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ABSTRACT 

Summary: 

Dose response information is critical to understanding drug effects, yet analytical 

methods for dose response assays cannot cope with the dimensionality of large scale 

screening data such as the microarray profiling data. To overcome this limitation, we 

developed and implemented the Sigmoidal Dose Response Search (SDRS) algorithm, a 

grid search based method designed to handle large scale dose response data. This method 

not only calculates the pharmacological parameters for every assay, but also provides 

built-in statistic that enables downstream systematic analyses, such as characterizing dose 

response at the transcriptome level.  

Availability: 

Contacts: ruiruji@gmail.com; bruc@acm.org  

Supplementary information: Supplementary data are available at Bioinformatics online. 
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1 INTRODUCTION 

Dose response assays are routinely used in today’s pharmaceutical development. 

Mechanistically, compound:target binding occurs at a single site and follows the law of 

mass action is reflected by the sigmoidal dose response pattern seen in many assays 

(Balakrishnan, 1991). In statistics, sigmoidal dose responses can be identified by 

nonlinear regression, a form of regression analysis where the model function is a 

nonlinear combination of the model parameters (Seber and Wild, 1989). Nonlinear 

regression methods such as the well known Levenberg-Marquardt algorithm involve 

successive approximations that aim at minimizing an error function (Marquardt, 1963). 

Despite the general applicability of the iterative nonlinear regression methods, there are a 

couple of limitations in their application to large scale dose response screening data. 

First, the iterative methods do not impose a boundary on the model parameter values, 

thus the output model may contain un-realistic or un-interpretable values such as a 

negative EC50. Second, these methods only calculate the parameter values and fitting 

statistic for the best model, but do not provide a means that can be integrated in 

downstream analyses such as the characterization of the transcriptome response (Ji et al., 

2009).  

 

Ji et al. (2009) recently described a grid search based algorithm, Sigmoidal Dose 

Response Search (SDRS), for identifying transcripts that exhibited sigmoidal dose 

response to the treatments of kinase inhibitors. Since the SDRS algorithm is generic and 

can be expanded to identify other dose response patterns in different sources of 

quantitative data, we have implemented the method as a Perl module with C inline codes. 



We demonstrated the general utility of the method using a dataset from high content 

screening (HCS). 

 

2 METHOD AND IMPLEMENTATION 

Our implementation of the SDRS algorithm includes a typical sigmoidal dose response 

model for one-site compound:target interaction,  

Y = A + (B – A) / (1 + (X/C)D) 

where Y is the assay readout value, X is the dose, and the four unknown parameters 

correspond to minimal response (A), maximal response (B), EC50 (C), and the Hill slope 

(D).  

 

In essence, the SDRS algorithm tests a series of candidate EC50 values (i.e. search doses) 

across the experimental dose range. Therefore at every search dose it is a three point grid 

search for the one-site model. For transcription profiling data, every probeset on the array 

is treated as an independent assay for the response of its corresponding transcript and its 

expression values at the experimental doses constitute the assay data.  

 

We assume that every assay generates a positive readout. For every assay, the range for 

the parameter A is determined based on the six (default, or per user defined) lowest 

readout values, and is set to be the mean value plus or minus two multiples of the 

standard deviation. If the lower boundary is less than zero, it is re-set to the minimal of 

the readouts. The search step for A is one-fourth of the standard deviation. Similarly, the 

range for the parameter B is determined using the six (default, or per user defined) 



highest values and the step is also one-fourth of the standard deviation. The parameter D 

can vary between -6.3 and 6.3, with a step of 0.3. (In reality, D can vary from –∞ to +∞. 

However, when the absolute value of D is > 6, additional increments have only marginal 

impact on the estimates of the other three parameters.) Placing data-driven limits on 

parameter values allows SDRS to exclude unusable parameters such as negative EC50 

values. 

 

At every search dose, the SDRS algorithm evaluates all possible combinations of 

parameter values and calculates the deviation of expected values based on the dose 

response model from the observational data. The goodness of fit is measured by an F-

statistic: F = MSR/MSE where MSR is the mean square of the variance explained by the 

model and MSE is the mean square of error (Supplementary Table 1). Assuming that the 

residuals are normally distributed, the F-statistic follows an F-distribution, F(p-1, n-p), 

where n is the number of experimental dose points and p is the number of parameters in 

the model. For every assay, at every search dose tested, the (local) maximal F-statistic 

and the corresponding parameter values are recorded.  

 

At the end of the grid search, every assay is associated with a series of F-statistic. An 

assay is designated as fitted to a dose response model if its global maximal F-statistic (i.e. 

best fit) is larger than a pre-defined critical F value, for example, at P < 0.05. For each 

assay, the parameter values that gave rise to the global maximal F-statistic define the 

optimal model. The 95% confidence interval for C (i.e. EC50) is defined as from the 

lowest search dose where the local maximal F-statistic is larger than the critical value to 



the highest search dose that meets the same criteria. Confidence intervals for other model 

parameters can be found similarly. 

 

One output of SDRS is qualitatively similar to that of an iterative algorithm: each assay is 

associated with a predicted EC50, P value, and fold-change (i.e. the ratio of B to A). 

However, SDRS also generates an F-statistic for every assay at each search dose. This 

output, which is unique to the grid search method, allows for a global characterization 

and comparison of dose responses (Ji et al., 2009).  

 

3 RESULTS AND DISCUSSION 

Herein, we present the SDRS algorithm, which is implemented as a Perl module with C 

inline codes. We applied the algorithm to a dataset from HCS assays that measured 

programmed cell death using caspase 3, caspase 8, and cytochrome C as readouts in the 

ovarian cancer cell line, OVCAR-4. The SDRS outputs were compared to those 

generated by XLfit, software that implements the Levenberg-Marquardt algorithm (Table 

1). XLfit identified nineteen dose responses in these assays. By contrast, SDRS identified 

three dose responses in addition to those identified by XLfit. The three additional dose 

responses identified by SDRS appear to be real (Supplementary Figure 1). There is a 

gradual increase in cytochrome C readouts as the Mitoxantrone concentration increases. 

In the case of ABT-263, it is likely that the compound also has a dose response since both 

the caspase 8 and cytochrome C assay produced high readouts at the highest dose. When 

both response plateaus are present, the parameter values generated by SDRS are almost 

identical to those generated by the iterative method (Table 1 and Supplementary Figure 



2). However, when one of the curve plateaus is not present, i.e. where A or B are not well 

defined, the output is dependent on the behavior of the algorithm utilized. For example, 

when the high plateau is missing, extreme values for B and C are generated, with C often 

larger than the maximal experimental dose (Table 1 and Supplementary Figure 3). 

Similarly, when the low plateau is missing, iterative methods may generate negative 

estimates for A and C. Although there is no ‘right’ solution in these cases, as the data is 

not sufficient for parameter estimation, SDRS generates more ‘realistic’ estimates 

because it imposes constraints on the parameter values based on assay data and 

experimental dose range (Table 1). 

 

Although SDRS was initially developed to handle genomic scale transcriptional dose 

response data, it can be used to analyze all other types of dose response data where it 

performs as efficient as iterative nonlinear regression methods. SDRS is robust to the 

naturally occurring variability in large scale screening data, where the assays are not 

necessarily “optimized”. Importantly, only SDRS provides a full set of F-statistic across 

the dose range that can be utilized in downstream system level analyses and comparisons.  

 

 

 



ACKNOWLEDGEMENTS 

We are very grateful to Michael G. Neubauer, Petra Ross-Macdonald, and Karl-Heinz 

Ott, for their insightful comments and discussions.  

 

Funding: This work was supported by Bristol-Myers Squibb, the present and past 

employer of the authors. 

 

Conflict of Interest: none declared. 

 



REFERENCES 

Balakrishnan,N. (1991) Handbook of the Logistic Distribution. CRC Press, 601 p. 

Ji,R. et al. (2009) Transcriptional profiling of the dose response: a more powerful 

approach for characterizing drug activities. PLoS Comput. Biol., 5(9), e1000512. 

Marquardt,D.W. (1963) An algorithm for least-squares estimation of nonlinear 

parameters. SIAM J. Appl. Math., 11, 431-441. 

Seber,G.A. and Wild,C.J. (1989) Nonlinear regression. New York: John Wiley and Sons. 



TABLES 
 
Table 1. Summary of SDRS and XLfit outputs. 
 

Compound Assay P  value A B C (EC50, nM) D Fitted? A B C (EC50, nM) D
Mitoxantrone Caspase 3 7.6E-08 4.4 92.6 9068.3 -6 #Ok! 3.7 113.6 11991.5 -2.2
Mitoxantrone Caspase 8 5.3E-11 2.6 100.9 1528.3 -1.8 #Ok! 2.5 102.5 1570.5 -1.7
Mitoxantrone Cytochrome C 1.7E-04 11.5 88.4 9688.3 -6 #NoFit!
BMS-214662 Caspase 3 5.7E-03 1.8 3.2 1608.3 -1.5 #Ok! 1.8 3.2 1775.7 -1.6
BMS-214662 Caspase 8 8.1E-03 2.1 4.2 1588.3 -6 #Ok! 2.1 4.2 1515.9 -52.0
BMS-214662 Cytochrome C 5.2E-01 #NoFit!
Geldanamycin Caspase 3 9.2E-02 #NoFit!
Geldanamycin Caspase 8 5.7E-06 1.8 5.3 1568.3 -1.8 #Ok! 1.8 5.4 1628.1 -1.5
Geldanamycin Cytochrome C 2.9E-05 6.7 31.0 5108.3 -1.2 #Ok! 6.5 40.1 10833.1 -0.9
ABT-263 Caspase 3 9.9E-07 1.7 47.4 13268.3 -6 #Ok! 1.9 756.0 44125.9 -4.7
ABT-263 Caspase 8 1.1E-06 1.7 89.4 13308.3 -6 #NoFit!
ABT-263 Cytochrome C 2.7E-06 5.1 79.0 13608.3 -6 #NoFit!
Cycloheximide Caspase 3 5.3E-04 1.6 6.9 548.3 -6 #Ok! 1.6 6.5 371.4 -20.5
Cycloheximide Caspase 8 1.3E-03 1.7 6.9 748.3 -3.3 #Ok! 1.6 7.2 847.0 -1.9
Cycloheximide Cytochrome C 1.1E-07 3.8 67.6 1288.3 -1.5 #Ok! 4.1 66.4 1241.8 -1.7
Carboplatin Caspase 3 6.6E-01 #NoFit!
Carboplatin Caspase 8 3.7E-01 #NoFit!
Carboplatin Cytochrome C 9.8E-02 #NoFit!
Etoposide Caspase 3 1.2E-02 2.2 5.2 5768.3 -1.5 #Ok! 2.2 7.3 17804.1 -0.8
Etoposide Caspase 8 1.4E-02 1.8 4.7 3468.3 -1.2 #Ok! 1.8 5.8 8804.0 -0.9
Etoposide Cytochrome C 7.4E-03 6.7 16.6 1028.3 -6 #Ok! 6.7 16.7 1001.0 -8.4
Gossypol Caspase 3 2.8E-02 1.6 2.8 1108.3 -6 #Ok! 1.6 6.2 54354.5 -0.7
Gossypol Caspase 8 8.7E-01 #NoFit!
Gossypol Cytochrome C 1.0E-05 7.3 56.8 10828.3 -6 #Ok! 6.8 4099.0 475017.8 -1.5
Daunorubicin Caspase 3 2.3E-10 2.7 100.8 388.8 -2.4 #Ok! 3.1 99.3 390.5 -2.6
Daunorubicin Caspase 8 3.8E-12 1.6 99.0 77.7 -3.6 #Ok! 1.7 99.6 76.6 -3.3
Daunorubicin Cytochrome C 4.4E-08 8.2 94.9 1848.3 -2.1 #Ok! 8.2 97.9 1946.7 -1.9
Hydroxyurea Caspase 3 6.2E-01 #NoFit!
Hydroxyurea Caspase 8 6.9E-01 #NoFit!
Hydroxyurea Cytochrome C 4.2E-04 8.7 27.0 9208.3 -6 #Ok! 8.6 39.2 18268.6 -1.6

SDRS output Xlfit output

 



Supplementary Table 1. ANOVA table for F statistic calculation. 

 

 

Supplementary Figure 1. Dose responses identified by SDRS but not XLfit. 
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Supplementary Figure 2. Representative dose responses identified by both SDRS and XLfit. 

 

 

Supplementary Figure 3. Dose responses where XLfit generated EC50 values larger than the highest 
experimental dose. 
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