
GNU ed
The GNU line editor

for GNU ed version 0.5, 9 March 2007

by Andrew L. Moore and Antonio Diaz Diaz

Copyright c© 1993, 2006, 2007 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

i

Table of Contents

1 Overview . 2

2 Introduction to Line Editing 3

3 Invoking Ed . 7

4 Line Addressing . 8

5 Regular Expressions . 10

6 Commands . 12

7 Limitations . 16

8 Diagnostics . 17

1

Copyright c© 1993, 2006, 2007 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

Chapter 1: Overview 2

1 Overview

ed is a line-oriented text editor. It is used to create, display, modify and otherwise manip-
ulate text files. red is a restricted ed: it can only edit files in the current directory and
cannot execute shell commands.

If invoked with a file argument, then a copy of file is read into the editor’s buffer.
Changes are made to this copy and not directly to file itself. Upon quitting ed, any changes
not explicitly saved with a ‘w’ command are lost.

Editing is done in two distinct modes: command and input. When first invoked, ed is in
command mode. In this mode commands are read from the standard input and executed
to manipulate the contents of the editor buffer. A typical command might look like:

,s/old/new/g

which replaces all occurences of the string old with new.
When an input command, such as ‘a’ (append), ‘i’ (insert) or ‘c’ (change), is given,

ed enters input mode. This is the primary means of adding text to a file. In this mode,
no commands are available; instead, the standard input is written directly to the editor
buffer. A line consists of the text up to and including a 〈newline〉 character. Input mode is
terminated by entering a single period (‘.’) on a line.

All ed commands operate on whole lines or ranges of lines; e.g., the ‘d’ command deletes
lines; the ‘m’ command moves lines, and so on. It is possible to modify only a portion of a
line by means of replacement, as in the example above. However even here, the ‘s’ command
is applied to whole lines at a time.

In general, ed commands consist of zero or more line addresses, followed by a single
character command and possibly additional parameters; i.e., commands have the structure:

[address [,address]]command[parameters]

The addresses indicate the line or range of lines to be affected by the command. If fewer
addresses are given than the command accepts, then default addresses are supplied.

Chapter 2: Introduction to Line Editing 3

2 Introduction to Line Editing

ed was created, along with the Unix operating system, by Ken Thompson and Dennis
Ritchie. It is the refinement of its more complex, programmable predecessor, QED, to which
Thompson and Ritchie had already added pattern matching capabilities (see Chapter 5
[Regular Expressions], page 10).

For the purposes of this tutorial, a working knowledge of the Unix shell sh (see section
“Bash” in The GNU Bash Reference Manual) and the Unix file system is recommended,
since ed is designed to interact closely with them.

The principal difference between line editors and display editors is that display editors
provide instant feedback to user commands, whereas line editors require sometimes lengthy
input before any effects are seen. The advantage of instant feedback, of course, is that if a
mistake is made, it can be corrected immediately, before more damage is done. Editing in
ed requires more strategy and forethought; but if you are up to the task, it can be quite
efficient.

Much of the ed command syntax is shared with other Unix utilities.
As with the shell, 〈RETURN〉 (the carriage-return key) enters a line of input. So when

we speak of “entering” a command or some text in ed, 〈RETURN〉 is implied at the end
of each line. Prior to typing 〈RETURN〉, corrections to the line may be made by typing
either 〈BACKSPACE〉 (sometimes labeled 〈DELETE〉 or 〈DEL〉) to erase characters backwards, or
〈CONTROL〉-u (i.e., hold the CONTROL key and type u) to erase the whole line.

When ed first opens, it expects to be told what to do but doesn’t prompt us like the
shell. So let’s begin by telling ed to do so with the 〈P〉 (prompt) command:

$ ed
P
*

By default, ed uses asterisk (‘*’) as command prompt to avoid confusion with the shell
command prompt (‘$’).

We can run Unix shell (sh) commands from inside ed by prefixing them with 〈!〉 (excla-
mation mark, aka “bang”). For example:

*!date
Mon Jun 26 10:08:41 PDT 2006
!
*!for s in hello world; do echo $s; done
hello
world
!
*

So far, this is no different from running commands in the Unix shell. But let’s say we
want to edit the output of a command, or save it to a file. First we must capture the
command output to a temporary location called a buffer where ed can access it. This is
done with ed’s 〈r〉 command (mnemonic: read):

*r !cal
143

Chapter 2: Introduction to Line Editing 4

*

Here ed is telling us that it has just read 139 characters into the editor buffer - i.e., the
output of the cal command, which prints a simple ASCII calendar. To display the buffer
contents we issue the 〈p〉 (print) command (not to be confused with the prompt command,
which is uppercase!). To indicate the range of lines in the buffer that should be printed, we
prefix the command with 〈,〉 (comma) which is shorthand for “the whole buffer”:

*,p
September 2006

Mo Tu We Th Fr Sa Su
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

*

Now let’s write the buffer contents to a file named junk with the 〈w〉 (write) command.
Again, we use the 〈,〉 prefix to indicate that it’s the whole buffer we want:

*,w junk
143
*

Need we say? It’s good practice to frequently write the buffer contents, since unwritten
changes to the buffer will be lost when we exit ed.

The sample sessions below illustrate some basic concepts of line editing with ed. We
begin by creating a file, ‘sonnet’, with some help from Shakespeare. As with the shell, all
input to ed must be followed by a 〈newline〉 character. Comments begin with a ‘#’.

$ ed
The ‘a’ command is for appending text to the editor buffer.
a
No more be grieved at that which thou hast done.
Roses have thorns, and filvers foutians mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
.
Entering a single period on a line returns ed to command mode.
Now write the buffer to the file ‘sonnet’ and quit:
w sonnet
183
ed reports the number of characters written.
q
$ ls -l
total 2
-rw-rw-r-- 1 alm 183 Nov 10 01:16 sonnet
$

In the next example, some typos are corrected in the file ‘sonnet’.

Chapter 2: Introduction to Line Editing 5

$ ed sonnet
183
Begin by printing the buffer to the terminal with the ‘p’ command.
The ‘,’ means ‘‘all lines.’’
,p
No more be grieved at that which thou hast done.
Roses have thorns, and filvers foutians mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
Select line 2 for editing.
2
Roses have thorns, and filvers foutians mud.
Use the substitute command, ‘s’, to replace ‘filvers’ with ‘silver’,
and print the result.
s/filvers/silver/p
Roses have thorns, and silver foutians mud.
And correct the spelling of ‘fountains’.
s/utia/untai/p
Roses have thorns, and silver fountains mud.
w sonnet
183
q
$

Since ed is line-oriented, we have to tell it which line, or range of lines we want to edit.
In the above example, we do this by specifying the line’s number, or sequence in the buffer.
Alternatively, we could have specified a unique string in the line, e.g., ‘/filvers/’, where
the ‘/’s delimit the string in question. Subsequent commands affect only the selected line,
a.k.a. the current line. Portions of that line are then replaced with the substitute command,
whose syntax is ‘s/old/new/’.

Although ed accepts only one command per line, the print command ‘p’ is an exception,
and may be appended to the end of most commands.

In the next example, a title is added to our sonnet.
$ ed sonnet
183
a
Sonnet #50
.
,p
No more be grieved at that which thou hast done.
Roses have thorns, and silver fountains mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
Sonnet #50
The title got appended to the end; we should have used ‘0a’
to append ‘‘before the first line.’’
Move the title to its proper place.

Chapter 2: Introduction to Line Editing 6

5m0p
Sonnet #50
The title is now the first line, and the current line has been
set to this line as well.
,p
Sonnet #50
No more be grieved at that which thou hast done.
Roses have thorns, and silver fountains mud.
Clouds and eclipses stain both moon and sun,
And loathsome canker lives in sweetest bud.
wq sonnet
195
$

When ed opens a file, the current line is initially set to the last line of that file. Similarly,
the move command ‘m’ sets the current line to the last line moved.

In summary:
Structurally, Related programs or routines are vi (1), sed (1), regex (3), sh (1).

Relevant documents are:
Unix User’s Manual Supplementary Documents: 12 — 13
B. W. Kernighan and P. J. Plauger: “Software Tools in Pascal”, Addison-
Wesley, 1981.

Chapter 3: Invoking Ed 7

3 Invoking Ed

The format for running ed is:
ed [options] [file]
red [options] [file]

file specifies the name of a file to read. If file is prefixed with a bang (!), then it is
interpreted as a shell command. In this case, what is read is the standard output of file
executed via sh (1). To read a file whose name begins with a bang, prefix the name with
a backslash (\). The default filename is set to file only if it is not prefixed with a bang.

ed supports the following options:

--help
-h Print an informative help message describing the options and exit.

--version
-V Print the version number of ed on the standard output and exit.

--loose-exit-status
-l Do not exit with bad status if a command happens to "fail" (for example if a

substitution command finds nothing to replace). This can be useful when ed is
invoked as the editor for crontab.

--prompt=string
-p string

Specifies a command prompt. This may be toggled on and off with the ‘P’
command.

--quiet
--silent
-s Suppresses diagnostics. This should be used if ed’s standard input is from a

script.

--traditional
-G Forces backwards compatibility. This affects the behavior of the ed commands

‘G’, ‘V’, ‘f’, ‘l’, ‘m’, ‘t’ and ‘!!’. If the default behavior of these commands does
not seem familiar, then try invoking ed with this switch.

--verbose
-v Verbose mode. This may be toggled on and off with the ‘H’ command.

Chapter 4: Line Addressing 8

4 Line Addressing

An address represents the number of a line in the buffer. ed maintains a current address
which is typically supplied to commands as the default address when none is specified.
When a file is first read, the current address is set to the last line of the file. In general, the
current address is set to the last line affected by a command.

A line address is constructed from one of the bases in the list below, optionally followed
by a numeric offset. The offset may include any combination of digits, operators (i.e., ‘+’
and ‘-’) and whitespace. Addresses are read from left to right, and their values may be
absolute or relative to the current address.

One exception to the rule that addresses represent line numbers is the address ‘0’ (zero).
This means “before the first line,” and is valid wherever it makes sense.

An address range is two addresses separated either by a comma or semicolon. The value
of the first address in a range cannot exceed the value of the the second. If only one address
is given in a range, then the second address is set to the given address. If an n-tuple of
addresses is given where n > 2, then the corresponding range is determined by the last two
addresses in the n-tuple. If only one address is expected, then the last address is used.

Each address in a comma-delimited range is interpreted relative to the current address.
In a semicolon-delimited range, the first address is used to set the current address, and the
second address is interpreted relative to the first.

The following address symbols are recognized.

. The current line (address) in the buffer.

$ The last line in the buffer.

n The nth, line in the buffer where n is a number in the range ‘0,$’.

+ The next line. This is equivalent to ‘+1’ and may be repeated with cumulative
effect.

- The previous line. This is equivalent to ‘-1’ and may be repeated with cumu-
lative effect.

+n
whitespace n

The nth next line, where n is a non-negative number. Whitespace followed by
a number n is interpreted as ‘+n ’.

-n The nth previous line, where n is a non-negative number.

, The first through last lines in the buffer. This is equivalent to the address range
‘1,$’.

; The current through last lines in the buffer. This is equivalent to the address
range ‘.,$’.

/re/ The next line containing the regular expression re. The search wraps to the
beginning of the buffer and continues down to the current line, if necessary. ‘//’
repeats the last search.

Chapter 4: Line Addressing 9

?re? The previous line containing the regular expression re. The search wraps to the
end of the buffer and continues up to the current line, if necessary. ‘??’ repeats
the last search.

’x The apostrophe-x character pair addresses the line previously marked by a ‘k’
(mark) command, where ‘x’ is a lower case letter from the portable character
set.

Chapter 5: Regular Expressions 10

5 Regular Expressions

Regular expressions are patterns used in selecting text. For example, the ed command
g/string/

prints all lines containing string. Regular expressions are also used by the ‘s’ command for
selecting old text to be replaced with new text.

In addition to a specifying string literals, regular expressions can represent classes of
strings. Strings thus represented are said to be matched by the corresponding regular
expression. If it is possible for a regular expression to match several strings in a line, then
the left-most longest match is the one selected.

The following symbols are used in constructing regular expressions:

c Any character c not listed below, including ‘{’, ‘}’, ‘(’, ‘)’, ‘<’ and ‘>’, matches
itself.

\c Any backslash-escaped character c, other than ‘{’, “}’, ‘(’, ‘)’, ‘<’, ‘>’, ‘b’, ‘B’,
‘w’, ‘W’, ‘+’ and ‘?’, matches itself.

. Matches any single character.

[char-class]
Matches any single character in char-class. To include a ‘]’ in char-class, it must
be the first character. A range of characters may be specified by separating
the end characters of the range with a ‘-’, e.g., ‘a-z’ specifies the lower case
characters. The following literal expressions can also be used in char-class to
specify sets of characters:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

If ‘-’ appears as the first or last character of char-class, then it matches itself.
All other characters in char-class match themselves.
Patterns in char-class of the form:

[.col-elm.]
[=col-elm=]

where col-elm is a collating element are interpreted according to locale (5).
See regex (3) for an explanation of these constructs.

[^char-class]
Matches any single character, other than newline, not in char-class. char-class
is defined as above.

^ If ‘^’ is the first character of a regular expression, then it anchors the regular
expression to the beginning of a line. Otherwise, it matches itself.

$ If ‘$’ is the last character of a regular expression, it anchors the regular expres-
sion to the end of a line. Otherwise, it matches itself.

\(re\) Defines a (possibly null) subexpression re. Subexpressions may be nested. A
subsequent backreference of the form ‘\n ’, where n is a number in the range

Chapter 5: Regular Expressions 11

[1,9], expands to the text matched by the nth subexpression. For example, the
regular expression ‘\(a.c\)\1’ matches the string ‘abcabc’, but not ‘abcadc’.
Subexpressions are ordered relative to their left delimiter.

* Matches the single character regular expression or subexpression immediately
preceding it zero or more times. If ‘*’ is the first character of a regular ex-
pression or subexpression, then it matches itself. The ‘*’ operator sometimes
yields unexpected results. For example, the regular expression ‘b*’ matches the
beginning of the string ‘abbb’, as opposed to the substring ‘bbb’, since a null
match is the only left-most match.

\{n,m\}
\{n,\}
\{n\} Matches the single character regular expression or subexpression immediately

preceding it at least n and at most m times. If m is omitted, then it matches
at least n times. If the comma is also omitted, then it matches exactly n times.
If any of these forms occurs first in a regular expression or subexpression, then
it is interpreted literally (i.e., the regular expression ‘\{2\}’ matches the string
‘{2}’, and so on).

\<
\> Anchors the single character regular expression or subexpression immediately

following it to the beginning (in the case of ‘\<’) or ending (in the case of ‘\>’) of
a word, i.e., in ASCII, a maximal string of alphanumeric characters, including
the underscore ().

The following extended operators are preceded by a backslash ‘\’ to distinguish them
from traditional ed syntax.

\‘
\’ Unconditionally matches the beginning ‘\‘’ or ending ‘\’’ of a line.

\? Optionally matches the single character regular expression or subexpression im-
mediately preceding it. For example, the regular expression ‘a[bd]\?c’ matches
the strings ‘abc’, ‘adc’ and ‘ac’. If ‘\?’ occurs at the beginning of a regular
expressions or subexpression, then it matches a literal ‘?’.

\+ Matches the single character regular expression or subexpression immediately
preceding it one or more times. So the regular expression ‘a+’ is shorthand for
‘aa*’. If ‘\+’ occurs at the beginning of a regular expression or subexpression,
then it matches a literal ‘+’.

\b Matches the beginning or ending (null string) of a word. Thus the regular
expression ‘\bhello\b’ is equivalent to ‘\<hello\>’. However, ‘\b\b’ is a valid
regular expression whereas ‘\<\>’ is not.

\B Matches (a null string) inside a word.

\w Matches any character in a word.

\W Matches any character not in a word.

Chapter 6: Commands 12

6 Commands

All ed commands are single characters, though some require additonal parameters. If a
command’s parameters extend over several lines, then each line except for the last must be
terminated with a backslash (‘\’).

In general, at most one command is allowed per line. However, most commands accept
a print suffix, which is any of ‘p’ (print), ‘l’ (list), or ‘n’ (enumerate), to print the last line
affected by the command.

An interrupt (typically 〈Control-C〉) has the effect of aborting the current command and
returning the editor to command mode.

ed recognizes the following commands. The commands are shown together with the
default address or address range supplied if none is specified (in parenthesis).

(.)a Appends text to the buffer after the addressed line, which may be the address
‘0’ (zero). Text is entered in input mode. The current address is set to last line
entered.

(.,.)c Changes lines in the buffer. The addressed lines are deleted from the buffer,
and text is appended in their place. Text is entered in input mode. The current
address is set to last line entered.

(.,.)d Deletes the addressed lines from the buffer. If there is a line after the deleted
range, then the current address is set to this line. Otherwise the current address
is set to the line before the deleted range.

e file Edits file, and sets the default filename. If file is not specified, then the default
filename is used. Any lines in the buffer are deleted before the new file is read.
The current address is set to the last line read.

e !command
Edits the standard output of ‘!command ’, (see the ‘!’ command below). The
default filename is unchanged. Any lines in the buffer are deleted before the
output of command is read. The current address is set to the last line read.

E file Edits file unconditionally. This is similar to the ‘e’ command, except that
unwritten changes are discarded without warning. The current address is set
to the last line read.

f file Sets the default filename to file. If file is not specified, then the default un-
escaped filename is printed.

(1,$)g /re/command-list
Global command. Applies command-list to each of the addressed lines matching
a regular expression re. The current address is set to the line currently matched
before command-list is executed. At the end of the ‘g’ command, the current
address is set to the last line affected by command-list.
At least the first command of command-list must appear on the same line as the
‘g’ command. All lines of a multi-line command-list except the last line must
be terminated with a backslash (‘\’). Any commands are allowed, except for
‘g’, ‘G’, ‘v’, and ‘V’. By default, a newline alone in command-list is equivalent

Chapter 6: Commands 13

to a ‘p’ command. If ed is invoked with the command-line option ‘-G’, then a
newline in command-list is equivalent to a ‘.+1p’ command.

(1,$)G /re/
Interactive global command. Interactively edits the addressed lines matching a
regular expression re. For each matching line, the line is printed, the current
address is set, and the user is prompted to enter a command-list. At the end
of the ‘G’ command, the current address is set to the last line affected by (the
last) command-list.

The format of command-list is the same as that of the ‘g’ command. A new-
line alone acts as a null command list. A single ‘&’ repeats the last non-null
command list.

H Toggles the printing of error explanations. By default, explanations are not
printed. It is recommended that ed scripts begin with this command to aid in
debugging.

h Prints an explanation of the last error.

(.)i Inserts text in the buffer before the current line. The address ‘0’ (zero) is valid
for this command; it is equivalent to address ‘1’. Text is entered in input mode.
The current address is set to the last line entered.

(.,.+1)j Joins the addressed lines. The addressed lines are deleted from the buffer and
replaced by a single line containing their joined text. The current address is set
to the resultant line.

(.)kx Marks a line with a lower case letter ‘x’. The line can then be addressed as ‘’x’
(i.e., a single quote followed by ‘x’) in subsequent commands. The mark is not
cleared until the line is deleted or otherwise modified.

(.,.)l Prints the addressed lines unambiguously. The end of each line is marked with a
‘$’, and every ‘$’ character within the text is printed with a preceding backslash.
The current address is set to the last line printed.

(.,.)m(.)
Moves lines in the buffer. The addressed lines are moved to after the right-hand
destination address, which may be the address ‘0’ (zero). The current address
is set to the last line moved.

(.,.)n Prints the addressed lines, preceding each line by its line number and a 〈tab〉.
The current address is set to the last line printed.

(.,.)p Prints the addressed lines. The current address is set to the last line printed.

P Toggles the command prompt on and off. Unless a prompt is specified with
command-line option ‘-p’, the command prompt is by default turned off.

q Quits ed.

Q Quits ed unconditionally. This is similar to the q command, except that un-
written changes are discarded without warning.

Chapter 6: Commands 14

($)r file

Reads file to after the addressed line. If file is not specified, then the default
filename is used. If there is no default filename prior to the command, then
the default filename is set to file. Otherwise, the default filename is unchanged.
The current address is set to the last line read.

($)r !command
Reads to after the addressed line the standard output of ‘!command’, (see the
‘!’ command below). The default filename is unchanged. The current address
is set to the last line read.

(.,.)s /re/replacement/
(.,.)s /re/replacement/g
(.,.)s /re/replacement/n

Replaces text in the addressed lines matching a regular expression re with
replacement. By default, only the first match in each line is replaced. If the ‘g’
(global) suffix is given, then every match is replaced. The n suffix, where n is a
postive number, causes only the nth match to be replaced. It is an error if no
substitutions are performed on any of the addressed lines. The current address
is set the last line affected.
re and replacement may be delimited by any character other than 〈space〉 and
〈newline〉 (see the ‘s’ command below). If one or two of the last delimiters is
omitted, then the last line affected is printed as if the print suffix ‘p’ were
specified.
An unescaped ‘&’ in replacement is replaced by the currently matched text. The
character sequence ‘\m ’ where m is a number in the range [1,9], is replaced by
the mth backreference expression of the matched text. If replacement consists
of a single ‘%’, then replacement from the last substitution is used. Newlines
may be embedded in replacement if they are escaped with a backslash (‘\’).

(.,.)s Repeats the last substitution. This form of the ‘s’ command accepts a count
suffix n, or any combination of the characters ‘r’, ‘g’, and ‘p’. If a count suffix
n is given, then only the nth match is replaced. The ‘r’ suffix causes the
regular expression of the last search to be used instead of the that of the last
substitution. The ‘g’ suffix toggles the global suffix of the last substitution. The
‘p’ suffix toggles the print suffix of the last substitution The current address is
set to the last line affected.

(.,.)t(.)
Copies (i.e., transfers) the addressed lines to after the right-hand destination
address, which may be the address ‘0’ (zero). The current address is set to the
last line copied.

u Undoes the last command and restores the current address to what it was before
the command. The global commands ‘g’, ‘G’, ‘v’, and ‘V’ are treated as a single
command by undo. ‘u’ is its own inverse.

(1,$)v /re/command-list
This is similar to the ‘g’ command except that it applies command-list to each
of the addressed lines not matching the regular expression re.

Chapter 6: Commands 15

(1,$)V /re/
This is similar to the ‘G’ command except that it interactively edits the ad-
dressed lines not matching the regular expression re.

(1,$)w file

Writes the addressed lines to file. Any previous contents of file is lost without
warning. If there is no default filename, then the default filename is set to file,
otherwise it is unchanged. If no filename is specified, then the default filename
is used. The current address is unchanged.

(1,$)w !command
Writes the addressed lines to the standard input of ‘!command ’, (see the ‘!’
command below). The default filename and current address are unchanged.

(1,$)wq file

Writes the addressed lines to file, and then executes a ‘q’ command.

(1,$)W file

Appends the addressed lines to the end of file. This is similar to the ‘w’ com-
mand, expect that the previous contents of file is not clobbered. The current
address is unchanged.

(.)x Copies (puts) the contents of the cut buffer to after the addressed line. The
current address is set to the last line copied.

(.,.)y Copies (yanks) the addressed lines to the cut buffer. The cut buffer is over-
written by subsequent ‘y’, ‘s’, ‘j’, ‘d’, or ‘c’ commands. The current address is
unchanged.

(.+1)z n Scrolls n lines at a time starting at addressed line. If n is not specified, then the
current window size is used. The current address is set to the last line printed.

!command Executes command via sh (1). If the first character of command is ‘!’, then it
is replaced by text of the previous ‘!command ’. ed does not process command
for backslash (‘\’) escapes. However, an unescaped ‘%’ is replaced by the default
filename. When the shell returns from execution, a ‘!’ is printed to the standard
output. The current line is unchanged.

(.,.)# Begins a comment; the rest of the line, up to a newline, is ignored. If a line
address followed by a semicolon is given, then the current address is set to that
address. Otherwise, the current address is unchanged.

($)= Prints the line number of the addressed line.

(.+1)〈newline〉
An address alone prints the addressed line. A 〈newline〉 alone is equivalent to
‘+1p’. the current address is set to the address of the printed line.

Chapter 7: Limitations 16

7 Limitations

If the terminal hangs up, ed attempts to write the buffer to file ‘ed.hup’.
ed processes file arguments for backslash escapes, i.e., in a filename, any characters

preceded by a backslash (‘\’) are interpreted literally.
If a text (non-binary) file is not terminated by a newline character, then ed appends

one on reading/writing it. In the case of a binary file, ed does not append a newline on
reading/writing.

Per line overhead: 4 ints.

Chapter 8: Diagnostics 17

8 Diagnostics

When an error occurs, if ed’s input is from a regular file or here document, then it exits,
otherwise it prints a ‘?’ and returns to command mode. An explanation of the last error
can be printed with the ‘h’ (help) command.

If the ‘u’ (undo) command occurs in a global command list, then the command list is
executed only once.

Attempting to quit ed or edit another file before writing a modified buffer results in an
error. If the command is entered a second time, it succeeds, but any changes to the buffer
are lost.

ed exits with 0 if no errors occurred; otherwise >0.

	Overview
	Introduction to Line Editing
	Invoking Ed
	Line Addressing
	Regular Expressions
	Commands
	Limitations
	Diagnostics

