
The mglTEX package∗

Diego Sejas Viscarra

diego.mathematician@gmail.com

November 20, 2014

Abstract

MathGL is a fast and efficient library by Alexey Balakin for the creation
of high-quality publication-ready scientific graphics. Although it defines
interfaces for many programming languages, it also implements its own pro-
gramming language, called MGL, which can be used independently. With
the package mglTEX, MGL scripts can be embedded within any LATEX docu-
ment, and the corresponding images are automatically created and included.

This manual documents the use of the commands and environments
of mglTEX.

1 Introduction

MathGL is a fast and efficient library by Alexey Balakin for the creation of high-
quality publication-ready scientific graphics. It implements more than 50 different
types of graphics for 1d, 2d and 3d large sets of data. It supports exporting images
to bitmap formats (PNG, JPEG, BMP, etc.), or vector formats (EPS, TEX, SVG,
etc.), or 3d image formats (STL, OBJ, XYZ, etc.), and even its own 3d format,
MGLD. MathGL also defines its own vector font specification format, and sup-
ports UTF-16 encoding with TEX-like symbol parsing. It supports various kinds
of transparency and lighting, textual formula evaluation, arbitrary curvilinear co-
ordinate systems, loading of subroutines from .dll or .so libraries, and many other
useful features.

MathGL has interfaces for a wide variety of programming languages, such as
C/C++, Fortran, Python, Octave, Pascal, Forth, and many others, but it also
defines its own scripting language, called MGL, which can be used to generate
graphics independently of any programming language. The mglTEX package adds
support to embed MGL code inside LATEX documents, which is automatically
extracted and executed, and the resulting images are included in the document.

Besides the obvious advantage of having available all the useful features of
MathGL, mglTEX facilitates the maintenance of your document, since both code
for text and code for graphics are contained in a single file.

∗This document corresponds to mglTEX v2.0, dated /2014/11/18.

1

2 Usage

The simplest way to load mglTEX to a LATEX document is to write the command

\usepackage{mgltex}

in the preamble. Alternatively, one can pass a number of options to the package
by means of the syntax

\usepackage[〈options list〉]{mgltex},

where 〈options list〉 is a comma-separated list that can contains one or more of
the following options:

• draft: The generated images won’t be included in the document. This
option is useful when fast compilation of the document is needed.

• final: This overrides the draft option.

• on: To create the MGL scripts and corresponding images of the document
every time LATEX is run.

• off: To avoid creating the MGL scripts and corresponding images of the
document, but still try to include the images.

• comments: To allow the contents of the mglcomment environments to be
shown in the LATEX document.

• nocomments: To not show the contents of the mglcomment environments in
the LATEX document.

• png, jpg, jpeg: To export images to the corresponding bitmap format.

• eps, epsz: To export to uncompressed/compressed EPS format as primi-
tives.

• bps, bpsz: To export to uncompressed/compressed EPS format as bitmap.

• pdf: To export to 3D PDF format.

• tex: To export to LATEX/tikz document.

It must be noted that the options on and off are exclusive, in the sense that if
one specifies both of them, only the last one will be used. Likewise, the options
that specify the format to save the graphics are exclusive.

Observe the option off is useful to save compilation time of a document. For
example, if the graphics of an article are in final version, instead of compilling
them over and over again every time LATEX runs, they can be created only once
with the on option, and then only included (but not recompiled) with the off

option.
The are two ways to compile a document with mglTEX: The first way is to run

2

latex --shell-escape 〈document〉

twice, since the first run will extract the MGL code, execute it and include some
of the resulting graphics, while the second run will include the remaining graphics;
the second way is to run latex 〈document〉 to extract the MGL code, then execute
the generated scripts with the program mglconv (which comes with MathGL), and
execute latex 〈document〉 once more to include the graphics.

2.1 Environments for MGL code embedding

The main environment defined by mglTEX is mgl. It extracts its contents to amgl

general script, called 〈document〉.mgl, where 〈document〉 stands for the name of
the LATEX file being compiled; this script is compiled, and the corresponding image
is included. Its syntax is:

\begin{mgl}[〈key-val list〉]

〈MGL code〉

\end{mgl}

Here, 〈key-val list〉 accepts the same optional arguments as the \includegraphics
command from the graphicx package, plus an additional one, imgext, which can
be used to specify the extension to save the graphic. The 〈MGL code〉 doesn’t
need to contain any specific instruction to create the image, since mglTEX takes
care of that.

This environment adds its contents to the general script 〈document〉.mgl, butmgladdon

it doesn’t produce any image. It doesn’t require any kind of arguments.

\begin{mgladdon}

〈MGL code〉

\end{mgladdon}

This is the same as the mgl environment, but the corresponding code is writtenmglcode

verbatim to a separate script, whose name is specified as mandatory argument. It
accepts the same optional arguments as mgl.

\begin{mglcode}[〈key-val list〉]{〈script name〉}

〈MGL code〉

\end{mglcode}

The code within mglscript is written verbatim to a script whose name ismglscript

specified as mandatory argument, but no image is produced. It is useful for
creation of MGL scripts which can be later post-processed by another package,
like listings.

3

\begin{mglscript}{〈script name〉}

〈MGL code〉

\end{mglscript}

This is used to define MGL functions within the general script 〈document〉.mgl.mglfunc

It takes one mandatory argument, which is the name of the function, plus one op-
tional argument, which specifies the number of arguments of the function. The
environment needs to contain only the body of the function, since the lines “func
〈function name〉 〈number of arguments〉” and “return” are appended automati-
cally at the beginning and the end, respectively. The resulting code is written
at the end of the general script, after the stop command, which is also written
automatically.

\begin{mglfunc}[〈number of arguments〉]{〈function name〉}

〈MGL function body〉

\end{mglfunc}

This is used to create a common “setup” script that will be executed togethermglcommon

with each of the other scripts. It is useful to define constants, parameters, etc.
that will be available to every script.

\begin{mglcommon}

〈MGL code〉

\end{mglcommon}

For example, one could make

\begin{mglcommon}

define gravity 9.81 # [m/s^2]

\end{mglcommon}

to make the constant gravity available to every script.
Observe this environment should be used only to define constants, parameters

and things like that, but not graphical objects like axis or grids, because every im-
age created with the mgl environment clears every graphical object before creating
the image.1

This environment is used to declare a signature (or commentary) that will bemglsignature

included at the beginning of every script generated by mglTEX. It is verbatim-like
environment, so no LATEX cammand will be executed, but copied literally. How-
ever, the default signature is “This script was generated from 〈document〉.mgl on
date 〈today〉”.

1This problem occurs only with the mgl environment, so you could use mglcommon to create
many graphics with the same axis, grid, etc., with environments like mglcode, but in that case
the best option is to use the mglsetup environment together with the \mglplot command.

4

\begin{mglsignature}

〈Signature for MGL scripts〉

\end{mglsignature}

This environment is used to embed commentaries in the LATEX document. Themglcomment

commentary won’t appear in the case of the user passing the option nocomments to
the package, but it will be written verbatim is the user passes the option comments.

\begin{mglcomment}

〈Commentary〉

\end{mglcomment}

In the case of the user allowing commentaries, this will result in the appearance
of the following commentary in the LATEX document:

<------------------ MGL comment ------------------>

〈Commentary 〉
<------------------ MGL comment ------------------>

2.2 Fast creation of graphics

mglTEX defines a convenient way to work with many graphics that have exactly
the same settings (for example, same angles of rotation, same type of grid, etc.):
instead of writing repetitive code every time it’s needed, it can be stored in memory
with the mglsetup environment, and then can be used when needed with the
\mglplot command.

This environment stores its contents in memory for later use. It accepts one op-mglsetup

tional argument, which is a keyword (name) to be associated to the corresponding
block of code, so different blocks of code can be stored with different names.

\begin{mglsetup}[〈keyword〉]

〈MGL code〉

\end{mglsetup}

This command is used for fast generation of graphics with default settings, and\mglplot

can be used in parallel with the mglsetup environment. It accepts one mandatory
argument which consists of MGL instructions, separated by the symbol “:”, which
can span through various text lines. It also accepts the same optional arguments
as the mgl environment, plus an additional one, called settings, which can be
used to specify a keyword used in a mglsetup environment. If the settings option
is specified, the code in the mandatory argument will be appended to the block of
code of the corresponding mglsetup environment.

\mglplot[〈key-val list〉]{〈MGL code〉}

5

2.3 Verbatim-like environments

It writes its contents verbatim to a file, whose name is given as mandatory argu-mglblock

ment, and then it also typesets its contents on the LATEX document, numbering
each line of code.

\begin{mglblock}{〈script name〉}

〈MGL code〉

\end{mglblock}

It typesets its contents to the LATEX document, numbering each line of code.mglverbatim

\begin{mglverbatim}

〈MGL code〉

\end{mglverbatim}

2.4 Working with external scripts

In case of having MGL scripts in their own files, mglTEX can work with them
without needing to transcript them to the LATEX document.

This command takes one mandatory argument, which is the name of an exter-\mglgraphics

nal MGL script, which will be automatically executed, and the resulting image will
be included. The same optional arguments as the mgl environment are accepted.

\mglgraphics[〈key-val list〉]{〈script name〉}

This command takes one mandatory argument, which is the name of an ex-\mglinclude

ternal MGL script, which will be automatically transcript verbatim on the LATEX
document, and each line of code will be numerated.

\mglinclude{〈script name〉}

2.5 Additional commands

This command can be used to specify where mglTEX should create the MGL scripts\mgldir

and corresponding images. This is useful, for example, to avoid a lot of scripts
and images from polluting the current directory.

\mgldir{〈directory〉}

This command must be used in the preamble of the document, since the first MGL
script is created at the moment of the \begin{document} command; trying to use
it somewhere else will issue an error. On the other hand, it is the responsibility of
the user to create the 〈directory〉, since mglTEX won’t do it automatically.

This command can be used to specify the quality for the graphics created with\mglquality

mglTEX. An info message specifying the characteristics of the chosen quality is
printed in the .log file.

6

\mglquality{〈quality〉}

The available qualities are described below:

Quality Description

0 No face drawing (fastest)
1 No color interpolation (fast)
2 High quality (normal)
3 High quality with 3d primitives (not implemented yet)
4 No face drawing, direct bitmap drawing (low memory usage)
5 No color interpolation, direct bitmap drawing (low memory usage)
6 High quality, direct bitmap drawing (low memory usage)
7 High quality with 3d primitives, direct bitmap drawing (not implemented yet)
8 Draw dots instead of primitives (extremely fast)

This command has the same effect as the package option on, i.e., create all the\mgltexon

scripts and corresponding graphics, but its effect is local, meaning that it work
only from the point it is used on.

\mgltexon

This command has the same effect as the package option off, i.e., DO NOT\mgltexoff

create the scripts and corresponding graphics, and include images anyway, but its
effect is also local, meaning that it work only from the point it is used on.

\mgltexoff

Observe the commands \mgltexon and \mgltexoff can be used to save com-
pilation time of a document. For example, when writing an article, if the graphics
of the first section are already in final version, instead of compilling them every
time LATEX is called, they can be created only once, and then the section can be
wrapped with mgltexoff and mgltexon, so the graphics do not get recompiled
again (wasting time), but only included.

This command has the same effect as the package option comments, i.e., show\mglcomments

all the commentaries contained int the mglcomment environments, but its effect is
local, meaning that it work only from the point it is used on.

\mglcoments

This command has the same effect as the package option nocomments, i.e., DO\mglnocomments

NOT show the contentsof the mglcomment environments, but its effect is also local,
meaning that it work only from the point it is used on.

\mglnocomments

7

Observe the commands \mglcomments and \mglnocomments can be used to
activate/deactivate commentaries on the document: just like LATEX commentaries,
but with the possibilty of making them visible/invisible. This feature could be
used, for example, to show remainders or commentaries for readers of test versions
of an article.

This command just pretty-prints the name of the package.\mglTeX

\mglTeX

2.6 User-definable macros

There are two macros that the user is allowed to modify:
As an alternative to the mglsignature environment for declaring signatures,\mgltexsignature

the user can manually redefine the signature macro \mgltexsignature, according
to the following rules:

• The positions of the comment signs for the MGL language have to be man-
ually specified in the signature using the \mglcomm macro.

• The new-line character is declared as “^^J”.

• A percent sign (%) has to be added at the end of every physical line of
\mgltexsignature, otherwise an inelegant space at the beginning of every
line will appear.

• Any LATEX command can be used in this case.

For example, the default signature:

#
This script was generated from 〈document〉.mgl on date 〈today〉
#

can be achieved with

\def\mgltexsignature{%

\mglcomm^^J%

\mglcomm\ This script was generated from \jobname.mgl on date \today^^J%

\mglcomm%

}

It is the name for the common script that takes the contents of the mglcommon\mglcommonscript

environment. For example, the default name of the script (“mgl common script”)
is defined by doing

\def\mglcommonscript{mgl_common_script}

8

2.7 Behavior of mglTEX

As a convenient feature, the environments mglcode, mglscript and mglblock

will automatically check if they are being used to create different scripts with the
same name, in which case mglTEX will issue a warning; however, if one of these
environments overwrite an external script (not embedded in the document), it
won’t be noticed. Likewise, the user will be warned if the environment mglfunc
is being used to create different MGL functions with the same name.

When mglTEX is unable to find a graphic that is supposed to include, instead
of producing an error, it will warn the user about it, and will display a box in the
corresponding position of the document, like the following one:

MGL

image

not

found
Notice that the first time LATEX is executed, many of these boxes will appear in
the document because the graphics from the MGL scripts are created, but not all
are included (until LATEX is run for the second time).

3 Warning for the user

mglTEX assummes that the \begin{〈environment〉} and \end{〈environment〉}
commands will occupy their own physical line of LATEX code. So the correct form
to use the environments is the following:

\begin{<environment>}

<contents of the environment>

\end{<environment>}

The following forms of use could cause problems:

\begin{<environment>}<contents of the environment>\end{<environment>}

\begin{<environment>}<contents of the environment>

\end{<environment>}

\begin{<environment>}

<contents of the environment>

\end{<environment>}<text>

9

One of the reasons for this is that some of the environments in mglTEX are pro-
grammed to ignore the empty space following the \begin{〈environment〉}, which
would cause an inelegant empty line in the script, so the first two incorrect forms
would cause mglTEX to ignore a complete line of code. The other reason is the
method used to detect the \end{〈environment〉} command, which could fail in
the case of the third incorrect use.

4 Implementation

This section documents the implementation of mglTEX. Its purpose is to facilitate
the comprehension and maintenance of the package.

4.1 Initialization

The keyval package is loaded to facilitate the declaration of 〈key〉=〈value〉 op-
tions for commands and environments; the graphicx package is loaded in order to
manipulate and include the images created by MGL code.

1

2 \RequirePackage{keyval}

3 \RequirePackage{graphicx}

We declare the options of the package. The first two are draft and final,
which are passed directly to the graphicx package.

4

5 \DeclareOption{draft}{%

6 \PassOptionsToPackage{\CurrentOption}{graphicx}%

7 }

8 \DeclareOption{final}{%

9 \PassOptionsToPackage{\CurrentOption}{graphicx}%

10 }

The next two options are on and off, where on indicates mglTEX to create
every script and every corresponding image every time LATEX is executed, while
off tells not to do it, but to include the images anyway. First we declare a flag
(boolean variable) \@mgltex@on@ to know if the used passed the on or the off

option.

11 \newif\if@mgltex@on@

If the user passes the option on, \@mgltex@on@ is true, and the command
\mgl@write (which takes care of writing code to the scripts) is the normal LATEX
\immediate\write commands;

12 \DeclareOption{on}{%

13 \@mgltex@on@true%

14 \def\mgl@write#1#2{%

15 \immediate\write#1{#2}%

16 }

17 }

10

if the user passes the option off, \@mgltex@on@ is false, and the command
\mgl@write does nothing (doesn’t write to scripts).

18 \DeclareOption{off}{%

19 \@mgltex@on@false%

20 \def\mgl@write#1#2{}%

21 }

The next options are comments and nocomments, where comments indicates
mglTEX to show the comments included inside \mglcomments environments, while
nocomments tells not to do it. First we create a flag that will indicate which of
these options is passed by the user.

22 \newif\if@mgl@comments@

If the user passes the option comments, \@mgl@comments@ is true, and the
\mglcomments environments print their contents;

23 \DeclareOption{comments}{%

24 \@mgl@comments@true%

25 }

if the user passes the option nocomments, \@mgl@comments@ is false, and the
\mglcomments environments won’t print their contents.

26 \DeclareOption{nocomments}{%

27 \@mgl@comments@false%

28 }

We then indicate the supported extensions to save the images created by the
package, and the corresponding package options. The chosen extension is stored
in the \mgl@image@ext macro for future use.

29

30 \DeclareGraphicsExtensions{%

31 .png,.eps,.jpg,.jpeg,.bps,.pdf,.epsz,.eps.gz,.bpsz,.bps.gz,.gif%

32 }

33

34 \DeclareOption{jpg}{\def\mgl@image@ext{.jpg}}

35 \DeclareOption{jpeg}{\def\mgl@image@ext{.jpeg}}

36 \DeclareOption{pdf}{\def\mgl@image@ext{.pdf}}

37 \DeclareOption{png}{\def\mgl@image@ext{.png}}

38 \DeclareOption{eps}{\def\mgl@image@ext{.eps}}

39 \DeclareOption{epsz}{\def\mgl@image@ext{.eps.gz}}

40 \DeclareOption{bps}{\def\mgl@image@ext{.bps}}

41 \DeclareOption{bpsz}{\def\mgl@image@ext{.bps.gz}}

42 \DeclareOption{gif}{\def\mgl@image@ext{.gif}}

43

44 \DeclareOption{tex}{\def\mgl@image@ext{.tex}}

Other options produce an error message.

45 \DeclareOption*{\@unknownoptionerror}

The default options for the package are set to final and eps, then the options
passed by the user are processed.

46

11

47 \ExecuteOptions{final,on,nocomments,eps}

48 \ProcessOptions*

Declare the 〈key〉=〈value〉 pairs for the mgl environment and companions. The
pairs corresponding to the \includegraphics command are repeated, and saved
in the \graph@keys macro; the new option is imgext, which can be used to over-
write the default extension chosen for the package. Notice that imgext can be any
supported extension by MathGL but, of course, not all of them are supported by
LATEX.

49

50 \define@key{mgl@keys}{bb}{\g@addto@macro{\graph@keys}{bb=#1,}}

51 \define@key{mgl@keys}{bbllx}{\g@addto@macro{\graph@keys}{bbllx=#1,}}

52 \define@key{mgl@keys}{bblly}{\g@addto@macro{\graph@keys}{bblly=#1,}}

53 \define@key{mgl@keys}{bburx}{\g@addto@macro{\graph@keys}{bburx=#1,}}

54 \define@key{mgl@keys}{bbury}{\g@addto@macro{\graph@keys}{bbury=#1,}}

55 \define@key{mgl@keys}{natwidth}{\g@addto@macro{\graph@keys}{natwidth=#1,}}

56 \define@key{mgl@keys}{natheight}{\g@addto@macro{\graph@keys}{natheight=#1,}}

57 \define@key{mgl@keys}{hiresbb}{\g@addto@macro{\graph@keys}{hiresbb=#1,}}

58 \define@key{mgl@keys}{viewport}{\g@addto@macro{\graph@keys}{viewport=#1,}}

59 \define@key{mgl@keys}{trim}{\g@addto@macro{\graph@keys}{trim=#1,}}

60 \define@key{mgl@keys}{angle}{\g@addto@macro{\graph@keys}{angle=#1,}}

61 \define@key{mgl@keys}{origin}{\g@addto@macro{\graph@keys}{origin=#1,}}

62 \define@key{mgl@keys}{width}{\g@addto@macro{\graph@keys}{width=#1,}}

63 \define@key{mgl@keys}{height}{\g@addto@macro{\graph@keys}{height=#1,}}

64 \define@key{mgl@keys}{totalheight}{\g@addto@macro{\graph@keys}{totalheight=#1,}}

65 \define@key{mgl@keys}{keepaspectratio}{\g@addto@macro{\graph@keys}{keepaspectratio=#1,}}

66 \define@key{mgl@keys}{scale}{\g@addto@macro{\graph@keys}{scale=#1,}}

67 \define@key{mgl@keys}{clip}[true]{\g@addto@macro{\graph@keys}{clip=#1,}}

68 \define@key{mgl@keys}{draft}[false]{\g@addto@macro{\graph@keys}{draft=#1,}}

69 \define@key{mgl@keys}{type}{\g@addto@macro{\graph@keys}{type=#1,}}

70 \define@key{mgl@keys}{ext}{\g@addto@macro{\graph@keys}{ext=#1,}}

71 \define@key{mgl@keys}{read}{\g@addto@macro{\graph@keys}{read=#1,}}

72 \define@key{mgl@keys}{command}{\g@addto@macro{\graph@keys}{command=#1,}}

73 \define@key{mgl@keys}{imgext}{\def\mgl@image@ext{.#1}}

We do the same for the \mglplot command. The options for the \includegraphics
command are repeated and stored in the \graph@keysmacro; the new options are
imgext, which is the same as the one for the mgl environment, and setup, which
is used to specify a keyword associated to a block of MGL code stored by the
mglsetup environment.

74

75 \define@key{mglplot@keys}{bb}{\g@addto@macro{\graph@keys}{bb=#1,}}

76 \define@key{mglplot@keys}{bbllx}{\g@addto@macro{\graph@keys}{bbllx=#1,}}

77 \define@key{mglplot@keys}{bblly}{\g@addto@macro{\graph@keys}{bblly=#1,}}

78 \define@key{mglplot@keys}{bburx}{\g@addto@macro{\graph@keys}{bburx=#1,}}

79 \define@key{mglplot@keys}{bbury}{\g@addto@macro{\graph@keys}{bbury=#1,}}

80 \define@key{mglplot@keys}{natwidth}{\g@addto@macro{\graph@keys}{natwidth=#1,}}

81 \define@key{mglplot@keys}{natheight}{\g@addto@macro{\graph@keys}{natheight=#1,}}

82 \define@key{mglplot@keys}{hiresbb}{\g@addto@macro{\graph@keys}{hiresbb=#1,}}

83 \define@key{mglplot@keys}{viewport}{\g@addto@macro{\graph@keys}{viewport=#1,}}

12

84 \define@key{mglplot@keys}{trim}{\g@addto@macro{\graph@keys}{trim=#1,}}

85 \define@key{mglplot@keys}{angle}{\g@addto@macro{\graph@keys}{angle=#1,}}

86 \define@key{mglplot@keys}{origin}{\g@addto@macro{\graph@keys}{origin=#1,}}

87 \define@key{mglplot@keys}{width}{\g@addto@macro{\graph@keys}{width=#1,}}

88 \define@key{mglplot@keys}{height}{\g@addto@macro{\graph@keys}{height=#1,}}

89 \define@key{mglplot@keys}{totalheight}{\g@addto@macro{\graph@keys}{totalheight=#1,}}

90 \define@key{mglplot@keys}{keepaspectratio}{\g@addto@macro{\graph@keys}{keepaspectratio=#1,}}

91 \define@key{mglplot@keys}{scale}{\g@addto@macro{\graph@keys}{scale=#1,}}

92 \define@key{mglplot@keys}{clip}[true]{\g@addto@macro{\graph@keys}{clip=#1,}}

93 \define@key{mglplot@keys}{draft}[false]{\g@addto@macro{\graph@keys}{draft=#1,}}

94 \define@key{mglplot@keys}{type}{\g@addto@macro{\graph@keys}{type=#1,}}

95 \define@key{mglplot@keys}{ext}{\g@addto@macro{\graph@keys}{ext=#1,}}

96 \define@key{mglplot@keys}{read}{\g@addto@macro{\graph@keys}{read=#1,}}

97 \define@key{mglplot@keys}{command}{\g@addto@macro{\graph@keys}{command=#1,}}

98 \define@key{mglplot@keys}{imgext}{\def\mglplot@image@ext{.#1}}

99 \define@key{mglplot@keys}{setup}{\def\mglplot@setup{#1}}

A special extension for images created with MathGL is “.tex”, so we store it
within a macro for future use.

100

101 \def\TeX@ext{.tex}

4.2 Environments for MGL code embedding

\mgl@include@image This is the command that will include graphics created by MGL code. We can’t
use \includegraphics directly for two reasons: first, MathGL has the capacity
of creating graphics with LATEX commands (with the aid of the tikz package), in
which case there is no image, but a “.tex” file, which has to be included; the
second reason is that \includegraphics issues an error when the specified image
doesn’t exist, and remember that the first LATEX run only creates the images at
the end of the document, but they cannot be included yet, so there would be a lot
of errors in the process of compilation.

102 \def\mgl@include@image#1{%

If the extension of the graphics is “.tex”,

103 \ifx\mgl@image@ext\TeX@ext%

first check if the file exists;

104 \IfFileExists{#1.tex}{%

if so, include it,

105 \include{#1}%

106 }{%

otherwise use the command \mgl@img@not@found to create a warning.

107 \mgl@img@not@found{#1}%

108 }%

If the extension of the graphics is not “.tex”,

109 \else%

13

we define the next action to be performed as warning that requested image doesn’t
exist. This is stored in the \next@action macro, and will be overwriten if the
image is found.

110 \def\next@action{\mgl@img@not@found{#1}}%

For every extension supported by mglTEX,

111 \@for\img@ext:=\Gin@extensions\do{%

if the file with the current extension exists,

112 \IfFileExists{#1\img@ext}{%

overwrite the \next@actionmacro so it uses the \includegraphics command to
include the image, otherwise do nothing.

113 \def\next@action{%

114 \expandafter\includegraphics\expandafter[\graph@keys]{#1}%

115 }%

116 }{}%

117 }%

Execute \next@action.

118 \next@action%

119 \fi%

120 }

\mgl@img@not@found When this command is called with the name of a MGL image as argument, it
issues a package warning indicating that the MGL image can’t be found, and
creates the following box in the corresponding position:

MGL

image

not

found
121 \def\mgl@img@not@found#1{%

122 \PackageWarning{mgltex}{MGL image "#1" not found}%

123 \framebox[10em]{%

124 \centering%

125 \bfseries\Huge%

126 \vbox{MGL\\image\\not\\found}%

127 }%

128 }

mgl This environment writes its contents to the main script 〈document〉.mgl.
First, declare a counter for numeration and naming of the images created from

the main script 〈document〉.mgl.

14

129

130 \newcounter{mgl@image@no}

Create an output stream for the main script 〈document〉.mgl.

131

132 \newwrite\mgl@script

Open the main script at the beginning of the document (at the moment of the
\begin{document} command).

133 \AtBeginDocument{%

134 \if@mgltex@on@%

135 \immediate\openout\mgl@script="\mgl@dir\jobname.mgl"%

136 \mglsignature@write\mgl@script%

137 \fi%

138 }

At the end of the document (at the moment of the \end{document} command):

139 \AtEndDocument{%

write an empty line on the main script (just for elegance),

140 \mgl@write\mgl@script{}%

write the MGL stop command to stop the MathGL compiler.

141 \mgl@write\mgl@script{stop}%

The \mgl@func is a buffer that contains instructions to write MGL functions
declared with mglfunc environment. Here, we execute those instructions.

142 \mgl@func%

Close the main script.

143 \immediate\closeout\mgl@script%

Use the program mglconv (part of MathGL) to compile the main script.

144 \mgl@write{18}{mglconv -n "\mgl@dir\jobname.mgl"}%

145 }

146

\mgl The beginning of the mgl environment.

147

148 \newcommand\mgl[1][]{%

First, process the 〈key〉=〈value〉 options for the environment.

149 \def\graph@keys{}%

150 \setkeys{mgl@keys}{#1}%

Now, make every “special” character (\, $, etc.) of category 13 (other), i.e., make
them common characters.

151 \let\do\@makeother \dospecials%

Add an end-line character at the end of every read line. This end-line character
is declared active (category 12).

152 \endlinechar‘\^^M \catcode‘\^^M\active%

15

Spaces characters are category 10; the spaces at the beginning of every read line
are ignored.

153 \catcode‘\ =10%

Finally, the command that reads/writes each line of the contents of the environ-
ment is called.

154 \mgl@write\mgl@script{quality \mgl@quality}%

155 \expandafter\mgl@write@line%

156 }

\end@mgl Define a macro that contains the \end{mgl} command as text, so the end of the
environment can be tested by comparison with it. From now on, we adopt the
convention that the macro \end@〈environment〉 contains the \end{〈environment〉}
command as text.

157 \begingroup%

158 \escapechar=-1 \relax%

159 \xdef\end@mgl{\string\\end\string\{mgl\string\}}%

160 \endgroup

\mgl@write@line This command reads each line from the mgl environment and writes it to the
general script 〈document〉.mgl. We start by wrapping the new command with a
LATEX group because we will change the code of the end-line character to “active”
locally, so we can indicate \mgl@write@line that its argument stretches until the
end of the line.

161 \begingroup%

Declare the end-line character as active.

162 \catcode‘\^^M\active%

The command \mgl@write@line reads its argument until it finds the end-line
character, i.e., it reads a complete line of text, which is MGL code in this case.

163 \gdef\mgl@write@line#1^^M{%

The next action to be performed is write the read line of code to the main script
〈document〉.mgl and recursively call \mgl@write@line, so it reads the next line
of text. These instructions are stored in the \next@action macro.

164 \def\next@action{%

165 \mgl@write\mgl@script{#1}%

166 \mgl@write@line%

167 }%

The \test@end@mgl command test if the end of the mgl environment has been
reached in the current line. If so, it overwrites the \next@action macro so it
doesn’t read the next line of text, but executes the \end{mgl} command (see
bellow).

168 \test@end@mgl{#1}%

Execute the \next@action macro.

169 \next@action%

170 }%

171 \endgroup

16

\test@end@mgl This command checks if its argument is equal to \end@mgl; if so, over-
writes the \next@action macro (see above) so that it executes the end of
the mgl environment (\end{mgl}). Here, we adopt another convention: the
\test@end@〈environment〉 checks if its argument is equal to \end@〈environment〉,
i.e., tests whether the \end{〈environment〉} command has been reached, in which
case, it executes that command.

172 \def\test@end@mgl#1{%

173 \edef\this@line{#1}%

174 \ifx\this@line\end@mgl%

175 \def\next@action{\end{mgl}}%

176 \fi%

177 }

\endmgl The end of the environment is quite simple: the mgl@image@no counter is increased
by one, then the MGL command to save the corresponding image is written; the
name given to the image is “〈document〉-mgl-〈mgl@image@no〉.〈mgl@image@ext〉”;
the MGL reset command is written in the main script to clean the image and
restart graphic parameters for the following image to be created. Finally, the
\mgl@include@image command (see below) is called to include the image cre-
ated.

178 \def\endmgl{%

179 \stepcounter{mgl@image@no}%

180 \mgl@write\mgl@script{%

181 write ’\mgl@dir\jobname-mgl-\arabic{mgl@image@no}\mgl@image@ext’%

182 }%

183 \mgl@write\mgl@script{reset}%

184 \mgl@write\mgl@script{}%

185 \mgl@include@image{\mgl@dir\jobname-mgl-\arabic{mgl@image@no}}%

186 }

mgladdon This is just a modification of the mgl environment. First, we define the
\end@mgladdon to contain the \end{mgladdon} command as text as specified
above, then we redefined \test@end@mgl command to check for the end of the
mgladdon environment instead of mgl, finally we call the \mgl command with no
options. The end of mgladdon is defined to do nothing.

187

188 \bgroup%

189 \escapechar=-1\relax%

190 \xdef\end@mgladdon{\string\\end\string\{mgladdon\string\}}%

191 \egroup%

192 \newenvironment{mgladdon}{%

193 \def\test@end@mgl##1{%

194 \edef\this@line{##1}%

195 \ifx\this@line\end@mgladdon%

196 \def\next@action{\end{mgladdon}}%

197 \fi%

198 }%

199 \mgl[]%

17

200 }{}

mglcode This is like mgl, but it writes its contents to its own file, whose name is passed as
mandatory argument.

\mgl@script@written The names of all the scripts written from the LATEX document will be stored in
this macro, so we can later check if some script is being overwritten. This macro
will be used in other environments.

201 \def\mgl@script@written{}

\mgl@out@stream Declare an output stream for MGL scripts other than the main one. This stream
will be used in other environments.

202 \newwrite\mgl@out@stream

\mglcode The beginning of the mglcode environment.

203 \newcommand\mglcode[2][]{%

204 \def\graph@keys{}%

Process the 〈key〉=〈value〉 options. These are the same for the mgl environment.

205 \setkeys{mgl@keys}{#1}%

Test if a script with the same name is already created from the LATEX document.
If so, a warning is issue, but we proceed anyway.

206 \test@mgl@script@written{#2}%

Add the script’s name to the \mgl@script@written macro.

207 \xdef\mgl@script@written{\mgl@script@written#2,}%

Open the script for writing.

208 \def\this@script{#2}%

209 \if@mgltex@on@%

210 \immediate\openout\mgl@out@stream=\mgl@dir\this@script.mgl%

211 \mglsignature@write\mgl@out@stream%

212 \fi%

Here, we do the same changes of categories as in the mgl environment, except for
the spaces, which in this case will be respected, even the ones at the beginning of
each like, i.e., we will write each line verbatim.

213 \let\do\@makeother \dospecials%

214 \endlinechar‘\^^M \catcode‘\^^M\active%

215 \obeyspaces%

Call the command that will write each line of the contents of the environment.

216 \expandafter\mglcode@write@line%

217 }

\test@mgl@script@written The macro that checks is we are overwriting any script.

218 \def\test@mgl@script@written#1{%

18

For every script already written (whose name is stored in \mgl@script@written),
check if the current script’s name matches; if so, issue a warning telling we are
overwriting, but proceed.

219 \edef\this@script{#1}%

220 \@for\mgl@script@name:=\mgl@script@written\do{%

221 \ifx\this@script\mgl@script@name%

222 \PackageWarning{mgltex}{Overwriting MGL script "\this@script.mgl"}%

223 \fi%

224 }%

225 }

\mglcode@write@line This writes each line of the contents of the mglcode environment. However, con-
trary to the case of the \mgl@write@line command, it doesn’t read line by line,
but character by character, and stores each word in \mgl@word and each line in
\mgl@line.

226 \newtoks\mgl@word

227 \newtoks\mgl@line

228 \def\mglcode@write@line#1{%

The next action (stored as \next@action) is to read the following character, unless
overwritten later.

229 \let\next@action\mglcode@write@line%

If the current character is an end-line character,

230 \expandafter\if#1\^^M%

write the contents of \mgl@line, i.e., the current line, and clean \mgl@word and
\mgl@line;

231 \mgl@write\mgl@out@stream{\the\mgl@line}%

232 \mgl@word{}%

233 \mgl@line{}%

if the current character is a space, clean \mgl@word, but add the space to
\mgl@line;

234 \else\expandafter\if#1\space%

235 \mgl@word{}%

236 \mgl@line\expandafter{\the\mgl@line#1}%

otherwise, the current character is alphanumeric and is added both to \mgl@word

and \mgl@line, and

237 \else%

238 \mgl@word\expandafter{\the\mgl@word#1}%

239 \mgl@line\expandafter{\the\mgl@line#1}%

we test if the current word (\mgl@word) is \end{mglcode}, in which case,
\next@action is overwritten to \end{mglcode}.

240 \test@end@mglcode{\the\mgl@word}%

241 \fi\fi%

Finally, execute \next@action.

242 \next@action%

243 }

19

\test@end@mglcode The \test@end@mglcode checks if it’s argument is equal to \end@mglcode, in
which case overwrites \next@action to \end{mglcode}.

244 \begingroup%

245 \escapechar=-1\relax%

246 \xdef\end@mglcode{\string\\end\string\{mglcode\string\}}%

247 \endgroup%

248 \def\test@end@mglcode#1{%

249 \edef\this@word{#1}%

250 \ifx\this@word\end@mglcode%

251 \def\next@action{\end{mglcode}}%

252 \fi%

253 }

\endmglcode The end of the mglcode environment. It closes the output stream \mgl@out@stream,
and calls the mglconv program (part of MathGL) to execute the script. Finally,
the \mgl@include@image command is used to include the image created.

254 \def\endmglcode{%

255 \immediate\closeout\mgl@out@stream%

256 \mgl@write{18}{%

257 mglconv "\mgl@dir\this@script.mgl" -s "\mgl@dir\mglcommonscript.mgl" -o "\mgl@dir\this@script\mgl@image

258 }%

259 \mgl@include@image{\mgl@dir\this@script}%

260 }

mglscript This is just a modification of the mglcode environment. First, we define the
\end@mglscript macro; then we modify the \test@end@mglcode to check for
\end{mglscript} instead of \end{mglcode}; finally, we call the \mglcode macro
with the same mandatory argument as mglscript. The \end{mglscript} just
closes the output stream \mgl@out@stream, but doesn’t create nor includes any
image.

261

262 \bgroup%

263 \escapechar=-1\relax%

264 \xdef\end@mglscript{\string\\end\string\{mglscript\string\}}%

265 \egroup%

266 \newenvironment{mglscript}[1]{%

267 \def\test@end@mglcode##1{%

268 \edef\this@word{##1}%

269 \ifx\this@word\end@mglscript%

270 \def\next@action{\end{mglscript}}%

271 \fi%

272 }%

273 \mglcode{#1}%

274 }{%

275 \immediate\closeout\mgl@out@stream%

276 }

mglfunc This environment is used to create MGL functions in the main script 〈document〉.mgl.

20

\mglfunc@defined Within this macro we will store the names of the MGL functions already defined
from the LATEX document, so that we can check if we are overwriting one of them

277

278 \def\mglfunc@defined{}

\mgl@func This is a buffer to store the instructions to write the MGL functions code when the
\end{document} command is called. This is done this way, because the functions
have to be after the stop command from the MGL language, which stops the
execution of the MGL compiler, so no code should be after the stop, except for
functions.

279 \def\mgl@func{}

\mglgunc The beginning of the mglfunc environment.

280

281 \newcommand\mglfunc[2][0]{%

First, check if a function with the current name is already defined, in which case
we issue a warning, but proceed anyway.

282 \test@mglfunc@defined{#2}%

Add the name of the current function to the list of functions defined.

283 \g@addto@macro{\mglfunc@defined}{#2,}%

Here we do the same changes of categories as in the mgl environment.

284 \let\do\@makeother \dospecials%

285 \endlinechar‘\^^M \catcode‘\^^M\active%

286 \catcode‘\ =10%

Write an empty line in the main script just for elegance (and to visually separate
different functions, too).

287 \g@addto@macro{\mgl@func}{\mgl@write\mgl@script{}}%

Write the heading of the function.

288 \g@addto@macro{\mgl@func}{\mgl@write\mgl@script{func ’#2’ #1}}%

Call the command that will write each line of the contents of the environment.

289 \expandafter\mglfunc@write@line%

290 }

\test@mglfunc@defined This command tests if a function with a given name—given as argument—is al-
ready defined from the LATEX document; if so, a warning will be issued indicating
multiple definitions for the same function, but we will proceed anyway.

291 \def\test@mglfunc@defined#1{%

292 \def\this@func{#1}%

293 \@for\mglfunc@name:=\mglfunc@defined\do{%

294 \ifx\this@func\mglfunc@name%

295 \PackageWarning{\mgl@name}{MGL function "#1" has multiple definitions}%

296 \fi%

297 }%

298 }

21

We declare locally the end-line character as active.

299 \begingroup%

300 \catcode‘\^^M\active%

\mglfunc@write@line This is the command that reads each line of code of the mglfunc environment,
and stores in the buffer \mgl@func the instructions to write each of these lines.

301 \gdef\mglfunc@write@line#1^^M{%

The next action (\next@action) is to store in the buffer the instruction to write
the current line, and then call recursively the \mglfunc@write@line command,
unless overwritten below.

302 \def\next@action{%

303 \g@addto@macro{\mgl@func}{\mgl@write\mgl@script{#1}}%

304 \expandafter\mglfunc@write@line%

305 }%

Check for the end of the mglfunc environment, in which case, \next@action is
redefined to be \end{mglfunc}.

306 \test@end@mglfunc{#1}%

Execute \next@action.

307 \next@action%

308 }%

309 \endgroup

\end@mglfunc

\test@end@mglfunc

By now, we already know now these two commands work.

310 \begingroup%

311 \escapechar=-1 \relax%

312 \xdef\end@mglfunc{\string\\end\string\{mglfunc\string\}}%

313 \endgroup

314 \def\test@end@mglfunc#1{%

315 \edef\this@line{#1}%

316 \ifx\this@line\end@mglfunc%

317 \def\next@action{\end{mglfunc}}%

318 \fi%

319 }

\endmglfunc Just stores in the buffer the instruction that closes the MGL function with the
return command.

320 \def\endmglfunc{%

321 \g@addto@macro{\mgl@func}{\mgl@write\mgl@script{return}}%

322 }

323

324 % \begin{environment}{mglcommon}

325 % Writes its contents to a common script that will be executed together with each of the other scripts.

326 % \begin{macro}{\mglcommonscript}

327 % \changes{v2.0}{2014/11/20}{Add \texttt{\backslash{}mglcommonscript} user-definable macro}

328 % We define a macro to store the name of the setup script that will contain common code to all other

329 % \begin{macrocode}

22

330

331 \def\mglcommonscript{mgl_common_script}

\end@mglcommon We already know the purpose of this macro.

332 \bgroup%

333 \escapechar=-1\relax%

334 \xdef\end@mglcommon{\string\\end\string\{mglcommon\string\}}%

335 \egroup%

The mglcommon environment redefines the \test@end@mglcode so it detects
the \end{mglcommon} command instead, and uses the \mglcode to create the
common script.

336 \newenvironment{mglcommon}{%

337 \def\test@end@mglcode##1{%

338 \edef\this@word{##1}%

339 \ifx\this@word\end@mglcommon%

340 \def\next@action{\end{mglcommon}}%

341 \fi%

342 }%

343 \mglcode{\mglcommonscript}%

344 }{%

345 \mgl@write\mgl@out@stream{quality \mgl@quality}%

346 \immediate\closeout\mgl@out@stream%

347 }

This environment can be used only in the preamble.

348 \@onlypreamble\mglcommon

mglsignature This environment is used to declare signature text that will be written as comment
on every script generated by mglTEX.

\mglcomm We store the comment sign for MGL in this macro. For that, we need to declare
locally the symbol “#” as one of category 12.

349 \bgroup

350 \catcode‘#=12

351 \gdef\mglcomm{#}

352 \egroup

\mgltexsignature The buffer where the signature will be stored. Here, we declare a default signature.

353 \def\mgltexsignature{%

354 \mglcomm^^J%

355 \mglcomm\space This file was autogenerated from the document \jobname.tex on date \today^^J%

356 \mglcomm%

357 }

\mglsignature The beginning of the mglsignature environment.

358 \newcommand\mglsignature{%

Delete \mgltexsignature contents.

359 \def\mgltexsignature{}%

23

We do the same changes of category as in the mglcode environment.

360 \let\do\@makeother \dospecials%

361 \endlinechar‘\^^M \catcode‘\^^M\active%

362 \@vobeyspaces%

Call the command that will store each line of the signature in the \mgltexsignature
macro.

363 \expandafter\mglsignature@write@line%

364 }

\end@mglsignature We already know the purpose of this command.

365 \begingroup%

366 \escapechar=-1 \relax%

367 \xdef\end@mglsignature{\string\\end\string\{mglsignature\string\}}%

368 \endgroup

\mglsignature@write@line This command stores each line of the signature in the \mgltexsignature buffer.

369 \begingroup%

370 % \catcode‘\\=0%

371 \catcode‘\^^M\active%

372 \gdef\mglsignature@write@line#1^^M{%

Unless overwritten later, the next action (\next@action) is to store the current
line of the signature in the \mgltexsignature buffer, ending with a new-line
character, and call \mglsignature@write@line recursively.

373 \def\next@action{%

374 \g@addto@macro{\mgltexsignature}{\mglcomm\space#1^^J}

375 \mglsignature@write@line%

376 }%

We check if the current line is \end{mglsignature}, in which case, overwrite
\next@action to that command.

377 \test@end@mglsignature{#1}%

Execute \next@action.

378 \next@action%

379 }%

380 \endgroup

\test@end@mglsignature We already know the purpose of this command.

381 \def\test@end@mglsignature#1{%

382 \edef\this@line{#1}%

383 \ifx\this@line\end@mglsignature%

384 \def\next@action{\end{mglsignature}}%

385 \fi%

386 }

\endmglsignature The end of the mglsignature environment. It just adds a comment sign to
\mgltexsignature for elegance.

387 \def\endmglsignature{%

24

388 \g@addto@macro{\mgltexsignature}{\mglcomm}

389 }

\mglsignature@write It takes care of writing the signature to the output stream which is passed as its
argument.

390 \def\mglsignature@write#1{\mgl@write#1{\mgltexsignature}}

mglcomment An environment to contain multiline comments that won’t be printed to the doc-
ument nor to any script in the case of the user passes the option nocomments to
the package, and it’ll print the comments if the comments option is passed to the
package.

\mglcomment The beginning of the mglcomment environment. Here, we change categories of
special characters (like #, , etc.) and indicate to obey lines and spaces.

391

392 \def\mglcomment{%

393 \let\do\@makeother\dospecials%

394 \obeylines%

395 \@vobeyspaces%

396 \verbatim@font%

397 \small%

Call the command that will ignore all the commentary.

398 \mgl@comment%

399 }

\mgl@comment This command reads everything up to the \end{mglcomment} and ignores it if
the nocomments option is passed to the package, or prints it otherwise. (We use
the trick to consider everything up to the \end{mglcomment} the argument of
\mgl@comment.)

400 \begingroup%

We do some adequate changes of code locally, so that \, { and } are special, and
|, [and] take their functions, respectively.

401 \catcode‘|=0\catcode‘[= 1\catcode‘]=2\catcode‘\{=12\catcode‘\}=12\catcode‘\\=12%

Define \mgl@comment to do nothing with its argument if the nocomments option
has been passed to the package; otherwise, if the comments options has been
passed, it will print the commentary, with delimiters to indicate where it starts
and where it ends. Then call the end of the environment.

402 |gdef|mgl@comment#1\end{mglcomment}[%

403 |if@mgl@comments@%

404 |begin[center]%

405 <------------------ MGL comment ------------------>%

406 #1%

407 <------------------ MGL comment ------------------>%

408 |end[center]%

409 |fi%

410 |end[mglcomment]]%

411 |endgroup%

25

\endmglcomment The end of the environment; it does nothing.

412 \def\endmglcomment{}

4.3 Fast creation of graphics

mglsetup This environment is used to store lines of code that need to be repeated many
times. Later, the \mglplot command (see below) uses this lines of code without
the need to repeat them.

\mglsetup@defined A macro to list the names of all the setups already defined.

413

414 \def\mglsetup@defined{}

\mglsetup The beginning of the mglsetup environment. It accepts one optional argument,
which is a name (keyword) to be associated to the block of code.

415 \newcommand\mglsetup[1][generic]{%

Test if there already exists a setup with the current name; if so, issue a warning
of redefinition of the setup, but proceed anyway.

416 \test@mglsetup@defined{#1}%

Add the name of the current setup to \mglsetup@defined.

417 \g@addto@macro{\mglsetup@defined}{#1,}%

Define a new buffer which will contain the instructions to write the contents of
the environment when the \mglplot. command is used. If the mglsetup environ-
ment is called like \mglsetup\oarg{\meta{keyword}}, the buffer will be called
\mgl@setup@\meta{keyword}; if no name is given, use “generic” as keyword.

418 \expandafter\def\csname mgl@setup@#1\endcsname{\mgl@write\mgl@script{}}%

419 \expandafter\def\csname mgl@setup@#1\endcsname{\mgl@write\mgl@script{quality \mgl@quality}}%

Here, we do the same changes of category for special characters as we did in the
mgl environment.

420 \let\do\@makeother \dospecials%

421 \endlinechar‘\^^M \catcode‘\^^M\active%

422 \catcode‘\ =10%

Call the command that will store in the buffer the instructions to write the lines
of MGL code.

423 \expandafter\mglsetup@write@line%

424 }

\test@mglsetup@defined For every name stored in \mglsetup@defined, check if its argument (the name of
the current setup) matches, in which case we will issue a warning, but proceed.

425 \def\test@mglsetup@defined#1{%

426 \def\this@setup{#1}%

427 \@for\mglsetup@name:=\mglsetup@defined\do{%

428 \ifx\this@mglsetup\mglsetup@name%

429 \PackageWarning{\mgl@name}{Redefining "#1" setup for \noexpand\mglplot}%

430 \fi%

26

431 }%

432 }

\mglsetup@write@line This works exactly as the \mgl@write@line, but instead of writing directly to a
script, it stores the writing instructions in the buffer.

433 \begingroup%

434 \catcode‘\^^M\active%

435 \gdef\mglsetup@write@line#1^^M{%

436 \def\next@action{%

437 \expandafter\g@addto@macro\csname mgl@setup@\this@setup\endcsname{%

438 \mgl@write\mgl@script{#1}%

439 }%

440 \expandafter\mglsetup@write@line%

441 }%

442 \test@end@mglsetup{#1}%

443 \next@action%

444 }%

445 \endgroup

\end@mglsetup

\test@end@mglsetup

We already know how these two macros work

446 \begingroup%

447 \escapechar=-1 \relax%

448 \xdef\end@mglsetup{\string\\end\string\{mglsetup\string\}}%

449 \endgroup

450 \def\test@end@mglsetup#1{%

451 \edef\this@line{#1}%

452 \ifx\this@line\end@mglsetup%

453 \def\next@action{\end{mglsetup}}%

454 \fi%

455 }

\endmglsetup The end of the mglsetup environment. It does nothing.

456 \def\endmglsetup{}

\mglplot This macro uses the blocks of code stored by mglsetup environments to complete
the code contained in its mandatory argument.

If there is an optional argument, make \@mglplot process it, otherwise pass
no argument to \@mglplot.

457

458 \def\mglplot{%

459 \@ifnextchar[{\@mglplot}{\@mglplot[]}%

460 }

\@mglplot This command receives one mandatory argument, but enclosed between brackets;
so it receives the optional argument of \mglplot.

461 \def\@mglplot[#1]{%

Unless overwritten by the user with the setup=\meta{setup} option, the default
setup is “generic”; initialize the \graph@keys macro; process the 〈key〉=〈value〉

27

pairs passed by the user; increase the counter mgl@image@no for numbering and
naming of images.

462 \def\mglplot@setup{generic}%

463 \def\graph@keys{}%

464 \setkeys{mglplot@keys}{#1}%

465 \stepcounter{mgl@image@no}%

If the given setup is undefined, issue a package error; otherwise, execute the buffer
of the setup, which will write the contents of the corresponding mglsetup blocks
to the general script.

466 \ifx\csname mgl@setup@\mglplot@setup\endcsname\@undefined%

467 \PackageError{\mgl@name}{Setup "\mglplot@setup" undefined}{}%

468 \else%

469 \csname mgl@setup@\mglplot@setup\endcsname%

470 \fi%

Call \@@mglplot (see below).

471 \@@mglplot%

472 }

\@@mglplot This command writes its argument verbatim to the main script, then writes the
command to save the corresponding image, and the reset command to prepare
MathGL for the next image; finally, it uses the \mgl@include@image to include
the corresponding graphics in the document.

473 \long\def\@@mglplot#1{%

474 \mgl@write\mgl@script{\detokenize{#1}}%

475 \mgl@write\mgl@script{%

476 write ’\mgl@dir\jobname-mgl-\arabic{mgl@image@no}\mgl@image@ext’%

477 }%

478 \mgl@write\mgl@script{reset}%

479 \mgl@include@image{\mgl@dir\jobname-mgl-\arabic{mgl@image@no}}%

480 }

4.4 Verbatim-like environments

mgl@verb@line@no We create a counter to number the lines of code in verbatim-like environments.

481

482 \newcounter{mgl@verb@line@no}

mglverbatim This environment writes its contents verbatim to the LATEX document, numbering
each line of code.

\mglverbatim The beginning of the mglverbatim environment.

483

484 \def\mglverbatim{%

Initialize the counter for lines of code.

485 \setcounter{mgl@verb@line@no}{0}%

28

We use the list environment to set the numeration of the lines of code that will
be written to the LATEX document as items of the list. We also set the sepa-
ration between lines of code, the indentation of the line, and some other length
parameters.

486 \list{\itshape\footnotesize\arabic{mgl@verb@line@no}.}{}%

487 \setlength{\labelsep}{1em}%

488 \itemsep\z@skip%

489 \leftskip\z@skip\rightskip\z@skip%

490 \parindent\z@\parfillskip\@flushglue\parskip\z@skip%

We do the same changes of categories as in the mglcode environment.

491 \let\do\@makeother \dospecials%

492 \endlinechar‘\^^M \catcode‘\^^M\active%

493 \obeyspaces%

use verbatim font.

494 \verbatim@font%

Call the command that will write each line of the contents of the environment.

495 \expandafter\mglverbatim@ignore@line%

496 }

\mglverbatim@ignore@line This command ignores the first line of the verbatim environment, which is an
empty line.

497 \def\mglverbatim@ignore@line#1{%

498 \expandafter\mglverbatim@write@line%

499 }

\mglverbatim@write@line Reads the contents of the mglverbatim character by character, and stores words
in the \mgl@word buffer and lines in the \mgl@line buffer, just like the mglcode

environment did.

500 \def\mglverbatim@write@line#1{%

Unless overwritten later, the next action (\next@action) is recursively call
\mglverbatim@write@line.

501 \let\next@action\mglverbatim@write@line%

If the character read is an end-line character,

502 \expandafter\if#1\^^M%

increase the line of code counter, write the line contained in \mgl@line as an item
of the list environment, and clean \mgl@word and \mgl@line;

503 \stepcounter{mgl@verb@line@no}%

504 \item\mbox{\the\mgl@line}%

505 \mgl@word{}%

506 \mgl@line{}%

if the character is a space, clean \mgl@wors, but add the space to \mgl@line;

507 \else\expandafter\if#1\space%

508 \mgl@word{}%

509 \mgl@line\expandafter{\the\mgl@line#1}%

29

otherwise, the character is aphanumeric, so add it to the \mgl@word and
\mgl@line buffers, and check if \mgl@word is \end{mglverbatim}, in which case
overwrite \next@action to be that command.

510 \else%

511 \mgl@word\expandafter{\the\mgl@word#1}%

512 \mgl@line\expandafter{\the\mgl@line#1}%

513 \test@end@mglverbatim{\the\mgl@word}%

514 \fi\fi%

515 \next@action%

516 }

\end@mglverbatim

\test@end@mglverbatim

We already know the purpose of these macros.

517 \begingroup%

518 \escapechar=-1\relax%

519 \xdef\end@mglverbatim{\string\\end\string\{mglverbatim\string\}}%

520 \endgroup%

521 \def\test@end@mglverbatim#1{%

522 \edef\this@word{#1}%

523 \ifx\this@word\end@mglverbatim%

524 \def\next@action{\end{mglverbatim}}%

525 \fi%

526 }

\endmglverbaim The end of the mglverbatim environment. It just closes the list environment.

527 \def\endmglverbatim{\endlist}

mglblock This environment writes its contents to a script, whose name is passed as manda-
tory argument, ad then it also writes its contents to the LATEX document, num-
bering each line.

\mglblock The beginning of the mglblock environment.

528

529 \def\mglblock#1{%

Check if the script already exists, in which case we issue a warning, but proceed
anyway.

530 \test@mgl@script@written{#1}%

Add the name of the script to the list of scripts written.

531 \xdef\mgl@script@written{\mgl@script@written#1,}%

We make the same changes of categories as in the mglcode environment.

532 \let\do\@makeother \dospecials%

533 \endlinechar‘\^^M \catcode‘\^^M\active%

534 \obeyspaces%

Open the output stream for the current script.

535 \def\this@script{#1}%

536 \if@mgltex@on@%

537 \immediate\openout\mgl@out@stream="\mgl@dir\this@script.mgl"%

30

538 \mglsignature@write\mgl@out@stream%

539 \fi%

Call the command that will write each line of the contents of the environment.

540 \expandafter\mglblock@write@line%

541 }

\mglblock@write@line This macro reads characater by character the code inside mglblock, and uses the
\mgl@word and \mgl@line buffers to store words and lines of codes, just like we
did with the mglcode environment.

542 \def\mglblock@write@line#1{%

The next action (\next@action) is set to recursively call \mglblock@write@line,
unless it is overwritten later.

543 \let\next@action\mglblock@write@line%

If the read character is an end-line character, write the contents of \mgl@line to
the script, and the clean \mgl@word and \mgl@line;

544 \expandafter\if#1\^^M%

545 \mgl@write\mgl@out@stream{\the\mgl@line}%

546 \mgl@word{}%

547 \mgl@line{}%

if the read character if a space, clean \mgl@word, but add the space to \mgl@line;

548 \else\expandafter\if#1\space%

549 \mgl@word{}%

550 \mgl@line\expandafter{\the\mgl@line#1}%

otherwise, the character is alphnumeric, and should be added to \mgl@word and
\mgl@line, and we test if \mgl@word is \end{mglblock}, in which case, we over-
write \next@action to that command.

551 \else%

552 \mgl@word\expandafter{\the\mgl@word#1}%

553 \mgl@line\expandafter{\the\mgl@line#1}%

554 \test@end@mglblock{\the\mgl@word}%

555 \fi\fi%

Execute \next@action.

556 \next@action%

557 }

\end@mglblock

\test@end@mglblock

We already know the purpose of these macros.

558 \begingroup%

559 \escapechar=-1\relax%

560 \xdef\end@mglblock{\string\\end\string\{mglblock\string\}}%

561 \endgroup%

562 \def\test@end@mglblock#1{%

563 \edef\this@word{#1}%

564 \ifx\this@word\end@mglblock%

565 \def\next@action{\end{mglblock}}%

566 \fi%

567 }

31

\mgl@in@stream We create an input stream to read from MGL scripts.

568 \newread\mgl@in@stream

\endmglblock The end of the mglblock environment.

569 \def\endmglblock{%

Close the output stream.

570 \immediate\closeout\mgl@out@stream%

Open the input stream.

571 \immediate\openin\mgl@in@stream="\mgl@dir\this@script.mgl"%

Here, we use the list environment to set the numeration of the lines of code
that will be written to the LATEX document as items of the list. We also set the
separation between lines of code, the indentation of the line, and some other lenght
parameters.

572 \begingroup%

573 \list{\itshape\footnotesize\arabic{mgl@verb@line@no}.}{}%

574 \setlength{\labelsep}{1em}%

575 \itemsep\z@skip%

576 \leftskip\z@skip\rightskip\z@skip%

577 \parindent\z@\parfillskip\@flushglue\parskip\z@skip%

Use the verbatim font, and obey spaces, including spaces at the beggining of the
line.

578 \verbatim@font%

579 \@vobeyspaces%

Call the command that will write the lines of code to the LATEX document.

580 \mglblock@read@line%

581 }

\mglblock@read@line This command reads lines of code from the input stream and writes them as items
of the list environment.

582 \def\mglblock@read@line{%

Increase the line counter.

583 \stepcounter{mgl@verb@line@no}%

Read a line from the input stream.

584 \read\mgl@in@stream to \this@line%

If the end of file has been reached, define \next@action to close the input stream,
and en the list environment;

585 \ifeof\mgl@in@stream%

586 \def\next@action{%

587 \immediate\closein\mgl@in@stream%

588 \endlist%

589 \endgroup%

590 }%

32

otherwise, \next@action is write the read line as an item of the list environment,
and recursively call \mglblock@read@line.

591 \else%

592 \def\next@action{%

593 \item\mbox{\this@line}%

594 \mglblock@read@line%

595 }%

596 \fi%

Execute \next@action.

597 \next@action%

598 }

4.5 Working with external scripts

\mglgraphics This command allows to generate and include graphics from a external (not em-
bedded) script.

599

600 \newcommand\mglgraphics[2][]{%

Initialize \graph@keys, which will contain the 〈key〉=〈value〉 options for the
\includegraphicscommand.

601 \def\graph@keys{}%

Process the 〈key〉=〈value〉 options passed by the user.

602 \setkeys{mgl@keys}{#1}%

Execute the program mglconv (included in MathGL) to compile the corresponding
script.

603 \mgl@write{18}{mglconv "\mgl@dir#2.mgl" -s "\mgl@dir\mglcommonscript.mgl" -o "\mgl@dir#2\mgl@image@ext"}

Include the generated image with the \mgl@include@image command.

604 \mgl@include@image{\mgl@dir#2}%

605 }

\mglinclude This command copies verbatim the contents of an external script, and numerates
each line of code.

606

607 \def\mglinclude#1{%

Initialize the line counter.

608 \setcounter{mgl@verb@line@no}{0}%

Open the script in the input stream.

609 \immediate\openin\mgl@in@stream="\mgl@dir#1.mgl"%

Here, we use the list environment to numerate each line of code as an item. We
also set some length parameters.

610 \begingroup%

611 \list{\itshape\footnotesize\arabic{mgl@verb@line@no}.}{}%

612 \setlength{\labelsep}{1em}%

33

613 \itemsep\z@skip%

614 \leftskip\z@skip\rightskip\z@skip%

615 \parindent\z@\parfillskip\@flushglue\parskip\z@skip%

We do the same changes of category as in the mglcode environment, and set the
font to verbatim font.

616 \let\do\@makeother \dospecials%

617 \endlinechar‘\^^M \catcode‘\^^M\active%

618 \@vobeyspaces%

619 \verbatim@font%

We (re)use the \mglblock@read@line command to numerate and write each line
of code.

620 \mglblock@read@line%

621 }

4.6 Additional commands

\mgldir A command to specify a directory to write the scripts and create the images. First,
we create a macro that will store the specified directory for later use.

622

623 \def\mgl@dir{}

The command \mgldir is the only way to modify \mgl@dir. This is done so
the user won’t be able to modify the default directory, dangerously altering the
internal behavior of the package.

624 \def\mgldir#1{%

625 \def\mgl@dir{#1}%

626 }

Declare \mgldir so that it can only be used in the preamble. This is because the
main script 〈document〉.mgl is opened at the moment of the \begin{document}

instruction.

627 \@onlypreamble\mgldir

\mgl@quality We define a macro to store the quality.

628 \def\mgl@quality{2}

\mglquality This is used to define the quality for MGL graphics.

629 \def\mglquality#1{%

Write the quality command to a setup script.

630 \def\mgl@quality{#1}%

631 \if@mgltex@on@%

632 \immediate\openout\mgl@out@stream="\mgl@dir\mglcommonscript.mgl"%

633 \mgl@write\mgl@out@stream{quality #1}%

634 \immediate\closeout\mgl@out@stream%

Print an info message about the corresponding quality, or a warning if the quality
doesn’t exist.

635 \ifcase#1

34

636 \PackageInfo{mgltex}{Quality 0: No face drawing (fastest)}%

637 \or%

638 \PackageInfo{mgltex}{Quality 1: No color interpolation (fast)}%

639 \or%

640 \PackageInfo{mgltex}{Quality 2: High quality (normal)}%

641 \or%

642 \PackageInfo{mgltex}{Quality 3: High quality with 3d primitives (not implemented yet)}%

643 \or%

644 \PackageInfo{mgltex}{Quality 4: No face drawing, direct bitmap drawing (low memory usage)}%

645 \or%

646 \PackageInfo{mgltex}{Quality 5: No color interpolation, direct bitmap drawing (low memory

647 \or%

648 \PackageInfo{mgltex}{Quality 6: High quality, direct bitmap drawing (low memory usage)}%

649 \or%

650 \PackageInfo{mgltex}{Quality 7: High quality with 3d primitives, direct bitmap drawing (not

651 \or%

652 \PackageInfo{mgltex}{Quality 8: Draw dots instead of primitives (extremely fast)}%

653 \else%

654 \PackageWarning{mgltex}{Quality #1 not available. Using default (2)}%

655 \fi%

656 \else%

657 \PackageWarning{mgltex}{mglTeX is off, quality changes won’t have effect}%

658 \fi%

659 }

\mgltexon Has the same effect as the package option on, but its effect is local, meaning that
works only from the point this command is called on.

660

661 \def\mgltexon{

662 \@mgltex@on@true

663 \def\mgl@write##1##2{%

664 \immediate\write##1{##2}%

665 }

666 }

\mgltexoff Has the same effect as the package option off, but its effect is local.

667 \def\mgltexoff{%

668 \@mgltex@on@false

669 \def\mgl@write##1##2{}%

670 }

\mglcomments Has the same effect as the package option comments, but its effect is local, meaning
that works only from the point this command is called on.

671

672 \def\mglcomments{

673 \@mgl@comments@true

674 }

\mglnocomments Has the same effect as the package option off, but its effect is local.

35

675 \def\mglnocomments{%

676 \@mgl@comments@false

677 }

\mglTeX Just pretty-prints the name of the package.

678

679 \def\mglTeX{mgl\TeX}

Change History

v.2.0
General: Add environment

mglsignature that adds a com-
mentary every MGL script . . . 1

Add package options on and off 10
Eliminate line ignoring com-
mands to create more elegant
scripts, due to the a new com-
mand that adds comments to
the scripts 1

Possible bugfix by adding \ex-
pandafter to commands to ig-
nore/write lines of MGL code . 1

\mgltexoff: Add the command
\mgltexoff 35

\mgltexon: Add the command
\mgltexon 35

v1.0

General: Initial version 1

v2.0

General: Add package options
comments and nocomments . . . 11

\mglcomments: Add the command
\mglcomments 35

\mglnocomments: Add the com-
mand \mglnocomments 35

\mgltexsignature: Add \mgl-
texsignature user-definable
macro 23

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@@mglplot . . . 471, 473

\@mgl@comments@false

. 27, 676

\@mgl@comments@true

. 24, 673

\@mglplot 459, 461

\@mgltex@on@false .
. 19, 668

\@mgltex@on@true 13, 662

\@unknownoptionerror 45

\{ 159, 190, 246, 264,
312, 334, 367,
401, 448, 519, 560

\} 159, 190, 246, 264,
312, 334, 367,
401, 448, 519, 560

\^ 152, 162,
214, 230, 285,
300, 361, 371,
421, 434, 492,
502, 533, 544, 617

_ 328

\ 153, 286, 422

B

\backslash 327

\begin 324, 326, 329

C

\changes 327

E

\emph 328

\end@mgl 157, 174

\end@mgladdon . 190, 195

\end@mglblock 558

\end@mglcode . . 246, 250

\end@mglcommon 332, 339

\end@mglfunc 310

\end@mglscript 264, 269

36

\end@mglsetup 446

\end@mglsignature .
. 365, 383

\end@mglverbatim . . 517

\endmgl 178

\endmglblock 569

\endmglcode 254

\endmglcomment 412

\endmglfunc 320

\endmglsetup 456

\endmglsignature . . 387

\endmglverbaim 527

\endmglverbatim . . . 527

environments:

mgl 3, 129

mgladdon 3, 187

mglblock 6, 528

mglcode 3, 201

mglcomment . . . 5, 391

mglcommon 4

mglfunc 4, 277

mglscript 3, 261

mglsetup 5, 413

mglsignature . 4, 349

mglverbatim . . 6, 483

G

\g@addto@macro 50–72,
75–97, 283, 287,
288, 303, 321,
374, 388, 417, 437

\graph@keys . . 50–72,
75–97, 114,
149, 204, 463, 601

I

\if@mgl@comments@ . 22

\if@mgltex@on@ . 11,
134, 209, 536, 631

\img@ext 111, 112

M

\mgl 147, 199

mgl (environment) . 3, 129

\mgl@comment . . 398, 400

\mgl@dir 135,
144, 181, 185,
210, 257, 259,
476, 479, 537,

571, 603, 604,
609, 623, 625, 632

\mgl@func . 142, 279,
287, 288, 303, 321

\mgl@image@ext 34–42,
44, 73, 103,
181, 257, 476, 603

\mgl@img@not@found .
. . . . 107, 110, 121

\mgl@in@stream
. . . . 568, 571,
584, 585, 587, 609

\mgl@include@image .
. 102,
185, 259, 479, 604

\mgl@line
. 227, 231, 233,
236, 239, 504,
506, 509, 512,
545, 547, 550, 553

\mgl@name . 295, 429, 467
\mgl@out@stream 202,

210, 211, 231,
255, 275, 345,
346, 537, 538,
545, 570, 632–634

\mgl@quality . . 154,
345, 419, 628, 630

\mgl@script 132, 135,
136, 140, 141,
143, 154, 165,
180, 183, 184,
287, 288, 303,
321, 418, 419,
438, 474, 475, 478

\mgl@script@name . .
. 220, 221

\mgl@script@written

. 201, 207, 220, 531
\mgl@verb@line@no . 481
\mgl@word

. 226, 232, 235,
238, 240, 505,
508, 511, 513,
546, 549, 552, 554

\mgl@write
14, 20, 140, 141,
144, 154, 165,
180, 183, 184,
231, 256, 287,

288, 303, 321,
345, 390, 418,
419, 438, 474,
475, 478, 545,
603, 633, 663, 669

\mgl@write@line 155, 161
mgladdon (environ-

ment) 3, 187
\mglblock 528
mglblock (environ-

ment) 6, 528
\mglblock@read@line

. . . . 580, 582, 620
\mglblock@write@line

. 540, 542
\mglcode . . 203, 273, 343
mglcode (environment)

. 3, 201
\mglcode@write@line

. 216, 226
\mglcomm 349,

354–356, 374, 388
\mglcomment 391
mglcomment (environ-

ment) 5, 391
\mglcomments 7, 671
\mglcommon 348
mglcommon (environ-

ment) 4

\mglcommonscript . .
. . . 8, 257, 326,
331, 343, 603, 632

\mgldir 6, 622
\mglfunc 281
mglfunc (environment)

. 4, 277
\mglfunc@defined . .

. . . . 277, 283, 293
\mglfunc@name . 293, 294
\mglfunc@write@line

. 289, 301
\mglgraphics 6, 599
\mglgunc 280
\mglinclude 6, 606
\mglnocomments . . 7, 675
\mglplot . . . 5, 429, 457
\mglplot@image@ext . 98
\mglplot@setup . 99,

462, 466, 467, 469
\mglquality 6, 629

37

mglscript (environ-
ment) 3, 261

\mglsetup 415

mglsetup (environ-
ment) 5, 413

\mglsetup@defined .
. . . . 413, 417, 427

\mglsetup@name 427, 428

\mglsetup@write@line

. 423, 433

\mglsignature 358

mglsignature (environ-
ment) 4, 349

\mglsignature@write

. 136, 211, 390, 538

\mglsignature@write@line

. 363, 369

\mglTeX 8, 678

\mgltexoff 7, 667

\mgltexon 7, 660

\mgltexsignature . .
. 8, 353,
359, 374, 388, 390

\mglverbatim 483

mglverbatim (environ-
ment) 6, 483

\mglverbatim@ignore@line

. 495, 497

\mglverbatim@write@line

. 498, 500

N

\next@action 110, 113,
118, 164, 169,
175, 196, 229,
242, 251, 270,
302, 307, 317,
340, 373, 378,
384, 436, 443,
453, 501, 515,
524, 543, 556,
565, 586, 592, 597

O

\or 637, 639, 641, 643,
645, 647, 649, 651

T

\test@end@mgl
. . . . 168, 172, 193

\test@end@mglblock .
. 554, 558

\test@end@mglcode .
. 240, 244, 267, 337

\test@end@mglfunc .
. 306, 310

\test@end@mglsetup .
. 442, 446

\test@end@mglsignature

. 377, 381
\test@end@mglverbatim

. 513, 517
\test@mgl@script@written

. . . . 206, 218, 530
\test@mglfunc@defined

. 282, 291
\test@mglsetup@defined

. 416, 425
\TeX@ext 101, 103
\texttt 327
\this@func . . . 292, 294
\this@line 173, 174,

194, 195, 315,
316, 382, 383,
451, 452, 584, 593

\this@mglsetup 428
\this@script

. 208, 210, 219,
221, 222, 257,
259, 535, 537, 571

\this@setup . . . 426, 437
\this@word

. 249, 250, 268,
269, 338, 339,
522, 523, 563, 564

38

