
Nuitka User Manual
Overview
This document is the recommended first read if you are interested in using Nuitka, understand its use
cases, check what you can expect, license, requirements, credits, etc.

Nuitka is the Python compiler. It is written in Python. It is a seamless replacement or extension to the
Python interpreter and compiles every construct that CPython 2.6, 2.7, 3.3, 3.4, 3.5, 3.6, and 3.7 have,
when itself run with that Python version.

It then executes uncompiled code and compiled code together in an extremely compatible manner.

You can use all Python library modules and all extension modules freely.

It translates the Python into a C level program that then uses libpython and a few C files of its own to
execute in the same way as CPython does. All optimization is aimed at avoiding overhead, where it's
unnecessary. None is aimed at removing compatibility, although slight improvements will occasionally be
done, where not every bug of standard Python is emulated, e.g. more complete error messages are given,
but there is a full compatibility mode to disable even that.

Usage
Requirements

• C Compiler: You need a compiler with support for C11 or alternatively for C++03 1

Currently this means, you need to use one of these compilers:

• The gcc compiler of at least version 5.1, or the g++ compiler of at least version 4.4 as an
alternative.

• The clang compiler on macOS X or FreeBSD.

• The MinGW64 2 C11 compiler on Windows, ideally the one based on gcc 6 or higher. The
Anaconda compilers 3 are suitable too, even if you use CPython, they are the easiest
installation method.

• Visual Studio 2017 or higher on Windows 4, older versions may work but are not officially
supported. Configure to use the English language pack for best results (Nuitka filters away
garbage outputs, but only for that language).

• On Windows the clang-cl compiler on Windows can be used if provided if you use the CC
environment variable to point to it, and you also have MSVC installed.

• Python: Version 2.6, 2.7 or 3.3, 3.4, 3.5, 3.6, 3.7

Python3, but for 3.3, and 3.4 and only those versions, we need other
Python versions as a compile time dependency

Nuitka itself is fully compatible with all mentioned versions, Scons as as an internally used
tool is not.

For these versions, you need a Python2 or Python 3.5 or higher installed as well, but only
during the compile time only. That is for use with Scons (which orchestrates the C
compilation), which does not support the same Python versions as Nuitka.

Moving binaries to other machines

The created binaries can be made executable independent of the Python installation, with
--standalone option.

Binary filename suffix

The created binaries have an .exe suffix on Windows. On other platforms they have no
suffix for standalone mode, or .bin suffix, that you are free to remove or change, or specify
with the -o option.

The suffix for acceleration mode is added just to be sure that the original script name and the
binary name do not ever collide, so we can safely do an overwrite without destroying the
original source file.

It has to be CPython, Anaconda or Miniconda Python.

You need the standard Python implementation, called "CPython", to execute Nuitka, because
it is closely tied to implementation details of it.

On Windows, for Python not installed system-wide and acceleration mode, you need to copy
the PythonXX.DLL alongside it, something Nuitka does automatically.

It has to be CPython, AnaConda or MiniConda Python.

It is known that macOS "pyenv" does not work.

• Operating System: Linux, FreeBSD, NetBSD, macOS X, and Windows (32/64 bits).

Others may work as well. The portability is expected to be generally good, but the e.g. Scons usage
may have to be adapted. Make sure to match Windows Python and C compiler architecture, or else
you will get cryptic error messages.

• Architectures: x86, x86_64 (amd64), and arm, likely many more

Other architectures are expected to also work, out of the box, as Nuitka is generally not using any
hardware specifics. These are just the ones tested and known to be good. Feedback is welcome.
Generally, the architectures that Debian supports can be considered good and tested too.

Command Line
The recommended way of executing Nuitka is <the_right_python> -m nuitka to be absolutely
certain which Python interpreter you are using, so it is easier to match with what Nuitka has.

The next best way of executing Nuitka bare that is from a source checkout or archive, with no environment
variable changes, most noteworthy, you do not have to mess with PYTHONPATH at all for Nuitka. You just

execute the nuitka and nuitka-run scripts directly without any changes to the environment. You may
want to add the bin directory to your PATH for your convenience, but that step is optional.

Moreover, if you want to execute with the right interpreter, in that case, be sure to execute
<the_right_python> bin/nuitka and be good.

Pick the right Interpreter

If you encounter a SyntaxError you absolutely most certainly have picked the wrong
interpreter for the program you are compiling.

Nuitka has a --help option to output what it can do:

nuitka --help

The nuitka-run command is the same as nuitka, but with a different default. It tries to compile and
directly execute a Python script:

nuitka-run --help

This option that is different is --run, and passing on arguments after the first non-option to the created
binary, so it is somewhat more similar to what plain python will do.

Installation
For most systems, there will be packages on the download page of Nuitka. But you can also install it from
source code as described above, but also like any other Python program it can be installed via the normal
python setup.py install routine.

License
Nuitka is licensed under the Apache License, Version 2.0; you may not use it except in compliance with
the License.

You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

Tutorial Setup and build on Windows
This is basic steps if you have nothing installed, of course if you have any of the parts, just skip it.

Setup
Install the C compiler

• Download and install mingw64 from https://sourceforge.net/projects/mingw-w64/

• in Architecture: choose "i686" if you want use 32bit or "x86_64" if you want 64 bit version Python

http://www.nuitka.net/pages/download.html
http://www.apache.org/licenses/LICENSE-2.0
https://sourceforge.net/projects/mingw-w64/

• Select destination folder to c:\MinGW64

• verify using command gcc.exe --version

• Set a environment variable pointing to gcc.exe

CC=C:\MinGW64\mingw64\bin\gcc.exe if 64 bit version

CC=C:\MinGW64\mingw32\bin\gcc.exe if 32 bit version

Install Python 3.7 (64 Bits)

• Download and install from https://www.python.org/downloads/windows

• Select Windows x86-64 web-based installer or

• Select Windows x86-64 executable installer

• Verify using command python --version

Install Nuitka

• pip install nuitka

• if you use anaconda:

• conda install -c conda-forge nuitka

• verify using command nuitka --version

Write some code and test
Create a folder for the Python code

• mkdir HelloWorld

• make a python file named hello.py

def talk(message):
 return "Talk " + message

def main():
 print(talk("Hello World"))

if __name__ == "__main__":
 main()

Test it using python hello.py

Build it using

python -m nuitka --standalone --mingw64 hello.py

If you like to have full output add --show-progress --show-scons

Run it
Execute the hello.exe in the folder hello.dist

https://www.python.org/downloads/windows

Distribute
To distribute copy the hello.dist folder

Use Cases
Use Case 1 - Program compilation with all modules embedded
If you want to compile a whole program recursively, and not only the single file that is the main program,
do it like this:

python -m nuitka --follow-imports program.py

Note

There are more fine grained controls than --follow-imports available. Consider the output of
nuitka --help.

In case you have a plugin directory, i.e. one which cannot be found by recursing after normal import
statements via the PYTHONPATH (which would be the recommended way), you can always require that a
given directory shall also be included in the executable:

python -m nuitka --follow-imports --include-plugin-directory=plugin_dir program.py

Note

If you don't do any dynamic imports, simply setting your PYTHONPATH at compilation time will be
sufficient for all your needs normally.

Use --include-plugin-directory only if you make __import__() calls that Nuitka
cannot predict, because they e.g. depend on command line parameters. Nuitka also warns about
these, and point to the option.

Note

The resulting filename will be program.exe on Windows, program.bin on other platforms.

Note

The resulting binary still depends on CPython and used C extension modules being installed.

If you want to be able to copy it to another machine, use --standalone and copy the created
program.dist directory and execute the program.exe (Windows) or program (other
platforms) put inside.

Use Case 2 - Extension Module compilation
If you want to compile a single extension module, all you have to do is this:

python -m nuitka --module some_module.py

The resulting file some_module.so can then be used instead of some_module.py.

Note

It's left as an exercise to the reader, to find out what happens if both are present.

Note

The option --follow-imports and other variants work as well, but the included modules will
only become importable after you imported the some_module name.

Use Case 3 - Package compilation
If you need to compile a whole package and embed all modules, that is also feasible, use Nuitka like this:

python -m nuitka --module some_package --include-package=some_package

Note

The recursion into the package directory needs to be provided manually, otherwise, the package is
empty. Data files located inside the package will not be embedded yet.

Typical Problems
Dynamic sys.path
If your script modifies sys.path to e.g. insert directories with source code relative to it, Nuitka will
currently not be able to see those. However, if you set the PYTHONPATH to the resulting value, you will be
able to compile it

Tips
Python command line flags
For passing things like -O or -S` to your program, there is a command line option name --python-flag=
which makes Nuitka emulate these options.

The most important ones are supported, more can certainly be added.

Caching
The C compiler, when invoked with the same input files, will take a long time and much CPU to compile.
Make sure you are having ccache installed and configured on non-Windows. It will make repeated
compilations much faster, even if things are not yet not perfect, i.e. changes to the program can cause
many C files to change, requiring a new compilation instead of using the cached result.

On Windows, Nuitka supports using ccache.exe which is not easy to come by though for the
non-MSVC compilers, and clcache.exe which is just one pip install clcache command away.
To make Nuitka use those, set either NUITKA_CCACHE_BINARY to the full path of ccache.exe or
NUITKA_CLCACHE_BINARY to the full path of clcache.exe, which will be in the scripts folder of the
Python, you installed it into.

Runners
Avoid running the nuitka binary, doing python -m nuitka will make a 100% sure you are using
what you think you are.

Fastest C Compilers
The fastest binaries of pystone.exe on Windows with 64 bits Python proved to be significantly faster
with MinGW64, roughly 20% better score. So it is recommended for use over MSVC. Using
clang-cl.exe of Clang7 was faster than MSVC, but still significantly slower than MinGW64, and it will
be harder to use, so it is not recommended.

On Linux for pystone.bin the binary produced by clang6 was faster than gcc-6.3, but not by a
significant margin. Since gcc is more often already installed, that is recommended to use for now.

Differences in C compilation times have not yet been examined.

Unexpected Slowdowns
Using the Python DLL, like standard CPython does can lead to unexpected slowdowns, e.g. in uncompiled
code that works with Unicode strings. This is because calling to the DLL rather than residing in the DLL
causes overhead, and this even happens to the DLL with itself, being slower, than a Python all contained
in one binary.

So if feasible, aim at static linking, which is currently only possible with Anaconda Python on
non-Windows.

Windows Standalone executables and dependencies
The process of making standalone executables for Windows traditionally involves using an external
dependency walker in order to copy necessary libraries along with the compiled executables to the
distribution folder.

Using the external dependency walker is quite a time consuming, and may copy some unnecessary
libraries along the way (better have too much than missing).

Since Nuitka 0.6.2, there's an experimental alternative internal dependency walker that relies on pefile
which analyses PE imports of executables/libraries.

This implementation shall create smaller Standalone distributions since it won't include Windows'
equivalent of the standard library, and will speed-up first Nuitka compilations by an order of magnitude.

In order to use it, you may enable the internal dependency walker by using the following switch:

python -m nuitka --standalone --experimental=use_pefile myprogram.py

Note

The pefile dependency walker will test all dependencies of the distribution folder.

Optionally, it is also possible to check all recursive dependencies of included libraries using the
following switch along with the above one:

python -m nuitka --standalone --experimental=use_pefile --experimental=use_pefile_recurse myprogram.py

Note

Some modules may have hidden dependencies outside of their directory. In order for the pefile
dependency walker to find them, you may also scan the whole site-packages directory for missing
dependencies using the following switch along with the two above:

python -m nuitka --standalone --experimental=use_pefile --experimental=use_pefile_recurse --experimental=use_pefile_fullrecurse myprogram.py

Note

Be aware that using this switch will increase compilation time a lot.

Where to go next
Remember, this project is not completed yet. Although the CPython test suite works near perfect, there is
still more work needed, esp. to make it do more optimization. Try it out.

Subscribe to its mailing lists
Please visit the mailing list page in order to subscribe the relatively low volume mailing list. All Nuitka
issues can be discussed there. Also, this is the place to stay informed of what's coming.

Follow me on Twitter
Nuitka announcements and interesting stuff is pointed to on the Twitter account, but obviously with no
details. @KayHayen.

http://www.nuitka.net/pages/mailinglist.html
https://twitter.com/KayHayen

I will not answer Nuitka issues via Twitter though, rather make occasional polls, and give important
announcements, as well as low-level posts about development ongoing.

Report issues or bugs
Should you encounter any issues, bugs, or ideas, please visit the Nuitka bug tracker and report them.

Best practices for reporting bugs:

• Please always include the following information in your report, for the underlying Python version. You
can easily copy&paste this into your report.

python -m nuitka --version

• Try to make your example minimal. That is, try to remove code that does not contribute to the issue
as much as possible. Ideally come up with a small reproducing program that illustrates the issue,
using print with different results when that programs runs compiled or native.

• If the problem occurs spuriously (i.e. not each time), try to set the environment variable
PYTHONHASHSEED to 0, disabling hash randomization. If that makes the problem go away, try
increasing in steps of 1 to a hash seed value that makes it happen every time, include it in your
report.

• Do not include the created code in your report. Given proper input, it's redundant, and it's not likely
that I will look at it without the ability to change the Python or Nuitka source and re-run it.

• Do not send screenshots of text, that is bad and lazy. Instead, capture text outputs from the console.

Word of Warning
Consider using this software with caution. Even though many tests are applied before releases, things are
potentially breaking. Your feedback and patches to Nuitka are very welcome.

Join Nuitka
You are more than welcome to join Nuitka development and help to complete the project in all minor and
major ways.

The development of Nuitka occurs in git. We currently have these 3 branches:

• master:

This branch contains the stable release to which only hotfixes for bugs will be done. It is supposed to
work at all times and is supported.

• develop:

This branch contains the ongoing development. It may at times contain little regressions, but also
new features. On this branch, the integration work is done, whereas new features might be
developed on feature branches.

• factory:

This branch contains unfinished and incomplete work. It is very frequently subject to git rebase
and the public staging ground, where my work for develop branch lives first. It is intended for testing
only and recommended to base any of your own development on. When updating it, you very often
will get merge conflicts. Simply resolve those by doing git reset --hard origin/factory
and switch to the latest version.

https://github.com/kayhayen/Nuitka/issues
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/master
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/develop
http://nuitka.net/gitweb/?p=Nuitka.git;a=shortlog;h=refs/heads/factory

Note

I accept requests on the social code platforms, also patch files, if they are good.

Note

The Developer Manual explains the coding rules, branching model used, with feature branches
and hotfix releases, the Nuitka design and much more. Consider reading it to become a
contributor. This document is intended for Nuitka users.

Donations
Should you feel that you cannot help Nuitka directly, but still want to support, please consider making a
donation and help this way.

Unsupported functionality
The co_code attribute of code objects
The code objects are empty for native compiled functions. There is no bytecode with Nuitka's compiled
function objects, so there is no way to provide it.

PDB
There is no tracing of compiled functions to attach a debugger to.

Optimization
Constant Folding
The most important form of optimization is the constant folding. This is when an operation can be fully
predicted at compile time. Currently, Nuitka does these for some built-ins (but not all yet, somebody to
look at this more closely will be very welcome!), and it does it e.g. for binary/unary operations and
comparisons.

Constants currently recognized:

5 + 6 # binary operations
not 7 # unary operations
5 < 6 # comparisons
range(3) # built-ins

Literals are the one obvious source of constants, but also most likely other optimization steps like constant
propagation or function inlining will be. So this one should not be underestimated and a very important
step of successful optimizations. Every option to produce a constant may impact the generated code
quality a lot.

http://nuitka.net/doc/developer-manual.html
http://nuitka.net/pages/donations.html
http://nuitka.net/pages/donations.html

Status

The folding of constants is considered implemented, but it might be incomplete in that not all
possible cases are caught. Please report it as a bug when you find an operation in Nuitka that has
only constants as input and is not folded.

Constant Propagation
At the core of optimizations, there is an attempt to determine the values of variables at run time and
predictions of assignments. It determines if their inputs are constants or of similar values. An expression,
e.g. a module variable access, an expensive operation, may be constant across the module of the
function scope and then there needs to be none or no repeated module variable look-up.

Consider e.g. the module attribute __name__ which likely is only ever read, so its value could be
predicted to a constant string known at compile time. This can then be used as input to the constant
folding.

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

Status

From modules attributes, only __name__ is currently actually optimized. Also possible would be at
least __doc__. In the future, this may improve as SSA is expanded to module variables.

Built-in Name Lookups
Also, built-in exception name references are optimized if they are used as a module level read-only
variables:

try:
 something()
except ValueError: # The ValueError is a slow global name lookup normally.
 pass

Status

This works for all built-in names. When an assignment is done to such a name, or it's even local,
then, of course, it is not done.

Built-in Call Prediction
For built-in calls like type, len, or range it is often possible to predict the result at compile time, esp. for
constant inputs the resulting value often can be precomputed by Nuitka. It can simply determine the result
or the raised exception and replace the built-in call with that value, allowing for more constant folding or
code path reduction.

type("string") # predictable result, builtin type str.
len([1, 2]) # predictable result
range(3, 9, 2) # predictable result
range(3, 9, 0) # predictable exception, range raises due to 0.

Status

The built-in call prediction is considered implemented. We can simply during compile time emulate
the call and use its result or raised exception. But we may not cover all the built-ins there are yet.

Sometimes the result of a built-in should not be predicted when the result is big. A range() call e.g. may
give too big values to include the result in the binary. Then it is not done.

range(100000) # We do not want this one to be expanded

Status

This is considered mostly implemented. Please file bugs for built-ins that are pre-computed, but
should not be computed by Nuitka at compile time with specific values.

Conditional Statement Prediction
For conditional statements, some branches may not ever be taken, because of the conditions being
possible to predict. In these cases, the branch not taken and the condition check is removed.

This can typically predict code like this:

if __name__ == "__main__":
 # Your test code might be here
 use_something_not_use_by_program()

or

if False:
 # Your deactivated code might be here

It will also benefit from constant propagations, or enable them because once some branches have been
removed, other things may become more predictable, so this can trigger other optimization to become
possible.

Every branch removed makes optimization more likely. With some code branches removed, access
patterns may be more friendly. Imagine e.g. that a function is only called in a removed branch. It may be
possible to remove it entirely, and that may have other consequences too.

Status

This is considered implemented, but for the maximum benefit, more constants need to be
determined at compile time.

Exception Propagation
For exceptions that are determined at compile time, there is an expression that will simply do raise the
exception. These can be propagated upwards, collecting potentially "side effects", i.e. parts of expressions
that were executed before it occurred, and still have to be executed.

Consider the following code:

print side_effect_having() + (1 / 0)
print something_else()

The (1 / 0) can be predicted to raise a ZeroDivisionError exception, which will be propagated
through the + operation. That part is just Constant Propagation as normal.

The call side_effect_having()` will have to be retained though, but the print statement does not and can
be turned into an explicit raise. The statement sequence can then be aborted and as such the
something_else call needs no code generation or consideration anymore.

To that end, Nuitka works with a special node that raises an exception and is wrapped with a so-called
"side_effects" expression, but yet can be used in the code as an expression having a value.

Status

The propagation of exceptions is mostly implemented but needs handling in every kind of
operations, and not all of them might do it already. As work progresses or examples arise, the
coverage will be extended. Feel free to generate bug reports with non-working examples.

Exception Scope Reduction
Consider the following code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

The try block is bigger than it needs to be. The statement b = 8 cannot cause a ValueError to be
raised. As such it can be moved to outside the try without any risk.

b = 8
try:
 print range(3, b, 0)
 print "Will not be executed"
except ValueError as e:
 print e

Status

This is considered done. For every kind of operation, we trace if it may raise an exception. We do
however not track properly yet, what can do a ValueError and what cannot.

Exception Block Inlining
With the exception propagation, it then becomes possible to transform this code:

try:
 b = 8
 print range(3, b, 0)
 print "Will not be executed"
except ValueError, e:
 print e

try:
 raise ValueError, "range() step argument must not be zero"
except ValueError, e:
 print e

Which then can be lowered in complexity by avoiding the raise and catch of the exception, making it:

e = ValueError("range() step argument must not be zero")
print e

Status

This is not implemented yet.

Empty Branch Removal
For loops and conditional statements that contain only code without effect, it should be possible to remove
the whole construct:

for i in range(1000):
 pass

The loop could be removed, at maximum, it should be considered an assignment of variable i to 999
and no more.

Status

This is not implemented yet, as it requires us to track iterators, and their side effects, as well as
loop values, and exit conditions. Too much yet, but we will get there.

Another example:

if side_effect_free:
 pass

The condition check should be removed in this case, as its evaluation is not needed. It may be difficult to
predict that side_effect_free has no side effects, but many times this might be possible.

Status

This is considered implemented. The conditional statement nature is removed if both branches are
empty, only the condition is evaluated and checked for truth (in cases that could raise an
exception).

Unpacking Prediction
When the length of the right-hand side of an assignment to a sequence can be predicted, the unpacking
can be replaced with multiple assignments.

a, b, c = 1, side_effect_free(), 3

a = 1
b = side_effect_free()
c = 3

This is of course only really safe if the left-hand side cannot raise an exception while building the
assignment targets.

We do this now, but only for constants, because we currently have no ability to predict if an expression
can raise an exception or not.

Status

Not implemented yet. Will need us to see through the unpacking of what is an iteration over a
tuple, we created ourselves. We are not there yet, but we will get there.

Built-in Type Inference
When a construct like in xrange() or in range() is used, it is possible to know what the iteration
does and represent that so that iterator users can use that instead.

I consider that:

for i in xrange(1000):
 something(i)

could translate xrange(1000) into an object of a special class that does the integer looping more
efficiently. In case i is only assigned from there, this could be a nice case for a dedicated class.

Status

Future work, not even started.

Quicker Function Calls
Functions are structured so that their parameter parsing and tp_call interface is separate from the
actual function code. This way the call can be optimized away. One problem is that the evaluation order
can differ.

def f(a, b, c):
 return a, b, c

f(c = get1(), b = get2(), a = get3())

This will have to evaluate first get1(), then get2() and only then get3() and then make the function
call with these values.

Therefore it will be necessary to have a staging of the parameters before making the actual call, to avoid a
re-ordering of the calls to get1(), get2(), and get3().

Status

Not even started. A re-formulation that avoids the dictionary to call the function, and instead uses
temporary variables appears to be relatively straight forward once we do that kind of parameter
analysis.

Lowering of iterated Container Types
In some cases, accesses to list constants can become tuple constants instead.

Consider that:

for x in [a, b, c]:
 something(x)

Can be optimized into this:

for x in (a, b, c):
 something(x)

This allows for simpler, faster code to be generated, and fewer checks needed, because e.g. the tuple
is clearly immutable, whereas the list needs a check to assert that. This is also possible for sets.

Status

Implemented, even works for non-constants. Needs other optimization to become generally useful,
and will itself help other optimization to become possible. This allows us to e.g. only treat iteration
over tuples, and not care about sets.

In theory, something similar is also possible for dict. For the later, it will be non-trivial though to maintain
the order of execution without temporary values introduced. The same thing is done for pure constants of
these types, they change to tuple values when iterated.

Credits
Contributors to Nuitka
Thanks go to these individuals for their much-valued contributions to Nuitka. Contributors have the license
to use Nuitka for their own code even if Closed Source.

The order is sorted by time.

• Li Xuan Ji: Contributed patches for general portability issue and enhancements to the environment
variable settings.

• Nicolas Dumazet: Found and fixed reference counting issues, import packages work, improved
some of the English and generally made good code contributions all over the place, solved code
generation TODOs, did tree building cleanups, core stuff.

• Khalid Abu Bakr: Submitted patches for his work to support MinGW and Windows, debugged the
issues, and helped me to get cross compile with MinGW from Linux to Windows. This was quite
difficult stuff.

• Liu Zhenhai: Submitted patches for Windows support, making the inline Scons copy actually work on
Windows as well. Also reported import related bugs, and generally helped me make the Windows
port more usable through his testing and information.

• Christopher Tott: Submitted patches for Windows, and general as well as structural cleanups.

• Pete Hunt: Submitted patches for macOS X support.

• "ownssh": Submitted patches for built-ins module guarding, and made massive efforts to make
high-quality bug reports. Also the initial "standalone" mode implementation was created by him.

• Juan Carlos Paco: Submitted cleanup patches, creator of the Nuitka GUI, creator of the Ninja IDE
plugin for Nuitka.

• "Dr. Equivalent": Submitted the Nuitka Logo.

• Johan Holmberg: Submitted patch for Python3 support on macOS X.

• Umbra: Submitted patches to make the Windows port more usable, adding user provided application
icons, as well as MSVC support for large constants and console applications.

• David Cortesi: Submitted patches and test cases to make macOS port more usable, specifically for
the Python3 standalone support of Qt.

https://github.com/juancarlospaco/nuitka-gui
https://github.com/juancarlospaco/nuitka-ninja
https://github.com/juancarlospaco/nuitka-ninja

• Andrew Leech: Submitted github pull request to allow using "-m nuitka" to call the compiler. Also pull
request to improve "bist_nuitka" and to do the registration.

• Pawe■ K: Submitted github pull request to remove glibc from standalone distribution, saving size
and improving robustness considering the various distributions.

• Orsiris de Jong: Submitted github pull request to implement the dependency walking with pefile
under Windows.

• Jorj X. McKie: Submitted github pull requests with NumPy plugin to retain its accelerating libraries,
and Tkinter to include the TCL distribution on Windows.

Projects used by Nuitka
• The CPython project

Thanks for giving us CPython, which is the base of Nuitka. We are nothing without it.

• The GCC project

Thanks for not only the best compiler suite but also thanks for making it easy supporting to get
Nuitka off the ground. Your compiler was the first usable for Nuitka and with very little effort.

• The Scons project

Thanks for tackling the difficult points and providing a Python environment to make the build results.
This is such a perfect fit to Nuitka and a dependency that will likely remain.

• The valgrind project

Luckily we can use Valgrind to determine if something is an actual improvement without the noise.
And it's also helpful to determine what's actually happening when comparing.

• The NeuroDebian project

Thanks for hosting the build infrastructure that the Debian and sponsor Yaroslav Halchenko uses to
provide packages for all Ubuntu versions.

• The openSUSE Buildservice

Thanks for hosting this excellent service that allows us to provide RPMs for a large variety of
platforms and make them available immediately nearly at release time.

• The MinGW64 project

Thanks for porting the gcc to Windows. This allowed portability of Nuitka with relatively little effort.

• The Buildbot project

Thanks for creating an easy to deploy and use continuous integration framework that also runs on
Windows and is written and configured in Python code. This allows running the Nuitka tests long
before release time.

• The isort project

Thanks for making nice import ordering so easy. This makes it so easy to let your IDE do it and clean
up afterward.

• The black project

Thanks for making a fast and reliable way for automatically formatting the Nuitka source code.

Updates for this Manual
This document is written in REST. That is an ASCII format which is readable as ASCII, but used to
generate PDF or HTML documents.

You will find the current source under: http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.rst

http://www.python.org
http://gcc.gnu.org
http://www.scons.org
http://valgrind.org
http://neuro.debian.net
http://openbuildservice.org
http://mingw-w64.org
http://buildbot.net
http://timothycrosley.github.io/isort/
https://github.com/ambv/black
http://nuitka.net/gitweb/?p=Nuitka.git;a=blob_plain;f=README.rst

And the current PDF under: http://nuitka.net/doc/README.pdf

1 Support for this C11 is a given with gcc 5 or higher or any clang version. The MSVC
compiler doesn't do it yet. But as a workaround, as the C++03 language standard is
very overlapping with C11, it is then used instead where the C compiler is too old.
Nuitka used to require a C++ compiler in the past, but it changed.

2 Download MinGW64 from here http://mingw-w64.org/ and choose 64 or 32 bits
matching your Python.

Use both MinGW64 and 64 bits Python if you have the choice of which Python to use.
Install it to C:\MinGW64 or \MinGW64 (same disk root as Nuitka running) to find it
automatically. Also, when prompted, use posix for threads and `dwarf for
exception model, although these currently do not matter at all.

3 Installation of matching MinGW64 is easiest if you have an Anaconda or Miniconda
installation.

Execute
<path_to_Anaconda>\Scripts\conda install m2w64-gcc libpython
and then before you run Nuitka do setenv
CC=<path_to_Anaconda>\Library\mingw-w64\bin\gcc.exe and then its
use will be forced. Nuitka also uses it automatically, if you run it like this
<path_to_Anaconda>\python -m nuitka

4 Download for free from
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx (the
Express editions work just fine).

The latest version is recommended if not required. There is no need to use older
versions, they might in fact not work.

http://nuitka.net/doc/README.pdf
http://mingw-w64.org/
http://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

	Overview
	Usage
	Requirements
	Command Line
	Installation
	License

	Tutorial Setup and build on Windows
	Setup
	Install the C compiler
	Install Python 3.7 (64 Bits)
	Install Nuitka

	Write some code and test
	Create a folder for the Python code
	Test it using python hello.py
	Build it using
	Run it
	Distribute

	Use Cases
	Use Case 1 - Program compilation with all modules embedded
	Use Case 2 - Extension Module compilation
	Use Case 3 - Package compilation

	Typical Problems
	Dynamic sys.path

	Tips
	Python command line flags
	Caching
	Runners
	Fastest C Compilers
	Unexpected Slowdowns
	Windows Standalone executables and dependencies

	Where to go next
	Subscribe to its mailing lists
	Follow me on Twitter
	Report issues or bugs
	Word of Warning

	Join Nuitka
	Donations
	Unsupported functionality
	The co_code attribute of code objects
	PDB

	Optimization
	Constant Folding
	Constant Propagation
	Built-in Name Lookups
	Built-in Call Prediction
	Conditional Statement Prediction
	Exception Propagation
	Exception Scope Reduction
	Exception Block Inlining
	Empty Branch Removal
	Unpacking Prediction
	Built-in Type Inference
	Quicker Function Calls
	Lowering of iterated Container Types

	Credits
	Contributors to Nuitka
	Projects used by Nuitka

	Updates for this Manual

