
Nuitka Developer
Manual

Contents
Milestones 1

Version Numbers 1

Current State 2

Setting up the Development Environment for Nuitka 2

Visual Studio Code 2

Eclipse / PyCharm 3

Commit and Code Hygiene 3

Coding Rules Python 3

Tool to format 3

Identifiers 3

Module/Package Names 4

Prefer list contractions over built-ins 4

Coding Rules C 5

The "git flow" model 5

Nuitka "git/github" Workflow 6

API Documentation and Guidelines 7

Use of Standard Python "__doc__" Strings 7

Special doxygen Anatomy of "__doc__" 7

Checking the Source 8

Running the Tests 8

Running all Tests 8

Basic Tests 10

Syntax Tests 10

Program Tests 11

Generated Tests 11

Compile Nuitka with Nuitka 11

Internal/Plugin API 11

Working with the CPython suites 11

Design Descriptions 12

Nuitka Logo 12

Choice of the Target Language 12

Use of Scons internally 13

Locating Modules and Packages 15

Hooking for module import process 15

Supporting __class__ of Python3 15

Frame Stack 16

Parameter Parsing 17

Input 17

Keyword dictionary 18

Argument tuple 18

SSA form for Nuitka 18

Loop SSA 20

Python Slots in Optimization 20

Basic Slot Idea 20

Representation in Nuitka 21

The C side 22

Built-in call optimization 23

Code Generation towards C 23

Exceptions 24

Statement Temporary Variables 24

Local Variables Storage 24

Exit Targets 24

Frames 24

Abortive Statements 24

Constant Preparation 25

Language Conversions to make things simpler 25

The assert statement 25

The "comparison chain" expressions 25

The execfile built-in 26

Generator expressions with yield 26

Function Decorators 27

Functions nested arguments 27

In-place Assignments 28

Complex Assignments 28

Unpacking Assignments 28

With Statements 29

For Loops 30

While Loops 31

Exception Handlers 32

Statement try/except with else 33

Class Creation (Python2) 33

Class Creation (Python3) 34

Generator Expressions 35

List Contractions 35

Set Contractions 36

Dictionary Contractions 36

Boolean expressions and and or 36

Simple Calls 37

Complex Calls 37

Print statements 38

Reformulations during Optimization 39

Builtin zip for Python2 39

Builtin map for Python2 39

Builtin min 40

Builtin max 40

Call to dir without arguments 40

Calls to functions with known signatures 40

Nodes that serve special purposes 42

Try statements 42

Releases 42

Side Effects 42

Caught Exception Type/Value References 43

Hard Module Imports 43

Locals Dict Update Statement 43

Plan to add "ctypes" support 44

Goals/Allowances to the task 44

Type Inference - The Discussion 44

Applying this to "ctypes" 46

Excursion to Functions 47

Excursion to Loops 49

Excursion to Conditions 49

Excursion to return statements 50

Excursion to yield expressions 51

Mixed Types 51

Back to "ctypes" 51

Now to the interface 52

Discussing with examples 53

Code Generation Impact 54

Initial Implementation 54

Goal 1 (Reached) 54

Goal 2 (Reached) 55

Goal 3 56

Goal 4 57

Limitations for now 58

How to make Features Experimental 59

Command Line 59

In C code 59

In Python 59

When to use it 59

When to remove it 59

Adding dependencies to Nuitka 59

Adding a Runtime Dependency 60

Adding a Development Dependency 60

Idea Bin 60

Prongs of Action 65

Builtin optimization 65

Class Creation Overhead Reduction 65

Memory Usage at Compile Time 65

Coverage Testing 65

Python3 Performance 65

Onefile compression on Windows 65

Caching of Python level compilation 66

Updates for this Manual 66

The purpose of this developer manual is to present the current design of Nuitka, the project rules, and the
motivations for choices made. It is intended to be a guide to the source code, and to give explanations that
don't fit into the source code in comments form.

It should be used as a reference for the process of planning and documenting decisions we made.
Therefore we are e.g. presenting here the type inference plans before implementing them. And we update
them as we proceed.

It grows out of discussions and presentations made at conferences as well as private conversations or
issue tracker.

Milestones
1. Feature parity with CPython, understand all the language construct and behave absolutely

compatible.

Feature parity has been reached for CPython 2.6 and 2.7. We do not target any older CPython
release. For CPython 3.3 up to 3.8 it also has been reached. We do not target the older and
practically unused CPython 3.0 to 3.2 releases.

This milestone was reached. Dropping support for Python 2.6 and 3.3 is an option, should this prove
to be any benefit. Currently it is not, as it extends the test coverage only.

2. Create the most efficient native code from this. This means to be fast with the basic Python object
handling.

This milestone was reached, although of course, micro optimizations to this are happening all the
time.

3. Then do constant propagation, determine as many values and useful constraints as possible at
compile time and create more efficient code.

This milestone is considered almost reached. We continue to discover new things, but the
infrastructure is there, and these are easy to add.

4. Type inference, detect and special case the handling of strings, integers, lists in the program.

This milestone is considered in progress.

5. Add interfacing to C code, so Nuitka can turn a ctypes binding into an efficient binding as written
with C.

This milestone is planned only.

6. Add hints module with a useful Python implementation that the compiler can use to learn about types
from the programmer.

This milestone is planned only.

Version Numbers
For Nuitka we use a defensive version numbering system to indicate that it is not yet ready for everything.
We have defined milestones and the version numbers should express which of these, we consider done.

• So far:

Before milestone 1, we used 0.1.x version numbers. After reaching it, we used 0.2.x version
numbers.

Before milestone 2 and 3, we used 0.3.x version numbers. After almost reaching 3, and beginning
with 4, we use "0.4.x" version numbers. Due to an interface change, 0.5.x version numbers are
being used.

"Nuitka Developer Manual - Milestones"

"Nuitka Developer Manual - page 1 - Milestones"

Due to reaching type inference in code generation, even if only starting, the 0.6.x version numbers
were started to be used. This stage should allow quick progress in performance for individual
releases.

• Future:

With ctypes bindings in a usable state it will be 0.7.x.

• Final:

We will then round it up and call it Nuitka 1.0 when this works as expected for a bunch of people.
The plan is to reach this goal during 2021. This is based on positive assumptions that may not hold
up though.

Of course, all of this may be subject to change.

Current State
Nuitka top level works like this:

• nuitka.tree.Building outputs node tree

• nuitka.optimization enhances it as best as it can

• nuitka.finalization prepares the tree for code generation

• nuitka.codegen.CodeGeneration orchestrates the creation of code snippets

• nuitka.codegen.*Codes knows how specific code kinds are created

• nuitka.MainControl keeps it all together

This design is intended to last.

Regarding types, the state is:

• Types are always PyObject *, and only a few C types, e.g. nuitka_bool and nuitka_void and
more are coming. Even for objects, often it's know that things are e.g. really a PyTupleObject **,
but no C type is available for that yet.

• There are a some specific use of types beyond "compile time constant", that are encoded in type and
value shapes, which can be used to predict some operations, conditions, etc. if they raise, and result
types they give.

• In code generation, the supported C types are used, and sometimes we have specialized code
generation, e.g. a binary operation that takes an int and a float and produces a float value.
There will be fallbacks to less specific types.

The expansion with more C types is currently in progress, and there will also be alternative C types, where
e.g. PyObject * and C long are in an enum that indicates which value is valid, and where special code
will be available that can avoid creating the PyObject ** unless the later overflows.

Setting up the Development Environment for
Nuitka
Currently there are very different kinds of files that we need support for. This is best addressed with an
IDE. We cover here how to setup the most common one.

Visual Studio Code
Download Visual Studio Code from here: https://code.visualstudio.com/download

"Nuitka Developer Manual - Current State"

"Nuitka Developer Manual - page 2 - Current State"

https://code.visualstudio.com/download

At this time, this is the recommended IDE for Linux and Windows. This is going to cover the plugins to
install. Configuration is part of the .vscode in your Nuitka checkout. If you are not familiar with Eclipse,
this is Free Software IDE,designed to be universally extended, and it truly is. There are plugins available
for nearly everything.

The extensions to be installed are part of the Visual Code recommendations in
.vscode/extensions.json and you will be prompted about that and ought to install these.

Another one we found useful to collaborate:

• Live Share (ms-vsliveshare.vsliveshare)

Eclipse / PyCharm
Don't use these anymore, we consider Visual Studio Code to be far superior for delivering a nice out of the
box environment.

Commit and Code Hygiene
In Nuitka we have tools to autoformat code, you can execute them manually, but it's probably best to
execute them at commit time, to make sure when we share code, it's already well format, and to avoid
noise doing cleanups.

The kinds of changes also often cause unnecessary merge conflicts, while the autoformat is designed to
format code also in a way that it avoids merge conflicts in the normal case, e.g. by doing imports one item
per line.

In order to set up hooks, you need to execute these commands:

Where python is the one you use with Nuitka, this then gets all
development requirements, can be full PATH.
python -m pip install requirements-devel.txt
python ./misc/install-git-hooks.py

These commands will make sure that the autoformat-nuitka-source is run on every staged file
content at the time you do the commit. For C files, it may complain unavailability of clang-format, follow
it's advice. You may call the above tool at all times, without arguments to format call Nuitka source code.

Coding Rules Python
These rules should generally be adhered when working on Nuitka code. It's not library code and it's
optimized for readability, and avoids all performance optimization for itself.

Tool to format
There is a tool bin/autoformat-nuitka-source which is to apply automatic formatting to code as
much as possible. It uses black (internally) for consistent code formatting. The imports are sorted with
isort for proper order.

The tool (mostly black and isort) encodes all formatting rules, and makes the decisions for us. The
idea being that we can focus on actual code and do not have to care as much about other things. It also
deals with Windows new lines, trailing space, etc. and even sorts pylint disable statements.

Identifiers
Classes are camel case with leading upper case. Functions and methods are with leading verb in lower
case, but also camel case. Variables and arguments are lower case with _ as a separator.

"Nuitka Developer Manual - Eclipse / PyCharm"

"Nuitka Developer Manual - page 3 - Eclipse / PyCharm"

class SomeClass:

 def doSomething(some_parameter):
 some_var = ("foo", "bar")

Base classes that are abstract have their name end with Base, so that a meta class can use that
convention, and readers immediately know, that it will not be instantiated like that.

Function calls use keyword argument preferably. These are slower in CPython, but more readable:

getSequenceCreationCode(
 sequence_kind=sequence_kind,
 element_identifiers=identifiers,
 context=context
)

When the names don't add much value, sequential calls can be done:

context.setLoopContinueTarget(handler_start_target)

Here, setLoopContinueTarget will be so well known that the reader is expected to know the argument
names and their meaning, but it would be still better to add them. But in this instance, the variable name
already indicates that it is.

Module/Package Names
Normal modules are named in camel case with leading upper case, because of their role as singleton
classes. The difference between a module and a class is small enough and in the source code they are
also used similarly.

For the packages, no real code is allowed in their __init__.py and they must be lower case, like e.g.
nuitka or codegen. This is to distinguish them from the modules.

Packages shall only be used to group things. In nuitka.codegen the code generation packages are
located, while the main interface is nuitka.codegen.CodeGeneration and may then use most of the
entries as local imports.

There is no code in packages themselves. For programs, we use __main__ package to carry the actual
code.

Names of modules should be plurals if they contain classes. Example is that a Nodes module that
contains a Node class.

Prefer list contractions over built-ins
This concerns map, filter, and apply. Usage of these built-ins is highly discouraged within Nuitka
source code. Using them is considered worth a warning by "PyLint" e.g. "Used built-in function 'map'". We
should use list contractions instead, because they are more readable.

List contractions are a generalization for all of them. We love readability and with Nuitka as a compiler,
there won't be any performance difference at all.

There are cases where a list contraction is faster because you can avoid to make a function call. And there
may be cases, where map is faster, if a function must be called. These calls can be very expensive in
CPython, and if you introduce a function, just for map, then it might be slower.

"Nuitka Developer Manual - Module/Package Names"

"Nuitka Developer Manual - page 4 - Module/Package Names"

But of course, Nuitka is the project to free us from what is faster and to allow us to use what is more
readable, so whatever is faster, we don't care. We make all options equally fast and let people choose.

For Nuitka the choice is list contractions as these are more easily changed and readable.

Look at this code examples from Python:

class A:
 def getX(self):
 return 1
 x = property(getX)

class B(A):
 def getX(self):
 return 2

A().x == 1 # True
B().x == 1 # True (!)

This pretty much is what makes properties bad. One would hope B().x to be 2, but instead it's not
changed. Because of the way properties take the functions and not members, and because they then are
not part of the class, they cannot be overloaded without re-declaring them.

Overloading is then not at all obvious anymore. Now imagine having a setter and only overloading the
getter. How to update the property easily?

So, that's not likable about them. And then we are also for clarity in these internal APIs too. Properties try
and hide the fact that code needs to run and may do things. So let's not use them.

For an external API you may exactly want to hide things, but internally that has no use, and in Nuitka,
every API is internal API. One exception may be the hints module, which will gladly use such tricks for
an easier write syntax.

Coding Rules C
For the static C parts, e.g. compiled types, helper codes, the clang-format from LLVM project is used,
the tool autoformat-nuitka-source does this for us.

We always have blocks for conditional statements to avoid typical mistakes made by adding a statement to
a branch, forgetting to make it a block.

The "git flow" model
• The flow is used for releases and occasionally subsequent hot fixes.

A few feature branches were used so far. It allows for quick delivery of fixes to both the stable and the
development version, supported by a git plug-in, that can be installed via "apt-get install git-flow".

• Stable (master branch)

The stable version, is expected to pass all the tests at all times and is fully supported. As soon as
bugs are discovered, they are fixed as hot fixes, and then merged to develop by the "git flow"
automatically.

• Development (develop branch)

"Nuitka Developer Manual - Coding Rules C"

"Nuitka Developer Manual - page 5 - Coding Rules C"

The future release, supposedly in almost ready for release state at nearly all times, but this is as
strict. It is not officially supported, and may have problems and at times inconsistencies. Normally this
branch is supposed to not be rebased. For severe problems it may be done though.

• Factory (default feature branch)

Code under construction. We publish commits there, that may not hold up in testing, and before it
enters develop branch. Factory may have severe regressions frequently, and commits become
rebased all the time, so do not base your patches on it, please prefer the develop branch for that,
unless of course, it's about factory code itself.

• Personal branches (jorj, orsiris, others as well)

Same as factory, but not integrated as factory normally is, and not rebased all the time. For some
branches, they will be rebased as a service when we update develop.

• Feature Branches

We are not currently using these. They could be used for long lived changes that extend for multiple
release cycles and are not ready yet. Currently we perform all changes in steps that can be included
in releases or delay making those changes.

Nuitka "git/github" Workflow
• Forking and cloning

You need to have git installed and GitHub account. Goto Nuitka repository
<https://github.com/Nuitka/Nuitka> and fork the repository.

To clone it to your local machine execute the following your git bash:

git clone https://github.com/your-user-name/Nuitka.git
cd Nuitka
git remote add upstream https://github.com/Nuitka/Nuitka.git

• Create a Branch

git checkout develop
git pull --rebase upstream
git checkout -b feature_branch

If you are having merge conflicts while doing the previous step, then check out (DON'T FORGET TO
SAVE YOUR CHANGES FIRST IF ANY):
<https://stackoverflow.com/questions/1125968/how-do-i-force-git-pull-to-overwrite-local-files>

• In case you have an existing branch rebase it to develop

git fetch upstream
git rebase upstream/develop

Fix the merge conflicts if any, stash them and continue:

git rebase --continue

If anything goes wrong while rebasing:

git rebase --abort

• Making changes

"Nuitka Developer Manual - Nuitka "git/github" Workflow"

"Nuitka Developer Manual - page 6 - Nuitka "git/github" Workflow"

https://github.com/Nuitka/Nuitka
https://stackoverflow.com/questions/1125968/how-do-i-force-git-pull-to-overwrite-local-files

git commit -a -m "Commit Message"
git push -u origin # once, later always:
git push

API Documentation and Guidelines
There is API documentation generated with doxygen, available at this location .

To ensure meaningful doxygen output, the following guidelines must be observed when creating or
updating Python source:

Use of Standard Python "__doc__" Strings
Every class and every method must be documented via the standard Python delimiters (""" ... """)
in the usual way.

Special doxygen Anatomy of "__doc__"
• Immediately after the leading """, and after 1 space on the same line, enter a brief description or title

of the class or method. This must be 1 line and be followed by at least 1 empty line.

• Depending on the item, choose from the following "sections" to describe what the item is and does.

Each section name is coded on its own line, aligned with the leading """ and followed by a colon ":".
Anything following the section, must start on a new line and be indented by 4 spaces relative to the
section. Except for the first section (Notes:) after the title, sections need not be preceded by empty
lines -- but it is good practice to still do that.

• Notes: detailed description of the item, any length.

May contain line breaks with each new line starting aligned with previous one. The text will
automatically be joined across line breaks and be reformatted in the browser.

If you describe details for a class, you can do so without using this section header and all
formatting will still work fine. If you however omit the Notes: for methods, then the text will
be interpreted as code, be shown in an ugly monospaced font, and no automatic line
breaks will occur in the browser.

• Args: positional arguments.

Each argument then follows, starting on a new line and indented by 4 spaces. The
argument name must be followed by a colon : or double hash --, followed by a description
of arbitrary length.

The description can be separated by line breaks.

• Kwargs: keyword arguments. Same rules as for args.

• Returns: description of what will be returned if applicable (any length).

• Yields: synonymous for Returns:.

• Raises: name any exceptions that may be raised.

• Examples: specify any example code.

def foo(p1, p2, kw1=None, kw2=None):
 """ This is an example method.

"Nuitka Developer Manual - API Documentation and Guidelines"

"Nuitka Developer Manual - page 7 - API Documentation and Guidelines"

https://nuitka.net/apidoc

 Notes:
 It does one or the other indispensable things based on some parameters
 and proudly returns a dictionary.

 Args:
 p1: parameter one
 p2: parameter two

 Kwargs:
 kw1: keyword one
 kw2: keyword two

 Returns:
 A dictionary calculated from the input.

 Raises:
 ValueError, IndexError

 Examples:
 >>> foo(1, 2, kw1=3, kw2=4)
 {'a': 4, 'b': 6}
 """

Checking the Source
The static checking for errors is currently done with PyLint. In the future, Nuitka itself will gain the ability
to present its findings in a similar way, but this is not a priority, and we are not there yet.

So, we currently use PyLint with options defined in a script.

./bin/check-nuitka-with-pylint

The above command is expected to give no warnings. It is also run on our CI and we will not merge
branches that do not pass.

Running the Tests
This section describes how to run Nuitka tests.

Running all Tests
The top level access to the tests is as simple as this:

./tests/run-tests

For fine grained control, it has the following options:

--skip-basic-tests The basic tests, execute these to check if Nuitka is
 healthy. Default is True.
--skip-syntax-tests The syntax tests, execute these to check if Nuitka
 handles Syntax errors fine. Default is True.
--skip-program-tests The programs tests, execute these to check if Nuitka

"Nuitka Developer Manual - Checking the Source"

"Nuitka Developer Manual - page 8 - Checking the Source"

 handles programs, e.g. import recursions, etc. fine.
 Default is True.
--skip-package-tests The packages tests, execute these to check if Nuitka
 handles packages, e.g. import recursions, etc. fine.
 Default is True.
--skip-optimizations-tests
 The optimization tests, execute these to check if
 Nuitka does optimize certain constructs fully away.
 Default is True.
--skip-standalone-tests
 The standalone tests, execute these to check if Nuitka
 standalone mode, e.g. not referring to outside,
 important 3rd library packages like PyQt fine. Default
 is True.
--skip-reflection-test
 The reflection test compiles Nuitka with Nuitka, and
 then Nuitka with the compile Nuitka and compares the
 outputs. Default is True.
--skip-cpython26-tests
 The standard CPython2.6 test suite. Execute this for
 all corner cases to be covered. With Python 2.7 this
 covers exception behavior quite well. Default is True.
--skip-cpython27-tests
 The standard CPython2.7 test suite. Execute this for
 all corner cases to be covered. With Python 2.6 these
 are not run. Default is True.
--skip-cpython32-tests
 The standard CPython3.2 test suite. Execute this for
 all corner cases to be covered. With Python 2.6 these
 are not run. Default is True.
--skip-cpython33-tests
 The standard CPython3.3 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.
--skip-cpython34-tests
 The standard CPython3.4 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.
--skip-cpython35-tests
 The standard CPython3.5 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.
--skip-cpython36-tests
 The standard CPython3.6 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.
--skip-cpython37-tests
 The standard CPython3.7 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.
--skip-cpython38-tests
 The standard CPython3.8 test suite. Execute this for
 all corner cases to be covered. With Python 2.x these
 are not run. Default is True.

"Nuitka Developer Manual - Checking the Source"

"Nuitka Developer Manual - page 9 - Checking the Source"

--no-python2.6 Do not use Python 2.6 even if available on the system.
 Default is False.
--no-python2.7 Do not use Python 2.7 even if available on the system.
 Default is False.
--no-python3.3 Do not use Python 3.3 even if available on the system.
 Default is False.
--no-python3.4 Do not use Python 3.4 even if available on the system.
 Default is False.
--no-python3.5 Do not use Python 3.5 even if available on the system.
 Default is False.
--no-python3.6 Do not use Python 3.6 even if available on the system.
 Default is False.
--no-python3.7 Do not use Python 3.7 even if available on the system.
 Default is False.
--no-python3.8 Do not use Python 3.8 even if available on the system.
 Default is False.
--coverage Make a coverage analysis, that does not really check.
 Default is False.

You will only run the CPython test suites, if you have the submodules of the Nuitka git repository checked
out. Otherwise, these will be skipped with a warning that they are not available.

The policy is generally, that ./test/run-tests running and passing all the tests on Linux and Windows
shall be considered sufficient for a release, but of course, depending on changes going on, that might have
to be expanded.

Basic Tests
You can run the "basic" tests like this:

./tests/basics/run_all.py search

These tests normally give sufficient coverage to assume that a change is correct, if these "basic" tests
pass. The most important constructs and built-ins are exercised.

To control the Python version used for testing, you can set the PYTHON environment variable to e.g.
python3.5 (can also be full path), or simply execute the run_all.py script directly with the intended
version, as it is portable across all supported Python versions, and defaults testing with the Python version
is run with.

Syntax Tests
Then there are "syntax" tests, i.e. language constructs that need to give a syntax error.

It sometimes so happens that Nuitka must do this itself, because the ast.parse doesn't see the problem
and raises no SyntaxError of its own. These cases are then covered by tests to make sure they work as
expected.

Using the global statement on a function argument is an example of this. These tests make sure that the
errors of Nuitka and CPython are totally the same for this:

./tests/syntax/run_all.py search

"Nuitka Developer Manual - Basic Tests"

"Nuitka Developer Manual - page 10 - Basic Tests"

Program Tests
Then there are small "programs" tests, that e.g. exercise many kinds of import tricks and are designed to
reveal problems with inter-module behavior. These can be run like this:

./tests/programs/run_all.py search

Generated Tests
There are tests, which are generated from Jinja2 templates. They aim at e.g. combining at types with
operations, in-place or not, or large constants. These can be run like this:

./tests/generated/run_all.py search

Compile Nuitka with Nuitka
And there is the "compile itself" or "reflected" test. This test makes Nuitka compile itself and compare the
resulting C++ when running compiled to non-compiled, which helps to find in-determinism.

The test compiles every module of Nuitka into an extension module and all of Nuitka into a single binary.

That test case also gives good coverage of the import mechanisms, because Nuitka uses a lot of
packages and imports between them.

./tests/reflected/compile_itself.py

Internal/Plugin API
The documentation from the source code for both the Python and the C parts are published as Nuitka API
and argumently in a relatively bad shape as we started generating those with Doxygen only relatively late.

doxygen ./doc/Doxyfile
xdg-open html

Improvements have already been implemented for plugins: The plugin base class defined in
PluginBase.py (which is used as a template for all plugins) is fully documented in Doxygen now. The
same is true for the recently added standard plugins NumpyPlugin.py and TkinterPlugin.py. These
will be uploaded very soon.

Going forward, this will also happen for the remaining standard plugins.

Please find here a detailed description of how to write your own plugin.

To learn about plugin option specification consult this document.

Working with the CPython suites
The CPython test suites are different branches of the same submodule. When you update your git
checkout, they will frequently become detached. In this case, simply execute this command:

When adding a test suite, for a new version, proceed like this:

"Nuitka Developer Manual - Program Tests"

"Nuitka Developer Manual - page 11 - Program Tests"

https://nuitka.net/apidoc
https://github.com/Nuitka/Nuitka/blob/develop/UserPlugin-Creation.rst
https://github.com/Nuitka/Nuitka/blob/develop/Using-Plugin-Options.rst

Design Descriptions
These should be a lot more and contain graphics from presentations given. It will be filled in, but not now.

Nuitka Logo
The logo was submitted by "dr. Equivalent". It's source is contained in doc/Logo where 3 variants of the
logo in SVG are placed.

• Symbol only (symbol)

• Text next to symbol (horizontal)

• Text beneath symbol (vertical)

From these logos, PNG images, and "favicons", and are derived.

The exact ImageMagick commands are in nuitka/tools/release/Documentation, but are not
executed each time, the commands are also replicated here:

convert -background none doc/Logo/Nuitka-Logo-Symbol.svg doc/images/Nuitka-Logo-Symbol.png
convert -background none doc/Logo/Nuitka-Logo-Vertical.svg doc/images/Nuitka-Logo-Vertical.png
convert -background none doc/Logo/Nuitka-Logo-Horizontal.svg doc/images/Nuitka-Logo-Horizontal.png

optipng -o2 doc/images/Nuitka-Logo-Symbol.png
optipng -o2 doc/images/Nuitka-Logo-Vertical.png
optipng -o2 doc/images/Nuitka-Logo-Horizontal.png

Choice of the Target Language
• Choosing the target language was important decision. factors were:

• The portability of Nuitka is decided here

• How difficult is it to generate the code?

• Does the Python C-API have bindings?

• Is that language known?

• Does the language aid to find bugs?
The decision for C11 is ultimately one for portability, general knowledge of the language and for control
over created code, e.g. being able to edit and try that quickly.

"Nuitka Developer Manual - Design Descriptions"

"Nuitka Developer Manual - page 12 - Design Descriptions"

The current status is to use pure C11. All code compiles as C11, and also in terms of workaround to
missing compiler support as C++03. This is mostly needed, because MSVC does not support C. Naturally
we are not using any C++ features, just the allowances of C++ features that made it into C11, which is e.g.
allowing late definitions of variables.

Use of Scons internally
Nuitka does not involve Scons in its user interface at all; Scons is purely used internally. Nuitka itself,
being pure Python, will run without any build process just fine.

Nuitka simply prepares <program>.build folders with lots of files and tasks scons to execute the final
build, after which Nuitka again will take control and do more work as necessary.

Note

When we speak of "standalone" mode, this is handled outside of Scons, and after it, creating the
".dist" folder. This is done in nuitka.MainControl module.

For interfacing to Scons, there is the module nuitka.build.SconsInterface that will support calling
scons - potentially from one of two inline copies (one for before / one for Python 3.5 or later). These are
mainly used on Windows or when using source releases - and passing arguments to it. These arguments
are passed as key=value, and decoded in the scons file of Nuitka.

The scons file is named SingleExe.scons for lack of better name. It's really wrong now, but we have yet
to find a better name. It once expressed the intention to be used to create executables, but the same
works for modules too, as in terms of building, and to Scons, things really are the same.

The scons file supports operation in multiple modes for many things, and modules is just one of them. It
runs outside of Nuitka process scope, even with a different Python version potentially, so all the
information must be passed on the command line.

What follows is the (lengthy) list of arguments that the scons file processes:

• source_dir

Where is the generated C source code. Scons will just compile everything it finds there. No list of files
is passed, but instead this directory is being scanned.

• nuitka_src

Where do the include files and static C parts of Nuitka live. These provide e.g. the implementation of
compiled function, generators, and other helper codes, this will point to where nuitka.build
package lives normally.

• module_mode

Build a module instead of a program.

• result_base

This is not a full name, merely the basename for the result to be produced, but with path included,
and the suffix comes from module or executable mode.

• debug_mode

Enable debug mode, which is a mode, where Nuitka tries to help identify errors in itself, and will
generate less optimal code. This also asks for warnings, and makes the build fail if there are any.
Scons will pass different compiler options in this case.

"Nuitka Developer Manual - Use of Scons internally"

"Nuitka Developer Manual - page 13 - Use of Scons internally"

• python_debug

Compile and link against Python debug mode, which does assertions and extra checks, to identify
errors, mostly related to reference counting. May make the build fail, if no debug build library of
CPython is available. On Windows it is possible to install it for CPython3.5 or higher.

• full_compat_mode

Full compatibility, even where it's stupid, i.e. do not provide information, even if available, in order to
assert maximum compatibility. Intended to control the level of compatibility to absurd.

• experimental_mode

Do things that are not yet accepted to be safe.

• lto_mode

Make use of link time optimization of gcc compiler if available and known good with the compiler in
question. So far, this was not found to make major differences.

• win_disable_console

Windows subsystem mode: Disable console for windows builds.

• unstriped_mode

Unstriped mode: Do not remove debug symbols.

• clang_mode

Clang compiler mode, default on macOS X and FreeBSD, optional on Linux.

• mingw_mode

MinGW compiler mode, optional and useful on Windows only.

• standalone_mode

Building a standalone distribution for the binary.

• show_scons

Show scons mode, output information about Scons operation. This will e.g. also output the actual
compiler used, output from compilation process, and generally debug information relating to be build
process.

• python_prefix

Home of Python to be compiled against, used to locate headers and libraries.

• target_arch

Target architecture to build. Only meaningful on Windows.

• python_version

The major version of Python built against.

• abiflags

The flags needed for the Python ABI chosen. Might be necessary to find the folders for Python
installations on some systems.

• icon_path

The icon to use for Windows programs if given.

"Nuitka Developer Manual - Use of Scons internally"

"Nuitka Developer Manual - page 14 - Use of Scons internally"

Locating Modules and Packages
The search for modules used is driven by nuitka.importing.Importing module.

• Quoting the nuitka.importing.Importing documentation:

Locating modules and package source on disk.

The actual import of a module would already execute code that changes things. Imagine a module
that does os.system(), it would be done during compilation. People often connect to databases,
and these kind of things, at import time.

Therefore CPython exhibits the interfaces in an imp module in standard library, which one can use
those to know ahead of time, what file import would load. For us unfortunately there is nothing in
CPython that is easily accessible and gives us this functionality for packages and search paths
exactly like CPython does, so we implement here a multi step search process that is compatible.

This approach is much safer of course and there is no loss. To determine if it's from the standard
library, one can abuse the attribute __file__ of the os module like it's done in
isStandardLibraryPath of this module.

End quoting the nuitka.importing.Importing documentation.

• Role

This module serves the recursion into modules and analysis if a module is a known one. It will give
warnings for modules attempted to be located, but not found. These warnings are controlled by a
while list inside the module.

The decision making and caching are located in the nuitka.tree package, in modules
nuitka.tree.Recursion and nuitka.tree.ImportCache. Each module is only considered once
(then cached), and we need to obey lots of user choices, e.g. to compile a standard library or not.

Hooking for module import process
Currently, in generated code, for every import a normal __import__() built-in call is executed. The
nuitka/build/static_src/MetaPathBasedLoader.c file provides the implementation of a
sys.meta_path hook.

This meta path based importer allows us to have the Nuitka provided module imported even when
imported by non-compiled code.

Note

Of course, it would make sense to compile time detect which module it is that is being imported and
then to make it directly. At this time, we don't have this inter-module optimization yet, mid-term it
should become easy to add.

Supporting __class__ of Python3
In Python3 the handling of __class__ and super is different from Python2. It used to be a normal
variable, and now the following things have changed.

• The use of the super variable name triggers the addition of a closure variable __class__, as can
be witnessed by the following code:

"Nuitka Developer Manual - Locating Modules and Packages"

"Nuitka Developer Manual - page 15 - Locating Modules and Packages"

class X:
 def f1(self):
 print(locals())

 def f2(self):
 print(locals())
 super # Just using the name, not even calling it.

x = X()
x.f1()
x.f2()

Output is:

{'self': <__main__.X object at 0x7f1773762390>} {'self': <__main__.X object at
0x7f1773762390>, '__class__': <class '__main__.X'>}

• This value of __class__ is also available in the child functions.

• The parser marks up code objects usage of "super". It doesn't have to be a call, it can also be a local
variable. If the super built-in is assigned to another name and that is used without arguments, it
won't work unless __class__ is taken as a closure variable.

• As can be seen in the CPython3 code, the closure value is added after the class creation is
performed.

• It appears, that only functions locally defined to the class are affected and take the closure.

This left Nuitka with the strange problem, of how to emulate that.

The solution is this:

• Under Python3, usage of __class__ as a reference in a child function body is mandatory. It remains
that way until all variable names have been resolved.

• When recognizing calls to super without arguments, make the arguments

into variable reference to __class__ and potentially self (actually first argument name).

• After all variables have been known, and no suspicious unresolved calls to anything named super
are down, then unused references are optimized away by the normal unused closure variable.

• Class dictionary definitions are added.

These are special direct function calls, ready to propagate also "bases" and "metaclass" values,
which need to be calculated outside.

The function bodies used for classes will automatically store __class__ as a shared local variable, if
anything uses it. And if it's not assigned by user code, it doesn't show up in the "locals()" used for
dictionary creation.

Existing __class__ local variable values are in fact provided as closure, and overridden with the
built class , but they should be used for the closure giving, before the class is finished.

So __class__ will be local variable of the class body, until the class is built, then it will be the
__class__ itself.

Frame Stack
In Python, every function, class, and module has a frame. It creates created when the scope is entered,
and there is a stack of these at run time, which becomes visible in tracebacks in case of exceptions.

"Nuitka Developer Manual - Frame Stack"

"Nuitka Developer Manual - page 16 - Frame Stack"

The choice of Nuitka is to make this an explicit element of the node tree, that are as such subject to
optimization. In cases, where they are not needed, they may be removed.

Consider the following code.

def f():
 if someNotRaisingCall():
 return somePotentiallyRaisingCall()
 else:
 return None

In this example, the frame is not needed for all the code, because the condition checked wouldn't possibly
raise at all. The idea is the make the frame guard explicit and then to reduce its scope whenever possible.

So we start out with code like this one:

def f():
 with frame_guard("f"):
 if someNotRaisingCall():
 return somePotentiallyRaisingCall()
 else:
 return None

This is to be optimized into:

def f():
 if someNotRaisingCall():
 with frame_guard("f"):
 return somePotentiallyRaisingCall()
 else:
 return None

Notice how the frame guard taking is limited and may be avoided, or in best cases, it might be removed
completely. Also this will play a role when in-lining function. The frame stack entry will then be
automatically preserved without extra care.

Note

In the actual code, nuitka.nodes.FrameNodes.StatementsFrame is represents this as a set
of statements to be guarded by a frame presence.

Parameter Parsing
The parsing of parameters is very convoluted in Python, and doing it in a compatible way is not that easy.
This is a description of the required process, for an easier overview.

Input
The input is an argument tuple (the type is fixed), which contains the positional arguments, and
potentially an argument dict (type is fixed as well, but could also be NULL, indicating that there are no
keyword arguments.

"Nuitka Developer Manual - Parameter Parsing"

"Nuitka Developer Manual - page 17 - Parameter Parsing"

Keyword dictionary
The keyword argument dictionary is checked first. Anything in there, that cannot be associated, either raise
an error, or is added to a potentially given star dict argument. So there are two major cases.

• No star dict argument: Iterate over dictionary, and assign or raise errors.

This check covers extra arguments given.

• With star dict argument: Iterate over dictionary, and assign or raise errors.

Interesting case for optimization are no positional arguments, then no check is needed, and the
keyword argument dictionary could be used as the star argument. Should it change, a copy is needed
though.

What's noteworthy here, is that in comparison to the keywords, we can hope that they are the same value
as we use. The interning of strings increases chances for non-compiled code to do that, esp. for short
names.

We then can do a simple is comparison and only fall back to real string == comparisons, after all of these
failed. That means more code, but also a lot faster code in the positive case.

Argument tuple
After this completed, the argument tuple is up for processing. The first thing it needs to do is to check if it's
too many of them, and then to complain.

For arguments in Python2, there is the possibility of them being nested, in which case they cannot be
provided in the keyword dictionary, and merely should get picked from the argument tuple.

Otherwise, the length of the argument tuple should be checked against its position and if possible, values
should be taken from there. If it's already set (from the keyword dictionary), raise an error instead.

SSA form for Nuitka
The SSA form is critical to how optimization works. The so called trace collections builds up traces. These
are facts about how this works:

• Assignments draw from a counter unique for the variable, which becomes the variable version.
This happens during tree building phase.

• References are associated with the version of the variable active.

This can be a merge of branches. Trace collection does do that and provides nodes with the
currently active trace for a variable.

The data structures used for trace collection need to be relatively compact as the trace information can
become easily much more data than the program itself.

Every trace collection has these:

• variable_actives

Dictionary, where per "variable" the currently used version is. Used to track situations changes in
branches. This is the main input for merge process.

• variable_traces

Dictionary, where "variable" and "version" form the key. The values are objects with or without an
assignment, and a list of usages, which starts out empty.

These objects have usages appended to them. In "onVariableSet", a new version is allocated,
which gives a new object for the dictionary, with an empty usages list, because each write starts
a new version. In "onVariableUsage" the version is detected from the current version. It

"Nuitka Developer Manual - SSA form for Nuitka"

"Nuitka Developer Manual - page 18 - SSA form for Nuitka"

may be not set yet, which means, it's a read of an undefined value (local variable, not a
parameter name), or unknown in case of global variable.

These objects may be told that their value has escaped. This should influence the value friend
they attached to the initial assignment. Each usage may have a current value friend state that is
different.

When merging branches of conditional statements, the merge shall apply as follows:

• Branches have their own collection

Thee have potentially deviating sets of variable_actives. These are children of an outer
collections.

• Case a) One branch only.

For that branch a collection is performed. As usual new assignments generate a new version
making it "active", references then related to these "active" versions.

Then, when the branch is merged, for all "active" variables, it is considered, if that is a change
related to before the branch. If it's not the same, a merge trace with the branch condition is
created with the one active in the collection before that statement.

• Case b) Two branches.

When there are two branches, they both as are treated as above, except for the merge.

When merging, a difference in active variables between the two branches creates the merge
trace.

Note

For conditional expressions, there are always only two branches. Even if you think you have
more than one branch, you do not. It's always nested branches, already when it comes out of
the parser.

Trace structure, there are different kinds of traces.

• Initial write of the version

There may be an initial write for each version. It can only occur at the start of the scope, but not
later, and there is only one. This might be known to be "initialized" (parameter variables of
functions are like that) or "uninitialized", or "unknown".

• Merge of other one or two other versions

This combines two or more previous versions. In cases of loop exits or entries, there are multiple
branches to combine potentially. These branches can have vastly different properties.

• Becoming unknown.

When control flow escapes, e.g. for a module variable, any write can occur to it, and it's value
cannot be trusted to be unchanged. These are then traced as unknown.

All traces have a base class ValueTraceBase which provides the interface to query facts about the state
of a variable in that trace. It's e.g. of some interest, if a variable must have a value or must not. This allows
to e.g. omit checks, know what exceptions might raise.

"Nuitka Developer Manual - SSA form for Nuitka"

"Nuitka Developer Manual - page 19 - SSA form for Nuitka"

Loop SSA
For loops we have the addition difficulty that we need would need to look ahead what types a variable has
at loop exit, but that is a recursive dependency.

Our solution is to consider the variable types at loop entry. When these change, we drop all gained
information from inside the loop. We may e.g. think that a variable is a int or float, but later recognize
that it can only be a float. Derivations from int must be discarded, and the loop analysis restarted.

Then during the loop, we assign an incomplete loop trace shape to the variable, which e.g. says it was an
int initially and additional type shapes, e.g. int or long are then derived. If at the end of the loop, a
type produced no new types, we know we are finished and mark the trace as a complete loop trace.

If it is not, and next time, we have the same initial types, we add the ones derived from this to the starting
values, and see if this gives more types.

Python Slots in Optimization
Basic Slot Idea
For almost all the operations in Python, a form of overloading is available. That is what makes it so
powerful.

So when you write an expression like this one:

1.0 + something

This something will not just blindly work when it's a float, but go through a slot mechanism, which then can
be overloaded.

class SomeStrangeFloat:
 def __float__(self):
 return 3.14

something = SomeStrangeFloat()
...
1.0 + float(something) // 4.140000000000001

Here it is the case, that this is used by user code, but more often this is used internally. Not all types have
all slots, e.g. list does not have __float__ and therefore will refuse an addition to a float value, based on
that.

Another slot is working here, that we didn't mention yet, and that is __add__ which for some times will be
these kinds of conversions or it will not do that kind of thing, e.g. something do hard checks, which is why
this fails to work:

[] + ()

As a deliberate choice, there is no __list__ slot used. The Python designers are aiming at solving many
things with slots, but they also accept limitations.

There are many slots that are frequently used, most often behind your back (__iter__, __next__,
__lt__, etc.). The list is large, and tends to grow with Python releases, but it is not endless.

"Nuitka Developer Manual - Loop SSA"

"Nuitka Developer Manual - page 20 - Loop SSA"

Representation in Nuitka
So a slot in Nuitka typically has an owning node. We use __len__ as an example here. In the
computeExpression the len node named ExpressionBuiltinLen has to defer the decision what it
computes to its argument.

def computeExpression(self, trace_collection):
 return self.getValue().computeExpressionLen(
 len_node=self, trace_collection=trace_collection
)

That decision then, in the absence of any type knowledge, must be done absolutely carefully and
conservative, as could see anything executing here.

That examples this code in ExpressionBase which every expression by default uses:

def computeExpressionLen(self, len_node, trace_collection):
 shape = self.getValueShape()

 has_len = shape.hasShapeSlotLen()

 if has_len is False:
 return makeRaiseTypeErrorExceptionReplacementFromTemplateAndValue(
 template="object of type '%s' has no len()",
 operation="len",
 original_node=len_node,
 value_node=self,
)
 elif has_len is True:
 iter_length = self.getIterationLength()

 if iter_length is not None:
 from .ConstantRefNodes import makeConstantRefNode

 result = makeConstantRefNode(
 constant=int(iter_length), # make sure to downcast long
 source_ref=len_node.getSourceReference(),
)

 result = wrapExpressionWithNodeSideEffects(
 new_node=result, old_node=self
)

 return (
 result,
 "new_constant",
 "Predicted 'len' result from value shape.",
)

 self.onContentEscapes(trace_collection)

 # Any code could be run, note that.
 trace_collection.onControlFlowEscape(self)

"Nuitka Developer Manual - Loop SSA"

"Nuitka Developer Manual - page 21 - Loop SSA"

 # Any exception may be raised.
 trace_collection.onExceptionRaiseExit(BaseException)

 return len_node, None, None

Notice how by default, known __len__ but unpredictable or even unknown if a __len__ slot is there, the
code indicates that its contents and the control flow escapes (could change things behind out back) and
any exception could happen.

Other expressions can know better, e.g. for compile time constants we can be a whole lot more certain:

def computeExpressionLen(self, len_node, trace_collection):
 return trace_collection.getCompileTimeComputationResult(
 node=len_node,
 computation=lambda: len(self.getCompileTimeConstant()),
 description="""Compile time constant len value pre-computed.""",
)

In this case, we are using a function that will produce a concrete value or the exception that the
computation function raised. In this case, we can let the Python interpreter that runs Nuitka do all the hard
work. This lives in CompileTimeConstantExpressionBase and is the base for all kinds of constant
values, or even built-in references like the name len itself and would be used in case of doing len(len)
which obviously gives an exception.

Other overloads do not currently exist in Nuitka, but through the iteration length, most cases could be
addressed, e.g. list nodes typical know their element counts.

The C side
When a slot is not optimized away at compile time however, we need to generate actual code for it. We
figure out what this could be by looking at the original CPython implementation.

PyObject *builtin_len(PyObject *self, PyObject *v) {
 Py_ssize_t res;

 res = PyObject_Size(v);
 if (res < 0 && PyErr_Occurred())
 return NULL;
 return PyInt_FromSsize_t(res);
}

We find a pointer to PyObject_Size which is a generic Python C/API function used in the builtin_len
implementation:

Py_ssize_t PyObject_Size(PyObject *o) {
 PySequenceMethods *m;

 if (o == NULL) {
 null_error();
 return -1;
 }

 m = o->ob_type->tp_as_sequence;

"Nuitka Developer Manual - The C side"

"Nuitka Developer Manual - page 22 - The C side"

 if (m && m->sq_length)
 return m->sq_length(o);

 return PyMapping_Size(o);
}

On the C level, every Python object (the PyObject *) as a type named ob_type and most of its
elements are slots. Sometimes they form a group, here tp_as_sequence and then it may or may not
contain a function. This one is tried in preference. Then, if that fails, next up the mapping size is tried.

Py_ssize_t PyMapping_Size(PyObject *o) {
 PyMappingMethods *m;

 if (o == NULL) {
 null_error();
 return -1;
 }

 m = o->ob_type->tp_as_mapping;
 if (m && m->mp_length)
 return m->mp_length(o);

 type_error("object of type '%.200s' has no len()", o);
 return -1;
}

This is the same principle, except with tp_as_mapping and mp_length used.

So from this, we can tell how len gets at what could be a Python class __len__ or other built-in types.

In principle, every slot needs to be dealt with in Nuitka, and it is assumed that currently all slots are
supported on at least a very defensive level, to avoid unnoticed escapes of control flow.

Built-in call optimization
For calls to built-in names, there is typically a function in Python that delegates to the type constructor (e.g.
when we talk about int that just creates an object passing the arguments of the call) or its own special
implementation as we saw with the len.

For each built-in called, we have a specialized node, that presents to optimization the actions of the
built-in. What are the impact, what are the results. We have seen the resulting example for len above, but
how do we get there.

In Python, built-in names are used only if there is no module level variable of the name, and of course no
local variable of that name.

Therefore, optimization of a built-in name is only done if it turns out the actually assigned in other code,
and then when the call comes, arguments are checked and a relatively static node is created.

Code Generation towards C
Currently, Nuitka uses Pure C and no C++ patterns at all. The use of C11 requires on some platforms to
compile the C11 using a C++ compiler, which works relatively well, but also limits the amount of C11 that
can be used.

"Nuitka Developer Manual - Built-in call optimization"

"Nuitka Developer Manual - page 23 - Built-in call optimization"

Exceptions
To handle and work with exceptions, every construct that can raise has either a bool or int return code
or PyObject * with NULL return value. This is very much in line with that the Python C-API does.

Every helper function that contains code that might raise needs these variables. After a failed call, our
variant of PyErr_Fetch called FETCH_ERROR_OCCURRED must be used to catch the defined error,
unless some quick exception cases apply. The quick exception means, NULL return from C-API without a
set exception means e.g. StopIteration.

As an optimization, functions that raise exceptions, but are known not to do so, for whatever reason, could
only be asserted to not do so.

Statement Temporary Variables
For statements and larger constructs the context object track temporary values, that represent references.
For some, these should be released at the end of the statement, or they represent a leak.

The larger scope temporary variables, are tracked in the function or module context, where they are
supposed to have explicit del to release their references.

Local Variables Storage
Closure variables taken are to be released when the function object is later destroyed. For in-lined calls,
variables are just passed, and it does not become an issue to release anything.

For function exit, owned variables, local or shared to other functions, must be released. This cannot be a
del operation, as it also involves setting a value, which would be wrong for shared variables (and wasteful
to local variables, as that would be its last usage). Therefore we need a special operation that simply
releases the reference to the cell or object variable.

Exit Targets
Each error or other exit releases statement temporary values and then executes a goto to the exit target.
These targets need to be setup. The try/except will e.g. catch error exits.

Other exits are continue, break, and return exits. They all work alike.

Generally, the exits stack of with constructs that need to register themselves for some exit types. A loop
e.g. registers the continue exit, and a contained try/finally too, so it can execute the final code
should it be needed.

Frames
Frames are containers for variable declarations and cleanups. As such, frames provide error exits and
success exits, which remove the frame from the frame stack, and then proceed to the parent exit.

With the use of non PyObject ** C types, but frame exception exits, the need to convert those types
becomes apparent. Exceptions should still resolve the C version. When using different C types at frame
exception exits, there is a need to trace the active type, so it can be used in the correct form.

Abortive Statements
The way try/finally is handled, copies of the finally block are made, and optimized independently
for each abort method. The ones there are of course, return, continue, and break, but also implicit
and explicit raise of an exception.

Code trailing an abortive statement can be discarded, and the control flow will follow these "exits".

"Nuitka Developer Manual - Built-in call optimization"

"Nuitka Developer Manual - page 24 - Built-in call optimization"

Constant Preparation
Early versions of Nuitka, created all constants for the whole program for ready access to generated code,
before the program launches. It did so in a single file, but that approach didn't scale well.

Problems were

• Even unused code contributed to start-up time, this can become a lot for large programs, especially in
standalone mode.

• The massive amount of constant creation codes gave backend C compilers a much harder time than
necessary to analyse it all at once.

The current approach is as follows. Code generation detects constants used in only one module, and
declared static there, if the module is the only user, or extern if it is not. Some values are forced to be
global, as they are used pre-main or in helpers.

These extern values are globally created before anything is used. The static values are created when
the module is loaded, i.e. something did import it.

We trace used constants per module, and for nested ones, we also associate them. The global constants
code is special in that it can only use static for nested values it exclusively uses, and has to export
values that others use.

Language Conversions to make things simpler
There are some cases, where the Python language has things that can in fact be expressed in a simpler or
more general way, and where we choose to do that at either tree building or optimization time.

The assert statement
The assert statement is a special statement in Python, allowed by the syntax. It has two forms, with and
without a second argument. The later is probably less known, as is the fact that raise statements can have
multiple arguments too.

The handling in Nuitka is:

assert value
Absolutely the same as:
if not value:
 raise AssertionError

assert value, raise_arg
Absolutely the same as:
if not value:
 raise AssertionError, raise_arg

This makes assertions absolutely the same as a raise exception in a conditional statement.

This transformation is performed at tree building already, so Nuitka never knows about assert as an
element and standard optimizations apply. If e.g. the truth value of the assertion can be predicted, the
conditional statement will have the branch statically executed or removed.

The "comparison chain" expressions
In Nuitka we have the concept of an outline, and therefore we can make the following re-formulation
instead:

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 25 - Constant Preparation"

a < b() > c < d

def _comparison_chain(): # So called "outline" function
 tmp_a = a
 tmp_b = b()

 tmp = tmp_a < tmp_b

 if not tmp:
 return tmp

 del tmp_a
 tmp_c = c

 tmp = tmp_b > tmp_c

 if not tmp:
 return tmp

 del tmp_b

 return tmp_c < d

_comparison_chain()

This transformation is performed at tree building already. The temporary variables keep the value for the
use of the same expression. Only the last expression needs no temporary variable to keep it.

What we got from this, is making the checks of the comparison chain explicit and comparisons in Nuitka to
be internally always about two operands only.

The execfile built-in
Handling is:

execfile(filename)
Basically the same as:
exec compile(open(filename).read()), filename, "exec"

Note

This allows optimizations to discover the file opening nature easily and apply file embedding or
whatever we will have there one day.

This transformation is performed when the execfile built-in is detected as such during optimization.

Generator expressions with yield
These are converted at tree building time into a generator function body that yields from the iterator given,
which is the put into a for loop to iterate, created a lambda function of and then called with the first iterator.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 26 - Constant Preparation"

That eliminates the generator expression for this case. It's a bizarre construct and with this trick needs no
special code generation.

This is a complex example, demonstrating multiple cases of yield in unexpected cases:

x = ((yield i) for i in (1,2) if not (yield))
Basically the same as:
def x():
 for i in (1,2):
 if not (yield):
 yield(yield i)

Function Decorators
When one learns about decorators, you see that:

@decorator
def function():
 pass
Is basically the same as:
def function():
 pass
function = decorator(function)

The only difference is the assignment to function. In the @decorator case, if the decorator fails with an
exception, the name function is not assigned yet, but kept in a temporary variable.

Therefore in Nuitka this assignment is more similar to that of a lambda expression, where the assignment
to the name is only at the end, which also has the extra benefit of not treating real function and lambda
functions any different.

This removes the need for optimization and code generation to support decorators at all. And it should
make the two variants optimize equally well.

Functions nested arguments
Nested arguments are a Python2 only feature supported by Nuitka. Consider this example:

def function(a,(b,c)):
 return a, b, c

We solve this, by kind of wrapping the function with another function that does the unpacking and gives the
errors that come from this:

def function(a, _1):
 def _tmp(a, b, c):
 return a, b, c

 a, b = _1
 return _tmp(a, b, c)

The ".1" is the variable name used by CPython internally, and actually works if you use keyword
arguments via star dictionary. So this is very compatible and actually the right kind of re-formulation, but it
removes the need from the code that does parameter parsing to deal with these.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 27 - Constant Preparation"

Obviously, there is no frame for _tmp, just one for function and we do not use local variables, but
temporary functions.

In-place Assignments
In-place assignments are re-formulated to an expression using temporary variables.

These are not as much a reformulation of += to +, but instead one which makes it explicit that the assign
target may change its value.

a += b

_tmp = a.__iadd__(b)

if a is not _tmp:
 a = _tmp

Using __iadd__ here to express that for the +, the in-place variant iadd is used instead. The is check
may be optimized away depending on type and value knowledge later on.

Complex Assignments
Complex assignments are defined as those with multiple targets to assign from a single source and are
re-formulated to such using a temporary variable and multiple simple assignments instead.

a = b = c

_tmp = c
a = _tmp
b = _tmp
del _tmp

This is possible, because in Python, if one assignment fails, it can just be interrupted, so in fact, they are
sequential, and all that is required is to not calculate c twice, which the temporary variable takes care of.
Were b a more complex expression, e.g. b.some_attribute that might raise an exception, a would still
be assigned.

Unpacking Assignments
Unpacking assignments are re-formulated to use temporary variables as well.

a, b.attr, c[ind] = d = e, f, g = h()

Becomes this:

_tmp = h()

_iter1 = iter(_tmp)
_tmp1 = unpack(_iter1, 3)
_tmp2 = unpack(_iter1, 3)
_tmp3 = unpack(_iter1, 3)
unpack_check(_iter1)

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 28 - Constant Preparation"

a = _tmp1
b.attr = _tmp2
c[ind] = _tmp3
d = _tmp
_iter2 = iter(_tmp)
_tmp4 = unpack(_iter2, 3)
_tmp5 = unpack(_iter2, 3)
_tmp6 = unpack(_iter2, 3)
unpack_check(_iter1)
e = _tmp4
f = _tmp5
g = _tmp6

That way, the unpacking is decomposed into multiple simple statements. It will be the job of optimizations
to try and remove unnecessary unpacking, in case e.g. the source is a known tuple or list creation.

Note

The unpack is a special node which is a form of next that will raise a ValueError when it cannot
get the next value, rather than a StopIteration. The message text contains the number of
values to unpack, therefore the integer argument.

Note

The unpack_check is a special node that raises a ValueError exception if the iterator is not
finished, i.e. there are more values to unpack. Again the number of values to unpack is provided to
construct the error message.

With Statements
The with statements are re-formulated to use temporary variables as well. The taking and calling of
__enter__ and __exit__ with arguments, is presented with standard operations instead. The promise
to call __exit__ is fulfilled by try/except clause instead.

with some_context as x:
 something(x)

tmp_source = some_context

Actually it needs to be "special look-up" for Python2.7, so attribute
look-up won't be exactly what is there.
tmp_exit = tmp_source.__exit__

This one must be held for the whole with statement, it may be assigned
or not, in our example it is. If an exception occurs when calling
``__enter__``, the ``__exit__`` should not be called.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 29 - Constant Preparation"

tmp_enter_result = tmp_source.__enter__()

Indicator variable to know if "tmp_exit" has been called.
tmp_indicator = False

try:
 # Now the assignment is to be done, if there is any name for the
 # manager given, this may become multiple assignment statements and
 # even unpacking ones.
 x = tmp_enter_result

 # Then the code of the "with" block.
 something(x)
except Exception:
 # Note: This part of the code must not set line numbers, which we
 # indicate with special source code references, which we call "internal".
 # Otherwise the line of the frame would get corrupted.

 tmp_indicator = True

 if not tmp_exit(*sys.exc_info()):
 raise
finally:
 if not tmp_indicator:
 # Call the exit if no exception occurred with all arguments
 # as "None".
 tmp_exit(None, None, None)

Note

We don't refer really to sys.exc_info() at all, instead, we have fast references to the current
exception type, value and trace, taken directly from the caught exception object on the C level.

If we had the ability to optimize sys.exc_info() to do that, we could use the same
transformation, but right now we don't have it.

For Loops
The for loops use normal assignments and handle the iterator that is implicit in the code explicitly.

for x, y in iterable:
 if something(x):
 break
else:
 otherwise()

This is roughly equivalent to the following code:

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 30 - Constant Preparation"

_iter = iter(iterable)
_no_break_indicator = False

while 1:
 try:
 _tmp_value = next(_iter)
 except StopIteration:
 # Set the indicator that the else branch may be executed.
 _no_break_indicator = True

 # Optimization should be able to tell that the else branch is run
 # only once.
 break

 # Normal assignment re-formulation applies to this assignment of course.
 x, y = _tmp_value
 del _tmp_value

 if something(x):
 break

if _no_break_indicator:
 otherwise()

Note

The _iter temporary variable is of course also in a try/finally construct, to make sure it
releases after its used. The x, y assignment is of course subject to unpacking re-formulation.

The try/except is detected to allow to use a variant of next that does not raise an exception, but
to be fast check about the NULL return from next built-in. So no actual exception handling is
happening in this case.

While Loops
Quoting the nuitka.tree.ReformulationWhileLoopStatements documentation:

Reformulation of while loop statements.

Loops in Nuitka have no condition attached anymore, so while loops are re-formulated like this:

while condition:
 something()

while 1:
 if not condition:
 break

 something()

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 31 - Constant Preparation"

This is to totally remove the specialization of loops, with the condition moved to the loop body in an initial
conditional statement, which contains a break statement.

That achieves, that only break statements exit the loop, and allow for optimization to remove always true
loop conditions, without concerning code generation about it, and to detect such a situation, consider e.g.
endless loops.

Note

Loop analysis (not yet done) can then work on a reduced problem (which break statements are
executed under what conditions) and is then automatically very general.

The fact that the loop body may not be entered at all, is still optimized, but also in the general
sense. Explicit breaks at the loop start and loop conditions are the same.

End quoting the nuitka.tree.ReformulationWhileLoopStatements documentation:

Exception Handlers
Exception handlers in Python may assign the caught exception value to a variable in the handler definition.
And the different handlers are represented as conditional checks on the result of comparison operations.

try:
 block()
except A as e:
 handlerA(e)
except B as e:
 handlerB(e)
else:
 handlerElse()

try:
 block()
except:
 # These are special nodes that access the exception, and don't really
 # use the "sys" module.
 tmp_exc_type = sys.exc_info()[0]
 tmp_exc_value = sys.exc_info()[1]

 # exception_matches is a comparison operation, also a special node.
 if exception_matches(tmp_exc_type, (A,)):
 e = tmp_exc_value
 handlerA(e)
 elif exception_matches(tmp_exc_type, (B,)):
 e = tmp_exc_value
 handlerB(e)
 else:
 handlerElse()

For Python3, the assigned e variables get deleted at the end of the handler block. Should that value be
already deleted, that del does not raise, therefore it's tolerant. This has to be done in any case, so for
Python3 it is even more complex.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 32 - Constant Preparation"

try:
 block()
except:
 # These are special nodes that access the exception, and don't really
 # use the "sys" module.
 tmp_exc_type = sys.exc_info()[0]
 tmp_exc_value = sys.exc_info()[1]

 # exception_matches is a comparison operation, also a special node.
 if exception_matches(tmp_exc_type, (A,)):
 try:
 e = tmp_exc_value
 handlerA(e)
 finally:
 del e
 elif exception_matches(tmp_exc_type, (B,)):
 try:
 e = tmp_exc_value
 handlerB(e)
 finally:
 del e
 else:
 handlerElse()

Should there be no else: branch, a default re-raise statement is used instead.

And of course, the values of the current exception type and value, both use special references, that access
the C++ and don't go via sys.exc_info at all, nodes called CaughtExceptionTypeRef and
CaughtExceptionValueRef.

This means, that the different handlers and their catching run time behavior are all explicit and reduced the
branches.

Statement try/except with else
Much like else branches of loops, an indicator variable is used to indicate the entry into any of the
exception handlers.

Therefore, the else becomes a real conditional statement in the node tree, checking the indicator variable
and guarding the execution of the else branch.

Class Creation (Python2)
Classes in Python2 have a body that only serves to build the class dictionary and is a normal function
otherwise. This is expressed with the following re-formulation:

in module "SomeModule"
...

class SomeClass(SomeBase, AnotherBase):
 """ This is the class documentation. """

 some_member = 3

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 33 - Constant Preparation"

def _makeSomeClass():
 # The module name becomes a normal local variable too.
 __module__ = "SomeModule"

 # The doc string becomes a normal local variable.
 __doc__ = """ This is the class documentation. """

 some_member = 3

 return locals()

 # force locals to be a writable dictionary, will be optimized away, but
 # that property will stick. This is only to express, that locals(), where
 # used will be writable to.
 exec ""

SomeClass = make_class("SomeClass", (SomeBase, AnotherBase), _makeSomeClass())

That is roughly the same, except that _makeSomeClass is not visible to its child functions when it comes
to closure taking, which we cannot express in Python language at all.

Therefore, class bodies are just special function bodies that create a dictionary for use in class creation.
They don't really appear after the tree building stage anymore. The type inference will of course have to
become able to understand make_class quite well, so it can recognize the created class again.

Class Creation (Python3)
In Python3, classes are a complicated way to write a function call, that can interact with its body. The body
starts with a dictionary provided by the metaclass, so that is different, because it can __prepare__ a
non-empty locals for it, which is hidden away in "prepare_class_dict" below.

What's noteworthy, is that this dictionary, could e.g. be an OrderDict. I am not sure, what __prepare__
is allowed to return.

in module "SomeModule"
...

class SomeClass(SomeBase, AnotherBase, metaclass = SomeMetaClass):
 """ This is the class documentation. """

 some_member = 3

Non-keyword arguments, need to be evaluated first.
tmp_bases = (SomeBase, AnotherBase)

Keyword arguments go next, __metaclass__ is just one of them. In principle
we need to forward the others as well, but this is ignored for the sake of
brevity.
tmp_metaclass = select_metaclass(tmp_bases, SomeMetaClass)

tmp_prepared = tmp_metaclass.__prepare__("SomeClass", tmp_bases)

The function that creates the class dictionary. Receives temporary variables
to work with.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 34 - Constant Preparation"

def _makeSomeClass():
 # This has effect, currently I don't know how to express that in Python3
 # syntax, but we will have a node that does that.
 locals().replace(tmp_prepared)

 # The module name becomes a normal local variable too.
 __module__ = "SomeModule"

 # The doc string becomes a normal local variable.
 __doc__ = """ This is the class documentation. """

 some_member = 3

 # Create the class, share the potential closure variable "__class__"
 # with others.
 __class__ = tmp_metaclass("SomeClass", tmp_bases, locals())

 return __class__

Build and assign the class.
SomeClass = _makeSomeClass()

Generator Expressions
There are re-formulated as functions.

Generally they are turned into calls of function bodies with (potentially nested) for loops:

gen = (x*2 for x in range(8) if cond())

def _gen_helper(__iterator):
 for x in __iterator:
 if cond():
 yield x*2

gen = _gen_helper(range(8))

List Contractions
The list contractions of Python2 are different from those of Python3, in that they don't actually do any
closure variable taking, and that no function object ever exists.

list_value = [x*2 for x in range(8) if cond()]

def _listcontr_helper(__iterator):
 result = []

 for x in __iterator:
 if cond():
 result.append(x*2)

 return result

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 35 - Constant Preparation"

list_value = _listcontr_helper(range(8))

The difference is that with Python3, the function "_listcontr_helper" is really there and named
<listcontraction> (or <listcomp> as of Python3.7 or higher), whereas with Python2 the function is
only an outline, so it can readily access the containing name space.

Set Contractions
The set contractions of Python2.7 are like list contractions in Python3, in that they produce an actual
helper function:

set_value = {x*2 for x in range(8) if cond()}

def _setcontr_helper(__iterator):
 result = set()

 for x in __iterator:
 if cond():
 result.add(x*2)

 return result

set_value = _setcontr_helper(range(8))

Dictionary Contractions
The dictionary contractions of are like list contractions in Python3, in that they produce an actual helper
function:

dict_value = {x: x*2 for x in range(8) if cond()}

def _dictcontr_helper(__iterator):
 result = {}

 for x in __iterator:
 if cond():
 result[x] = x*2

 return result

set_value = _dictcontr_helper(range(8))

Boolean expressions and and or
The short circuit operators or and and tend to be only less general that the if/else expressions, but
have dedicated nodes. We used to have a re-formulation towards those, but we now do these via
dedicated nodes too.

These new nodes, present the evaluation of the left value, checking for its truth value, and depending on it,
to pick it, or use the right value.

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 36 - Constant Preparation"

Simple Calls
As seen below, even complex calls are simple calls. In simple calls of Python there is still some hidden
semantic going on, that we expose.

func(arg1, arg2, named1 = arg3, named2 = arg4)

On the C-API level there is a tuple and dictionary built. This one is exposed:

func(*(arg1, arg2), **{"named1" : arg3, "named2" : arg4})

A called function will access this tuple and the dictionary to parse the arguments, once that is also
re-formulated (argument parsing), it can then lead to simple in-lining. This way calls only have 2 arguments
with constant semantics, that fits perfectly with the C-API where it is the same, so it is actually easier for
code generation.

Although the above looks like a complex call, it actually is not. No checks are needed for the types of the
star arguments and it's directly translated to PyObject_Call.

Complex Calls
The call operator in Python allows to provide arguments in 4 forms.

• Positional (or normal) arguments

• Named (or keyword) arguments

• Star list arguments

• Star dictionary arguments

The evaluation order is precisely that. An example would be:

something(pos1, pos2, name1 = named1, name2 = named2, *star_list, **star_dict)

The task here is that first all the arguments are evaluated, left to right, and then they are merged into only
two, that is positional and named arguments only. for this, the star list argument and the star dictionary
arguments, are merged with the positional and named arguments.

What's peculiar, is that if both the star list and dictionary arguments are present, the merging is first done
for star dictionary, and only after that for the star list argument. This makes a difference, because in case
of an error, the star argument raises first.

something(*1, **2)

This raises "TypeError: something() argument after ** must be a mapping, not int" as opposed to a
possibly more expected "TypeError: something() argument after * must be a sequence, not int."

That doesn't matter much though, because the value is to be evaluated first anyway, and the check is only
performed afterwards. If the star list argument calculation gives an error, this one is raised before checking
the star dictionary argument.

So, what we do, is we convert complex calls by the way of special functions, which handle the dirty work
for us. The optimization is then tasked to do the difficult stuff. Our example becomes this:

def _complex_call(called, pos, kw, star_list_arg, star_dict_arg):
 # Raises errors in case of duplicate arguments or tmp_star_dict not

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 37 - Constant Preparation"

 # being a mapping.
 tmp_merged_dict = merge_star_dict_arguments(called, tmp_named, mapping_check(called, tmp_star_dict))

 # Raises an error if tmp_star_list is not a sequence.
 tmp_pos_merged = merge_pos_arguments(called, tmp_pos, tmp_star_list)

 # On the C-API level, this is what it looks like.
 return called(*tmp_pos_merged, **tmp_merged_dict)

returned = _complex_call(
 called = something,
 pos = (pos1, pos2),
 named = {
 "name1" : named1,
 "name2" : named2
 },
 star_list_arg = star_list,
 star_dict_arg = star_dict
)

The call to _complex_call is be a direct function call with no parameter parsing overhead. And the call
in its end, is a special call operation, which relates to the "PyObject_Call" C-API.

Print statements
The print statement exists only in Python2. It implicitly converts its arguments to strings before printing
them. In order to make this accessible and compile time optimized, this is made visible in the node tree.

print arg1, "1", 1

This is in Nuitka converted so that the code generation for print doesn't do any conversions itself
anymore and relies on the string nature of its input.

print str(arg1), "1", str(1)

Only string objects are spared from the str built-in wrapper, because that would only cause noise in
optimization stage. Later optization can then find it unnecessary for certain arguments.

Additionally, each print may have a target, and multiple arguments, which we break down as well for
dumber code generation. The target is evaluated first and should be a file, kept referenced throughout the
whole print statement.

print >>target_file, str(arg1), "1", str(1)

This is being reformulated to:

try:

tmp_target = target_file

print >>tmp_target, str(arg1), print >>tmp_target, "1", print >>tmp_target, str(1), print
>>tmp_target

finally:

del tmp_target

"Nuitka Developer Manual - Constant Preparation"

"Nuitka Developer Manual - page 38 - Constant Preparation"

This allows code generation to not deal with arbitrary amount of arguments to print. It also separates the
newline indicator from the rest of things, which makes sense too, having it as a special node, as it's
behavior with regards to soft-space is different of course.

And finally, for print without a target, we still assume that a target was given, which would be
sys.stdout in a rather hard-coded way (no variable look-ups involved).

Reformulations during Optimization
Builtin zip for Python2

def _zip(a, b, c): # Potentially more arguments.
 # First assign, to preserve order of execution,
 # the arguments might be complex expressions.
 tmp_arg1 = a
 tmp_arg2 = b
 tmp_arg3 = c
 # more arguments here ...

 tmp_iter_1 = iter(tmp_arg1)
 tmp_iter_2 = iter(tmp_arg2)
 tmp_iter_3 = iter(tmp_arg3)
 # more arguments here ...

 # could be more
 tmp_result = []
 try:
 while 1:
 tmp_result.append(
 (
 next(tmp_iter_1),
 next(tmp_iter_2),
 next(tmp_iter_3),
 # more arguments here ...
)
)
 except StopIteration:
 pass

 return tmp_result

Builtin map for Python2

def _map():
 # TODO: Not done yet.
 pass

"Nuitka Developer Manual - Reformulations during Optimization"

"Nuitka Developer Manual - page 39 - Reformulations during Optimization"

Builtin min

TODO: keyfunc (Python2/3), defaults (Python3)
def _min(a, b, c): # Potentially more arguments.
 tmp_arg1 = a
 tmp_arg2 = b
 tmp_arg3 = c
 # more arguments here ...

 result = tmp_arg1
 if keyfunc is None: # can be decided during re-formulation
 tmp_key_result = keyfunc(result)
 tmp_key_candidate = keyfunc(tmp_arg2)
 if tmp_key_candidate < tmp_key_result:
 result = tmp_arg2
 tmp_key_result = tmp_key_candidate
 tmp_key_candidate = keyfunc(tmp_arg3)
 if tmp_key_candidate < tmp_key_result:
 result = tmp_arg3
 tmp_key_result = tmp_key_candidate
 # more arguments here ...
 else:
 if tmp_arg2 < result:
 result = tmp_arg2
 if tmp_arg3 < result:
 result = tmp_arg3
 # more arguments here ...

 return result

Builtin max
See min just with > instead of <.

Call to dir without arguments
This expression is reformulated to locals().keys() for Python2, and list(locals.keys()) for
Python3.

Calls to functions with known signatures
As a necessary step for inlining function calls, we need to change calls to variable references to function
references.

def f(arg1, arg2):
 return some_op(arg1, arg2)

... other code

x = f(a, b+c)

In the optimization it is turned into

"Nuitka Developer Manual - Reformulations during Optimization"

"Nuitka Developer Manual - page 40 - Reformulations during Optimization"

... other code

x = lambda arg1, arg2 : some_op(arg1, arg2)(a, b+c)

Note

The lambda stands here for a reference to the function, rather than a variable reference, this is the
normal forward propagation of values, and does not imply duplicating or moving any code at all.

At this point, we still have not resolved the actual call arguments to the variable names, still a Python level
function is created, and called, and arguments are parsed to a tuple, and from a tuple. For simplicity sake,
we have left out keyword arguments out of the equation for now, but they are even more costly.

So now, what we want to do, is to re-formulate the call into what we call an outline body, which is a inline
function, and that does the parameter parsing already and contains the function code too. In this inlining,
there still is a function, but it's technically not a Python function anymore, just something that is an
expression whose value is determined by control flow and the function call.

... other code

def _f():
 tmp_arg1 = arg1
 tmp_arg2 = b+c
 return tmp_arg1+tmp_arg2
x = _f()

With this, a function is considered inlined, because it becomes part of the abstract execution, and the
actual code is duplicated.

The point is, that matching the signature of the function to the actual arguments given, is pretty straight
forward in many cases, but there are two forms of complications that can happen. One is default values,
because they need to assigned or not, and the other is keyword arguments, because they allow to reorder
arguments.

Lets consider an example with default values first.

def f(arg1, arg2=some_default()):
 return some_op(arg1, arg2)

... other code

x = f(a, b+c)

Since the point, at which defaults are taken, we must execute them at that point and make them available.

tmp_defaults = (some_default,) # that was f.__defaults__

... other code

def _f():

"Nuitka Developer Manual - Reformulations during Optimization"

"Nuitka Developer Manual - page 41 - Reformulations during Optimization"

 tmp_arg1 = arg1
 tmp_arg2 = tmp_defaults[0]
 return tmp_arg1+tmp_arg2
x = _f()

Now, one where keyword arguments are ordered the other way.

def f(arg1, arg2):
 return some_op(arg1, arg2)

... other code

x = f(arg2=b+c, arg1=a) # "b+c" is evaluated before "a"

The solution is an extra level of temporary variables. We remember the argument order by names and
then assign parameters from it:

... other code

def _f():
 tmp_given_value1 = b+c
 tmp_given_value2 = a
 tmp_arg1 = tmp_given_value2
 tmp_arg2 = tmp_given_value1
 return tmp_arg1+tmp_arg2
x = _f()

Obviously, optimization of Nuitka can decide, that e.g. should a or b+c not have side effects, to optimize
these with standard variable tracing away.

Nodes that serve special purposes
Try statements
In Python, there is try/except and try/finally. In Nuitka there is only a try, which then has blocks to
handle exceptions, continue, or break, or return. There is no else to this node type.

This is more low level and universal. Code for the different handlers can be different. User provided
finally blocks become copied into the different handlers.

Releases
When a function exits, the local variables are to be released. The same applies to temporary variables
used in re-formulations. These releases cause a reference to the object to the released, but no value
change. They are typically the last use of the object in the function.

The are similar to del, but make no value change. For shared variables this effect is most visible.

Side Effects
When an exception is bound to occur, and this can be determined at compile time, Nuitka will not generate
the code the leads to the exception, but directly just raise it. But not in all cases, this is the full thing.

Consider this code:

"Nuitka Developer Manual - Nodes that serve special purposes"

"Nuitka Developer Manual - page 42 - Nodes that serve special purposes"

f(a(), 1 / 0)

The second argument will create a ZeroDivisionError exception, but before that a() must be
executed, but the call to f will never happen and no code is needed for that, but the name look-up must
still succeed. This then leads to code that is internally like this:

f(a(), raise_ZeroDivisionError())

which is then modeled as:

side_effect(a(), f, raise_ZeroDivisionError())

where we can consider side_effect to be a function that returns the last expression. Of course, if this is
not part of another expression, but close to statement level, side effects, can be converted to multiple
statements simply.

Another use case, is that the value of an expression can be predicted, but that the language still requires
things to happen, consider this:

a = len(
 (
 f(),
 g()
)
)

We can tell that a will be 2, but the call to f and g must still be performed, so it becomes:

a = side_effects(f(), g(), 2)

Modelling side effects explicitly has the advantage of recognizing them easily and allowing to drop the call
to the tuple building and checking its length, only to release it.

Caught Exception Type/Value References
When catching an exception, these are not directly put to sys.exc_info(), but remain as mere C
variables. From there, they can be accessed with these nodes, or if published then from the thread state.

Hard Module Imports
These are module look-ups that don't depend on any local variable for the module to be looked up, but
with hard-coded names. These may be the result of optimization gaining such level of certainty.

Currently they are used to represent sys.stdout usage for print statements, but other usages will
follow.

Locals Dict Update Statement
For the exec re-formulation, we apply an explicit sync back to locals as an explicit node. It helps us to tell
the affected local variable traces that they might be affected. It represents the bit of exec in Python2, that
treats None as the locals argument as an indication to copy back.

"Nuitka Developer Manual - Nodes that serve special purposes"

"Nuitka Developer Manual - page 43 - Nodes that serve special purposes"

Plan to add "ctypes" support
Add interfacing to C code, so Nuitka can turn a ctypes binding into an efficient binding as if it were written
manually with Python C-API or better.

Goals/Allowances to the task
1. Goal: Must not directly use any pre-existing C/C++ language file headers, only generate declarations

in generated C code ourselves. We would rather write or use tools that turn an existing a C header to
some ctypes declarations if it needs to be, but not mix and use declarations from existing header
code.

..note:

The "cffi" interface maybe won't have the issue, but it's not something
we need to write or test the code for.

2. Allowance: May use ctypes module at compile time to ask things about ctypes and its types.

3. Goal: Should make use of ctypes, to e.g. not hard code in Nuitka what ctypes.c_int() gives on
the current platform, unless there is a specific benefit.

4. Allowance: Not all ctypes usages must be supported immediately.

5. Goal: Try and be as general as possible.

For the compiler, ctypes support should be hidden behind a generic interface of some sort.
Supporting math module should be the same thing.

Type Inference - The Discussion
Main initial goal is to forward value knowledge. When you have a = b, that means that a and b now
"alias". And if you know the value of b you can assume to know the value of a. This is called "aliasing".

When assigning a to something new, that won't change b at all. But when an attribute is set, a method
called of it, that might impact the actual value, referenced by both. We need to understand mutable vs.
immutable though, as some things are not affectable by aliasing in any way.

a = 3
b = a

b += 4 # a is not changed

a = [3]
b = a

b += [4] # a is changed indeed

If we cannot tell, we must assume that a might be changed. It's either b or what a was before. If the type is
not mutable, we can assume the aliasing to be broken up, and if it is, we can assume both to be the same
value still.

When that value is a compile time constant, we will want to push it forward, and we do that with
"(Constant) Value Propagation", which is implemented already. We avoid too large constants, and we
properly trace value assignments, but not yet aliases.

"Nuitka Developer Manual - Plan to add "ctypes" support"

"Nuitka Developer Manual - page 44 - Plan to add "ctypes" support"

In order to fully benefit from type knowledge, the new type system must be able to be fully friends with
existing built-in types, but for classes to also work with it, it should not be tied to them. The behavior of a
type long, str, etc. ought to be implemented as far as possible with the built-in long, str at compiled
time as well.

Note

This "use the real thing" concept extends beyond builtin types, e.g. ctypes.c_int() should also
be used, but we must be aware of platform dependencies. The maximum size of ctypes.c_int
values would be an example of that. Of course that may not be possible for everything.

This approach has well proven itself with built-in functions already, where we use real built-ins
where possible to make computations. We have the problem though that built-ins may have
problems to execute everything with reasonable compile time cost.

Another example, consider the following code:

len("a" * 1000000000000)

To predict this code, calculating it at compile time using constant operations, while feasible, puts an
unacceptable burden on the compilation.

Esp. we wouldn't want to produce such a huge constant and stream it, the C++ code would become too
huge. So, we need to stop the * operator from being used at compile time and cope with reduced
knowledge, already here:

"a" * 10000000000000

Instead, we would probably say that for this expression:

• The result is a str or a C level PyStringObject *.

• We know its length exactly, it's 10000000000000.

• Can predict every of its elements when sub-scripted, sliced, etc., if need be, with a function we
may create.

Similar is true for this horrible (in Python2) thing:

range(10000000000000)

So it's a rather general problem, this time we know:

• The result is a list or C level PyListObject *

• We know its length exactly, 10000000000000

• Can predict every of its elements when index, sliced, etc., if need be, with a function.

Again, we wouldn't want to create the list. Therefore Nuitka avoids executing these calculation, when they
result in constants larger than a threshold of e.g. 256 elements. This concept has to be also applied to
large integers and more CPU and memory traps.

Now lets look at a more complete use case:

"Nuitka Developer Manual - Plan to add "ctypes" support"

"Nuitka Developer Manual - page 45 - Plan to add "ctypes" support"

for x in range(10000000000000):
 doSomething()

Looking at this example, one traditional way to look at it, would be to turn range into xrange, and to note
that x is unused. That would already perform better. But really better is to notice that range() generated
values are not used at all, but only the length of the expression matters.

And even if x were used, only the ability to predict the value from a function would be interesting, so we
would use that computation function instead of having an iteration source. Being able to predict from a
function could mean to have Python code to do it, as well as C code to do it. Then code for the loop can be
generated without any CPython library usage at all.

Note

Of course, it would only make sense where such calculations are "O(1)" complexity, i.e. do not
require recursion like "n!" does.

The other thing is that CPython appears to at - run time - take length hints from objects for some
operations, and there it would help too, to track length of objects, and provide it, to outside code.

Back to the original example:

len("a" * 1000000000000)

The theme here, is that when we can't compute all intermediate expressions, and we sure can't do it in the
general case. But we can still, predict some of properties of an expression result, more or less.

Here we have len to look at an argument that we know the size of. Great. We need to ask if there are any
side effects, and if there are, we need to maintain them of course. This is already done by existing
optimization if an operation generates an exception.

Note

The optimization of len has been implemented and works for all kinds of container creation and
ranges.

Applying this to "ctypes"
The not so specific problem to be solved to understand ctypes declarations is maybe as follows:

import ctypes

This leads to Nuitka in its tree to have an assignment from a __import__ expression to the variable
ctypes. It can be predicted by default to be a module object, and even better, it can be known as ctypes
from standard library with more or less certainty. See the section about "Importing".

So that part is "easy", and it's what will happen. During optimization, when the module __import__
expression is examined, it should say:

"Nuitka Developer Manual - Applying this to "ctypes""

"Nuitka Developer Manual - page 46 - Applying this to "ctypes""

• ctypes is a module

• ctypes is from standard library (if it is, might not be true)

• ctypes then has code behind it, called ModuleFriend that knows things about it attributes,
that should be asked.

The later is the generic interface, and the optimization should connect the two, of course via package and
module full names. It will need a ModuleFriendRegistry, from which it can be pulled. It would be nice if
we can avoid ctypes to be loaded into Nuitka unless necessary, so these need to be more like a plug-in,
loaded only if necessary, i.e. the user code actually uses ctypes.

Coming back to the original expression, it also contains an assignment expression, because it
re-formulated to be more like this:

ctypes = __import__("ctypes")

The assigned to object, simply gets the type inferred propagated as part of an SSA form. Ideally, we could
be sure that nothing in the program changes the variable, and therefore have only one version of that
variable.

For module variables, when the execution leaves the module to unknown code, or unclear code, it might
change the variable. Therefore, likely we will often only assume that it could still be ctypes, but also
something else.

Depending on how well we control module variable assignment, we can decide this more of less quickly.
With "compiled modules" types, the expectation is that it's merely a quick C == comparison check. The
module friend should offer code to allow a check if it applies, for uncertain cases.

Then when we come to uses of it:

ctypes.c_int()

At this point, using SSA, we are more of less sure, that ctypes is at that point the module, and that we
know what it's c_int attribute is, at compile time, and what it's call result is. We will use the module friend
to help with that. It will attach knowledge about the result of that expression during the SSA collection
process.

This is more like a value forward propagation than anything else. In fact, constant propagation should only
be the special case of it, and one design goal of Nuitka was always to cover these two cases with the
same code.

Excursion to Functions
In order to decide what this means to functions and their call boundaries, if we propagate forward, how to
handle this:

def my_append(a, b):
 a.append(b)

 return a

We annotate that a is first a "unknown but defined parameter object", then later on something that
definitely has an append attribute, when returned, as otherwise an exception occurs.

The type of a changes to that after a.append look-up succeeds. It might be many kinds of an object, but
e.g. it could have a higher probability of being a PyListObject. And we would know it cannot be a
PyStringObject, as that one has no append method, and would have raised an exception therefore.

"Nuitka Developer Manual - Excursion to Functions"

"Nuitka Developer Manual - page 47 - Excursion to Functions"

Note

If classes, i.e. other types in the program, have an append attribute, it should play a role too, there
needs to be a way to plug-in to this decisions.

Note

On the other hand, types without append attribute can be eliminated.

Therefore, functions through SSA provide an automatic analysis on their return state, or return value types,
or a quick way to predict return value properties, based on input value knowledge.

So this could work:

b = my_append([], 3)

assert b == [3] # Could be decided now

Goal: The structure we use makes it easy to tell what my_append may be. So, there should be a means to
ask it about call results with given type/value information. We need to be able to tell, if evaluating
my_append makes sense with given parameters or not, if it does impact the return value.

We should e.g. be able to make my_append tell, one or more of these:

• Returns the first parameter value as return value (unless it raises an exception).

• The return value has the same type as a (unless it raises an exception).

• The return value has an append attribute.

• The return value might be a list object.

• The return value may not be a str object.

• The function will raise if first argument has no append attribute.

The exactness of statements may vary. But some things may be more interesting. If e.g. the aliasing of a
parameter value to the return value is known exactly, then information about it need to all be given up, but
some can survive.

It would be nice, if my_append had sufficient information, so we could specialize with list and int from
the parameters, and then e.g. know at least some things that it does in that case. Such specialization
would have to be decided if it makes sense. In the alternative, it could be done for each variant anyway, as
there won't be that many of them.

Doing this "forward" analysis appears to be best suited for functions and therefore long term. We will try it
that way.

"Nuitka Developer Manual - Excursion to Functions"

"Nuitka Developer Manual - page 48 - Excursion to Functions"

Excursion to Loops
a = 1

while 1: # think loop: here
 b = a + 1
 a = b

 if cond():
 break

print(a)

The handling of loops (both for and while are re-formulated to this kind of loops with break statements)
has its own problem. The loop start and may have an assumption from before it started, that a is constant,
but that is only true for the first iteration. So, we can't pass knowledge from outside loop forward directly
into the for loop body.

So the collection for loops needs to be two pass for loops. First, to collect assignments, and merge these
into the start state, before entering the loop body. The need to make two passes is special to loops.

For a start, it is done like this. At loop entry, all pre-existing, but written traces, are turned into loop merges.
Knowledge is not completely removed about everything assigned or changed in the loop, but then it's not
trusted anymore.

From that basis, the break exits are analysed, and merged, building up the post loop state, and
continue exits of the loop replacing the unknown part of the loop entry state. The loop end is considered
a continue for this purpose.

Excursion to Conditions
if cond:
 x = 1
else:
 x = 2

b = x < 3

The above code contains a condition, and these have the problem, that when exiting the conditional block,
a merge must be done, of the x versions. It could be either one. The merge may trace the condition under
which a choice is taken. That way, we could decide pairs of traces under the same condition.

These merges of SSA variable "versions", represent alternative values. They pose difficulties, and might
have to be reduced to commonality. In the above example, the < operator will have to check for each
version, and then to decide that both indeed give the same result.

The trace collection tracks variable changes in conditional branches, and then merges the existing state at
conditional statement exits.

Note

A branch is considered "exiting" if it is not abortive. Should it end in a raise, break, continue,
or return, there is no need to merge that branch, as execution of that branch is terminated.

"Nuitka Developer Manual - Excursion to Loops"

"Nuitka Developer Manual - page 49 - Excursion to Loops"

Should both branches be abortive, that makes things really simple, as there is no need to even
continue.

Should only one branch exist, but be abortive, then no merge is needed, and the collection can
assume after the conditional statement, that the branch was not taken, and continue.

When exiting both the branches, these branches must both be merged, with their new information.

In the above case:

• The "yes" branch knows variable x is an int of constant value 1

• The "no" branch knows variable x is an int of constant value 2

That might be collapsed to:

• The variable x is an integer of value in (1,2)

Given this, we then should be able to precompute the value of this:

b = x < 3

The comparison operator can therefore decide and tell:

• The variable b is a boolean of constant value True.

Were it unable to decide, it would still be able to say:

• The variable b is a boolean.

For conditional statements optimization, it's also noteworthy, that the condition is known to pass or not
pass the truth check, inside branches, and in the case of non-exiting single branches, after the statement
it's not true.

We may want to take advantage of it. Consider e.g.

if type(a) is list:
 a.append(x)
else:
 a += (x,)

In this case, the knowledge that a is a list, could be used to generate better code and with the definite
knowledge that a is of type list. With that knowledge the append attribute call will become the list
built-in type operation.

Excursion to return statements
The return statement (like break, continue, raise) is "aborting" to control flow. It is always the last
statement of inspected block. When there statements to follow it, optimization will remove it as "dead
code".

If all branches of a conditional statement are "aborting", the statement is decided "aborting" too. If a loop
doesn't abort with a break, it should be considered "aborting" too.

"Nuitka Developer Manual - Excursion to return statements"

"Nuitka Developer Manual - page 50 - Excursion to return statements"

Excursion to yield expressions
The yield expression can be treated like a normal function call, and as such invalidates some known
constraints just as much as they do. It executes outside code for an unknown amount of time, and then
returns, with little about the outside world known anymore, if it's accessible from there.

Mixed Types
Consider the following inside a function or module:

if cond is not None:
 a = [x for x in something() if cond(x)]
else:
 a = ()

A programmer will often not make a difference between list and tuple. In fact, using a tuple is a good
way to express that something won't be changed later, as these are mutable.

Note

Better programming style, would be to use this:

if cond is not None:
 a = tuple(x for x in something() if cond(x))
else:
 a = ()

People don't do it, because they dislike the performance hit encountered by the generator
expression being used to initialize the tuple. But it would be more consistent, and so Nuitka is using
it, and of course one day Nuitka ought to be able to make no difference in performance for it.

To Nuitka though this means, that if cond is not predictable, after the conditional statement we may either
have a tuple or a list type object in a. In order to represent that without resorting to "I know nothing
about it", we need a kind of min/max operating mechanism that is capable of say what is common with
multiple alternative values.

Note

At this time, we don't really have that mechanism to find the commonality between values.

Back to "ctypes"
v = ctypes.c_int()

"Nuitka Developer Manual - Excursion to yield expressions"

"Nuitka Developer Manual - page 51 - Excursion to yield expressions"

Coming back to this example, we needed to propagate ctypes, then we can propagate "something" from
ctypes.int and then known what this gives with a call and no arguments, so the walk of the nodes, and
diverse operations should be addressed by a module friend.

In case a module friend doesn't know what to do, it needs to say so by default. This should be enforced by
a base class and give a warning or note.

Now to the interface
The following is the intended interface:

• Iteration with node methods computeStatement and computeExpression.

These traverse modules and functions (i.e. scopes) and visit everything in the order that Python
executes it. The visiting object is TraceCollection and pass forward. Some node types, e.g.
StatementConditional new create branch trace collections and handle the SSA merging at exit.

• Replacing nodes during the visit.

Both computeStatement and computeExpression are tasked to return potential replacements of
themselves, together with "tags" (meaningless now), and a "message", used for verbose tracing.

The replacement node of + operator, may e.g. be the pre-computed constant result, wrapped in side
effects of the node, or the expression raised, again wrapped in side effects.

• Assignments and references affect SSA.

The SSA tree is initialized every time a scope is visited. Then during traversal, traces are built up.
Every assignment and merge starts a new trace for that matter. References to a given variable
version are traced that way.

• Value escapes are traced too.

When an operation hands over a value to outside code, it indicates so to the trace collection. This is
for it to know, when e.g. a constant value, might be mutated meanwhile.

• Nodes can be queried about their properties.

There is a type shape and a value shape that each node can be asked about. The type shape offers
methods that allow to check if certain operations are at all supported or not. These can always return
True (yes), False (no), and None (cannot decide). In the case of the later, optimizations may not be
able do much about it. Lets call these values "tri-state".

There is also the value shape of a node. This can go deeper, and be more specific to a given node.

The default implementation will be very pessimistic. Specific node types and shapes may then
declare, that they e.g. have no side effects, will not raise for certain operations, have a known truth
value, have a known iteration length, can predict their iteration values, etc.

• Nodes are linked to certain states.

During the collect, a variable reference, is linked to a certain trace state, and that can be used by
parent operations.

a = 1
b = a + a

In this example, the references to a, can look-up the 1 in the trace, and base value shape response
to + on it. For compile time evaluation, it may also ask isCompileTimeConstant() and if both
nodes will respond True, then "getCompileTimeConstant()" will return 1, which will be be used in
computation.

"Nuitka Developer Manual - Now to the interface"

"Nuitka Developer Manual - page 52 - Now to the interface"

Then extractSideEffects() for the a reference will return () and therefore, the result 2 will not
be wrapped.

An alternative approach would be hasTypeSlotAdd() on the both nodes, and they both do, to see
if the selection mechanism used by CPython can be used to find which types + should be used.

• Class for module import expression ExpressionImportModule.

This one just knows that something is imported, but not how or what it is assigned to. It will be able in
a recursive compile, to provide the module as an assignment source, or the module variables or
submodules as an attribute source when referenced from a variable trace or in an expression.

• Base class for module friend ModuleFriendBase.

This is intended to provide something to overload, which e.g. can handle math in a better way.

• Module ModuleFriendRegistry

Provides a register function with name and instances of ValueFriendModuleBase to be registered.
Recursed to modules should integrate with that too. The registry could well be done with a metaclass
approach.

• The module friends should each live in a module of their own.

With a naming policy to be determined. These modules should add themselves via above mechanism
to ModuleFriendRegistry and all shall be imported and register. Importing of e.g. ctypes should
be delayed to when the friend is actually used. A meta class should aid this task.

The delay will avoid unnecessary blot of the compiler at run time, if no such module is used. For "qt"
and other complex stuff, this will be a must.

• The walk should initially be single pass, and not maintain history.

Instead optimization that needs to look at multiple things, e.g. "unused assignment", will look at the
whole SSA collection afterwards.

Discussing with examples
The following examples:

Assignment, the source decides the type of the assigned expression
a = b

Operator "attribute look-up", the looked up expression "ctypes" decides
via its trace.
ctypes.c_int

Call operator, the called expressions decides with help of arguments,
which have been walked, before the call itself.
called_expression_of_any_complexity()

import gives a module any case, and the "ModuleRegistry" may say more.
import ctypes

From import need not give module, "x" decides what it is.
from x import y

Operations are decided by arguments, and CPython operator rules between
argument states.
a + b

"Nuitka Developer Manual - Discussing with examples"

"Nuitka Developer Manual - page 53 - Discussing with examples"

The optimization is mostly performed by walking of the tree and performing trace collection. When it
encounters assignments and references to them, it considers current state of traces and uses it for
computeExpression.

Note

Assignments to attributes, indexes, slices, etc. will also need to follow the flow of append, so it
cannot escape attention that a list may be modified. Usages of append that we cannot be sure
about, must be traced to exist, and disallow the list to be considered known value again.

Code Generation Impact
Right now, code generation assumes that everything is a PyObject *, i.e. a Python object, and does not
take knowledge of int or other types into consideration at all, and it should remain like that for some time
to come.

Instead, ctypes value friend will be asked give Identifiers, like other codes do too. And these need to
be able to convert themselves to objects to work with the other things.

But Code Generation should no longer require that operations must be performed on that level. Imagine
e.g. the following calls:

c_call(other_c_call())

Value returned by "other_c_call()" of say c_int type, should be possible to be fed directly into another
call. That should be easy by having a asIntC() in the identifier classes, which the ctypes Identifiers
handle without conversions.

Code Generation should one day also become able to tell that all uses of a variable have only c_int
value, and use int instead of PyObjectLocalVariable more or less directly. We could consider
PyIntLocalVariable of similar complexity as int after the C++ compiler performed its in-lining.

Such decisions would be prepared by finalization, which then would track the history of values throughout
a function or part of it.

Initial Implementation
The basic interface will be added to all expressions and a node may override it, potentially using trace
collection state, as attached during computeExpression.

Goal 1 (Reached)
Initially most things will only be able to give up on about anything. And it will be little more than a tool to do
simple look-ups in a general form. It will then be the first goal to turn the following code into better
performing one:

a = 3
b = 7
c = a / b
print(c)

to:

"Nuitka Developer Manual - Code Generation Impact"

"Nuitka Developer Manual - page 54 - Code Generation Impact"

a = 3
b = 7
c = 3 / 7
print(c)

and then:

a = 3
b = 7
c = 0
print(c)

and then:

a = 3
b = 7
c = 0
print(0)

This depends on SSA form to be able to tell us the values of a, b, and c to be written to by constants,
which can be forward propagated at no cost.

Goal 2 (Reached)
The assignments to a, b, and c shall all become prey to "unused" assignment analysis in the next step.
They are all only assigned to, and the assignment source has no effect, so they can be simply dropped.

print(0)

In the SSA form, these are then assignments without references. These assignments, can be removed if
the assignment source has no side effect. Or at least they could be made "anonymous", i.e. use a
temporary variable instead of the named one. That would have to take into account though, that the old
version still needs a release.

The most general form would first merely remove assignments that have no impact, and leave the value as
a side effect, so we arrive at this first:

3
7
0
print(0)

When applying the removal of expression only statements without effect, this gives us:

print(0)

which is the perfect result. Doing it in one step would only be an optimization at the cost of generalization.

In order to be able to manipulate nodes related to a variable trace, we need to attach the nodes that did it.
Consider this:

"Nuitka Developer Manual - Code Generation Impact"

"Nuitka Developer Manual - page 55 - Code Generation Impact"

if cond():
 x = 1
elif other():
 x = 3

Not using "x".
print(0)

In the above case, the merge of the value traces, should say that x may be undefined, or one of 1 or 3, but
since x is not used, apply the "dead value" trick to each branch.

The removal of the "merge" of the 3 x versions, should exhibit that the other versions are also only
assigned to, and can be removed. These merges of course appear as usages of the x versions.

Goal 3
Then third goal is to understand all of this:

def f():
 a = []

 print(a)

 for i in range(1000):
 print(a)

 a.append(i)

 return len(a)

Note

There are many operations in this, and all of them should be properly handled, or at least ignored in
safe way.

The first goal code gave us that the list has an annotation from the assignment of [] and that it will be
copied to a until the for loop in encountered. Then it must be removed, because the for loop somehow
says so.

The a may change its value, due to the unknown attribute look-up of it already, not even the call. The for
loop must be able to say "may change value" due to that, of course also due to the call of that attribute too.

The code should therefore become equivalent to:

def f():
 a = []

 print([])

 for i in range(1000):
 print(a)

"Nuitka Developer Manual - Code Generation Impact"

"Nuitka Developer Manual - page 56 - Code Generation Impact"

 a.append(i)

 return len(a)

But no other changes must occur, especially not to the return statement, it must not assume a to be
constant "[]" but an unknown a instead.

With that, we would handle this code correctly and have some form constant value propagation in place,
handle loops at least correctly, and while it is not much, it is important demonstration of the concept.

Goal 4
The fourth goal is to understand the following:

def f(cond):
 y = 3

 if cond:
 x = 1
 else:
 x = 2

 return x < y

In this we have a branch, and we will be required to keep track of both the branches separately, and then
to merge with the original knowledge. After the conditional statement we will know that "x" is an "int" with
possible values in (1,2), which can be used to predict that the return value is always True.

The forth goal will therefore be that the "ValueFriendConstantList" knows that append changes a value,
but it remains a list, and that the size increases by one. It should provide an other value friend
"ValueFriendList" for "a" due to that.

In order to do that, such code must be considered:

a = []

a.append(1)
a.append(2)

print(len(a))

It will be good, if len still knows that a is a list object, but not the constant list anymore.

From here, work should be done to demonstrate the correctness of it with the basic tests applied to
discover undetected issues.

Fifth and optional goal: Extra bonus points for being able to track and predict append to update the
constant list in a known way. Using list.append that should be done and lead to a constant result of
len being used.

The sixth and challenging goal will be to make the code generation be impacted by the value friends types.
It should have a knowledge that PyList_Append does the job of append and use PyList_Size for len.
The "ValueFriends" should aid the code generation too.

Last and right now optional goal will be to make range have a value friend, that can interact with iteration
of the for loop, and append of the list value friend, so it knows it's possible to iterate 5000 times, and

"Nuitka Developer Manual - Code Generation Impact"

"Nuitka Developer Manual - page 57 - Code Generation Impact"

that "a" has then after the "loop" this size, so len(a) could be predicted. For during the loop, about a the
range of its length should be known to be less than 5000. That would make the code of goal 2 completely
analyzed at compile time.

Limitations for now
• Aim only for limited examples. For ctypes that means to compile time evaluate:

print(ctypes.c_int(17) + ctypes.c_long(19))

Later then call to "libc" or something else universally available, e.g. "strlen()" or "strcmp()" from full
blown declarations of the callable.

• We won't have the ability to test that optimization are actually performed, we will check the generated
code by hand.

With time, we will add XML based checks with "xpath" queries, expressed as hints, but that is some
work that will be based on this work here. The "hints" fits into the "ValueFriends" concept nicely or so
the hope is.

• No inter-function optimization functions yet

Of course, once in place, it will make the ctypes annotation even more usable. Using ctypes
objects inside functions, while creating them on the module level, is therefore not immediately going
to work.

• No loops yet

Loops break value propagation. For the ctypes use case, this won't be much of a difficulty. Due to
the strangeness of the task, it should be tackled later on at a higher priority.

• Not too much.

Try and get simple things to work now. We shall see, what kinds of constraints really make the most
sense. Understanding list subscript/slice values e.g. is not strictly useful for much code and should
not block us.

Note

This design is not likely to be the final one.

"Nuitka Developer Manual - Limitations for now"

"Nuitka Developer Manual - page 58 - Limitations for now"

How to make Features Experimental
Every experimental feature needs a name. We have a rule to pick a name with lower case and _ as
separators. An example of with would be the name jinja_generated_add that has been used.

Command Line
Experimental features are enabled with the command line argument

nuitka --experimental=jinja_generated_add ...

In C code
In Scons, all experimental features automatically are converted into C defines, and can be used like this:

#ifdef _NUITKA_EXPERIMENTAL_JINJA_GENERATED_ADD
#include "HelpersOperationGeneratedBinaryAdd.c"
#else
#include "HelpersOperationBinaryAdd.c"
#endif

The C pre-processor is the only thing that makes an experimental feature usable.

In Python
You can query experimental features using Options.isExperimental() with e.g. code like this:

if Options.isExperimental("use_feature"):
 experimental_code()
else:
 standard_code()

When to use it
Often we need to keep feature in parallel because they are not finished, or need to be tested after merge
and should not break. Then we can do code changes that will not make a difference except when the
experimental flag is given on the command line to Nuitka.

The testing of Nuitka is very heavy weight when e.g. all Python code is compiled, and very often, it is
interesting to compare behavior with and without a change.

When to remove it
When a feature becomes default, we might choose to keep the old variant around, but normally we do not.
Then we remove the if and #if checks and drop the old code.

At this time, large scale testing will have demonstrated the viability of the code.

Adding dependencies to Nuitka
First of all, there is an important distinction to make, runtime or development time. The first kind of
dependency is used when Nuitka is executing.

"Nuitka Developer Manual - How to make Features Experimental"

"Nuitka Developer Manual - page 59 - How to make Features Experimental"

Adding a Runtime Dependency
This is the kind of dependency that is the most scrutinized. As we want Nuitka to run on latest greatest
Python as well as relatively old ones, we have to be very careful with these ones.

There is also a distinction of optional dependencies. Right now e.g. the lxml package is relatively
optional, and Nuitka can work without it being installed, because e.g. on some platforms it will not be easy
to do so. That bar has lifted somewhat, but it means e.g. that XML based optimization tests are not run
with all Python versions.

The list of runtime dependencies is in requirements.txt and it is for those the case, that they are not
really required to be installed by the user, consider this snippet:

Folders to use for cache files. appdirs == 1.4.3

Scons is the backend building tool to turn C files to binaries. scons == 3.0.4

For both these dependencies, there is either an inline copy (Scons) that we handle to use in case, Scons is
not available (in fact we have a version that works with Python 2.6 and 2.7 still), and also for appdirs. But
since inline copies are against the rules on some platforms that still do not contain the package, we even
have our own wrapper which provides a minimal fallback.

Note

Therefore, please if you consider adding one of these, get in touch with @Nuitka-pushers first and
get a green light.

Adding a Development Dependency
A typical example of a development dependency is black which is used by our autoformat, and then in
turn by the git pre-commit hook. It is used to format source code, and doesn't have a role at run time of the
actual compiler code of Nuitka.

Much less strict rules apply to these in comparison to runtime dependencies. Generally please take care
that the tool must be well maintained an available on newer Pythons. Then we can use it, no problem
normally. But if it's really big, say all of SciPy, we might want to justify it a bit better.

The list of development dependencies is in requirements-devel.txt and it is for example like this:

API doc, doxygen helper for Python doxypypy == 0.8.8.6 ; python_version >= '2.7'

So the doxypypy likely practically anything requires 2.7 or higher, but since we still run tests on Python
2.6, the installation would fail with that version, so we need to make a version requirement. Sometimes we
use older versions for Python2 than for Python3, pylint being a notable candidate, but generally we
ought to avoid that. For many tools only being available for currently 3.6 or higher is good enough, esp. if
they are run as standalone tools, like autoformat-nuitka-source is.

Idea Bin
This an area where to drop random ideas on our minds, to later sort it out, and out it into action, which
could be code changes, plan changes, issues created, etc.

• Make "SELECT_METACLASS" meta class selection transparent.

Looking at the "SELECT_METACLASS" it should become an anonymous helper function. In that
way, the optimization process can remove choices at compile time, and e.g. in-line the effect of a
meta class, if it is known.

"Nuitka Developer Manual - Adding a Runtime Dependency"

"Nuitka Developer Manual - page 60 - Adding a Runtime Dependency"

This of course makes most sense, if we have the optimizations in place that will allow this to actually
happen.

• Keeping track of iterations

The trace collection trace should become the place, where variables or values track their use state.
The iterator should keep track of the "next()" calls made to it, so it can tell which value to given in that
case.

That would solve the "iteration of constants" as a side effect and it would allow to tell that they can be
removed.

That would mean to go back in the tree and modify it long after.

a = iter((2, 3))
b = next(a)
c = next(a)
del a

It would be sweet if we could recognize that as:

a = iter((2,3))
b = side_effect(next(a), 2)
c = side_effect(next(a), 3)
del a

That trivially becomes:

a = iter((2, 3))
next(a)
b = 2
next(a)
c = 3
del a

When the del a is examined at the end of scope, or due to another assignment to the same
variable, ending the trace, we would have to consider of the next uses, and retrofit the information
that they had no effect.

a = iter((2, 3))
b = 2
b = 3
del a

• Aliasing

Each time an assignment is made, an alias is created. A value may have different names.

a = iter(range(9))
b = a
c = next(b)
d = next(a)

"Nuitka Developer Manual - Adding a Runtime Dependency"

"Nuitka Developer Manual - page 61 - Adding a Runtime Dependency"

If we fail to detect the aliasing nature, we will calculate d wrongly. We may incref and decref values to
trace it.

Aliasing is automatically traced already in SSA form. The b is assigned to version of a. So, that
should allow to replace it with this:

a = iter(range(9))
c = next(a)
d = next(a)

Which then will be properly handled.

• Tail recursion optimization.

Functions that return the results of calls, can be optimized. The Stackless Python does it already.

• Integrate with "upx" compression.

Calling "upx" on the created binaries, would be easy.

• In-lining constant "exec" and "eval".

It should be possible to re-formulate at least cases without "locals" or "globals" given.

def f():
 a = 1
 b = 2

 exec("""a+=b;c=1""")

 return a, c

Should become this here:

def f():
 a = 1
 b = 2

 a += b #
 c = 1 # MaybeLocalVariables for everything except known local ones.

 return a, c

If this holds up, inlining exec should be relatively easy.

• Original and overloaded built-ins

This is about making things visible in the node tree. In Nuitka things that are not visible in the node
tree tend to be wrong. We already pushed around information to the node tree a lot.

Later versions, Nuitka will become able to determine it has to be the original built-in at compile time,
then a condition that checks will be optimized away, together with the slow path. Or the other path, if
it won't be. Then it will be optimized away, or if doubt exists, it will be correct. That is the goal.

Right now, the change would mean to effectively disable all built-in call optimization, which is why we
don't immediately do it.

"Nuitka Developer Manual - Adding a Runtime Dependency"

"Nuitka Developer Manual - page 62 - Adding a Runtime Dependency"

Making the compatible version, will also require a full listing of all built-ins, which is typing work
merely, but not needed now. And a way to stop built-in optimization from optimizing built-in calls that
it used in a wrap. Probably just some flag to indicate it when it visits it to skip it. That's for later.

But should we have that both, I figure, we could not raise a RuntimeError error, but just do the
correct thing, in all cases. An earlier step may raise RuntimeError error, when built-in module
values are written to, that we don't support.

"Nuitka Developer Manual - Adding a Runtime Dependency"

"Nuitka Developer Manual - page 63 - Adding a Runtime Dependency"

• Recursion checks are expensive.

If the "caller" or the "called" can declare that it cannot be called by itself, we could leave it out.

TODO: Are they really that expensive? Unnecessary yes, but expensive may not be true.

"Nuitka Developer Manual - Adding a Runtime Dependency"

"Nuitka Developer Manual - page 64 - Adding a Runtime Dependency"

Prongs of Action
In this chapter, we keep track of prongs of action currently ongoing. This can get detailed and shows
things we strive for.

Builtin optimization
Definitely want to get built-in names under full control, so that variable references to module variables do
not have a twofold role. Currently they reference the module variable and also the potential built-in as a
fallback.

In terms of generated code size and complexity for modules with many variables and uses of them that is
horrible. But some_var (normally) cannot be a built-in and therefore needs no code to check for that each
time.

This is also critical to getting to whole program optimization. Being certain what is what there on module
level, will enable more definitely knowledge about data flows and module interfaces.

Class Creation Overhead Reduction
This is more of a meta goal. Some work for the metaclass has already been done, but that is Python2 only
currently. Being able to to decide built-ins and to distinguish between global only variables, and built-ins
more clearly will help this a lot.

In the end, empty classes should be able to be statically converted to calls to type with static dictionaries.
The inlining of class creation function is also needed for this, but on Python3 cannot happen yet.

Memory Usage at Compile Time
We will need to store more and more information in the future. Getting the tree to be tight shaped is
therefore an effort, where we will be spending time too.

The mix-ins prevent slots usage, so lets try and get rid of those. The "children having" should become
more simple and faster code. I am even thinking of even generating code in the meta class, so it's both
optimal and doesn't need that mix-in any more. This is going to be ugly then.

Coverage Testing
And then there is coverage, it should be taken and merged from all Python versions and OSes, but I never
managed to merge between Windows and Linux for unknown reasons.

Python3 Performance
The Python3 lock for thread state is making it slower by a lot. I have only experimental code that just
ignores the lock, but it likely only works on Linux, and I wonder why there is that lock in the first place.

Ignoring the locks cannot be good. But what updates that thread state pointer ever without a thread
change, and is this what abiflags are about in this context, are there some that allow us to ignore the locks.

An important bit would be to use a thread state once acquired for as much as possible, currently exception
helpers do not accept it as an argument, but that ought to become an option, that way saving and restoring
an exception will be much faster, not to mention checking and dropping non interesting, or rewriting
exceptions.

Onefile compression on Windows
We need to add compression on that platform too. This should use zstd and probably just needs
integration into our build. The Python side already is capable of producing compressed payload.

"Nuitka Developer Manual - Prongs of Action"

"Nuitka Developer Manual - page 65 - Prongs of Action"

Caching of Python level compilation
While the C compilation result is already cached with ccache and friends now, we need to also cover our
bases and save the resulting node tree of potential expensive optimization on the module level.

Updates for this Manual
This document is written in REST. That is an ASCII format which is readable as ASCII, but used to
generate PDF or HTML documents.

You will find the current source under:
https://github.com/Nuitka/Nuitka/blob/develop/Developer_Manual.rst

And the current PDF under: https://nuitka.net/doc/Developer_Manual.pdf

"Nuitka Developer Manual - Caching of Python level compilation"

"Nuitka Developer Manual - page 66 - Caching of Python level compilation"

https://github.com/Nuitka/Nuitka/blob/develop/Developer_Manual.rst
https://nuitka.net/doc/Developer_Manual.pdf

	Milestones
	Version Numbers
	Current State
	Setting up the Development Environment for Nuitka
	Visual Studio Code
	Eclipse / PyCharm

	Commit and Code Hygiene
	Coding Rules Python
	Tool to format
	Identifiers
	Module/Package Names
	Prefer list contractions over built-ins

	Coding Rules C
	The "git flow" model
	Nuitka "git/github" Workflow
	API Documentation and Guidelines
	Use of Standard Python "__doc__" Strings
	Special doxygen Anatomy of "__doc__"

	Checking the Source
	Running the Tests
	Running all Tests
	Basic Tests
	Syntax Tests
	Program Tests
	Generated Tests
	Compile Nuitka with Nuitka

	Internal/Plugin API
	Working with the CPython suites
	Design Descriptions
	Nuitka Logo
	Choice of the Target Language
	Use of Scons internally
	Locating Modules and Packages
	Hooking for module import process
	Supporting __class__ of Python3
	Frame Stack
	Parameter Parsing
	Input
	Keyword dictionary
	Argument tuple

	SSA form for Nuitka
	Loop SSA
	Python Slots in Optimization
	Basic Slot Idea
	Representation in Nuitka

	The C side
	Built-in call optimization
	Code Generation towards C
	Exceptions
	Statement Temporary Variables
	Local Variables Storage
	Exit Targets
	Frames
	Abortive Statements

	Constant Preparation
	Language Conversions to make things simpler
	The assert statement
	The "comparison chain" expressions
	The execfile built-in
	Generator expressions with yield
	Function Decorators
	Functions nested arguments
	In-place Assignments
	Complex Assignments
	Unpacking Assignments
	With Statements
	For Loops
	While Loops
	Exception Handlers
	Statement try/except with else
	Class Creation (Python2)
	Class Creation (Python3)
	Generator Expressions
	List Contractions
	Set Contractions
	Dictionary Contractions
	Boolean expressions and and or
	Simple Calls
	Complex Calls
	Print statements

	Reformulations during Optimization
	Builtin zip for Python2
	Builtin map for Python2
	Builtin min
	Builtin max
	Call to dir without arguments
	Calls to functions with known signatures

	Nodes that serve special purposes
	Try statements
	Releases
	Side Effects
	Caught Exception Type/Value References
	Hard Module Imports
	Locals Dict Update Statement

	Plan to add "ctypes" support
	Goals/Allowances to the task
	Type Inference - The Discussion
	Applying this to "ctypes"
	Excursion to Functions
	Excursion to Loops
	Excursion to Conditions
	Excursion to return statements
	Excursion to yield expressions
	Mixed Types
	Back to "ctypes"
	Now to the interface
	Discussing with examples
	Code Generation Impact
	Initial Implementation
	Goal 1 (Reached)
	Goal 2 (Reached)
	Goal 3
	Goal 4

	Limitations for now

	How to make Features Experimental
	Command Line
	In C code
	In Python
	When to use it
	When to remove it

	Adding dependencies to Nuitka
	Adding a Runtime Dependency
	Adding a Development Dependency

	Idea Bin
	Prongs of Action
	Builtin optimization
	Class Creation Overhead Reduction
	Memory Usage at Compile Time
	Coverage Testing
	Python3 Performance
	Onefile compression on Windows
	Caching of Python level compilation

	Updates for this Manual

