An Interactive Adventure Game Engine Built Using Pyparsing Page 1 of 8

An Interactive Adventure Game Engine Built Using
Pyparsing

Author: Paul McGuire <ptmcg @austin.rr.com>
Version: 1.1

Agenda

e Two Kinds of Parsing Applications
Pyparsing Grammar Definition
Merge Command Interpreter with Parser
Game Engine Grammar
Pyparsing BNF Definition
Finishing Up the Game

o Define Rooms

o Define Items

o Put Items in Rooms
e Running the Game
e Sample Session
¢ Finishing Touches

Two Kinds of Parsing Applications

Design-driven:

language —-> BNF -> parser impl ——+->
concept ~ |
| refine/extend |
+-—-— language ——+

Data-driven:

gather determine
sample -> text -> BNF -> parser ———+->
inputs patterns |
~ gather new |
t——— (non-conforming) ———+

inputs

Pyparsing Grammar Definition

At startup, user program defines the pyparsing grammar, by building up expressions that comprise the supported
application grammar

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 2 of 8

Basic building blocks are Literals and Words
Basics are combined using And, Or, MatchFirst operations
e pyparsing defines operators '+', "N, 'I' to simplify this step, and make the code more readable

oneOf("red green blue") is a short-cut for:

Literal("red") | Literal ("green") | Literal("blue")

Pyparsing '"Hello World"'

Compose grammar:

greeting = oneOf ("Hello Ahoy Yo Hi") +

Literal(",") +
Word(string.uppercase, string.lowercase) +
Literal("!")

Call parseString():

print greeting.parseString("Hello, World!")
print greeting.parseString("Ahoy, Matey !")
print greeting.parseString("Yo,Adrian!")
['Hello', ', ', 'World', '!']

[lAhoyl, l,l, 'Matey', l!l]

['"Yo', ',', 'Adrian', '!']

Pyparsing Grammar Definition (2)

Pyparsing grammar elements can be given results names
At runtime, the matched tokens are assigned these results names

The individual tokens can be retrieved by name from the parsed results:

greeting = oneOf ("Hello Ahoy Yo Hi").setResultsName ("greeting") +

Literal(",") +
Word(string.uppercase,
string.lowercase).setResultsName ("subject") +
Literal("!")
results = greeting.parseString("Yo,Adrian!")
print results.greeting # prints 'Yo'
print results.subject # prints 'Adrian'

We'll use this feature to access command qualifiers

Pyparsing Grammar Definition (3)

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing

Page 3 of 8

Pyparsing grammar elements can keep references to callbacks or "parse actions", executed when a particular

grammar element is parsed from the input string
Parse actions are called with 3 arguments:
¢ the complete input string
o the starting location of the matching text
o the list of tokens found in the input text matching the expression
A parse action can modify the matched tokens by returning a value:
o returned value replaces the matched tokens in the parsed results data

o returned value does not have to be a string
o if no value is returned, tokens are not modified

Merge Command Interpreter with Parser

Define grammar expression for each command

Create command processor class, inherit from base Command class
Attach command processor to grammar expression, using parse action
Compose command parser from Or of all grammar expressions

At runtime:

while not game over:
prompt for command string
parse command string, Command subclass is returned
perform Command

Game Engine Grammar

Commands:

— INVENTORY or INV or I - lists what items you have
— DROP or LEAVE <objectname> - drop an object
— TAKE or PICKUP or PICK UP <objectname> - pick up an object

— USE or U <objectname> [IN or ON <objectname>] - use an
object, optionally IN or ON another object
- OPEN or O <objectname> - open an object

- MOVE or GO - go NORTH, SOUTH, EAST, or WEST
(can abbreviate as 'GO N' and 'GO W', or even just 'E' and 'S'")
— LOOK or L - describes the current room and any objects in it
— DOORS - display what doors are visible from this room
— QUIT or Q - ends the game
— HELP or H or ? - displays this help message

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%?20pr...

3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 4 of 8

Pyparsing BNF Definition

Define verbs for each command:

invVerb = oneOf ("INV INVENTORY I", caseless=True)
dropVerb = oneOf ("DROP LEAVE", caseless=True)

takeVerb = oneOf ("TAKE PICKUP", caseless=True) | \
(CaselessLiteral ("PICK") + CaselessLiteral ("UP"))

moveVerb = oneOf ("MOVE GO", caseless=True) | empty

useVerb = oneOf ("USE U", caseless=True)

openVerb = oneOf ("OPEN O", caseless=True)

quitVerb = oneOf ("QUIT Q", caseless=True)
lookVerb = oneOf ("LOOK L", caseless=True)
doorsVerb = CaselessLiteral ("DOORS")
helpVerb = oneOf ("H HELP ?",caseless=True)

Pyparsing BNF Definition (2)

itemRef = OneOrMore (Word(alphas)) .setParseAction(self.validateItemName)
nDir = oneOf ("N NORTH", caseless=True) .setParseAction (replaceWith ("N"))
sDir = oneOf ("S SOUTH", caseless=True) .setParselAction(replaceWith ("s"))
eDir = oneOf("E EAST",caseless=True) .setParseAction(replaceWith("E"))
wDir = oneOf ("W WEST",caseless=True) .setParseAction(replaceWith ("W"))
moveDirection = nDir | sDir | eDir | wDir

invCommand = invVerb

dropCommand = dropVerb + itemRef.setResultsName("item")
takeCommand = takeVerb + itemRef.setResultsName ("item")

useCommand = useVerb + itemRef.setResultsName ("usedObj") + \

Optional (oneOf ("IN ON", caseless=True)) + \

Optional (itemRef,default=None) .setResultsName ("targetObj")
openCommand = openVerb + itemRef.setResultsName ("item")
moveCommand = moveVerb + moveDirection.setResultsName ("direction")
quitCommand = quitVerb

lookCommand = lookVerb
doorsCommand = doorsVerb
helpCommand = helpVerb

Pyparsing BNF Definition (3)

Base Command class:

class Command (object) :
"Base class for commands"
def __init__ (self, verb, verbProg):
self.verb = verb
self.verbProg = verbProg

@staticmethod
def helpDescription():

return ""

def _doCommand(self, player):

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 5 of 8

pass

def __call__ (self, player):
print self.verbProg.capitalize()+"...
self._doCommand(player)

Pyparsing BNF Definition (4)

class InventoryCommand (Command) :
def __init__ (self, quals):
super (InventoryCommand, self) ._ _init_ ("INV", "taking inventory")

@staticmethod
def helpDescription():
return "INVENTORY or INV or I - lists what items you have"

def _doCommand(self, player):

Q

print "You have %s." % enumerateltems(player.inv)

def makeCommandParseAction(self, cls):
def cmdParseAction(s,1l,t):
return cls(t)
return cmdParseAction

invCommand.setParselAction(self.makeCommandParseAction(InventoryCommand))

dropCommand.setParseAction(self.makeCommandParseAction(DropCommand))

takeCommand.setParseAction(self.makeCommandParseAction(TakeCommand))
etc.

Pyparsing BNF Definition (5)

class TakeCommand (Command) :
def __init__ (self, quals):

super (TakeCommand, self).__init__ ("TAKE", "taking")
self.subject = quals["item"]
@staticmethod

def helpDescription():
return "TAKE or PICKUP or PICK UP - pick up an object (but some are deadly)"

def _doCommand(self, player):
rm = player.room
subj = Item.items[self.subject]
if subj in rm.inv and subj.isVisible:
if subj.isTakeable:
rm.removeltem (subj)
player.take (subj)
else:
print "You can't take that!"
else:
print "There is no %s here." % subj

Pyparsing BNF Definition (6)

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 6 of 8

Complete game grammar - Or of all defined commands:

return (invCommand |
useCommand |
openCommand |
dropCommand |
takeCommand |
moveCommand |
lookCommand |
doorsCommand |
helpCommand |
quitCommand) .setResultsName ("command") + LineEnd()

Define Rooms

roomMap = """ # define global variables for referencing rooms
d-7Z frontPorch = rooms["A"]
| garden = rooms["b"]
f-c-e kitchen = rooms["c"]
| backPorch = rooms["d"]
a<b library = rooms["e"]
| patio = rooms ["f"]
A
nmmnn
rooms = createRooms(roomMap)
rooms ["A"] .desc = "You are standing at the front door."
rooms ["b"] .desc = "You are in a garden."
rooms ["c"].desc = "You are in a kitchen."
rooms ["d"].desc = "You are on the back porch."
rooms["e"].desc = "You are in a library."
rooms["f"].desc = "You are on the patio."
rooms ["g"] .desc = "You are sinking in quicksand. You're dead..."
rooms ["g"] .gameOver = True

Define Items

create items
itemNames = """sword.diamond.apple.flower.coin.n
shovel.book.mirror.telescope.gold bar""".split(".")
for itemName in itemNames:

Item ctor also updates class dict of all items by name

Item(itemName)

ITtem.items["apple"].isDeadly = True

Item.items["mirror"].isFragile = True
Item.items["coin"].isVisible = False
Item.items["shovel"] .usableConditionTest = (lambda p,t: p.room is garden)
def useShovel (p, subj, target) :

coin = Item.items["coin"]

if not coin.isVisible and coin in p.room.inv:

coin.isVisible = True

Item.items["shovel"] .useAction = useShovel

OpenablelItem("treasure chest", Item.items["gold bar"])

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 7 of 8

Put Items in Rooms

putItemInRoom ("diamond", backPorch)
putItemInRoom

putItemInRoom("shovel", frontPorch)
putItemInRoom("coin", garden)
putItemInRoom("flower", garden)
putItemInRoom ("apple", library)
putItemInRoom("mirror", library)
putItemInRoom("telescope", library)
putItemInRoom("book", kitchen)

(

(

"treasure chest", patio)

Running the Game

def playGame (p, startRoom) :
create parser
parser = Parser ()
p.moveTo(startRoom)
while not p.gameOver:
cmdstr = raw_input(">> ")
cmd = parser.parseCmd(cmdstr)
if cmd is not None:
cmd.command(p)
print
print "You ended the game with:"
for i in p.inv:

print " -", aOrAn(i), 1

create player
plyr = Player ("Bob")
plyr.take(Item.items["sword"])

start game
playGame (plyr, frontPorch)

Sample Session

You are standing at the front door.
There is a shovel here.

>> take shovel

Taking...

>> n

Moving. ..

You are in a garden.

There is a flower here.

>> use fhovel

No such item 'fhovel'.

>> use shovel

Using...

>> 1

Looking...

You are in a garden.

There are a coin and a flower here.
>> take flower

Taking...

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

An Interactive Adventure Game Engine Built Using Pyparsing Page 8 of 8

>> take coin
Taking...

Sample Session

>> i

Taking inventory...

You have a sword, a shovel, a flower, and a coin.
>> doors

Looking for doors...

There are doors to the north, south, and west.
>> w

Moving. ..

You are sinking in quicksand. You're dead...
There is nothing here.

Game over'!

You ended the game with:
sword

shovel

flower

coin

[URNU U]

Finishing Touches

Save game / load game

Fold globals into Game class instance
Mapping

Documentation

Current Code

file://C:\Documents%20and%20Settings\Paul\My%20Documents\PPPiP\PyCon%202006%20-%20pr... 3/27/2006

