Nuitka Release 0.5.13

This release contains the first use of SSA for value propagation and massive amounts of bug fixes and
optimization. Some of the bugs that were delivered as hotfixes, were only revealed when doing the value
propagation as they still could apply to real code.

Bug Fixes

* Fix, relative imports in packages were not working with absolute imports enabled via future flags.
Fixed in 0.5.12.1 already.

» Loops were not properly degrading knowledge from inside the loop at loop exit, and therefore this
could have lead missing checks and releases in code generation for cases, for del statements in
the loop body. Fixed in 0.5.12.1 already.

» The or and and re-formulation could trigger false assertions, due to early releases for compatibility.
Fixed in 0.5.12.1 already.

* Fix, optimizion of calls of constant objects (always an exception), crashed the compiler. This corrects
Issue#202. Fixed in 0.5.12.2 already.

« Standalone: Added support for site. py installations with a leading def or cl ass statement,
which is defeating our attempt to patch __fil e__ for it. This corrects Issue#189.

» Compatibility: In full compatibility mode, the tracebacks of or and and expressions are now as
wrong as they are in CPython. Does not apply to - - i npr oved mode.

« Standalone: Added missing dependency on ¢ Gui by Q@ W dget s for PyQt5.

» MacOS: Improved parsing of ot ool output to avoid duplicate entries, which can also be entirely
wrong in the case of Qt plugins at least.

* Avoid relative paths for main program with file reference mode ori gi nal , as it otherwise changes
as the file moves.

* MinGW: The created modules depended on MinGW to be in PATH for their usage. This is no longer
necessary, as we now link these libraries statically for modules too.

» Windows: For modules, the option - - run to immediately load the modules had been broken for a
while.

« Standalone: Ignore Windows DLLs that were attempted to be loaded, but then failed to load. This
happens e.g. when both PySide and PyQt are installed, and could cause the dreaded conflicting
DLLs message. The DLL loaded in error is now ignored, which avoids this.

* MinGW: The resource file used might be empty, in which case it doesn't get created, avoiding an
error due to that.

* MinGW: Modules can now be created again. The run time relative code uses an API that is WinXP
only, and MinGW failed to find it without guidance.

Optimization

» Make direct calls out of called function creations. Initially this applies to lambda functions only, but it's
expected to become common place in coming releases. This is now 20x faster than CPython.

Nui tka avoids creating a function object, parsing function argunents:
(I anbda x: x) (sonet hi ng)

» Propagate assignments from non-mutable constants forward based on SSA information. This is the
first step of using SSA for real compile time optimization.

http://bugs.nuitka.net/issue202
http://bugs.nuitka.net/issue189

* Specialized the creation of call nodes at creation, avoiding to have all kinds be the most flexible form
(keyword and plain arguments), but instead only what kind of call they really are. This saves lots of
memory, and makes the tree faster to visit.

» Added support for optimizing the sl i ce built-in with compile time constant arguments to constants.
The re-formulation for slices in Python3 uses these a lot. And the lack of this optimization prevented
a bunch of optimization in this area. For Python2 the built-in is optimized too, but not as important
probably.

» Added support for optimizing i si nst ance calls with compile time constant arguments. This avoids
static exception raises in the exec re-formulation which tests for fi | e type, and then optimization
couldn'ttellthatastr isnotafil e instance. Now it can.

» Lower in-place operations on immutable types to normal operations. This will allow to compile time
compute these more accurately.

» The re-formulation of loops puts the loop condition as a conditional statement with break. The not
that needs to apply was only added in later optimization, leading to unnecessary compile time efforts.

« Removed per variable trace visit from optimization, removing useless code and compile time
overhead. We are going to optimize things by making decision in assignment and reference nodes
based on forward looking statements using the last trace collection.

New Features

» Added experimental support for Python 3.5, which seems to be passing the test suites just fine. The
new @ matrix multiplicator operators are not yet supported though.

» Added support for patching source on the fly. This is used to work around a (now fixed) issue with
nunexpr. cpui nfo making type checks with the i s operation, about the only thing we cannot
detect.

Organizational

» Added repository for Ubuntu Vivid (15.04) for download. Removed Ubuntu Saucy and Ubuntu Raring
package downloads, these are no longer supported by Ubuntu.

» Added repository for Debian Stretch, after Jessie release.

» Make it more clear in the documentation that in order to compile Python3, a Python2 is needed to
execute Scons, but that the end result is a Python3 binary.

» The PyLint checker tool now can operate on directories given on the command line, and whitelists an
error that is Windows only.

Cleanups

* Split up standalone code further, moving depends. exe handling to a separate module.
» Reduced code complexity of scons interface.

» Cleaned up where trace collection is being done. It was partially still done inside the collection itself
instead in the owner.

« In case of conflicting DLLs for standalone mode, these are now output with nicer formatting, that
makes it easy to recognize what is going on.

» Moved code to fetch depends. exe to dedicated module, so it's not as much in the way of
standalone code.

Tests

» Made Bui | ti nsTest directly executable with Python3.
» Added construct test to demonstrate the speed up of direct lambda calls.

» The deletion of @est for the CPython test suite is more robust now, esp. on Windows, the
symbolic links are now handled.

» Added test to cover or usage with in-place assignment.
» Cover local relative i nport from . with absol ute_inport future flag enabled.

 Again, more basic tests are now directly executable with Python3.

Summary

This release is major due to amount of ground covered. The reduction in memory usage of Nuitka itself
(the C++ compiler will still use much memory) is very massive and an important aspect of scalability too.

Then the SSA changes are truly the first sign of major improvements to come. In their current form,
without eliminating dead assignments, the full advantage is not taken yet, but the next releases will do
this, and that's a major milestone to Nuitka.

The other optimization mostly stem from looking at things closer, and trying to work towards function
in-lining, for which we are making a lot of progress now.

Nuitka Release 0.5.12

This release contains massive amounts of corrections for long standing issues in the import recursion
mechanism, as well as for standalone issues now visible after the _ file_ and _ path__ values
have changed to become runtime dependent values.

Bug Fixes

* Fix, the __pat h__ attribute for packages was still the original filename's directory, even in file
reference mode was r unt i me.

* The use of runt i ne as default file reference mode for executables, even if not in standalone mode,
was making acceleration harder than necessary. Changed to ori gi nal for that case. Fixed in
0.5.11.1 already.

» The constant value for the smallesti nt that is not yetal ong is created using 1 due to C compiler
limitations, but 1 was not yet initialized properly, if this was a global constant, i.e. used in multiple
modules. Fixed in 0.5.11.2 already.

« Standalone: Recent fixes around __path__ revealed issues with PyWin32, where modules from
wi n32com shel | were not properly recursed to. Fixed in 0.5.11.2 already.

» The importing of modules with the same name as a built-in module inside a package falsely assumed
these were the built-ins which need not exist, and then didn't recurse into them. This affected
standalone mode the most, as the module was then missing entirely. This corrects Issue#178.

I nside "x.y" nodul e:
i nport X.y.exceptions

* Similarily, the importing of modules with the same name as standard library modules could go wrong.
This corrects Issue#184.

Inside "x.y" nodul e:
import X.y.types

http://bugs.nuitka.net/issue178
http://bugs.nuitka.net/issue184

* Importing modules on Windows and MacOS was not properly checking the checking the case,
making it associate wrong modules from files with mismatching case. This corrects Issue#188.

« Standalone: Importing with from _ future__ i nport absol ute_i nport would prefer relative
imports still. This corrects Issue#187.

» Python3: Code generation for try/return expr/finally could loose exceptions when expr
raised an exception, leading to a Runti meError for NULL return value. The real exception was
lost.

» Lambda expressions that were directly called with star arguments caused the compiler to crash.

(I anbda *args:args)(*args) # was crashing Nuitka

New Optimization

» Focusing on compile time memory usage, cyclic dependencies of trace merges that prevented them
from being released, even when replaced were removed.

» More memory efficient updating of global SSA traces, reducing memory usage during optimization by
ca. 50%.

» Code paths that cannot and therefore must not happen are now more clearly indicated to the
backend compiler, allowing for slightly better code to be generated by it, as it can tell that certain
code flows need not be merged.

New Features

» Standalone: On systems, where . pt h files inject Python packages at launch, these are now
detected, and taking into account. Previously Nuitka did not recognize them, due to lack of
__init__.py files. These are mostly pip installations of e.g. zope. i nterf ace.

» Added option - - expl ai n-i nmports to debug the import resolution code of Nuitka.

» Added options - - show nmrenory to display the amount of memory used in total and how it's spread
across the different node types during compilation.

* The option - -trace-executi on now also covers early program initialisation before any Python
code runs, to ease finding bugs in this domain as well.

Organizational

» Changed default for file reference mode to ori gi nal unless standalone or module mode are used.
For mere acceleration, breaking the reading of data files from __file__ is useless.

» Added check that the inline copy of scons is not run with Python3, which is not supported. Nuitka
works fine with Python3, but a Python2 is required to execute scons.

« Discover more kinds of Python2 installations on Linux/MacOS installations.

» Added instructions for MacOS to the download page.

Cleanups

* Moved oset and odi ct modules which provide ordered sets and dictionaries into a new package
nui t ka. cont ai ner to clean up the top level scope.

* Moved Synt axErrors tonuitka.tree package, where it is used to format error messages.

* Moved nui tka. Uti|ls package to nuitka.utils.Uils creating a whole package for utils, so
as to better structure them for their purpose.

http://bugs.nuitka.net/issue188
http://bugs.nuitka.net/issue188

Summary

This release is a major maintenance release. Support for namespace modules injected by *. pth is a
major step for new compatibility. The import logic improvements expand the ability of standalone mode
widely. Many more use cases will now work out of the box, and less errors will be found on case
insensitive systems.

There is aside of memory issues, no new optimization though as many of these improvements could not
be delivered as hotfixes (too invasive code changes), and should be out to the users as a stable release.
Real optimization changes have been postponed to be next release.

Nuitka Release 0.5.11

The last release represented a significant change and introduced a few regressions, which got addressed
with hot fix releases. But it also had a focus on cleaning up open optimization issues that were postponed
in the last release.

New Features

» The filenames of source files as found in the _ file_ _ attribute are now made relative for all
modes, not just standalone mode.

This makes it possible to put data files along side compiled modules in a deployment. This solves
Issue#170.

Bug Fixes
* Local functions that reference themselves were not released. They now are.

def soneFunction():
def f():
f() # referencing 'f' in 'f' caused the garbage collection to fail.

Recent changes to code generation attached closure variable values to the function object, so now
they can be properly visited. This corrects Issue#45. Fixed in 0.5.10.1 already.

» Python2.6: The complex constants with real or imaginary parts - 0. 0 were collapsed with constants
of value 0. 0. This became more evident after we started to optimize the conpl ex built-in. Fixed in
0.5.10.1 already.

conmpl ex(0.0, 0.0)
compl ex(-0.0, -0.0) # Could be confused with the above.

» Complex call helpers could leak references to their arguments. This was a regression. Fixed in
0.5.10.1 already.

» Parameter variables offered as closure variables were not properly released, only the cell object was,
but not the value. This was a regression. Fixed in 0.5.10.1 already.

» Compatibility: The exception type given when accessing local variable values not initialized in a
closure taking function, needs to be NaneError and UnboundLocal Error for accesses in the
providing function. Fixed in 0.5.10.1 already.

* Fix support for "venv" on systems, where the system Python uses symbolic links too. This is the case
on at least on Mageia Linux. Fixed in 0.5.10.2 already.

* Python3.4: On systems where | ong and Py_ssi ze_t are different (e.g. Win64) iterators could be
corrupted if used by uncompiled Python code. Fixed in 0.5.10.2 already.

http://bugs.nuitka.net/issue170
http://bugs.nuitka.net/issue45

* Fix, generator objects didn't release weak references to them properly. Fixed in 0.5.10.2 already.

e Compatiblity: The __cl osure attributes of functions was so far not supported, and rarely
missing. Recent changes made it easy to expose, so now it was added. This corrects Issue#45.

» MacOS: A linker warning about deprecated linker option - s was solved by removing the option.

» Compatibility: Nuitka was enforcing that the __doc__ attribute to be a string object, and gave a
misleading error message. This check must not be done though, —doc__ can be any type in
Python. This corrects Issue#177.

New Optimization

« Variables that need not be shared, because the uses in closure taking functions were eliminated, no
longer use cell objects.

*The try/except andtry/finally statements now both have actual merging for SSA, allowing
for better optimization of code behind it.

def f():

try:

a = sonet hi ng()
except:

return 2

Since the above exception handling cannot continue the code flow,

we do not have to invalidate the trace of "a", and e.g. do not have
to generate code to check if it's assigned.

return a

Since tryffinally is used in almost all re-formulations of complex Python constructs this is
improving SSA application widely. The uses of try/except in user code will no longer degrade
optimization and code generation efficiency as much as they did.

* The try/except statement now reduces the scope of tried block if possible. When no statement
raised, already the handling was removed, but leading and trailing statements that cannot raise, were
not considered.

def f():
try:
b =1
a = sonet hi ng()
c =1
except:
return 2

This is now optimized to.

def f():

b =1
try:

a = sonet hi ng()
except:

http://bugs.nuitka.net/issue45
http://bugs.nuitka.net/issue177

The impact may on execution speed may be marginal, but it is definitely going to improve the branch
merging to be added later. Note that ¢ can only be optimized, because the exception handler is
aborting, otherwise it would change behaviour.

» The creation of code objects for standalone mode and now all code objects was creating a distinct
filename object for every function in a module, despite them being same content. This was wasteful
for module loading. Now it's done only once.

Also, when having multiple modules, the code to build the run time filename used for code objects,
was calling import logic, and doing lookups to find os. pat h. j oi n again and again. These are now
cached, speeding up the use of many modules as well.

Cleanups

* Nuitka used to have "variable usage profiles" and still used them to decide if a global variable is
written to, in which case, it stays away from doing optimization of it to built-in lookups, and later calls.

The have been replaced by "global variable traces”, which collect the traces to a variable across all
modules and functions. While this is now only a replacement, and getting rid of old code, and basing
on SSA, later it will also allow to become more correct and more optimized.

» The standalone now queries its hidden dependencies from a plugin framework, which will become an
interface to Nuitka internals in the future.

Testing

» The use of deep hashing of constants allows us to check if constants become mutated during the
run-time of a program. This allows to discover corruption should we encounter it.

» The tests of CPython are now also run with Python in debug mode, but only on Linux, enhancing
reference leak coverage.

* The CPython test parts which had been disabled due to reference cycles involving compiled
functions, or usage of __cl osure__ attribute, were reactivated.

Organizational

* Since Google Code has shutdown, it has been removed from the Nuitka git mirrors.

Summary

This release brings exciting new optimization with the focus on the t ry constructs, now being done more
optimal. It is also a maintenance release, bringing out compatibility improvements, and important bug
fixes, and important usability features for the deployment of modules and packages, that further expand
the use cases of Nuitka.

The git flow had to be applied this time to get out fixes for regression bug fixes, that the big change of the
last release brought, so this is also to consolidate these and the other corrections into a full release before
making more invasive changes.

The cleanups are leading the way to expanded SSA applied to global variable and shared variable values
as well. Already the built-in detect is now based on global SSA information, which was an important step
ahead.

Nuitka Release 0.5.10

This release has a focus on code generation optimization. Doing major changes away from "C++-ish"
code to "C-ish" code, many constructs are now faster or got looked at and optimized.

Bug Fixes

» Compatibility: The variable name in locals for the iterator provided to the generator expression
should be . 0, now it is.

» Generators could leak frames until program exit, these are now properly freed immediately.

New Optimization

» Faster exception save and restore functions that might be in-lined by the backend C compiler.

* Faster error checks for many operations, where these errors are expected, e.g. instance attribute
lookups.

*Do not create traceback and locals dictionary for frame when Stoplteration or
Cenerator Exit are raised. These tracebacks were wasted, as they were immediately released
afterwards.

* Closure variables to functions and parameters of generator functions are now attached to the
function and generator objects.

» The creation of functions with closure taking was accelerated.
» The creation and destruction of generator objects was accelerated.
» The re-formulation for in-place assignments got simplified and got faster doing so.

* In-place operations of st r were always copying the string, even if was not necessary. This corrects
Issue#124.

a += b # WAs not re-using the storage of "a" in case of strings

» Python2: Additions of i nt for Python2 are now even faster.
» Access to local variable values got slightly accelerated at the expense of closure variables.
» Added support for optimizing the conpl ex built-in.

* Removing unused temporary and local variables as a result of optimization, these previously still
allocated storage.

Cleanup

» The use of C++ classes for variable objects was removed. Closure variables are now attached as
PyCel | Ohj ect to the function objects owning them.

» The use of C++ context classes for closure taking and generator parameters has been replaced with
attaching values directly to functions and generator objects.

» The indentation of code template instantiations spanning multiple was not in all cases proper. We
were using emission objects that handle it new lines in code and mere | i st objects, that don't
handle them in mixed forms. Now only the emission objects are used.

* Some templates with C++ helper functions that had no variables got changed to be properly
formatted templates.

* The internal API for handling of exceptions is now more consistent and used more efficiently.

http://bugs.nuitka.net/issue124

» The printing helpers got cleaned up and moved to static code, removing any need for forward
declaration.

» The use of | NCREASE REFCOUNT_X was removed, it got replaced with proper Py Xl NCREF
usages. The function was once required before "C-ish" lifted the need to do everything in one
function call.

» The use of | NCREASE _REFCOUNT got reduced. See above for why that is any good. The idea is that
Py | NCREF must be good enough, and that we want to avoid the C function it was, even if in-lined.

» The assert Obj ect function that checks if an object is not NULL and has positive reference count,
i.e. is sane, got turned into a preprocessor macro.

» Deep hashes of constant values created in - - debug mode, which cover also mutable values, and
attempt to depend on actual content. These are checked at program exit for corruption. This may
help uncover bugs.

Organizational

» Speedcenter has been enhanced with better graphing and has more benchmarks now. More work
will be needed to make it useful.

» Updates to the Developer Manual, reflecting the current near finished state of "C-ish" code
generation.

Tests

* New reference count tests to cover generator expressions and their usage got added.

» Many new construct based tests got added, these will be used for performance graphing, and serve
as micro benchmarks now.

 Again, more basic tests are directly executable with Python3.

Summary

This is the next evolution of "C-ish" coming to pass. The use of C++ has for all practical purposes
vanished. It will remain an ongoing activity to clear that up and become real C. The C++ classes were a
huge road block to many things, that now will become simpler. One example of these were in-place
operations, which now can be dealt with easily.

Also, lots of polishing and tweaking was done while adding construct benchmarks that were made to
check the impact of these changes. Here, generators probably stand out the most, as some of the missed
optimization got revealed and then addressed.

Their speed increases will be visible to some programs that depend a lot on generators.

This release is clearly major in that the most important issues got addressed, future releases will provide
more tuning and completeness, but structurally the "C-ish" migration has succeeded, and now we can
reap the benefits in the coming releases. More work will be needed for all in-place operations to be
accelerated.

More work will be needed to complete this, but it's good that this is coming to an end, so we can focus on
SSA based optimization for the major gains to be had.

Nuitka Release 0.5.9

This release is mostly a maintenance release, bringing out minor compatibility improvements, and some
standalone improvements. Also new options to control the recursion into modules are added.

Bug Fixes

» Compatibility: Checks for iterators were using Pyl t er _Check which is buggy when running outside
of Python core, because it's comparing pointers we don't see. Replaced with HAS | TERNEXT helper
which compares against the pointer as extracting for a real non-iterator object.

class lterable:
def __init__(self):
sel f.consuned = 2

def __iter_ (self):
return Iterable()

iter(lterable()) # This is suppose to raise, but didn't w th Nuitka

» Python3: Errors when creating class dictionaries raised by the __prepare__ dictionary (e.g. enum
classes with wrong identifiers) were not immediately raised, but only by the t ype call. This was not
observable, but might have caused issues potentially.

» Standalone MacOS: Shared libraries and extension modules didn't have their DLL load paths
updated, but only the main binary. This is not sufficient for more complex programs.

» Standalone Linux: Shared libraries copied into the . di st folder were read-only and executing
chr pat h could potentially then fail. This has not been observed, but is a conclusion of MacOS fix.

« Standalone: When freezing standard library, the path of Nuitka and the current directory remained in
the search path, which could lead to looking at the wrong files.

Organizational

*« The get at tr built-in is now optimized for compile time constants if possible, even in the presence
of adefaul t argument. This is more a cleanup than actually useful yet.

* The calling of PyCFunct i on from normal Python extension modules got accelerated, especially for
the no or single argument cases where Nuitka now avoids building the tuple.

New Features

» Added the option - - recur se- pattern to include modules per filename, which for Python3 is the
only way to not have them in a package automatically.

» Added the option - - gener at e- c++-onl y to only generate the C++ source code without starting
the compiler.

Mostly used for debugging and testing coverage. In the later case we do not want the C++ compiler
to create any binary, but only to measure what would have been used.

Organizational

* Renamed the debug option --c++-only to --reconpil e-c++-only to make its purpose more
clear and there now is - - gener at e- c++- onl y too.

Tests

» Added support for taking coverage of Nuitka in a test run on a given input file.

» Added support for taking coverage for all Nuitka test runners, migrating them all to common code for
searching.

» Added uniform way of reporting skipped tests, not generally used yet.

Summary

This release marks progress towards having coverage testing. Recent releases had made it clear that not
all code of Nuitka is actually used at least once in our release tests. We aim at identifying these.

Another direction was to catch cases, where Nuitka leaks exceptions or is subject to leaked exceptions,
which revealed previously unnoticed errors.

Important changes have been delayed, e.g. the closure variables will not yet use C++ objects to share
storage, but proper PyCel | Obj ect for improved compatibility, and to approach a more "C-ish" status.
These is unfinished code that does this. And the forward propagation of values is not enabled yet again
either.

So this is an interim step to get the bug fixes and improvements accumulated out. Expect more actual
changes in the next releases.

Nuitka Release 0.5.8

This release has mainly a focus on cleanups and compatibility improvements. It also advances standalone
support, and a few optimization improvements, but it mostly is a maintenance release, attacking long
standing issues.

Bug Fixes

» Compatibility Windows MacOS: Fix importing on case insensitive systems.

It was not always working properly, if there was both a package Sonet hi ng and sonet hi ng, by
merit of having files Sormet hing/ __init__. py and sonet hi ng. py.

« Standalone: The search path was preferring system directories and therefore could have conflicting
DLLs. Issue#144.

* Fix, the optimization of get att r with predictable result was crashing the compilation. This was a
regression, fixed in 0.5.7.1 already.

» Compatibility: The name mangling inside classes also needs to be applied to global variables.

* Fix, proving cl ang++ for CXX was mistakingly thinking of it as a g++ and making version checks
on it.

» Python3: Declaring __cl ass__ global is now a Synt axErr or before Python3.4.

« Standalone Python3: Making use of module state in extension modules was not working properly.

New Features

* The filenames of source files as found in the _ file_ _ attribute are now made relative in
standalone mode.

This should make it more apparent if things outside of the distribution folder are used, at the cost of
tracebacks. Expect the default ability to copy the source code along in an upcoming release.

» Added experimental standalone mode support for PyQt5. At least headless mode should be working,
plug-ins (needed for anything graphical) are not yet copied and will need more work.

Cleanup

* No longer using i np. fi nd_nodul e anymore. To solve the casing issues we needed to make our
own module finding implementation finally.

» The name mangling was handled during code generation only. Moved to tree building instead.

http://bugs.nuitka.net/issue144

» More code generation cleanups. The compatible line numbers are now attached during tree building
and therefore better preserved, as well as that code no longer polluting code generation as much.

Organizational

* No more packages for openSUSE 12.1/12.2/12.3 and Fedora 17/18/19 as requested by the
openSUSE Build Service.

» Added RPM packages for Fedora 21 and CentOS 7 on openSUSE Build Service.

Tests

 Lots of test refinements for the CPython test suites to be run continuously in Buildbot for both
Windows and Linux.

Summary
This release brings about two major changes, each with the risk to break things.

One is that we finally started to have our own import logic, which has the risk to cause breakage, but
apparently currently rather improved compatibility. The case issues were not fixable with standard library
code.

The second one is that the _ fil e__ attributes for standalone mode is now no longer pointing to the
original install and therefore will expose missing stuff sooner. This will have to be followed up with code to
scan for missing "data" files later on.

For SSA based optimization, there are cleanups in here, esp. the one removing the name mangling,
allowing to remove special code for class variables. This makes the SSA tree more reliable. Hope is that
the big step (forward propagation through variables) can be made in one of the next releases.

Nuitka Release 0.5.7

This release is brings a newly supported platform, bug fixes, and again lots of cleanups.
Bug Fixes
* Fix, creation of dictionary and set literals with non-hashable indexes did not raise an exception.

{[]: None} # This is now a TypeError

New Optimization

* Calls to the di ct built-in with only keyword arguments are now optimized to mere dictionary
creations. This is new for the case of non-constant arguments only of course.

dict(a = b, ¢ = d)
equivalent to
{"a" : b, "c" : d}

« Slice del with indexable arguments are now using optimized code that avoids Python objects too.
This was already done for slice look-ups.

» Added support for byt earr ay built-in.

Organizational

» Added support for OpenBSD with fiber implementation from library, as it has no context support.
Cleanups

» Moved slicing solutions for Python3 to the re-formulation stage. So far the slice nodes were used, but
only at code generation time, there was made a distinction between Python2 and Python3 for them.
Now these nodes are purely Python2 and slice objects are used universally for Python3.

Tests

 The test runners now have common code to scan for the first file to compile, an implementation of
the sear ch mode. This will allow to introduce the ability to search for pattern matches, etc.

» More tests are directly executable with Python3.

» Added recurse_none mode to test comparison, making using extra options for that purpose
unnecessary.

Summary

This solves long standing issues with slicing and subscript not being properly distinguished in the Nuitka
code. It also contains major bug fixes that really problematic. Due to the involved nature of these fixes
they are made in this new release.

Nuitka Release 0.5.6

This release brings bug fixes, important new optimization, newly supported platforms, and important
compatibility improvements. Progress on all fronts.

Bug Fixes

* Closure taking of global variables in member functions of classes that had a class variable of the
same name was binding to the class variable as opposed to the module variable.

» Overwriting compiled function's __doc___ attribute more than once could corrupt the old value,
leading to crashes. Issue#156. Fixed in 0.5.5.2 already.

» Compatibility Python2: The exec statement execfil e were changing | ocal s() was given as an
argument.

def function():

a =1

exec code in locals() # Cannot change |ocal "a".
exec code in None # Can change | ocal "a"
exec code

Previously Nuitka treated all 3 variants the same.

» Compatibility: Empty branches with a condition were reduced to only the condition, but they need in
fact to also check the truth value:

if condition:

pass
must be treated as
bool (condi ti on)

http://bugs.nuitka.net/issue156

and not (bug)
condi tion
« Detection of Windows virtualenv was not working properly. Fixed in 0.5.5.2 already.

 Large enough constants structures are now unstreamed via mar shal module, avoiding large codes
being generated with no point. Fixed in 0.5.5.2 already.

» Windows: Pressing CTRL-C gave two stack traces, one from the re-execution of Nuitka which was
rather pointless. Fixed in 0.5.5.1 already.

» Windows: Searching for virtualenv environments didn't terminate in all cases. Fixed in 0.5.5.1
already.

 During installation from PyPI with Python3 versions, there were errors given for the Python2 only
scons files. Issue#153. Fixed in 0.5.5.3 already.

* Fix, the arguments of yi el d fr om expressions could be leaked.

* Fix, closure taking of a class variable could have in a sub class where the module variable was
meant.

var = 1

class C
var = 2

class D
def f():
was C.var, now correctly addressed top |evel var
return var

* Fix, setting CXX environment variable because the installed gcc has too low version, wasn't affecting
the version check at all.

* Fix, on Debian/Ubuntu with har deni ng- w apper installed the version check was always failing,
because these report a shortened version number to Scons.

New Optimization

« Local variables that must be assigned also have no side effects, making use of SSA. This allows for
a host of optimization to be applied to them as well, often yielding simpler access/assign code, and
discovering in more cases that frames are not necessary.

» Micro optimization to di ct built-in for simpler code generation.

Organizational

» Added support for ARM "hard float" architecture.
» Added package for Ubuntu 14.10 for download.
» Added package for openSUSE 13.2 for download.

» Donations were used to buy a Cubox-i4 Pro. It got Debian Jessie installed on it, and will be used to
run an even larger amount of tests.

» Made it more clear in the user documentation that the . exe suffix is used for all platforms, and why.
» Generally updated information in user manual and developer manual about the optimization status.

« Using Nikola 7.1 with external filters instead of our own, outdated branch for the web site.

http://bugs.nuitka.net/issue153

Cleanups

* PyLint clean for the first time ever. We now have a Buildbot driven test that this stays that way.

» Massive indentation cleanup of keyword argument calls. We have a rule to align the keywords, but
as this was done manually, it could easily get out of touch. Now with a "autoformat" tool based on
RedBaron, it's correct. Also, spacing around arguments is now automatically corrected. More to
come.

» For exec statements, the coping back to local variables is now an explicit node in the tree, leader to
cleaner code generation, as it now uses normal variable assignment code generation.

» The MaybelLocal Vari abl es became explicit about which variable they might be, and contribute to
its SSA trace as well, which was incomplete before.

» Removed some cases of code duplication that were marked as TODO items. This often resulted in
cleanups.

* Do notuse repl aceWt h on child nodes, that potentially were re-used during their computation.

Summary

The release is mainly the result of consolidation work. While the previous release contained many
important enhancements, this is another important step towards full SSA, closing one loop whole (class
variables and exec functions), as well as applying it to local variables, largely extending its use.

The amount of cleanups is tremendous, in huge part due to infrastructure problems that prevented release
repeatedly. This reduces the technological debt very much.

More importantly, it would appear that now eliminating local and temporary variables that are not
necessary is only a small step away. But as usual, while this may be easy to implement now, it will
uncover more bugs in existing code, that we need to address before we continue.

Nuitka Release 0.5.5

This release is finally making full use of SSA analysis knowledge for code generation, leading to many
enhancements over previous releases.

It also adds support for Python3.4, which has been longer in the making, due to many rather subtle
issues. In fact, even more work will be needed to fully solve remaining minor issues, but these should
affect no real code.

And then there is much improved support for using standalone mode together with virtualenv. This
combination was not previously supported, but should work now.

New Features

» Added support for Python3.4

This means support for cl ear method of frames to close generators, dynamic __qual name__,
affected by gl obal statements, tuples as yi el d from arguments, improved error messages,
additional checks, and many more detail changes.

New Optimization

» Using SSA knowledge, local variable assignments now no longer need to check if they need to
release previous values, they know definitely for the most cases.

def f():
a=1# This used to check if old value of "a" needs a rel ease

» Using SSA knowledge, local variable references now no longer need to check for raising exceptions,
let alone produce exceptions for cases, where that cannot be.

def f():
a=1
return a # This used to check if "a" is assigned

* Using SSA knowledge, local variable references now are known if they can raise the
UnboundLocal Error exception or not. This allows to eliminate frame usages for many cases.
Including the above example.

* Using less memory for keeping variable information.

* Also using less memory for constant nodes.
Bug Fixes

» The standalone freezing code was reading Python source as UTF-8 and not using the code that
handles the Python encoding properly. On some platforms there are files in standard library that are
not encoded like that.

* The fiber implementation for Linux amd64 was not working with glibc from RHEL 5. Fixed to use now
multiple i nt to pass pointers as necessary. Also use uintptr_t instead of intprt_t to
transport pointers, which may be more optimal.

« Line numbers for exceptions were corrupted by wi t h statements due to setting line numbers even
for statements marked as internal.

« Partial support for wi n32com by adding support for its hidden __pat h__ change.

» Python3: Finally figured out proper chaining of exceptions, given proper context messages for
exception raised during the handling of exceptions.

» Corrected C++ memory leak for each closure variable taken, each time a function object was
created.

» Python3: Raising exceptions with tracebacks already attached, wasn't using always them, but
producing new ones instead.

* Some constants could cause errors, as they cannot be handled with the marshal module as
expected, e.g. (i nt,).

» Standalone: Make sure to propagate sys. pat h to the Python instance used to check for standard
library import dependencies. This is important for virtualenv environments, which need site. py to
set the path, which is not executed in that mode.

» Windows: Added support for different path layout there, so using virtualenv should work there too.

» The code object flag "optimized" (fast locals as opposed to locals dictionary) for functions was set
wrongly to value for the parent, but for frames inside it, one with the correct value. This lead to more
code objects than necessary and false co_f | ags values attached to the function.

* Options passed to nui t ka- pyt hon could get lost.

nui t ka- pyt hon program py argunentl argunent2 ...

The above is supposed to compile program.py, execute it immediately and pass the arguments to it.
But when Nuitka decides to restart itself, it would forget these options. It does so to e.g. disable hash
randomization as it would affect code generation.

* Raising tuples exception as exceptions was not compatible (Python2) or reference leaking (Python3).

Tests

* Running 2t 03 is now avoided for tests that are already running on both Python2 and Python3.

» Made XML based optimization tests work with Python3 too. Previously these were only working on
Python2.

» Added support for ignoring messages that come from linking against self compiled Pythons.

» Added test case for threaded generators that tortures the fiber layer a bit and exposed issues on
RHEL 5.

» Made reference count test of compiled functions generic. No more code duplication, and automatic
detection of shared stuff. Also a more clear interface for disabling test cases.

» Added Python2 specific reference counting tests, so the other cases can be executed with Python3
directly, making debugging them less tedious.

Cleanups

 Really important removal of "variable references". They didn't solve any problem anymore, but their
complexity was not helpful either. This allowed to make SSA usable finally, and removed a lot of
code.

» Removed special code generation for parameter variables, and their dedicated classes, ho more
needed, as every variable access code is now optimized like this.

* Stop using C++ class methods at all. Now only the destructor of local variables is actually supposed
to do anything, and their are no methods anymore. The unused var _nane got removed,
set Vari abl eVval ue is now done manually.

» Moved assertions for the fiber layer to a common place in the header, so they are executed on all
platforms in debug mode.

* As usual, also a bunch of cleanups for PyLint were applied.

* The | ocal s built-in code now uses code generation for accessing local variable values instead
having its own stuff.

Organizational

» The Python version 3.4 is now officially supported. There are a few problems open, that will be
addressed in future releases, none of which will affect normal people though.

» Major cleanup of Nuitka options.

* Windows specific stuff is now in a dedicated option group. This includes options for icon,
disabling console, etc.

» There is now a dedicated group for controlling backend compiler choices and options.
* Also pickup g++44 automatically, which makes using Nuitka on CentOS5 more automatic.

Summary

This release represents a very important step ahead. Using SSA for real stuff will allow us to build the
trust necessary to take the next steps. Using the SSA information, we could start implementing more
optimizations.

Nuitka Release 0.5.4

This release is aiming at preparatory changes to enable optimization based on SSA analysis, introducing
a variable registry, so that variables no longer trace their references to themselves.

Otherwise, MinGW64 support has been added, and lots of bug fixes were made to improve the
compatibility.

New Optimization

» Using new variable registry, now properly detecting actual need for sharing variables. Optimization
may discover that it is unnecessary to share a variable, and then it no longer is. This also allows
- - debug without it reporting unused variable warnings on Python3.

» Scons startup has been accelerated, removing scans for unused tools, and avoiding making more
than one gcc version check.

Bug Fixes

» Compatibility: In case of unknown encodings, Nuitka was not giving the name of the problematic
encoding in the error message. Fixed in 0.5.3.3 already.

» Submodules with the same name as built-in modules were wrongly shadowed. Fixed in 0.5.3.2
already.

» Python3: Added implementations of i s_package to the meta path based loader.

* Python3.4: Added find_spec implementation to the meta path based loader for increased
compatibility.

» Python3: Corrections for - - debug to work with Python3 and MSVC compiler more often.
* Fixed crash with - - show scons when no compiler was found. Fixed in 0.5.3.5 already.
« Standalone: Need to blacklist | i b2t 03 from standard library as well. Fixed in 0.5.3.4 already.

» Python3: Adapted to changes in Synt axErr or on newer Python releases, there is now a nsg that
can override r eason.

« Standalone Windows: Preserve sys. execut abl e as it might be used to fork binaries.

* Windows: The caching of Scons was not arch specific, and files could be used again, even if
changing the arch from * x86 to x86_64 or back.

» Windows: On 32 bit Python it can happen that with large number of generators running concurrently
(>1500), one cannot be started anymore. Raising an Menor yEr r or now.

Organizational

» Added support for MinGW64. Currently needs to be run with PATH environment properly set up.

» Updated internal version of Scons to 2.3.2, which breaks support for VS 2008, but adds support for
VS 2013 and VS 2012. The VS 2013 is now the recommended compiler.

» Added RPM package and repository for RHEL 7.

» The output of - - show scons now includes the used compiler, including the MSVC version.

» Added option --nsvc to select the MSVC compiler version to use, which overrides automatic
selection of the latest.

» Added option - pyt hon- f | ag=no_war ni ngs to disable user and deprecation warnings at run time.

 Repository for Ubuntu Raring was removed, no more supported by Ubuntu.

Cleanups

» Made technical and logical sharing decisions separate functions and implement them in a dedicated
variable registry.

» The Scons file has seen a major cleanup.

Summary

This release is mostly a maintenance release. The Scons integrations has been heavily visited, as has
been Python3 and esp. Python3.4 compatibility, and results from the now possible debug test runs.

Standalone should be even more practical now, and MinGW64 is an option for those cases, where MSVC
is too slow.

Nuitka Release 0.5.3

This release is mostly a follow up, resolving points that have become possible to resolve after completing
the C-ish evolution of Nuitka. So this is more of a service release.

New Features

» Improved mode - - i npr oved now sets error lines more properly than CPython does in many cases.

* The - pyt hon-fl ag=-S mode now preserves PYTHONPATH and therefore became usable with
virtualenv.

New Optimization

* Line numbers of frames no longer get set unless an exception occurs, speeding up the normal path
of execution.

» For standalone mode, using - - pyt hon-fl ag-S is now always possible and yields less module
usage, resulting in smaller binaries and faster compilation.

Bug Fixes

» Corrected an issue for frames being optimized away where in fact they are still necessary.
Issue#140. Fixed in 0.5.2.1 already.

* Fixed handling of exception tests as side effects. These could be remainders of optimization, but
didn't have code generation. Fixed in 0.5.2.1 already.

* Previously Nuitka only ever used the statement line as the line number for all the expression, even if
it spawned multiple lines. Usually nothing important, and often even more correct, but sometimes
not. Now the line number is most often the same as CPython in full compatibility mode, or better, see
above. Issue#9.

» Python3.4: Standalone mode for Windows is working now.

« Standalone: Undo changes to PYTHONPATH or PYTHONHOME allowing potentially forked CPython
programs to run properly.

http://bugs.nuitka.net/issue140
http://bugs.nuitka.net/issue9

« Standalone: Fixed import error when using PyQt and Python3.

New Tests

 For our testing approach, the improved line number handling means we can undo lots of changes
that are no more necessary.

» The compile library test has been extended to cover a third potential location where modules may
live, covering the mat pl ot | i b module as a result.

Cleanups

« In Python2, the list contractions used to be re-formulated to be function calls that have no frame
stack entry of their own right. This required some special handling, in e.g. closure taking, and
determining variable sharing across functions.

This now got cleaned up to be properly in-lined inatry/final |y expression.

 The line number handling got simplified by pushing it into error exits only, removing the need to micro
manage a line number stack which got removed.

*Useintptr_t overunsigned | ong to store fiber code pointers, increasing portability.
Organizational

* Providing own Debian/Ubuntu repositories for all relevant distributions.
» Windows MSiI files for Python 3.4 were added.

* Hosting of the web site was moved to metal server with more RAM and performance.

Summary

This release brings about structural simplification that is both a follow-up to C-ish, as well as results from a
failed attempt to remove static "variable references" and be fully SSA based. It incorporates changes
aimed at making this next step in Nuitka evolution smaller.

Nuitka Release 0.5.2

This is a major release, with huge changes to code generation that improve performance in a significant
way. It is a the result of a long development period, and therefore contains a huge jump ahead.

New Features

» Added experimental support for Python 3.4, which is still work in progress.
» Added support for virtualenv on MacOS.

» Added support for virtualenv on Windows.

» Added support for MacOS X standalone mode.

» The code generation uses no header files anymore, therefore adding a module doesn't invalidate all
compiled object files from caches anymore.

» Constants code creation is now distributed, and constants referenced in a module are declared
locally. This means that changing a module doesn't affect the validity of other modules object files
from caches anymore.

New Optimization

» C-ish code generation uses less C++ classes and generates more C-like code. Explicit temporary
objects are now used for statement temporary variables.

» The constants creation code is no more in a single file, but distributed across all modules, with only
shared values created in a single file. This means improved scalability. There are remaining bad
modules, but more often, standalone mode is now fast.

» Exception handling no longer uses C++ exception, therefore has become much faster.

* Loops that only break are eliminated.

» Dead code after loops that do not break is now removed.

*Thetry/finally andtry/except constructs are now eliminated, where that is possible.

*Thetry/finally part of the re-formulation for pri nt statements is now only done when printing
to a file, avoiding useless node tree bloat.

* Tuples and lists are now generated with faster code.

* Locals and global variables are now access with more direct code.
» Added support for the anonymous code type built-in.

» Added support for conpi | e built-in.

» Generators that statically return immediately, e.g. due to optimization results, are no longer using
frame objects.

» The complex call helpers use no pseudo frames anymore. Previous code generation required to
have them, but with C-ish code generation that is no more necessary, speeding up those kind of
calls.

» Modules with only