configurations.

m32r-*-elf

Renesas M32R processor. This configuration is intended for embedded systems.

m6811-elf

Motorola 68HC11 family micro controllers. These are used in embedded applications. There
are no standard Unix configurations.

m6812-elf

Motorola 68HC12 family micro controllers. These are used in embedded applications. There
are no standard Unix configurations.

m68k-hp-hpux

HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug in the assem-
bler that prevents compilation of GCC. This bug manifests itself during the first stage of
compilation, while building ‘libgcc2.a’:

_floatdisf

cc1: warning: ‘-g’ option not supported on this version of GCC

cc1: warning: ‘-g1’ option not supported on this version of GCC

./xgcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available as the file ftp://altdorf.ai.mit.edu/archive/cph/hpux-8.0-assembler.
If you have HP software support, the patch can also be obtained directly from HP, as
described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the assembler
aborts on floating point constants.

The bug is not really in the assembler, but in the shared library version of the
function “cvtnum(3c)”. The bug on “cvtnum(3c)” is SR#4701-078451. Any-
way, the attached assembler uses the archive library version of “cvtnum(3c)”
and thus does not exhibit the bug.

This patch is also known as PHCO 4484.

In addition gdb does not understand that native HP-UX format, so you must use gas if
you wish to use gdb.

On HP-UX version 8.05, but not on 8.07 or more recent versions, the fixproto shell
script triggers a bug in the system shell. If you encounter this problem, upgrade your

Chapter 9: Host/target specific installation notes for GCC 47

operating system or use BASH (the GNU shell) to run fixproto. This bug will cause the
fixproto program to report an error of the form:

./fixproto: sh internal 1K buffer overflow

To fix this, you can also change the first line of the fixproto script to look like:
#!/bin/ksh

mips-*-*

If on a MIPS system you get an error message saying “does not have gp sections for all
it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the
MIPS linker, but there is not really anything wrong, and it is okay to use the output file.
You can stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and
there should not be a warning about their absence.

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A
patch went in just after the GCC 3.3 release to make ‘mips*-*-*’ use the generic im-
plementation instead. You can also configure for ‘mipsel-elf’ as a workaround. The
‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is
expected in future releases.

Cross-compilers for the Mips as target using the Mips assembler currently do not work,
because the auxiliary programs ‘mips-tdump.c’ and ‘mips-tfile.c’ can’t be compiled on
anything but a Mips. It does work to cross compile for a Mips if you use the GNU assembler
and linker.

mips-sgi-irix5

In order to compile GCC on an SGI running IRIX 5, the ‘compiler_dev.hdr’ subsystem
must be installed from the IDO CD-ROM supplied by SGI. It is also available for download
from ftp://ftp.sgi.com/sgi/IRIX5.3/iris-development-option-5.3.tardist.

If you use the MIPS C compiler to bootstrap, it may be necessary to increase its table
size for switch statements with the ‘-Wf,-XNg1500’ option. If you use the ‘-O2’ optimization
option, you also need to use ‘-Olimit 3000’.

To enable debugging under IRIX 5, you must use GNU binutils 2.15 or later, and use
the ‘--with-gnu-as’ and ‘--with-gnu-ld’ configure options when configuring GCC. You
need to use GNU ar and nm, also distributed with GNU binutils.

mips-sgi-irix6

If you are using SGI’s MIPSpro cc as your bootstrap compiler, you must ensure that the
N32 ABI is in use. To test this, compile a simple C file with cc and then run file on the
resulting object file. The output should look like:

test.o: ELF N32 MSB ...

If you see:
test.o: ELF 32-bit MSB ...

or

48 Installing GCC

test.o: ELF 64-bit MSB ...

then your version of cc uses the O32 or N64 ABI by default. You should set the en-
vironment variable CC to ‘cc -n32’ before configuring GCC. SGI’s MIPSpro 7.2 assembler
may misassemble parts of the compiler, causing bootstrap failures. MIPSpro 7.3 is known to
work. MIPSpro C 7.4 may cause bootstrap failures, too, due to a bug when inlining memcmp.
Either add -U__INLINE_INTRINSICS to the CC environment variable as a workaround or up-
grade to MIPSpro C 7.4.1m.

If you want the resulting gcc to run on old 32-bit systems with the MIPS R4400 CPU,
you need to ensure that only code for the ‘mips3’ instruction set architecture (ISA) is
generated. While GCC 3.x does this correctly, both GCC 2.95 and SGI’s MIPSpro cc
may change the ISA depending on the machine where GCC is built. Using one of them as
the bootstrap compiler may result in ‘mips4’ code, which won’t run at all on ‘mips3’-only
systems. For the test program above, you should see:

test.o: ELF N32 MSB mips-3 ...

If you get:
test.o: ELF N32 MSB mips-4 ...

instead, you should set the environment variable CC to ‘cc -n32 -mips3’ or ‘gcc -mips3’
respectively before configuring GCC.

GCC on IRIX 6 is usually built to support the N32, O32 and N64 ABIs. If you build
GCC on a system that doesn’t have the N64 libraries installed or cannot run 64-bit binaries,
you need to configure with ‘--disable-multilib’ so GCC doesn’t try to use them. This
will disable building the O32 libraries, too. Look for ‘/usr/lib64/libc.so.1’ to see if you
have the 64-bit libraries installed.

To enable debugging for the O32 ABI, you must use GNU as from GNU binutils 2.15
or later. You may also use GNU ld, but this is not required and currently causes some
problems with Ada.

The ‘--enable-threads’ option doesn’t currently work, a patch is in preparation for
a future release. The ‘--enable-libgcj’ option is disabled by default: IRIX 6 uses a
very low default limit (20480) for the command line length. Although libtool contains a
workaround for this problem, at least the N64 ‘libgcj’ is known not to build despite this,
running into an internal error of the native ld. A sure fix is to increase this limit (‘ncargs’)
to its maximum of 262144 bytes. If you have root access, you can use the systune command
to do this.

See http://freeware.sgi.com/ for more information about using GCC on IRIX plat-
forms.

powerpc-*-*

You can specify a default version for the ‘-mcpu=cpu_type ’ switch by using the configure
option ‘--with-cpu-cpu_type ’.

powerpc-*-darwin*

PowerPC running Darwin (Mac OS X kernel).

Chapter 9: Host/target specific installation notes for GCC 49

Pre-installed versions of Mac OS X may not include any developer tools, meaning
that you will not be able to build GCC from source. Tool binaries are available at
http://developer.apple.com/tools/compilers.html (free registration required).

The default stack limit of 512K is too small, which may cause compiles to fail with
’Bus error’. Set the stack larger, for instance by doing ‘limit stack 800’. It’s a good
idea to use the GNU preprocessor instead of Apple’s ‘cpp-precomp’ during the first stage
of bootstrapping; this is automatic when doing ‘make bootstrap’, but to do it from the
toplevel objdir you will need to say ‘make CC=’cc -no-cpp-precomp’ bootstrap’.

The version of GCC shipped by Apple typically includes a number of extensions not
available in a standard GCC release. These extensions are generally specific to Mac pro-
gramming.

powerpc-*-elf, powerpc-*-sysv4

PowerPC system in big endian mode, running System V.4.

powerpc-*-linux-gnu*

You will need binutils 2.13.90.0.10 or newer for a working GCC.

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD. To build the documentation you
will need Texinfo version 4.2 (NetBSD 1.5.1 included Texinfo version 3.12).

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simu-
lator.

powerpc-*-eabi

Embedded PowerPC system in big endian mode.

powerpcle-*-elf, powerpcle-*-sysv4

PowerPC system in little endian mode, running System V.4.

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM sim-
ulator.

powerpcle-*-eabi

Embedded PowerPC system in little endian mode.

s390-*-linux*

S/390 system running GNU/Linux for S/390.

50 Installing GCC

s390x-*-linux*

zSeries system (64-bit) running GNU/Linux for zSeries.

s390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target
only.

--solaris2*

Sun does not ship a C compiler with Solaris 2. To bootstrap and install GCC you first have
to install a pre-built compiler, see the binaries page for details.

The Solaris 2 /bin/sh will often fail to configure ‘libstdc++-v3’, ‘boehm-gc’ or
‘libjava’. We therefore recommend to use the following sequence of commands to
bootstrap and install GCC:

% CONFIG_SHELL=/bin/ksh

% export CONFIG_SHELL

and then proceed as described in the build instructions. In addition we strongly recom-
mend specifying an absolute path to invoke srcdir/configure.

Solaris 2 comes with a number of optional OS packages. Some of these are needed to
use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and
SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need
to verify that the packages that GCC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add
an optional package, use the pkgadd command. For further details, see the Solaris 2 docu-
mentation.

Trying to use the linker and other tools in ‘/usr/ucb’ to install GCC has been observed
to cause trouble. For example, the linker may hang indefinitely. The fix is to remove
‘/usr/ucb’ from your PATH.

The build process works more smoothly with the legacy Sun tools so, if you have
‘/usr/xpg4/bin’ in your PATH, we recommend that you place ‘/usr/bin’ before
‘/usr/xpg4/bin’ for the duration of the build.

All releases of GNU binutils prior to 2.11.2 have known bugs on this platform. We
recommend the use of GNU binutils 2.11.2 or the vendor tools (Sun as, Sun ld).

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or newer: g++
will complain that types are missing. These headers assume that omitting the type means
int; this assumption worked for C89 but is wrong for C++, and is now wrong for C99 also.

g++ accepts such (invalid) constructs with the option ‘-fpermissive’; it will assume
that any missing type is int (as defined by C89).

There are patches for Solaris 2.6 (105633-56 or newer for SPARC, 106248-42 or newer
for Intel), Solaris 7 (108376-21 or newer for SPARC, 108377-20 for Intel), and Solaris 8
(108652-24 or newer for SPARC, 108653-22 for Intel) that fix this bug.

Chapter 9: Host/target specific installation notes for GCC 51

sparc-sun-solaris2*

When GCC is configured to use binutils 2.11.2 or later the binaries produced are smaller
than the ones produced using Sun’s native tools; this difference is quite significant for
binaries containing debugging information.

Sun as 4.x is broken in that it cannot cope with long symbol names. A typical error
message might look similar to the following:

/usr/ccs/bin/as: "/var/tmp/ccMsw135.s", line 11041: error:

can’t compute value of an expression involving an external symbol.

This is Sun bug 4237974. This is fixed with patch 108908-02 for Solaris 2.6 and has been
fixed in later (5.x) versions of the assembler, starting with Solaris 7.

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9
binaries. GCC 3.1 and later properly supports this; the ‘-m64’ option enables 64-bit code
generation. However, if all you want is code tuned for the UltraSPARC CPU, you should
try the ‘-mtune=ultrasparc’ option instead, which produces code that, unlike full 64-bit
code, can still run on non-UltraSPARC machines.

When configuring on a Solaris 7 or later system that is running a kernel that supports
only 32-bit binaries, one must configure with ‘--disable-multilib’, since we will not be
able to build the 64-bit target libraries.

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU
compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1
compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC
3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and
then use it to bootstrap the final compiler.

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5
(Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a
miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This
is fixed with patch 112760-07.

GCC 3.4 changed the default debugging format from STABS to DWARF-2 for 32-bit
code on Solaris 7 and later. If you are using the Sun assembler, this change apparently
runs afoul of Sun bug 4910101, for which (as of 2004-05-23) there is no fix. A symptom of
the problem is that you cannot compile C++ programs like groff 1.19.1 without getting
messages like ‘ld: warning: relocation error: R_SPARC_UA32 ... external symbolic
relocation against non-allocatable section .debug_info; cannot be processed at
runtime: relocation ignored’. To work around this problem, compile with ‘-gstabs+’
instead of plain ‘-g’.

sparc-sun-solaris2.7

Sun patch 107058-01 (1999-01-13) for Solaris 7/SPARC triggers a bug in the dynamic linker.
This problem (Sun bug 4210064) affects GCC 2.8 and later, including all EGCS releases.
Sun formerly recommended 107058-01 for all Solaris 7 users, but around 1999-09-01 it
started to recommend it only for people who use Sun’s compilers.

Here are some workarounds to this problem:
• Do not install Sun patch 107058-01 until after Sun releases a complete patch for bug

4210064. This is the simplest course to take, unless you must also use Sun’s C compiler.

52 Installing GCC

Unfortunately 107058-01 is preinstalled on some new Solaris 7-based hosts, so you may
have to back it out.

• Copy the original, unpatched Solaris 7 /usr/ccs/bin/as into /usr/local/libexec/gcc/sparc-
sun-solaris2.7/3.4/as, adjusting the latter name to fit your local conventions and
software version numbers.

• Install Sun patch 106950-03 (1999-05-25) or later. Nobody with both 107058-01 and
106950-03 installed has reported the bug with GCC and Sun’s dynamic linker. This
last course of action is riskiest, for two reasons. First, you must install 106950 on all
hosts that run code generated by GCC; it doesn’t suffice to install it only on the hosts
that run GCC itself. Second, Sun says that 106950-03 is only a partial fix for bug
4210064, but Sun doesn’t know whether the partial fix is adequate for GCC. Revision
-08 or later should fix the bug. The current (as of 2004-05-23) revision is -24, and is
included in the Solaris 7 Recommended Patch Cluster.

GCC 3.3 triggers a bug in version 5.0 Alpha 03/27/98 of the Sun assembler, which causes
a bootstrap failure when linking the 64-bit shared version of libgcc. A typical error message
is:

ld: fatal: relocation error: R_SPARC_32: file libgcc/sparcv9/_muldi3.o:

symbol <unknown>: offset 0xffffffff7ec133e7 is non-aligned.

This bug has been fixed in the final 5.0 version of the assembler.

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this plat-
form. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-*
targets.

sparc64-*-solaris2*

The following compiler flags must be specified in the configure step in order to bootstrap
this target with the Sun compiler:

% CC="cc -xildoff -xarch=v9" srcdir/configure [options] [target]

‘-xildoff’ turns off the incremental linker, and ‘-xarch=v9’ specifies the SPARC-V9
architecture to the Sun linker and assembler.

sparcv9-*-solaris2*

This is a synonym for sparc64-*-solaris2*.

--sysv*

On System V release 3, you may get this error message while linking:
ld fatal: failed to write symbol name something

in strings table for file whatever

This probably indicates that the disk is full or your ulimit won’t allow the file to be as
large as it needs to be.

This problem can also result because the kernel parameter MAXUMEM is too small. If
so, you must regenerate the kernel and make the value much larger. The default value is
reported to be 1024; a value of 32768 is said to work. Smaller values may also work.

Chapter 9: Host/target specific installation notes for GCC 53

On System V, if you get an error like this,
/usr/local/lib/bison.simple: In function ‘yyparse’:

/usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ulimit, or MAXUMEM.
On a System V release 4 system, make sure ‘/usr/bin’ precedes ‘/usr/ucb’ in PATH.

The cc command in ‘/usr/ucb’ uses libraries which have bugs.

vax-dec-ultrix

Don’t try compiling with VAX C (vcc). It produces incorrect code in some cases (for
example, when alloca is used).

--vxworks*

Support for VxWorks is in flux. At present GCC supports only the very recent VxWorks 5.5
(aka Tornado 2.2) release, and only on PowerPC. We welcome patches for other architectures
supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe
this is merely a matter of writing an appropriate “configlette” (see below). We are not
interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3.

VxWorks comes with an older version of GCC installed in ‘$WIND_BASE/host’; we recom-
mend you do not overwrite it. Choose an installation prefix entirely outside $WIND BASE.
Before running configure, create the directories ‘prefix ’ and ‘prefix/bin’. Link or copy
the appropriate assembler, linker, etc. into ‘prefix/bin’, and set your PATH to include
that directory while running both configure and make.

You must give configure the ‘--with-headers=$WIND_BASE/target/h’ switch so that
it can find the VxWorks system headers. Since VxWorks is a cross compilation target
only, you must also specify ‘--target=target ’. configure will attempt to create the
directory ‘prefix/target/sys-include’ and copy files into it; make sure the user running
configure has sufficient privilege to do so.

GCC’s exception handling runtime requires a special “configlette” module,
‘contrib/gthr_supp_vxw_5x.c’. Follow the instructions in that file to add the module to
your kernel build. (Future versions of VxWorks will incorporate this module.)

x86 64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-* is
an alias for x86 64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default
is a bi-arch compiler which is able to generate both 64-bit x86-64 and 32-bit x86 code (via
the ‘-m32’ switch).

xtensa-*-elf

This target is intended for embedded Xtensa systems using the ‘newlib’ C library. It uses
ELF but does not support shared objects. Designed-defined instructions specified via the
Tensilica Instruction Extension (TIE) language are only supported through inline assembly.

The Xtensa configuration information must be specified prior to building GCC. The
‘include/xtensa-config.h’ header file contains the configuration information. If you cre-
ated your own Xtensa configuration with the Xtensa Processor Generator, the downloaded

54 Installing GCC

files include a customized copy of this header file, which you can use to replace the default
header file.

xtensa-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and
the GNU C library (glibc). It also generates position-independent code (PIC) regardless of
whether the ‘-fpic’ or ‘-fPIC’ options are used. In other respects, this target is the same
as the ‘xtensa-*-elf’ target.

Microsoft Windows (32-bit)

A port of GCC 2.95.2 and 3.x is included with the Cygwin environment.
Current (as of early 2001) snapshots of GCC will build under Cygwin without modifi-

cation.
GCC does not currently build with Microsoft’s C++ compiler and there are no plans to

make it do so.

OS/2

GCC does not currently support OS/2. However, Andrew Zabolotny has been
working on a generic OS/2 port with pgcc. The current code can be found at
http://www.goof.com/pcg/os2/.

An older copy of GCC 2.8.1 is included with the EMX tools available at
ftp://ftp.leo.org/pub/comp/os/os2/leo/devtools/emx+gcc/.

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the
most part, support for these systems has not been deliberately removed, but it has not been
maintained for several years and may suffer from bitrot.

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support
for these systems is still present in that release, but configure will fail unless the
‘--enable-obsolete’ option is given. Unless a maintainer steps forward, support for these
systems will be removed from the next release of GCC.

Support for old systems as hosts for GCC can cause problems if the workarounds for
compiler, library and operating system bugs affect the cleanliness or maintainability of the
rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current
GCC, may require first installing an old version of GCC which did work on that system, and
using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases
of GCC 1 and GCC 2 are available in the ‘old-releases’ directory on the GCC mirror
sites. Header bugs may generally be avoided using fixincludes, but bugs or deficiencies
in libraries and the operating system may still cause problems.

Support for older systems as targets for cross-compilation is less problematic than sup-
port for them as hosts for GCC; if an enthusiast wishes to make such a target work again
(including resurrecting any of the targets that never worked with GCC 2, starting from
the last CVS version before they were removed), patches following the usual requirements

Chapter 9: Host/target specific installation notes for GCC 55

would be likely to be accepted, since they should not affect the support for more modern
targets.

For some systems, old versions of GNU binutils may also be useful, and are available
from ‘pub/binutils/old-releases’ on sources.redhat.com mirror sites.

Some of the information on specific systems above relates to such older systems, but
much of the information about GCC on such systems (which may no longer be applicable
to current GCC) is to be found in the GCC texinfo manual.

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate
copies of inlines, vtables and template instantiations will be discarded automatically.

56 Installing GCC

Chapter 10: Old installation documentation 57

10 Old installation documentation

Note most of this information is out of date and superseded by the previous chapters of this
manual. It is provided for historical reference only, because of a lack of volunteers to merge
it into the main manual.

Here is the procedure for installing GCC on a GNU or Unix system.
1. If you have chosen a configuration for GCC which requires other GNU tools (such as

GAS or the GNU linker) instead of the standard system tools, install the required tools
in the build directory under the names ‘as’, ‘ld’ or whatever is appropriate.
Alternatively, you can do subsequent compilation using a value of the PATH environment
variable such that the necessary GNU tools come before the standard system tools.

2. Specify the host, build and target machine configurations. You do this when you run
the ‘configure’ script.
The build machine is the system which you are using, the host machine is the system
where you want to run the resulting compiler (normally the build machine), and the
target machine is the system for which you want the compiler to generate code.
If you are building a compiler to produce code for the machine it runs on (a native
compiler), you normally do not need to specify any operands to ‘configure’; it will
try to guess the type of machine you are on and use that as the build, host and target
machines. So you don’t need to specify a configuration when building a native compiler
unless ‘configure’ cannot figure out what your configuration is or guesses wrong.
In those cases, specify the build machine’s configuration name with the ‘--host’ option;
the host and target will default to be the same as the host machine.
Here is an example:

./configure --host=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.
A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system ’. (The three parts may themselves contain dashes; ‘configure’
can figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’
specifies a Sun 3.
You can also replace parts of the configuration by nicknames or aliases. For example,
‘sun3’ stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3.
You can specify a version number after any of the system types, and some of the CPU
types. In most cases, the version is irrelevant, and will be ignored. So you might as
well specify the version if you know it.
See Section 10.1 [Configurations], page 57, for a list of supported configuration names
and notes on many of the configurations. You should check the notes in that section
before proceeding any further with the installation of GCC.

10.1 Configurations Supported by GCC

Here are the possible CPU types:
1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0,
hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000,

58 Installing GCC

m68k, m6811, m6812, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200,
mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, sparclite,
sparc64, v850, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are
used rather than the longer official names.

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds,
dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips,
motorola, ncr, next, ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom, wrs.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system ’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux,
dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux,
hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos,
nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv,
udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix.

You can omit the system type; then ‘configure’ guesses the operating system from the
CPU and company.

You can add a version number to the system type; this may or may not make a dif-
ference. For example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD.
In practice, the version number is most needed for ‘sysv3’ and ‘sysv4’, which are often
treated differently.

‘linux-gnu’ is the canonical name for the GNU/Linux target; however GCC will also
accept ‘linux’. The version of the kernel in use is not relevant on these systems. A suffix
such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed
versions are obsolete.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an
error message from ‘configure’, or it may ignore part of the information and do the best
it can with the rest. ‘configure’ always prints the canonical name for the alternative that
it used. GCC does not support all possible alternatives.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above,
is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when
the name is popularly used for a particular machine. Here is a table of the known machine
names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, mer-
lin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax,
powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4,
symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name. If you
want to install your own homemade configuration files, you can use ‘local’ as the company

Chapter 10: Old installation documentation 59

name to access them. If you use configuration ‘cpu-local’, the configuration name without
the cpu prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘m68k.md’, ‘local.h’, ‘m68k.c’,
‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the directory ‘config/m68k’.

60 Installing GCC

Chapter 10: GNU Free Documentation License 61

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

62 Installing GCC

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Chapter 10: GNU Free Documentation License 63

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

64 Installing GCC

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Chapter 10: GNU Free Documentation License 65

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

66 Installing GCC

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Chapter 10: GNU Free Documentation License 67

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

68 Installing GCC

