
LATEXML The Manual
A LATEX to XML/HTML/MATHML Converter;

Version 0.8.5

Bruce R. Miller

November 17, 2020

ii

Contents

Contents iii

List of Figures vii

1 Introduction 1

2 Using LATEXML 5
2.1 Conversion . 6
2.2 Postprocessing . 7
2.3 Splitting . 11
2.4 Sites . 11
2.5 Individual Formula . 13

3 Architecture 15
3.1 latexml architecture . 15
3.2 latexmlpost architecture . 18

4 Customization 19
4.1 LaTeXML Customization . 20

4.1.1 Expansion . 20
4.1.2 Digestion . 22
4.1.3 Construction . 24
4.1.4 Document Model . 27
4.1.5 Rewriting . 28
4.1.6 Packages and Options . 28
4.1.7 Miscellaneous . 29

4.2 latexmlpost Customization . 29
4.2.1 XSLT . 30
4.2.2 CSS . 30

5 Mathematics 33
5.1 Math Details . 34

5.1.1 Internal Math Representation 34
5.1.2 Grammatical Roles . 36

iii

iv CONTENTS

6 Localization 39
6.1 Numbering . 39
6.2 Input Encodings . 40
6.3 Output Encodings . 40
6.4 Babel . 40

7 Alignments 41
7.1 TEX Alignments . 41
7.2 Tabular Header Heuristics . 41
7.3 Math Forks . 42
7.4 eqnarray . 43
7.5 AMS Alignments . 43

8 Metadata 45
8.1 RDFa . 45

9 ToDo 47

A Commands 51
latexml . 51
latexmlpost . 54
latexmlmath . 62

B Bindings 67

C Modules 69
LaTeXML . 69
LaTeXML::Global . 70
LaTeXML::Package . 71
LaTeXML::MathParser . 97

C.1 Common Modules . 99
LaTeXML::Common::Config 99
LaTeXML::Common::Object 113
LaTeXML::Common::Color . 115
LaTeXML::Common::Color::rgb 116
LaTeXML::Common::Color::hsb 116
LaTeXML::Common::Color::cmy 116
LaTeXML::Common::Color::cmyk 116
LaTeXML::Common::Color::gray 116
LaTeXML::Common::Color::Derived 117
LaTeXML::Common::Number 117
LaTeXML::Common::Float . 118
LaTeXML::Common::Dimension 118
LaTeXML::Common::Glue . 119
LaTeXML::Common::Font . 119
LaTeXML::Common::Model . 120
LaTeXML::Common::Model::DTD 121

CONTENTS v

LaTeXML::Common::Model::RelaxNG 121
LaTeXML::Common::Error . 121

C.2 Core Modules . 123
LaTeXML::Core::State . 123
LaTeXML::Core::Mouth . 126
LaTeXML::Core::Gullet . 126
LaTeXML::Core::Stomach . 129
LaTeXML::Core::Document 131
LaTeXML::Core::Rewrite . 138
LaTeXML::Core::Token . 138
LaTeXML::Core::Tokens . 140
LaTeXML::Core::Box . 140
LaTeXML::Core::List . 141
LaTeXML::Core::Comment . 141
LaTeXML::Core::Whatsit . 141
LaTeXML::Core::Alignment 143
LaTeXML::Core::KeyVals . 143
LaTeXML::Core::MuDimension 147
LaTeXML::Core::MuGlue . 147
LaTeXML::Core::Pair . 147
LaTeXML::Core::PairList 147
LaTeXML::Core::Definition 148
LaTeXML::Core::Definition::CharDef 149
LaTeXML::Core::Definition::Conditional 149
LaTeXML::Core::Definition::Constructor 149
LaTeXML::Core::Definition::Expandable 150
LaTeXML::Core::Definition::Primitive 150
LaTeXML::Core::Definition::Register 150
LaTeXML::Core::Parameter 151
LaTeXML::Core::Parameters 151

C.3 Utility Modules . 152
LaTeXML::Util::Pathname 152
LaTeXML::Util::WWW . 154
LaTeXML::Util::Pack . 155

C.4 Preprocessing Modules . 156
LaTeXML::Pre::BibTeX . 156

C.5 Postprocessing Modules . 157
LaTeXML::Post . 157
LaTeXML::Post::MathML . 157

D Schema 161
D.1 Module LaTeXML . 161
D.2 Module LaTeXML-common . 163
D.3 Module LaTeXML-inline . 175
D.4 Module LaTeXML-block . 179
D.5 Module LaTeXML-misc . 186

vi CONTENTS

D.6 Module LaTeXML-meta . 188
D.7 Module LaTeXML-para . 192
D.8 Module LaTeXML-math . 195
D.9 Module LaTeXML-tabular . 202
D.10 Module LaTeXML-picture . 204
D.11 Module LaTeXML-structure 210
D.12 Module LaTeXML-bib . 226

E Error Codes 235

F CSS Classes 239

Index 243

List of Figures

3.1 Flow of data through LATEXML’s digestive tract. 16

vii

viii LIST OF FIGURES

Chapter 1

Introduction

Note: Some of the more detailed portions of this manual have not kept uptodate with
the evolution of the code and style of LATEXML, but rather than delay release, we’ll
improve the documentation in a later update.

For many, LATEX is the preferred format for document authoring, particularly those
involving significant mathematical content and where quality typesetting is desired.
On the other hand, content-oriented XML is an extremely useful representation for doc-
uments, allowing them to be used, and reused, for a variety of purposes, not least,
presentation on the Web. Yet, the style and intent of LATEX markup, as compared to
XML markup, not to mention its programmability, presents difficulties in converting
documents from the former format to the latter. Perhaps ironically, these difficulties
can be particularly large for mathematical material, where there is a tendency for the
markup to focus on appearance rather than meaning.

The choice of LATEX for authoring, and XML for delivery were natural and uncon-
troversial choices for the Digital Library of Mathematical Functions1. Faced with the
need to perform this conversion and the lack of suitable tools to perform it, the DLMF
project proceeded to develop thier own tool, LATEXML, for this purpose.

Design Goals The idealistic goals of LATEXML are:

• Faithful emulation of TEX’s behaviour;

• Easily extensible;

• Lossless, preserving both semantic and presentation cues;

• Use an abstract LATEX-like, extensible, document type;

1http://dlmf.nist.gov

1

2 CHAPTER 1. INTRODUCTION

• Infer the semantics of mathematical content
(Good Presentation MATHML, eventually Content MATHML and OpenMath).

As these goals are not entirely practical, even somewhat contradictory, they are im-
plicitly modified by as much as possible. Completely mimicing TEX’s, and LATEX’s,
behaviour would seem to require the sneakiest modifications to TEX, itself; redefining
LATEX’s internals does not really guarantee compatibility. “Ease of use” is, of course, in
the eye of the beholder; this manual is an attempt to make it easier! More significantly,
few documents are likely to have completely unambiguous mathematics markup; hu-
man understanding of both the topic and the surrounding text is needed to properly
interpret any particular fragment. Thus, while we’ll try to provide a “turn-key” so-
lution that does the ‘Right Thing’ automatically, we expect that applications requir-
ing high semantic content will require document-specific declarations and tuning to
achieve the desired result. Towards this end, we provide a variety of means to cus-
tomize the processing and declare the author’s intent. At the same time, especially for
new documents, we encourage a more logical, content-oriented markup style, over a
purely presentation-oriented style.

Overview of this Manual Chapter 2 describes the usage of LATEXML, along with
common use cases and techniques. Chapter 3 describes the system architecture in
some detail. Strategies for customization and implementation of new packages is de-
scribed in Chapter 4. The special considerations for mathematics, including details of
representation and how to improve the conversion, are covered in Chapter 5. Several
specialized topics are covered in the remaining chapters. An overview of outstanding
issues and planned future improvements are given in Chapter 9.

Finally, the Appendices give detailed documentation the system components: Ap-
pendix A describes the command-line programs provided by the system; Appendix B
lists the LATEX style packages for which we’ve provided LATEXML-specific bindings.
Appendix C describes the various Perl modules, in groups, that comprise the sys-
tem. Appendix D describes the XML schema used by LATEXML. Appendix E gives
an overview of the warning and error messages that LATEXML may generate. Appendix
F describes the strategy and naming conventions used for CSS styling of the resulting
HTML.

Using LATEXML, and programming for it, can be somewhat confusing as one is deal-
ing with several languages not normally combined, often within the same file, — Perl,
TEX and XML (along with XSLT, HTML, CSS), plus the occasional shell programmming.
To help visually distinguish different contexts in this manual we will put ‘program-
ming’ oriented material (Perl, TEX) in a typewriter font, like this; XML material
will be put in a sans-serif face like this.

If you encounter difficulties, there is a support mailing list at latexml-project2.
Bugs and enhancement requests can be reported at Github3. If all else fails, please

2http://lists.informatik.uni-erlangen.de/mailman/listinfo/latexml
3https://github.com/brucemiller/LaTeXML

3

consult the source code, or the author.

Danger! When you see this sign, be warned that the material presented is
somewhat advanced and may not make much sense until you have dabbled quite
a bit in LATEXML’s internals. Such advanced or ‘dangerous’ material will be

presented like this paragraph to make it easier to skip over.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Using LATEXML

The main commands provided by the LATEXML system are

latexml for converting TEX and BIBTEX sources to XML.

latexmlpost for various postprocessing tasks including conversion to HTML, pro-
cessing images, conversion to MATHML and so on.

The usage of these commands can be as simple as

latexmlc doc.tex --dest=doc.html

to convert a single document into HTML5 document, Or if you want to examine the
XML, for some reason (I usually do)

latexml --dest=doc.xml doc ; latexmlpost doc --dest=doc.html

Or can be as complicated as

Conversion
latexml --dest=main.xml main.tex
latexml --dest=A.xml A

...
Scan
latexmlpost --prescan --db=my.db --dest=/site/main.html main
latexmlpost --prescan --db=my.db --dest=/site/A.html A

...
Pagination
latexmlpost --noscan --db=my.db --dest=/site/main.html main
latexmlpost --noscan --db=my.db --dest=/site/A.html A

...

to convert a whole set of documents, including a bibliography, into a complete inter-
connected site. See 2.4 for details.

How best to use the commands depends, of course, on what you are trying to
achieve. In the next section, we’ll describe the use of latexml, which performs the

5

6 CHAPTER 2. USING LATEXML

conversion to XML. The following sections consider a sequence of successively more
complicated postprocessing situations, using latexmlpost, by which one or more
TEX sources can be converted into one or more web documents or a complete site.

Additionally, there is a convenience command latexmlmath for converting in-
dividual formula into various formats.

2.1 Basic XML Conversion
The command

latexml {options} --destination=doc.xml doc

converts the TEX document doc.tex, or standard input if - is used in place of the file-
name, to XML. It loads any required definition bindings (see below), reads, tokenizes,
expands and digests the document creating an XML structure. It then performs some
document rewriting, parses the mathematical content and writes the result, in this case,
to doc.xml; if no --destination is suppplied, it writes the result to standard out-
put. For details on the processing, see Chapter 3, and Chapter 5 for more information
about math parsing.

BIBTEX processing If the source file has an explicit extension of .bib, or if the
--bibtex option is used, the source will be treated as a BIBTEX database. See 2.2
for how BIBTEX files are included in the final output.

Note that the timing is different than with BIBTEX and LATEX. Normally,
BIBTEX simply selects and formats a subset of the bibliographic entries accord-
ing to the .aux file; all TEX expansion and processing is carried out only when

the result is included in the main LATEX document. In contrast, latexml processes
and expands the entire bibliography, including any TEX markup within it, when it is
converted to XML; the selection of entries is done during postprocessing. One impli-
cation is that latexml does not know about packages included in the main document; if
the bibliography uses macros defined in such packages, the packages must be explicitly
specified using the --preload option.

Useful Options The number and detail of progress and debugging messages printed
during processing can be controlled using

--verbose or --quiet

They can be repeated to get even more or fewer details.
Directories to search (in addition to the working directory) for various files can be

specified using

--path={directory}

This option can be repeated.
Whenever multiple sources are being used (including multiple bibliographies), the

option

2.2. POSTPROCESSING 7

--documentid=id

should be used to provide a unique ID for the document root element. This ID is used
as the base for id’s of the child-elements within the document, so that they are unique,
as well.

See the documentation for the command latexml for less common options.

Loading Bindings Although LATEXML is reasonably adept at processing TEX macros,
it generally benefits from having its own implementation of the macros, primitives,
environments and other control sequences appearing in a document because these are
what define the mapping into XML. The LATEXML-analogue of a style or class file
we call a LATEXML-binding file, or binding for short; these files have an additional
extension .ltxml.

In fact, since style files often bypass structurally or semantically meaningful macros
by directly invoking macros internal to LATEX, LATEXML actually avoids processing style
files when a binding is unavailable. The option

--includestyles

can be used to override this behaviour and allow LATEXML to (attempt to) process raw
style files. [A more selective, per-file, option may be developed in the future, if there
is sufficient demand — please provide use cases.]

LATEXML always starts with the TeX.pool binding loaded, and if LATEX-specific
commands are recognized, LaTeX.pool as well. Any input directives within the
source loads the appropriate binding. For example, \documentclass{article}
or \usepackage{graphicx} will load the bindings article.cls.ltxml or
graphicx.sty.ltxml, respectively; the obsolete directive \documentstyle is
also recognized. An \input directive will search for files with both .tex and .sty
extensions; it will prefer a binding file if one is found, but will load and digest a .tex
if no binding is found. An \include directive (and related ones) search only for a
.tex file, which is processed and digested as usual.

There are two mechanisms for customization: a document-specific binding file
doc.latexml will be loaded, if present; the option

--preload=binding

will load the binding file binding.ltxml. The --preload option can be repeated;
both kinds of preload are loaded before document processing, and are processed in
order.

See Chapter 4 for details about what can go in these bindings; and Appendix B for
a list of bindings currently included in the distribution.

2.2 Basic Postprocessing
In the simplest situation, you have a single TEX source document from which you want
to generate a single output document. The command

latexmlpost options --destination=doc.html doc

8 CHAPTER 2. USING LATEXML

or similarly with --destination=doc.html4, --destination=doc.xhtml, will
carry out a set of appropriate transformations in sequence:

• scanning of labels and ids;

• filling in the index and bibliography (if needed);

• cross-referencing;

• conversion of math;

• conversion of graphics and picture environments to web format (png);

• applying an XSLT stylesheet.

The output format affects the defaults for each step, and particularly, the XSLT
stylesheet that is used, and is determined by the file extension of --destination, or
by the option

--format=(html|html5|html4|xhtml|xml)

which overrides the extension used in the destination. The recognized formats are:

html or html5 math is converted to Presentation MATHML, some ‘vector’ style
graphics are converted to SVG, other graphics are converted to images;
LaTeXML-html5.xslt is used. The file extension html is generates html5

html4 both math and graphics are converted to png images; LaTeXML-html4.xslt
is used.

xhtml math is converted to Presentation MATHML, other graphics are converted to
images; LaTeXML-xhtml.xslt is used.

xml no math, graphics or XSLT conversion is carried out.

Of course, all of these conversions can be controlled or overridden by explicit options
described below. For more details about less common options, see the command doc-
umentation latexmlpost, as well as Appendix C.5.

Scanning The scanning step collects information about all labels, ids, indexing com-
mands, cross-references and so on, to be used in the following postprocessing stages.

Indexing An index is built from \index markup, if makeidx’s \printindex
command has been used, but this can be disabled by

--noindex

The index entries can be permuted with the option

--permutedindex

Thus \index{term a!term b} also shows up as \index{term b!term a}.
This leads to a more complete, but possibly rather silly, index, depending on how the
terms have been written.

2.2. POSTPROCESSING 9

Bibliography When a document contains a request for bibliographies, typically
due to the \bibliography{..} command, the postprocessor will look for the
named bibliographies. It first looks for preconverted bibliographies with the exten-
tion .bib.xml, otherwise it will look for .bib and convert it internally (the latter is
a somewhat experimental feature).

If you want to override that search, for example using a bibliography with a differ-
ent name, you can supply that filename using the option

--bibliography=bibfile.bib.xml

Note that the internal bibliography list will then be ignored. The bibliography would
have typically been produced by running

latexml --dest=bibfile.bib.xml bibfile.bib

Note that the XML file, bibfile, is not used to directly produce an HTML-formatted bibli-
ography, rather it is used to fill in the \bibliography{..}within a TEX document.

Cross-Referencing In this stage, the scanned information is used to fill in the text
and links of cross-references within the document. The option

--urlstyle=(server|negotiated|file)

can control the format of urls with the document.

server formats urls appropriate for use from a web server. In particular, trailing
index.html are omitted. (default)

negotiated formats urls appropriate for use by a server that implements content nego-
tiation. File extensions for html and xhtml are omitted. This enables you to
set up a server that serves the appropriate format depending on the browser being
used.

file formats urls explicitly, with full filename and extension. This allows the files to be
browsed from the local filesystem.

Math Conversion Specific conversions of the mathematics can be requested using
the options

--mathimages # converts math to png images,
--presentationmathml or --pmml # creates Presentation MATHML
--contentmathml or --cmml # creates Content MATHML
--openmath or --om # creates OpenMath
--keepXMath # preserves LATEXML’s XMath

(Each of these options can also be negated if needed, eg. --nomathimages) It must be
pointed out that the Content MATHML and OpenMath conversions are currently rather
experimental.

If more than one of these conversions are requested, parallel math markup will be
generated with the first format being the primary one, and the additional ones added
as secondary formats. The secondary format is incorporated using whatever means

10 CHAPTER 2. USING LATEXML

the primary format uses; eg. MATHML combines formats using m:semantics and
m:annotation-xml.

Given the state of current browsers, you may wish to use a polyfill such as MathJax1

to support MathML on more platforms. See the example in 2.2 for one way to do it.

Graphics processing Conversion of graphics (eg. from the graphic(s|x) pack-
ages’ \includegraphics) can be enabled or disabled using

--graphicsimages or --nographicsimages

Similarly, the conversion of picture environments can be controlled with

--pictureimages or --nopictureimages

An experimental capability for converting the latter to SVG can be controlled by

--svg or --nosvg

Stylesheets and Javascript If you wish to restyle the generated HTML either by
adding CSS or by customizing the XSLT, change its functionality by adding javascript,
or even generate an alternative output format with XSLT, some combination of the fol-
lowing options will be useful.

--nodefaultresources # Omits the default resources (css..)
--css=stylesheet.css # Adds a new CSS stylesheet
--javascript=program.js # Adds a Javascript
--stylesheet=stylesheet.xsl # Uses an alternative XSLT stylesheet
--xsltparameter=name:value # Sets an XSLT parameter

All but --stylesheet can be repeated to include multiple files or set multiple param-
eters. When a local CSS or javascript file is included, it will be copied to the destination
directory, but otherwise urls are accepted.

The core CSS stylesheet, LaTeXML.css, along with certain styles or classes
(article, report, book, amsart) which add stylesheets automatically, helps
match the styling of LATEX to HTML. You can also request the inclusion of your own
stylesheets from the commandline using --css option. Some sample CSS enhance-
ments are included with the distribution:

LaTeXML-navbar-left.css Places a navigation bar on the left.

LaTeXML-navbar-right.css Places a navigation bar on the left.

LaTeXML-blue.css Colors various features in a soft blue.

In cases where you wish to completely manage the CSS the option --nodefaultcss

causes only explicitly requested (command-line) css files to be included.
Javascript files are included in the generated HTML by using the --javascript

option. The distribution includes a sample LaTeXML-maybeMathjax.js which
is useful for supporting MathML: it invokes MathJax2 to render the mathematics in
browsers without native support for MathML.

1http://mathjax.org/
2http://mathjax.org

2.3. SPLITTING 11

--javascript=LaTeXML-maybeMathJax.js

The option can also reference a remote script; for example to invoke MathJax uncon-
ditionally from the ‘cloud’:

latexmlpost --format=html5 \
--javascript=’https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=MML_CHTML’ \
--destination=somewhere/doc.html doc

See 4.2.2 for more information on developing your own stylesheets. To develop
CSS and XSLT stylesheets, a knowledge of the LATEXML document type is also neces-
sary; see Appendix D.

Individual XSLT stylesheets may have parameters that can customize the conversion
from LATEXML’s XML to the target format. An obscure example is

--xsltparameter=SIMPLIFY_HTML:true

which causes a ‘simpler’ HTML to be generated. Generally, LATEXML’s HTML relies on
CSS to recreate the appearance of many features of LATEX, but this sometimes results
in somewhat convoluted HTML that may not be ideal in situations where CSS is not
available. This parameter ‘dumbs down’ itemizations and enumerations by ignoring
any custom item labels or numbers.

2.3 Splitting the Output
For larger documents, it is often desirable to break the result into several interlinked
pages. This split, carried out before scanning, is requested by

--splitat=level

where level is one of chapter, section, subsection, or subsubsection.
For example, section would split the document into chapters (if any) and sections,
along with separate bibliography, index and any appendices. (See also --splitxpath
in latexml.) The removed document nodes are replaced by a Table of Contents.

The extra files are named using either the id or label of the root node of each new
page document according to

--splitnaming=(id|idrelative|label|labelrelative)

The relative foms create shorter names in subdirectories for each level of splitting. (See
also --urlstyle and --documentid in latexml.)

Additionally, the index and bibliography can be split into separate pages according
to the initial letter of entries by using the options

--splitindex and --splitbibliography

2.4 Site processing
A more complicated situation combines several TEX sources into a single interlinked
site consisting of multiple pages and a composite index and bibliography.

12 CHAPTER 2. USING LATEXML

Conversion First, all TEX sources must be converted to XML, using latexml. Since
every target-able element in all files to be combined must have a unique identi-
fier, it is useful to prefix each identifier with a unique value for each file. The
latexml option --documentid=id provides this.

Scanning Secondly, all XML files must be split and scanned using the command

latexmlpost --prescan --dbfile=DB --dest=i.html i

where DB names a file in which to store the scanned data. Other conversions,
including writing the output file, are skipped in this prescanning step.

Pagination Finally, all XML files are cross-referenced and converted into the final for-
mat using the command

latexmlpost --noscan --dbfile=DB --dest=i.html i

which skips the unnecessary scanning step.

For example, consider a set of nominally stand-alone LATEX documents: main
(with title page, \tableofcontents, etc), A (with a chapter), Aa (with a sec-
tion), B (with a chapter), . . . and bib (with a \bibliography). Assume that the
documents use \lxDocumentID from \usepackage{latexml} to declare ids
main, main.A, \main.A.a, main.B, . . .bib, respectively. And, of course, you’ll
have to arrange for appropriate counters to be initialized appropriately, if needed.

Now, processing the documents with the following commands

Conversion
latexml --dest=main.xml main.tex
latexml --dest=A.xml A
latexml --dest=Aa.xml Aa
latexml --dest=B.xml B

...
latexml --dest=bib.xml bib
Scan
latexmlpost --prescan --db=my.db --dest=/site/main.html main
latexmlpost --prescan --db=my.db --dest=/site/A.html A
latexmlpost --prescan --db=my.db --dest=/site/Aa.html Aa
latexmlpost --prescan --db=my.db --dest=/site/B.html B

...
latexmlpost --prescan --db=my.db --dest=bib.html bib
Pagination
latexmlpost --noscan --db=my.db --dest=/site/main.html main
latexmlpost --noscan --db=my.db --dest=/site/A.html A
latexmlpost --noscan --db=my.db --dest=/site/Aa.html Aa
latexmlpost --noscan --db=my.db --dest=/site/B.html B

...
latexmlpost --noscan --db=my.db --dest=bib.html bib

2.5. INDIVIDUAL FORMULA 13

This will result in a site built at /site/, with the following implied structure:

main.html
A.html

Aa.html
B.html

...
bib.html

2.5 Individual Formula
For cases where you’d just like to convert a single formula to, say, MATHML, and
don’t mind the overhead, we’ve combined the pre- and post-processing into a single,
handy, command latexmlmath. For example,

latexmlmath --pmml=- \\frac{b\\pm\\sqrt{bˆ2-4ac}}{2a}

will print the MATHML to standard output. To convert the formula to a png image,
say quad.png, use the option --mathimage=quad.png.

Note that this involves putting TEX code on the command line. You’ve got to
‘slashify’ your code in whatever way is necessary so that after your shell is finished
with it, the string that is passed to latexmlmath sees is normal TEX. In the example
above, in most unix-like shells, we only needed to double-up the backslashes.

14 CHAPTER 2. USING LATEXML

Chapter 3

Architecture

As has been said, LATEXML consists of two main programs: latexml responsible for
converting the TEX source into XML; and latexmlpost responsible for converting
to target formats. See Figure 3.1 for illustration.

The casual user needs only a superficial understanding of the architecture. The
programmer who wants to extend or customize LATEXML will, however, need a fairly
good understanding of the process and the distinctions between text, Tokens, Boxes,
Whatsits and XML, on the one hand, and Macros, Primitives and Constructors, on the
other. In a way, the implementer of a LATEXML binding for a LATEX package may need a
better understanding than when implementing for LATEX since they have to understand
not only the TEX-view, primarily just the macros and the intended appearance, but also
the LATEXML-view, with XML and representation questions, aw well.

The intention is that all semantics of the original document is preserved by
latexml, or even inferred by parsing; latexmlpost is for formatting and conver-
sion. Depending on your needs, the LATEXML document resulting from latexml may
be sufficient. Alternatively, you may want to enhance the document by applying third
party programs before postprocessing.

3.1 latexml architecture
Like TEX, latexml is data-driven: the text and executable control sequences
(ie. macros and primitives) in the source file (and any packages loaded) direct the
processing. For LATEXML, the user exerts control over the conversion, and customizes
it, by providing alternative bindings of the control sequences and packages, by declar-
ing properties of the desired document structure, and by defining rewrite rules to be
applied to the constructed document tree.

The top-level class, LaTeXML, manages the processing, providing several meth-
ods for converting a TEX document or string into an XML document, with varying
degrees of postprocessing and writing the document to file. It binds a (LaTeXML::
Core::)State object (to $STATE)to maintain the current state of bindings for con-
trol sequence definitions and emulates TEX’s scoping rules. The processing is broken

15

16 CHAPTER 3. ARCHITECTURE

Figure 3.1: Flow of data through LATEXML’s digestive tract.

into the following stages

Digestion the TEX-like digestion phase which converts the input into boxes.

Construction converts the resulting boxes into an XML DOM.

Rewriting applies rewrite rules to modify the DOM.

Math Parsing parses the tokenized mathematics.

Serialization converts the XML DOM to a string, or writes to file.

Digestion Digestion is carried out primarily in a pull mode: The (LaTeXML::
Core::)Stomach pulls expanded (LaTeXML::Core::)Tokens from the
(LaTeXML::Core::)Gullet, which itself pulls Tokens from the (LaTeXML::
Core::)Mouth. The Mouth converts characters from the plain text input into
Tokens according to the current catcodes (category codes) assigned to them (as

3.1. LATEXML ARCHITECTURE 17

bound in the State). The Gullet is responsible for expanding Macros, that
is, control sequences currently bound to (LaTeXML::Core::Definition::
)Expandables and for parsing sequences of tokens into common core datatypes
((LaTeXML::Common::)Number, (LaTeXML::Common::)Dimension,
etc.). See 4.1.1 for how to define macros and affect expansion.

The Stomach then digests these tokens by executing (LaTeXML::Core::
Definition::)Primitive control sequences, usually for side effect, but of-
ten for converting material into (LaTeXML::Core::)Lists of (LaTeXML::
Core::)Boxes and (LaTeXML::Core::)Whatsits (A Macro should never di-
gest). Normally, textual tokens are converted to Boxes in the current font. The
main (intentional) deviation of LATEXML’s digestion from that of TEX is the intro-
duction of a new type of definition, a (LaTeXML::Core::Definition::)
Constructor, responsible for constructing XML fragments. A control sequence
bound to Constructor is digested by reading and processing its arguments and
wrapping these up in a Whatsit. Before- and after-daemons, essentially anonymous
primitives, associated with the Constructor are executed before and after digesting
the Constructor arguments’ markup, which can affect the context of that digestion,
as well as augmenting the Whatsit with additional properties. See 4.1.2 for how to
define primitives and affect digestion.

Construction Given the List of Boxes and Whatsits, we proceed to constructing
an XML document. This consists of creating an (LaTeXML::Core::)Document
object, containing a libxml2 document, XML::LibXML::Document, and having
it absorb the digested material. Absorbing a Box converts it to text content, with pro-
vision made to track and set the current font. A Whatsit is absorbed by invoking the
associated Constructor to insert an appropriate XML fragment, including elements
and attributes, and recursively processing their arguments as necessary See 4.1.3 for
how to define constructors.

A (LaTeXML::Common::)Model is maintained througout the digestion phase
which accumulates any document model declarations, in particular the document type
(RelaxNG is preferred, but DTD is also supported). As LATEX markup is more like
SGML than XML, additional declarations may be used (see Tag in (LaTeXML::)
Package) to indicate which elements may be automatically opened or closed when
needed to build a document tree that matches the document type. As an example, a
<subsection> will automaticall be closed when a <section> is begun. Additionally,
extra bits of code can be executed whenever particularly elements are openned or closed
(also specified by Tag). See 4.1.4 for how to affect the schema.

Rewriting Once the basic document is constructed, (LaTeXML::Core::)
Rewrite rules are applied which can perform various functions. Ligatures and
combining mathematics digits and letters (in certain fonts) into composite math tokens
are handled this way. Additionally, declarations of the type or grammatical role of
math tokens can be applied here See 4.1.5 for how to define rewrite rules.

http://search.cpan.org/search?query=XML::LibXML::Document&mode=module

18 CHAPTER 3. ARCHITECTURE

MathParsing After rewriting, a grammar based parser is applied to the mathematical
nodes in order to infer, at least, the structure of the expressions, if not the meaning.
Mathematics parsing, and how to control it, is covered in detail in Chapter 5.

Serialization Here, we simple convert the DOM into string form, and output it.

3.2 latexmlpost architecture
LATEXML’s postprocessor is primarily for format conversion. It operates by applying a
sequence of filters responsible for transforming or splitting documents, or their parts,
from one format to another.

Exactly which postprocessing filter modules are applied depends on the command-
line options to latexmlpost. Postprocessing filter modules are generally applied in
the following order:

Split splits the document into several ‘page’ documents, according to --split or
--splitxpath options.

Scan scans the document for all ID’s, labels and cross-references. This data may be
stored in an external database, depending on the --db option.

MakeIndex fills in the index element (due to a \printindex) with material gener-
ated by index.

MakeBibliography fills in the bibliography element (from \bibliography) with
material extracted from the file specified by the --bibilography option, for
all \cite’d items.

CrossRef establishes all cross-references between documents and parts thereof, filling
in the references with appropriate text for the hyperlink.

MathImages, MathML, OpenMath performs various conversions of the internal
Math representation.

PictureImages, Graphics, SVG performs various graphics conversions.

XSLT applies an XSLT transformation to each document.

Writer writes the document to a file in the appropriate location.

See 4.2 for how to customize the postprocessing.

Chapter 4

Customization

The processsing of the LATEX document, its conversion into XML and ultimately to
XHTML or other formats can be customized in various ways, at different stages of
processing and in different levels of complexity. Depending on what you are trying
to achieve, some approaches may be easier than others: Recall Larry Wall’s adage
“There’s more than one way to do it.”

By far, the easiest way to customize the style of the output is by modifying the CSS,
see 4.2.2, so that is the recommended way when it applies.

The basic conversion from TEX markup to XML is done by latexml, and is ob-
viously affected by the mapping between the TEX markup and the XML markup. This
mapping is defined by macros, primitives and, of course, constructors; The mapping
that is in force at any time is determined by the LATEXML-specific implementations of
the TEX packages involved, what we call ‘bindings’. Consequently, you can customize
the conversion by modifying the bindings used by latexml.

Likewise, you extend latexml by creating bindings for TEX styles that hadn’t
been covered.

Or by defining your own TEX style file along with it’s LATEXML binding.
In all these cases, you’ll need the same skills: understanding and using text, tokens,

boxes and whatsits, as well as macros and macro expansion, primitives and digestion,
and finally whatsits and constructors. Understanding TEX helps; reading the LATEXML
bindings in the distribution will give an idea of how we use it. To teach LATEXML about
new macros, to implement bindings for a package not yet covered, or to modify the
way TEX control sequences are converted to XML, you will want to look at 4.1. To
modify the way that XML is converted to other formats such as HTML, see 4.2.

A particularly powerful strategy when you have control over the source documents
is to develop a semantically oriented LATEX style file, say smacros.sty, and then
provide a LATEXML binding as smacros.sty.ltxml. In the LATEX version, you may
style the terms as you like; in the LATEXML version, you could control the conversion
so as to preserve the semantics in the XML. If LATEXML’s schema is insufficient, then
you would need to extend it with your own representation; although that is beyond the
scope of the current manual, see the discussion below in 4.1.4. In such a case, you
would also need to extend the XSLT stylesheets, as discussed in 4.2.1.

19

20 CHAPTER 4. CUSTOMIZATION

4.1 LaTeXML Customization
This layer of customization deals with modifying the way a LATEX document is trans-
formed into LATEXML’s XML, primarily through defining the way that control sequences
are handled. In 2.1 the loading of various bindings was described. The facilities
described in the following subsections apply in all such cases, whether used to cus-
tomize the processing of a particular document or to implement a new LATEX package.
We make no attempt to be comprehensive here; please consult the documentation for
(LaTeXML::)Global and Package, as well as the binding files included with the
system for more guidance.

A LATEXML binding is actually a Perl module, and as such, a familiarity with Perl is
helpful. A binding file will look something like:

use LaTeXML::Package;
use strict;
use warnings;
Your code here!

1;

The final ‘1’ is required; it tells Perl that the module has loaded successfully. In be-
tween, comes any Perl code you wish, along with the definitions and declarations as
described here.

Actually, familiarity with Perl is more than merely helpful, as is familiarity with
TEX and XML! When writing a binding, you will be programming with all three lan-
guages. Of course, you need to know the TEX corresponding to the macros that you
intend to implement, but sometimes it is most convenient to implement them com-
pletely, or in part, in TEX, itself (eg. using DefMacro), rather then in Perl. At the
other end, constructors (eg. using DefConstructor) are usually defined by patterns
of XML.

4.1.1 Expansion & Macros

DefMacro($prototype,$replacement,%options) Macros are defined
using DefMacro, such as the pointless:

DefMacro(’\mybold{}’,’\textbf{#1}’);

The two arguments to DefMacro we call the prototype and the replacement. In the
prototype, the {} specifies a single normal TEX parameter. The replacement is here
a string which will be tokenized and the #1 will be replaced by the tokens of the
argument. Presumably the entire result will eventually be further expanded and or
processed.

Whereas, TEX normally uses #1, and LATEX has developed a complex scheme where
it is often necessary to peek ahead token by token to recognize optional arguments, we
have attempted to develop a suggestive, and easier to use, notation for parameters.
Thus a prototype \foo{} specifies a single normal argument, wheere \foo[]{}
would take an optional argument followed by a required one. More complex argument

4.1. LATEXML CUSTOMIZATION 21

prototypes can be found in Package. As in TEX, the macro’s arguments are neither
expanded nor digested until the expansion itself is further expanded or digested.

The macro’s replacement can also be Perl code, typically an anonymous sub,
which gets the current Gullet followed by the macro’s arguments as its arguments.
It must return a list of Token’s which will be used as the expansion of the macro. The
following two examples show alternative ways of writing the above macro:

DefMacro(’\mybold{}’, sub {
my($gullet,$arg)=@_;
(T_CS(’\textbf’),T_BEGIN,$arg,T_END); });

or alternatively

DefMacro(’\mybold{}’, sub {
Invocation(T_CS(’\textbf’),$_[1]); });

Generally, the body of the macro should not involve side-effects, assignments or other
changes to state other than reading Token’s from the Gullet; of course, the macro
may expand into control sequences which do have side-effects.

Tokens, Catcodes and friends Functions that are useful for dealing with Tokens
and writing macros include the following:

• Constants for the corresponding TEX catcodes:

CC_ESCAPE, CC_BEGIN, CC_END, CC_MATH,
CC_ALIGN, CC_EOL, CC_PARAM, CC_SUPER,
CC_SUB, CC_IGNORE, CC_SPACE, CC_LETTER,
CC_OTHER, CC_ACTIVE, CC_COMMENT, CC_INVALID

• Constants for tokens with the appropriate content and catcode:

T_BEGIN, T_END, T_MATH, T_ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_CR

• T_LETTER($char), T_OTHER($char), T_ACTIVE($char), create tokens of
the appropriate catcode with the given text content.

• T_CS($cs) creates a control sequence token; the string $cs should typically
begin with the slash.

• Token($string,$catcode) creates a token with the given content and cat-
code.

• Tokens($token,...) creates a (LaTeXML::Core::)Tokens object con-
taining the list of Tokens.

• Tokenize($string) converts the string to a Tokens, using TEX’s standard
catcode assignments.

• TokenizeInternal($string) like Tokenize, but treating @ as a letter.

22 CHAPTER 4. CUSTOMIZATION

• Explode($string) converts the string to a Tokens where letter character are
given catcode CC_OTHER.

• Expand($tokens expands $tokens (a Tokens), returning a Tokens; there
should be no expandable tokens in the result.

• Invocation($cstoken,$arg,...) Returns a Tokens representing the se-
quence needed to invoke $cstoken on the given arguments (each are Tokens,
or undef for an unsupplied optional argument).

4.1.2 Digestion & Primitives
Primitives are processed during the digestion phase in the Stomach, after macro ex-
pansion (in the Gullet), and before document construction (in the Document). Our
primitives generalize TEX’s notion of primitive; they are used to implement TEX’s prim-
itives, invoke other side effects and to convert Tokens into Boxes, in particular, Unicode
strings in a particular font.

Here are a few primitives from TeX.pool:

DefPrimitive(’\begingroup’,sub {
$_[0]->begingroup; });

DefPrimitive(’\endgroup’, sub {
$_[0]->endgroup; });

DefPrimitiveI(’\batchmode’, undef,undef);
DefPrimitiveI(’\OE’, undef, "\x{0152}");
DefPrimitiveI(’\tiny’, undef, undef,
font=>{size=>5});

Other than for implementing TEX’s own primitives, DefPrimitive is needed
less often than DefMacro or DefConstructor. The main thing to keep in mind is
that primitives are processed after macro expansion, by the Stomach. They are most
useful for side-effects, changing the State.

DefPrimitive($prototype,$replacement,%options) The replace-
ment is either a string which will be used to create a Box in the current font, or can
be code taking the Stomach and the control sequence arguments as argument; like
macros, these arguments are not expanded or digested by default, they must be ex-
plicitly digested if necessary. The replacement code must either return nothing (eg.
ending with return;) or should return a list (ie. a Perl list (...)) of digested Boxes
or Whatsits.

Options to DefPrimitive are:

• mode=>(’math’|’text’) switches to math or text mode, if needed;

• requireMath=>1, forbidMath=>1 requires, or forbids, this primitive to ap-
pear in math mode;

• bounded=>1 specifies that all digestion (of arguments and daemons) will take
place within an implicit TEX group, so that any side-effects are localized, rather
than affecting the global state;

4.1. LATEXML CUSTOMIZATION 23

• font=>{hash} switches the font used for any created text; recognized font keys
are family, series, shape, size, color;

Note that if the font change should only affect the material digested within this
command itself, then bounded=>1 should be used; otherwise, the font change
will remain in effect after the command is processed.

• beforeDigest=>CODE($stomach),
afterDigest=>CODE($stomach) provides code to be digested before and af-
ter processing the main part of the primitive.

DefRegister(. . .) Needs descrition!

Other Utilities for Digestion Other functions useful for dealing with digestion and
state are important for writing before & after daemons in constructors, as well as in
Primitives; we give an overview here:

• Digest($tokens) digests $tokens (a (LaTeXML::Core::)Tokens), re-
turning a list of Boxes and Whatsits.

• Let($token1,$token2) gives $token1 the same meaning as $token2, like
\let.

Bindings The following functions are useful for accessing and storing information
in the current State. It maintains a stack-like structure that mimics TEX’s approach
to binding; braces { and } open and close stack frames. (The Stomach methods
bgroup and egroup can be used when explicitly needed.)

• LookupValue($symbol), AssignValue($string,$value,$scope)main-
tain arbitrary values in the current State, looking up or assigning the current
value bound to $symbol (a string). For assignments, the $scope can be
’local’ (the default, if $scope is omitted), which changes the binding in
the current stack frame. If $scope is ’global’, it assigns the value globally
by undoing all bindings. The $scope can also be another string, which indicates
a named scope — but that is a more advanced topic.

• PushValue($symbol,$value,...), PopValue($symbol),
UnshiftValue($symbol,$value,...), ShiftValue($symbol) These
maintain the value of $symbol as a list, with the operatations having the same
sense as in Perl; modifications are always global.

• LookupCatcode($char), AssignCatcode($char,$catcode,$scope)
maintain the catcodes associated with characters.

• LookupMeaning($token), LookupDefinition($token) looks up the
current meaning of the token, being any executable definition bound for
it. If there is no such defniition LookupMeaning returns the token itself,
LookupDefinition returns undef.

24 CHAPTER 4. CUSTOMIZATION

Counters The following functions maintain LATEX-like counters, and generally also
associate an IDwith them. A counter’s print form (ie. \theequation for equations)
often ends up on the refnum attribute of elements; the associated ID is used for the
xml:id attribute.

• NewCounter($name,$within,options), creates a LATEX-style counters.
When $within is used, the given counter will be reset whenever the counter
$within is incremented. This also causes the associated ID to be prefixed with
$within’s ID. The option idprefix=>$string causes the ID to be prefixed
with that string. For example,

NewCounter(’section’, ’document’, idprefix=>’S’);
NewCounter(’equation’,’document’, idprefix=>’E’,
idwithin=>’section’);

would cause the third equation in the second section to have ID=’S2.E3’.

• CounterValue($name) returns the Number representing the current value.

• ResetCounter($name) resets the counter to 0.

• StepCounter($name) steps the counter (and resets any others ‘within’ it), and
returns the expansion of \the$name.

• RefStepCounter($name) steps the counter and any ID’s associated with it. It
returns a hash containing refnum (expansion of \the$name) and id (expan-
sion of \the$name@ID)

• RefStepID($name) steps the ID associated with the counter, without actually
stepping the counter; this is useful for unnumbered units that normally would
have both a refnum and ID.

4.1.3 Construction & Constructors
Constructors are where things get interesting, but also complex; they are responsible for
defining how the XML is built. There are basic constructors corresponding to normal
control sequences, as well as environments. Mathematics generally comes down to
constructors, as well, but is covered in Chapter 5.

Here are a couple of trivial examples of constructors:

DefConstructor(’\emph{}’,
"<ltx:emph>#1</ltx:emph>", mode=>’text’);

DefConstructor(’\item[]’,
"<ltx:item>?#1(<ltx:tag>#1</ltx:tag>)");

DefEnvironment(’{quote}’,
’<ltx:quote>#body</ltx:quote>’,
beforeDigest=>sub{ Let(’\\\\’,’\@block@cr’);});

DefConstructor(’\footnote[]{}’,
"<ltx:note class=’footnote’ mark=’#refnum’>#2</ltx:note>",
mode=>’text’,

4.1. LATEXML CUSTOMIZATION 25

properties=> sub {
($_[1] ? (refnum=>$_[1]) : RefStepCounter(’footnote’)) });

DefConstructor($prototype,$replacement,%options) The $replacement
for a constructor describes the XML to be generated during the construction phase. It
can either be a string representing the XML pattern (described below), or a subroutine
CODE($document,$arg1,...props) receiving the arguments and properties from
the Whatsit; it would invoke the methods of Document to construct the desired
XML.

At its simplest, the XML pattern is a just serialization of the desired XML. For more
expressivity, XML trees, text content, attributes and attribute values can be effectively
‘interpolated’ into the XML being constructed by use of the following expressions:

• #1,#2,. . .#%name% returns the construction of the numbered argument or named
property of the Whatsit;

• &function(arg1,arg2,...) invokes the Perl function on the given argu-
ments, arg1,. . . , returning the result. The arguments should be expressions for
values, rather than XML subtrees.

• ?test(if pattern) or ?test(if pattern)(else pattern) returns the
result of either the if or else pattern depending on whether the result of test
(typically also an expression) is non-empty;

• %expression returns a hash (or rather assumes the result is a hash or KeyVals
object); this is only allowed within an opening XML tag, where all the key-value
pairs are inserted as attributes;

• ˆ if this appears at the beginning of the pattern, the replacement is allowed to
float up the current tree to whereever it might be allowed;

In each case, the result of an expression is expected to be either an XML tree, a string
or a hash, depending on the context it was used in. In particular, values of attributes are
typically given by quoted strings, but expressions within those strings are interpolated
into the computed attribute value. The special characters @ # ? % which introduce
these expressions can be escaped by preceding with a backslash, when the literal char-
acter is desired.

A subroutine used as the $replacement, allows programmatic insertion of XML
into, or modification of, the document being constructed. Although one could use
LibXML’s DOM API to manipulate the document tree, it is strongly recommended
to use Document’s API whereever possible as it maintains consistency and manages
namespace prefixes. This is particularly true for insertion of new content, setting at-
tributes and finding existing nodes in the tree using XPath.

Options:

• mode=>(’math’|’text’) switches to math or text mode, if needed;

• requireMath=>1, forbidMath=>1 requires, or forbids, this constructor to ap-
pear in math mode;

26 CHAPTER 4. CUSTOMIZATION

• bounded=>1 specifies that all digestion (of arguments and daemons) will take
place within an implicit TEX group, so that any side-effects are localized, rather
than affecting the global state;

• font=>{hash} switches the font used for any created text; recognized font keys
are family, series, shape, size, color;

• properties=> {hash} | CODE($stomach,$arg1,..). provides a set
of properties to store in the Whatsit for eventual use in the constructor
$replacement. If a subroutine is used, it also should return a hash of proper-
ties;

• beforeDigest=>CODE($stomach),
afterDigest=>CODE($stomach,$whatsit) provides code to be digested
before and after digesting the arguments of the constructor, typically to alter the
context of the digestion (before), or to augment the properties of the Whatsit
(after);

• beforeConstruct=>CODE($document,$whatsit),
afterConstruct=>CODE($document,$whatit) provides code to be run be-
fore and after the main $replacement is effected; occassionaly it is convenient
to use the pattern form for the main $replacement, but one still wants to exe-
cute a bit of Perl code, as well;

• captureBody=>(1 | $token) specifies that an additional argument (like an
environment body) wiil be read until the current TEX grouping ends, or until the
specified $token is encountered. This argument is available to $replacement

as $body;

• scope=>(’global’|’local’|$name) specifies whether this definition is
made globally, or in the current stack frame (default), (or in a named scope);

• reversion=>$string|CODE(...), alias=>$cs can be used when the
Whatsit needs to be reverted into TEX code, and the default of simply re-
assembling based on the prototype is not desired. See the code for examples.

Some additional functions useful when writing constructors:

• ToString($stuff) converts $stuff to a string, hopefully without TEX
markup, suitable for use as document content and attribute values. Note that
if $stuff contains Whatsits generated by Constructors, it may not be possible
to avoid TEX code. Constrast ToString to the following two functions.

• UnTeX($stuff) returns a string containing the TEX code that would generate
$stuff (this might not be the original TEX). The function Revert($stuff)

returns the same information as a Tokens list.

• Stringify($stuff) returns a string more intended for debugging purposes; it
reveals more of the structure and type information of the object and its parts.

4.1. LATEXML CUSTOMIZATION 27

• CleanLabel($arg), CleanIndexKey($arg), CleanBibKey($arg),
CleanURL($arg) cleans up arguments (converting to string, handling invalid
characters, etc) to make the argument appropriate for use as an attribute repre-
senting a label, index ID, etc.

• UTF($hex) returns the Unicode character for the given codepoint; this is useful
for characters below 0x100 where Perl becomes confused about the encoding.

DefEnvironment($prototype,$replacement,%options) Environments are largely a
special case of constructors, but the prototype starts with {envname}, rather than
\cmd, the replacement will also typically involve #body representing the contents of
the environment.

DefEnvironment takes the same options as DefConstructor, with the ad-
dition of

• afterDigestBegin=>CODE($stomach,$whatsit) provides code to digest
after the \begin{env} is digested;

• beforeDigestEnd=>CODE($stomach) provides code to digest before the
\end{env} is digested.

For those cases where you do not want an environment to correspond to a con-
structor, you may still (as in LATEX), define the two control sequences \envname and
\endenvname as you like.

4.1.4 Document Model
The following declarations are typically only needed when customizing the schema
used by LATEXML.

• RelaxNGSchema($schema,namespaces) declares the created XML docu-
ment should be fit to the RelaxNG schema in $schema; A file $schema.rng

should be findable in the current search paths. (Note that currently, LATEXML is
unable to directly parse compact notation).

• RegisterNamespace($prefix,$url) associates the prefix with the given
namespace url. This allows you to use $prefix as a namespace prefix when
writing Constructor patterns or XPath expressions.

• Tag($tag,properties) specifies properties for the given XML $tag. Rec-
ognized properties include: autoOpen=>1 indicates that the tag can automat-
ically be opened if needed to create a valid document; autoClose=>1 in-
dicates that the tag can automatically be closed if needed to create a valid
document; afterOpen=>$code specifies code to be executed before opening
the tag; the code is passed the Document being constructed as well as the
Box (or Whatsit) responsible for its creation; afterClose=>code similar
to afterOpen, but executed after closing the element.

28 CHAPTER 4. CUSTOMIZATION

4.1.5 Rewriting
The following functions are a bit tricky to use (and describe), but can be quite useful in
some circumstances.

DefLigature($regexp,%options) applies a regular expression to substitute
textnodes after they are closed; the only option is fontTest=>$code which restricts
the ligature to text nodes where the current font passes &$code($font).

DefMathLigature($code,%options) allows replacement of sequences of
math nodes. It applies $code to the current Document and each sequence of math
nodes encountered in the document; if a replacement should occur, $code should re-
turn a list of the form ($n,$string,attributes) in which case, the text content of
the first node is replaced by $string, the given attributes are added, and the following
$n-1 nodes are removed.

DefRewrite(%spec) defines document rewrite rules. These specifications describe
what document nodes match:

• label=>$label restricts to nodes contained within an element whose labels
includes $label;

• scope=>$scope generalizes label; the most useful form a string like
’section:1.3.2’ where it matches the section element whose refnum
is 1.3.2;

• xpath=>$xpath selects nodes matching the given XPath;

• match=>$tex selects nodes that look like what processing the TEX string $tex

would produce;

• regexp=>$regexp selects text nodes that match the given regular expression.

The following specifications describe what to do with the matched nodes:

• attributes=>{attr} adds the given attributes to the matching nodes;

• replace=>$tex replaces the matching nodes with the result of processing the
TEX string $tex.

4.1.6 Packages and Options
The following declarations are useful for defining LATEXML bindings, including option
handling. As when defining LATEX packages, the following, if needed at all, need to
appear in the order shown.

• DeclareOption($option,$handler) specifies the handler for $option

when it is passed to the current package or class. If $option is undef, it de-
fines the default handler, for options that are otherwise unrecognized. $handler
can be either a string to be expanded, or a sub which is executed like a primitive.

4.2. LATEXMLPOST CUSTOMIZATION 29

• PassOptions($name,$type,@options) specifies that the given options
should be passed to the package (if $type is sty) or class (if $type is cls)
$name, if it is ever loaded.

• ProcessOptions(keys) processes any options that have been passed to the
current package or class. If inorder=>1 is specified, the options will be pro-
cessed in the order passed to the package (\ProcessOptions*); otherwise
they will be processed in the declared order (\ProcessOptions).

• ExecuteOptions(@options) executes the handlers for the specific set of op-
tions @options.

• RequirePackage($pkgname,keys) loads the specified package. The key-
word options have the following effect: options=>$options can provide
an explicit array of string specifying the options to pass to the package;
withoptions=>1means that the options passed to the currently loading class or
package should be passed to the requested package; type=>$ext specifies the
type of the package file (default is sty); raw=>1 specifies that reading the raw
style file (eg. pkg.sty) is permissible if there is no specific LATEXML binding
(eg. pkg.sty.ltxml) after=>$after specifies a string or (LaTeXML::
Core::)Tokens to be expanded after the package has finished loading.

• LoadClass($classname,keys) Similar to RequirePackage, but loads a
class file (type=>’cls’).

• AddToMacro($cstoken,$tokens) a little used utilty to add material to the
expansion of $cstoken, like an \edef; typically used to add code to a class or
package hook.

4.1.7 Miscellaneous
Other useful stuff:

• RawTeX($texstring) expands and processes the $texstring; This is typ-
ically useful to include definitions copied from a TEX stylefile, when they are
approriate for LATEXML, as is. Single-quoting the $texstring is useful, since it
isn’t interpolated by Perl, and avoids having to double all the slashes!

4.2 latexmlpost Customization
The current postprocessing framework works by passing the document through a se-
quence of postprocessing filter modules. Each module is responsible for carrying out
a specific transformation, augmentation or conversion on the document. In principle,
this architecture has the flexibility to employ new filters to perform new or customized
conversions. However, the driver, latexmlpost, currently provides no convenient
means to instanciate and incorporate outside filters, short of developing your own spe-
cialized version.

30 CHAPTER 4. CUSTOMIZATION

Consequently, we will consider custom postprocessing filters outside the scope of
this manual (but of course, you are welcome to explore the code, or contact us with
suggestions).

The two areas where customization is most practical is in altering the XSLT trans-
forms used and extending the CSS stylesheets.

4.2.1 XSLT
LATEXML provides stylesheets for transforming its XML format to XHTML and HTML.
These stylesheets are modular with components corresponding to the schema modules.
Probably the best strategy for customizing the transform involves making a copy of
the standard base stylesheets, LaTeXML-xhtml.xsl, LaTeXML-html.xsl and
LaTeXML-html5.xsl, found at installationdir/LaTeXML/style/ — they’re
short, consisting mainly of an xsl:include and setting appropriate parameters and
output method; thus modifying the parameters and and adding your own rules, or in-
cluding your own modules should be relatively easy.

Naturally, this requires a familiarity with LATEXML’s schema (see D), as well as
XSLT and XHTML. See the other stylesheet modules in the same directory as the base
stylesheet for guidance. Generally the strategy is to use various parameters to switch
between common behaviors and to use templates with modes that can be overridden
in the less common cases.

Conversion to formats other than XHTML are, of course, possible, as well, but are
neither supplied nor covered here. How complex the transformation will be depends
on the extent that the LATEXML schema can be mapped to the desired one, and to what
extent LATEXML has lost or hidden information represented in the original document.
Again, familiarity with the schema is needed, and the provided XHTML stylesheets may
suggest an approach.

NOTE: I’m trying to make stylesheets easily customizable. However, this is getting
tricky.

• You can import stylesheets which allows the templates to be overridden.

• You can call the overridden stylesheet using apply-imports

• You can not call apply-imports to call an overridden named template! (al-
though you seemingly can override them?)

• You can refer to xslt modules using URN’s, provided you have loaded the
LaTeXML.catalog:

<x s l : i m p o r t h re f = ” urn:x −LaTeXML:XSLT:LaTeXML− a l l −xhtml . x s l ” />

4.2.2 CSS
CSS stylesheets can be supplied to latexmlpost to be included in the generated doc-
uments in addition to, or as a replacement for, the standard stylesheet LaTeXML.css.
See the directory installationdir/LaTeXML/style/ for samples.

4.2. LATEXMLPOST CUSTOMIZATION 31

To best take advantage of this capability so as to design CSS rules with the correct
specificity, the following points are helpful:

• LATEXML converts the TEX to its own schema, with structural elements (like
equation) getting their own tag; others are transformed to something more
generic, such as note. In the latter case, a class attribute is often used to dis-
tinguish. For example, a \footnote generates

<note c lass= ’ foo tno te ’> . . .

whereas an \endnote generates

<note c lass= ’ endnote ’> . . .

• The provided XSLT stylesheets transform LATEXML’s schema to XHTML, generat-
ing a combined class attribute consisting of any class attributes already present as
well as the LATEXML tag name. However, there are some variations on the theme.
For example, LATEX’s \section yeilds a LATEXML element section, with a ti-
tle element underneath. When transformed to XHTML, the former becomes a
<div class=’section’>, while the latter becomes <h2 class=’section−title ’> (for
example, the h-level may vary with the document structure),

Mode begin and end For most elements, once the main html element has been
opened and the primary attributes have been added but before any content has been
added, a template with mode begin is called; thus it can add either attributes or con-
tent. Just before closing the main html element, a template with mode end is called.

Computing class and style Templates with mode classes and styling.

32 CHAPTER 4. CUSTOMIZATION

Chapter 5

Mathematics

There are several issues that have to be dealt with in treating the mathematics. On the
one hand, the TEX markup gives a pretty good indication of what the author wants the
math to look like, and so we would seem to have a good handle on the conversion to
presentation forms. On the other hand, content formats are desirable as well; there
are a few, but too few, clues about what the intent of the mathematics is. And in
fact, the generation of even Presentation MathML of high quality requires recognizing
the mathematical structure, if not the actual semantics. The mathematics processing
must therefore preserve the presentational information provided by the author, while
inferring, likely with some help, the mathematical content.

From a parsing point of view, the TEX-like processing serves as the lexer, tok-
enizing the input which LATEXML will then parse [perhaps eventually a type-analysis
phase will be added]. Of course, there are a few twists. For one, the tokens, repre-
sented by XMTok, can carry extra attributes such as font and style, but also the name,
meaning and grammatical role, with defaults that can be overridden by the author —
more on those, in a moment. Another twist is that, although LATEX’s math markup
is not nearly as semantic as we might like, there is considerable semantics and struc-
ture in the markup that we can exploit. For example, given a \frac, we’ve already
established the numerator and denominator which can be parsed individually, but the
fraction as a whole can be directly represented as an application, using XMApp, of a
fraction operator; the resulting structure can be treated as atomic within its containing
expression.This structure preserving character greatly simplifies the parsing task and
helps reduce misinterpretation.

The parser, invoked by the postprocessor, works only with the top-level lists of
lexical tokens, or with those sublists contained in an XMArg. The grammar works
primarily through the name and grammatical role. The name is given by an attribute,
or the content if it is the same. The role (things like ID, FUNCTION, OPERATOR,
OPEN, . . .) is also given by an attribute, or, if not present, the name is looked up in a
document-specific dictionary (jobname.dict), or in a default dictionary.

Additional exceptions that need fuller explanation are:

• Constructors may wish to create a dual object (XMDual) whose children are

33

34 CHAPTER 5. MATHEMATICS

the semantic and presentational forms.

• Spacing and similar markup generates XMHint elements, which are currently
ignored during parsing, but probably shouldn’t.

5.1 Math Details
LATEXML processes mathematical material by proceeding through several stages:

• Basic processing of macros, primitives and constructors resulting in an XML
document; the math is primarily represented by a sequence of tokens (XMTok)
or structured items (XMApp, XMDual) and hints (XMHint, which are ignored).

• Document tree rewriting, where rules are applied to modify the document tree.
User supplied rules can be used here to clarify the intent of markup used in the
document.

• Math Parsing; a grammar based parser is applied, depth first, to each level of
the math. In particular, at the top level of each math expression, as well as
each subexpression within structured items (these will have been contained in
an XMArg or XMWrap element). This results in an expression tree that will
hopefully be an accurate representation of the expression’s structure, but may be
ambigous in specifics (eg. what the meaning of a superscript is). The parsing is
driven almost entirely by the grammatical role assigned to each item.

• Not yet implemented a following stage must be developed to resolve the semantic
ambiguities by analyzing and augmenting the expression tree.

• Target conversion: from the internal XM* representation to MATHML or Open-
Math.

The Math element is a top-level container for any math mode material, serving
as the container for various representations of the math including images (through at-
tributes mathimage, width and height), textual (through attributes tex, content-tex
and text), MATHML and the internal representation itself. The mode attribute speci-
fies whether the math should be in display or inline mode.

5.1.1 Internal Math Representation
The XMath element is the container for the internal representation

The following attributes can appear on all XM* elements:

role the grammatical role that this element plays

open, close parenthese or delimiters that were used to wrap the expression repre-
sented by this element.

argopen, argclose, separators delimiters on an function or operator (the first ele-
ment of an XMApp) that were used to delimit the arguments of the function. The
separators is a string of the punctuation characters used to separate arguments.

5.1. MATH DETAILS 35

xml:id a unique identifier to allow reference (XMRef) to this element.

Math Tags The following tags are used for the intermediate math representation:

XMTok represents a math token. It may contain text for presentation. Additional
attributes are:

name the name that represents the meaning of the token; this overrides the
content for identifying the token.

omcd the OpenMath content dictionary that the name belongs to.

font the font to be used for presenting the content.

style ?

size ?

stackscripts whether scripts should be stacked above/below the item, instead
of the usual script position.

XMApp represents the generalized application of some function or operator to argu-
ments. The first child element is the operator, the remainig elements are the
arguments. Additional attributes:

name the name that represents the meaning of the construct as a whole.

stackscripts ?

XMDual combines representations of the content (the first child) and presentation (the
second child), useful when the two structures are not easily related.

XMHint represents spacing or other apparent purely presentation material.

name names the effect that the hint was intended to achieve.

style ?

XMWrap serves to assert the expected type or role of a subexpression that may other-
wise be difficult to interpret — the parser is more forgiving about these.

name ?

style ?

XMArg serves to wrap individual arguments or subexpressions, created by structured
markup, such as \frac. These subexpressions can be parsed individually.

rule the grammar rule that this subexpression should match.

XMRef refers to another subexpression,. This is used to avoid duplicating arguments
when constructing an XMDual to represent a function application, for example.
The arguments will be placed in the content branch (wrapped in an XMArg)
while XMRef’s will be placed in the presentation branch.

idref the identifier of the referenced math subexpression.

36 CHAPTER 5. MATHEMATICS

5.1.2 Grammatical Roles
As mentioned above, the grammar take advantage of the structure (however minimal)
of the markup. Thus, the grammer is applied in layers, to sequences of tokens or
atomic subexpressions (like a fractions or arrays). It is the role attribute that indicates
the syntactic and/or presentational nature of each item. On the one hand, this drives
the parsing: the grammar rules are keyed on the role (say, ADDOP), rather than content
(say + or -), of the nodes [In some cases, the content is used to distinguish special
synthesized roles]. The role is also used to drive the conversion to presentation markup,
(say, as an infix operator), especially Presentation MATHML. Some values of role are
used only in the grammar, some are only used in presentation; most are used both ways.

The following grammatical roles are recognized by the math parser. These values
can be specified in the role attribute during the initial document construction or by
rewrite rules. Although the precedence of operators is loosely described in the follow-
ing, since the grammar contains various special case productions, no rigidly ordered
precedence is given. Also note that in the current design, an expresssion has only a sin-
gle role, although that role may be involved in grammatical rules with distinct syntax
and semantics (some roles directly reflect this ambiguity).

ATOM a general atomic subexpression (atomic at the level of the expression; it may
have internal structure);

ID a variable-like token, whether scalar or otherwise, but not a function;

NUMBER a number;

ARRAY a structure with internal components and alignments; typically has a particular
syntactic relationship to OPEN and CLOSE tokens.

UNKNOWN an unknown expression. This is the default for token elements. Such tokens
are treated essential as ID, but generate a warning if it seems to be used as a
function.

OPEN,CLOSE opening and closing delimiters, group expressions or enclose arguments
among other structures;

MIDDLE a middle operator used to group items between an OPEN, CLOSE pair;

PUNCT,PERIOD punctuation; a period ‘ends’ formula (note that numbers, including
floating point, are recognized earlier in processing);

VERTBAR a vertical bar (single or doubled) which serves a confusing variety of nota-
tions: absolute values, “at”, divides;

RELOP a relational operator, loosely binding;

ARROW an arrow operator (with little semantic significance), but generally treated
equivalently to RELOP;

METARELOP an operator used for relations between relations, with lower precedence;

5.1. MATH DETAILS 37

MODIFIER an atomic expression following an object that ‘modifies’ it in some way,
such as a restriction (< 0) or modulus expression;

MODIFIEROP an operator (such as mod) between two expressions such that the latter
modifies the former;

ADDOP an addition operator, between RELOP and MULOP operators in precedence;

MULOP a multiplicative operator, high precedence than ADDOOP;

BINOP a generic infix operator, can act as either an ADDOP or MULOP, typically used
for cases wrapped in \mathbin;

SUPOP An operator appearing in a superscript, such as a collection of primes, or per-
haps a T for transpose. This is distinct from an expression in a superscript with
an implied power or index operator;

PREFIX for a prefix operator;

POSTFIX for a postfix operator;

FUNCTION a function which (may) apply to following arguments with higher prece-
dence than addition and multiplication, or to parenthesized arguments (enclosed
between OPEN,CLOSE);

OPFUNCTION a variant of FUNCTION which doesn’t require fenced arguments;

TRIGFUNCTION a variant of OPFUNCTION with special rules for recognizing which
following tokens are arguments and which are not;

APPLYOP an explicit infix application operator (high precedence);

COMPOSEOP an infix operator that composes two FUNCTION’s (resulting in another
FUNCTION);

OPERATOR a general operator; higher precedence than function application. For
example, for an operator A, and function F , AFx would be interpretted as
(A(F))(x);

SUMOP,INTOP, LIMITOP,DIFFOP,BIGOP a summation/union, integral, limiting,
differential or general purpose operator. These are treated equivalently by the
grammar, but are distinguished to facilitate (eventually) analyzing the argument
structure (eg bound variables and differentials within an integral). Note are
SUMOP and LIMITOP significantly different in this sense?

POSTSUBSCRIPT,POSTSUPERSCRIPT intermediate form of sub- and superscript,
roughly as TEX processes them. The script is (essentially) treated as an argument
but the base will be determined by parsing.

FLOATINGSUBSCRIPT,FLOATINGSUPERSCRIPT A special case for a sub- and
superscript on an empty base, ie. {}ˆ{x}. It is often used to place a pre-
superscript or for non-math uses (eg. 10${}ˆ{th});

38 CHAPTER 5. MATHEMATICS

The following roles are not used in the grammar, but are used to capture the presen-
tation style; they are typically used directly in macros that construct structured objects,
or used in representing the results of parsing an expression.

STACKED corresponds to stacked structures, such as \atop, and the presentation of
binomial coefficients.

SUPERSCRIPTOP,SUBSCRIPTOP after parsing, the operator involved in various
sub/superscript constructs above will be comverted to these;

OVERACCENT,UNDERACCENT these are special cases of the above that indicate the
2nd operand acts as an accent (typically smaller), expressions using these roles
are usually directly constructed for accenting macros;

FENCED this operator is used to represent containers enclosed by OPEN and CLOSE,
possibly with punctuation, particularly when no semantic is known for the con-
struct, such as an arbitrary list.

The content of a token is actually used in a few special cases to distinguish distinct
syntactic constructs, but these roles are not assigned to the role attribute of expressions:

LANGLE,RANGLE recognizes use of < and > in the bra-ket notation used in quantum
mechanics;

LBRACE,RBRACE recognizes use of { and } on either side of stacked or array con-
structions representing various kinds of cases or choices;

SCRIPTOPEN recognizes the use of { in opening specialized set notations.

Chapter 6

Localization

In this chapter, a few issues relating to various national or cultural styles, languages or
text encodings, which we’ll refer to collectively as ‘localization’, are breifly discussed.

6.1 Numbering

Generally when titles and captions are formatted or when equations are numbered and
when they are referred to in a cross reference or table of contents, text consisting of
some combination of the raw title or caption text, a reference number and a type name
(eg. ‘Chapter’) or symbol (eg. §) is composed and used. The exact compositions that is
used at each level can depend on language, culture, the subject matter as well as both
journal and individual style preferences. LATEX has evolved to accommodate many of
these styles and LATEXML attempts to follow that lead, while preserve its options (the
demands of extensively hyper-linked online material sometimes seems to demand more
options and flexibility than traditional print formatting).

For example, the various macros \chaptername, \partname, \refname,
etc. are respected and used. Likewise, the various counters and formatters such as
\theequation are supported.

LATEX’s mechanism for formatting caption tags (\fnum@figure and \fnum@table)
is extended to cover more cases. If you define \fnum@type, (where type is
chapter, section, subsection, etc.) it will be used to format the reference
number and/or type name for instances of that type. The macro \fnum@toc@type is
used when formatting numbers for tables of contents.

Alternatively, you can define a macro \format@title@type that will be used
format the whole title including reference number and type as desired; it takes a sin-
gle argument, the title text. The macro \format@toctitle@type is used for the
formatting a (typically) short form use in tables of contents.

39

40 CHAPTER 6. LOCALIZATION

6.2 Input Encodings
LATEXML supports the standard LATEX mechanism for handling non-ASCII encodings
of the input TEX sources: using the inputenc package. The LATEXML binding
of inputenc loads the encoding definition (generally with extension def) directly
from the LATEX distribution (which are generally well-enough behaved to be easily pro-
cessed). These encoding definitions make the upper 128 code points (of 8 bit) active
and define TEX macros to handle them.

Using the commandline option --inputencoding=utf8 to latexml allows
processing of sources encoded as utf8, without any special packages loaded. [future
work will make LATEXML compatible with xetex]

6.3 Output Encodings
At some level, as far as TEX is concerned, what you type ends up pointing into a font
that causes some blob of ink to be printed. This mechanism is used to print a unique
mathematical operator, say ‘subset of and not equals’. It is also used to print greek
when you seemed to have been typing ASCII!

So, we must accomodate that mechanism, as well. At the stage when character to-
kens are digested to create boxes in the current font, a font encoding table (a FontMap)
is consulted to map the token’s text (viewed as an index into the table) to Unicode.
The declaration DeclareFontMap is used to associate a FontMap with an encoding
name, or font.

Note that this mapping is only used for text originating from the source document;
The text within Constructor’s XML pattern is used without any such font conversion.

6.4 Babel
The babel package for supporting multiple languages by redefining various internal
bits of text to replace, eg. “Chapter” by “Kapital” and by defining various shorthand
mechanisms to make it easy to type the extra non-latin characters and glyphs used by
those languages. Each supported language or dialect has a module which is loaded to
provide the needed definitions.

To the extent: that LATEXML’s input and output encoding handling is sufficient; that
its processing of raw TEX is good enough; and that it proceeds through the appropriate
LATEX internals, LATEXML should be able to support babel and arbitrary languages by
reading in the raw TEX implementation of the language module from the TEX distribu-
tion itself.

At least, that is the strategy that we use.

Chapter 7

Alignments

There are several situations where TEX stacks or aligns a number of objects into a one
or two dimensional grids. In most cases, these are built upon low-level primitives,
like \halign, and so share characteristics: using & to separate alignment columns;
either \\ or \cr to separate rows. Yet, there are many different markup patterns
and environments used for quite different purposes from tabular text to math arrays to
composing symbols and so it is worth recognizing the intended semantics in each case,
while still processing them as TEX would.

In this chapter, we will describe some of the special complications presented by
alignments and the strategies used to infer and represent the appropriate semantic struc-
tures, particularly for math.

7.1 TEX Alignments
NOTE This section needs to be written.

Many utilities for setting up and processing alignments are defined in TeX.pool
with support from the module (LaTeXML::Core::)Alignment. Typically, one
binds a set of control sequences specially for the alignment environment or structure
encountered, particularly for & and \\. An alignment object is created which records
information about each row and cell that was processed, such as width, alignment,
span, etc. Then the alignment is converted to XML by specifying what tag wraps the
entire alignment, each row and each cell.

The content of aligments is being expanded before the column and row markers
are recognized; this allows more flexibility in defining markup since row and column
markers can be hidden in macros, but it also means that simple means, such as delimited
parameter lists, to parse the structure won’t work.

7.2 Tabular Header Heuristics
To be written

41

42 CHAPTER 7. ALIGNMENTS

7.3 Math Forks
There are several constructs for aligning mathematics in LATEX, and common packages.
Here we are concerned with the large scale alignments where one or more equations
are displayed in a grid, such as eqnarray, in standard LATEX, and a suite of constructs
of the amsmath packages. The arrangements are worth preserving as they often con-
vey important information to the reader by the grouping, or by drawing attention to
similarities or differences in the formula. At the same time, the individual fragments
within the grid cells often have little ‘meaning’ on their own: it is subsequences of
these fragments that represent the logical mathematical objects or formula. Thus, we
would also like to recognize those sequences and synthesize complete formula for use
in content-oriented services. We therefore have to devise an XML structure to represent
this duality, as well as developing strategies for inferring and rearranging the mathe-
matics as it was authored into the desired form.

The needed structure shares some characteristics with XMDual, which needs to
be described, but needs to resided at the document level, containing several, possibly
numbered, equations each of which provide two views. Additional objects, such as
textual insertions (such as amsmath’s \intertext), must also be accomodated.

The following XML is used to represent these structures:

< l t x : e q u a t i o n g r o u p>
< l t x : e q u a t i o n>

<l t x :Ma thFork>
< l t x : M a t h>logical math here< / l t x : M a t h>
<l t x :MathBranch>

< l t x : t d>< l t x : M a t h>cell math< / l t x : M a t h>< / l t x : t d>. . .
or
< l t x : t r>< l t x : t d>< l t x : M a t h>. . .

< / l t x :MathBranch>
< / l t x :Ma thFork>

< / l t x : e q u a t i o n>
< l t x : t e x t>inter-text< / l t x : t e x t>
. . . more text or equations

< / l t x : e q u a t i o n g r o u p>

Typically, the contents of the MathBranch will be a sequence of td, each containing
an Math, or of tr, each containing sequence of such td. This structure can thus rep-
resent both eqnarray where a logical equation consists of one or more complete
rows, as well as AMS’ aligned where equations consist of pairs of columns. The
XSLT transformation that converts to end formats recognizes which case and lays out
appropriately.

In most cases, the material that will yield a MathFork is given as a set of partial
math expressions representing rows and/or columnns; these must be concatenated (and
parsed) to form the composite logical expression.

Any ID’s within the expressions (and references to them) must be modified to avoid
duplicate ids. Moreover, a useful application associates the displayed tokens from the
aligned presentation of the MathBranch with the presumably semantic tokens in the
logcal content of the main branch of the MathFork. Thus, we desire that the IDs in the

7.4. EQNARRAY 43

two branches to have a known relationship; in particular, those in the branch should
have .fork1 appended.

7.4 eqnarray
The eqnarray environment seems intended to represent one or more equations, but
each equation can be continued with additional right-hand-sides (by omitting the 1st
column), or the RHS itself can be continued on multiple lines by omitting the 1st two
columns on a row. With our goal of constructing well-structured mathematics, this
gives us a fun little puzzle to sort out. However, being essentially the only structure for
aligning mathematical stuff in standard LATEX, eqnarray tended to be stretched into
various other use cases; aligning numbered equations with bits of text on the side, for
example. We therefore have some work to do to guess what the intent is.

The strategy used for eqnarray is process the material as an alignment in math
mode and convert initially to the following XML structure:

< l t x : e q u a t i o n g r o u p>
< l t x : e q u a t i o n>

< l t x : C a p t u r e >
< l t x : M a t h><l t x :XMath>column math here< / l t x :XMath>< / l t x : M a t h>

< / l t x : C a p t u r e >
. . .

< / l t x : e q u a t i o n>
. . .

< / l t x : e q u a t i o n g r o u p>

The results are then studied to recognize the patterns of empty columns so that the rows
can be regrouped into logical equations. MathFork structures are used to contain those
logical equations while preserving the layout in the MathBranch.

NOTE We need to deal better with the cases that have more rows numbered that
we would like.

7.5 AMS Alignments
The AMS math packages define a number of useful math alignment structures. These
have been well thought out and designed with particular logical structures in mind, as
well as the layout. Thus these environments are less often abused than is eqnarray.
In this section, we list the environments, their expected use case and describe the strat-
egy used for converting them.

To be done Describe alternates for equation and things inside equations; De-
scribe single vs multiple logical equations. (and started variants)

This list outlines the intended use of the AMS alignment environments The follow-
ing constructs are intended as top-level environments, used like equation.

Several of the constructs are used in place of a top-level equation and represent
one or more logical equations. The following describes the intended usage, as a guide
to understanding the implementation code (or its limitations!)

44 CHAPTER 7. ALIGNMENTS

• align,flalign,alignat,xalignat: Each row may be numbered; has
even number of columns; Each pair of columns, aligned right then left, repre-
sents a logical equation; Note that the documentation suggests that annotative
text can be added by putting \text{} in a column followed by an empty col-
umn.

• gather: Each row is a single centered column representing an equation.

• multline: This environment represents a single equation broken to multiple
lines; the lines are aligned left, center (repeated) and finally, right. alignment not
yet implemented

The following environments are used within an equation (or similar) environment and
thus do not generate MathFork structures. Moreover, except for aligned, their se-
mantic intent is less clear. The preservation of the alignment have not yet been imple-
mented; they; presumably would yeiled an XMDual.

• split

• gathered

• aligned,alignedat

Note that the case of a single equation containing a single aligned is transformed
into and treated equivalently to a top-level align.

Chapter 8

Metadata

8.1 RDFa
LATEXML has support for representing and generating RDFa metadata in LATEXML doc-
uments. The core attributes property, rel, rev, about resource, typeof and content
are included. Provision is also made for about and resource to be specified using
LATEX-style labels, or plain XML id’s.

The default set of vocabularies is specified in HTML Role Vocabulary1, and the
associated set of prefixes are predefined.

It is intended that the support will be extended to automatically generate RDFa data
from the implied semantics of LATEX markup; the idea would be not to inadvertently
override any explicitly provided metadata supplied by one of the following packages.

The hyperref package The hyperref and hyperxmp packages provide a means to
specify metadata which will be embedded in the generated pdf file; LATEXML converts
that data to RDFa in its generated XML.

The lxRDFa package There is also a LATEXML-specific package, lxRDFa, which
provides several commands for annotating the generated XML. The most powerful of
which is \lxRDFa which allows you to specify any set or subset of RDFa attributes on
the current XML element and thus take advantage of the arbitrary shorthands, chaining
and partial triples that RDFa allows. Correspondingly, you are must beware of clashes
or unintended changes to the set of triples generated by explicit and hidden RDFa data.

1http://www.w3.org/1999/xhtml/vocab/#XHTMLRoleVocabulary

45

46 CHAPTER 8. METADATA

Chapter 9

ToDo

Lots. . . !

• Many useful LATEX packages have not been implemented, and those that are
aren’t necessarily complete.

Contributed bindings are, of course, welcome!

• Low-level TEX capabilities, such as text modes (eg. vertical, horizonatal), box
details like width and depth, as well as fonts, aren’t mimicked faithfully, although
it isn’t clear how much can be done at the ‘semantic’ level.

• a richer math grammar, or more flexible parsing engine, better inferencing of
math structure, better inferencing of math meaning. . . and thus better Content
MathML and OpenMath support!

• Could be faster.

• Easier customization of the document schema, XSLT stylesheets.

• . . . um, . . . documentation!

47

48 CHAPTER 9. TODO

Acknowledgements

Thanks to the DLMF project and it’s Editors — Frank Olver, Dan Lozier, Ron Boisvert,
and Charles Clark — for providing the motivation and opportunity to pursue this.

Thanks to the arXMLiv project, in particular Michael Kohlhase and Heinrich
Stamerjohanns, for providing a rich testbed and testing framework to exercise the sys-
tem. Additionally, thanks to Ioan Sucan, Catalin David and Silviu Oprea for testing
help and for implementing additional packages.

Particular thanks go to Deyan Ginev as an enthusiastic supporter and developer.

49

50 CHAPTER 9. TODO

Appendix A

Command Documentation

latexml

Transforms a TeX/LaTeX file into XML.

Synopsis

latexml [options] texfile

Options:
--destination=file sets destination file (default stdout).
--output=file [obsolete synonym for --destination]
--preload=module requests loading of an optional module;

can be repeated
--preamble=file sets a preamble file which will

effectively be prepended to the main file.
--postamble=file sets a postamble file which will

effectively be appended to the main file.
--includestyles allows latexml to load raw *.sty file;

by default it avoids this.
--path=dir adds to the paths searched for files,

modules, etc;
--documentid=id assign an id to the document root.
--quiet suppress messages (can repeat)
--verbose more informative output (can repeat)
--strict makes latexml less forgiving of errors
--bibtex processes as a BibTeX bibliography.
--xml requests xml output (default).
--tex requests TeX output after expansion.
--box requests box output after expansion

and digestion.
--noparse suppresses parsing math
--nocomments omit comments from the output
--inputencoding=enc specify the input encoding.
--VERSION show version number.

51

52 APPENDIX A. COMMANDS

--debug=package enables debugging output for the named
package

--help shows this help message.

If texfile is ’-’, latexml reads the TeX source from standard input. If texfile has an
explicit extention of .bib, it is processed as a BibTeX bibliography.

Options & Arguments

--destination=file
Specifies the destination file; by default the XML is written to stdout.

--preload=module
Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use --preload=LaTeX.pool to force LaTeX
mode.

--preamble=file, --postamble=file
Specifies a file whose contents will effectively be prepended or appended to the
main document file’s content. This can be useful when processing TeX frag-
ments, in which case the preamble would contain documentclass and begindoc-
ument control sequences. This option is not used when processing BibTeX files.

--includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of ltxml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

--path=dir
Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

--documentid=id
Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

--quiet

Reduces the verbosity of output during processing, used twice is pretty silent.

53

--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using --strict makes them generate fatal errors.

--bibtex

Forces latexml to treat the file as a BibTeX bibliography. Note that the timing
is slightly different than the usual case with BibTeX and LaTeX. In the latter
case, BibTeX simply selects and formats a subset of the bibliographic entries;
the actual TeX expansion is carried out when the result is included in a LaTeX
document. In contrast, latexml processes and expands the entire bibliography;
the selection of entries is done during postprocessing. This also means that any
packages that define macros used in the bibliography must be specified using the
--preload option.

--xml

Requests XML output; this is the default.

--tex

Requests TeX output for debugging purposes; processing is only carried out
through expansion and digestion. This may not be quite valid TeX, since Uni-
code may be introduced.

--box

Requests Box output for debugging purposes; processing is carried out through
expansion and digestions, and the result is printed.

--nocomments

Normally latexml preserves comments from the source file, and adds a comment
every 25 lines as an aid in tracking the source. The option --nocomments discards
such comments.

--inputencoding=encoding

Specify the input encoding, eg. --inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only enables
the translation of the input bytes to UTF-8 used internally by LaTeXML, but
does not affect catcodes. It is usually better to use LaTeX’s inputenc package.
Note that this does not affect the output encoding, which is always UTF-8.

--VERSION

Shows the version number of the LaTeXML package..

54 APPENDIX A. COMMANDS

--debug=package

Enables debugging output for the named package. The package is given without
the leading LaTeXML::.

--help

Shows this help message.

See also

latexmlpost, latexmlmath, LaTeXML

latexmlpost

Postprocesses an xml file generated by latexml to perform common tasks, such as
convert math to images and processing graphics inclusions for the web.

Synopsis

latexmlpost [options] xmlfile

Options:
--verbose shows progress during processing.
--VERSION show version number.
--help shows help message.
--sourcedirectory=sourcedir sets directory of the original

source TeX file.
--validate, --novalidate Enables (the default) or disables

validation of the source xml.
--format=html|html5|html4|xhtml|xml requests the output format.

(html defaults to html5)
--destination=file sets output file (and directory).
--omitdoctype omits the Doctype declaration,
--noomitdoctype disables the omission (the default)
--numbersections enables (the default) the inclusion of

section numbers in titles, crossrefs.
--nonumbersections disables the above
--stylesheet=xslfile requests the XSL transform using the

given xslfile as stylesheet.
--css=cssfile adds css stylesheet to (x)html(5)

(can be repeated)
--nodefaultresources disables processing built-in resources
--javscript=jsfile adds a link to a javascript file into

html4/html5/xhtml (can be repeated)
--xsltparameter=name:value passes parameters to the XSLT.
--split requests splitting each document
--nosplit disables the above (default)
--splitat sets level to split the document
--splitpath=xpath sets xpath expression to use for

55

splitting (default splits at
sections, if splitting is enabled)

--splitnaming=(id|idrelative|label|labelrelative) specifies
how to name split files (idrelative).

--scan scans documents to extract ids,
labels, etc.
section titles, etc. (default)

--noscan disables the above
--crossref fills in crossreferences (default)
--nocrossref disables the above
--urlstyle=(server|negotiated|file) format to use for urls

(default server).
--navigationtoc=(context|none) generates a table of contents

in navigation bar
--index requests creating an index (default)
--noindex disables the above
--splitindex Splits index into pages per initial.
--nosplitindex disables the above (default)
--permutedindex permutes index phrases in the index
--nopermutedindex disables the above (default)
--bibliography=file sets a bibliography file
--splitbibliography splits the bibliography into pages per

initial.
--nosplitbibliography disables the above (default)
--prescan carries out only the split (if

enabled) and scan, storing
cross-referencing data in dbfile
(default is complete processing)

--dbfile=dbfile sets file to store crossreferences
--sitedirectory=dir sets the base directory of the site
--mathimages converts math to images

(default for html4 format)
--nomathimages disables the above
--mathsvg converts math to svg images
--nomathsvg disables the above
--mathimagemagnification=mag sets magnification factor
--presentationmathml converts math to Presentation MathML

(default for xhtml & html5 formats)
--pmml alias for --presentationmathml
--nopresentationmathml disables the above
--linelength=n formats presentation mathml to a

linelength max of n characters
--contentmathml converts math to Content MathML
--nocontentmathml disables the above (default)
--cmml alias for --contentmathml
--openmath converts math to OpenMath
--noopenmath disables the above (default)
--om alias for --openmath
--keepXMath preserves the intermediate XMath

representation (default is to remove)

56 APPENDIX A. COMMANDS

--mathtex adds TeX annotation to parallel markup
--nomathtex disables the above (default)
--plane1 use plane-1 unicode for symbols

(default, if needed)
--noplane1 do not use plane-1 unicode
--graphicimages converts graphics to images (default)
--nographicimages disables the above
--graphicsmap=type.type specifies a graphics file mapping
--pictureimages converts picture environments to

images (default)
--nopictureimages disables the above
--svg converts picture environments to SVG
--nosvg disables the above (default)

If xmlfile is ’-’, latexmlpost reads the XML from standard input.

Options & Arguments

General Options

--verbose

Requests informative output as processing proceeds. Can be repeated to increase
the amount of information.

--VERSION

Shows the version number of the LaTeXML package..

--help

Shows this help message.

Source Options

--sourcedirectory=source
Specifies the directory where the original latex source is located. Unless latexml-
post is run from that directory, or it can be determined from the xml filename, it
may be necessary to specify this option in order to find graphics and style files.

--validate, --novalidate
Enables (or disables) the validation of the source XML document (the default).

Format Options

--format=(html|html5|html4|xhtml|xml)
Specifies the output format for post processing. By default, it will be guessed
from the file extension of the destination (if given), with html implying html5,
xhtml implying xhtml and the default being xml, which you probably don’t
want.

57

The html5 format converts the material to html5 form with mathematics as
MathML; html5 supports SVG. html4 format converts the material to the ear-
lier html form, version 4, and the mathematics to png images. xhtml format
converts to xhtml and uses presentation MathML (after attempting to parse the
mathematics) for representing the math. html5 similarly converts math to pre-
sentation MathML. In these cases, any graphics will be converted to web-friendly
formats and/or copied to the destination directory. If you simply specify html,
it will treat that as html5.

For the default, xml, the output is left in LaTeXML’s internal xml, but the math
is parsed and converted to presentation MathML. For html, html5 and xhtml, a
default stylesheet is provided, but see the --stylesheet option.

--destination=destination

Specifies the destination file and directory. The directory is needed for mathim-
ages, mathsvg and graphics processing.

--omitdoctype, --noomitdoctype

Omits (or includes) the document type declaration. The default is to include it if
the document model was based on a DTD.

--numbersections, --nonumbersections

Includes (default), or disables the inclusion of section, equation, etc, numbers in
the formatted document and crossreference links.

--stylesheet=xslfile

Requests the XSL transformation of the document using the given xslfile as
stylesheet. If the stylesheet is omitted, a ‘standard’ one appropriate for the format
(html4, html5 or xhtml) will be used.

--css=cssfile

Adds cssfile as a css stylesheet to be used in the transformed html/html5/xhtml.
Multiple stylesheets can be used; they are included in the html in the order given,
following the default ltx-LaTeXML.css (unless --nodefaultcss). The
stylesheet is copied to the destination directory, unless it is an absolute url.

Some stylesheets included in the distribution are --css=navbar-left Puts a nav-
igation bar on the left. (default omits navbar) --css=navbar-right Puts a navi-
gation bar on the left. --css=theme-blue A blue coloring theme for headings.
--css=amsart A style suitable for journal articles.

--javascript=jsfile

Includes a link to the javascript file jsfile, to be used in the transformed htm-
l/html5/xhtml. Multiple javascript files can be included; they are linked in the
html in the order given. The javascript file is copied to the destination directory,
unless it is an absolute url.

58 APPENDIX A. COMMANDS

--icon=iconfile
Copies iconfile to the destination directory and sets up the linkage in the trans-
formed html/html5/xhtml to use that as the ”favicon”.

--nodefaultresources

Disables the copying and inclusion of resources added by the binding files; This
includes CSS, javascript or other files. This does not affect resources explicitly
requested by the --css or --javascript options.

--timestamp=timestamp
Provides a timestamp (typically a time and date) to be embedded in the com-
ments by the stock XSLT stylesheets. If you don’t supply a timestamp, the cur-
rent time and date will be used. (You can use --timestamp=0 to omit the
timestamp).

--xsltparameter=name:value
Passes parameters to the XSLT stylesheet. See the manual or the stylesheet itself
for available parameters.

Site & Crossreferencing Options

--split, --nosplit
Enables or disables (default) the splitting of documents into multiple ‘pages’.
If enabled, the the document will be split into sections, bibliography, index and
appendices (if any) by default, unless --splitpath is specified.

--splitat=unit
Specifies what level of the document to split at. Should be one of chapter,
section (the default), subsection or subsubsection. For more con-
trol, see --splitpath.

--splitpath=xpath
Specifies an XPath expression to select nodes that will generate separate
pages. The default splitpath is //ltx:section | //ltx:bibliography | //ltx:appendix |
//ltx:index

Specifying

--splitpath="//ltx:section | //ltx:subsection
| //ltx:bibliography | //ltx:appendix | //ltx:index"

would split the document at subsections as well as sections.

--splitnaming=(id|idrelative|label|labelrelative)
Specifies how to name the files for subdocuments created by splitting. The values
id and label simply use the id or label of the subdocument’s root node for it’s

59

filename. idrelative and labelrelative use the portion of the id or
label that follows the parent document’s id or label. Furthermore, to impose
structure and uniqueness, if a split document has children that are also split, that
document (and it’s children) will be in a separate subdirectory with the name
index.

--scan, --noscan

Enables (default) or disables the scanning of documents for ids, labels, refer-
ences, indexmarks, etc, for use in filling in refs, cites, index and so on. It may
be useful to disable when generating documents not based on the LaTeXML
doctype.

--crossref, --nocrossref

Enables (default) or disables the filling in of references, hrefs, etc based on a
previous scan (either from --scan, or --dbfile) It may be useful to disable
when generating documents not based on the LaTeXML doctype.

--urlstyle=(server|negotiated|file)
This option determines the way that URLs within the documents are formatted,
depending on the way they are intended to be served. The default, server,
eliminates unneccessary trailing index.html. With negotiated, the trail-
ing file extension (typically html or xhtml) are eliminated. The scheme file
preserves complete (but relative) urls so that the site can be browsed as files
without any server.

--navigationtoc=(context|none)
Generates a table of contents in the navigation bar; default is none. The ‘con-
text’ style of TOC, is somewhat verbose and reveals more detail near the current
page; it is most suitable for navigation bars placed on the left or right. Other
styles of TOC should be developed and added here, such as a short form.

--index, --noindex

Enables (default) or disables the generation of an index from indexmarks em-
bedded within the document. Enabling this has no effect unless there is an index
element in the document (generated by \printindex).

--splitindex, --nosplitindex

Enables or disables (default) the splitting of generated indexes into separate
pages per initial letter.

--bibliography=pathname

Specifies a bibliography generated from a BibTeX file to be used to fill in a bibli-
ography element. Hand-written bibliographies placed in a thebibliography
environment do not need this. The option has no effect unless there is an bibli-
ography element in the document (generated by \bibliography).

60 APPENDIX A. COMMANDS

Note that this option provides the bibliography to be used to fill in the bibliogra-
phy element (generated by \bibliography); latexmlpost does not (currently)
directly process and format such a bibliography.

--splitbibliography, --nosplitbibliography

Enables or disables (default) the splitting of generated bibliographies into sepa-
rate pages per initial letter.

--prescan

By default latexmlpost processes a single document into one (or more; see
--split) destination files in a single pass. When generating a complicated site
consisting of several documents it may be advantageous to first scan through the
documents to extract and store (in dbfile) cross-referencing data (such as ids,
titles, urls, and so on). A later pass then has complete information allowing all
documents to reference each other, and also constructs an index and bibliography
that reflects the entire document set. The same effect (though less efficient) can
be achieved by running latexmlpost twice, provided a dbfile is specified.

--dbfile=file

Specifies a filename to use for the crossreferencing data when using two-pass
processing. This file may reside in the intermediate destination directory.

--sitedirectory=dir

Specifies the base directory of the overall web site. Pathnames in the database
are stored in a form relative to this directory to make it more portable.

Math Options These options specify how math should be converted into other for-
mats. Multiple formats can be requested; how they will be combined depends on the
format and other options.

--mathimages, --nomathimages

Requests or disables the conversion of math to images (png by default). Conver-
sion is the default for html4 format.

--mathsvg, --nomathsvg

Requests or disables the conversion of math to svg images.

--mathimagemagnification=factor

Specifies the magnification used for math images (both png and svg), if they are
made. Default is 1.75.

--presentationmathml, --nopresentationmathml

Requests or disables conversion of math to Presentation MathML. Conversion is
the default for xhtml and html5 formats.

61

--linelength=number
(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--plane1

Converts the content of Presentation MathML token elements to the appropriate
Unicode Plane-1 codepoints according to the selected font, when applicable (the
default).

--hackplane1

Converts the content of Presentation MathML token elements to the appropri-
ate Unicode Plane-1 codepoints according to the selected font, but only for the
mathvariants double-struck, fraktur and script. This gives support for current (as
of August 2009) versions of Firefox and MathPlayer, provided a sufficient set of
fonts is available (eg. STIX).

--contentmathml, --nocontentmathml
Requests or disables conversion of math to Content MathML. Conversion is dis-
abled by default. Note that this conversion is only partially implemented.

--openmath

Requests or disables conversion of math to OpenMath. Conversion is disabled
by default. Note that this conversion is only partially implemented.

--keepXMath

By default, when any of the MathML or OpenMath conversions are used, the
intermediate math representation will be removed; this option preserves it; it
will be used as secondary parallel markup, when it follows the options for other
math representations.

Graphics Options

--graphicimages, --nographicimages
Enables (default) or disables the conversion of graphics to web-appropriate for-
mat (png).

--graphicsmap=sourcetype.desttype
Specifies a mapping of graphics file types. Typically, graphics elements specify
a graphics file that will be converted to a more appropriate file target format;
for example, postscript files used for graphics with LaTeX will be converted to
png format for use on the web. As with LaTeX, when a graphics file is specified
without a file type, the system will search for the most appropriate target type
file.

When this option is used, it overrides and replaces the defaults and provides
a mapping of sourcetype to desttype. The option can be repeated to provide

62 APPENDIX A. COMMANDS

several mappings, with the earlier formats preferred. If the desttype is omitted, it
specifies copying files of type sourcetype, unchanged.

The default settings is equivalent to having supplied the options:

--graphicsmap=svg
--graphicsmap=png
--graphicsmap=gif
--graphicsmap=jpg
--graphicsmap=jpeg
--graphicsmap=eps.png
--graphicsmap=ps.png
--graphicsmap=ai.png
--graphicsmap=pdf.png

The first formats are preferred and used unchanged, while the latter ones are
converted to png.

--pictureimages, --nopictureimages
Enables (default) or disables the conversion of picture environments and pstricks
material into images.

--svg, --nosvg
Enables or disables (default) the conversion of picture environments and pstricks
material to SVG.

See also

latexml, latexmlmath, LaTeXML

latexmlmath

Transforms a TeX/LaTeX math expression into various formats.

Synopsis

latexmlmath [options] texmath

Options:
--mathimage=file converts to image in file
--mathsvg=file converts to svg image in file
--magnification=mag specifies magnification factor
--presentationmathml=file converts to Presentation MathML
--pmml=file alias for --presentationmathml
--linelength=n do linewrapping of pMML
--contentmathml=file convert to Content MathML
--cmml=file alias for --contentmathml
--openmath=file convert to OpenMath
--om=file alias for --openmath

63

--XMath=file output LaTeXML’s internal format
--noparse disables parsing of math

(not useful for cMML or openmath)
--preload=file loads a style file.
--includestyles allows processing raw *.sty files

(normally it avoids this)
--path=dir adds a search path for style files.
--quiet reduces verbosity (can repeat)
--verbose increases verbosity (can repeat)
--strict be more strict about errors.
--documentid=id assign an id to the document root.
--debug=package enables debugging output for the

named package
--inputencoding=enc specify the input encoding.
--VERSION show version number and exit.
--help shows this help message.
-- ends options

If texmath is ’-’, latexmlmath reads the TeX from standard input. If any of the
output files are ’-’, the result is printed on standard output.

Input notes Note that, unless you are reading texmath from standard input, the tex-
math string will be processed by whatever shell you are using before latexmlmath
even sees it. This means that many so-called meta characters, such as backslash and
star, may confuse the shell or be changed. Consequently, you will need to quote and/or
slashify the input appropriately. Most particularly, \ will need to be doubled to \\ for
latexmlmath to see it as a control sequence.

Using -- to explicitly end the option list is useful for cases when the math starts
with a minus (and would otherwise be interpreted as an option, probably an unrecog-
nized one). Alternatively, wrapping the texmath with {} will hide the minus.

Simple examples:

latexmlmath \\frac{-b\\pm\\sqrt{bˆ2-4ac}}{2a}
echo "\\sqrt{bˆ2-4ac}" | latexmlmath --pmml=quad.mml -

Options & Arguments

Conversion Options These options specify what formats the math should be con-
verted to. In each case, the destination file is given. Except for mathimage, the file can
be given as ’-’, in which case the result is printed to standard output.

If no conversion option is specified, the default is to output presentation MathML
to standard output.

--mathimage=file
Requests conversion to png images.

--mathsvg=file
Requests conversion to svg images.

64 APPENDIX A. COMMANDS

--magnification=factor

Specifies the magnification used for math image. Default is 1.75.

--presentationmathml=file

Requests conversion to Presentation MathML.

--linelength=number

(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--plane1

Converts the content of Presentation MathML token elements to the appropriate
Unicode Plane-1 codepoints according to the selected font, when applicable.

--hackplane1

Converts the content of Presentation MathML token elements to the appropri-
ate Unicode Plane-1 codepoints according to the selected font, but only for the
mathvariants double-struck, fraktur and script. This gives support for current (as
of August 2009) versions of Firefox and MathPlayer, provided a sufficient set of
fonts is available (eg. STIX).

--contentmathml=file

Requests conversion to Content MathML. Note that this conversion is only par-
tially implemented.

--openmath=file

Requests conversion to OpenMath. Note that this conversion is only partially
implemented.

--XMath=file

Requests convertion to LaTeXML’s internal format.

Other Options

--preload=module

Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use --preload=LaTeX.pool to force LaTeX
mode.

--includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of ltxml).

65

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

--path=dir

Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

--documentid=id

Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

--quiet

Reduces the verbosity of output during processing, used twice is pretty silent.

--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using --strict makes them generate fatal errors.

--inputencoding=encoding

Specify the input encoding, eg. --inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only enables
the translation of the input bytes to UTF-8 used internally by LaTeXML, but
does not affect catcodes. It is usually better to use LaTeX’s inputenc package.
Note that this does not affect the output encoding, which is always UTF-8.

--VERSION

Shows the version number of the LaTeXML package..

--debug=package

Enables debugging output for the named package. The package is given without
the leading LaTeXML::.

--help

Shows this help message.

66 APPENDIX A. COMMANDS

BUGS

This program runs much slower than would seem justified. This is a result of the
relatively slow initialization including loading TeX and LaTeX macros and the schema.
Normally, this cost would be ammortized over large documents, whereas, in this case,
we’re processing a single math expression.

See also

latexml, latexmlpost, LaTeXML

Appendix B

Implemented Bindings

Bindings for the following classes and packages are supplied with the distribution:

classes: IEEEtran, JHEP, JHEP2, JHEP3, OmniBus, PoS, a0poster, aa, aastex, ac-
mart, aipproc, amsart, amsbook, amsproc, article, book, elsart, elsarticle, emu-
lateapj, gen-j-l, gen-m-l, gen-p-l, ieeeconf, iopart, llncs, mn, mn2e, mnras, mod-
erncv, quantumarticle, report, revtex, revtex4-1, revtex4, slides, subfiles, svjour,
svjour3, svmult

packages: a0size, a4, a4wide, aas macros, aasms, aaspp, aastex, accents, acronym,
ae, aecompl, afterpage, aipproc, algc, algcompatible, algmatlab, algorithm, al-
gorithm2e, algorithmic, algorithmicx, algpascal, algpseudocode, alltt, amsbsy,
amscd, amsfonts, amsgen, amsmath, amsopn, amsppt, amsrefs, amssymb, am-
stex, amstext, amsthm, amsxtra, apjfonts, appendix, array, attachfile, auth-
blk, avant, babel, balance, bbm, bbold, beton, bibunits, blindtext, bm, book-
man, booktabs, braket, breakurl, calc, calrsfs, cancel, caption, cases, ccfonts,
chancery, chapterbib, charter, chngcntr, circuitikz, cite, citesort, cleveref, cm-
bright, color, colordvi, colortbl, comment, concmath, courier, crop, cropmark,
csquotes, dcolumn, deluxetable, doublespace, dsfont, ellipsis, elsart, empheq,
emulateapj, emulateapj5, endnotes, english, enumerate, enumitem, epigraph,
epsf, epsfig, epstopdf, esint, etex, etoolbox, eucal, eufrak, euler, eulervm, eu-
rosym, euscript, expl3, exscale, fancyhdr, fancyheadings, fix-cm, fixltx2e, flafter,
fleqn, float, floatfig, floatflt, floatpag, flowchart, flushend, fontenc, fontspec, foot-
misc, footnote, fourier, framed, fullpage, gensymb, geometry, german, glos-
saries, graphics, graphicx, grffile, helvet, here, hhline, html, hyperref, hy-
perxmp, icml, ifluatex, ifpdf, ifthen, ifvtex, ifxetex, import, indentfirst, in-
putenc, iopams, jheppub, keyval, lastpage, latexml, latexsym, lineno, lipsum,
listings, listingsutf8, lmodern, longtable, lscape, luximono, lxRDFa, makecell,
makeidx, marvosym, mathbbol, mathdots, mathpazo, mathpple, mathptm, math-
ptmx, mathrsfs, mathtools, microtype, mleftright, multicol, multido, multirow,
nameref, natbib, neurips, newcent, newfloat, newlfont, newtxmath, newtxtext,
ngerman, nicefrac, nopageno, ntheorem, numprint, palatino, paralist, parskip,
pdflscape, pdfpages, pdfsync, pgf, pgfplots, physics, pifont, placeins, preview,

67

68 APPENDIX B. BINDINGS

psfig, pslatex, pspicture, pst-grad, pst-node, pstricks, pxfonts, ragged2e, rel-
size, remreset, revsymb, revtex, revtex4, rotate, rotating, rsfs, scalefnt, sect-
sty, setspace, showkeys, sidecap, siunitx, slashed, soul, srcltx, stfloats, stmaryrd,
subcaption, subfig, subfigure, subfiles, subfloat, supertabular, svg, t1enc, table-
footnote, tabularx, tabulary, textcase, textcomp, texvc, theorem, thm-restate,
thmtools, threeparttable, tikz-3dplot, tikz, times, titlesec, titling, tocbibind,
todonotes, tracefnt, transparent, turing, twoopt, txfonts, type1cm, ulem, under-
score, undertilde, units, upgreek, upref, url, utopia, varioref, varwidth, verbatim,
vmargin, wasysym, wiki, wrapfig, xargs, xcolor, xkeyval, xkvview, xparse, xs-
pace, xunicode, yfonts

Appendix C

Perl Modules Documentation

LaTeXML

A converter that transforms TeX and LaTeX into XML/HTML/MathML

Synopsis

use LaTeXML;
my $converter = LaTeXML->get_converter($config);
my $converter = LaTeXML->new($config);
$converter->prepare_session($opts);
$converter->initialize_session; # SHOULD BE INTERNAL
$hashref = $converter->convert($tex);
my ($result,$log,$status)

= map {$hashref->{$_}} qw(result log status);

Description

LaTeXML is a converter that transforms TeX and LaTeX into XML/HTML/MathML
and other formats.

A LaTeXML object represents a converter instance and can convert files on de-
mand, until dismissed.

Methods

my $converter = LaTeXML->new($config);

Creates a new converter object for a given LaTeXML::Common::Config object,
$config.

my $converter = LaTeXML->get converter($config);

Either creates, or looks up a cached converter for the $config configuration ob-
ject.

69

70 APPENDIX C. MODULES

$converter->prepare session($opts);

Top-level preparation routine that prepares both a correct options object and
an initialized LaTeXML object, using the ”initialize options” and ”initial-
ize session” routines, when needed.

Contains optimization checks that skip initializations unless necessary.

Also adds support for partial option specifications during daemon runtime,
falling back on the option defaults given when converter object was created.

my ($result,$status,$log) = $converter->convert($tex);

Converts a TeX input string $tex into the LaTeXML::Core::Document object
$result.

Supplies detailed information of the conversion log ($log), as well as a brief
conversion status summary ($status).

INTERNAL ROUTINES

$converter->initialize session($opts);

Given an options hash reference $opts, initializes a session by creating a new
LaTeXML object with initialized state and loading a daemonized preamble (if
any).

Sets the ”ready” flag to true, making a subsequent ”convert” call immediately
possible.

my $latexml = new latexml($opts);

Creates a new LaTeXML object and initializes its state.

my $postdoc = $converter->convert post($dom);

Post-processes a LaTeXML::Core::Document object $dom into a final format,
based on the preferences specified in $$self{opts}.

Typically used only internally by convert.

$converter->bind log;

Binds STDERR to a ”log” field in the $converter object

my $log = $converter->flush log;

Flushes out the accumulated conversion log into $log, reseting STDERR to its
usual stream.

LaTeXML::Global

Global exports used within LaTeXML, and in Packages.

Synopsis

use LaTeXML::Global;

71

Description

This module exports the various constants and constructors that are useful throughout
LaTeXML, and in Package implementations.

Global state

$STATE;

This is bound to the currently active LaTeXML::Core::State by an in-
stance of LaTeXML during processing.

LaTeXML::Package

Support for package implementations and document customization.

Synopsis

This package defines and exports most of the procedures users will need to customize or
extend LaTeXML. The LaTeXML implementation of some package might look some-
thing like the following, but see the installed LaTeXML/Package directory for real-
istic examples.

package LaTeXML::Package::pool; # to put new subs & variables in common pool
use LaTeXML::Package; # to load these definitions
use strict; # good style
use warnings;
#
Load "anotherpackage"
RequirePackage(’anotherpackage’);
#
A simple macro, just like in TeX
DefMacro(’\thesection’, ’\thechapter.\roman{section}’);
#
A constructor defines how a control sequence generates XML:
DefConstructor(’\thanks{}’, "<ltx:thanks>#1</ltx:thanks>");
#
And a simple environment ...
DefEnvironment(’{abstract}’,’<abstract>#body</abstract>’);
#
A math symbol \Real to stand for the Reals:
DefMath(’\Real’, "\x{211D}", role=>’ID’);
#
Or a semantic floor:
DefMath(’\floor{}’,’\left\lfloor#1\right\rfloor’);
#
More esoteric ...
Use a RelaxNG schema
RelaxNGSchema("MySchema");
Or use a special DocType if you have to:

72 APPENDIX C. MODULES

DocType("rootelement",
"-//Your Site//Your DocType",’your.dtd’,
prefix=>"http://whatever/");
#
Allow sometag elements to be automatically closed if needed
Tag(’prefix:sometag’, autoClose=>1);
#
Don’t forget this, so perl knows the package loaded.
1;

Description

This module provides a large set of utilities and declarations that are useful for writing
‘bindings’: LaTeXML-specific implementations of a set of control sequences such as
would be defined in a LaTeX style or class file. They are also useful for controlling
and customization of LaTeXML’s processing. See the LaTeXML::Package/"See
also" section, below, for additional lower-level modules imported & re-exported.

To a limited extent (and currently only when explicitly enabled), LaTeXML can
process the raw TeX code found in style files. However, to preserve document
structure and semantics, as well as for efficiency, it is usually necessary to sup-
ply a LaTeXML-specific ‘binding’ for style and class files. For example, a binding
mypackage.sty.ltxml would encode LaTeXML-specific implementations of all
the control sequences in mypackage.sty so that \usepackage{mypackage}
would work. Similarly for myclass.cls.ltxml. Additionally, document-specific
bindings can be supplied: before processing a TeX source file, eg mydoc.tex, La-
TeXML will automatically include the definitions and settings in mydoc.latexml.
These .ltxml and .latexml files should be placed LaTeXML’s searchpaths, where
will find them: either in the current directory or in a directory given to the --path option,
or possibly added to the variable SEARCHPATHS).

Since LaTeXML mimics TeX, a familiarity with TeX’s processing model is crit-
ical. LaTeXML models: catcodes and tokens (See LaTeXML::Core::Token,
LaTeXML::Core::Tokens) which are extracted from the plain source text charac-
ters by the LaTeXML::Core::Mouth; LaTeXML::Package/Macros, which
are expanded within the LaTeXML::Core::Gullet; and LaTeXML::Package/Primitives,
which are digested within the LaTeXML::Core::Stomach to produce LaTeXML::Core::Box,
LaTeXML::Core::List. A key additional feature is the LaTeXML::Package/Constructors:
when digested they generate a LaTeXML::Core::Whatsit which, upon absorb-
tion by LaTeXML::Core::Document, inserts text or XML fragments in the final
document tree.

Notation: Many of the following forms take code references as arguments or op-
tions. That is, either a reference to a defined sub, eg. \&somesub, or an anonymous
function sub { ... }. To document these cases, and the arguments that are passed
in each case, we’ll use a notation like code($stomach,...).

Control Sequences Many of the following forms define the behaviour of control
sequences. While in TeX you’ll typically only define macros, LaTeXML is effec-

73

tively redefining TeX itself, so we define LaTeXML::Package/Macros as well
as LaTeXML::Package/Primitives, LaTeXML::Package/Registers,
LaTeXML::Package/Constructors and LaTeXML::Package/Environments.
These define the behaviour of these control sequences when processed during the vari-
ous phases of LaTeX’s imitation of TeX’s digestive tract.

Prototypes LaTeXML uses a more convienient method of specifying parame-
ter patterns for control sequences. The first argument to each of these defining forms
(DefMacro, DefPrimive, etc) is a prototype consisting of the control sequence be-
ing defined along with the specification of parameters required by the control sequence.
Each parameter describes how to parse tokens following the control sequence into ar-
guments or how to delimit them. To simplify coding and capture common idioms in
TeX/LaTeX programming, latexml’s parameter specifications are more expressive than
TeX’s \def or LaTeX’s \newcommand. Examples of the prototypes for familiar TeX
or LaTeX control sequences are:

DefConstructor(’\usepackage[]{}’,...
DefPrimitive(’\multiply Variable SkipKeyword:by Number’,..
DefPrimitive(’\newcommand OptionalMatch:* DefToken[]{}’, ...

The general syntax for parameter specification is

{spec}

reads a regular TeX argument. spec can be omitted (ie. {}). Otherwise spec is
itself a parameter specification and the argument is reparsed to accordingly. ({}
is a shorthand for Plain.)

[spec]

reads an LaTeX-style optional argument. spec can be omitted (ie. {}). Other-
wise, if spec is of the form Default:stuff, then stuff would be the default value.
Otherwise spec is itself a parameter specification and the argument, if supplied,
is reparsed according to that specification. ([] is a shorthand for Optional.)

Type

Reads an argument of the given type, where either Type has been declared, or
there exists a ReadType function accessible from LaTeXML::Package::Pool. See
the available types, below.

Type:value | Type:value1:value2...

These forms invoke the parser for Type but pass additional Tokens to the reader
function. Typically this would supply defaults or parameters to a match.

OptionalType

Similar to Type, but it is not considered an error if the reader returns undef.

74 APPENDIX C. MODULES

SkipType

Similar to OptionalType, but the value returned from the reader is ignored,
and does not occupy a position in the arguments list.

The predefined argument Types are as follows.

Plain, Semiverbatim

Reads a standard TeX argument being either the next token, or if the next token
is an {, the balanced token list. In the case of Semiverbatim, many catcodes
are disabled, which is handy for URL’s, labels and similar.

Token, XToken

Read a single TeX Token. For XToken, if the next token is expandable, it is
repeatedly expanded until an unexpandable token remains, which is returned.

Number, Dimension, Glue | MuGlue

Read an Object corresponding to Number, Dimension, Glue or MuGlue, using
TeX’s rules for parsing these objects.

Until:match | XUntil:match>
Reads tokens until a match to the tokens match is found, returning the tokens pre-
ceding the match. This corresponds to TeX delimited arguments. For XUntil,
tokens are expanded as they are matched and accumulated (but a brace reads and
accumulates till a matching close brace, without expanding).

UntilBrace

Reads tokens until the next open brace {. This corresponds to the peculiar TeX
construct \def\foo#{....

Match:match(|match)* | Keyword:match(|match)*>
Reads tokens expecting a match to one of the token lists match, returning the
one that matches, or undef. For Keyword, case and catcode of the matches are
ignored. Additionally, any leading spaces are skipped.

Balanced

Read tokens until a closing }, but respecting nested {} pairs.

BalancedParen

Read a parenthesis delimited tokens, but does not balance any nested parenthe-
ses.

Undigested, Digested, DigestUntil:match

These types alter the usual sequence of tokenization and digestion in separate
stages (like TeX). A Undigested parameter inhibits digestion completely and
remains in token form. A Digested parameter gets digested until the (re-
quired) opening { is balanced; this is useful when the content would usually need
to have been protected in order to correctly deal with catcodes. DigestUntil
digests tokens until a token matching match is found.

75

Variable

Reads a token, expanding if necessary, and expects a control sequence naming
a writable register. If such is found, it returns an array of the corresponding
definition object, and any arguments required by that definition.

SkipSpaces, Skip1Space

Skips one, or any number of, space tokens, if present, but contributes nothing to
the argument list.

Common Options

scope=>’local’ | ’global’ | scope

Most defining commands accept an option to control how the definition is stored,
for global or local definitions, or using a named scope A named scope saves a set
of definitions and values that can be activated at a later time.

Particularly interesting forms of scope are those that get automatically acti-
vated upon changes of counter and label. For example, definitions that have
scope=>’section:1.1’ will be activated when the section number is
”1.1”, and will be deactivated when that section ends.

locked=>boolean

This option controls whether this definition is locked from further changes in
the TeX sources; this keeps local ’customizations’ by an author from overriding
important LaTeXML definitions and breaking the conversion.

Macros

DefMacro(prototype, expansion, %options);

Defines the macro expansion for prototype; a macro control sequence that is
expanded during macro expansion time in the LaTeXML::Core::Gullet.
The expansion should be one of tokens | string | code($gullet,@args)>: a string
will be tokenized upon first usage. Any macro arguments will be substituted for
parameter indicators (eg #1) in the tokens or tokenized string and the result is
used as the expansion of the control sequence. If code is used, it is called at
expansion time and should return a list of tokens as its result.

DefMacro options are

scope=>scope,

locked=>boolean

See LaTeXML::Package/"Common Options".

mathactive=>boolean

specifies a definition that will only be expanded in math mode; the control
sequence must be a single character.

76 APPENDIX C. MODULES

Examples:

DefMacro(’\thefootnote’,’\arabic{footnote}’);
DefMacro(’\today’,sub { ExplodeText(today()); });

DefMacroI(cs, paramlist, expansion, %options);

Internal form of DefMacro where the control sequence and parameter list have
already been separated; useful for definitions from within code. Also, slightly
more efficient for macros with no arguments (use undef for paramlist), and
useful for obscure cases like defining \begin{something*} as a Macro.

Conditionals

DefConditional(prototype, test, %options);

Defines a conditional for prototype; a control sequence that is processed dur-
ing macro expansion time (in the LaTeXML::Core::Gullet). A condi-
tional corresponds to a TeX \if. If the test is undef, a \newif type of condi-
tional is defined, which is controlled with control sequences like \footrue and
\foofalse. Otherwise the test should be code($gullet,@args) (with
the control sequence’s arguments) that is called at expand time to determine the
condition. Depending on whether the result of that evaluation returns a true or
false value (in the usual Perl sense), the result of the expansion is either the first
or else code following, in the usual TeX sense.

DefConditional options are

scope=>scope,
locked=>boolean

See LaTeXML::Package/"Common Options".
skipper=>code($gullet)

This option is only used to define \ifcase.

Example:

DefConditional(’\ifmmode’,sub {
LookupValue(’IN_MATH’); });

DefConditionalI(cs, paramlist, test, %options);

Internal form of DefConditional where the control sequence and param-
eter list have already been parsed; useful for definitions from within code.
Also, slightly more efficient for conditinal with no arguments (use undef for
paramlist).

IfCondition($ifcs,@args)

IfCondition allows you to test a conditional from within perl. Thus
something like if(IfCondition(’\ifmmode’)){ domath } else
{ dotext } might be equivalent to TeX’s \ifmmode domath \else
dotext \fi.

77

Primitives

DefPrimitive(prototype, replacement, %options);

Defines a primitive control sequence; a primitive is processed during digestion
(in the LaTeXML::Core::Stomach), after macro expansion but before
Construction time. Primitive control sequences generate Boxes or Lists, gen-
erally containing basic Unicode content, rather than structured XML. Primitive
control sequences are also executed for side effect during digestion, effecting
changes to the LaTeXML::Core::State.

The replacement can be a string used as the text content of a Box to be created
(using the current font). Alternatively replacement can be code($stomach,@args)
(with the control sequence’s arguments) which is invoked at digestion time, prob-
ably for side-effect, but returning Boxes or Lists or nothing. replacement may
also be undef, which contributes nothing to the document, but does record the
TeX code that created it.

DefPrimitive options are

scope=>scope,
locked=>boolean

See LaTeXML::Package/"Common Options".
mode=> (’text’ | ’display math’ | ’inline math’)

Changes to this mode during digestion.
font=>{%fontspec}

Specifies the font to use (see LaTeXML::Package/"Fonts"). If the
font change is to only apply to material generated within this command,
you would also use <bounded=1>>; otherwise, the font will remain in
effect afterwards as for a font switching command.

bounded=>boolean
If true, TeX grouping (ie. {}) is enforced around this invocation.

requireMath=>boolean,
forbidMath=>boolean

specifies whether the given constructor can only appear, or cannot appear,
in math mode.

beforeDigest=>code($stomach)
supplies a hook to execute during digestion just before the main part
of the primitive is executed (and before any arguments have been read).
The code should either return nothing (return;) or a list of digested items
(Box’s,List,Whatsit). It can thus change the State and/or add to the digested
output.

afterDigest=>code($stomach)
supplies a hook to execute during digestion just after the main part of the
primitive ie executed. it should either return nothing (return;) or digested
items. It can thus change the State and/or add to the digested output.

78 APPENDIX C. MODULES

isPrefix=>boolean

indicates whether this is a prefix type of command; This is only used for
the special TeX assignment prefixes, like \global.

Example:

DefPrimitive(’\begingroup’,sub { $_[0]->begingroup; });

DefPrimitiveI(cs, paramlist, code($stomach,@args), %options);

Internal form of DefPrimitivewhere the control sequence and parameter list
have already been separated; useful for definitions from within code.

Registers

DefRegister(prototype, value, %options);

Defines a register with value as the initial value (a Number, Dimension, Glue,
MuGlue or Tokens --- I haven’t handled Box’s yet). Usually, the prototype
is just the control sequence, but registers are also handled by prototypes like
\count{Number}. DefRegister arranges that the register value can be ac-
cessed when a numeric, dimension, ... value is being read, and also defines the
control sequence for assignment.

Options are

readonly=>boolean

specifies if it is not allowed to change this value.

getter=>code(@args),

setter=>code($value,@args)

By default value is stored in the State’s Value table under a name con-
catenating the control sequence and argument values. These options allow
other means of fetching and storing the value.

Example:

DefRegister(’\pretolerance’,Number(100));

DefRegisterI(cs, paramlist, value, %options);

Internal form of DefRegister where the control sequence and parameter list
have already been parsed; useful for definitions from within code.

79

Constructors

DefConstructor(prototype, $replacement, %options);

The Constructor is where LaTeXML really starts getting interesting; invoking
the control sequence will generate an arbitrary XML fragment in the document
tree. More specifically: during digestion, the arguments will be read and di-
gested, creating a LaTeXML::Core::Whatsit to represent the object.
During absorbtion by the LaTeXML::Core::Document, the Whatsit
will generate the XML fragment according to replacement. The replacement
can be code($document,@args,%properties) which is called dur-
ing document absorbtion to create the appropriate XML (See the methods of
LaTeXML::Core::Document).

More conveniently, replacement can be an pattern: simply a bit of XML as a
string with certain substitutions to be made. The substitutions are of the follow-
ing forms:

#1, #2 ... #name

These are replaced by the corresponding argument (for #1) or property (for
#name) stored with the Whatsit. Each are turned into a string when it ap-
pears as in an attribute position, or recursively processed when it appears
as content.

&function(@args)

Another form of substituted value is prefixed with & which invokes a func-
tion. For example, &func(#1) would invoke the function func on
the first argument to the control sequence; what it returns will be inserted
into the document.

?test(pattern) or ?test(ifpattern)(elsepattern)
Patterns can be conditionallized using this form. The test is any of the
above expressions (eg. #1), considered true if the result is non-empty. Thus
?#1(<foo/>) would add the empty element foo if the first argument
were given.

ˆ

If the constuctor begins with ˆ, the XML fragment is allowed to float up
to a parent node that is allowed to contain it, according to the Document
Type.

The Whatsit property font is defined by default. Additional properties body
and trailer are defined when captureBody is true, or for environ-
ments. By using $whatsit->setProperty(key=>$value); within
afterDigest, or by using the properties option, other properties can be
added.

DefConstructor options are

scope=>scope,

80 APPENDIX C. MODULES

locked=>boolean
See LaTeXML::Package/"Common Options".

mode=>mode,
font=>{%fontspec},
bounded=>boolean,
requireMath=>boolean,
forbidMath=>boolean

These options are the same as for LaTeXML::Package/Primitives

reversion=>texstring | code($whatsit,#1,#2,...)
specifies the reversion of the invocation back into TeX tokens (if the default
reversion is not appropriate). The textstring string can include #1, #2...
The code is called with the $whatsit and digested arguments and must
return a list of Token’s.

alias=>control sequence
provides a control sequence to be used in the reversion instead of the
one defined in the prototype. This is a convenient alternative for rever-
sion when a ’public’ command conditionally expands into an internal one,
but the reversion should be for the public command.

sizer=>string | code($whatsit)
specifies how to compute (approximate) the displayed size of the object,
if that size is ever needed (typically needed for graphics generation). If
a string is given, it should contain only a sequence of #1 or #name to
access arguments and properties of the Whatsit: the size is computed from
these items layed out side-by-side. If code is given, it should return the
three Dimensions (width, height and depth). If neither is given, and the
reversion specification is of suitible format, it will be used for the sizer.

properties=>{%properties} | code($stomach,#1,#2...)
supplies additional properties to be set on the generated Whatsit. In the first
form, the values can be of any type, but if a value is a code references, it
takes the same args ($stomach,#1,#2,...) and should return the value; it is
executed before creating the Whatsit. In the second form, the code should
return a hash of properties.

beforeDigest=>code($stomach)
supplies a hook to execute during digestion just before the Whatsit is cre-
ated. The code should either return nothing (return;) or a list of digested
items (Box’s,List,Whatsit). It can thus change the State and/or add to the
digested output.

afterDigest=>code($stomach,$whatsit)
supplies a hook to execute during digestion just after the Whatsit is created
(and so the Whatsit already has its arguments and properties). It should
either return nothing (return;) or digested items. It can thus change the
State, modify the Whatsit, and/or add to the digested output.

81

beforeConstruct=>code($document,$whatsit)

supplies a hook to execute before constructing the XML (generated by re-
placement).

afterConstruct=>code($document,$whatsit)

Supplies code to execute after constructing the XML.

captureBody=>boolean | Token

if true, arbitrary following material will be accumulated into a ‘body’ until
the current grouping level is reverted, or till the Token is encountered if
the option is a Token. This body is available as the body property of the
Whatsit. This is used by environments and math.

nargs=>nargs

This gives a number of args for cases where it can’t be infered directly from
the prototype (eg. when more args are explicitly read by hooks).

DefConstructorI(cs, paramlist, replacement, %options);

Internal form of DefConstructor where the control sequence and parameter
list have already been separated; useful for definitions from within code.

DefMath(prototype, tex, %options);

A common shorthand constructor; it defines a control sequence that creates a
mathematical object, such as a symbol, function or operator application. The op-
tions given can effectively create semantic macros that contribute to the eventual
parsing of mathematical content. In particular, it generates an XMDual using the
replacement tex for the presentation. The content information is drawn from the
name and options

DefMath accepts the options:

scope=>scope,
locked=>boolean

See LaTeXML::Package/"Common Options".

font=>{%fontspec},
reversion=>reversion,
alias=>cs,
sizer=>sizer,
properties=>properties,
beforeDigest=>code($stomach),
afterDigest=>code($stomach,$whatsit),

These options are the same as for LaTeXML::Package/Constructors

name=>name

gives a name attribute for the object

82 APPENDIX C. MODULES

omcd=>cdname

gives the OpenMath content dictionary that name is from.

role=>grammatical role

adds a grammatical role attribute to the object; this specifies the grammati-
cal role that the object plays in surrounding expressions. This direly needs
documentation!

mathstyle=>(’display’ | ’text’ | ’script’ | ’scriptscript’)

Controls whether the this object will be presented in a specific mathstyle,
or according to the current setting of mathstyle.

scriptpos=>(’mid’ | ’post’)

Controls the positioning of any sub and super-scripts relative to this object;
whether they be stacked over or under it, or whether they will appear in
the usual position. TeX.pool defines a function doScriptpos() which
is useful for operators like \sum in that it sets to mid position when in
displaystyle, otherwise post.

stretchy=>boolean

Whether or not the object is stretchy when displayed.

operator role=>grammatical role,
operator scriptpos=>boolean,
operator stretchy=>boolean

These three are similar to role, scriptpos and stretchy, but are
used in unusual cases. These apply to the given attributes to the operator
token in the content branch.

nogroup=>boolean

Normally, these commands are digested with an implicit grouping around
them, localizing changes to fonts, etc; noggroup=>1 inhibits this.

Example:

DefMath(’\infty’,"\x{221E}",
role=>’ID’, meaning=>’infinity’);

DefMathI(cs, paramlist, tex, %options);

Internal form of DefMath where the control sequence and parameter list have
already been separated; useful for definitions from within code.

Environments

DefEnvironment(prototype, replacement, %options);

Defines an Environment that generates a specific XML fragment. replacement
is of the same form as for DefConstructor, but will generally include reference

83

to the #body property. Upon encountering a \begin{env}: the mode is
switched, if needed, else a new group is opened; then the environment name is
noted; the beforeDigest hook is run. Then the Whatsit representing the begin
command (but ultimately the whole environment) is created and the afterDi-
gestBegin hook is run. Next, the body will be digested and collected until
the balancing \end{env}. Then, any afterDigest hook is run, the environ-
ment is ended, finally the mode is ended or the group is closed. The body and
\end{env} whatsit are added to the \begin{env}’s whatsit as body and
trailer, respectively.

DefEnvironment takes the following options:

scope=>scope,
locked=>boolean

See LaTeXML::Package/"Common Options".
mode=>mode,
font=>{%fontspec}
requireMath=>boolean,
forbidMath=>boolean,

These options are the same as for LaTeXML::Package/Primitives

reversion=>reversion,
alias=>cs,
sizer=>sizer,
properties=>properties,
nargs=>nargs

These options are the same as for LaTeXML::Package/DefConstructor

beforeDigest=>code($stomach)
This hook is similar to that for DefConstructor, but it applies to the
\begin{environment} control sequence.

afterDigestBegin=>code($stomach,$whatsit)
This hook is similar to DefConstructor’s afterDigest but it ap-
plies to the \begin{environment} control sequence. The Whatsit is
the one for the beginning control sequence, but represents the environment
as a whole. Note that although the arguments and properties are present in
the Whatsit, the body of the environment is not yet available!

beforeDigestEnd=>code($stomach)
This hook is similar to DefConstructor’s beforeDigest but it ap-
plies to the \end{environment} control sequence.

afterDigest=>code($stomach,$whatsit)
This hook is simlar to DefConstructor’s afterDigest but it applies
to the \end{environment} control sequence. Note, however that the
Whatsit is only for the ending control sequence, not the Whatsit for the
environment as a whole.

84 APPENDIX C. MODULES

afterDigestBody=>code($stomach,$whatsit)
This option supplies a hook to be executed during digestion after the ending
control sequence has been digested (and all the 4 other digestion hook have
executed) and after the body of the environment has been obtained. The
Whatsit is the (useful) one representing the whole environment, and it now
does have the body and trailer available, stored as a properties.

Example:

DefConstructor(’\emph{}’,
"<ltx:emph>#1</ltx:emph", mode=>’text’);

DefEnvironmentI(name, paramlist, replacement, %options);

Internal form of DefEnvironment where the control sequence and parameter
list have already been separated; useful for definitions from within code.

Inputing Content and Definitions

FindFile(name, %options);

Find an appropriate file with the given name in the current directories in
SEARCHPATHS. If a file ending with .ltxml is found, it will be preferred.

Note that if the name starts with a recognized protocol (currently one of
(literal|http|https|ftp)) followed by a colon, the name is returned,
as is, and no search for files is carried out.

The options are:

type=>type
specifies the file type. If not set, it will search for both name.tex and
name.

noltxml=>1
inhibits searching for a LaTeXML binding (name.type.ltxml) to use
instead of the file itself.

notex=>1
inhibits searching for raw tex version of the file. That is, it will only search
for the LaTeXML binding.

InputContent(request, %options);

InputContent is used for cases when the file (or data) is plain TeX material
that is expected to contribute content to the document (as opposed to pure defini-
tions). A Mouth is opened onto the file, and subsequent reading and/or digestion
will pull Tokens from that Mouth until it is exhausted, or closed.

In some circumstances it may be useful to provide a string containing the TeX
material explicitly, rather than referencing a file. In this case, the literal
pseudo-protocal may be used:

85

InputContent(’literal:\textit{Hey}’);

If a file named $request.latexml exists, it will be read in as if it were a
latexml binding file, before processing. This can be used for adhoc customization
of the conversion of specific files, without modifying the source, or creating more
elaborate bindings.

The only option to InputContent is:

noerror=>boolean
Inhibits signalling an error if no appropriate file is found.

Input(request);

Input is analogous to LaTeX’s \input, and is used in cases where it isn’t
completely clear whether content or definitions is expected. Once a file is found,
the approach specified by InputContent or InputDefinitions is used,
depending on which type of file is found.

InputDefinitions(request, %options);

InputDefinitions is used for loading definitions, ie. various macros, set-
tings, etc, rather than document content; it can be used to load LaTeXML’s
binding files, or for reading in raw TeX definitions or style files. It reads and
processes the material completely before returning, even in the case of TeX def-
initions. This procedure optionally supports the conventions used for standard
LaTeX packages and classes (see RequirePackage and LoadClass).

Options for InputDefinitions are:

type=>type
the file type to search for.

noltxml=>boolean
inhibits searching for a LaTeXML binding; only raw TeX files will be
sought and loaded.

notex=>boolean
inhibits searching for raw TeX files, only a LaTeXML binding will be
sought and loaded.

noerror=>boolean
inhibits reporting an error if no appropriate file is found.

The following options are primarily useful when InputDefinitions is sup-
porting standard LaTeX package and class loading.

withoptions=>boolean
indicates whether to pass in any options from the calling class or package.

handleoptions=>boolean
indicates whether options processing should be handled.

86 APPENDIX C. MODULES

options=>[...]

specifies a list of options (in the ’package options’ sense) to be passed
(possibly in addition to any provided by the calling class or package).

after=>tokens | code($gullet)

provides tokens or code to be processed by a name.type-h@@k macro.

as class=>boolean

fishy option that indicates that this definitions file should be treated as if it
were defining a class; typically shows up in latex compatibility mode, or
AMSTeX.

A handy method to use most of the TeX distribution’s raw TeX definitions for
a package, but override only a few with LaTeXML bindings is by defining a
binding file, say tikz.sty.ltxml, to contain

InputDefinitions(’tikz’, type => ’sty’, noltxml => 1);

which would find and read in tizk.sty, and then follow it by a couple of
strategic LaTeXML definitions, DefMacro, etc.

Class and Packages

RequirePackage(package, %options);

Finds and loads a package implementation (usually package.sty.ltxml,
unless noltxml is specified)for the requested package. It returns the pathname
of the loaded package. The options are:

type=>type

specifies the file type (default sty.

options=>[...]

specifies a list of package options.

noltxml=>boolean

inhibits searching for the LaTeXML binding for the file (ie. name.type.ltxml

notex=>1

inhibits searching for raw tex version of the file. That is, it will only search
for the LaTeXML binding.

LoadClass(class, %options);

Finds and loads a class definition (usually class.cls.ltxml). It returns the
pathname of the loaded class. The only option is

options=>[...]

specifies a list of class options.

87

LoadPool(pool, %options);

Loads a pool file (usually pool.pool.ltxml), one of the top-level definition
files, such as TeX, LaTeX or AMSTeX. It returns the pathname of the loaded file.

DeclareOption(option, tokens | string | code($stomach));

Declares an option for the current package or class. The 2nd argument can be a
string (which will be tokenized and expanded) or tokens (which will be macro
expanded), to provide the value for the option, or it can be a code reference which
is treated as a primitive for side-effect.

If a package or class wants to accomodate options, it should start with one or
more DeclareOptions, followed by ProcessOptions().

PassOptions(name, ext, @options);

Causes the given @options (strings) to be passed to the package (if ext is sty)
or class (if ext is cls) named by name.

ProcessOptions(%options);

Processes the options that have been passed to the current package or class
in a fashion similar to LaTeX. The only option (to ProcessOptions is
inorder=>boolean indicating whehter the (package) options are processed
in the order they were used, like ProcessOptions*.

ExecuteOptions(@options);

Process the options given explicitly in @options.

AtBeginDocument(@stuff);

Arranges for @stuff to be carried out after the preamble, at the beginning of
the document. @stuff should typically be macro-level stuff, but carried out for
side effect; it should be tokens, tokens lists, strings (which will be tokenized), or
code($gullet) which would yeild tokens to be expanded.

This operation is useful for style files loaded with --preload or document
specific customization files (ie. ending with .latexml); normally the contents
would be executed before LaTeX and other style files are loaded and thus can be
overridden by them. By deferring the evaluation to begin-document time, these
contents can override those style files. This is likely to only be meaningful for
LaTeX documents.

AtEndDocument(@stuff)

Arranges for @stuff to be carried out just before \\end{document}. These
tokens can be used for side effect, or any content they generate will appear as the
last children of the document.

88 APPENDIX C. MODULES

Counters and IDs

NewCounter(ctr, within, %options);

Defines a new counter, like LaTeX’s \newcounter, but extended. It defines a
counter that can be used to generate reference numbers, and defines \thectr,
etc. It also defines an ”uncounter” which can be used to generate ID’s (xml:id)
for unnumbered objects. ctr is the name of the counter. If defined, within is the
name of another counter which, when incremented, will cause this counter to be
reset. The options are

idprefix=>string
Specifies a prefix to be used to generate ID’s when using this counter

nested
Not sure that this is even sane.

$num = CounterValue($ctr);

Fetches the value associated with the counter $ctr.

$tokens = StepCounter($ctr);

Analog of \stepcounter, steps the counter and returns the expansion of
\the$ctr. Usually you should use RefStepCounter($ctr) instead.

$keys = RefStepCounter($ctr);

Analog of \refstepcounter, steps the counter and returns a hash contain-
ing the keys refnum=$refnum, id=>$id>. This makes it suitable for use in a
properties option to constructors. The id is generated in parallel with the
reference number to assist debugging.

$keys = RefStepID($ctr);

Like to RefStepCounter, but only steps the ”uncounter”, and returns only
the id; This is useful for unnumbered cases of objects that normally get both a
refnum and id.

ResetCounter($ctr);

Resets the counter $ctr to zero.

GenerateID($document,$node,$whatsit,$prefix);

Generates an ID for nodes during the construction phase, useful for cases where
the counter based scheme is inappropriate. The calling pattern makes it appro-
priate for use in Tag, as in

Tag(’ltx:para’,afterClose=>sub { GenerateID(@_,’p’); })

If $node doesn’t already have an xml:id set, it computes an appropriate id by
concatenating the xml:id of the closest ancestor with an id (if any), the prefix (if
any) and a unique counter.

89

Document Model Constructors define how TeX markup will generate XML frag-
ments, but the Document Model is used to control exactly how those fragments are
assembled.

Tag(tag, %properties);

Declares properties of elements with the name tag. Note that Tag can set or
add properties to any element from any binding file, unlike the properties set on
control by DefPrimtive, DefConstructor, etc.. And, since the properties
are recorded in the current Model, they are not subject to TeX grouping; once set,
they remain in effect until changed or the end of the document.

The tag can be specified in one of three forms:

prefix:name matches specific name in specific namespace
prefix:* matches any tag in the specific namespace;

* matches any tag in any namespace.

There are two kinds of properties:

Scalar properties
For scalar properties, only a single value is returned for a given element.
When the property is looked up, each of the above forms is considered (the
specific element name, the namespace, and all elements); the first defined
value is returned.
The recognized scalar properties are:

autoOpen=>boolean
Specifies whether tag can be automatically opened if needed to insert
an element that can only be contained by tag. This property can help
match the more SGML-like LaTeX to XML.

autoClose=>boolean
Specifies whether this tag can be automatically closed if needed to
close an ancestor node, or insert an element into an ancestor. This
property can help match the more SGML-like LaTeX to XML.

Code properties
These properties provide a bit of code to be run at the times of certain
events associated with an element. All the code bits that match a given
element will be run, and since they can be added by any binding file, and
be specified in a random orders, a little bit of extra control is desirable.
Firstly, any early codes are run (eg afterOpen:early), then any nor-
mal codes (without modifier) are run, and finally any late codes are run (eg.
afterOpen:late).
Within each of those groups, the codes assigned for an element’s spe-
cific name are run first, then those assigned for its package and finally the
generic one (*); that is, the most specific codes are run first.

90 APPENDIX C. MODULES

When code properties are accumulated by Tag for normal or late events,
the code is appended to the end of the current list (if there were any previous
codes added); for early event, the code is prepended.
The recognized code properties are:

afterOpen=>code($document,$box)
Provides code to be run whenever a node with this tag is opened. It is
called with the document being constructed, and the initiating digested
object as arguments. It is called after the node has been created, and
after any initial attributes due to the constructor (passed to openEle-
ment) are added.
afterOpen:early or afterOpen:late can be used in place of
afterOpen; these will be run as a group before, or after (respec-
tively) the unmodified blocks.

afterClose=>code($document,$box)
Provides code to be run whenever a node with this tag is closed. It is
called with the document being constructed, and the initiating digested
object as arguments.
afterClose:early or afterClose:late can be used in place
of afterClose; these will be run as a group bfore, or after (respec-
tively) the unmodified blocks.

RelaxNGSchema(schemaname);

Specifies the schema to use for determining document model. You can leave off
the extension; it will look for schemaname.rng (and maybe eventually, .rnc
if that is ever implemented).

RegisterNamespace(prefix, URL);

Declares the prefix to be associated with the given URL. These prefixes may be
used in ltxml files, particularly for constructors, xpath expressions, etc. They
are not necessarily the same as the prefixes that will be used in the generated
document Use the prefix #default for the default, non-prefixed, namespace.
(See RegisterDocumentNamespace, as well as DocType or RelaxNGSchema).

RegisterDocumentNamespace(prefix, URL);

Declares the prefix to be associated with the given URL used within the gen-
erated XML. They are not necessarily the same as the prefixes used in code
(RegisterNamespace). This function is less rarely needed, as the namespace dec-
larations are generally obtained from the DTD or Schema themselves Use the
prefix #default for the default, non-prefixed, namespace. (See DocType or
RelaxNGSchema).

DocType(rootelement, publicid, systemid, %namespaces);

Declares the expected rootelement, the public and system ID’s of the document
type to be used in the final document. The hash %namespaces specifies the
namespaces prefixes that are expected to be found in the DTD, along with each

91

associated namespace URI. Use the prefix #default for the default namespace
(ie. the namespace of non-prefixed elements in the DTD).

The prefixes defined for the DTD may be different from the prefixes used in im-
plementation CODE (eg. in ltxml files; see RegisterNamespace). The generated
document will use the namespaces and prefixes defined for the DTD.

Document Rewriting During document construction, as each node gets closed, the
text content gets simplfied. We’ll call it applying ligatures, for lack of a better name.

DefLigature(regexp, %options);

Apply the regular expression (given as a string: ”/fa/fa/” since it will be con-
verted internally to a true regexp), to the text content. The only option is
fontTest=>code($font); if given, then the substitution is applied only
when fontTest returns true.

Predefined Ligatures combine sequences of ”.” or single-quotes into appropriate
Unicode characters.

DefMathLigature($string=$replacment,%options);>

A Math Ligature typically combines a sequence of math tokens (XMTok) into a
single one. A simple example is

DefMathLigature(":=" => ":=", role => ’RELOP’, meaning => ’assign’);

replaces the two tokens for colon and equals by a token representing assignment.
The options are those characterising an XMTok, namely: role, meaning and
name.

For more complex cases (recognizing numbers, for example), you may supply
a function matcher=CODE($document,$node)>, which is passed the current
document and the last math node in the sequence. It should examine $node
and any preceding nodes (using previousSibling) and return a list of
($n,$string,%attributes) to replace the $n nodes by a new one with
text content being $string content and the given attributes. If no replacement
is called for, CODE should return undef.

After document construction, various rewriting and augmenting of the document
can take place.

DefRewrite(%specification);

DefMathRewrite(%specification);

These two declarations define document rewrite rules that are applied to the doc-
ument tree after it has been constructed, but before math parsing, or any other
postprocessing, is done. The %specification consists of a sequence of key/value
pairs with the initial specs successively narrowing the selection of document

92 APPENDIX C. MODULES

nodes, and the remaining specs indicating how to modify or replace the selected
nodes.

The following select portions of the document:

label=>label

Selects the part of the document with label=$label

scope=>scope

The scope could be ”label:foo” or ”section:1.2.3” or something similar.
These select a subtree labelled ’foo’, or a section with reference number
”1.2.3”

xpath=>xpath

Select those nodes matching an explicit xpath expression.

match=>tex

Selects nodes that look like what the processing of tex would produce.

regexp=>regexp

Selects text nodes that match the regular expression.

The following act upon the selected node:

attributes=>hashref

Adds the attributes given in the hash reference to the node.

replace=>replacement

Interprets replacement as TeX code to generate nodes that will replace the
selected nodes.

Mid-Level support

$tokens = Expand($tokens);

Expands the given $tokens according to current definitions.

$boxes = Digest($tokens);

Processes and digestes the $tokens. Any arguments needed by control se-
quences in $tokens must be contained within the $tokens itself.

@tokens = Invocation($cs,@args);

Constructs a sequence of tokens that would invoke the token $cs on the argu-
ments.

RawTeX(’... tex code ...’);

RawTeX is a convenience function for including chunks of raw TeX (or LaTeX)
code in a Package implementation. It is useful for copying portions of the normal
implementation that can be handled simply using macros and primitives.

93

Let($token1,$token2);

Gives $token1 the same ‘meaning’ (definition) as $token2; like TeX’s \let.

StartSemiVerbatim(); ... ; EndSemiVerbatim();

Disable disable most TeX catcodes.

$tokens = Tokenize($string);

Tokenizes the $string using the standard catcodes, returning a LaTeXML::Core::Tokens.

$tokens = TokenizeInternal($string);

Tokenizes the $string according to the internal cattable (where @ is a letter),
returning a LaTeXML::Core::Tokens.

Argument Readers

ReadParameters($gullet,$spec);

Reads from $gullet the tokens corresponding to $spec (a Parameters ob-
ject).

DefParameterType(type, code($gullet,@values), %options);

Defines a new Parameter type, type, with code for its reader.

Options are:

reversion=>code($arg,@values);

This code is responsible for converting a previously parsed argument back
into a sequence of Token’s.

optional=>boolean

whether it is an error if no matching input is found.

novalue=>boolean

whether the value returned should contribute to argument lists, or simply
be passed over.

semiverbatim=>boolean

whether the catcode table should be modified before reading tokens.

<DefColumnType(proto, expansion);

Defines a new column type for tabular and arrays. proto is the prototype for the
pattern, analogous to the pattern used for other definitions, except that macro
being defined is a single character. The expansion is a string specifying what it
should expand into, typically more verbose column specification.

94 APPENDIX C. MODULES

Access to State

$value = LookupValue($name);

Lookup the current value associated with the the string $name.

AssignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the given
scoping rule.

Values are also used to specify most configuration parameters (which can there-
for also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the
source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

PushValue($name,@values);

This function, along with the next three are like AssignValue, but maintain
a global list of values. PushValue pushes the provided values onto the end of
a list. The data stored for $name is global and must be a LIST reference; it is
created if needed.

UnshiftValue($name,@values);

Similar to PushValue, but pushes a value onto the front of the list. The data
stored for $name is global and must be a LIST reference; it is created if needed.

PopValue($name);

Removes and returns the value on the end of the list named by $name. The data
stored for $name is global and must be a LIST reference. Returns undef if
there is no data in the list.

ShiftValue($name);

Removes and returns the first value in the list named by $name. The data stored
for $name is global and must be a LIST reference. Returns undef if there is
no data in the list.

LookupMapping($name,$key);

This function maintains a hash association named by $name. It returns the value
associated with $key within that mapping. The data stored for $name is global

95

and must be a HASH reference. Returns undef if there is no data associated
with $key in the mapping, or the mapping is not (yet) defined.

AssignMapping($name,$key,$value);

This function associates $value with $key within the mapping named by
$name. The data stored for $name is global and must be a HASH reference; it
is created if needed.

$value = LookupCatcode($char);

Lookup the current catcode associated with the the character $char.

AssignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made according
to the given scoping rule.

This method is also used to specify whether a given character is active in math
mode, by using math:$char for the character, and using a value of 1 to specify
that it is active.

$meaning = LookupMeaning($token);

Looks up the current meaning of the given $token which may be a Definition,
another token, or the token itself if it has not otherwise been defined.

$defn = LookupDefinition($token);

Looks up the current definition, if any, of the $token.

InstallDefinition($defn);

Install the Definition $defn into $STATE under its control sequence.

XEquals($token1,$token2)

Tests whether the two tokens are equal in the sense that they are either equal
tokens, or if defined, have the same definition.

Fonts

MergeFont(%fontspec);

Set the current font by merging the font style attributes with the current font. The
%fontspec specifies the properties of the desired font. Likely values include (the
values aren’t required to be in this set):

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : tiny, footnote, small, normal, large,

Large, LARGE, huge, Huge
color : any named color, default is black

96 APPENDIX C. MODULES

Some families will only be used in math. This function returns nothing so it can
be easily used in beforeDigest, afterDigest.

DeclareFontMap($name,$map,%options);

Declares a font map for the encoding $name. The map $map is an array of 128
or 256 entries, each element is either a unicode string for the representation of
that codepoint, or undef if that codepoint is not supported by this encoding. The
only option currently is family used because some fonts (notably cmr!) have
different glyphs in some font families, such as family=’typewriter’>.

FontDecode($code,$encoding,$implicit);

Returns the unicode string representing the given codepoint $code (an integer)
in the given font encoding $encoding. If $encoding is undefined, the usual
case, the current font encoding and font family is used for the lookup. Explicit
decoding is used when \\char or similar are invoked ($implicit is false),
and the codepoint must be represented in the fontmap, otherwise undef is re-
turned. Implicit decoding (ie. $implicit is true) occurs within the Stomach
when a Token’s content is being digested and converted to a Box; in that case
only the lower 128 codepoints are converted; all codepoints above 128 are as-
sumed to already be Unicode.

The font map for $encoding is automatically loaded if it has not already been
loaded.

FontDecodeString($string,$encoding,$implicit);

Returns the unicode string resulting from decoding the individual characters in
$string according to FontDecode, above.

LoadFontMap($encoding);

Finds and loads the font map for the encoding named $encoding, if it hasn’t
been loaded before. It looks for encoding.fontmap.ltxml, which would
typically define the font map using DeclareFontMap, possibly including ex-
tra maps for families like typewriter.

Color

$color=LookupColor($name);

Lookup the color object associated with $name.

DefColor($name,$color,$scope);

Associates the $name with the given $color (a color object), with the given
scoping.

DefColorModel($model,$coremodel,$tocore,$fromcore);

Defines a color model $model that is derived from the core color model
$coremodel. The two functions $tocore and $fromcore convert a color
object in that model to the core model, or from the core model to the derived
model. Core models are rgb, cmy, cmyk, hsb and gray.

97

Low-level Functions

CleanID($id);

Cleans an $id of disallowed characters, trimming space.

CleanLabel($label,$prefix);

Cleans a $label of disallowed characters, trimming space. The prefix
$prefix is prepended (or LABEL, if none given).

CleanIndexKey($key);

Cleans an index key, so it can be used as an ID.

CleanBibKey($key);

Cleans a bibliographic citation key, so it can be used as an ID.

CleanURL($url);

Cleans a url.

UTF($code);

Generates a UTF character, handy for the the 8 bit characters. For example,
UTF(0xA0) generates the non-breaking space.

@tokens = roman($number);

Formats the $number in (lowercase) roman numerals, returning a list of the
tokens.

@tokens = Roman($number);

Formats the $number in (uppercase) roman numerals, returning a list of the
tokens.

See also

See also LaTeXML::Global, LaTeXML::Common::Object, LaTeXML::Common::Error,
LaTeXML::Core::Token, LaTeXML::Core::Tokens, LaTeXML::Core::Box,
LaTeXML::Core::List, LaTeXML::Common::Number, LaTeXML::Common::Float,
LaTeXML::Common::Dimension, LaTeXML::Common::Glue, LaTeXML::Core::MuDimension,
LaTeXML::Core::MuGlue, LaTeXML::Core::Pair, LaTeXML::Core::PairList,
LaTeXML::Common::Color, LaTeXML::Core::Alignment, LaTeXML::Common::XML,
LaTeXML::Util::Radix.

LaTeXML::MathParser

Parses mathematics content

Description

LaTeXML::MathParser parses the mathematical content of a document. It uses
Parse::RecDescent and a grammar MathGrammar.

98 APPENDIX C. MODULES

Math Representation Needs description.

Possibile Customizations Needs description.

Convenience functions The following functions are exported for convenience in
writing the grammar productions.

$node = New($name,$content,%attributes);

Creates a new XMTok node with given $name (a string or undef), and
$content (a string or undef) (but at least one of name or content should
be provided), and attributes.

$node = Arg($node,$n);

Returns the $n-th argument of an XMApp node; 0 is the operator node.

Annotate($node,%attributes);

Add attributes to $node.

$node = Apply($op,@args);

Create a new XMApp node representing the application of the node $op to the
nodes @args.

$node = ApplyDelimited($op,@stuff);

Create a new XMApp node representing the application of the node $op to the
arguments found in @stuff. @stuff are delimited arguments in the sense that
the leading and trailing nodes should represent open and close delimiters and the
arguments are separated by punctuation nodes.

$node = InterpretDelimited($op,@stuff);

Similar to ApplyDelimited, this interprets sequence of delimited, punctu-
ated items as being the application of $op to those items.

$node = recApply(@ops,$arg);

Given a sequence of operators and an argument, forms the nested application
op(op(...(arg)))>.

$node = InvisibleTimes;

Creates an invisible times operator.

$boole = isMatchingClose($open,$close);

Checks whether $open and $close form a ‘normal’ pair of delimiters, or if
either is ”.”.

C.1. COMMON MODULES 99

$node = Fence(@stuff);

Given a delimited sequence of nodes, starting and ending with open/close de-
limiters, and with intermediate nodes separated by punctuation or such, attempt
to guess what type of thing is represented such as a set, absolute value, interval,
and so on.

This would be a good candidate for customization!

$node = NewFormulae(@stuff);

Given a set of formulas, construct a Formulae application, if there are more
than one, else just return the first.

$node = NewList(@stuff);

Given a set of expressions, construct a list application, if there are more than
one, else just return the first.

$node = LeftRec($arg1,@more);

Given an expr followed by repeated (op expr), compose the left recursive tree.
For example a + b + c - d would give (- (+ a b c) d)>

MaybeFunction($token);

Note the possible use of $token as a function, which may cause incorrect pars-
ing. This is used to generate warning messages.

C.1 Common Modules Documentation

LaTeXML::Common::Config

Configuration logic for LaTeXML

SYNPOSIS

use LaTeXML::Common::Config;
my $config = LaTeXML::Common::Config->new(

profile=>’name’,
timeout=>60,
...);

$config->read(\@ARGV);
$config->check;

my $value = $config->get($name);
$config->set($name,$value);
$config->delete($name);
my $bool = $config->exists($name);
my @keys = $config->keys;
my $options_hashref = $config->options;
my $config_clone = $config->clone;

100 APPENDIX C. MODULES

Description

Configuration management class for LaTeXML options. * Responsible for defining the
options interface and parsing the usual Perl command-line options syntax * Provides
the intuitive getters, setters, as well as hash methods for manipulating the option values.
* Also supports cloning into new configuration objects.

Methods

my $config = LaTeXML::Common::Config->new(%options);

Creates a new configuration object. Note that you should try not to provide your
own %options hash but rather create an empty configuration and use $config-
>read to read in the options.

$config->read(\@ARGV);
This is the main method for parsing in LaTeXML options. The input array should
either be @ARGV, e.g. when the options were provided from the command line
using the classic Getopt::Long syntax, or any other array reference that conforms
to that setup.

$config->check;

Ensures that the configuration obeys the given profile and performs a set of as-
signments of meaningful defaults (when needed) and normalizations (for relative
paths, etc).

my $value = $config->get($name);

Classic getter for the $value of an option $name.

$config->set($name,$value);

Classic setter for the $value of an option $name.

$config->delete($name);

Deletes option $name from the configuration.

my $bool = $config->exists($name);

Checks whether the key $name exists in the options hash of the configuration.
Similarly to Perl’s ”exist” for hashes, it returns true even when the option’s value
is undefined.

my @keys = $config->keys;

Similar to ”keys %hash” in Perl. Returns an array of all option names.

my $options hashref = $config->options;

Returns the actual hash reference that holds all options within the configuration
object.

my $config clone = $config->clone;

Clones $config into a new LaTeXML::Common::Config object, $config clone.

C.1. COMMON MODULES 101

OPTION SYNOPSIS

latexmlc [options]

Options:
--VERSION show version number.
--help shows this help message.
--destination=file specifies destination file.
--output=file [obsolete synonym for --destination]
--preload=module requests loading of an optional module;

can be repeated
--preamble=file loads a tex file containing document

frontmatter. MUST include \begin{document}
or equivalent

--postamble=file loads a tex file containing document
backmatter. MUST include \end{document}
or equivalent

--includestyles allows latexml to load raw *.sty file;
by default it avoids this.

--base=dir sets the current working directory
--path=dir adds dir to the paths searched for files,

modules, etc;
--log=file specifies log file (default: STDERR)
--autoflush=count Automatically restart the daemon after

"count" inputs. Good practice for vast
batch jobs. (default: 100)

--timeout=secs Timecap for conversions (default 600)
--expire=secs Timecap for server inactivity (default 600)
--address=URL Specify server address (default: localhost)
--port=number Specify server port (default: 3354)
--documentid=id assign an id to the document root.
--quiet suppress messages (can repeat)
--verbose more informative output (can repeat)
--strict makes latexml less forgiving of errors
--bibtex processes a BibTeX bibliography.
--xml requests xml output (default).
--tex requests TeX output after expansion.
--box requests box output after expansion

and digestion.
--format=name requests "name" as the output format.

Supported: tex,box,xml,html4,html5,xhtml
html implies html5

--noparse suppresses parsing math (default: off)
--parse=name enables parsing math (default: on)

and selects parser framework "name".
Supported: RecDescent, no

--profile=name specify profile as defined in
LaTeXML::Common::Config
Supported: standard|math|fragment|...
(default: standard)

102 APPENDIX C. MODULES

--mode=name Alias for profile
--cache_key=name Provides a name for the current option set,

to enable daemonized conversions without
needing re-initializing

--whatsin=chunk Defines the provided input chunk,
choose from document (default), fragment
and formula

--whatsout=chunk Defines the expected output chunk,
choose from document (default), fragment
and formula

--post requests a followup post-processing
--nopost forbids followup post-processing
--validate, --novalidate Enables (the default) or disables

validation of the source xml.
--omitdoctype omits the Doctype declaration,
--noomitdoctype disables the omission (the default)
--numbersections enables (the default) the inclusion of

section numbers in titles, crossrefs.
--nonumbersections disables the above
--timestamp provides a timestamp (typically a time and date)

to be embedded in the comments
--embed requests an embeddable XHTML snippet

(requires: --post,--profile=fragment)
DEPRECATED: Use --whatsout=fragment
TODO: Remove completely

--stylesheet specifies a stylesheet,
to be used by the post-processor.

--css=cssfile adds a css stylesheet to html/xhtml
(can be repeated)

--nodefaultresources disables processing built-in resources
--javscript=jsfile adds a link to a javascript file into

html/html5/xhtml (can be repeated)
--icon=iconfile specify a file to use as a "favicon"
--xsltparameter=name:value passes parameters to the XSLT.
--split requests splitting each document
--nosplit disables the above (default)
--splitat sets level to split the document
--splitpath=xpath sets xpath expression to use for

splitting (default splits at
sections, if splitting is enabled)

--splitnaming=(id|idrelative|label|labelrelative) specifies
how to name split files (idrelative).

--scan scans documents to extract ids,
labels, etc.
section titles, etc. (default)

--noscan disables the above
--crossref fills in crossreferences (default)
--nocrossref disables the above
--urlstyle=(server|negotiated|file) format to use for urls

(default server).

C.1. COMMON MODULES 103

--navigationtoc=(context|none) generates a table of contents
in navigation bar

--index requests creating an index (default)
--noindex disables the above
--splitindex Splits index into pages per initial.
--nosplitindex disables the above (default)
--permutedindex permutes index phrases in the index
--nopermutedindex disables the above (default)
--bibliography=file sets a bibliography file
--splitbibliography splits the bibliography into pages per

initial.
--nosplitbibliography disables the above (default)
--prescan carries out only the split (if

enabled) and scan, storing
cross-referencing data in dbfile
(default is complete processing)

--dbfile=dbfile sets file to store crossreferences
--sitedirectory=dir sets the base directory of the site
--sourcedirectory=dir sets the base directory of the

original TeX source
--source=input as an alternative to passing the input as

the last argument, after the option set
you can also specify it as the value here.
useful for predictable API calls

--mathimages converts math to images
(default for html4 format)

--nomathimages disables the above
--mathimagemagnification=mag specifies magnification factor
--presentationmathml converts math to Presentation MathML

(default for xhtml & html5 formats)
--pmml alias for --presentationmathml
--nopresentationmathml disables the above
--linelength=n formats presentation mathml to a

linelength max of n characters
--contentmathml converts math to Content MathML
--nocontentmathml disables the above (default)
--cmml alias for --contentmathml
--openmath converts math to OpenMath
--noopenmath disables the above (default)
--om alias for --openmath
--keepXMath preserves the intermediate XMath

representation (default is to remove)
--mathtex adds TeX annotation to parallel markup
--nomathtex disables the above (default)
--parallelmath use parallel math annotations (default)
--noparallelmath disable parallel math annotations
--plane1 use plane-1 unicode for symbols

(default, if needed)
--noplane1 do not use plane-1 unicode
--graphicimages converts graphics to images (default)

104 APPENDIX C. MODULES

--nographicimages disables the above
--graphicsmap=type.type specifies a graphics file mapping
--pictureimages converts picture environments to

images (default)
--nopictureimages disables the above
--svg converts picture environments to SVG
--nosvg disables the above (default)
--nocomments omit comments from the output
--inputencoding=enc specify the input encoding.
--debug=package enables debugging output for the named

package

If you want to provide a TeX snippet directly on input, rather than supply a file-
name, use the literal: protocol to prefix your snippet.

Options & Arguments

General Options

--verbose

Increases the verbosity of output during processing, used twice is pretty chatty.
Can be useful for getting more details when errors occur.

--quiet

Reduces the verbosity of output during processing, used twice is pretty silent.

--VERSION

Shows the version number of the LaTeXML package..

--debug=package

Enables debugging output for the named package. The package is given without
the leading LaTeXML::.

--base=dir

Sepcifies the base working directory for the conversion server. Useful when
converting sets of documents that use relative paths.

--log=file

Specifies the log file; be default any conversion messages are printed to
STDERR.

--help

Shows this help message.

C.1. COMMON MODULES 105

Source Options

--destination=file
Specifies the destination file; by default the XML is written to STDOUT.

--preload=module
Requests the loading of an optional module or package. This may be useful
if the TeX code does not specificly require the module (eg. through input or
usepackage). For example, use --preload=LaTeX.pool to force LaTeX
mode.

--preamble=file
Requests the loading of a tex file with document frontmatter, to be read in before
the converted document, but after all --preload entries.

Note that the given file MUST contain \begin{document} or an equivalent envi-
ronment start, when processing LaTeX documents.

If the file does not contain content to appear in the final document, but only
macro definitions and setting of internal counters, it is more appropriate to use
--preload instead.

--postamble=file
Requests the loading of a tex file with document backmatter, to be read in after
the converted document.

Note that the given file MUST contain \end{document} or an equivalent envi-
ronment end, when processing LaTeX documents.

--sourcedirectory=source
Specifies the directory where the original latex source is located. Unless La-
TeXML is run from that directory, or it can be determined from the xml filename,
it may be necessary to specify this option in order to find graphics and style files.

--path=dir
Add dir to the search paths used when searching for files, modules, style files,
etc; somewhat like TEXINPUTS. This option can be repeated.

--validate, --novalidate
Enables (or disables) the validation of the source XML document (the default).

--bibtex

Forces latexml to treat the file as a BibTeX bibliography. Note that the timing
is slightly different than the usual case with BibTeX and LaTeX. In the latter
case, BibTeX simply selects and formats a subset of the bibliographic entries;
the actual TeX expansion is carried out when the result is included in a LaTeX
document. In contrast, latexml processes and expands the entire bibliography;
the selection of entries is done during post-processing. This also means that any

106 APPENDIX C. MODULES

packages that define macros used in the bibliography must be specified using the
--preload option.

--inputencoding=encoding

Specify the input encoding, eg. --inputencoding=iso-8859-1. The en-
coding must be one known to Perl’s Encode package. Note that this only enables
the translation of the input bytes to UTF-8 used internally by LaTeXML, but
does not affect catcodes. In such cases, you should be using the inputenc pack-
age. Note also that this does not affect the output encoding, which is always
UTF-8.

TeX Conversion Options

--includestyles

This optional allows processing of style files (files with extensions sty, cls,
clo, cnf). By default, these files are ignored unless a latexml implementation
of them is found (with an extension of ltxml).

These style files generally fall into two classes: Those that merely affect docu-
ment style are ignorable in the XML. Others define new markup and document
structure, often using deeper LaTeX macros to achieve their ends. Although the
omission will lead to other errors (missing macro definitions), it is unlikely that
processing the TeX code in the style file will lead to a correct document.

--timeout=secs

Set time cap for conversion jobs, in seconds. Any job failing to convert in the
time range would return with a Fatal error of timing out. Default value is 600,
set to 0 to disable.

--nocomments

Normally latexml preserves comments from the source file, and adds a comment
every 25 lines as an aid in tracking the source. The option --nocomments discards
such comments.

--documentid=id

Assigns an ID to the root element of the XML document. This ID is generally
inherited as the prefix of ID’s on all other elements within the document. This
is useful when constructing a site of multiple documents so that all nodes have
unique IDs.

--strict

Specifies a strict processing mode. By default, undefined control sequences and
invalid document constructs (that violate the DTD) give warning messages, but
attempt to continue processing. Using --strict makes them generate fatal
errors.

C.1. COMMON MODULES 107

--post

Request post-processing, auto-enabled by any requested post-processor. Dis-
abled by default. If post-processing is enabled, the graphics and cross-
referencing processors are on by default.

Format Options

--format=(html|html5|html4|xhtml|xml|epub)

Specifies the output format for post processing. By default, it will be guessed
from the file extension of the destination (if given), with html implying html5,
xhtml implying xhtml and the default being xml, which you probably don’t
want.

The html5 format converts the material to html5 form with mathematics as
MathML; html5 supports SVG. html4 format converts the material to the ear-
lier html form, version 4, and the mathematics to png images. xhtml format
converts to xhtml and uses presentation MathML (after attempting to parse the
mathematics) for representing the math. html5 similarly converts math to pre-
sentation MathML. In these cases, any graphics will be converted to web-friendly
formats and/or copied to the destination directory. If you simply specify html,
it will treat that as html5.

For the default, xml, the output is left in LaTeXML’s internal xml, but the math
is parsed and converted to presentation MathML. For html, html5 and xhtml, a
default stylesheet is provided, but see the --stylesheet option.

--xml

Requests XML output; this is the default. DEPRECATED: use --format=xml
instead

--tex

Requests TeX output for debugging purposes; processing is only carried out
through expansion and digestion. This may not be quite valid TeX, since Uni-
code may be introduced.

--box

Requests Box output for debugging purposes; processing is carried out through
expansion and digestions, and the result is printed.

--profile

Variety of shorthand profiles. Note that the profiles come with a variety of preset
options. You can examine any of them in their resources/Profiles/name.opt
file.

Example: latexmlc --profile=math ’literal:1+2=3’

108 APPENDIX C. MODULES

--omitdoctype, --noomitdoctype
Omits (or includes) the document type declaration. The default is to include it if
the document model was based on a DTD.

--numbersections, --nonumbersections
Includes (default), or disables the inclusion of section, equation, etc, numbers in
the formatted document and crossreference links.

--stylesheet=xslfile
Requests the XSL transformation of the document using the given xslfile as
stylesheet. If the stylesheet is omitted, a ‘standard’ one appropriate for the format
(html4, html5 or xhtml) will be used.

--css=cssfile
Adds cssfile as a css stylesheet to be used in the transformed html/html5/xhtml.
Multiple stylesheets can be used; they are included in the html in the order given,
following the default ltx-LaTeXML.css (unless --nodefaultcss). The
stylesheet is copied to the destination directory, unless it is an absolute url.

Some stylesheets included in the distribution are --css=navbar-left Puts a nav-
igation bar on the left. (default omits navbar) --css=navbar-right Puts a navi-
gation bar on the left. --css=theme-blue A blue coloring theme for headings.
--css=amsart A style suitable for journal articles.

--javascript=jsfile
Includes a link to the javascript file jsfile, to be used in the transformed htm-
l/html5/xhtml. Multiple javascript files can be included; they are linked in the
html in the order given. The javascript file is copied to the destination directory,
unless it is an absolute url.

--icon=iconfile
Copies iconfile to the destination directory and sets up the linkage in the trans-
formed html/html5/xhtml to use that as the ”favicon”.

--nodefaultresources

Disables the copying and inclusion of resources added by the binding files; This
includes CSS, javascript or other files. This does not affect resources explicitly
requested by the --css or --javascript options.

--timestamp=timestamp
Provides a timestamp (typically a time and date) to be embedded in the com-
ments by the stock XSLT stylesheets. If you don’t supply a timestamp, the cur-
rent time and date will be used. (You can use --timestamp=0 to omit the
timestamp).

--xsltparameter=name:value
Passes parameters to the XSLT stylesheet. See the manual or the stylesheet itself
for available parameters.

C.1. COMMON MODULES 109

Site & Crossreferencing Options

--split, --nosplit
Enables or disables (default) the splitting of documents into multiple ‘pages’.
If enabled, the the document will be split into sections, bibliography, index and
appendices (if any) by default, unless --splitpath is specified.

--splitat=unit
Specifies what level of the document to split at. Should be one of chapter,
section (the default), subsection or subsubsection. For more con-
trol, see --splitpath.

--splitpath=xpath
Specifies an XPath expression to select nodes that will generate separate
pages. The default splitpath is //ltx:section | //ltx:bibliography | //ltx:appendix |
//ltx:index

Specifying

--splitpath="//ltx:section | //ltx:subsection
| //ltx:bibliography | //ltx:appendix | //ltx:index"

would split the document at subsections as well as sections.

--splitnaming=(id|idrelative|label|labelrelative)
Specifies how to name the files for subdocuments created by splitting. The values
id and label simply use the id or label of the subdocument’s root node for it’s
filename. idrelative and labelrelative use the portion of the id or
label that follows the parent document’s id or label. Furthermore, to impose
structure and uniqueness, if a split document has children that are also split, that
document (and it’s children) will be in a separate subdirectory with the name
index.

--scan, --noscan
Enables (default) or disables the scanning of documents for ids, labels, refer-
ences, indexmarks, etc, for use in filling in refs, cites, index and so on. It may
be useful to disable when generating documents not based on the LaTeXML
doctype.

--crossref, --nocrossref
Enables (default) or disables the filling in of references, hrefs, etc based on a
previous scan (either from --scan, or --dbfile) It may be useful to disable
when generating documents not based on the LaTeXML doctype.

--urlstyle=(server|negotiated|file)
This option determines the way that URLs within the documents are formatted,
depending on the way they are intended to be served. The default, server,

110 APPENDIX C. MODULES

eliminates unneccessary trailing index.html. With negotiated, the trail-
ing file extension (typically html or xhtml) are eliminated. The scheme file
preserves complete (but relative) urls so that the site can be browsed as files
without any server.

--navigationtoc=(context|none)
Generates a table of contents in the navigation bar; default is none. The ‘con-
text’ style of TOC, is somewhat verbose and reveals more detail near the current
page; it is most suitable for navigation bars placed on the left or right. Other
styles of TOC should be developed and added here, such as a short form.

--index, --noindex
Enables (default) or disables the generation of an index from indexmarks em-
bedded within the document. Enabling this has no effect unless there is an index
element in the document (generated by \printindex).

--splitindex, --nosplitindex
Enables or disables (default) the splitting of generated indexes into separate
pages per initial letter.

--bibliography=pathname
Specifies a bibliography generated from a BibTeX file to be used to fill in a bibli-
ography element. Hand-written bibliographies placed in a thebibliography
environment do not need this. The option has no effect unless there is an bibli-
ography element in the document (generated by \bibliography).

Note that this option provides the bibliography to be used to fill in the bibliogra-
phy element (generated by \bibliography); latexmlpost does not (currently)
directly process and format such a bibliography.

--splitbibliography, --nosplitbibliography
Enables or disables (default) the splitting of generated bibliographies into sepa-
rate pages per initial letter.

--prescan

By default latexmlpost processes a single document into one (or more; see
--split) destination files in a single pass. When generating a complicated site
consisting of several documents it may be advantageous to first scan through the
documents to extract and store (in dbfile) cross-referencing data (such as ids,
titles, urls, and so on). A later pass then has complete information allowing all
documents to reference each other, and also constructs an index and bibliography
that reflects the entire document set. The same effect (though less efficient) can
be achieved by running latexmlpost twice, provided a dbfile is specified.

--dbfile=file
Specifies a filename to use for the crossreferencing data when using two-pass
processing. This file may reside in the intermediate destination directory.

C.1. COMMON MODULES 111

--sitedirectory=dir

Specifies the base directory of the overall web site. Pathnames in the database
are stored in a form relative to this directory to make it more portable.

--embed

TODO: Deprecated, use --whatsout=fragment Requests an embeddable XHTML
div (requires: --post --format=xhtml), respectively the top division of the doc-
ument’s body. Caveat: This experimental mode is enabled only for fragment
profile and post-processed documents (to XHTML).

Math Options These options specify how math should be converted into other for-
mats. Multiple formats can be requested; how they will be combined depends on the
format and other options.

--noparse

Suppresses parsing math (default: parsing is on)

--parse=name

Enables parsing math (default: parsing is on) and selects parser framework
”name”. Supported: RecDescent, no Tip: --parse=no is equivalent to --noparse

--mathimages, --nomathimages

Requests or disables the conversion of math to images (png by default). Conver-
sion is the default for html4 format.

--mathsvg, --nomathsvg

Requests or disables the conversion of math to svg images.

--mathimagemagnification=factor

Specifies the magnification used for math images (both png and svg), if they are
made. Default is 1.75.

--presentationmathml, --nopresentationmathml

Requests or disables conversion of math to Presentation MathML. Conversion is
the default for xhtml and html5 formats.

--linelength=number

(Experimental) Line-breaks the generated Presentation MathML so that it is no
longer than number ‘characters’.

--plane1

Converts the content of Presentation MathML token elements to the appropriate
Unicode Plane-1 codepoints according to the selected font, when applicable (the
default).

112 APPENDIX C. MODULES

--hackplane1

Converts the content of Presentation MathML token elements to the appropri-
ate Unicode Plane-1 codepoints according to the selected font, but only for the
mathvariants double-struck, fraktur and script. This gives support for current (as
of August 2009) versions of Firefox and MathPlayer, provided a sufficient set of
fonts is available (eg. STIX).

--contentmathml, --nocontentmathml

Requests or disables conversion of math to Content MathML. Conversion is dis-
abled by default. Note that this conversion is only partially implemented.

--openmath

Requests or disables conversion of math to OpenMath. Conversion is disabled
by default. Note that this conversion is only partially implemented.

--keepXMath, --xmath

By default, when any of the MathML or OpenMath conversions are used, the
intermediate math representation will be removed; this option preserves it; it
will be used as secondary parallel markup, when it follows the options for other
math representations.

Graphics Options

--graphicimages, --nographicimages

Enables (default) or disables the conversion of graphics to web-appropriate for-
mat (png).

--graphicsmap=sourcetype.desttype

Specifies a mapping of graphics file types. Typically, graphics elements specify
a graphics file that will be converted to a more appropriate file target format;
for example, postscript files used for graphics with LaTeX will be converted to
png format for use on the web. As with LaTeX, when a graphics file is specified
without a file type, the system will search for the most appropriate target type
file.

When this option is used, it overrides and replaces the defaults and provides
a mapping of sourcetype to desttype. The option can be repeated to provide
several mappings, with the earlier formats preferred. If the desttype is omitted, it
specifies copying files of type sourcetype, unchanged.

The default settings is equivalent to having supplied the options: svg png gif jpg
jpeg eps.png ps.png ai.png pdf.png

The first formats are preferred and used unchanged, while the latter ones are
converted to png.

C.1. COMMON MODULES 113

--pictureimages, --nopictureimages

Enables (default) or disables the conversion of picture environments and pstricks
material into images.

--svg, --nosvg

Enables or disables (default) the conversion of picture environments and pstricks
material to SVG.

Daemon, Server and Client Options Options used only for daemonized conver-
sions, e.g. talking to a remote server via latexmlc, or local processing via the
LaTeXML::Plugin::latexmls plugin.

For reliable communication and a stable conversion experience, invoke latexmls
only through the latexmlc client (you need to set --expire to a positive value, in order
to request auto-spawning of a dedicated conversion server).

--autoflush=count

Automatically restart the daemon after converting ”count” inputs. Good practice
for vast batch jobs. (default: 100)

--expire=secs

Set an inactivity timeout value in seconds. If the server process is not given
any input for the specified duration, it will automatically terminate. The default
value is 600 seconds, set to 0 to never expire, -1 to entirely opt out of using an
independent server.

--address=URL

Specify server address (default: localhost)

--port=number

Specify server port (default: 3334 for math, 3344 for fragment and 3354 for
standard)

LaTeXML::Common::Object

Abstract base class for most LaTeXML objects.

Description

LaTeXML::Common::Object serves as an abstract base class for all other objects
(both the data objects and control objects). It provides for common methods for stringi-
fication and comparison operations to simplify coding and to beautify error reporting.

114 APPENDIX C. MODULES

Generic functions

$string = Stringify($object);

Returns a string identifying $object, for debugging. Works on any values and
objects, but invokes the stringify method on blessed objects. More informative
than the default perl conversion to a string.

$string = ToString($object);

Converts $object to string attempting, when possible, to generate straight text
without TeX markup. This is most useful for converting Tokens or Boxes to
document content or attribute values, or values to be used for pathnames, key-
words, etc. Generally, however, it is not possible to convert Whatsits generated
by Constructors into clean strings, without TeX markup. Works on any values
and objects, but invokes the toString method on blessed objects.

$boolean = Equals($x,$y);

Compares the two objects for equality. Works on any values and objects, but
invokes the equals method on blessed objects, which does a deep comparison of
the two objects.

$tokens = Revert($object);

Returns a Tokens list containing the TeX that would create $object. Note that
this is not necessarily the original TeX code; expansions or other substitutions
may have taken place.

Methods

$string = $object->stringify;

Returns a readable representation of $object, useful for debugging.

$string = $object->toString;

Returns the string content of $object; most useful for extracting a clean, us-
able, Unicode string from tokens or boxes that might representing a filename or
such. To the extent possible, this should provide a string that can be used as
XML content, or attribute values, or for filenames or whatever. However, control
sequences defined as Constructors may leave TeX code in the value.

$boole = $object->equals($other);

Returns whether $object and $other are equal. Should perform a deep compari-
sion, but the default implementation just compares for object identity.

$boole = $object->isaToken;

Returns whether $object is an LaTeXML::Core::Token.

$boole = $object->isaBox;

Returns whether $object is an LaTeXML::Core::Box.

C.1. COMMON MODULES 115

$boole = $object->isaDefinition;

Returns whether $object is an LaTeXML::Core::Definition.

$digested = $object->beDigested;

Does whatever is needed to digest the object, and return the digested representa-
tion. Tokens would be digested into boxes; Some objects, such as numbers can
just return themselves.

$object->beAbsorbed($document);

Do whatever is needed to absorb the $object into the $document, typically
by invoking appropriate methods on the $document.

LaTeXML::Common::Color

Abstract class representating colors using various color models; extends LaTeXML::Common::Object.

Exported functions

$color = Color($model,@components);

Creates a Color object using the given color model, and with the given com-
ponents. The core color models are rgb, hsv, cmy, cmyk and gray. The
components of colors using core color models are between 0 and 1 (inclusive)

Black, White
Constant color objects representing black and white, respectively.

Methods

$model = $color->model;

Return the name of the color model.

@components = $color->components;

Return the components of the color.

$other = $color->convert($tomodel);

Converts the color to another color model.

$string = $color->toString;

Returns a printed representation of the color.

$hex = $color->toHex;

Returns a string representing the color as RGB in hexadecimal (6 digits).

$other = $color->toCore();

Converts the color to one of the core colors.

116 APPENDIX C. MODULES

$complement = $color->complement();

Returns the complement color (works for colors in rgb, cmy and gray color
models).

$new = $color->mix($other,$fraction);

Returns a new color which results from mixing a $fraction of $color with
(1-$fraction) of color $other.

$new = $color->add($other);

Returns a new color made by adding the components of the two colors.

$new = $color->scale($m);

Returns a new color made by mulitiplying the components by $n.

$new = $color->multiply(@m);

Returns a new color made by mulitiplying the components by the corresponding
component from @n.

See also

Supported color models: LaTeXML::Common::Color::rgb, LaTeXML::Common::Color::hsb,
LaTeXML::Common::Color::cmy, LaTeXML::Common::Color::cmyk,
LaTeXML::Common::Color::gray and LaTeXML::Common::Color::Derived.

LaTeXML::Common::Color::rgb

Represents colors in the rgb color model: red, green and blue in [0..1]; extends
LaTeXML::Common::Color.

LaTeXML::Common::Color::hsb

Represents colors in the hsb color model: hue, saturation, brightness in [0..1]; extends
LaTeXML::Common::Color.

LaTeXML::Common::Color::cmy

Represents colors in the cmy color model: cyan, magenta and yellow [0..1]; extends
LaTeXML::Common::Color.

LaTeXML::Common::Color::cmyk

Represents colors in the cmyk color model: cyan, magenta, yellow and black in [0..1];
extends LaTeXML::Common::Color.

LaTeXML::Common::Color::gray

Represents colors in the gray color model: gray value in [0..1]; extends LaTeXML::Common::Color.

C.1. COMMON MODULES 117

LaTeXML::Common::Color::Derived

Represents colors in derived color models

Synopsis

LaTeXML::Common::Color::Derived represents colors in derived color mod-
els. These are used to support various color models defined and definable via the
xcolor package, such as colors where the components are in different ranges. It
extends LaTeXML::Common::Color.

LaTeXML::Common::Number

Representation of numbers; extends LaTeXML::Common::Object.

Exported functions

$number = Number($num);

Creates a Number object representing $num.

Methods

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

$string = $object->ptValue;

Return a value representing $object without the measurement unit (pt) with
limited decimal places.

$string = $object->pxValue;

Return an integer value representing $object in pixels. Uses the state variable
DPI (dots per inch).

$n = $object->valueOf;

Return the value in scaled points (ignoring shrink and stretch, if any).

$n = $object->smaller($other);

Return $object or $other, whichever is smaller

$n = $object->larger($other);

Return $object or $other, whichever is larger

$n = $object->absolute;

Return an object representing the absolute value of the $object.

118 APPENDIX C. MODULES

$n = $object->sign;

Return an integer: -1 for negatives, 0 for 0 and 1 for positives

$n = $object->negate;

Return an object representing the negative of the $object.

$n = $object->add($other);

Return an object representing the sum of $object and $other

$n = $object->subtract($other);

Return an object representing the difference between $object and $other

$n = $object->multiply($n);

Return an object representing the product of $object and $n (a regular num-
ber).

$n = $object->divide($n);

Return an object representing the (truncating) division of $object by $n (a
regular number).

$n = $object->divideround($n);

Return an object representing the (rounding) division of $object by $n (a
regular number).

LaTeXML::Common::Float

Representation of floating point numbers; extends LaTeXML::Common::Number.

Exported functions

$number = Float($num);

Creates a floating point object representing $num; This is not part of TeX, but
useful.

LaTeXML::Common::Dimension

Representation of dimensions; extends LaTeXML::Common::Number.

Exported functions

$dimension = Dimension($dim);

Creates a Dimension object. $num can be a string with the number and units
(with any of the usual TeX recognized units), or just a number standing for scaled
points (sp).

C.1. COMMON MODULES 119

LaTeXML::Common::Glue

Representation of glue, skips, stretchy dimensions; extends LaTeXML::Common::Dimension.

Exported functions

$glue = Glue($gluespec);

$glue = Glue($sp,$plus,$pfill,$minus,$mfill);

Creates a Glue object. $gluespec can be a string in the form that TeX recog-
nizes (number units optional plus and minus parts). Alternatively, the dimension,
plus and minus parts can be given separately: $pfill and $mfill are 0 (when
the $plus or $minus part is in sp) or 1,2,3 for fil, fill or filll.

LaTeXML::Common::Font

Representation of fonts

Description

LaTeXML::Common::Font represent fonts in LaTeXML. It extends LaTeXML::Common::Object.
This module defines Font objects. I’m not completely happy with the arrangement,

or maybe just the use of it, so I’m not going to document extensively at this point.
The attributes are

family : serif, sansserif, typewriter, caligraphic,
fraktur, script

series : medium, bold
shape : upright, italic, slanted, smallcaps
size : TINY, Tiny, tiny, SMALL, Small, small,

normal, Normal, large, Large, LARGE,
huge, Huge, HUGE, gigantic, Gigantic, GIGANTIC

color : any named color, default is black

They are usually merged against the current font, attempting to mimic the, some-
times counter-intuitive, way that TeX does it, particularly for math

Methods

$font->specialize($string);

In math mode, LaTeXML::Common::Font supports computing a font reflect-
ing how the specific $string would be printed when $font is active; This
(attempts to) handle the curious ways that lower case greek often doesn’t get a
different font. In particular, it recognizes the following classes of strings: single
latin letter, single uppercase greek character, single lowercase greek character,
digits, and others.

120 APPENDIX C. MODULES

LaTeXML::Common::Model

Represents the Document Model

Description

LaTeXML::Common::Model encapsulates information about the document model
to be used in converting a digested document into XML by the LaTeXML::Core::Document.
This information is based on the document schema (eg, DTD, RelaxNG), but is also
modified by package modules; thus the model may not be complete until digestion is
completed.

The kinds of information that is relevant is not only the content model (what each
element can contain contain), but also SGML-like information such as whether an el-
ement can be implicitly opened or closed, if needed to insert a new element into the
document.

Currently, only an approximation to the schema is understood and used. For exam-
ple, we only record that certain elements can appear within another; we don’t preserve
any information about required order or number of instances.

It extends LaTeXML::Common::Object.

Model Creation

$model = LaTeXML::Common::Model->new(%options);

Creates a new model. The only useful option is permissive=>1 which ig-
nores any DTD and allows the document to be built without following any par-
ticular content model.

Document Type

$model->setDocType($rootname,$publicid,$systemid,%namespaces);

Declares the expected rootelement, the public and system ID’s of the document
type to be used in the final document. The hash %namespaces specifies the
namespace prefixes that are expected to be found in the DTD, along with the
associated namespace URI. These prefixes may be different from the prefixes
used in implementation code (eg. in ltxml files; see RegisterNamespace). The
generated document will use the namespaces and prefixes defined here.

Namespaces Note that there are two namespace mappings between namespace URIs
and prefixes that are relevant to LaTeXML. The ‘code’ mapping is the one used
in code implementing packages, and in particular, constructors defined within those
packages. The prefix ltx is used consistently to refer to LaTeXML’s own namespace
(http://dlmf.nist.gov/LaTeXML).

The other mapping, the ‘document’ mapping, is used in the created document; this
may be different from the ‘code’ mapping in order to accommodate DTDs, for example,
or for use by other applications that expect a rigid namespace mapping.

C.1. COMMON MODULES 121

$model->registerNamespace($prefix,$namespace url);

Register $prefix to stand for the namespace $namespace url. This prefix
can then be used to create nodes in constructors and Document methods. It will
also be recognized in XPath expressions.

$model->getNamespacePrefix($namespace,$forattribute,$probe);

Return the prefix to use for the given $namespace. If $forattribute is
nonzero, then it looks up the prefix as appropriate for attributes. If $probe is
nonzero, it only probes for the prefix, without creating a missing entry.

$model->getNamespace($prefix,$probe);

Return the namespace url for the given $prefix.

Model queries

$boole = $model->canContain($tag,$childtag);

Returns whether an element with qualified name $tag can contain an ele-
ment with qualified name $childtag. The tag names #PCDATA, #Document,
#Comment and #ProcessingInstruction are specially recognized.

$boole = $model->canHaveAttribute($tag,$attribute);

Returns whether an element with qualified name $tag is allowed to have an
attribute with the given name.

See also

LaTeXML::Common::Model::DTD, LaTeXML::Common::Model::RelaxNG.

LaTeXML::Common::Model::DTD

Represents DTD document models; extends LaTeXML::Common::Model.

LaTeXML::Common::Model::RelaxNG

Represents RelaxNG document models; extends LaTeXML::Common::Model.

LaTeXML::Common::Error

Error and Progress Reporting and Logging support.

Description

LaTeXML::Common::Error does some simple stack analysis to generate more
informative, readable, error messages for LaTeXML. Its routines are used by the error
reporting methods from LaTeXML::Global, namely Warn, Error and Fatal.

122 APPENDIX C. MODULES

Error Reporting The Error reporting functions all take a similar set of arguments,
the differences are in the implied severity of the situation, and in the amount of detail
that will be reported.

The $category is a string naming a broad category of errors, such as ”unde-
fined”. The set is open-ended, but see the manual for a list of recognized categories.
$object is the object whose presence or lack caused the problem.

$where indicates where the problem occurred; passs in the $gullet or
$stomach if the problem occurred during expansion or digestion; pass in a doc-
ument node if it occurred there. A string will be used as is; if an undefined value is
used, the error handler will try to guess.

The $message should be a somewhat concise, but readable, explanation of the
problem, but ought to not refer to the document or any ”incident specific” information,
so as to support indexing in build systems. @details provides additional lines of
information that may be indident specific.

Fatal($category,$object,$where,$message,@details);

Signals an fatal error, printing $message along with some context. In verbose
mode a stack trace is printed.

Error($category,$object,$where,$message,@details);

Signals an error, printing $message along with some context. If in strict mode,
this is the same as Fatal(). Otherwise, it attempts to continue processing..

Warn($category,$object,$where,$message,@details);

Prints a warning message along with a short indicator of the input context, unless
verbosity is quiet.

Info($category,$object,$where,$message,@details);

Prints an informational message along with a short indicator of the input context,
unless verbosity is quiet.

NoteProgress($message);

Prints $message unless the verbosity level below 0. Typically just a short mark
to indicate motion, but can be longer; provide your own newlines, if needed.

NoteProgressDetailed($message);

Like NoteProgress, but for noiser progress, only prints when verbosity >=
1.

Internal Functions No user serviceable parts inside. These symbols are not ex-
ported.

$string = LaTeXML::Common::Error::generateMessage($typ,$msg,$lng,@more);

Constructs an error or warning message based on the current stack and the cur-
rent location in the document. $typ is a short string characterizing the type of

C.2. CORE MODULES 123

message, such as ”Error”. $msg is the error message itself. If $lng is true,
will generate a more verbose message; this also uses the VERBOSITY set in the
$STATE. Longer messages will show a trace of the objects invoked on the stack,
@more are additional strings to include in the message.

$string = LaTeXML::Common::Error::stacktrace;

Return a formatted string showing a trace of the stackframes up until this function
was invoked.

@objects = LaTeXML::Common::Error::objectStack;

Return a list of objects invoked on the stack. This procedure only considers those
stackframes which involve methods, and the objects are those (unique) objects
that the method was called on.

C.2 Core Modules Documentation

LaTeXML::Core::State

Stores the current state of processing.

Description

A LaTeXML::Core::State object stores the current state of processing. It record-
ing catcodes, variables values, definitions and so forth, as well as mimicing TeX’s
scoping rules.

Access to State and Processing

$STATE->getStomach;

Returns the current Stomach used for digestion.

$STATE->getModel;

Returns the current Model representing the document model.

Scoping The assignment methods, described below, generally take a $scope argu-
ment, which determines how the assignment is made. The allowed values and thier
implications are:

global : global assignment.
local : local assignment, within the current grouping.
undef : global if \global preceded, else local (default)
<name> : stores the assignment in a ‘scope’ which

can be loaded later.

If no scoping is specified, then the assignment will be global if a preceding
\global has set the global flag, otherwise the value will be assigned within the cur-
rent grouping.

124 APPENDIX C. MODULES

$STATE->pushFrame;

Starts a new level of grouping. Note that this is lower level than \bgroup; See
LaTeXML::Core::Stomach.

$STATE->popFrame;

Ends the current level of grouping. Note that this is lower level than \egroup;
See LaTeXML::Core::Stomach.

$STATE->setPrefix($prefix);

Sets a prefix (eg. global for \global, etc) for the next operation, if applica-
ble.

$STATE->clearPrefixes;

Clears any prefixes.

Values

$value = $STATE->lookupValue($name);

Lookup the current value associated with the the string $name.

$STATE->assignValue($name,$value,$scope);

Assign $value to be associated with the the string $name, according to the given
scoping rule.

Values are also used to specify most configuration parameters (which can there-
for also be scoped). The recognized configuration parameters are:

VERBOSITY : the level of verbosity for debugging
output, with 0 being default.

STRICT : whether errors (eg. undefined macros)
are fatal.

INCLUDE_COMMENTS : whether to preserve comments in the
source, and to add occasional line
number comments. (Default true).

PRESERVE_NEWLINES : whether newlines in the source should
be preserved (not 100% TeX-like).
By default this is true.

SEARCHPATHS : a list of directories to search for
sources, implementations, etc.

$STATE->pushValue($name,$value);

This is like ->assign, but pushes a value onto the end of the stored value,
which should be a LIST reference. Scoping is not handled here (yet?), it simply
pushes the value onto the last binding of $name.

$boole = $STATE->isValuebound($type,$name,$frame);

Returns whether the value $name is bound. If $frame is given, check whether
it is bound in the $frame-th frame, with 0 being the top frame.

C.2. CORE MODULES 125

Category Codes

$value = $STATE->lookupCatcode($char);

Lookup the current catcode associated with the the character $char.

$STATE->assignCatcode($char,$catcode,$scope);

Set $char to have the given $catcode, with the assignment made according
to the given scoping rule.

This method is also used to specify whether a given character is active in math
mode, by using math:$char for the character, and using a value of 1 to specify
that it is active.

Definitions

$defn = $STATE->lookupMeaning($token);

Get the ”meaning” currently associated with $token, either the definition (if
it is a control sequence or active character) or the token itself if it shouldn’t be
executable. (See LaTeXML::Core::Definition)

$STATE->assignMeaning($token,$defn,$scope);

Set the definition associated with $token to $defn. If $globally is true, it
makes this the global definition rather than bound within the current group. (See
LaTeXML::Core::Definition, and LaTeXML::Package)

$STATE->installDefinition($definition, $scope);

Install the definition into the current stack frame under its normal control se-
quence.

Named Scopes Named scopes can be used to set variables or redefine control se-
quences within a scope other than the standard TeX grouping. For example, the La-
TeX implementation will automatically activate any definitions that were defined with
a named scope of, say ”section:4”, during the portion of the document that has the
section counter equal to 4. Similarly, a scope named ”label:foo” will be activated in
portions of the document where \label{foo} is in effect.

$STATE->activateScope($scope);

Installs any definitions that were associated with the named $scope. Note that
these are placed in the current grouping frame and will disappear when that
grouping ends.

$STATE->deactivateScope($scope);

Removes any definitions that were associated with the named $scope. Nor-
mally not needed, since a scopes definitions are locally bound anyway.

126 APPENDIX C. MODULES

$sp = $STATE->convertUnit($unit);

Converts a TeX unit of the form ’10em’ (or whatever TeX unit) into scaled
points. (Defined here since in principle it could track the size of ems and so forth
(but currently doesn’t))

LaTeXML::Core::Mouth

Tokenize the input.

Description

A LaTeXML::Core::Mouth (and subclasses) is responsible for tokenizing, ie. con-
verting plain text and strings into LaTeXML::Core::Tokens according to the
current category codes (catcodes) stored in the LaTeXML::Core::State.

It extends LaTeXML::Common::Object.

Creating Mouths

$mouth = LaTeXML::Core::Mouth->create($source, %options);

Creates a new Mouth of the appropriate class for reading from $source.

$mouth = LaTeXML::Core::Mouth->new($string, %options);

Creates a new Mouth reading from $string.

Methods

$token = $mouth->readToken;

Returns the next LaTeXML::Core::Token from the source.

$boole = $mouth->hasMoreInput;

Returns whether there is more data to read.

$string = $mouth->getLocator;

Return a description of current position in the source, for reporting errors.

$tokens = $mouth->readTokens;

Reads all remaining tokens in the mouth, removing any trailing space catcode
tokens

$lines = $mouth->readRawLine;

Reads a raw (untokenized) line from $mouth, or undef if none is found.

LaTeXML::Core::Gullet

Expands expandable tokens and parses common token sequences.

C.2. CORE MODULES 127

Description

A LaTeXML::Core::Gullet reads tokens (LaTeXML::Core::Token) from
a LaTeXML::Core::Mouth. It is responsible for expanding macros and ex-
pandable control sequences, if the current definition associated with the token in the
LaTeXML::Core::State is an LaTeXML::Core::Definition::Expandable
definition. The LaTeXML::Core::Gullet also provides a variety of methods for
reading various types of input such as arguments, optional arguments, as well as for
parsing LaTeXML::Common::Number, LaTeXML::Common::Dimension,
etc, according to TeX’s rules.

It extends LaTeXML::Common::Object.

Managing Input

$gullet->openMouth($mouth, $noautoclose);

Is this public? Prepares to read tokens from $mouth. If $noautoclose is true,
the Mouth will not be automatically closed when it is exhausted.

$gullet->closeMouth;

Is this public? Finishes reading from the current mouth, and reverts to the one in
effect before the last openMouth.

$gullet->flush;

Is this public? Clears all inputs.

$gullet->getLocator;

Returns an object describing the current location in the input stream.

Low-level methods

$tokens = $gullet->expandTokens($tokens);

Return the LaTeXML::Core::Tokens resulting from expanding all the to-
kens in $tokens. This is actually only used in a few circumstances where the
arguments to an expandable need explicit expansion; usually expansion happens
at the right time.

$token = $gullet->readToken;

Return the next token from the input source, or undef if there is no more input.

$token = $gullet->readXToken($toplevel,$commentsok);

Return the next unexpandable token from the input source, or undef if there is
no more input. If the next token is expandable, it is expanded, and its expansion
is reinserted into the input. If $commentsok, a comment read or pending will
be returned.

$gullet->unread(@tokens);

Push the @tokens back into the input stream to be re-read.

128 APPENDIX C. MODULES

Mid-level methods

$token = $gullet->readNonSpace;

Read and return the next non-space token from the input after discarding any
spaces.

$gullet->skipSpaces;

Skip the next spaces from the input.

$gullet->skip1Space($expanded);

Skip the next token from the input if it is a space. If C($expanded> is true,
expands (like <one optional space >).

$tokens = $gullet->readBalanced;

Read a sequence of tokens from the input until the balancing ’}’ (assuming the
’{’ has already been read). Returns a LaTeXML::Core::Tokens, except in
an array context, returns the collected tokens and the closing token.

$boole = $gullet->ifNext($token);

Returns true if the next token in the input matches $token; the possibly match-
ing token remains in the input.

$tokens = $gullet->readMatch(@choices);

Read and return whichever of @choices matches the input, or undef if none
do. Each of the choices is an LaTeXML::Core::Tokens.

$keyword = $gullet->readKeyword(@keywords);

Read and return whichever of @keywords (each a string) matches the input, or
undef if none do. This is similar to readMatch, but case and catcodes are ignored.
Also, leading spaces are skipped.

$tokens = $gullet->readUntil(@delims);

Read and return a (balanced) sequence of LaTeXML::Core::Tokens until
matching one of the tokens in @delims. In a list context, it also returns which
of the delimiters ended the sequence.

High-level methods

$tokens = $gullet->readArg;

Read and return a TeX argument; the next Token or Tokens (if surrounded by
braces).

$tokens = $gullet->readOptional($default);

Read and return a LaTeX optional argument; returns $default if there is no
’[’, otherwise the contents of the [].

C.2. CORE MODULES 129

$thing = $gullet->readValue($type);

Reads an argument of a given type: one of ’Number’, ’Dimension’, ’Glue’,
’MuGlue’ or ’any’.

$value = $gullet->readRegisterValue($type);

Read a control sequence token (and possibly it’s arguments) that names a register,
and return the value. Returns undef if the next token isn’t such a register.

$number = $gullet->readNumber;

Read a LaTeXML::Common::Number according to TeX’s rules of the vari-
ous things that can be used as a numerical value.

$dimension = $gullet->readDimension;

Read a LaTeXML::Common::Dimension according to TeX’s rules of the
various things that can be used as a dimension value.

$mudimension = $gullet->readMuDimension;

Read a LaTeXML::Core::MuDimension according to TeX’s rules of the
various things that can be used as a mudimension value.

$glue = $gullet->readGlue;

Read a LaTeXML::Common::Glue according to TeX’s rules of the various
things that can be used as a glue value.

$muglue = $gullet->readMuGlue;

Read a LaTeXML::Core::MuGlue according to TeX’s rules of the various
things that can be used as a muglue value.

LaTeXML::Core::Stomach

Digests tokens into boxes, lists, etc.

Description

LaTeXML::Core::Stomach digests tokens read from a LaTeXML::Core::Gullet
(they will have already been expanded).

It extends LaTeXML::Common::Object.
There are basically four cases when digesting a LaTeXML::Core::Token:

A plain character

is simply converted to a LaTeXML::Core::Box recording the current
LaTeXML::Common::Font.

130 APPENDIX C. MODULES

A primitive

If a control sequence represents LaTeXML::Core::Definition::Primitive,
the primitive is invoked, executing its stored subroutine. This is typically done
for side effect (changing the state in the LaTeXML::Core::State), al-
though they may also contribute digested material. As with macros, any argu-
ments to the primitive are read from the LaTeXML::Core::Gullet.

Grouping (or environment bodies)

are collected into a LaTeXML::Core::List.

Constructors

A special class of control sequence, called a LaTeXML::Core::Definition::Constructor
produces a LaTeXML::Core::Whatsit which remembers the control se-
quence and arguments that created it, and defines its own translation into XML
elements, attributes and data. Arguments to a constructor are read from the gullet
and also digested.

Digestion

$list = $stomach->digestNextBody;

Return the digested LaTeXML::Core::List after reading and digesting a
‘body’ from the its Gullet. The body extends until the current level of boxing or
environment is closed.

$list = $stomach->digest($tokens);

Return the LaTeXML::Core::List resuting from digesting the given to-
kens. This is typically used to digest arguments to primitives or constructors.

@boxes = $stomach->invokeToken($token);

Invoke the given (expanded) token. If it corresponds to a Primitive or Construc-
tor, the definition will be invoked, reading any needed arguments fromt he cur-
rent input source. Otherwise, the token will be digested. A List of Box’s, Lists,
Whatsit’s is returned.

@boxes = $stomach->regurgitate;

Removes and returns a list of the boxes already digested at the current level. This
peculiar beast is used by things like \choose (which is a Primitive in TeX, but a
Constructor in LaTeXML).

Grouping

$stomach->bgroup;

Begin a new level of binding by pushing a new stack frame, and a new level of
boxing the digested output.

C.2. CORE MODULES 131

$stomach->egroup;

End a level of binding by popping the last stack frame, undoing whatever bind-
ings appeared there, and also decrementing the level of boxing.

$stomach->begingroup;

Begin a new level of binding by pushing a new stack frame.

$stomach->endgroup;

End a level of binding by popping the last stack frame, undoing whatever bind-
ings appeared there.

Modes

$stomach->beginMode($mode);

Begin processing in $mode; one of ’text’, ’display-math’ or ’inline-math’. This
also begins a new level of grouping and switches to a font appropriate for the
mode.

$stomach->endMode($mode);

End processing in $mode; an error is signalled if $stomach is not currently in
$mode. This also ends a level of grouping.

LaTeXML::Core::Document

Represents an XML document under construction.

Description

A LaTeXML::Core::Document represents an XML document being con-
structed by LaTeXML, and also provides the methods for constructing it. It extends
LaTeXML::Common::Object.

LaTeXML will have digested the source material resulting in a LaTeXML::Core::List
(from a LaTeXML::Core::Stomach) of LaTeXML::Core::Boxs, LaTeXML::Core::Whatsits
and sublists. At this stage, a document is created and it is responsible for ‘ab-
sorbing’ the digested material. Generally, the LaTeXML::Core::Boxs and
LaTeXML::Core::Lists create text nodes, whereas the LaTeXML::Core::Whatsits
create XML document fragments, elements and attributes according to the defining
LaTeXML::Core::Definition::Constructor.

Most document construction occurs at a current insertion point where ma-
terial will be added, and which moves along with the inserted material. The
LaTeXML::Common::Model, derived from various declarations and document
type, is consulted to determine whether an insertion is allowed and when elements may
need to be automatically opened or closed in order to carry out a given insertion. For
example, a subsection element will typically be closed automatically when it is
attempted to open a section element.

132 APPENDIX C. MODULES

In the methods described here, the term $qname is used for XML qualified names.
These are tag names with a namespace prefix. The prefix should be one registered with
the current Model, for use within the code. This prefix is not necessarily the same as
the one used in any DTD, but should be mapped to the a Namespace URI that was
registered for the DTD.

The arguments named $node are an XML::LibXML node.
The methods here are grouped into three sections covering basic access to the docu-

ment, insertion methods at the current insertion point, and less commonly used, lower-
level, document manipulation methods.

Accessors

$doc = $document->getDocument;

Returns the XML::LibXML::Document currently being constructed.

$doc = $document->getModel;

Returns the LaTeXML::Common::Model that represents the document
model used for this document.

$node = $document->getNode;

Returns the node at the current insertion point during construction. This node is
considered still to be ‘open’; any insertions will go into it (if possible). The node
will be an XML::LibXML::Element, XML::LibXML::Text or, initially,
XML::LibXML::Document.

$node = $document->getElement;

Returns the closest ancestor to the current insertion point that is an Element.

$node = $document->getChildElement($node);

Returns a list of the child elements, if any, of the $node.

@nodes = $document->getLastChildElement($node);

Returns the last child element of the $node, if it has one, else undef.

$node = $document->getFirstChildElement($node);

Returns the first child element of the $node, if it has one, else undef.

@nodes = $document->findnodes($xpath,$node);

Returns a list of nodes matching the given $xpath expression. The context
node for $xpath is $node, if given, otherwise it is the document element.

$node = $document->findnode($xpath,$node);

Returns the first node matching the given $xpath expression. The context node
for $xpath is $node, if given, otherwise it is the document element.

C.2. CORE MODULES 133

$node = $document->getNodeQName($node);

Returns the qualified name (localname with namespace prefix) of the given
$node. The namespace prefix mapping is the code mapping of the current doc-
ument model.

$boolean = $document->canContain($tag,$child);

Returns whether an element $tag can contain a child $child. $tag
and $child can be nodes, qualified names of nodes (prefix:localname),
or one of a set of special symbols #PCDATA, #Comment, #Document or
#ProcessingInstruction.

$boolean = $document->canContainIndirect($tag,$child);

Returns whether an element $tag can contain a child $child either directly,
or after automatically opening one or more autoOpen-able elements.

$boolean = $document->canContainSomehow($tag,$child);

Returns whether an element $tag can contain a child $child either directly,
or after automatically opening one or more autoOpen-able elements.

$boolean = $document->canHaveAttribute($tag,$attrib);

Returns whether an element $tag can have an attribute named $attrib.

$boolean = $document->canAutoOpen($tag);

Returns whether an element $tag is able to be automatically opened.

$boolean = $document->canAutoClose($node);

Returns whether the node $node can be automatically closed.

Construction Methods These methods are the most common ones used for con-
struction of documents. They generally operate by creating new material at the current
insertion point. That point initially is just the document itself, but it moves along to
follow any new insertions. These methods also adapt to the document model so as to
automatically open or close elements, when it is required for the pending insertion and
allowed by the document model (See Tag).

$xmldoc = $document->finalize;

This method finalizes the document by cleaning up various temporary attributes,
and returns the XML::LibXML::Document that was constructed.

@nodes = $document->absorb($digested);

Absorb the $digested object into the document at the current insertion point
according to its type. Various of the the other methods are invoked as needed,
and document nodes may be automatically opened or closed according to the
document model.

134 APPENDIX C. MODULES

This method returns the nodes that were constructed. Note that the nodes may
include children of other nodes, and nodes that may already have been removed
from the document (See filterChildren and filterDeleted). Also, text insertions
are often merged with existing text nodes; in such cases, the whole text node is
included in the result.

$document->insertElement($qname,$content,%attributes);

This is a shorthand for creating an element $qname (with given attributes),
absorbing $content from within that new node, and then closing it. The
$content must be digested material, either a single box, or an array of boxes,
which will be absorbed into the element. This method returns the newly created
node, although it will no longer be the current insertion point.

$document->insertMathToken($string,%attributes);

Insert a math token (XMTok) containing the string $string with the given at-
tributes. Useful attributes would be name, role, font. Returns the newly inserted
node.

$document->insertComment($text);

Insert, and return, a comment with the given $text into the current node.

$document->insertPI($op,%attributes);

Insert, and return, a ProcessingInstruction into the current node.

$document->openText($text,$font);

Open a text node in font $font, performing any required automatic opening
and closing of intermedate nodes (including those needed for font changes) and
inserting the string $text into it.

$document->openElement($qname,%attributes);

Open an element, named $qname and with the given attributes. This will be
inserted into the current node while performing any required automatic open-
ing and closing of intermedate nodes. The new element is returned, and also
becomes the current insertion point. An error (fatal if in Strict mode) is sig-
nalled if there is no allowed way to insert such an element into the current node.

$document->closeElement($qname);

Close the closest open element named $qname including any intermedate nodes
that may be automatically closed. If that is not possible, signal an error. The
closed node’s parent becomes the current node. This method returns the closed
node.

$node = $document->isOpenable($qname);

Check whether it is possible to open a $qname element at the current insertion
point.

C.2. CORE MODULES 135

$node = $document->isCloseable($qname);

Check whether it is possible to close a $qname element, returning the node that
would be closed if possible, otherwise undef.

$document->maybeCloseElement($qname);

Close a $qname element, if it is possible to do so, returns the closed node if it
was found, else undef.

$document->addAttribute($key=>$value);

Add the given attribute to the node nearest to the current insertion point that is
allowed to have it. This does not change the current insertion point.

$document->closeToNode($node);

This method closes all children of $node until $node becomes the insertion
point. Note that it closes any open nodes, not only autoCloseable ones.

Internal Insertion Methods These are described as an aide to understanding the
code; they rarely, if ever, should be used outside this module.

$document->setNode($node);

Sets the current insertion point to be $node. This should be rarely used, if at all;
The construction methods of document generally maintain the notion of insertion
point automatically. This may be useful to allow insertion into a different part
of the document, but you probably want to set the insertion point back to the
previous node, afterwards.

$string = $document->getInsertionContext($levels);

For debugging, return a string showing the context of the current insertion point;
that is, the string of the nodes leading up to it. if $levels is defined, show only
that many nodes.

$node = $document->find insertion point($qname);

This internal method is used to find the appropriate point, relative to the current
insertion point, that an element with the specified $qname can be inserted. That
position may require automatic opening or closing of elements, according to
what is allowed by the document model.

@nodes = getInsertionCandidates($node);

Returns a list of elements where an arbitrary insertion might take place. Roughly
this is a list starting with $node, followed by its parent and the parents siblings
(in reverse order), followed by the grandparent and siblings (in reverse order).

$node = $document->floatToElement($qname);

Finds the nearest element at or preceding the current insertion point (see
getInsertionCandidates), that can accept an element $qname; it moves

136 APPENDIX C. MODULES

the insertion point to that point, and returns the previous insertion point. Gen-
erally, after doing whatever you need at the new insertion point, you should call
$document->setNode($node); to restore the insertion point. If no such
point is found, the insertion point is left unchanged, and undef is returned.

$node = $document->floatToAttribute($key);

This method works the same as floatToElement, but find the nearest ele-
ment that can accept the attribute $key.

$node = $document->openText internal($text);

This is an internal method, used by openText, that assumes the insertion point
has been appropriately adjusted.)

$node = $document->openMathText internal($text);

This internal method appends $text to the current insertion point, which is
assumed to be a math node. It checks for math ligatures and carries out any
combinations called for.

$node = $document->closeText internal();

This internal method closes the current node, which should be a text node. It
carries out any text ligatures on the content.

$node = $document->closeNode internal($node);

This internal method closes any open text or element nodes starting at the current
insertion point, up to and including $node. Afterwards, the parent of $node
will be the current insertion point. It condenses the tree to avoid redundant font
switching elements.

$document->afterOpen($node);

Carries out any afterOpen operations that have been recorded (using Tag) for
the element name of $node.

$document->afterClose($node);

Carries out any afterClose operations that have been recorded (using Tag) for
the element name of $node.

Document Modification The following methods are used to perform various sorts
of modification and rearrangements of the document, after the normal flow of insertion
has taken place. These may be needed after an environment (or perhaps the whole
document) has been completed and one needs to analyze what it contains to decide on
the appropriate representation.

$document->setAttribute($node,$key,$value);

Sets the attribute $key to $value on $node. This method is preferred over
the direct LibXML one, since it takes care of decoding namespaces (if $key is
a qname), and also manages recording of xml:id’s.

C.2. CORE MODULES 137

$document->recordID($id,$node);

Records the association of the given $node with the $id, which should be the
xml:id attribute of the $node. Usually this association will be maintained by
the methods that create nodes or set attributes.

$document->unRecordID($id);

Removes the node associated with the given $id, if any. This might be needed
if a node is deleted.

$document->modifyID($id);

Adjusts $id, if needed, so that it is unique. It does this by appending a letter
and incrementing until it finds an id that is not yet associated with a node.

$node = $document->lookupID($id);

Returns the node, if any, that is associated with the given $id.

$document->setNodeBox($node,$box);

Records the $box (being a Box, Whatsit or List), that was (presumably) re-
sponsible for the creation of the element $node. This information is useful for
determining source locations, original TeX strings, and so forth.

$box = $document->getNodeBox($node);

Returns the $box that was responsible for creating the element $node.

$document->setNodeFont($node,$font);

Records the font object that encodes the font that should be used to display any
text within the element $node.

$font = $document->getNodeFont($node);

Returns the font object associated with the element $node.

$node = $document->openElementAt($point,$qname,%attributes);

Opens a new child element in $point with the qualified name $qname and
with the given attributes. This method is not affected by, nor does it affect, the
current insertion point. It does manage namespaces, xml:id’s and associating a
box, font and locator with the new element, as well as running any afterOpen
operations.

$node = $document->closeElementAt($node);

Closes $node. This method is not affected by, nor does it affect, the current
insertion point. However, it does run any afterClose operations, so any ele-
ment that was created using the lower-level openElementAt should be closed
using this method.

138 APPENDIX C. MODULES

$node = $document->appendClone($node,@newchildren);

Appends clones of @newchildren to $node. This method modifies any ids
found within @newchildren (using modifyID), and fixes up any references
to those ids within the clones so that they refer to the modified id.

$node = $document->wrapNodes($qname,@nodes);

This method wraps the @nodes by a new element with qualified name $qname,
that new node replaces the first of @node. The remaining nodes in @nodes
must be following siblings of the first one.

NOTE: Does this need multiple nodes? If so, perhaps some kind of movenodes
helper? Otherwise, what about attributes?

$node = $document->unwrapNodes($node);

Unwrap the children of $node, by replacing $node by its children.

$node = $document->replaceNode($node,@nodes);

Replace $node by @nodes; presumably they are some sort of descendant
nodes.

$node = $document->renameNode($node,$newname);

Rename $node to the tagname $newname; equivalently replace $node by
a new node with name $newname and copy the attributes and contents. It is
assumed that $newname can contain those attributes and contents.

@nodes = $document->filterDeletions(@nodes);

This function is useful with $doc-absorb($box)>, when you want to filter out
any nodes that have been deleted and no longer appear in the document.

@nodes = $document->filterChildren(@nodes);

This function is useful with $doc-absorb($box)>, when you want to filter out
any nodes that are children of other nodes in @nodes.

LaTeXML::Core::Rewrite

Rewrite rules for modifying the XML document.

Description

LaTeXML::Core::Rewrite implements rewrite rules for modifying the XML
document. See LaTeXML::Package for declarations which create the rewrite rules.
Further documentation needed.

LaTeXML::Core::Token

Representation of a Token: a pair of character and category code (catcode); It extends
LaTeXML::Common::Object.

C.2. CORE MODULES 139

Exported functions

$catcode = CC ESCAPE;

Constants for the category codes:

CC_BEGIN, CC_END, CC_MATH, CC_ALIGN, CC_EOL,
CC_PARAM, CC_SUPER, CC_SUB, CC_IGNORE,
CC_SPACE, CC_LETTER, CC_OTHER, CC_ACTIVE,
CC_COMMENT, CC_INVALID, CC_CS.

[The last 2 are (apparent) extensions, with catcodes 16 and 17, respectively].

$token = Token($string,$cc);

Creates a LaTeXML::Core::Token with the given content and catcode.
The following shorthand versions are also exported for convenience:

T_BEGIN, T_END, T_MATH, T_ALIGN, T_PARAM,
T_SUB, T_SUPER, T_SPACE, T_LETTER($letter),
T_OTHER($char), T_ACTIVE($char),
T_COMMENT($comment), T_CS($cs)

@tokens = Explode($string);

Returns a list of the tokens corresponding to the characters in $string.
All tokens have catcode CC OTHER, except for spaces which have catcode
CC SPACE.

@tokens = ExplodeText($string);

Returns a list of the tokens corresponding to the characters in $string. All
(roman) letters have catcode CC LETTER, all others have catcode CC OTHER,
except for spaces which have catcode CC SPACE.

UnTeX($object);

Converts $object to a string containing TeX that created it (or could have).
Note that this is not necessarily the original TeX code; expansions or other sub-
stitutions may have taken place.

Methods

@tokens = $object->unlist;

Return a list of the tokens making up this $object.

$string = $object->toString;

Return a string representing $object.

$string = $token->getCSName;

Return the string or character part of the $token; for the special category codes,
returns the standard string (eg. T BEGIN->getCSName returns ”{”).

140 APPENDIX C. MODULES

$string = $token->getString;

Return the string or character part of the $token.

$code = $token->getCharcode;

Return the character code of the character part of the $token, or 256 if it is a
control sequence.

$code = $token->getCatcode;

Return the catcode of the $token.

LaTeXML::Core::Tokens

Represents lists of LaTeXML::Core::Token’s; extends LaTeXML::Common::Object.

Exported functions

$tokens = Tokens(@token);

Creates a LaTeXML::Core::Tokens from a list of LaTeXML::Core::Token’s

Tokens methods The following method is specific to LaTeXML::Core::Tokens.

$tokenscopy = $tokens->clone;

Return a shallow copy of the $tokens. This is useful before reading from a
LaTeXML::Core::Tokens.

LaTeXML::Core::Box

Representations of digested objects; extends LaTeXML::Common::Object.

Exported Functions

$box = Box($string,$font,$locator,$tokens);

Creates a Box representing the $string in the given $font. The $locator
records the document source position. The $tokens is a Tokens list containing
the TeX that created (or could have) the Box. If $font or $locator are undef,
they are obtained from the currently active LaTeXML::Core::State. Note
that $string can be undef which contributes nothing to the generated document,
but does record the TeX code (in $tokens).

C.2. CORE MODULES 141

Methods

$font = $digested->getFont;

Returns the font used by $digested.

$boole = $digested->isMath;

Returns whether $digested was created in math mode.

@boxes = $digested->unlist;

Returns a list of the boxes contained in $digested. It is also defined for the
Boxes and Whatsit (which just return themselves) so they can stand-in for a List.

$string = $digested->toString;

Returns a string representing this $digested.

$string = $digested->revert;

Reverts the box to the list of Tokens that created (or could have created) it.

$string = $digested->getLocator;

Get an object describing the location in the original source that gave rise to
$digested.

$digested->beAbsorbed($document);

$digested should get itself absorbed into the $document in whatever way
is apppropriate.

$string = $box->getString;

Returns the string part of the $box.

LaTeXML::Core::List

Represents lists of digested objects; extends LaTeXML::Core::Box.

LaTeXML::Core::Comment

Representations of digested objects.

Description

LaTeXML::Core::Comment is a representation of digested objects. It extends
LaTeXML::Common::Object.

LaTeXML::Core::Whatsit

Representations of digested objects.

142 APPENDIX C. MODULES

Description

represents a digested object that can generate arbitrary elements in the XML Document.
It extends LaTeXML::Core::Box.

Methods Note that the font is stored in the data properties under ’font’.

$defn = $whatsit->getDefinition;

Returns the LaTeXML::Core::Definition responsible for creating
$whatsit.

$value = $whatsit->getProperty($key);

Returns the value associated with $key in the $whatsit’s property list.

$whatsit->setProperty($key,$value);

Sets the $value associated with the $key in the $whatsit’s property list.

$props = $whatsit->getProperties();

Returns the hash of properties stored on this Whatsit. (Note that this hash is
modifiable).

$props = $whatsit->setProperties(%keysvalues);

Sets several properties, like setProperty.

$list = $whatsit->getArg($n);

Returns the $n-th argument (starting from 1) for this $whatsit.

@args = $whatsit->getArgs;

Returns the list of arguments for this $whatsit.

$whatsit->setArgs(@args);

Sets the list of arguments for this $whatsit to @args (each arg should be a
LaTeXML::Core::List).

$list = $whatsit->getBody;

Return the body for this $whatsit. This is only defined for environments or
top-level math formula. The body is stored in the properties under ’body’.

$whatsit->setBody(@body);

Sets the body of the $whatsit to the boxes in @body. The last $box in
@body is assumed to represent the ‘trailer’, that is the result of the invocation
that closed the environment or math. It is stored separately in the properties
under ’trailer’.

$list = $whatsit->getTrailer;

Return the trailer for this $whatsit. See setBody.

C.2. CORE MODULES 143

LaTeXML::Core::Alignment

Representation of aligned structures

Description

This module defines aligned structures. It needs more documentation. It extends
LaTeXML::Common::Object.

LaTeXML::Core::KeyVals

Key-Value Pairs in LaTeXML

Description

Provides a parser and representation of keyval pairs LaTeXML::Core::KeyVals
represents parameters handled by LaTeX’s keyval package. It extends LaTeXML::Common::Object.

Accessors

GetKeyVal($arg,$key)

Access the value associated with a given key. This is useful within constructors
to access the value associated with $key in the argument $arg. Example usage
in a copnstructor:

<foo attrib=’&GetKeyVal(#1,’key’)’>

GetKeyVals($arg)

Access the entire hash. Can be used in a constructor like: Can use in constructor:
<foo %&GetKeyVals(#1)/>

Constructors

<LaTeXML::Core::KeyVals-new(prefix, keysets, options)); >>

Creates a new KeyVals object with the given parameters. All arguments are
optional and the simples way of calling this method is my $keyvals =
LaTeXML::Core::KeyVals->new().

prefix is the given prefix all key-value pairs operate in and defaults to ’KV’. If
given, prefix should be a string.

keysets should be a list of keysets to find keys inside of. If given, it should either
be reference to a list of strings or a comma-seperated string. This argument
defaults to ’ anonymous ’.

Furthermore, the KeyVals constructor accepts a variety of options that can be
used to customize its behaviour. These are setAll, setInternals, skip, skipMissing,
hookMissing, open, close, punct and assign.

144 APPENDIX C. MODULES

setAll is a flag that, if set, ensures that keys will be set in all existing keysets,
instad of only in the first one.

setInternals is a flag that, if set, ensures that certain ’xkeyval’ package internals
are set during key digestion.

skip should be a list of keys to be skipped when digesting the keys of this object.

skipMissing allows one way of handling keys during key digestion that have not
been explictilty declared using DefKey or related functionality. If set to undef
or 0, an error is thrown upon trying to set such a key, if set to 1 they are ignored.
Alternatively, this can be set to a key macro which is then extended to contain a
comman-separated list of the undefined keys.

hookMissing allows to call a specific macro if a single key is unknown during
key digestion.

The options open, close, punct and assign optionally contain the tokens used for
the respective meanings.

KeyVals Accessors (intended for internal usage)

my $prefix = $keyvals->getPrefix()

Returns the Prefix property.

my @keysets = $keyvals->getKeySets()

Returns the KeySets property.

my $setall = $keyvals->getSetAll()

Returns the SetAll property.

my $setinternals = $keyvals->getSetInternals()

Returns the SetInternals property.

my @skip = $keyvals->getSkip()

Returns the Skip property.

my $skipmissing = $keyvals->getSkipMissing()

Returns the SkipMissing property.

my $hookmissing = $keyvals->getHookMissing()

Returns the HookMissing property.

my @tuples = $keyvals->getTuples()

Returns the Tuples property representing

$keyvals->setTuples(@tuples)

Sets the tuples which should be a list of five-tuples (array references) represent-
ing the key-value pairs this KeyVals object is seeded with. See the getTuples
function on details of the structure of this list. rebuild is called automatically to
populate the other caches. Typically, the tuples is set by readFrom.

C.2. CORE MODULES 145

my @cachedpairs = $keyvals->getCachedPairs()

Returns the CachedPairs property.

my %cachedhash = $keyvals->getCachedHash()

Returns the CachedHash property.

Resolution to KeySets

my @keysets = $keyvals->resolveKeyValFor($key)

Finds all KeyVal objects that should be used for interacting with the given key.
May return undef if no matching keysets are found. Use the parameters keysets,
setAll and skipMissing to customize the exact behaviour of this function.

my $canResolveKeyVal = $keyvals->canResolveKeyValFor($key)

Checks if this KeyVals object can resolve a KeyVal for key. Ignores setAll and
skipMissing parameters.

my $keyval = $keyvals->getPrimaryKeyValOf($key, @keysets)

Gets a single KeyVal parameter to be used for interacting a a single key, given that
it resolves to keysets. Always returns a single KeyVal object, even if no keysets
are found.

Changing contained values

$keyvals->addValue($key, $value, $useDefault, $noRebuild)

Adds the given value for key at the end of the given list of values and rebuilds
all internal caches. If the useDefault flag is set, the specific value is ignored, and
the default is set instead.

If this function is called multiple times the noRebuild option should be given to
prevent constant rebuilding and the rebuild function should be called manually
called.

$keyvals->setValue($key, $value, $useDefault)

Sets the value of key to value, optionally using the default if useDefault is set.
Note that if value is a reference to an array, the key is inserted multiple times. If
value is undef, the values is deleted.

$keyvals->rebuild($skip)

Rebuilds the internal caches of key-value mapping and list of pairs from from
main list of tuples. If skip is given, all values for the given key are omitted, and
the given key is deleted.

146 APPENDIX C. MODULES

Parsing values from a gullet

$keyvals->readFrom($gullet, $until, %options)

Reads a set of KeyVals from gullet, up until the until token, and updates the state
of this KeyVals object accordingly.

Furthermore, this methods supports several options.

When the silenceMissing option is set, missing keys will be completely ignored
when reading keys, that is they do not get recorded into the KeyVals object and
no warnings or errors will be thrown.

$keyvals->readKeyWordFrom($gullet, $until)

Reads a single keyword from gullet. Intended for internal use only.

KeyVals Accessors

my $value = $keyvals->getValue($key);

Return a value associated with $key.

@values = $keyvals->getValues($key);

Return the list of all values associated with $key.

%keyvals = $keyvals->getKeyVals;

Return the hash reference containing the keys and values bound in the $keyval.
Each value in the hash may be a single value or a list if the key is repeated.

@keyvals = $keyvals->getPairs;

Return the alternating keys and values bound in the $keyval. Note that this
may contain multiple entries for a given key, if they were repeated.

%hash = $keyvals->getHash;

Return the hash reference containing the keys and values bound in the $keyval.
Note that will only contain the last value for a given key, if they were repeated.

$haskey = $keyvals->hasKey($key);

Checks if the KeyVals object contains a value for $key.

Value Related Reversion

$expansion = $keyvals->setKeysExpansion;

Expand this KeyVals into a set of tokens for digesting keys.

$keyvals = $keyvals->beDigested($stomach);

Return a new LaTeXML::Core::KeyVals object with both keys and values
digested.

C.2. CORE MODULES 147

$reversion = $keyvals->revert();

Revert this object into a set of tokens representing the original sequence of To-
kens that was used to be read it from the gullet.

$str = $keyvals->toString();

Turns this object into a key=value comma seperated string.

LaTeXML::Core::MuDimension

Representation of math dimensions; extends LaTeXML::Common::Dimension.

Exported functions

$mudimension = MuDimension($dim);

Creates a MuDimension object; similar to Dimension.

LaTeXML::Core::MuGlue

Representation of math glue; extends LaTeXML::Common::Glue.

Exported functions

$glue = MuGlue($gluespec);

$glue = MuGlue($sp,$plus,$pfill,$minus,$mfill);

Creates a MuGlue object, similar to Glue.

LaTeXML::Core::Pair

Representation of pairs of numerical things

Description

represents pairs of numerical things, coordinates or such. Candidate for removal!

Exported functions

$pair = Pair($num1,$num2);

Creates an object representing a pair of numbers; Not a part of TeX, but useful
for graphical objects. The two components can be any numerical object.

LaTeXML::Core::PairList

Representation of lists of pairs of numerical things

148 APPENDIX C. MODULES

Description

represents lists of pairs of numerical things, coordinates or such. Candidate for re-
moval!

Exported functions

$pair = PairList(@pairs);

Creates an object representing a list of pairs of numbers; Not a part of TeX, but
useful for graphical objects.

LaTeXML::Core::Definition

Control sequence definitions.

Description

This abstract class represents the various executables corresponding to control se-
quences. See LaTeXML::Package for the most convenient means to create them.

It extends LaTeXML::Common::Object.

Methods

$token = $defn->getCS;

Returns the (main) token that is bound to this definition.

$string = $defn->getCSName;

Returns the string form of the token bound to this definition, taking into account
any alias for this definition.

$defn->readArguments($gullet);

Reads the arguments for this $defn from the $gullet, returning a list of
LaTeXML::Core::Tokens.

$parameters = $defn->getParameters;

Return the LaTeXML::Core::Parameters object representing the formal
parameters of the definition.

@tokens = $defn->invocation(@args);

Return the tokens that would invoke the given definition with the provided argu-
ments. This is used to recreate the TeX code (or it’s equivalent).

$defn->invoke;

Invoke the action of the $defn. For expandable definitions, this is done in the
Gullet, and returns a list of LaTeXML::Core::Tokens. For primitives, it is
carried out in the Stomach, and returns a list of LaTeXML::Core::Boxes.

C.2. CORE MODULES 149

For a constructor, it is also carried out by the Stomach, and returns a
LaTeXML::Core::Whatsit. That whatsit will be responsible for construct-
ing the XML document fragment, when the LaTeXML::Core::Document
invokes $whatsit-beAbsorbed($document);>.

Primitives and Constructors also support before and after daemons, lists of sub-
routines that are executed before and after digestion. These can be useful for
changing modes, etc.

See also

LaTeXML::Core::Definition::Expandable, LaTeXML::Core::Definition::Conditional,
LaTeXML::Core::Definition::Primitive, LaTeXML::Core::Definition::Register,
LaTeXML::Core::Definition::CharDef and LaTeXML::Core::Definition::Constructor.

LaTeXML::Core::Definition::CharDef

Control sequence definitions for chardefs.

Description

Representation as a further specialized Register for chardef. See LaTeXML::Package
for the most convenient means to create them. It extends LaTeXML::Core::Definition::Register.

LaTeXML::Core::Definition::Conditional

Conditionals Control sequence definitions.

Description

These represent the control sequences for conditionals, as well as \else, \or and
\fi. See LaTeXML::Package for the most convenient means to create them.

It extends LaTeXML::Core::Definition::Expandable.

LaTeXML::Core::Definition::Constructor

Control sequence definitions.

Description

This class represents control sequences that contribute arbitrary XML fragments to the
document tree. During digestion, a LaTeXML::Core::Definition::Constuctor
records the arguments used in the invocation to produce a LaTeXML::Core::Whatsit.
The resulting LaTeXML::Core::Whatsit (usually) generates an XML docu-
ment fragment when absorbed by an instance of LaTeXML::Core::Document.
Additionally, a LaTeXML::Core::Definition::Constructor may have be-
foreDigest and afterDigest daemons defined which are executed for side effect, or for
adding additional boxes to the output.

150 APPENDIX C. MODULES

It extends LaTeXML::Core::Definition.
More documentation needed, but see LaTeXML::Package for the main user access

to these.

More about Constructors A constructor has as it’s replacement a subroutine
or a string pattern representing the XML fragment it should generate. In the case of
a string pattern, the pattern is compiled into a subroutine on first usage by the inter-
nal class LaTeXML::Core::Definition::ConstructorCompiler. Like
primitives, constructors may have beforeDigest and afterDigest.

LaTeXML::Core::Definition::Expandable

Expandable Control sequence definitions.

Description

These represent macros and other expandable control sequences that are carried out in
the Gullet during expansion. The results of invoking an LaTeXML::Core::Definition::Expandable
should be a list of LaTeXML::Core::Tokens. See LaTeXML::Package for
the most convenient means to create Expandables.

It extends LaTeXML::Core::Definition.

LaTeXML::Core::Definition::Primitive

Primitive Control sequence definitions.

Description

These represent primitive control sequences that are converted directly to Boxes or
Lists containing basic Unicode content, rather than structured XML, or those executed
for side effect during digestion in the LaTeXML::Core::Stomach, changing the
LaTeXML::Core::State. The results of invoking a LaTeXML::Core::Definition::Primitive,
if any, should be a list of digested items (LaTeXML::Core::Box, LaTeXML::Core::List
or LaTeXML::Core::Whatsit).

It extends LaTeXML::Core::Definition.
Primitive definitions may have lists of daemon subroutines, beforeDigest and

afterDigest, that are executed before (and before the arguments are read) and
after digestion. These should either end with return;, (), or return a list of digested
objects (LaTeXML::Core::Box, etc) that will be contributed to the current list.

LaTeXML::Core::Definition::Register

Control sequence definitions for Registers.

C.2. CORE MODULES 151

Description

These are set up as a speciallized primitive with a getter and setter to access and store
values in the Stomach. See LaTeXML::Package for the most convenient means to
create them.

It extends LaTeXML::Core::Definition::Primitive.
Registers generally store some value in the current LaTeXML::Core::State,

but are not required to. Like TeX’s registers, when they are digested, they expect an
optional =, and then a value of the appropriate type. Register definitions support these
additional methods:

Methods

$value = $register->valueOf(@args);

Return the value associated with the register, by invoking it’s getter function.
The additional args are used by some registers to index into a set, such as the
index to \count.

$register->setValue($value,@args);

Assign a value to the register, by invoking it’s setter function.

LaTeXML::Core::Parameter

A formal parameter

Description

Provides a representation for a single formal parameter of LaTeXML::Core::Definitions:
It extends LaTeXML::Common::Object.

See also

LaTeXML::Core::Parameters.

LaTeXML::Core::Parameters

Formal parameters.

Description

Provides a representation for the formal parameters of LaTeXML::Core::Definitions:
It extends LaTeXML::Common::Object.

152 APPENDIX C. MODULES

Methods

@parameters = $parameters->getParameters;

Return the list of LaTeXML::Core::Parameter contained in $parameters.

@tokens = $parameters->revertArguments(@args);

Return a list of LaTeXML::Core::Token that would represent the argu-
ments such that they can be parsed by the Gullet.

@args = $parameters->readArguments($gullet,$fordefn);

Read the arguments according to this $parameters from the $gullet. This
takes into account any special forms of arguments, such as optional, delimited,
etc.

@args = $parameters->readArgumentsAndDigest($stomach,$fordefn);

Reads and digests the arguments according to this $parameters, in sequence.
this method is used by Constructors.

See also

LaTeXML::Core::Parameter.

C.3 Utility Modules Documentation

LaTeXML::Util::Pathname

Portable pathname and file-system utilities

Description

This module combines the functionality File::Spec and File::Basename to give a con-
sistent set of filename utilities for LaTeXML. A pathname is represented by a simple
string.

Pathname Manipulations

$path = pathname make(%peices);

Constructs a pathname from the keywords in pieces dir : directory name : the
filename (possibly with extension) type : the filename extension

($dir,$name,$type) = pathname split($path);

Splits the pathname $path into the components: directory, name and type.

$path = pathname canonical($path);

Canonicallizes the pathname $path by simplifying repeated slashes, dots rep-
resenting the current or parent directory, etc.

C.3. UTILITY MODULES 153

$dir = pathname directory($path);

Returns the directory component of the pathname $path.

$name = pathname name($path);

Returns the name component of the pathname $path.

$type = pathname type($path);

Returns the type component of the pathname $path.

$path = pathname concat($dir,$file);

Returns the pathname resulting from concatenating the directory $dir and file-
name $file.

$boole = pathname is absolute($path);

Returns whether the pathname $path appears to be an absolute pathname.

$boole = pathname is url($path);

Returns whether the pathname $path appears to be a url, rather than local file.

$boole = pathname is literaldata($path);

Returns whether the pathname $path is actually a blob of literal data, with a
leading ”literal:” protocol.

$boole = pathname is raw($path);

Check if pathname indicates a raw TeX source or definition file.

$boole = pathname is reloadable($path);

Check for pathname exceptions where the same TeX definition file can be mean-
ingfully reloaded. For example, babel.sty ”.ldf” files

$rel = pathname is contained($path,$base);

Checks whether $path is underneath the directory $base; if so it returns the
pathname $path relative to $base; otherwise returns undef.

$path = pathname relative($path,$base);

If $path is an absolute, non-URL pathname, returns the pathname relative to
the directory $base, otherwise simply returns the canonical form of $path.

$path = pathname absolute($path,$base);

Returns the absolute pathname resulting from interpretting $path relative to the
directory $base. If $path is already absolute, it is returned unchanged.

$relative url = pathname to url($path);

Creates a local, relative URL for a given pathname, also ensuring proper path
separators on non-Unix systems.

154 APPENDIX C. MODULES

File System Operations

$modtime = pathname timestamp($path);

Returns the modification time of the file named by $path, or undef if the file
does not exist.

$path = pathname cwd();

Returns the current working directory.

$dir = pathname mkdir($dir);

Creates the directory $dir and all missing ancestors. It returns $dir if suc-
cessful, else undef.

$dest = pathname copy($source,$dest);

Copies the file $source to $dest if needed; ie. if $dest is missing or older
than $source. It preserves the timestamp of $source.

$path = pathname find($name,%options);

Finds the first file named $name that exists and that matches the specification in
the keywords %options. An absolute pathname is returned.

If $name is not already an absolute pathname, then the option paths deter-
mines directories to recursively search. It should be a list of pathnames, any
relative paths are interpreted relative to the current directory. If paths is omit-
ted, then the current directory is searched.

If the option installation subdir is given, it indicates, in addition to the
above, a directory relative to the LaTeXML installation directory to search. This
allows files included with the distribution to be found.

The types option specifies a list of filetypes to search for. If not supplied, then
the filename must match exactly. The type * matches any extension.

@paths = pathname findall($name,%options);

Like pathname find, but returns all matching (absolute) paths that exist.

$path = pathname kpsewhich(@names);

Attempt to find a candidate name via the external kpsewhich capability of the
system’s TeX toolchain. If kpsewhich is not available, or the file is not found,
returns a Perl undefined value.

LaTeXML::Util::WWW

Auxiliaries for web-scalability of LaTeXML’s IO

Synopsis

my $response = auth_get($url,$authlist);

C.3. UTILITY MODULES 155

Description

Utilities for enabling general interaction with the World Wide Web in LaTeXML’s In-
put/Output.

Still in development, more functionality is expected at a later stage.

Methods

my $response = auth get($url,$authlist);

Given an authentication list, attempts a get request on a given URL ($url) and
returns the $response.

If no authentication is possible automatically, the routine prompts the user for
credentials.

LaTeXML::Util::Pack

Smart packing and unpacking of TeX archives

Description

This module provides an API and convenience methods for: 1. Unpacking Zip archives
which contain a TeX manuscript. 2. Packing the files of a LaTeXML manuscript into
a single archive 3. Extracting embeddable fragments, as well as single formulas from
LaTeXML documents

All user-level methods are unconditionally exported by default.

Methods

$main tex source = unpack source($archive,$extraction directory);

Unpacks a given $archive into the $extraction directory. Next, perform a heuris-
tic analysis to determine, and return, the main file of the TeX manuscript. If the
main file cannot be determined, the $extraction directory is removed and undef
is returned.

In this regard, we implement a simplified form of the logic in TeX::AutoTeX and
particularly arXiv::FileGuess

@packed documents = pack collection(collection=>\@documents, whatsout=>’math|fragment|archive’, siteDirectory=>$path);

Packs a collection of documents using the packing method specified via the
’whatsout’ option. If ’fragment’ or ’math’ are chosen, each input document is
transformed into an embeddable fragment or a single formula, respectively. If
’archive’ is chose, all input documents are written into an archive in the spec-
ified ’siteDirectory’. The name of the archive is provided by the ’destination’
property of the first provided $document object. Each document is expected to
be a LaTeXML::Post::Document object.

156 APPENDIX C. MODULES

C.4 Preprocessing Modules Documentation

LaTeXML::Pre::BibTeX

Implements a BibTeX parser for LaTeXML.

Description

LaTeXML::Pre::BibTeX serves as a low-level parser of BibTeX database files. It
parses and stores a LaTeXML::Pre::BibTeX::Entry for each entry into the cur-
rent STATE. BibTeX string macros are substituted into the field values, but no other
processing of the data is done. See LaTeXML::Package::BibTeX.pool.ltxml
for how further processing is carried out, and can be customized.

Creating a BibTeX

my $bib = LaTeXML::Pre::BibTeX->newFromFile($bibname);

Creates a LaTeXML::Pre::BibTeX object representing a bibliography from
a BibTeX database file.

my $bib = LaTeXML::Pre::BibTeX->newFromString($string);

Creates a LaTeXML::Pre::BibTeX object representing a bibliography from
a string containing the BibTeX data.

Methods

$string = $bib->toTeX;

Returns a string containing the TeX code to be digested by a LaTeXML
object to process the bibliography. The string contains all @PREAMBLE
data and invocations of \\ProcessBibTeXEntry{$key} for each biblio-
graphic entry. The $key can be used to lookup the data from $STATE as
LookupValue(’BIBITEM@’.$key). See BibTeX.pool for how the
processing is carried out.

BibEntry objects The representation of a BibTeX entry.

$type = $bibentry->getType;

Returns a string naming the entry type of the entry (No aliasing is done here).

$key = $bibentry->getKey;

Returns the bibliographic key for the entry.

@fields = $bibentry->getFields;

Returns a list of pairs [$name,$value] representing all fields, in the order
defined, for the entry. Both the $name and $value are strings. Field names
may be repeated, if they are in the bibliography.

C.5. POSTPROCESSING MODULES 157

$value = $bibentry->getField($name);

Returns the value (or undef) associated with the the given field name. If the
field was repeated in the bibliography, only the last one is returned.

C.5 Postprocessing Modules Documentation

LaTeXML::Post

Postprocessing driver.

Description

LaTeXML::Post is the driver for various postprocessing operations. It has a com-
plicated set of options that I’ll document shortly.

LaTeXML::Post::MathML

Post-Processing modules for converting math to MathML.

Synopsis

LaTeXML::Post::MathML is the abstract base class for the MathML Postproces-
sor; LaTeXML::Post::MathML::Presentation and LaTeXML::Post::MathML::Content
convert XMath to either Presentation or Content MathML, or with that format as the
principle branch for Parallel markup.

Description

The conversion is carried out primarly by a tree walk of the XMath expression; appro-
priate handlers are selected and called depending on the operators and forms encoun-
tered. Handlers can be defined on applications of operators, or on tokens; when a token
is applied, it’s application handler takes precedence over it’s token handler

DefMathML($key,$presentation,$content); Defines presentation and
content handlers for $key. $key is of the form TYPE:ROLE:MEANING, where

TYPE : is one either C<Token> or C<Apply> (or C<Hint> ?)
ROLE : is a grammatical role (on XMath tokens)
MEANING : is the meaning attribute (on XMath tokens)

Any of these can be ? to match any role or meaning; matches of both are preferred,
then match of meaning or role, or neither.

The subroutine handlers for presentation and content are given by $presentation
and $content, respectively. Either can be undef, in which case some other match-
ing handler will be invoked.

158 APPENDIX C. MODULES

For Token handlers, the arguments passed are the token node; for Apply handler,
the arguments passed are the operator node and any arguments.

However, it looks like some TOKEN handlers are being defined to take $content,%attributes
being the string content of the token, and the token’s attributes!

Presentation Conversion Utilties

$mmlpost->pmml top($node,$style);

This is the top-level converter applied to an XMath node. It establishes a local
context for font, style, size, etc. It generally does the bulk of the work for a
PresentationMathML’s translateNode, although the latter wraps the actual
m:math element around it. (style is display or text).

pmml($node), pmml smaller($node), pmml scriptsizsize($node)

Converts the XMath $node to Presentation MathML. The latter two are used
when the context calls for smaller (eg. fraction parts) or scriptsize (eg sub or
superscript) size or style, so that the size encoded within $node will be properly
accounted for.

pmml mi($node,%attributes), pmml mn($node,%attributes), pmml mo($node,%attributes)

These are Token handlers, to create m:mi, m:mn and m:mo elements, respec-
tively. When called as a handler, they will be supplied only with an XMath
node (typically an XMTok). For convenient reuse, these functions may also be
called on a ’virtual’ token: with $node being a string (that would have been the
text content of the XMTok), and the %attributes that would have been the
token’s attributes.

pmml infix($op,@args), pmml script($op,@args), pmml bigop($op,@args)

These are Apply handlers, for handling general infix, sub or superscript, or
bigop (eg. summations) constructs. They are called with the operator token,
followed by the arguments; all are XMath elements.

pmml row(@items)

This wraps an m:mrow around the already converted @items if neeed; That is,
if there is only a single item it is returned without the m:mrow.

pmml unrow($pmml)

This perverse utility takes something that has already been converted to Presen-
tation MathML. If the argument is an m:mrow, it returns a list of the mathml
elements within that row, otherwise it returns a list containing the single element
$pmml.

pmml parenthesize($item,$open,$close)

This utility parenthesizes the (already converted MathML) $item with the
string delimiters $open and $close. These are converted to an m:mrow
with m:mo for the fences, unless the usemfenced switch is set, in which case
m:mfenced is used.

C.5. POSTPROCESSING MODULES 159

pmml punctuate($separators,@items)

This utility creates an m:mrow by interjecting the punctuation between
suceessive items in the list of already converted @items. If there are more
than one character in $separators the first is used between the first pair, the
next between the next pair; if the separators is exhausted, the last is repeated
between remaining pairs. $separators defaults to (repeated) comma.

Content Conversion Utilties

$mmlpost-cmml top($node); >
This is the top-level converter applied to an XMath node. It establishes a local
context for font, style, size, etc (were it needed). It generally does the bulk of the
work for a ContentMathML’s translateNode, although the latter wraps the
actual m:math element around it.

cmml($node)

Converts the XMath $node to Content MathML.

cmml leaf($token)

Converts the XMath token to an m:ci, m:cn or m:csymbol, under appropri-
ate circumstances.

cmml decoratedSymbol($item)

Similar to cmml leaf, but used when an operator is itself, apparently, an appli-
cation. This converts $item to Presentation MathML to use for the content of
the m:ci.

cmml not($arg)

Construct the not of the argument $arg.

cmml synth not($op,@args)

Synthesize an operator by applying m:not to another operator ($op) applied to
its @args (XMath elements that will be converted to Content MathML). This
is useful to define a handler for, eg., c<not-approximately-equals> in terms of
c<m:approx>.

cmml synth complement($op,@args)

Synthesize an operator by applying a complementary operator ($op) to the
reverse of its @args (XMath elements that will be converted to Content
MathML). This is useful to define a handler for, eg. superset-of-or-equals
using m:subset.

cmml or compose($operators,@args)

Synthesize an operator that stands for the or of several other operators (eg.
c<less-than-or-similar-to-or-approximately-equals>) by composing it of the

160 APPENDIX C. MODULES

m:or of applying each of m:less and m:approx to the arguments. The
first operator is applied to the converted arguments, while the rest are applied to
m:share elements referring to the previous ones.

cmml share($node)

Converts the XMath $node to Content MathML, after assuring that it has an id,
so that it can be shared.

cmml shared($node)

Generates a m:share element referting to $node, which should have an id
(such as after calling cmml share).

Math Processors, Generally.

We should probably formalize the idea of a Math Processor as an abstract class,
but let this description provide a starting overview. A MathProcessor follows
the API of LaTeXML::Post processors, by handling process, which in-
vokes processNode on all Math nodes; That latter inserts the result of either
translateNode or translateParallel, applied to the XMath representation,
into the Math node.

Parallel translation is done whenever additional MathProcessors have been speci-
fied, via the setParallelmethod; these are simply other MathProcessors following
the same API.

Appendix D

LATEXML Schema

The document type used by LATEXML is modular in the sense that it is composed of
several modules that define different sets of elements related to, eg., inline content,
block content, math and high-level document structure. This allows the possibility of
mixing models or extension by predefining certain parameter entities.

D.1 Module LaTeXML
Module LaTeXML-common included.

Module LaTeXML-inline included.

Module LaTeXML-block included.

Module LaTeXML-misc included.

Module LaTeXML-meta included.

Module LaTeXML-para included.

Module LaTeXML-math included.

Module LaTeXML-tabular included.

Module LaTeXML-picture included.

Module LaTeXML-structure included.

Module LaTeXML-bib included.

Pattern Inline.model Combined model for inline content.

Content: (text | Inline.class | Misc.class | Meta.class)*

Expansion: ((text | Inline.class | Misc.class | Meta.class)*)

161

162 APPENDIX D. SCHEMA

Used by: acknowledgements model, anchor model, bib-data model,
bib-date model, bib-edition model, bib-extract model,
bib-identifier model, bib-key model, bib-language model,
bib-links model, bib-note model, bib-organization model,
bib-part model, bib-place model, bib-publisher model,
bib-review model, bib-status model, bib-subtitle model,
bib-title model, bib-type model, bib-url model, bibrefphrase model,
cite model, classification model, constraint model, contact model,
date model, del model, emph model, givenname model,
glossaryphrase model, glossaryref model, indexphrase model,
indexrefs model, indexsee model, keywords model, lineage model,
p model, personname model, ref model, sub model, subtitle model,
sup model, surname model, tag model, text model,
verbatim model, acknowledgements model, anchor model,
bib-data model, bib-date model, bib-edition model,
bib-extract model, bib-identifier model, bib-key model,
bib-language model, bib-links model, bib-note model,
bib-organization model, bib-part model, bib-place model,
bib-publisher model, bib-review model, bib-status model,
bib-subtitle model, bib-title model, bib-type model, bib-url model,
bibrefphrase model, cite model, classification model,
constraint model, contact model, date model, del model,
emph model, givenname model, glossaryphrase model,
glossaryref model, indexphrase model, indexrefs model,
indexsee model, keywords model, lineage model, p model,
personname model, ref model, sub model, subtitle model,
sup model, surname model, tag model, text model, verbatim model

Pattern Block.model Combined model for physical block-level content.

Content: (Block.class | Misc.class | Meta.class)*

Expansion: ((Block.class | Misc.class | Meta.class)*)

Used by: abstract model, block model, figure model, float model,
inline-block model, para model, quote model, table model,
abstract model, block model, figure model, float model,
inline-block model, para model, quote model, table model

Pattern Flow.model Combined model for general flow containing both inline
and block level content.

Content: (text | Inline.class | Block.class | Misc.class | Meta.class)*

Expansion: ((text | Inline.class | Block.class | Misc.class
| Meta.class)*)

Used by: bibblock model, note model, rdf model, td model,
bibblock model, note model, rdf model, td model

Pattern Para.model Combined model for logical block-level context.

D.2. MODULE LATEXML-COMMON 163

Content: (Para.class | Meta.class)*

Expansion: ((Para.class | Meta.class)*)

Used by: appendix.body.class, bibliography.body.class,
chapter.body.class, document.body.class, glossary.body.class,
index.body.class, inline-para model, item model,
paragraph.body.class, part.body.class, proof model,
section.body.class, sidebar.body.class, slide.body.class,
subparagraph.body.class, subsection.body.class,
subsubsection.body.class, theorem model, appendix.body.class,
bibliography.body.class, chapter.body.class, document.body.class,
glossary.body.class, index.body.class, inline-para model,
item model, paragraph.body.class, part.body.class, proof model,
section.body.class, sidebar.body.class, slide.body.class,
subparagraph.body.class, subsection.body.class,
subsubsection.body.class, theorem model

Start == document

D.2 Module LaTeXML-common
Pattern Inline.class All strictly inline elements.

Expansion: (combination | choice | combination | group | text | emph
| del | sub | sup | glossaryref | rule | anchor | ref | cite
| bibref | Math)

Used by: Flow.model, Inline.model, XMText model, caption model,
clippath model, g model, inline-item model, listingline model,
picture model, title model, toccaption model, toctitle model,
Flow.model, Inline.model, XMText model, caption model,
clippath model, g model, inline-item model, listingline model,
picture model, title model, toccaption model, toctitle model

Pattern Block.class All ‘physical’ block elements. A physical block is typically
displayed as a block, but may not constitute a complete logical unit.

Expansion: (combination | group | p | equation | equationgroup
| quote | block | listing | itemize | enumerate | description
| pagination)

Used by: Block.model, Flow.model, titlepage model, Block.model,
Flow.model, titlepage model

Pattern Misc.class Additional miscellaneous elements that can appear in both
inline and block contexts.

Expansion: (combination | choice | combination | choice | combination
| choice | combination | choice | combination | group

164 APPENDIX D. SCHEMA

| inline-itemize | inline-enumerate | inline-description
| inline-block | verbatim | break | graphics | svg | rawhtml
| rawliteral | inline-para | tabular | picture)

Used by: Block.model, Flow.model, Inline.model, XMText model,
caption model, clippath model, creator model, equation model,
g model, inline-item model, listingline model, picture model,
title model, toccaption model, toctitle model, Block.model,
Flow.model, Inline.model, XMText model, caption model,
clippath model, creator model, equation model, g model,
inline-item model, listingline model, picture model, title model,
toccaption model, toctitle model

Pattern Para.class All logical block level elements. A logical block typically
contains one or more physical block elements. For example, a common situation
might be p,equation,p, where the entire sequence comprises a single sentence.

Expansion: (combination | choice | combination | group | para
| theorem | proof | figure | table | float | pagination | TOC)

Used by: BackMatter.class, Para.model, BackMatter.class, Para.model

Pattern Meta.class All metadata elements, typically representing hidden data.

Expansion: (combination | group | note | declare | indexmark
| glossarydefinition | rdf | ERROR | resource | navigation)

Used by: BackMatter.class, Block.model, Flow.model, Inline.model,
Para.model, caption model, clippath model, document model,
equation model, equationgroup model, g model, inline-item model,
listingline model, picture model, title model, toccaption model,
toctitle model, BackMatter.class, Block.model, Flow.model,
Inline.model, Para.model, caption model, clippath model,
document model, equation model, equationgroup model, g model,
inline-item model, listingline model, picture model, title model,
toccaption model, toctitle model

Pattern Length.type The type for attributes specifying a length. Should be a
number followed by a length, typically px. NOTE: To be narrowed later.

Content: text

Expansion: (text)

Used by: Fontable.attributes, Positionable.attributes,
Transformable.attributes, XMArray attributes,
equationgroup attributes, item attributes, tabular attributes,
td attributes, Fontable.attributes, Positionable.attributes,
Transformable.attributes, XMArray attributes,
equationgroup attributes, item attributes, tabular attributes,
td attributes

D.2. MODULE LATEXML-COMMON 165

Pattern Color.type The type for attributes specifying a color. NOTE: To be
narrowed later.

Content: text

Expansion: (text)

Pattern Common.attributes Attributes shared by ALL elements.

Attributes: RDF.attributes

Attribute class = NMTOKENS
a space separated list of tokens, as in CSS. The class can be used to add
differentiate different instances of elements without introducing new
element declarations. However, this generally shouldn’t be used for deep
semantic distinctions. This attribute is carried over to HTML and can be
used for CSS selection. [Note that the default XSLT stylesheets for html
and xhtml add the latexml element names to the class of html elements for
more convenience in using CSS.]

Attribute cssstyle = text
CSS styling rules. These will only be effective when the target system
supports CSS.

Attribute xml:lang = text
Language attribute

Used by: ERROR attributes, MathBranch attributes, MathFork attributes,
Math attributes, Sectional.attributes, TOC attributes,
XMApp attributes, XMArg attributes, XMArray attributes,
XMCell attributes, XMDual attributes, XMHint attributes,
XMRef attributes, XMRow attributes, XMText attributes,
XMTok attributes, XMWrap attributes, XMath attributes,
abstract attributes, acknowledgements attributes, anchor attributes,
arc attributes, bezier attributes, bib-data attributes,
bib-date attributes, bib-edition attributes, bib-extract attributes,
bib-identifier attributes, bib-key attributes, bib-language attributes,
bib-links attributes, bib-name attributes, bib-note attributes,
bib-organization attributes, bib-part attributes, bib-place attributes,
bib-publisher attributes, bib-related attributes, bib-review attributes,
bib-status attributes, bib-subtitle attributes, bib-title attributes,
bib-type attributes, bib-url attributes, bibentry attributes,
bibitem attributes, biblist attributes, bibref attributes,
bibrefphrase attributes, block attributes, break attributes,
caption attributes, circle attributes, cite attributes,
classification attributes, clip attributes, clippath attributes,
contact attributes, creator attributes, curve attributes,
date attributes, del attributes, description attributes, dots attributes,
ellipse attributes, emph attributes, enumerate attributes,
equation attributes, equationgroup attributes, figure attributes,

166 APPENDIX D. SCHEMA

float attributes, g attributes, glossarydefinition attributes,
glossaryentry attributes, glossarylist attributes,
glossaryphrase attributes, glossaryref attributes,
graphics attributes, grid attributes, indexentry attributes,
indexlist attributes, indexmark attributes, indexphrase attributes,
indexrefs attributes, indexsee attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-item attributes, inline-itemize attributes, inline-para attributes,
item attributes, itemize attributes, keywords attributes,
line attributes, listing attributes, listingline attributes,
navigation attributes, note attributes, p attributes,
pagination attributes, para attributes, parabola attributes,
path attributes, personname attributes, picture attributes,
polygon attributes, proof attributes, quote attributes, rdf attributes,
rect attributes, ref attributes, resource attributes, rule attributes,
sub attributes, subtitle attributes, sup attributes, table attributes,
tabular attributes, tag attributes, tbody attributes, td attributes,
text attributes, tfoot attributes, thead attributes, theorem attributes,
title attributes, toccaption attributes, tocentry attributes,
toclist attributes, toctitle attributes, tr attributes, verbatim attributes,
wedge attributes, ERROR attributes, MathBranch attributes,
MathFork attributes, Math attributes, Sectional.attributes,
TOC attributes, XMApp attributes, XMArg attributes,
XMArray attributes, XMCell attributes, XMDual attributes,
XMHint attributes, XMRef attributes, XMRow attributes,
XMText attributes, XMTok attributes, XMWrap attributes,
XMath attributes, abstract attributes, acknowledgements attributes,
anchor attributes, arc attributes, bezier attributes,
bib-data attributes, bib-date attributes, bib-edition attributes,
bib-extract attributes, bib-identifier attributes, bib-key attributes,
bib-language attributes, bib-links attributes, bib-name attributes,
bib-note attributes, bib-organization attributes, bib-part attributes,
bib-place attributes, bib-publisher attributes, bib-related attributes,
bib-review attributes, bib-status attributes, bib-subtitle attributes,
bib-title attributes, bib-type attributes, bib-url attributes,
bibentry attributes, bibitem attributes, biblist attributes,
bibref attributes, bibrefphrase attributes, block attributes,
break attributes, caption attributes, circle attributes, cite attributes,
classification attributes, clip attributes, clippath attributes,
contact attributes, creator attributes, curve attributes,
date attributes, del attributes, description attributes, dots attributes,
ellipse attributes, emph attributes, enumerate attributes,
equation attributes, equationgroup attributes, figure attributes,
float attributes, g attributes, glossarydefinition attributes,
glossaryentry attributes, glossarylist attributes,
glossaryphrase attributes, glossaryref attributes,

D.2. MODULE LATEXML-COMMON 167

graphics attributes, grid attributes, indexentry attributes,
indexlist attributes, indexmark attributes, indexphrase attributes,
indexrefs attributes, indexsee attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-item attributes, inline-itemize attributes, inline-para attributes,
item attributes, itemize attributes, keywords attributes,
line attributes, listing attributes, listingline attributes,
navigation attributes, note attributes, p attributes,
pagination attributes, para attributes, parabola attributes,
path attributes, personname attributes, picture attributes,
polygon attributes, proof attributes, quote attributes, rdf attributes,
rect attributes, ref attributes, resource attributes, rule attributes,
sub attributes, subtitle attributes, sup attributes, table attributes,
tabular attributes, tag attributes, tbody attributes, td attributes,
text attributes, tfoot attributes, thead attributes, theorem attributes,
title attributes, toccaption attributes, tocentry attributes,
toclist attributes, toctitle attributes, tr attributes, verbatim attributes,
wedge attributes

Pattern ID.attributes Attributes for elements that can be cross-referenced from
inside or outside the document.

Attribute xml:id = ID
the unique identifier of the element, usually generated automatically by
the latexml.

Attribute fragid = text
a ”fragment identifier” derived from the xml:id relative to a page split
from the complete document. This is used internally and may go away
some day.

Used by: ERROR attributes, Labelled.attributes, Math attributes,
XMApp attributes, XMArg attributes, XMArray attributes,
XMCell attributes, XMDual attributes, XMHint attributes,
XMRef attributes, XMRow attributes, XMText attributes,
XMTok attributes, XMWrap attributes, XMath attributes,
anchor attributes, bibentry attributes, bibitem attributes,
block attributes, declare attributes, del attributes,
description attributes, emph attributes, enumerate attributes,
glossaryentry attributes, glossarylist attributes, graphics attributes,
indexentry attributes, indexlist attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-itemize attributes, inline-para attributes, itemize attributes,
p attributes, para attributes, picture attributes, quote attributes,
sub attributes, sup attributes, tabular attributes, td attributes,
text attributes, tr attributes, verbatim attributes, ERROR attributes,
Labelled.attributes, Math attributes, XMApp attributes,
XMArg attributes, XMArray attributes, XMCell attributes,

168 APPENDIX D. SCHEMA

XMDual attributes, XMHint attributes, XMRef attributes,
XMRow attributes, XMText attributes, XMTok attributes,
XMWrap attributes, XMath attributes, anchor attributes,
bibentry attributes, bibitem attributes, block attributes,
declare attributes, del attributes, description attributes,
emph attributes, enumerate attributes, glossaryentry attributes,
glossarylist attributes, graphics attributes, indexentry attributes,
indexlist attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-itemize attributes, inline-para attributes, itemize attributes,
p attributes, para attributes, picture attributes, quote attributes,
sub attributes, sup attributes, tabular attributes, td attributes,
text attributes, tr attributes, verbatim attributes

Pattern IDREF.attributes Attributes for elements that can cross-reference other
elements.

Attribute idref = IDREF
the identifier of the referred-to element.

Used by: Refable.attributes, XMRef attributes, bibref attributes,
glossaryphrase attributes, Refable.attributes, XMRef attributes,
bibref attributes, glossaryphrase attributes

Pattern Listable.attributes Attributes for items that can be put into lists, like
index, table of contents.

Attribute inlist = text
Records which lists, such as toc=table of contents,..., this object could be
listed in. Space separated set of toc, lof, lot, etc.

Used by: Labelled.attributes, bibref attributes, cite attributes,
glossarydefinition attributes, glossaryref attributes,
indexmark attributes, Labelled.attributes, bibref attributes,
cite attributes, glossarydefinition attributes, glossaryref attributes,
indexmark attributes

Pattern Listing.attributes Attributes for items that create lists, like index, table
of contents.

Attribute lists = text
Records which lists, such as toc(=table of contents), this object should
create a list of. Space separated set of toc, lof, lot, etc.

Used by: bibliography attributes, glossary attributes, index attributes,
bibliography attributes, glossary attributes, index attributes

Pattern Labelled.attributes Attributes for elements that can be labelled from
within LaTeX. These attributes deal with assigning a label and generating cross
references. The label migrates to an xml:id and href and the element can serve
as a hypertext target.

D.2. MODULE LATEXML-COMMON 169

Attributes: ID.attributes, Listable.attributes

Attribute labels = text
Records the various labels that LaTeX uses for crossreferencing. (note that
\label can associate more than one label with an object!) It consists of
space separated labels for the element. The \label macro provides the
label prefixed by LABEL:; Spaces in a label are replaced by underscore.
Other mechanisms (like acro?) might use other prefixes (but ID: is
reserved!)

Used by: Sectional.attributes, equation attributes,
equationgroup attributes, figure attributes, float attributes,
inline-item attributes, item attributes, listing attributes,
listingline attributes, note attributes, proof attributes,
table attributes, theorem attributes, Sectional.attributes,
equation attributes, equationgroup attributes, figure attributes,
float attributes, inline-item attributes, item attributes,
listing attributes, listingline attributes, note attributes,
proof attributes, table attributes, theorem attributes

Pattern Refable.attributes Attributes for elements that can be referred to from
within LaTeX. Such elements may serve as the starting point of a hypertext
link. The reference can be made using label, xml:id or href; these attributes
will be converted, as needed, from the former to the latter.

Attributes: IDREF.attributes

Attribute labelref = text
reference to a LaTeX labelled object; See the labels attribute of
Labelled.attributes.

Attribute href = text
reference to an arbitrary url.

Used by: bib-identifier attributes, bib-review attributes, bib-url attributes,
contact attributes, glossaryref attributes, personname attributes,
ref attributes, bib-identifier attributes, bib-review attributes,
bib-url attributes, contact attributes, glossaryref attributes,
personname attributes, ref attributes

Pattern Fontable.attributes Attributes for elements that contain (indirectly)
text whose font can be specified.

Attribute font = text
Indicates the font to use. It consists of a space separated sequence of
values representing the family (serif, sansserif, math,
typewriter, caligraphic, fraktur, script, . . .), series
(medium, bold, . . .), and shape (upright, italic, slanted,
smallcaps, . . .). Only the values differing from the current context are
given. Each component is open-ended, for extensibility; it is thus unclear

170 APPENDIX D. SCHEMA

whether unknown values specify family, series or shape. In
postprocessing, these values are carried to the class attribute, and can thus
be effected by CSS.

Attribute fontsize = Length.type
Indicates the text size to use, as a length, as in CSS. Normally, this should
be a percentage value relative to the containing element.

Used by: XMTok attributes, caption attributes, del attributes,
emph attributes, glossaryref attributes, ref attributes, text attributes,
title attributes, verbatim attributes, XMTok attributes,
caption attributes, del attributes, emph attributes,
glossaryref attributes, ref attributes, text attributes, title attributes,
verbatim attributes

Pattern Colorable.attributes Attributes for elements that draw something, text
or otherwise, that can be colored.

Attribute color = text
the color to use (for foreground material); any CSS compatible color
specification. In postprocessing, these values are carried to the class
attribute, and can thus be effected by CSS.

Attribute opacity = float
the opacity of foreground material; a number between 0 and 1.

Used by: XMApp attributes, XMTok attributes, caption attributes,
del attributes, emph attributes, glossaryref attributes, ref attributes,
rule attributes, text attributes, title attributes, verbatim attributes,
XMApp attributes, XMTok attributes, caption attributes,
del attributes, emph attributes, glossaryref attributes, ref attributes,
rule attributes, text attributes, title attributes, verbatim attributes

Pattern Backgroundable.attributes Attributes for elements that take up space
and make sense to have a background color. This is independent of the colors of
any things that it may draw.

Attribute backgroundcolor = text
the color to use for the background of the element; any CSS compatible
color specification. In postprocessing, these values are carried to the class
attribute, and can thus be effected by CSS; the background will
presumably correspond to a bounding rectangle, but is determined by the
CSS rendering engine.

Used by: Math attributes, Sectional.attributes, XMApp attributes,
XMCell attributes, XMRow attributes, XMText attributes,
XMTok attributes, XMWrap attributes, block attributes,
caption attributes, constraint attributes, del attributes,
description attributes, emph attributes, enumerate attributes,
equation attributes, equationgroup attributes, figure attributes,

D.2. MODULE LATEXML-COMMON 171

float attributes, glossaryref attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-item attributes, inline-itemize attributes, inline-para attributes,
item attributes, itemize attributes, listing attributes, p attributes,
para attributes, proof attributes, quote attributes, ref attributes,
table attributes, tabular attributes, tag attributes, tbody attributes,
td attributes, text attributes, tfoot attributes, thead attributes,
theorem attributes, title attributes, tr attributes, verbatim attributes,
Math attributes, Sectional.attributes, XMApp attributes,
XMCell attributes, XMRow attributes, XMText attributes,
XMTok attributes, XMWrap attributes, block attributes,
caption attributes, constraint attributes, del attributes,
description attributes, emph attributes, enumerate attributes,
equation attributes, equationgroup attributes, figure attributes,
float attributes, glossaryref attributes, inline-block attributes,
inline-description attributes, inline-enumerate attributes,
inline-item attributes, inline-itemize attributes, inline-para attributes,
item attributes, itemize attributes, listing attributes, p attributes,
para attributes, proof attributes, quote attributes, ref attributes,
table attributes, tabular attributes, tag attributes, tbody attributes,
td attributes, text attributes, tfoot attributes, thead attributes,
theorem attributes, title attributes, tr attributes, verbatim attributes

Pattern Positionable.attributes Attributes shared by low-level, generic inline
and block elements that can be sized or shifted.

Attribute width = Length.type
the desired width of the box

Attribute height = Length.type
the desired height of the box

Attribute depth = Length.type
the desired depth of the box

Attribute xoffset = Length.type
horizontal shift the position of the box.

Attribute yoffset = Length.type
vertical shift the position of the box.

Attribute align = (left | center | right | justified)
alignment of material within the box.

Attribute vattach = (top | middle | bottom | baseline)
specifies which line of the box is aligned to the baseline of the containing
object. The default is baseline.

Attribute float = (right | left | text)
the horizontal floating placement parameter that determines where the
object is displayed.

172 APPENDIX D. SCHEMA

Attribute framed = (rectangle | underline | text)
the kind of frame or outline for the box.

Attribute framecolor = text
the color of the frame or outlie for the box.

Used by: XMath.attributes, block attributes, figure attributes,
float attributes, inline-block attributes, inline-para attributes,
listing attributes, p attributes, para attributes, rule attributes,
table attributes, text attributes, XMath.attributes, block attributes,
figure attributes, float attributes, inline-block attributes,
inline-para attributes, listing attributes, p attributes, para attributes,
rule attributes, table attributes, text attributes

Pattern Transformable.attributes Attributes shared by (hopefully few)
elements that can be transformed. Such elements should also have
Positionable.attributes. Transformation order of an individual element is
assumed to be translate, scale, rotate; wrap elements to achieve different orders.
Attributes innerwidth, innerheight and innerdepth describe the size of the
contents of the element before transformation; The result size would be
encoded in Positional.attributes.

Attribute xtranslate = Length.type
horizontal shift the position of the inner element.

Attribute ytranslate = Length.type
vertical shift the position of the inner element.

Attribute xscale = text
horizontal scaling of the inner element.

Attribute yscale = text
vertical scalign of the inner element.

Attribute angle = text
the rotation angle, counter-clockwise, in degrees.

Attribute innerwidth = Length.type
the expected width of the contents of the inner element

Attribute innerheight = Length.type
the expected height of the contents of the inner element

Attribute innerdepth = Length.type
the expected depth of the contents of the inner element

Used by: figure attributes, float attributes, inline-block attributes,
table attributes, figure attributes, float attributes,
inline-block attributes, table attributes

Pattern Imageable.attributes Attributes for elements that may be converted to
image form during postprocessing, such as math, graphics, pictures, etc. Note
that these attributes are generally not filled in until postprocessing, but that they
could be init

D.2. MODULE LATEXML-COMMON 173

Attribute imagesrc = anyURI
the file, possibly generated from other data.

Attribute imagewidth = nonNegativeInteger
the width in pixels of imagesrc.

Attribute imageheight = nonNegativeInteger
the height in pixels of imagesrc. Note that, unlike TEX, this is the total
height, including the depth (if any).

Attribute imagedepth = integer
the depth in pixels of imagesrc, being the location of the baseline of the
content shown in the image. When displayed inilne, an image with a
positive depth should be shifted down relative to the baseline of
neighboring material.

Attribute description = text
a description of the image

Used by: Math attributes, graphics attributes, picture attributes,
Math attributes, graphics attributes, picture attributes

Pattern RDF.attributes Attributes for RDFa (Resource Description Framework),
following RDFa Core 1.1 http://www.w3.org/TR/rdfa-syntax/.
The following descriptions give a short overview of the usage of the attributes,
but see the specification for the complete details, which are sometimes complex.

Attribute vocab = text
indicates the default vocabulary (generally should be managed by
LaTeXML and only appear on root node)

Attribute prefix = text
specifies a mapping between CURIE prefixes and IRI (URI). (generally
should be managed by LaTeXML and only appear on root node)

Attribute about = text
indicates the subject for predicates appearing on the same or descendant
nodes.

Attribute aboutlabelref = text
gives the label for the document element that serves as the subject; it will
be converted to aboutidref and about during post-processing.

Attribute aboutidref = text
gives the id for the document element that serves as the subject; it will be
converted to about during post-processing.

Attribute resource = text
indicates the subject for predicates appearing on descendant nodes, and
also indicates the object for predicates when property appears on the
same node, or when rel or rev appears on an ancestor.

http://www.w3.org/TR/rdfa-syntax/

174 APPENDIX D. SCHEMA

Attribute resourcelabelref = text
gives the label for the document element that serves as the resource object;
it will be converted to resourceidref and resource during
post-processing.

Attribute resourceidref = text
gives the id for the document element that serves as the resource object; it
will be converted to resource during post-processing.

Attribute property = text
indicates the predicate and asserts that the subject is related by that
predicate to the object. The subject is determined by one of about on
same node, resource or typeof on an ancestor node, or by the document
root. The object is determined by one of resource, href, content or
typeof on the same node, or by the text content of the node.

Attribute rel = text
indicates the predicate exactly as property except that it can assert
multiple RDF triples where the objects are the nearest descendent
resources.

Attribute rev = text
indicates the predicate exactly as rel except that it indicates the reverse
relationship (with subject and object swapped).

Attribute typeof = text
indicates the type of the resource and thus implicitly asserts a relation
that the object has the given type. Additionally, if no resource was given
on the same node, indicates an anonymous subject and or object exactly as
resource

Attribute datatype = text
indicates the datatype of the target resource;

Attribute content = text
indicates the content of the property to be used as the object, to be used
instead of the content of the element itself;

Used by: Common.attributes, Common.attributes

Pattern Data.attributes Attributes for raw data storage

Attribute data = text
the data itself

Attribute datamimetype = text
the MIME type of the data

Attribute dataencoding = text
the encoding of the data (either empty, base64, or)

Used by: figure attributes, float attributes, listing attributes,
proof attributes, table attributes, figure attributes, float attributes,
listing attributes, proof attributes, table attributes

D.3. MODULE LATEXML-INLINE 175

D.3 Module LaTeXML-inline
Add to Inline.class The inline module defines basic inline elements used

throughout.

|= (text | emph | del | sub | sup | glossaryref | rule | anchor | ref
| cite | bibref)

Element text General container for styled text. Attributes cover a variety of
styling and position shifting properties.

Used by: Inline.class, MathFork model, declare model, equation model,
Inline.class, MathFork model, declare model, equation model

Pattern text attributes Attributes for text.

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Fontable.attributes, Colorable.attributes, Backgroundable.attributes

Pattern text model Content model for text.

Content: Inline.model

Expansion: (Inline.model)

Element emph Emphasized text.

Used by: Inline.class, Inline.class

Pattern emph attributes Attributes for emph.

Attributes: Common.attributes, ID.attributes, Fontable.attributes,
Colorable.attributes, Backgroundable.attributes

Pattern emph model Content model for emph.

Content: Inline.model

Expansion: (Inline.model)

Element del Deleted text.

Used by: Inline.class, Inline.class

Pattern del attributes Attributes for del.

Attributes: Common.attributes, ID.attributes, Fontable.attributes,
Colorable.attributes, Backgroundable.attributes

Pattern del model Content model for del.

Content: Inline.model

Expansion: (Inline.model)

176 APPENDIX D. SCHEMA

Element sub Textual subscript text.

Used by: Inline.class, Inline.class

Pattern sub attributes Attributes for sub.

Attributes: Common.attributes, ID.attributes

Pattern sub model Content model for sub.

Content: Inline.model

Expansion: (Inline.model)

Element sup Textual superscript text.

Used by: Inline.class, Inline.class

Pattern sup attributes Attributes for sup.

Attributes: Common.attributes, ID.attributes

Pattern sup model Content model for sup.

Content: Inline.model

Expansion: (Inline.model)

Element glossaryref Represents the usage of a term from a glossary.

Used by: Inline.class, Inline.class

Pattern glossaryref attributes Attributes for glossaryref.

Attributes: Common.attributes, Refable.attributes, Listable.attributes,
Fontable.attributes, Colorable.attributes, Backgroundable.attributes

Attribute key = text
should be used to identifier used for the glossaryref.

Attribute title = text
gives a expanded form of the glossaryref (unused?),

Attribute show = text
a pattern encoding how the text content should be filled in during
postprocessing, if it is empty. It consists of the words type (standing for
the object type, eg. Ch.), refnum, typerefnum and title or
toctitle (for the shortform of the title) mixed with arbitrary characters.

Pattern glossaryref model Content model for glossaryref.

Content: Inline.model

Expansion: (Inline.model)

Element rule A Rule.

D.3. MODULE LATEXML-INLINE 177

Used by: Inline.class, Inline.class

Pattern rule attributes Attributes for rule.

Attributes: Common.attributes, Positionable.attributes,
Colorable.attributes

Pattern rule model Content model for rule.

Content: empty

Expansion: ()

Element ref A hyperlink reference to some other object. When converted to
HTML, the content would be the content of the anchor. The destination can be
specified by one of the attributes labelref, idref or href; Missing fields will
usually be filled in during postprocessing, based on data extracted from the
document(s).

Used by: Inline.class, navigation model, tocentry model, Inline.class,
navigation model, tocentry model

Pattern ref attributes Attributes for ref.

Attributes: Common.attributes, Refable.attributes, Fontable.attributes,
Colorable.attributes, Backgroundable.attributes

Attribute show = text
a pattern encoding how the text content should be filled in during
postprocessing, if it is empty. It consists of the words type (standing for
the object type, eg. Ch.), refnum and title (including type and
refnum) or toctitle (for the shortform of the title) mixed with
arbitrary characters.

Attribute title = text
gives a longer form description of the target, this would typically appear
as a tooltip in HTML. Typically filled in by postprocessor.

Pattern ref model Content model for ref.

Content: Inline.model

Expansion: (Inline.model)

Element anchor Inline anchor.

Used by: Inline.class, Inline.class

Pattern anchor attributes Attributes for anchor.

Attributes: Common.attributes, ID.attributes

Pattern anchor model Content model for anchor.

178 APPENDIX D. SCHEMA

Content: Inline.model

Expansion: (Inline.model)

Element cite A container for a bibliographic citation. The model is inline to allow
arbitrary comments before and after the expected bibref(s) which are the
specific citation.

Used by: Inline.class, Inline.class

Pattern cite attributes Attributes for cite.

Attributes: Common.attributes, Listable.attributes

Pattern cite model Content model for cite.

Content: Inline.model

Expansion: (Inline.model)

Element bibref A bibliographic citation refering to a specific bibliographic item.
Postprocessing will turn this into an ref for the actual link.

Used by: Inline.class, Inline.class

Pattern bibref attributes Attributes for bibref.

Attributes: Common.attributes, IDREF.attributes, Listable.attributes

Attribute bibrefs = text
a comma separated list of bibliographic keys. (See the key attribute of
bibitem and bibentry)

Attribute show = text
a pattern encoding how the text content (of an empty bibref) will be filled
in. Consists of strings author, fullauthor, year, number and
title (to be replaced by data from the bibliographic item) mixed with
arbitrary characters.

Attribute separator = text
separator between formatted references

Attribute yyseparator = text
separator between formatted years when duplicate authors are combined.

Pattern bibref model Content model for bibref.

Content: bibrefphrase*

Expansion: (bibrefphrase*)

Element bibrefphrase A preceding or following phrase used in composing a
bibliographic reference, such as listing pages or chapter.

Used by: bibref model, bibref model

D.4. MODULE LATEXML-BLOCK 179

Pattern bibrefphrase attributes Attributes for bibrefphrase

Attributes: Common.attributes

Pattern bibrefphrase model Content model for bibrefphrase

Content: Inline.model

Expansion: (Inline.model)

D.4 Module LaTeXML-block
Add to Block.class The block module defines the following ‘physical’ block

elements.

|= (p | equation | equationgroup | quote | block | listing | itemize
| enumerate | description | pagination)

Add to Misc.class These are inline forms of logical lists (they are included in
Misc since that has been the general strategy)

|= (inline-itemize | inline-enumerate | inline-description)

Pattern EquationMeta.class Additional Metadata that can be present in
equations.

Content: constraint

Expansion: (constraint)

Used by: equation model, equationgroup model, equation model,
equationgroup model

Element p A physical paragraph.

Used by: Block.class, equationgroup model, Block.class,
equationgroup model

Pattern p attributes Attributes for p.

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Backgroundable.attributes

Pattern p model Content model for p.

Content: Inline.model

Expansion: (Inline.model)

Element constraint A constraint upon an equation.

Used by: EquationMeta.class, EquationMeta.class

Pattern constraint attributes Attributes for constraint.

180 APPENDIX D. SCHEMA

Attributes: Backgroundable.attributes

Attribute hidden = boolean

Pattern constraint model Content model for constraint.

Content: Inline.model

Expansion: (Inline.model)

Element equation An Equation. The model is just Inline which includes Math,
the main expected ingredient. However, other things can end up in display
math, too, so we use Inline. Note that tabular is here only because it’s a
common, if misguided, idiom; the processor will lift such elements out of math,
when possible

Used by: Block.class, equationgroup model, listingline model,
Block.class, equationgroup model, listingline model

Pattern equation attributes Attributes for equation.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Pattern equation model Content model for equation.

Content: (tags | Math | MathFork | text | Misc.class | Meta.class
| EquationMeta.class)*

Expansion: ((tags | Math | MathFork | text | Misc.class | Meta.class
| EquationMeta.class)*)

Element equationgroup A group of equations, perhaps aligned (Though this is
nowhere recorded).

Used by: Block.class, equationgroup model, listingline model,
Block.class, equationgroup model, listingline model

Pattern equationgroup attributes Attributes for equationgroup.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Attribute rowsep = Length.type
the spacing between rows (equations, intertext,...)

Pattern equationgroup model Content model for equationgroup.

Content: (tags | equationgroup | equation | p | Meta.class
| EquationMeta.class)*

Expansion: ((tags | equationgroup | equation | p | Meta.class
| EquationMeta.class)*)

D.4. MODULE LATEXML-BLOCK 181

Element MathFork A wrapper for Math that provides alternative, but typically
less semantically meaningful, formatted representations. The first child is the
meaningful form, the extra children provide formatted forms, for example being
table rows or cells arising from an eqnarray.

Used by: equation model, equation model

Pattern MathFork attributes Attributes for MathFork.

Attributes: Common.attributes

Pattern MathFork model Content model for MathFork.

Content: (Math | text), MathBranch*

Expansion: ((Math | text), MathBranch*)

Element MathBranch A container for an alternatively formatted math
representation.

Used by: MathFork model, MathFork model

Pattern MathBranch attributes Attributes for MathBranch.

Attributes: Common.attributes

Attribute format = text

Pattern MathBranch model Content model for MathBranch.

Content: (Math | tr | td)*

Expansion: ((Math | tr | td)*)

Element quote A quotation.

Used by: Block.class, Block.class

Pattern quote attributes Attributes for quote.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Attribute role = text
The kind of quotation; could be something like verse, or translation

Pattern quote model Content model for quote.

Content: Block.model

Expansion: (Block.model)

Element block A generic block (fallback).

Used by: Block.class, Block.class

Pattern block attributes Attributes for block.

182 APPENDIX D. SCHEMA

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Backgroundable.attributes

Pattern block model Content model for block.

Content: Block.model

Expansion: (Block.model)

Element listing An Listing, (without caption: see float)

Used by: Block.class, Block.class

Pattern listing attributes Attributes for listing.

Attributes: Common.attributes, Labelled.attributes,
Positionable.attributes, Backgroundable.attributes, Data.attributes

Pattern listing model Content model for listing.

Content: listingline*

Expansion: (listingline*)

Element listingline a line in a listing

Used by: listing model, listing model

Pattern listingline attributes Attributes for listingline

Attributes: Common.attributes, Labelled.attributes

Pattern listingline model Content model for listingline; Inline.model plus
equations

Content: tags?, (text | Inline.class | Misc.class | Meta.class | equation
| equationgroup)*

Expansion: (tags?, (text | Inline.class | Misc.class | Meta.class
| equation | equationgroup)*)

Element itemize An itemized list.

Used by: Block.class, Block.class

Pattern itemize attributes Attributes for itemize.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern itemize model Content model for itemize.

Content: item*

Expansion: (item*)

Element enumerate An enumerated list.

D.4. MODULE LATEXML-BLOCK 183

Used by: Block.class, Block.class

Pattern enumerate attributes Attributes for enumerate.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern enumerate model Content model for enumerate.

Content: item*

Expansion: (item*)

Element description A description list. The items within are expected to have a
tag which represents the term being described in each item.

Used by: Block.class, Block.class

Pattern description attributes Attributes for description.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern description model Content model for description.

Content: item*

Expansion: (item*)

Element item An item within a list (itemize,enumerate or description).

Used by: description model, enumerate model, itemize model,
description model, enumerate model, itemize model

Pattern item attributes Attributes for item.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Attribute itemsep = Length.type
the vertical spacing between items

Pattern item model Content model for item.

Content: tags?, Para.model

Expansion: (tags?, Para.model)

Element inline-itemize An inline form of itemized list.

Used by: Misc.class, Misc.class

Pattern inline-itemize attributes Attributes for inline-itemize.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern inline-itemize model Content model for inline-itemize.

184 APPENDIX D. SCHEMA

Content: inline-item*

Expansion: (inline-item*)

Element inline-enumerate An inline form of enumerated list.

Used by: Misc.class, Misc.class

Pattern inline-enumerate attributes Attributes for inline-enumerate.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern inline-enumerate model Content model for inline-enumerate.

Content: inline-item*

Expansion: (inline-item*)

Element inline-description An inline form of description list. The inline-items
within are expected to have a tags which represents the term being described in
each inline-item.

Used by: Misc.class, Misc.class

Pattern inline-description attributes Attributes for inline-description.

Attributes: Common.attributes, ID.attributes, Backgroundable.attributes

Pattern inline-description model Content model for inline-description.

Content: inline-item*

Expansion: (inline-item*)

Element inline-item An item within an inline list
(inline-itemize,inline-enumerate or inline-description).

Used by: inline-description model, inline-enumerate model,
inline-itemize model, inline-description model,
inline-enumerate model, inline-itemize model

Pattern inline-item attributes Attributes for item.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Pattern inline-item model Content model for inline-item.

Content: tags?, (Inline.class | Misc.class | Meta.class)*

Expansion: (tags?, (Inline.class | Misc.class | Meta.class)*)

Element tags A container for one or more tags. At most one will have no role,
which would be the default display. Other tag will have the role attribute for
use in special forms of referencing.

D.4. MODULE LATEXML-BLOCK 185

Used by: SectionalFrontMatter.class, bibitem model, declare model,
equation model, equationgroup model, figure model, float model,
inline-item model, item model, listingline model, note model,
proof model, table model, theorem model,
SectionalFrontMatter.class, bibitem model, declare model,
equation model, equationgroup model, figure model, float model,
inline-item model, item model, listingline model, note model,
proof model, table model, theorem model

Pattern tags model

Content: tag+

Expansion: (tag+)

Element tag A tag within an item indicating the term or bullet for a given item.

Used by: caption model, tags model, title model, toccaption model,
toctitle model, caption model, tags model, title model,
toccaption model, toctitle model

Pattern tag attributes Attributes for tag.

Attributes: Common.attributes, Backgroundable.attributes
Attribute role = text

specifies the purpose this tag is used for: no value is default display

Attribute open = text
specifies an open delimiters used to display the tag.

Attribute close = text
specifies an close delimiters used to display the tag.

Pattern tag model Content model for tag.

Content: Inline.model
Expansion: (Inline.model)

Element pagination A page break or related pagination information.

Used by: Block.class, Para.class, Block.class, Para.class

Pattern pagination attributes Attributes for pagination.

Attributes: Common.attributes
Attribute role = text

what kind of pagination

Pattern pagination model Content model for pagination.

Content: empty

Expansion: ()

186 APPENDIX D. SCHEMA

D.5 Module LaTeXML-misc
Add to Misc.class Miscellaneous (Misc) elements are (typically) visible

elements which don’t have clear inline or block character; they can appear in
both inline and block contexts.

|= (inline-block | verbatim | break | graphics | svg | rawhtml
| rawliteral)

Element inline-block An inline block. Actually, can appear in inline or block
mode, but typesets its contents as a block.

Used by: Misc.class, Misc.class

Pattern inline-block attributes Attributes for inline-block.

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Transformable.attributes, Backgroundable.attributes

Pattern inline-block model Content model for inline-block.

Content: Block.model

Expansion: (Block.model)

Element verbatim Verbatim content

Used by: Misc.class, Misc.class

Pattern verbatim attributes Attributes for verbatim.

Attributes: Common.attributes, ID.attributes, Fontable.attributes,
Colorable.attributes, Backgroundable.attributes

Pattern verbatim model Content model for verbatim.

Content: Inline.model

Expansion: (Inline.model)

Element break A forced line break.

Used by: Misc.class, Misc.class

Pattern break attributes Attributes for break.

Attributes: Common.attributes

Pattern break model Content model for break.

Content: empty

Expansion: ()

Element graphics A graphical insertion of an external file.

D.5. MODULE LATEXML-MISC 187

Used by: Misc.class, Misc.class

Pattern graphics attributes Attributes for graphics.

Attributes: Common.attributes, ID.attributes, Imageable.attributes

Attribute graphic = text
the path to the graphics file. This is the (often minimally specified) path to
a graphics file omitting the type extension. Once resolved to a specific
image file, the imagesrc (from Imageable.attributes) is used.

Attribute candidates = text
a comma separated list of candidate graphics files that could be used to for
graphic. A post-processor or application may choose from these, or may
make its own selection or synthesis to implement the graphic for a given
target.

Attribute options = text
an encoding of the scaling and positioning options to be used in
processing the graphic.

Pattern graphics model Content model for graphics.

Content: empty

Expansion: ()

Pattern svg

Content:

Module svg:svg11 (overridden) included.

Expansion: (

Module svg:svg11 (overridden) included.)

Used by: Misc.class, Picture.class, Misc.class, Picture.class

Element xhtml:*

Content: (

Attribute ANY = text
| text | xhtml:*)*

Used by: rawhtml, xhtml:*

Element rawhtml A container for arbitrary markup in the xhtml namespace (not
currently validated against any particular html schema)

Content: xhtml:**

Used by: Misc.class, Misc.class

188 APPENDIX D. SCHEMA

Element rawliteral A container for even more arbitrary directives like jsp, php,
etc Doesn’t create an element, but an open angle bracket followed by open then
the text content, followed by a close angle bracket followed by close.

Attribute open = text

Attribute close = text

Content: text

Used by: Misc.class, Misc.class

D.6 Module LaTeXML-meta
Add to Meta.class Meta elements are generally hidden; they can appear in both

inline and block contexts.

|= (note | declare | indexmark | glossarydefinition | rdf | ERROR
| resource | navigation)

Element note Metadata that covers several ‘out of band’ annotations. It’s content
allows both inline and block-level content.

Used by: Meta.class, Meta.class

Pattern note attributes Attributes for note.

Attributes: Common.attributes, Labelled.attributes

Attribute mark = text
indicates the desired visible marker to be linked to the note.

Attribute role = (footnote | text)
indicates the kind of note

Pattern note model Content model for note.

Content: tags?, Flow.model

Expansion: (tags?, Flow.model)

Element declare declare records declarative mathematical information.

Used by: Meta.class, Meta.class

Pattern declare attributes Attributes for declare.

Attributes: ID.attributes

Attribute type = text
the type of declaration

Attribute definiens = text
the thing being defined (if global), else must have xml:id

D.6. MODULE LATEXML-META 189

Attribute sortkey = text
the sort key for use creating notation indices

Pattern declare model Content model for declare

Content: tags?, text?

Expansion: (tags?, text?)

Element indexmark Metadata to record an indexing position. The content is a
sequence of indexphrase, each representing a level in a multilevel indexing
entry.

Used by: Meta.class, Meta.class

Pattern indexmark attributes Attributes for indexmark.

Attributes: Common.attributes, Listable.attributes

Attribute see also = text
a flattened form (like key) of another indexmark, used to crossreference.

Attribute style = text
NOTE: describe this.

Pattern indexmark model Content model for indexmark.

Content: indexphrase*, indexsee*

Expansion: (indexphrase*, indexsee*)

Element indexphrase A phrase within an indexmark

Used by: indexentry model, indexmark model, indexentry model,
indexmark model

Pattern indexphrase attributes Attributes for indexphrase.

Attributes: Common.attributes

Attribute key = text
a flattened form of the phrase for generating an ID.

Pattern indexphrase model Content model for indexphrase.

Content: Inline.model

Expansion: (Inline.model)

Element indexsee A see-also phrase within an indexmark

Used by: indexmark model, indexmark model

Pattern indexsee attributes Attributes for indexsee.

Attributes: Common.attributes

190 APPENDIX D. SCHEMA

Attribute key = text
a flattened form of the phrase for generating an ID.

Attribute name = text
a name for the see phrase, such as ”see also”.

Pattern indexsee model Content model for indexsee.

Content: Inline.model

Expansion: (Inline.model)

Element glossarydefinition A definition within an glossaryentry

Used by: Meta.class, Meta.class

Pattern glossarydefinition attributes Attributes for glossarydefinition.

Attributes: Common.attributes, Listable.attributes

Attribute key = text
a flattened form of the definition for generating an ID.

Pattern glossarydefinition model Content model for glossarydefinition.

Content: glossaryphrase*

Expansion: (glossaryphrase*)

Element glossaryphrase A phrase being clarified within an glossaryentry

Used by: glossarydefinition model, glossaryentry model,
glossarydefinition model, glossaryentry model

Pattern glossaryphrase attributes Attributes for glossaryphrase.

Attributes: Common.attributes, IDREF.attributes

Attribute key = text
a flattened form of the phrase for generating an ID.

Attribute role = text
a keyword naming the format of this phrase (to match show in
glossaryref).

Pattern glossaryphrase model Content model for glossaryphrase.

Content: Inline.model

Expansion: (Inline.model)

Element rdf A container for RDF annotations. (See document structure for
rdf-prefixes attribute)

Used by: Meta.class, Meta.class

D.6. MODULE LATEXML-META 191

Pattern rdf attributes Attributes for rdf

Attributes: Common.attributes

Pattern rdf model Content model for rdf

Content: Flow.model

Expansion: (Flow.model)

Element ERROR error object for undefined control sequences, or whatever

Used by: Meta.class, XMath.class, Meta.class, XMath.class

Pattern ERROR attributes Attributes for ERROR.

Attributes: Common.attributes, ID.attributes

Pattern ERROR model Content model for ERROR.

Content: text*

Expansion: (text*)

Element resource a resource for use in further processing such as javascript or
CSS

Used by: Meta.class, Meta.class

Pattern resource attributes Attributes for resource.

Attributes: Common.attributes

Attribute src = text
the source url to the resource

Attribute type = text
the mime type of the resource

Attribute media = text
the media for which this resource is applicable (in the sense of CSS).

Pattern resource model

Content: text*

Expansion: (text*)

Element navigation Records navigation cross-referencing information, or serves
as a container for page navigational blocks.

Used by: Meta.class, Meta.class

Pattern navigation attributes Attributes for navigation.

Attributes: Common.attributes

192 APPENDIX D. SCHEMA

Pattern navigation model Content model for navigation. A inline-para child
should have attribute class being one of ltx page navbar,
ltx page header or ltx page footer and its contents will be used to
create those components of webpages. Lacking those, a TOC requests a table of
contents in the navigation bar. Page headers and footers will be synthesized
from Links from the current page or document to related ones; these are
represented by ref elements with rel being up, down, previous, next, and so
forth. top-level elements, presumably block-level,

Content: (ref | TOC | inline-para)*

Expansion: ((ref | TOC | inline-para)*)

D.7 Module LaTeXML-para
Add to Para.class This module defines the following ‘logical’ block elements.

|= (para | theorem | proof | figure | table | float | pagination)

Add to Misc.class Additionally, it defines these miscellaneous elements that can
appear in both inline and block contexts.

|= inline-para

Element para A Logical paragraph. It has an id, but not a label.

Used by: Para.class, Para.class

Pattern para attributes Attributes for para.

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Backgroundable.attributes

Pattern para model Content model for para.

Content: Block.model

Expansion: (Block.model)

Element inline-para An inline para. Actually, can appear in inline or block
mode, but typesets its contents as para.

Used by: Misc.class, navigation model, Misc.class, navigation model

Pattern inline-para attributes Attributes for inline-para.

Attributes: Common.attributes, ID.attributes, Positionable.attributes,
Backgroundable.attributes

Pattern inline-para model Content model for inline-para.

Content: Para.model

D.7. MODULE LATEXML-PARA 193

Expansion: (Para.model)

Element theorem A theorem or similar object. The class attribute can be used to
distinguish different kinds of theorem.

Used by: Para.class, Para.class

Pattern theorem attributes Attributes for theorem.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Pattern theorem model Content model for theorem.

Content: tags?, title?, Para.model

Expansion: (tags?, title?, Para.model)

Element proof A proof or similar object. The class attribute can be used to
distinguish different kinds of proof.

Used by: Para.class, Para.class

Pattern proof attributes Attributes for proof.

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes, Data.attributes

Pattern proof model Content model for proof.

Content: tags?, title?, Para.model

Expansion: (tags?, title?, Para.model)

Pattern Caption.class These are the additional elements representing figure and
table captions. NOTE: Could title sensibly be reused here, instead? Or, should
caption be used for theorem and proof?

Content: (caption | toccaption)

Expansion: ((caption | toccaption))

Used by: figure model, float model, table model, figure model,
float model, table model

Element figure A figure, possibly captioned.

Used by: Para.class, figure model, float model, table model, Para.class,
figure model, float model, table model

Pattern figure attributes Attributes for figure.

Attributes: Common.attributes, Labelled.attributes,
Positionable.attributes, Transformable.attributes,
Backgroundable.attributes, Data.attributes

194 APPENDIX D. SCHEMA

Attribute placement = text
the vertical floating placement parameter that determines where the object
is displayed.

Pattern figure model Content model for figure; allow nested figures, etc for
”sub” floats.

Content: (tags? | figure | table | float | Block.model | Caption.class)*

Expansion: ((tags? | figure | table | float | Block.model
| Caption.class)*)

Element table A Table, possibly captioned. This is not necessarily a tabular.

Used by: Para.class, figure model, float model, table model, Para.class,
figure model, float model, table model

Pattern table attributes Attributes for table.

Attributes: Common.attributes, Labelled.attributes,
Positionable.attributes, Transformable.attributes,
Backgroundable.attributes, Data.attributes

Attribute placement = text
the vertical floating placement parameter that determines where the object
is displayed.

Pattern table model Content model for table.

Content: (tags? | table | figure | float | Block.model | Caption.class)*

Expansion: ((tags? | table | figure | float | Block.model
| Caption.class)*)

Element float A generic float, possibly captioned, something other than a table or
figure

Used by: Para.class, figure model, float model, table model, Para.class,
figure model, float model, table model

Pattern float attributes Attributes for float.

Attributes: Common.attributes, Labelled.attributes,
Positionable.attributes, Transformable.attributes,
Backgroundable.attributes, Data.attributes

Attribute role = text
The kind of float; could be something like a listing, or some other thing

Attribute placement = text
the vertical floating placement parameter that determines where the object
is displayed.

D.8. MODULE LATEXML-MATH 195

Pattern float model Content model for float.

Content: (tags? | float | figure | table | Block.model | Caption.class)*

Expansion: ((tags? | float | figure | table | Block.model
| Caption.class)*)

Element caption A caption for a table or figure.

Used by: Caption.class, Caption.class

Pattern caption attributes Attributes for caption.

Attributes: Common.attributes, Fontable.attributes, Colorable.attributes,
Backgroundable.attributes

Pattern caption model Content model for caption, basically Inline.model with
tag included (normally, but not necessarily, tag would come first).

Content: (tag | text | Inline.class | Misc.class | Meta.class)*

Expansion: ((tag | text | Inline.class | Misc.class | Meta.class)*)

Element toccaption A short form of table or figure caption, used for lists of
figures or similar.

Used by: Caption.class, Caption.class

Pattern toccaption attributes Attributes for toccaption.

Attributes: Common.attributes

Pattern toccaption model Content model for toccaption.

Content: (tag | text | Inline.class | Misc.class | Meta.class)*

Expansion: ((tag | text | Inline.class | Misc.class | Meta.class)*)

D.8 Module LaTeXML-math
Add to Inline.class The math module defines LaTeXML’s internal representation

of mathematical content, including the basic math container Math. This
element is considered inline, as it will be contained within some other
block-level element, eg. equation for display-math.

|= Math

Pattern Math.class This class defines the content of the Math element.
Additionally, it could contain MathML or OpenMath, after postprocessing.

Content: XMath

Expansion: (XMath)

196 APPENDIX D. SCHEMA

Used by: Math model, Math model

Pattern XMath.class These elements comprise the internal math representation,
being the content of the XMath element.

Content: (XMApp | XMTok | XMRef | XMHint | XMArg | XMWrap
| XMDual | XMText | XMArray | ERROR)

Expansion: ((XMApp | XMTok | XMRef | XMHint | XMArg | XMWrap
| XMDual | XMText | XMArray | ERROR))

Used by: XMApp model, XMArg model, XMCell model, XMDual model,
XMWrap model, XMath model, XMApp model, XMArg model,
XMCell model, XMDual model, XMWrap model, XMath model

Element Math Outer container for all math. This holds the internal XMath
representation, as well as image data and other representations.

Used by: Inline.class, MathBranch model, MathFork model,
equation model, Inline.class, MathBranch model, MathFork model,
equation model

Pattern Math attributes Attributes for Math.

Attributes: Common.attributes, Imageable.attributes, ID.attributes,
Backgroundable.attributes

Attribute mode = (display | inline)
display or inline mode.

Attribute tex = text
reconstruction of the TEX that generated the math.

Attribute content-tex = text
more semantic version of tex.

Attribute text = text
a textified representation of the math.

Attribute lexemes = text
preserved grammar-near lexemes for export to external apps

Pattern Math model Content model for Math.

Content: Math.class*

Expansion: (Math.class*)

Pattern XMath.attributes Common attributes for the various XMath elements.

Attributes: Positionable.attributes

Attribute role = text
The role that this item plays in the Grammar.

D.8. MODULE LATEXML-MATH 197

Attribute enclose = text
an enclose style to enclose the object with legitimate values being those of
MathML’s menclose notations;

Attribute lpadding = text
left, or leading, (presumably non-semantic) padding space.

Attribute rpadding = text
right, or trailing, (presumably non-semantic) padding space.

Attribute name = text
The name of the token, typically the control sequence that created it.

Attribute meaning = text
A more semantic name corresponding to the intended meaning, such as
the OpenMath name.

Attribute omcd = text
The OpenMath CD for which meaning is a symbol.

Attribute scriptpos = text
An encoding of the position of sub/superscripts Before parsing, it takes
two forms. On a base token or element, it is one of (pre—mid—post),
indicating where any script can be placed. On a script token, it is an
integer level. After parsing, the concatenation is moved to the
sub—super-script ”operator”.

Attribute possibleFunction = text
an annotation placed by the parser when it suspects this token may be used
as a function.

Attribute decl id = text
an id to where the declaration of this object is given, preferably the xml:id
of an ltx:declare

Attribute href = text
reference to an arbitrary url.

Used by: XMApp attributes, XMArg attributes, XMArray attributes,
XMDual attributes, XMHint attributes, XMRef attributes,
XMText attributes, XMTok attributes, XMWrap attributes,
XMApp attributes, XMArg attributes, XMArray attributes,
XMDual attributes, XMHint attributes, XMRef attributes,
XMText attributes, XMTok attributes, XMWrap attributes

Element XMath Internal representation of mathematics.

Used by: Math.class, Math.class

Pattern XMath attributes Attributes for XMath.

Attributes: Common.attributes, ID.attributes

198 APPENDIX D. SCHEMA

Pattern XMath model Content model for XMath.

Content: XMath.class*

Expansion: (XMath.class*)

Element XMTok General mathematical token.

Used by: XMath.class, XMath.class

Pattern XMTok attributes Attributes for XMTok.

Attributes: Common.attributes, XMath.attributes, ID.attributes,
Fontable.attributes, Colorable.attributes, Backgroundable.attributes

Attribute thickness = text
A thickness used for drawing any lines which are part of presenting the
token, such as the fraction line for the fraction operator.

Attribute stretchy = boolean
Whether or not the symbol should be stretchy. This shares MathML’s
ambiguity about horizontal versus vertical stretchiness. When not set,
defaults to whatever MathML’s operator dictionary says.

Attribute mathstyle = (display | text | script | scriptscript)
The math style used for displaying the application of this token when it
represents some sort of fraction, variable-sized operator or stack of
expressions (note that this applies to binomials or other stacks of
expressions as well as fractions). Values of display or text
correspond to TEX’s displaystyle or textstyle, while inline indicates the
stack should be arranged horizontally (the layout may depend on the
operator).

Pattern XMTok model Content model for XMTok.

Content: text*

Expansion: (text*)

Element XMApp Generalized application of a function, operator, whatever (the
first child) to arguments (the remaining children). The attributes are a subset of
those for XMTok.

Used by: XMath.class, XMath.class

Pattern XMApp attributes Attributes for XMApp.

Attributes: Common.attributes, XMath.attributes, ID.attributes,
Colorable.attributes, Backgroundable.attributes

Pattern XMApp model Content model for XMApp.

Content: XMath.class*

D.8. MODULE LATEXML-MATH 199

Expansion: (XMath.class*)

Element XMDual Parallel markup of content (first child) and presentation
(second child) of a mathematical object. Typically, the arguments are shared
between the two branches: they appear in the content branch, with id’s, and
XMRef is used in the presentation branch

Used by: XMath.class, XMath.class

Pattern XMDual attributes Attributes for XMDual.

Attributes: Common.attributes, XMath.attributes, ID.attributes

Pattern XMDual model Content model for XMDual.

Content: XMath.class, XMath.class

Expansion: (XMath.class, XMath.class)

Element XMHint Various layout hints, usually spacing, generally ignored in
parsing. The attributes are a subset of those for XMTok.

Used by: XMath.class, XMath.class

Pattern XMHint attributes Attributes for XMHint.

Attributes: Common.attributes, XMath.attributes, ID.attributes

Pattern XMHint model Content model for XMHint.

Content: empty

Expansion: ()

Element XMText Text appearing within math.

Used by: XMath.class, XMath.class

Pattern XMText attributes Attributes for XMText.

Attributes: Common.attributes, XMath.attributes,
Backgroundable.attributes, ID.attributes

Pattern XMText model Content model for XMText.

Content: (text | Inline.class | Misc.class)*

Expansion: ((text | Inline.class | Misc.class)*)

Element XMWrap Wrapper for a sequence of tokens used to assert the role of the
contents in its parent. This element generally disappears after parsing. The
attributes are a subset of those for XMTok.

Used by: XMath.class, XMath.class

200 APPENDIX D. SCHEMA

Pattern XMWrap attributes Attributes for XMWrap.

Attributes: Common.attributes, XMath.attributes,
Backgroundable.attributes, ID.attributes

Attribute rule = text
The grammatical rule that should apply to the contained sequence

Attribute style = text

Pattern XMWrap model Content model for XMWrap.

Content: XMath.class*

Expansion: (XMath.class*)

Element XMArg Wrapper for an argument to a structured macro. It implies that
its content can be parsed independently of its parent, and thus generally
disappears after parsing.

Used by: XMath.class, XMath.class

Pattern XMArg attributes Attributes for XMArg.

Attributes: Common.attributes, XMath.attributes, ID.attributes

Attribute rule = text
The grammatical rule that should apply to the contained sequence

Pattern XMArg model Content model for XMArg.

Content: XMath.class*

Expansion: (XMath.class*)

Element XMRef Structure sharing element typically used in the presentation
branch of an XMDual to refer to the arguments present in the content branch.

Used by: XMath.class, XMath.class

Pattern XMRef attributes Attributes for XMRef.

Attributes: Common.attributes, XMath.attributes, ID.attributes,
IDREF.attributes

Pattern XMRef model Content model for XMRef.

Content: empty

Expansion: ()

Element XMArray Math Array/Alignment structure.

Used by: XMath.class, XMath.class

Pattern XMArray attributes Attributes for XMArray.

D.8. MODULE LATEXML-MATH 201

Attributes: Common.attributes, XMath.attributes, ID.attributes
Attribute rowsep = Length.type

the spacing between rows
Attribute colsep = Length.type

the spacing between columns

Pattern XMArray model Content model for XMArray.

Content: XMRow*
Expansion: (XMRow*)

Element XMRow A row in a math alignment.

Used by: XMArray model, XMArray model

Pattern XMRow attributes Attributes for XMRow.

Attributes: Common.attributes, Backgroundable.attributes, ID.attributes

Pattern XMRow model Content model for XMRow.

Content: XMCell*
Expansion: (XMCell*)

Element XMCell A cell in a row of a math alignment.

Used by: XMRow model, XMRow model

Pattern XMCell attributes Attributes for XMCell.

Attributes: Common.attributes, Backgroundable.attributes, ID.attributes
Attribute colspan = nonNegativeInteger

indicates how many columns this cell spans or covers.
Attribute rowspan = nonNegativeInteger

indicates how many rows this cell spans or covers.
Attribute align = text

specifies the alignment of the content.
Attribute width = text

specifies the desired width for the column.
Attribute border = text

records a sequence of t or tt, r or rr, b or bb and l or ll for borders or
doubled borders on any side of the cell.

Attribute thead = (column | column row | row)
whether this cell corresponds to a table row or column heading or both

Pattern XMCell model Content model for XMCell.

Content: XMath.class*
Expansion: (XMath.class*)

202 APPENDIX D. SCHEMA

D.9 Module LaTeXML-tabular
Add to Misc.class This module defines the basic tabular, or alignment, structure.

It is roughly parallel to the HTML model.

|= tabular

Element tabular An alignment structure corresponding to tabular or various
similar forms. The model is basically a copy of HTML4’s table.

Used by: Misc.class, Misc.class

Pattern tabular attributes Attributes for tabular.

Attributes: Common.attributes, Backgroundable.attributes, ID.attributes

Attribute vattach = (top | middle | bottom)
which row’s baseline aligns with the container’s baseline.

Attribute width = Length.type
the desired width of the tabular.

Attribute rowsep = Length.type
the spacing between rows

Attribute colsep = Length.type
the spacing between columns

Pattern tabular model Content model for tabular.

Content: (thead | tfoot | tbody | tr)*

Expansion: ((thead | tfoot | tbody | tr)*)

Element thead A container for a set of rows that correspond to the header of the
tabular.

Used by: tabular model, tabular model

Pattern thead attributes Attributes for thead.

Attributes: Common.attributes, Backgroundable.attributes

Pattern thead model Content model for thead.

Content: tr*

Expansion: (tr*)

Element tfoot A container for a set of rows that correspond to the footer of the
tabular.

Used by: tabular model, tabular model

Pattern tfoot attributes Attributes for tfoot.

D.9. MODULE LATEXML-TABULAR 203

Attributes: Common.attributes, Backgroundable.attributes

Pattern tfoot model Content model for tfoot.

Content: tr*

Expansion: (tr*)

Element tbody A container for a set of rows corresponding to the body of the
tabular.

Used by: tabular model, tabular model

Pattern tbody attributes Attributes for tbody.

Attributes: Common.attributes, Backgroundable.attributes

Pattern tbody model Content model for tbody.

Content: tr*

Expansion: (tr*)

Element tr A row of a tabular.

Used by: MathBranch model, tabular model, tbody model, tfoot model,
thead model, MathBranch model, tabular model, tbody model,
tfoot model, thead model

Pattern tr attributes Attributes for tr.

Attributes: Common.attributes, Backgroundable.attributes, ID.attributes

Pattern tr model Content model for tr.

Content: td*

Expansion: (td*)

Element td A cell in a row of a tabular.

Used by: MathBranch model, tr model, MathBranch model, tr model

Pattern td attributes Attributes for td.

Attributes: Common.attributes, Backgroundable.attributes, ID.attributes

Attribute colspan = nonNegativeInteger
indicates how many columns this cell spans or covers.

Attribute rowspan = nonNegativeInteger
indicates how many rows this cell spans or covers.

Attribute align = (left | right | center | justify | text)
specifies the horizontal alignment of the content. The allowed values are
open-ended to accomodate char:. type alignments.

204 APPENDIX D. SCHEMA

Attribute width = Length.type
specifies the desired width for the column.

Attribute vattach = (top | middle | bottom)
how the cell contents aligns with the row’s baseline.

Attribute border = text
records a sequence of t or tt, r or rr, b or bb and l or ll for borders or
doubled borders on any side of the cell.

Attribute thead = (column | column row | row)
whether this cell corresponds to a table row or column heading or both
(whether in head or foot).

Pattern td model Content model for td.

Content: Flow.model

Expansion: (Flow.model)

D.10 Module LaTeXML-picture
Add to Misc.class This module defines a picture environment, roughly a subset

of SVG. NOTE: Eventually we will drop these subset elements and incorporate
SVG itself.

|= picture

Pattern Picture.class

Content: (g | rect | line | circle | path | arc | wedge | ellipse
| polygon | bezier | parabola | curve | dots | grid | clip | svg)

Expansion: ((g | rect | line | circle | path | arc | wedge | ellipse
| polygon | bezier | parabola | curve | dots | grid | clip | svg))

Used by: clippath model, g model, picture model, clippath model,
g model, picture model

Pattern Picture.attributes These attributes correspond roughly to SVG, but
need documentation.

Attribute x = text

Attribute y = text

Attribute r = text

Attribute rx = text

Attribute ry = text

Attribute width = text

Attribute height = text

D.10. MODULE LATEXML-PICTURE 205

Attribute fill = text

Attribute stroke = text

Attribute stroke-width = text

Attribute stroke-dasharray = text

Attribute transform = text

Attribute terminators = text

Attribute arrowlength = text

Attribute points = text

Attribute showpoints = text

Attribute displayedpoints = text

Attribute arc = text

Attribute angle1 = text

Attribute angle2 = text

Attribute arcsepA = text

Attribute arcsepB = text

Attribute curvature = text

Used by: arc attributes, bezier attributes, circle attributes, clip attributes,
clippath attributes, curve attributes, dots attributes,
ellipse attributes, g attributes, grid attributes, line attributes,
parabola attributes, path attributes, picture attributes,
polygon attributes, rect attributes, wedge attributes, arc attributes,
bezier attributes, circle attributes, clip attributes, clippath attributes,
curve attributes, dots attributes, ellipse attributes, g attributes,
grid attributes, line attributes, parabola attributes, path attributes,
picture attributes, polygon attributes, rect attributes,
wedge attributes

Pattern PictureGroup.attributes These attributes correspond roughly to SVG,
but need documentation.

Attribute pos = text

Attribute framed = boolean

Attribute frametype = (rect | circle | oval)

Attribute fillframe = boolean

Attribute boxsep = text

Attribute shadowbox = boolean

Attribute doubleline = boolean

Used by: g attributes, g attributes

Element picture A picture environment.

206 APPENDIX D. SCHEMA

Used by: Misc.class, Misc.class

Pattern picture attributes Attributes for picture.

Attributes: Common.attributes, ID.attributes, Picture.attributes,
Imageable.attributes

Attribute clip = boolean

Attribute baseline = text

Attribute unitlength = text

Attribute xunitlength = text

Attribute yunitlength = text

Attribute tex = text

Attribute content-tex = text

Pattern picture model Content model for picture.

Content: (Picture.class | Inline.class | Misc.class | Meta.class)*

Expansion: ((Picture.class | Inline.class | Misc.class | Meta.class)*)

Element g A graphical grouping; the content is inherits by the transformations,
positioning and other properties.

Used by: Picture.class, Picture.class

Pattern g attributes Attributes for g.

Attributes: Common.attributes, Picture.attributes,
PictureGroup.attributes

Pattern g model Content model for g.

Content: (Picture.class | Inline.class | Misc.class | Meta.class)*

Expansion: ((Picture.class | Inline.class | Misc.class | Meta.class)*)

Element rect A rectangle within a picture.

Used by: Picture.class, Picture.class

Pattern rect attributes Attributes for rect.

Attributes: Common.attributes, Picture.attributes

Pattern rect model Content model for rect.

Content: empty

Expansion: ()

Element line A line within a picture.

D.10. MODULE LATEXML-PICTURE 207

Used by: Picture.class, Picture.class

Pattern line attributes Attributes for line.

Attributes: Common.attributes, Picture.attributes

Pattern line model Content model for line.

Content: empty

Expansion: ()

Element polygon A polygon within a picture.

Used by: Picture.class, Picture.class

Pattern polygon attributes Attributes for polygon.

Attributes: Common.attributes, Picture.attributes

Pattern polygon model Content model for polygon.

Content: empty

Expansion: ()

Element wedge A wedge within a picture.

Used by: Picture.class, Picture.class

Pattern wedge attributes Attributes for wedge.

Attributes: Common.attributes, Picture.attributes

Pattern wedge model Content model for wedge.

Content: empty

Expansion: ()

Element arc An arc within a picture.

Used by: Picture.class, Picture.class

Pattern arc attributes Attributes for arc.

Attributes: Common.attributes, Picture.attributes

Pattern arc model Content model for arc.

Content: empty

Expansion: ()

Element circle A circle within a picture.

Used by: Picture.class, Picture.class

208 APPENDIX D. SCHEMA

Pattern circle attributes Attributes for circle.

Attributes: Common.attributes, Picture.attributes

Pattern circle model Content model for circle.

Content: empty

Expansion: ()

Element ellipse An ellipse within a picture.

Used by: Picture.class, Picture.class

Pattern ellipse attributes Attributes for ellipse.

Attributes: Common.attributes, Picture.attributes

Pattern ellipse model Content model for ellipse.

Content: empty

Expansion: ()

Element path A path within a picture.

Used by: Picture.class, Picture.class

Pattern path attributes Attributes for path.

Attributes: Common.attributes, Picture.attributes

Pattern path model Content model for path.

Content: empty

Expansion: ()

Element bezier A bezier curve within a picture.

Used by: Picture.class, Picture.class

Pattern bezier attributes Attributes for bezier.

Attributes: Common.attributes, Picture.attributes

Pattern bezier model Content model for bezier.

Content: empty

Expansion: ()

Element curve A curve within a picture.

Used by: Picture.class, Picture.class

Pattern curve attributes Attributes for curve.

D.10. MODULE LATEXML-PICTURE 209

Attributes: Common.attributes, Picture.attributes

Pattern curve model Content model for curve.

Content: empty

Expansion: ()

Element parabola A parabola curve within a picture.

Used by: Picture.class, Picture.class

Pattern parabola attributes Attributes for parabola.

Attributes: Common.attributes, Picture.attributes

Pattern parabola model Content model for parabola.

Content: empty

Expansion: ()

Element dots A sequence of dots (?) within a picture.

Used by: Picture.class, Picture.class

Pattern dots attributes Attributes for dots.

Attributes: Common.attributes, Picture.attributes

Attribute dotstyle = text

Attribute dotsize = text

Attribute dotscale = text

Pattern dots model Content model for dots.

Content: empty

Expansion: ()

Element grid A grid within a picture.

Used by: Picture.class, Picture.class

Pattern grid attributes Attributes for grid.

Attributes: Common.attributes, Picture.attributes

Pattern grid model Content model for grid.

Content: empty

Expansion: ()

Element clip Establishes a clipping region within a picture.

210 APPENDIX D. SCHEMA

Used by: Picture.class, Picture.class

Pattern clip attributes Attributes for clip.

Attributes: Common.attributes, Picture.attributes

Pattern clip model Content model for clip.

Content: clippath*

Expansion: (clippath*)

Element clippath Establishes a clipping region within a picture.

Used by: clip model, clip model

Pattern clippath attributes Attributes for clippath.

Attributes: Common.attributes, Picture.attributes

Pattern clippath model Content model for clippath.

Content: (Picture.class | Inline.class | Misc.class | Meta.class)*

Expansion: ((Picture.class | Inline.class | Misc.class | Meta.class)*)

D.11 Module LaTeXML-structure
Element document The document root.

Pattern document.body.class The content allowable as the main body of the
document.

Content: (Para.model | paragraph | subsubsection | subsection
| section | chapter | part | slide | sidebar)

Expansion: ((Para.model | paragraph | subsubsection | subsection
| section | chapter | part | slide | sidebar))

Used by: document model, document model

Pattern document attributes Attributes for document.

Attributes: Sectional.attributes

Pattern document model Content model for document.

Content: (FrontMatter.class | SectionalFrontMatter.class | Meta.class
| titlepage)*, (document.body.class | BackMatter.class)*

Expansion: ((FrontMatter.class | SectionalFrontMatter.class
| Meta.class | titlepage)*, (document.body.class
| BackMatter.class)*)

D.11. MODULE LATEXML-STRUCTURE 211

Element part A part within a document.

Used by: document.body.class, document.body.class

Pattern part.body.class The content allowable as the main body of a part.

Content: (Para.model | subparagraph | paragraph | subsubsection
| subsection | section | chapter | slide | sidebar)

Expansion: ((Para.model | subparagraph | paragraph | subsubsection
| subsection | section | chapter | slide | sidebar))

Used by: part model, part model

Pattern part attributes Attributes for part.

Attributes: Sectional.attributes

Pattern part model Content model for part.

Content: SectionalFrontMatter.class*, (part.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (part.body.class
| BackMatter.class)*)

Element chapter A Chapter within a document.

Used by: document.body.class, part.body.class, document.body.class,
part.body.class

Pattern chapter.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | subparagraph | paragraph | subsubsection
| subsection | section | slide | sidebar)

Expansion: ((Para.model | subparagraph | paragraph | subsubsection
| subsection | section | slide | sidebar))

Used by: chapter model, chapter model

Pattern chapter attributes Attributes for chapter.

Attributes: Sectional.attributes

Pattern chapter model Content model for chapter.

Content: SectionalFrontMatter.class*, (chapter.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (chapter.body.class
| BackMatter.class)*)

Element section A Section within a document.

212 APPENDIX D. SCHEMA

Used by: appendix.body.class, chapter.body.class, document.body.class,
part.body.class, appendix.body.class, chapter.body.class,
document.body.class, part.body.class

Pattern section.body.class The content allowable as the main body of a
section.

Content: (Para.model | subparagraph | paragraph | subsubsection
| subsection | slide | sidebar)

Expansion: ((Para.model | subparagraph | paragraph | subsubsection
| subsection | slide | sidebar))

Used by: section model, section model

Pattern section attributes Attributes for section.

Attributes: Sectional.attributes

Pattern section model Content model for section.

Content: SectionalFrontMatter.class*, (section.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (section.body.class
| BackMatter.class)*)

Element subsection A Subsection within a document.

Used by: appendix.body.class, chapter.body.class, document.body.class,
part.body.class, section.body.class, appendix.body.class,
chapter.body.class, document.body.class, part.body.class,
section.body.class

Pattern subsection.body.class The content allowable as the main body of a
subsection.

Content: (Para.model | subparagraph | paragraph | subsubsection
| slide | sidebar)

Expansion: ((Para.model | subparagraph | paragraph | subsubsection
| slide | sidebar))

Used by: subsection model, subsection model

Pattern subsection attributes Attributes for subsection.

Attributes: Sectional.attributes

Pattern subsection model Content model for subsection.

Content: SectionalFrontMatter.class*, (subsection.body.class
| BackMatter.class)*

D.11. MODULE LATEXML-STRUCTURE 213

Expansion: (SectionalFrontMatter.class*, (subsection.body.class
| BackMatter.class)*)

Element subsubsection A Subsubsection within a document.

Used by: appendix.body.class, chapter.body.class, document.body.class,
part.body.class, section.body.class, subsection.body.class,
appendix.body.class, chapter.body.class, document.body.class,
part.body.class, section.body.class, subsection.body.class

Pattern subsubsection.body.class The content allowable as the main body of
a subsubsection.

Content: (Para.model | subparagraph | paragraph | slide | sidebar)

Expansion: ((Para.model | subparagraph | paragraph | slide
| sidebar))

Used by: subsubsection model, subsubsection model

Pattern subsubsection attributes Attributes for subsubsection.

Attributes: Sectional.attributes

Pattern subsubsection model Content model for subsubsection.

Content: SectionalFrontMatter.class*, (subsubsection.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (subsubsection.body.class
| BackMatter.class)*)

Element paragraph A Paragraph within a document. This corresponds to a
‘formal’ marked, possibly labelled LaTeX Paragraph, in distinction from an
unlabelled logical paragraph.

Used by: appendix.body.class, chapter.body.class, document.body.class,
part.body.class, section.body.class, subsection.body.class,
subsubsection.body.class, appendix.body.class, chapter.body.class,
document.body.class, part.body.class, section.body.class,
subsection.body.class, subsubsection.body.class

Pattern paragraph.body.class The content allowable as the main body of a
paragraph.

Content: (Para.model | subparagraph | slide | sidebar)

Expansion: ((Para.model | subparagraph | slide | sidebar))

Used by: paragraph model, paragraph model

Pattern paragraph attributes Attributes for paragraph.

Attributes: Sectional.attributes

214 APPENDIX D. SCHEMA

Pattern paragraph model Content model for paragraph.

Content: SectionalFrontMatter.class*, (paragraph.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (paragraph.body.class
| BackMatter.class)*)

Element subparagraph A Subparagraph within a document.

Used by: appendix.body.class, chapter.body.class, paragraph.body.class,
part.body.class, section.body.class, subsection.body.class,
subsubsection.body.class, appendix.body.class, chapter.body.class,
paragraph.body.class, part.body.class, section.body.class,
subsection.body.class, subsubsection.body.class

Pattern subparagraph.body.class The content allowable as the main body of
a subparagraph.

Content: (Para.model | slide | sidebar)

Expansion: ((Para.model | slide | sidebar))

Used by: subparagraph model, subparagraph model

Pattern subparagraph attributes Attributes for subparagraph.

Attributes: Sectional.attributes

Pattern subparagraph model Content model for subparagraph.

Content: SectionalFrontMatter.class*, (subparagraph.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (subparagraph.body.class
| BackMatter.class)*)

Element slide A Slide within a slideshow. The model currently doesn’t enforce
this, but the idea is that a slideshow document can contain section headings, but
all real content should be confined to slides.

Used by: appendix.body.class, chapter.body.class, document.body.class,
paragraph.body.class, part.body.class, section.body.class,
subparagraph.body.class, subsection.body.class,
subsubsection.body.class, appendix.body.class, chapter.body.class,
document.body.class, paragraph.body.class, part.body.class,
section.body.class, subparagraph.body.class,
subsection.body.class, subsubsection.body.class

Pattern slide.body.class The content allowable as the main body of a slide.

Content: Para.model

Expansion: (Para.model)

D.11. MODULE LATEXML-STRUCTURE 215

Used by: slide model, slide model

Pattern slide attributes Attributes for slide.

Attributes: Sectional.attributes

Pattern slide model Content model for slide.

Content: SectionalFrontMatter.class*, (slide.body.class
| BackMatter.class)*

Expansion: (SectionalFrontMatter.class*, (slide.body.class
| BackMatter.class)*)

Element sidebar A Sidebar; a short section-like object that floats outside the
main flow.

Used by: appendix.body.class, chapter.body.class, document.body.class,
paragraph.body.class, part.body.class, section.body.class,
subparagraph.body.class, subsection.body.class,
subsubsection.body.class, appendix.body.class, chapter.body.class,
document.body.class, paragraph.body.class, part.body.class,
section.body.class, subparagraph.body.class,
subsection.body.class, subsubsection.body.class

Pattern sidebar.body.class The content allowable as the main body of a
sidebar.

Content: Para.model
Expansion: (Para.model)
Used by: sidebar model, sidebar model

Pattern sidebar attributes Attributes for sidebar.

Attributes: Sectional.attributes

Pattern sidebar model Content model for sidebar.

Content: (FrontMatter.class | SectionalFrontMatter.class)*,
(sidebar.body.class | BackMatter.class)*

Expansion: ((FrontMatter.class | SectionalFrontMatter.class)*,
(sidebar.body.class | BackMatter.class)*)

Element appendix An Appendix within a document.

Used by: BackMatter.class, BackMatter.class

Pattern appendix.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | subparagraph | paragraph | subsubsection
| subsection | section | slide | sidebar)

216 APPENDIX D. SCHEMA

Expansion: ((Para.model | subparagraph | paragraph | subsubsection
| subsection | section | slide | sidebar))

Used by: appendix model, appendix model

Pattern appendix attributes Attributes for appendix.

Attributes: Sectional.attributes

Pattern appendix model Content model for appendix.

Content: SectionalFrontMatter.class*, appendix.body.class*

Expansion: (SectionalFrontMatter.class*, appendix.body.class*)

Element bibliography A Bibliography within a document.

Used by: BackMatter.class, BackMatter.class

Pattern bibliography.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | biblist)

Expansion: ((Para.model | biblist))

Used by: bibliography model, bibliography model

Pattern bibliography attributes Attributes for bibliography.

Attributes: Sectional.attributes, Listing.attributes

Attribute files = text
the list of bib files used to create the bibliography.

Attribute bibstyle = text
the bibliographic style to be used to format the bibliography (presumably
a BibTeX bst file name)

Attribute citestyle = text
the citation style to be used when citing items from the bibliography

Attribute sort = boolean
whether the bibliographic items should be sorted or in order of citation.

Pattern bibliography model Content model for bibliography.

Content: FrontMatter.class*, SectionalFrontMatter.class*,
bibliography.body.class*

Expansion: (FrontMatter.class*, SectionalFrontMatter.class*,
bibliography.body.class*)

Element index An Index within a document.

Used by: BackMatter.class, BackMatter.class

D.11. MODULE LATEXML-STRUCTURE 217

Pattern index.body.class The content allowable as the main body of a chapter.

Content: (Para.model | indexlist)
Expansion: ((Para.model | indexlist))
Used by: index model, index model

Pattern index attributes Attributes for index.

Attributes: Sectional.attributes, Listing.attributes
Attribute role = text

The kind of index (obsolete?)

Pattern index model Content model for index.

Content: SectionalFrontMatter.class*, index.body.class*

Expansion: (SectionalFrontMatter.class*, index.body.class*)

Element indexlist A heirarchical index structure typically generated during
postprocessing from the collection of indexmark in the document (or document
collection).

Used by: index.body.class, indexentry model, index.body.class,
indexentry model

Pattern indexlist attributes Attributes for indexlist.

Attributes: Common.attributes, ID.attributes

Pattern indexlist model Content model for indexlist.

Content: indexentry*

Expansion: (indexentry*)

Element indexentry An entry in an indexlist consisting of a phrase, references
to points in the document where the phrase was found, and possibly a nested
indexlist represented index levels below this one.

Used by: indexlist model, indexlist model

Pattern indexentry attributes Attributes for indexentry.

Attributes: Common.attributes, ID.attributes

Pattern indexentry model Content model for indexentry.

Content: indexphrase, indexrefs?, indexlist?
Expansion: (indexphrase, indexrefs?, indexlist?)

Element indexrefs A container for the references (ref) to where an indexphrase
was encountered in the document. The model is Inline to allow arbitrary text, in
addition to the expected ref’s.

218 APPENDIX D. SCHEMA

Used by: glossaryentry model, indexentry model, glossaryentry model,
indexentry model

Pattern indexrefs attributes Attributes for indexrefs.

Attributes: Common.attributes

Pattern indexrefs model Content model for indexrefs.

Content: Inline.model

Expansion: (Inline.model)

Element glossary An Glossary within a document.

Used by: BackMatter.class, BackMatter.class

Pattern glossary.body.class The content allowable as the main body of a
chapter.

Content: (Para.model | glossarylist)

Expansion: ((Para.model | glossarylist))

Used by: glossary model, glossary model

Pattern glossary attributes Attributes for glossary.

Attributes: Sectional.attributes, Listing.attributes

Attribute role = text
The kind of glossary

Pattern glossary model Content model for glossary.

Content: SectionalFrontMatter.class*, glossary.body.class*

Expansion: (SectionalFrontMatter.class*, glossary.body.class*)

Element glossarylist A glossary list typically generated during postprocessing
from the collection of glossaryphrase’s in the document (or document
collection).

Used by: glossary.body.class, glossary.body.class

Pattern glossarylist attributes Attributes for glossarylist.

Attributes: Common.attributes, ID.attributes

Pattern glossarylist model Content model for glossarylist. The model allows
loose glossaryphrase’s for data definitions, but they are not displayed as part
of the list.

Content: glossaryentry*

Expansion: (glossaryentry*)

D.11. MODULE LATEXML-STRUCTURE 219

Element glossaryentry An entry in an glossarylist consisting of a phrase, (one
or more, presumably in increasing detail?), possibly a definition, and references
to points in the document where the phrase was found.

Used by: glossarylist model, glossarylist model

Pattern glossaryentry attributes Attributes for glossaryentry.

Attributes: Common.attributes, ID.attributes

Attribute role = text
The kind of glossary

Attribute key = text
a flattened form of the phrase for generating an ID.

Pattern glossaryentry model Content model for glossaryentry.

Content: glossaryphrase*, indexrefs?

Expansion: (glossaryphrase*, indexrefs?)

Element title The title of a document, section or similar document structure
container.

Used by: SectionalFrontMatter.class, TOC model, proof model,
theorem model, SectionalFrontMatter.class, TOC model,
proof model, theorem model

Pattern title attributes Attributes for title.

Attributes: Common.attributes, Fontable.attributes, Colorable.attributes,
Backgroundable.attributes

Pattern title model Content model for title, basically Inline.model with tag
included (normally, but not necessarily, tag would come first).

Content: (tag | text | Inline.class | Misc.class | Meta.class)*

Expansion: ((tag | text | Inline.class | Misc.class | Meta.class)*)

Element toctitle The short form of a title, for use in tables of contents or similar.

Used by: SectionalFrontMatter.class, SectionalFrontMatter.class

Pattern toctitle attributes Attributes for toctitle.

Attributes: Common.attributes

Pattern toctitle model Content model for toctitle.

Content: (tag | text | Inline.class | Misc.class | Meta.class)*

Expansion: ((tag | text | Inline.class | Misc.class | Meta.class)*)

220 APPENDIX D. SCHEMA

Element subtitle A subtitle, or secondary title.

Used by: FrontMatter.class, FrontMatter.class

Pattern subtitle attributes Attributes for subtitle.

Attributes: Common.attributes

Pattern subtitle model Content model for subtitle.

Content: Inline.model

Expansion: (Inline.model)

Element creator Generalized document creator.

Used by: SectionalFrontMatter.class, SectionalFrontMatter.class

Pattern Person.class The content allowed in authors, editors, etc.

Content: (personname | contact)

Expansion: ((personname | contact))

Used by: creator model, creator model

Pattern creator attributes Attributes for creator.

Attributes: Common.attributes, FrontMatter.attributes

Attribute role = (author | editor | translator | contributor
| translator | text)
indicates the role of the person in creating the docment. Commonly useful
values are specified, but is open-ended to support extension.

Attribute before = text
specifies opening text to display before this creator in a formatted
titlepage. This would be typically appear outside the author information,
like ”and”.

Attribute after = text
specifies closing text, punctuation or conjunction to display after this
creator in a formatted titlepage.

Pattern creator model Content model for creator.

Content: (Person.class | Misc.class)*

Expansion: ((Person.class | Misc.class)*)

Element personname A person’s name.

Used by: Person.class, Person.class

Pattern personname attributes Attributes for personname.

D.11. MODULE LATEXML-STRUCTURE 221

Attributes: Common.attributes, Refable.attributes

Pattern personname model Content model for personname.

Content: Inline.model

Expansion: (Inline.model)

Element contact Generalized contact information for a document creator. Note
that this element can be repeated to give different types of contact information
(using role) for the same creator.

Used by: Person.class, Person.class

Pattern contact attributes Attributes for contact.

Attributes: Common.attributes, FrontMatter.attributes, Refable.attributes

Attribute role = (affiliation | address | current address
| email | url | thanks | dedicatory | text)
indicates the type of contact information contained. Commonly useful
values are specified, but is open-ended to support extension.

Pattern contact model Content model for contact.

Content: Inline.model

Expansion: (Inline.model)

Element date Generalized document date. Note that this element can be repeated
to give the dates of different events (using role) for the same document.

Used by: FrontMatter.class, FrontMatter.class

Pattern date attributes Attributes for date.

Attributes: Common.attributes, FrontMatter.attributes

Attribute role = (creation | conversion | posted | received
| revised | accepted | text)
indicates the relevance of the date to the document. Commonly useful
values are specified, but is open-ended to support extension.

Pattern date model Content model for date.

Content: Inline.model

Expansion: (Inline.model)

Element abstract A document abstract.

Used by: FrontMatter.class, FrontMatter.class

Pattern abstract attributes Attributes for abstract.

222 APPENDIX D. SCHEMA

Attributes: Common.attributes, FrontMatter.attributes

Pattern abstract model Content model for abstract.

Content: Block.model

Expansion: (Block.model)

Element acknowledgements Acknowledgements for the document.

Used by: BackMatter.class, FrontMatter.class, BackMatter.class,
FrontMatter.class

Pattern acknowledgements attributes Attributes for acknowledgements.

Attributes: Common.attributes, FrontMatter.attributes

Pattern acknowledgements model Content model for acknowledgements.

Content: Inline.model

Expansion: (Inline.model)

Element keywords Keywords for the document. The content is freeform.

Used by: FrontMatter.class, FrontMatter.class

Pattern keywords attributes Attributes for keywords.

Attributes: Common.attributes, FrontMatter.attributes

Pattern keywords model Content model for keywords.

Content: Inline.model

Expansion: (Inline.model)

Element classification A classification of the document.

Used by: FrontMatter.class, FrontMatter.class

Pattern classification attributes Attributes for classification.

Attributes: Common.attributes, FrontMatter.attributes

Attribute scheme = text
indicates what classification scheme was used.

Pattern classification model Content model for classification.

Content: Inline.model

Expansion: (Inline.model)

Element titlepage block of random stuff marked as a titlepage

Used by: document model, document model

D.11. MODULE LATEXML-STRUCTURE 223

Pattern titlepage attributes Attributes for titlepage.

Attributes: Sectional.attributes

Pattern titlepage model Content model for titlepage.

Content: (FrontMatter.class | SectionalFrontMatter.class
| Block.class)*

Expansion: ((FrontMatter.class | SectionalFrontMatter.class
| Block.class)*)

Element TOC (Generalized) Table Of Contents, represents table of contents as
well as list of figures, tables, and other such things. This will generally be
placed by a \tableofcontents command and filled in by postprocessing.

Used by: Para.class, navigation model, Para.class, navigation model

Pattern TOC attributes Attributes for TOC.

Attributes: Common.attributes, FrontMatter.attributes

Attribute lists = text
indicates the kind of lists; space separated names of lists like ”toc”,”lof”,
etc.

Attribute select = text
indicates what kind of document elements to list, in the form of one or
more tags such as ltx:chapter separated by | (suggestive of an xpath
expression).

Attribute scope = (current | global | text)
indicates the scope set of elements to include: current (default) is all in
current document; global indicates all in the document set; otherwise an
xml:id

Attribute show = text
indicates what things to show in each entry

Attribute format = (normal | short | veryshort | text)
indicates how to format the listing

Pattern TOC model Content model for TOC.

Content: title?, toclist?

Expansion: (title?, toclist?)

Element toclist The actual table of contents list, filled in.

Used by: TOC model, tocentry model, TOC model, tocentry model

Pattern toclist attributes Attributes for toclist.

224 APPENDIX D. SCHEMA

Attributes: Common.attributes

Pattern toclist model Content model for toclist.

Content: tocentry*

Expansion: (tocentry*)

Element tocentry An entry in a toclist.

Used by: toclist model, toclist model

Pattern tocentry attributes Attributes for tocentry.

Attributes: Common.attributes

Pattern tocentry model Content model for tocentry.

Content: (ref | toclist)*

Expansion: ((ref | toclist)*)

Pattern Sectional.attributes Attributes shared by all sectional elements

Attributes: Common.attributes, Labelled.attributes,
Backgroundable.attributes

Attribute rdf-prefixes = text
Stores RDFa prefixes as space separated pairs, with the pairs being prefix
and url separated by a colon; this should only appear at the root element.

Used by: appendix attributes, bibliography attributes, chapter attributes,
document attributes, glossary attributes, index attributes,
paragraph attributes, part attributes, section attributes,
sidebar attributes, slide attributes, subparagraph attributes,
subsection attributes, subsubsection attributes, titlepage attributes,
appendix attributes, bibliography attributes, chapter attributes,
document attributes, glossary attributes, index attributes,
paragraph attributes, part attributes, section attributes,
sidebar attributes, slide attributes, subparagraph attributes,
subsection attributes, subsubsection attributes, titlepage attributes

Pattern FrontMatter.attributes Attributes for other elements that can be used in
frontmatter.

Attribute name = text
Records the name of the type of object this is to be used when composing
the presentation. The value of this attribute is often set by language
localization packages.

D.11. MODULE LATEXML-STRUCTURE 225

Used by: TOC attributes, abstract attributes,
acknowledgements attributes, classification attributes,
contact attributes, creator attributes, date attributes,
keywords attributes, TOC attributes, abstract attributes,
acknowledgements attributes, classification attributes,
contact attributes, creator attributes, date attributes,
keywords attributes

Pattern SectionalFrontMatter.class The content allowed for the front matter
of each sectional unit, and the document.

Content: (tags? | title | toctitle | creator)

Expansion: ((tags? | title | toctitle | creator))

Used by: appendix model, bibliography model, chapter model,
document model, glossary model, index model, paragraph model,
part model, section model, sidebar model, slide model,
subparagraph model, subsection model, subsubsection model,
titlepage model, appendix model, bibliography model,
chapter model, document model, glossary model, index model,
paragraph model, part model, section model, sidebar model,
slide model, subparagraph model, subsection model,
subsubsection model, titlepage model

Pattern FrontMatter.class The content allowed (in addition to
SectionalFrontMatter.class) for the front matter of a document.

Content: (subtitle | date | abstract | acknowledgements | keywords
| classification)

Expansion: ((subtitle | date | abstract | acknowledgements
| keywords | classification))

Used by: bibliography model, document model, sidebar model,
titlepage model, bibliography model, document model,
sidebar model, titlepage model

Pattern BackMatter.class The content allowed a the end of a document. Note
that this includes random trailing Block and Para material, to support articles
with figures and similar data appearing ‘at end’.

Content: (bibliography | appendix | index | glossary
| acknowledgements | Para.class | Meta.class)

Expansion: ((bibliography | appendix | index | glossary
| acknowledgements | Para.class | Meta.class))

Used by: chapter model, document model, paragraph model,
part model, section model, sidebar model, slide model,
subparagraph model, subsection model, subsubsection model,
chapter model, document model, paragraph model, part model,

226 APPENDIX D. SCHEMA

section model, sidebar model, slide model, subparagraph model,
subsection model, subsubsection model

Add to Para.class

|= TOC

D.12 Module LaTeXML-bib
Element biblist A list of bibliographic bibentry or bibitem.

Used by: bibliography.body.class, bibliography.body.class

Pattern biblist attributes Attributes for biblist.

Attributes: Common.attributes

Pattern biblist model Content model for biblist.

Content: (bibentry | bibitem)*

Expansion: ((bibentry | bibitem)*)

Element bibitem A formatted bibliographic item, typically as written explicit in a
LaTeX article. This has generally lost most of the semantics present in the
BibTeX data.

Used by: biblist model, biblist model

Pattern bibitem attributes Attributes for bibitem.

Attributes: Common.attributes, ID.attributes

Attribute key = text
The unique key for this object; this key is referenced by the bibrefs
attribute of bibref.

Pattern bibitem model Content model for bibitem.

Content: tags?, bibblock*

Expansion: (tags?, bibblock*)

Element bibblock A block of data appearing within a bibitem.

Used by: bibitem model, bibitem model

Pattern bibblock attributes Attributes for bibblock.

Attributes: empty

Pattern bibblock model Content model for bibblock.

Content: Flow.model

D.12. MODULE LATEXML-BIB 227

Expansion: (Flow.model)

Element bibentry Semantic representation of a bibliography entry, typically
resulting from parsing BibTeX

Used by: biblist model, biblist model

Pattern bibentry.type

Content: (article | book | booklet | conference | inbook
| incollection | inproceedings | manual
| mastersthesis | misc | phdthesis | proceedings
| techreport | unpublished | report | thesis | website
| software | periodical | collection
| collection.article | proceedings.article | text)

Expansion: ((article | book | booklet | conference | inbook
| incollection | inproceedings | manual
| mastersthesis | misc | phdthesis | proceedings
| techreport | unpublished | report | thesis | website
| software | periodical | collection
| collection.article | proceedings.article | text))

Used by: bib-related attributes, bibentry attributes, bib-related attributes,
bibentry attributes

Pattern bibentry attributes Attributes for bibentry.

Attributes: Common.attributes, ID.attributes

Attribute key = text
The unique key for this object; this key is referenced by the bibrefs
attribute of bibref.

Attribute type = bibentry.type
The type of the referenced object. The values are a superset of those types
recognized by BibTeX, but is also open-ended for extensibility.

Pattern bibentry model Content model for bibentry.

Content: Bibentry.class*

Expansion: (Bibentry.class*)

Element bib-name Name of some participant in creating a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-name attributes Attributes for bib-name.

Attributes: Common.attributes

Attribute role = (author | editor | translator | text)
The role that this participant played in creating the entry.

228 APPENDIX D. SCHEMA

Pattern bib-name model Content model for bib-name.

Content: Bibname.model

Expansion: (Bibname.model)

Pattern Bibname.model The content model of the bibliographic name fields
(bib-name)

Content: surname, givenname?, lineage?

Expansion: (surname, givenname?, lineage?)

Used by: bib-name model, bib-name model

Element surname Surname of a participant (bib-name).

Used by: Bibname.model, Bibname.model

Pattern surname attributes Attributes for surname.

Attributes: empty

Pattern surname model Content model for surname.

Content: Inline.model

Expansion: (Inline.model)

Element givenname Given name of a participant (bib-name).

Used by: Bibname.model, Bibname.model

Pattern givenname attributes Attributes for givenname.

Attributes: empty

Pattern givenname model Content model for givenname.

Content: Inline.model

Expansion: (Inline.model)

Element lineage Lineage of a participant (bib-name), eg. Jr. or similar.

Used by: Bibname.model, Bibname.model

Pattern lineage attributes Attributes for lineage.

Attributes: empty

Pattern lineage model Content model for lineage.

Content: Inline.model

Expansion: (Inline.model)

Element bib-title Title of a bibliographic entry.

D.12. MODULE LATEXML-BIB 229

Used by: Bibentry.class, Bibentry.class

Pattern bib-title attributes Attributes for bib-title.

Attributes: Common.attributes

Pattern bib-title model Content model for bib-title.

Content: Inline.model

Expansion: (Inline.model)

Element bib-subtitle Subtitle of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-subtitle attributes Attributes for bib-subtitle.

Attributes: Common.attributes

Pattern bib-subtitle model Content model for bib-subtitle.

Content: Inline.model

Expansion: (Inline.model)

Element bib-key Unique key of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-key attributes Attributes for bib-key.

Attributes: Common.attributes

Pattern bib-key model Content model for bib-key.

Content: Inline.model

Expansion: (Inline.model)

Element bib-type Type of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-type attributes Attributes for bib-type.

Attributes: Common.attributes

Pattern bib-type model Content model for bib-type.

Content: Inline.model

Expansion: (Inline.model)

Element bib-date Date of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

230 APPENDIX D. SCHEMA

Pattern bib-date attributes Attributes for bib-date.

Attributes: Common.attributes

Attribute role = (publication | copyright | text)
characterizes what happened on the given date

Pattern bib-date model Content model for bib-date.

Content: Inline.model

Expansion: (Inline.model)

Element bib-publisher Publisher of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-publisher attributes Attributes for bib-publisher.

Attributes: Common.attributes

Pattern bib-publisher model Content model for bib-publisher.

Content: Inline.model

Expansion: (Inline.model)

Element bib-organization Organization responsible for a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-organization attributes Attributes for bib-organization.

Attributes: Common.attributes

Pattern bib-organization model Content model for bib-organization.

Content: Inline.model

Expansion: (Inline.model)

Element bib-place Location of publisher or event

Used by: Bibentry.class, Bibentry.class

Pattern bib-place attributes Attributes for bib-place.

Attributes: Common.attributes

Pattern bib-place model Content model for bib-place.

Content: Inline.model

Expansion: (Inline.model)

Element bib-related A Related bibliographic object, such as the book or journal
that the current item is related to.

D.12. MODULE LATEXML-BIB 231

Used by: Bibentry.class, Bibentry.class

Pattern bib-related attributes Attributes for bib-related.

Attributes: Common.attributes

Attribute type = bibentry.type
The type of this related entry.

Attribute role = (host | event | original | text)
How this object relates to the containing object. Particularly important is
host which indicates that the outer object is a part of this object.

Attribute bibrefs = text
If the bibrefs attribute is given, it is the key of another object in the
bibliography, and this element should be empty; otherwise the object
should be described by the content of the element.

Pattern bib-related model Content model for bib-related.

Content: Bibentry.class*

Expansion: (Bibentry.class*)

Element bib-part Describes how the current object is related to a related
(bib-related) object, in particular page, part, volume numbers and similar.

Used by: Bibentry.class, Bibentry.class

Pattern bib-part attributes Attributes for bib-part.

Attributes: Common.attributes

Attribute role = (pages | part | volume | issue | number
| chapter | section | paragraph | text)
indicates how the value partitions the containing object.

Pattern bib-part model Content model for bib-part.

Content: Inline.model

Expansion: (Inline.model)

Element bib-edition Edition of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-edition attributes Attributes for bib-edition.

Attributes: Common.attributes

Pattern bib-edition model Content model for bib-edition.

Content: Inline.model

Expansion: (Inline.model)

232 APPENDIX D. SCHEMA

Element bib-status Status of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-status attributes Attributes for bib-status.

Attributes: Common.attributes

Pattern bib-status model Content model for bib-status.

Content: Inline.model

Expansion: (Inline.model)

Element bib-identifier Some form of document identfier. The content is
descriptive.

Used by: Bibentry.class, Bibentry.class

Pattern bib-identifier attributes Attributes for bib-identifier.

Attributes: Common.attributes, Refable.attributes

Attribute scheme = (doi | issn | isbn | mr | text)
indicates what sort of identifier it is; it is open-ended for extensibility.

Attribute id = text
the identifier.

Pattern bib-identifier model Content model for bib-identifier.

Content: Inline.model

Expansion: (Inline.model)

Element bib-review Review of a bibliographic entry. The content is descriptive.

Used by: Bibentry.class, Bibentry.class

Pattern bib-review attributes Attributes for bib-review.

Attributes: Common.attributes, Refable.attributes

Attribute scheme = (doi | issn | isbn | mr | text)
indicates what sort of identifier it is; it is open-ended for extensibility.

Attribute id = text
the identifier.

Pattern bib-review model Content model for bib-review.

Content: Inline.model

Expansion: (Inline.model)

Element bib-links Links to other things like preprints, source code, etc.

D.12. MODULE LATEXML-BIB 233

Used by: Bibentry.class, Bibentry.class

Pattern bib-links attributes Attributes for bib-links.

Attributes: Common.attributes

Pattern bib-links model Content model for bib-links.

Content: Inline.model

Expansion: (Inline.model)

Element bib-language Language of a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-language attributes Attributes for bib-language.

Attributes: Common.attributes

Pattern bib-language model Content model for bib-language.

Content: Inline.model

Expansion: (Inline.model)

Element bib-url A URL for a bibliographic entry. The content is descriptive

Used by: Bibentry.class, Bibentry.class

Pattern bib-url attributes Attributes for bib-url.

Attributes: Common.attributes, Refable.attributes

Pattern bib-url model Content model for bib-url.

Content: Inline.model

Expansion: (Inline.model)

Element bib-extract An extract from the referenced object.

Used by: Bibentry.class, Bibentry.class

Pattern bib-extract attributes Attributes for bib-extract.

Attributes: Common.attributes

Attribute role = (keywords | abstract | contents | text)
Classify what kind of extract

Pattern bib-extract model Content model for bib-extract.

Content: Inline.model

Expansion: (Inline.model)

234 APPENDIX D. SCHEMA

Element bib-note Notes about a bibliographic entry.

Used by: Bibentry.class, Bibentry.class

Pattern bib-note attributes Attributes for bib-note.

Attributes: Common.attributes

Attribute role = (annotation | publication | text)
Classify the kind of note

Pattern bib-note model Content model for bib-note.

Content: Inline.model

Expansion: (Inline.model)

Element bib-data Random data, not necessarily even text. (future questions:
should model be text or ANY? maybe should have encoding attribute?).

Used by: Bibentry.class, Bibentry.class

Pattern bib-data attributes Attributes for bib-data.

Attributes: Common.attributes

Attribute role = text
Classify the relationship of the data to the entry.

Attribute type = text
Classify the type of the data.

Pattern bib-data model Content model for bib-data.

Content: Inline.model

Expansion: (Inline.model)

Pattern Bibentry.class

Content: (bib-name | bib-title | bib-subtitle | bib-key | bib-type
| bib-date | bib-publisher | bib-organization | bib-place | bib-part
| bib-related | bib-edition | bib-status | bib-language | bib-url
| bib-note | bib-extract | bib-identifier | bib-review | bib-links
| bib-data)

Expansion: ((bib-name | bib-title | bib-subtitle | bib-key | bib-type
| bib-date | bib-publisher | bib-organization | bib-place | bib-part
| bib-related | bib-edition | bib-status | bib-language | bib-url
| bib-note | bib-extract | bib-identifier | bib-review | bib-links
| bib-data))

Used by: bib-related model, bibentry model, bib-related model,
bibentry model

Appendix E

Error Codes

Warning and Error messages are printed to STDERR during the execution of latexml
and latexmlpost. As with TEX, it is not always possible to indicate where the real
underying mistake originated; sometimes it is only realized later on that some problem
has occurred, such as a missing brace. Moreover, whereas error messages from TEX
may be safely assumed to indicate errors with the source document, with LATEXML they
may also indicate LATEXML’s inability to figure out what you wanted, or simply bugs in
LATEXML or the librarys it uses.

Warnings are generally informative that the generated result may not be as good as it
can be, but is most likely properly formed. A typical warning is that the math
parser failed to recognize an expression.

Errors generally indicate a more serious problem that is likely to lead to a malformed
result. A typical error would be an undefined control sequence. Generally, pro-
cessing continues so that you can (hopefully) solve all errors at once.

Fatals are errors so serious as to make it unlikely that processing can continue; the
system is likely to be out-of-sync, for example not knowing from which point
in the input to continue reading. A fatal error is also generated when too many
(typically 100 regular errors have been encountered.

Warning and Error messages are slightly structured to allow unattended process-
ing of documents to classify the degree of success in processing. A typical message
satisfies the following regular expression:

severity:category:object summary
source locator
description
...
stack trace

the second and following lines are indented using a tab.

severity One of Info, Warn, Error or Fatal, indicating the severity of the prob-
lem;

235

236 APPENDIX E. ERROR CODES

category classifies the error or warning into an open-ended set of categories indicating
whether something was expected, or undefined;

object indicates the offending object; what filename was missing, or which token was
undefined;

summary gives a brief readable summary of the condition;

source locator indicates where in the source document the error occurred;

description gives one or more lines of more detailed information;

stack trace optionally gives a brief or long trace of the current execution stack.

The type is followed by one or more keywords separated by colons, then a space, and
a human readable error message. Generally, this line is followed by one or more lines
describing where in the source document the error occured (or was detected). For
example:

Error:undefined:\foo The control sequence \foo is undefined.

Some of the more common keywords following the message type are listed below,
where we assume that arg is the second keyword (if any).

The following errors are generally due to malformed TEX input, incomplete
LATEXML bindings, or bindings that do not properly account for the way TEX, or
the macros, are actually used.

undefined : The operation indicated by arg, typically a control sequence or other
operation, is undefined.

ignore : Indicates that arg is being ignored; typically it is a duplicated definition, or
a definition of something that cannot be redefined.

expected : A particular token, or other type of data object, indicated by arg, was
expected in the input but was missing.

unexpected : arg was not expected to appear in the input.

not parsed : A mathematical formula could not be successfully parsed.

missing file : the file arg could not be found.

latex : An error or message generated from LATEX code. and the corresponding
LATEXML code should be updated.

too many errors : Too many non-fatal errors were encountered, causing a Fatal
error and program termination.

The following errors are more likely to be due to programming errors in the
LATEXML core, or in binding files, or in the document model.

misdefined : The operation indicated by arg, typically a control sequence or other
operation, has not been defined properly.

237

deprecated : Indicates that arg is a deprecated usage.

malformed : The document is malformed, or will be made so by insert arg into it.

I/O : some problem with input/output of the file arg, such as it not being readable.
The exact error is reported in the additional details.

perl : A perl-level error or warning, not specifically recognized by LaTeXML, was
encountered. arg will typically die, interrupt or warn.

internal : Something unexpected happened; most likey an internal coding error
within LATEXML.

238 APPENDIX E. ERROR CODES

Appendix F

CSS Classes

When the target format is in the HTML family (XHTML, HTML or HTML5), LATEXML
adds various classes to the generated html elements. This provides a trail back to the
originating markup, and leverage to apply CSS styling to the results. Recall that the
class attribute is a space-separated list of class names. This appendix describes the
class names used.

The basic strategy is the following:

ltx element with element being the LATEXML element name that generated the html
element. These elements reflect the original TEX/LATEX markup, but are not iden-
tical. See Appendix D for details.

ltx font font where font can indicate any of the font characteristics:

family : serif, sansserif, typewriter, caligraphic, fraktur,
script;

series : bold, medium;

shape : upright, italic, slanted, smallcaps;

These sets are open-ended.

ltx align alignment where alignment indicates the alignment of the contents
within the element.

horizontally : left, right, center, justify;

vertically : top, bottom, baseline, middle.

ltx border edges indicates single or double borders on an element with edges be-
ing: t, r, b, l, tt, rr, bb, ll; these are typically used for table cells.

ltx role role reflects the distinct uses a particular LATEXML elements serve which
is indicated by the role attribute. Examples include creator, for ‘document
creators’, where the role may be author, editor, translator or others.
Thus, depending on your purposes and the expected markup, you might choose

239

240 APPENDIX F. CSS CLASSES

to write CSS rules for ltx creator or ltx role author. Similarly, quote
is stretched to accomodate translation or verse.

ltx title section marks the titles of various sectional units. For example, a chap-
ter’s title will have two classes: ltx title and ltx title chapter.

ltx theorem type marks various types of ‘theorem-like’ objects, where the type is
whatever was used in \newtheorem.

ltx float type marks various types of floating objects, such as might be defined
using the float package using \newfloat.

ltx lst role reflects the various roles of items within listings, such as those cre-
ated using the listings package (whose containing element would have
class ltx lstlisting). Such classes include: ltx lst language lang,
ltx lst keywordclass, ltx lxt line, ltx lst linenum.

ltx bib item indicates various items in bibliographys, typically generated via
BIBTEX; the items include key, number, type, author, editor, year,
title, author-year, edition, series, part, journal, volume,
number, status, pages, language, publisher, place, status,
crossref, external, cited and others.

ltx toclist type, ltx tocentry type reflects the levels of Table of Contents
lists: they carry the ltx toclist class, from the element used to represent
them, and also ltx toclist section naming the sectional unit for which this
list applies to assist in styling. A nested TOC for a chapter might thus have ul’s
carrying ltx toclist chapter and ltx toclist section. Addition-
ally, ltx toc compact and ltx toc verycompact can be added to style
compact and very compact styles (eg single line). Note that the generated li
items will have class ltx tocentry and ltx tocentry type, for the type
of the entry.

ltx ref item hypertext links, whether within or across documents, whether created
from \ref or \href, will get ltx ref and, sometimes, extra classes ap-
plied. For example, a reference that ends up pointing to the current page is
marked with ltx ref self. Cross-referencing material used to fill-in the con-
tents of the reference is marked: a reference number gets ltx ref tag; a title
ltx ref title.

ltx note part reflects the separate parts of notes; Note that the kind of note is gen-
erally reflected in the role attribute, such as footnote, endnote, etc. The
parts are separated to facilitate formatting, hover effects, etc: outer contains
the whole; mark for the mark, if any; content the actual contents of the note.
type is for an extra span indicating the type of note if it is unusual.

ltx page item reflects page layout components created during the XSLT; items
include: main, content, header, footer, navbar logo, columns,
column1, column2.

241

ltx eqn item reflects different parts related to equation formatting: pad reflects
padding to align equations on the page; eqnarray and lefteqn arise from
LATEX’s eqnarray environment; gather and align arise from AMS envi-
ronments; intertext arises from text injected between aligned equations.

Any other explicit use of the addClass(class) function or of the \lxAddClass{class}
macro from the latexml package will add the given class as is, without any additional
ltx prefix.

Two oddball items that may get refactored away are: ltx phantom and
ltx centering. The latter seems slightly distinct from ltx align center.

242 APPENDIX F. CSS CLASSES

Index

about
attribute, 173

aboutidref
attribute, 173

aboutlabelref
attribute, 173

abstract
element, 221

acknowledgements
element, 222

after
attribute, 220

align
attribute, 171, 201, 203

Alignment(LaTeXML::Core::)
module, 143

Description, 143
anchor

element, 177
angle

attribute, 172
angle1

attribute, 205
angle2

attribute, 205
ANY

attribute, 187
appendix

element, 215
appendix.body.class

schema pattern, 215
arc

attribute, 205
element, 207

arcsepA

attribute, 205
arcsepB

attribute, 205
arrowlength

attribute, 205
AssignCatcode, 95
AssignMapping, 95
AssignValue, 94
AtBeginDocument, 87

Backgroundable.attributes
schema pattern, 170

backgroundcolor
attribute, 170

BackMatter.class
schema pattern, 225

Balanced, 74
BalancedParen, 74
baseline

attribute, 206
before

attribute, 220
bezier

element, 208
bib-data

element, 234
bib-date

element, 229
bib-edition

element, 231
bib-extract

element, 233
bib-identifier

element, 232
bib-key

243

244 INDEX

element, 229
bib-language

element, 233
bib-links

element, 232
bib-name

element, 227
bib-note

element, 234
bib-organization

element, 230
bib-part

element, 231
bib-place

element, 230
bib-publisher

element, 230
bib-related

element, 230
bib-review

element, 232
bib-status

element, 232
bib-subtitle

element, 229
bib-title

element, 228
bib-type

element, 229
bib-url

element, 233
bibblock

element, 226
bibentry

element, 227
Bibentry.class

schema pattern, 234
bibentry.type

schema pattern, 227
bibitem

element, 226
bibliography

element, 216
bibliography.body.class

schema pattern, 216
biblist

element, 226
Bibname.model

schema pattern, 228
bibref

element, 178
bibrefphrase

element, 178
bibrefs

attribute, 178, 231
bibstyle

attribute, 216
BibTeX(LaTeXML::Pre::)

module, 156
BibEntry objects, 156
Creating a BibTeX, 156
Description, 156
Methods, 156

block
element, 181

Block.class
schema pattern, 163

Block.model
schema pattern, 162

border
attribute, 201, 204

Box(LaTeXML::)
architecture, 16

Box(LaTeXML::Core::)
module, 140

Exported Functions, 140
Methods, 141

boxsep
attribute, 205

break
element, 186

candidates
attribute, 187

caption
element, 195

Caption.class
schema pattern, 193

chapter
element, 211

chapter.body.class
schema pattern, 211

INDEX 245

CharDef(LaTeXML::Core::Definition::)
module, 149

Description, 149
circle

element, 207
cite

element, 178
citestyle

attribute, 216
class

attribute, 165
classification

element, 222
CleanID, 97
CleanIndexKey, 97
CleanLabel, 97
CleanURL, 97
clip

attribute, 206
element, 209

clippath
element, 210

close
attribute, 185, 188

cmy(LaTeXML::Common::Color::)
module, 116

cmyk(LaTeXML::Common::Color::)
module, 116

color
attribute, 170

Color(LaTeXML::Common::)
module, 115

Exported functions, 115
Methods, 115
See also, 116

Color.type
schema pattern, 165

Colorable.attributes
schema pattern, 170

colsep
attribute, 201, 202

colspan
attribute, 201, 203

Comment(LaTeXML::Core::)
module, 141

Description, 141

Common.attributes
schema pattern, 165

Conditional(LaTeXML::Core::Definition::)
module, 149

Description, 149
Config(LaTeXML::Common::)

module, 99
Daemon, Server and Client Op-

tions, 113
Description, 100
Format Options, 107
General Options, 104
Graphics Options, 112
Math Options, 111
Methods, 100
OPTION SYNOPSIS, 101
Options & Arguments, 104
Site & Crossreferencing Options,

109
Source Options, 105
SYNPOSIS, 99
TeX Conversion Options, 106

constraint
element, 179

Constructor (LaTeXML::)
architecture, 17

Constructor(LaTeXML::Core::Definition::)
module, 149

Description, 149
More about Constructors, 150

contact
element, 221

content
attribute, 174

content-tex
attribute, 196, 206

CounterValue, 88
creator

element, 220
cssstyle

attribute, 165
curvature

attribute, 205
curve

element, 208

246 INDEX

data
attribute, 174

Data.attributes
schema pattern, 174

dataencoding
attribute, 174

datamimetype
attribute, 174

datatype
attribute, 174

date
element, 221

decl id
attribute, 197

declare
element, 188

DeclareOption, 87
DefColumnType, 93
DefConditional, 76
DefConditionalI, 76
DefConstructor, 79
DefConstructorI, 81
DefEnvironment, 82
DefEnvironmentI, 84
definiens

attribute, 188
Definition(LaTeXML::)

architecture, 16
Definition(LaTeXML::Core::)

module, 148
Description, 148
Methods, 148
See also, 149

DefLigature, 91
DefMacro, 75
DefMacroI, 76
DefMath, 81
DefMathI, 82
DefMathLigature, 91
DefMathRewrite, 91
DefParameterType, 93
DefPrimitive, 77
DefPrimitiveI, 78
DefRegister, 78
DefRegisterI, 78
DefRewrite, 91

del
element, 175

depth
attribute, 171

Derived(LaTeXML::Common::Color::)
module, 117

Synopsis, 117
description

attribute, 173
element, 183

Digest, 92
Digested, 74
Dimension, 74
Dimension(LaTeXML::Common::)

module, 118
Exported functions, 118

displayedpoints
attribute, 205

DocType, 90
document

element, 210
Document (LaTeXML::)

architecture, 17
Document(LaTeXML::Core::)

module, 131
Accessors, 132
Construction Methods, 133
Description, 131
Document Modification, 136
Internal Insertion Methods, 135

document.body.class
schema pattern, 210

dots
element, 209

dotscale
attribute, 209

dotsize
attribute, 209

dotstyle
attribute, 209

doubleline
attribute, 205

DTD(LaTeXML::Common::Model::)
module, 121

ellipse

INDEX 247

element, 208
emph

element, 175
enclose

attribute, 197
enumerate

element, 182
equation

element, 180
equationgroup

element, 180
EquationMeta.class

schema pattern, 179
ERROR

element, 191
Error(LaTeXML::Common::)

module, 121
Description, 121
Error Reporting, 122
Internal Functions, 122

ExecuteOptions, 87
Expand, 92
Expandable(LaTeXML::)

architecture, 16
Expandable(LaTeXML::Core::Definition::)

module, 150
Description, 150

figure
element, 193

files
attribute, 216

fill
attribute, 205

fillframe
attribute, 205

FindFile, 84
float

attribute, 171
element, 194

Float(LaTeXML::Common::)
module, 118

Exported functions, 118
Flow.model

schema pattern, 162
font

attribute, 169
Font(LaTeXML::Common::)

module, 119
Description, 119
Methods, 119

Fontable.attributes
schema pattern, 169

fontsize
attribute, 170

format
attribute, 181, 223

fragid
attribute, 167

framecolor
attribute, 172

framed
attribute, 172, 205

frametype
attribute, 205

FrontMatter.attributes
schema pattern, 224

FrontMatter.class
schema pattern, 225

g
element, 206

GenerateID, 88
givenname

element, 228
Global(LaTeXML::)

module, 70
Description, 71
Global state, 71
Synopsis, 70

glossary
element, 218

glossary.body.class
schema pattern, 218

glossarydefinition
element, 190

glossaryentry
element, 219

glossarylist
element, 218

glossaryphrase
element, 190

248 INDEX

glossaryref
element, 176

Glue, 74
Glue(LaTeXML::Common::)

module, 119
Exported functions, 119

graphic
attribute, 187

graphics
element, 186

gray(LaTeXML::Common::Color::)
module, 116

grid
element, 209

Gullet(LaTeXML::)
architecture, 16

Gullet(LaTeXML::Core::)
module, 126

Description, 127
High-level methods, 128
Low-level methods, 127
Managing Input, 127
Mid-level methods, 128

height
attribute, 171, 204

hidden
attribute, 180

href
attribute, 169, 197

hsb(LaTeXML::Common::Color::)
module, 116

id
attribute, 232

ID.attributes
schema pattern, 167

idref
attribute, 168

IDREF.attributes
schema pattern, 168

IfCondition, 76
Imageable.attributes

schema pattern, 172
imagedepth

attribute, 173

imageheight
attribute, 173

imagesrc
attribute, 173

imagewidth
attribute, 173

index
element, 216

index.body.class
schema pattern, 217

indexentry
element, 217

indexlist
element, 217

indexmark
element, 189

indexphrase
element, 189

indexrefs
element, 217

indexsee
element, 189

inline-block
element, 186

inline-description
element, 184

inline-enumerate
element, 184

inline-item
element, 184

inline-itemize
element, 183

inline-para
element, 192

Inline.class
schema pattern, 163

Inline.model
schema pattern, 161

inlist
attribute, 168

innerdepth
attribute, 172

innerheight
attribute, 172

innerwidth
attribute, 172

INDEX 249

Input, 85
InputContent, 84
InputDefinitions, 85
InstallDefinition, 95
Invocation, 92
item

element, 183
itemize

element, 182
itemsep

attribute, 183

key
attribute, 176, 189, 190, 219, 226,

227
KeyVals(LaTeXML::Core::)

module, 143
Accessors, 143
Changing contained values, 145
Constructors, 143
Description, 143
KeyVals Accessors, 146
KeyVals Accessors (intended for

internal usage), 144
Parsing values from a gullet, 146
Resolution to KeySets, 145
Value Related Reversion, 146

Keyword, 74
keywords

element, 222

Labelled.attributes
schema pattern, 168

labelref
attribute, 169

labels
attribute, 169

LaTeXML
architecture, 15

LaTeXML
module, 69

Description, 69
INTERNAL ROUTINES, 70
Methods, 69
Synopsis, 69

latexml

basic usage, 6
latexml

command, 51
Options & Arguments, 52
See also, 54
Synopsis, 51

latexmlmath
basic usage, 13

latexmlmath
command, 62

BUGS, 66
Conversion Options, 63
Input notes, 63
Options & Arguments, 63
Other Options, 64
See also, 66
Synopsis, 62

latexmlpost
basic usage, 7

site building, 11
split pages, 11

latexmlpost
command, 54

Format Options, 56
General Options, 56
Graphics Options, 61
Math Options, 60
Options & Arguments, 56
See also, 62
Site & Crossreferencing Options,

58
Source Options, 56
Synopsis, 54

Length.type
schema pattern, 164

Let, 93
lexemes

attribute, 196
line

element, 206
lineage

element, 228
List(LaTeXML::)

architecture, 16
List(LaTeXML::Core::)

module, 141

250 INDEX

Listable.attributes
schema pattern, 168

listing
element, 182

Listing.attributes
schema pattern, 168

listingline
element, 182

lists
attribute, 168, 223

LoadClass, 86
LoadPool, 87
LookupCatcode, 95
LookupDefinition, 95
LookupMapping, 94
LookupMeaning, 95
LookupValue, 94
lpadding

attribute, 197

mark
attribute, 188

Match, 74
Math

element, 196
Math.class

schema pattern, 195
MathBranch

element, 181
MathFork

element, 181
MathML(LaTeXML::Post::)

module, 157
Content Conversion Utilties, 159
DefMathML($key,$presentation,$content);,

157
Description, 157
Math Processors, Generally., 160
Presentation Conversion Utilties,

158
Synopsis, 157

MathParser (LaTeXML::)
architecture, 18

MathParser(LaTeXML::)
module, 97

Convenience functions, 98

Description, 97
Math Representation, 98
Possibile Customizations, 98

mathstyle
attribute, 198

meaning
attribute, 197

media
attribute, 191

MergeFont, 95
Meta.class

schema pattern, 164
Misc.class

schema pattern, 163
mode

attribute, 196
Model (LaTeXML::)

architecture, 17
Model(LaTeXML::Common::)

module, 120
Description, 120
Document Type, 120
Model Creation, 120
Model queries, 121
Namespaces, 120
See also, 121

Mouth(LaTeXML::)
architecture, 16

Mouth(LaTeXML::Core::)
module, 126

Creating Mouths, 126
Description, 126
Methods, 126

MuDimension(LaTeXML::Core::)
module, 147

Exported functions, 147
MuGlue, 74
MuGlue(LaTeXML::Core::)

module, 147
Exported functions, 147

name
attribute, 190, 197, 224

navigation
element, 191

NewCounter, 88

INDEX 251

note
element, 188

Number, 74
Number(LaTeXML::Common::)

module, 117
Exported functions, 117
Methods, 117

Object(LaTeXML::Common::)
module, 113

Description, 113
Generic functions, 114
Methods, 114

omcd
attribute, 197

opacity
attribute, 170

open
attribute, 185, 188

options
attribute, 187

p
element, 179

Pack(LaTeXML::Util::)
module, 155

Description, 155
Methods, 155

Package(LaTeXML::)
module, 71

Access to State, 94
Argument Readers, 93
Class and Packages, 86
Color, 96
Common Options, 75
Conditionals, 76
Constructors, 79
Control Sequences, 72
Counters and IDs, 88
Description, 72
Document Model, 89
Document Rewriting, 91
Environments, 82
Fonts, 95
Inputing Content and Definitions,

84

Low-level Functions, 97
Macros, 75
Mid-Level support, 92
Primitives, 77
Prototypes, 73
Registers, 78
See also, 97
Synopsis, 71

pagination
element, 185

Pair(LaTeXML::Core::)
module, 147

Description, 147
Exported functions, 147

PairList(LaTeXML::Core::)
module, 147

Description, 148
Exported functions, 148

para
element, 192

Para.class
schema pattern, 164

Para.model
schema pattern, 162

parabola
element, 209

paragraph
element, 213

paragraph.body.class
schema pattern, 213

Parameter(LaTeXML::Core::)
module, 151

Description, 151
See also, 151

Parameters(LaTeXML::Core::)
module, 151

Description, 151
Methods, 152
See also, 152

part
element, 211

part.body.class
schema pattern, 211

PassOptions, 87
path

element, 208

252 INDEX

Pathname(LaTeXML::Util::)
module, 152

Description, 152
File System Operations, 154
Pathname Manipulations, 152

Person.class
schema pattern, 220

personname
element, 220

picture
element, 205

Picture.attributes
schema pattern, 204

Picture.class
schema pattern, 204

PictureGroup.attributes
schema pattern, 205

placement
attribute, 194

Plain, 74
points

attribute, 205
polygon

element, 207
PopValue, 94
pos

attribute, 205
Positionable.attributes

schema pattern, 171
possibleFunction

attribute, 197
Post (LaTeXML::)

architecture, 18
Post(LaTeXML::)

module, 157
Description, 157

prefix
attribute, 173

Primitive(LaTeXML::)
architecture, 16

Primitive(LaTeXML::Core::Definition::)
module, 150

Description, 150
ProcessOptions, 87
proof

element, 193

property
attribute, 174

PushValue, 94

quote
element, 181

r
attribute, 204

rawhtml
element, 187

rawliteral
element, 188

RawTeX, 92
rdf

element, 190
rdf-prefixes

attribute, 224
RDF.attributes

schema pattern, 173
ReadParameters, 93
rect

element, 206
ref

element, 177
Refable.attributes

schema pattern, 169
RefStepCounter, 88
RefStepID, 88
Register(LaTeXML::Core::Definition::)

module, 150
Description, 151
Methods, 151

RegisterDocumentNamespace, 90
RegisterNamespace, 90
rel

attribute, 174
RelaxNG(LaTeXML::Common::Model::)

module, 121
RelaxNGSchema, 90
RequirePackage, 86
ResetCounter, 88
resource

attribute, 173
element, 191

resourceidref

INDEX 253

attribute, 174
resourcelabelref

attribute, 174
rev

attribute, 174
Rewrite (LaTeXML::)

architecture, 17
Rewrite(LaTeXML::Core::)

module, 138
Description, 138

rgb(LaTeXML::Common::Color::)
module, 116

role
attribute, 181, 185, 188, 190, 194,

196, 217–221, 227, 230, 231,
233, 234

Roman, 97
roman, 97
rowsep

attribute, 180, 201, 202
rowspan

attribute, 201, 203
rpadding

attribute, 197
rule

attribute, 200
element, 176

rx
attribute, 204

ry
attribute, 204

scheme
attribute, 222, 232

scope
attribute, 223

scriptpos
attribute, 197

section
element, 211

section.body.class
schema pattern, 212

Sectional.attributes
schema pattern, 224

SectionalFrontMatter.class
schema pattern, 225

See also, 97
see also

attribute, 189
select

attribute, 223
Semiverbatim, 74
separator

attribute, 178
shadowbox

attribute, 205
ShiftValue, 94
show

attribute, 176–178, 223
showpoints

attribute, 205
sidebar

element, 215
sidebar.body.class

schema pattern, 215
Skip1Space, 75
SkipSpaces, 75
slide

element, 214
slide.body.class

schema pattern, 214
sort

attribute, 216
sortkey

attribute, 189
src

attribute, 191
State(LaTeXML::Core::)

module, 123
Access to State and Processing,

123
Category Codes, 125
Definitions, 125
Description, 123
Named Scopes, 125
Scoping, 123
Values, 124

StepCounter, 88
Stomach(LaTeXML::)

architecture, 16
Stomach(LaTeXML::Core::)

module, 129

254 INDEX

Description, 129
Digestion, 130
Grouping, 130
Modes, 131

stretchy
attribute, 198

stroke
attribute, 205

stroke-dasharray
attribute, 205

stroke-width
attribute, 205

style
attribute, 189, 200

sub
element, 176

subparagraph
element, 214

subparagraph.body.class
schema pattern, 214

subsection
element, 212

subsection.body.class
schema pattern, 212

subsubsection
element, 213

subsubsection.body.class
schema pattern, 213

subtitle
element, 220

sup
element, 176

surname
element, 228

svg
schema pattern, 187

table
element, 194

tabular
element, 202

Tag, 89
tag

element, 185
tags

element, 184

tbody
element, 203

td
element, 203

terminators
attribute, 205

tex
attribute, 196, 206

text
attribute, 196
element, 175

tfoot
element, 202

thead
attribute, 201, 204
element, 202

theorem
element, 193

thickness
attribute, 198

title
attribute, 176, 177
element, 219

titlepage
element, 222

TOC
element, 223

toccaption
element, 195

tocentry
element, 224

toclist
element, 223

toctitle
element, 219

Token, 74
Token(LaTeXML::)

architecture, 16
Token(LaTeXML::Core::)

module, 138
Exported functions, 139
Methods, 139

Tokens(LaTeXML::)
architecture, 16

Tokens(LaTeXML::Core::)
module, 140

INDEX 255

Exported functions, 140
Tokens methods, 140

tr
element, 203

transform
attribute, 205

Transformable.attributes
schema pattern, 172

type
attribute, 188, 191, 227, 231, 234

typeof
attribute, 174

Undigested, 74
unitlength

attribute, 206
UnshiftValue, 94
Until, 74
UntilBrace, 74
UTF, 97

Variable, 75
vattach

attribute, 171, 202, 204
verbatim

element, 186
vocab

attribute, 173

wedge
element, 207

Whatsit(LaTeXML::)
architecture, 16

Whatsit(LaTeXML::Core::)
module, 141

Description, 142
Methods, 142

width
attribute, 171, 201, 202, 204

WWW(LaTeXML::Util::)
module, 154

Description, 155
Methods, 155
Synopsis, 154

x

attribute, 204
xhtml:*

element, 187
XMApp

element, 198
XMArg

element, 200
XMArray

element, 200
XMath

element, 197
XMath.attributes

schema pattern, 196
XMath.class

schema pattern, 196
XMCell

element, 201
XMDual

element, 199
XMHint

element, 199
xml:id

attribute, 167
xml:lang

attribute, 165
XMRef

element, 200
XMRow

element, 201
XMText

element, 199
XMTok

element, 198
XMWrap

element, 199
xoffset

attribute, 171
xscale

attribute, 172
XToken, 74
xtranslate

attribute, 172
xunitlength

attribute, 206
XUntil, 74

256 INDEX

y
attribute, 204

yoffset
attribute, 171

yscale
attribute, 172

ytranslate
attribute, 172

yunitlength
attribute, 206

yyseparator
attribute, 178

	Contents
	List of Figures
	Introduction
	Using LaTeXML
	Conversion
	Postprocessing
	Splitting
	Sites
	Individual Formula

	Architecture
	latexml architecture
	latexmlpost architecture

	Customization
	LaTeXML Customization
	Expansion
	Digestion
	Construction
	Document Model
	Rewriting
	Packages and Options
	Miscellaneous

	latexmlpost Customization
	XSLT
	CSS

	Mathematics
	Math Details
	Internal Math Representation
	Grammatical Roles

	Localization
	Numbering
	Input Encodings
	Output Encodings
	Babel

	Alignments
	TeX Alignments
	Tabular Header Heuristics
	Math Forks
	eqnarray
	AMS Alignments

	Metadata
	RDFa

	ToDo
	Commands
	latexml
	latexmlpost
	latexmlmath

	Bindings
	Modules
	LaTeXML
	LaTeXML::Global
	LaTeXML::Package
	LaTeXML::MathParser

	Common Modules
	LaTeXML::Common::Config
	LaTeXML::Common::Object
	LaTeXML::Common::Color
	LaTeXML::Common::Color::rgb
	LaTeXML::Common::Color::hsb
	LaTeXML::Common::Color::cmy
	LaTeXML::Common::Color::cmyk
	LaTeXML::Common::Color::gray
	LaTeXML::Common::Color::Derived
	LaTeXML::Common::Number
	LaTeXML::Common::Float
	LaTeXML::Common::Dimension
	LaTeXML::Common::Glue
	LaTeXML::Common::Font
	LaTeXML::Common::Model
	LaTeXML::Common::Model::DTD
	LaTeXML::Common::Model::RelaxNG
	LaTeXML::Common::Error

	Core Modules
	LaTeXML::Core::State
	LaTeXML::Core::Mouth
	LaTeXML::Core::Gullet
	LaTeXML::Core::Stomach
	LaTeXML::Core::Document
	LaTeXML::Core::Rewrite
	LaTeXML::Core::Token
	LaTeXML::Core::Tokens
	LaTeXML::Core::Box
	LaTeXML::Core::List
	LaTeXML::Core::Comment
	LaTeXML::Core::Whatsit
	LaTeXML::Core::Alignment
	LaTeXML::Core::KeyVals
	LaTeXML::Core::MuDimension
	LaTeXML::Core::MuGlue
	LaTeXML::Core::Pair
	LaTeXML::Core::PairList
	LaTeXML::Core::Definition
	LaTeXML::Core::Definition::CharDef
	LaTeXML::Core::Definition::Conditional
	LaTeXML::Core::Definition::Constructor
	LaTeXML::Core::Definition::Expandable
	LaTeXML::Core::Definition::Primitive
	LaTeXML::Core::Definition::Register
	LaTeXML::Core::Parameter
	LaTeXML::Core::Parameters

	Utility Modules
	LaTeXML::Util::Pathname
	LaTeXML::Util::WWW
	LaTeXML::Util::Pack

	Preprocessing Modules
	LaTeXML::Pre::BibTeX

	Postprocessing Modules
	LaTeXML::Post
	LaTeXML::Post::MathML

	Schema
	Module LaTeXML
	Module LaTeXML-common
	Module LaTeXML-inline
	Module LaTeXML-block
	Module LaTeXML-misc
	Module LaTeXML-meta
	Module LaTeXML-para
	Module LaTeXML-math
	Module LaTeXML-tabular
	Module LaTeXML-picture
	Module LaTeXML-structure
	Module LaTeXML-bib

	Error Codes
	CSS Classes
	Index

